
 Eindhoven University of Technology

MASTER

Isolation-based Anomaly Detection Algorithms for Distributed Data Streams

Visser, Thijs

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/8c663454-9a37-4bad-9852-e43fa8b5f7a8

Isolation-based Anomaly
Detection Algorithms for
Distributed Data Streams

A thesis presented by

Thijs Visser
to

the Department of Mathematics and Computer Science
in partial fulfillment of the requirements

for the degree of
Master of Science

in
Computer Science and Engineering

TU Eindhoven
June 2021

Supervisor:
dr. rer. nat. Morteza Monemizadeh

Defense committee:
prof. dr. Mark de Berg
dr. rer. nat. Morteza Monemizadeh
dr. Odysseas Papapetrou

i

Abstract

Anomaly detection is a classical topic in machine learning and data
mining, with a wide range of applications. As the amount of information
shared online grows rapidly, the need for parallelizable anomaly detection
algorithms increases. In this thesis, we propose the Random Shift Forest
(RSF) algorithm to detect anomalies. RSF is an unsupervised anomaly
detection algorithm with a low time complexity. It is an ensemble method
that uses partitioning to isolate anomalies. To evaluate RSF, we use it
on synthetic and real datasets. Compared to a state-of-the-art algorithm,
RSF performs favourably in terms of ROC-AUC. The straightforward con-
struction of RSF makes it amenable to big data models. In particular, we
show that RSF can be implemented in the distributed and the streaming
model using sparse recovery techniques.

ii

Acknowledgments
First of all, I would like to thank my supervisor, Morteza Monemizadeh, for his
time and effort. Your guidance, help, and enthusiasm were amazing, and I have
learned a lot from you. I would also like to thank prof. dr. Mark de Berg and dr.
Odysseas Papapetrou for being a part of my defense committee, I feel honored
that you have read my thesis. Furthermore, I want to thank my girlfriend Fleur
for being by my side at all times. And James, having you (literally) at my side
made writing this thesis a lot more fun. I want to thank my parents for their
encouragement and support throughout my studies. I am grateful to have a
sister, family, and friends that always believe in me. And finally, since I was
told you have to thank your sponsors here, I want to thank Nienke for all the
free coffee.

iii

Contents

List of Figures v

List of Tables v

1 Introduction 1
1.1 Problem statement . 4
1.2 Outline . 4

2 Background 5
2.1 Anomalies . 5
2.2 Anomaly detection algorithms . 7
2.3 Isolation Forest . 10
2.4 Evaluation metrics and data . 13

3 Algorithms 15
3.1 Random Shift Forest . 15
3.2 RSQT Forest . 24

4 Results and discussion 26
4.1 Experimental setup . 26
4.2 RSQT Forest on 2-dimensional datasets 27
4.3 RSF on 3-dimensional datasets 33
4.4 RSF on real datasets . 36
4.5 Running time and parameters . 39

5 Streaming and parallelism 42

6 Conclusion 45
6.1 Limitations and future research 45
6.2 Concluding remarks . 46

References 47

Appendices 52

iv

List of Figures
1 Types of anomalies in a synthetic dataset 6
2 The difference between global- and local density-based anomalies. 10
3 Partial construction of an iTree in two examples, showing why

anomalies generally take fewer cuts to isolate. 12
4 Tree decomposition of a small point set generated by RSF, high-

lighting a path to an anomaly (in orange), and a normal point
(in blue) . 17

5 Effect of the random shift . 18
6 Effect of increasing the maximum number of points per leaf . . . 21
7 Comparison of Isolation Forest to RSQT Forest on the moons

dataset . 29
8 Comparing anomaly detection algorithms to RSQT Forest on

map-like data. 30
9 Comparing anomaly detection algorithms to RSQT Forest on

curved shapes. 31
10 Comparing anomaly detection algorithms to RSQT Forest on

Gaussian distributions. 32
11 Predicted anomalies in the swiss roll dataset for iForest and RSF 33
12 Predicted anomalies in the s-curve dataset for iForest and RSF . 34
13 Anomalies in SMTP dataset: ground truth, iForest, and RSF. . . 35
14 Running time of RSF . 39
15 Effects of the parameters of RSF on performance 41
16 Additional viewing angles s-curve data (left: iForest, right: RSF) 52
17 Additional viewing angles s-curve data (left: iForest, right: RSF) 53
18 Additional viewing angles swiss roll data (left: iForest, right: RSF) 54
19 Additional viewing angles swiss roll data (left: iForest, right: RSF) 55

List of Tables
1 Overview of real datasets (d = number of dimensions). 37
2 ROC-AUC score in real datasets for iForest and RSF 38

v

1 | Introduction
In a world where the amount of information shared digitally grows rapidly, it
becomes increasingly important to develop ways to cope with massive data.
One of the core concepts in analyzing big data is anomaly detection [11], also
known as outlier detection [27]. In the field of anomaly detection, the goal is
to find parts of the data that are in some sense different from the majority of
the data. The idea behind this is that if some instances differ from most other
instances, then they deserve additional attention. There are many applications
for anomaly detection, including:

• Detecting irregularities in the power production of a system of solar panels
for predictive maintenance [13].

• Finding and removing noise from a dataset before performing statistical
analysis, such as linear regression, on the data to improve the validity of
the results [42].

• Finding a rarity [12] in a big data stream for further investigation in data
mining (novelty detection) [18].

• Removing outliers from a training dataset before training a neural network
on it to improve classification accuracy in machine learning [16].

• Detecting anomalies in network traffic to find data that was sent by an
attacking party (intrusion detection) [40].

• Finding a part of an IoT system that is faulty by analyzing data streams
[34].

• Detecting potential cases of credit card fraud in online banking [8].

• Finding and removing pieces of fruit that show abnormalities, such as
rotting, within a fruit sorting machine [31].

Unfortunately, defining an anomaly exactly seems to be a difficult task. A
commonly cited definition of an anomaly by Hawkins, author of a book on outlier
detection [25], is an observation that deviates so much from other observations
as to arouse suspicions that it was generated by a different mechanism. This
definition reveals the motivation behind detecting anomalies: we would like to

1

find those instances that have been generated by other sources than the expected
mechanism.

One may think that an anomaly is always different from the rest of the
points, or that rare points are always anomalies. However, this is not always
the case, as is highlighted in the following two examples:

• Attacks in network systems: in the case of a network setting an
attack is often identified because of detecting abrupt bursts of activity
[47]. The observations from the attack are detected as anomalous because
they are unexpectedly similar to each other.

• Imbalanced datasets: if in a stream 97% of all data belongs to a cluster
A, 1% belongs to a cluster B and the remaining 2% is random noise. Then,
whether we want to say that data in cluster B is anomalous depends on
the application. As an example, in the case of monitoring a network and
attack identification, cluster B could be the data sent by the attacker and
should therefore likely be marked as an anomalous cluster. If the data is
from some population where we know about 1% of people satisfy a certain
condition then this clustering is expected and there is no reason to remove
or analyze the data.

These examples show that the definition of an anomaly will always be context-
specific, so it is unlikely that there will ever be a single algorithm that finds all
anomalies in every setting. It is up to the expert to select the right algorithm(s)
and parameters to find anomalies of interest.

Anomaly detection in low- and high-dimensional Euclidean spaces.
In this thesis, we consider the anomaly detection task in low- as well as high-
dimensional Euclidean spaces. Finding anomalies for small datasets in low di-
mensional spaces such as 1, 2, and 3 dimensions is often a simple task for a
human. These datasets can be visualized, such that we can distinguish anoma-
lies and normal points. The anomaly detection task is much harder once the
underlying space is relatively high, mainly because it is not possible to plot the
data. For high-dimensional space, we use statistical metrics such as ROC-AUC
and contamination to measure the correctness of the classification behaviour
of an algorithm. We will explain these metrics in detail in the next chapter.
The anomaly detection problems becomes harder for big data models, such as
streaming and distributed models. In particular, in the streaming model, given

2

a stream of data that is constantly changing, we would like to detect anomalies
in real time. In the distributed model, data is spread among a pool of ma-
chines and local anomalies on one machine may not be the global anomalies
of the union of data. The anomaly detection becomes even more complicated
if the data lies in high-dimensional Euclidean spaces. Often anomaly detec-
tion algorithms have running times that are exponentially dependent on the
number of dimensions. Unfortunately, even the running time that is polynomi-
ally dependent on the number dimensions may not be feasible if the number of
dimensions is very high. Another issue in high dimensional Euclidean spaces
is a phenomenon known as the curse of dimensionality [48]. The curse of di-
mensionality can be described as a series of issues when dealing with highly
dimensional data. The main issue in the context of anomaly detection is that
in high dimensional spaces, points tend to have relatively equal distances from
each other. Therefore it becomes harder and harder to find meaningful patterns
in the data that can be used to create a classification model for normal and
anomalous points. New methods have been introduced in the past decades to
help deal with anomaly detection in big data.

Broadly speaking, anomaly detection algorithms can be categorized into two
classes as follows:

• Statistical algorithms: in statistical methods, also known as paramet-
ric methods [7], we assume there is a certain known underlying distribu-
tion from which normal points are generated. A point is classified as an
anomaly based on its deviation from this model.

• Non-statistical algorithms: other anomaly detection algorithms do not
impose such an assumption on data, but instead use metrics such as dis-
tance or (local) density to determine the anomalous instances.

Researchers have taken different approaches to the design of anomaly detec-
tion algorithms. Isolation Forest (iForest) [33] is an anomaly detection algorithm
that introduced a new way of finding anomalies. It uses recursive partitioning of
the data to build binary trees. The average number of partitioning iterations it
takes to isolate a point is used as a measure of anomalousness by this algorithm.
The focus of this thesis is to develop an algorithm that uses isolation to detect
anomalies, while also being suitable to use in a distributed streaming setting.
We consider iForest as a starting point due to its practical success reported re-
cently in [1] and it is one of the state-of-the-art techniques for general-purpose

3

anomaly detection.

1.1 Problem statement

Isolation forest is currently one of the best anomaly detection algorithms when
it comes to accuracy [9]. However, it is not suitable to use in a distributed
streaming setting, as we will explain later. Since big data often arrives in real-
time and on multiple machines, it is important to have algorithms that can be
used or adapted to work under such circumstances. Therefore the main research
question of this thesis is:

Can we develop an anomaly detection algorithm that performs better than
Isolation Forest and is suitable for streaming- and distributed settings?

Efforts to use Isolation Forest in a distributed way have been made in the
past, for example with the Isolation Forest variant Extended Isolation Forest
[24]. However, Extended Isolation Forest is known to perform well for simple
toy datasets rather than big datasets in high dimensional spaces. Moreover, the
authors in [24] do not give any proof of why their approach should or should
not work for real big datasets.

1.2 Outline

This chapter introduced the topic of our research and provided a high-level
overview of the relevant topics related to the research question. In chapter 2 we
provide the necessary background information for the scope of this thesis. In
chapter 3 the algorithms developed to solve the research question are introduced
and detailed with both intuitive explanations and pseudocode. In chapter 4 we
present both quantitative and qualitative comparisons of our algorithms and
widely used anomaly detection algorithms. Furthermore, this chapter contains
results relating to the running time of our main algorithm. In chapter 5 we
discuss the way our algorithms can be used in a streaming and distributed
setting. Finally, chapter 6 consists of limitations, ideas for future research, and
the conclusion.

4

2 | Background
In this chapter, we discuss the related work, background, and definitions used in
this thesis. First, we discuss the definition of anomalies in detail. Next, we give
an overview of the types of existing anomaly detection algorithms, with examples
for each type. Then, we focus on Isolation Forest, which is the most important
algorithm related to our research. We explain this algorithm in detail, and we
highlight its strengths and weaknesses. After all, the aim of our research is to
keep those strengths while using different techniques to address the shortcomings
as much as possible.

2.1 Anomalies

Before thinking about a way to efficiently detect anomalies, it is important to
understand how we can define an anomaly first. We provided one definition of
anomalies in the introduction, but more characterizations have been used over
the years, including:

• An outlying observation, or outlier, is one that appears to deviate markedly
from other members of the sample in which it occurs [39].

• An observation in a dataset that appears to be inconsistent with the re-
mainder of that set of data [29].

Indeed, it is clear that a formal definition of an anomaly does not exist.
We can, however, argue about different types of anomalies. Whether a type of
anomaly is then expected to occur in a certain context can be identified by a
domain expert. There are at least the following three distinct types of anomalies
according to [20]:

• Point anomalies: these anomalous observations differ significantly from
the vast majority of the rest of the data.

• Collective anomalies: anomalies that come in bursts or groups. This
type of anomaly is particularly common in network intrusion detection.
Individually speaking, the observations are not rare, but a group of them
differs from the majority of data.

5

• Contextual anomalies: anomalies that do not differ from the rest of
the data, unless some context is taken into account. A case of a type of
context that matters in certain situations is time. For example, it can
be perfectly normal for the sun to shine for 4.5 hours on a day in the
Netherlands, but if this happens in January (when it shines on average
1.5 hours per day) that should be considered an interesting anomaly. The
anomalies are referred to as contextual anomalies.

Figure 1: Types of anomalies in a synthetic dataset

Figure 1 shows examples of all of these types in a single dataset. This figure
contains a synthetic dataset showing a possible combination of the temperature
(x-axis) and hours of sun (y-axis) for every day of a year. The red points are
examples of point anomalies: the points on the left have exceptionally many
hours of sun, considering the low temperature on those two days. The red point
on the right was a very hot day, with a surprisingly little amount of hours of
sunshine. The purple points are a collective anomaly: if we consider the full
data, a single point from these purple points is not unusual because there are
six other points with almost the same values in both dimensions. However,

6

if one was to consider these purple points as a single observation they would
stand out from the entire data. The seven points highlighted with an enclosing
circle would be interesting to observe because they may be from a single week,
and this week could then be marked as the only heatwave of that year. The
dark green point is an example of a contextual anomaly: all points in green are
from January, but this one dark green point has an exceptional amount of sun
compared to the others. However, if we compare the dark green point to the
full data, it is not an observation that stands out. It is highly unlikely that
an anomaly detection algorithm would find this contextual anomaly using just
the two dimensions in the data. However, if we would include the month (or
week/day) as an extra numerical dimension (e.g. January = 1, February = 2,
etc...) then it would become possible to detect the contextual anomalies as well.
It is often the case that contextual anomalies can be detected by finding a way
to include the context as an input dimension.

In the remainder of this thesis, we focus mainly on point anomalies, but also
discuss ways to detect the other types of anomalies with the same algorithm by
making use of its parameters.

2.2 Anomaly detection algorithms

We are in particular interested in general-purpose, unsupervised anomaly de-
tection algorithms. Unsupervised anomaly detection algorithms are algorithms
that are trained using unlabeled data. In anomaly detection, labeled data means
that a point is marked as an anomaly or a normal point. The other types of al-
gorithms are supervised and semi-supervised learning algorithms. In supervised
learning, all of the data used to train a model is labeled. In semi-supervised
learning, a small portion of the data is labeled. In the experiments in chapter
5, labeled data is used to calculate ROC-AUC scores. However, these labels are
not passed to the algorithms, so the learning is still unsupervised. The reason
for this research to focus on unsupervised anomaly detection is that labeled
data is hard to come by [11]. Datasets have to be labeled by a human expert
who individually inspects all instances to conclude whether an observation is
anomalous or not. This process is labour intensive, especially in big data. Be-
sides this difficulty, data can change over time and anomalies are dynamic, so
supervised anomaly detection algorithms are simply not reasonable options for
big data analysis in practice.

7

Over the years, many anomaly detection algorithms have been developed
that can roughly be split into four main categories:

• Statistical algorithms

• Distance-based algorithms

• Density-based algorithms

• Randomized algorithms

The next paragraphs describe these four categories using examples of the
most well-known algorithms in each of the categories.

Statistical algorithms. Statistical algorithms are characterized by the fact
that they assume that the underlying model in the data is roughly known.
Based on this model, it is possible to make estimations on how likely it is that
an observation came from this model. The obvious advantage is that if the
assumption of the underlying model holds, the technique can be both accurate
and unsupervised. The main shortcoming of these algorithms is that they are
specialized to certain supposed underlying models and generalize poorly to other
settings. The question when using these algorithms is therefore usually: is there
something wrong with the anomaly or is there something wrong with the model
choice? [49]. An example of a statistical algorithm is fast-MCD [44]. Another
statistical algorithm that is used often is One-Class Support Vector Machine
(OCSVM) [4]. An issue with this algorithm is that it is sensitive to the inclusion
of anomalies in the training phase [35]. More examples of statistical methods
are discussed in [45].

Distance-based algorithms. Distance-based algorithms use the distance of
an instance to a subset of the other instances as a measure of anomalousness.
Some of the most widely used distance-based anomaly detection algorithms are
k-Nearest Neighbour approaches. These algorithms typically involve calculating
a distance matrix, which has time complexity O(n2). A weakness of these
approaches is that they have difficulty handling data with many dimensions,
as the distance between points becomes less effective at differentiating between
normal and anomalous instances [11]. Furthermore, computing all pairwise
distances in large, highly dimensional datasets is expensive. Some of the most
cited [2] nearest neighbour approaches are LOF [10], COF [46], (a)LOCI [37],

8

INFLO [28] and LoOP [32]. These algorithms typically have a running time of
O(n2) or O(n3) [2]. Therefore, it is not feasible to use these algorithms on big
datasets. LOF, for example, can take over 10, 000 seconds (roughly 3 hours) to
run on a dataset of over 11, 000 points [33].

Density-based algorithms. Density-based algorithms use the density of an
area to compare observations. These algorithms can either look at the globally
dense areas or the locally dense areas. In the former case, those points that
are from the least dense areas in the entire data are marked as the anomalous
points. In the latter case, those points that are from an area that is less dense
than that of its neighbours are seen as the most anomalous. The practical
difference is that the algorithms that focus on locally sparse points can detect
anomalies of clusters with different densities, that would otherwise be classified
as normal because their local area is dense in points. Figure 2 illustrates this
difference. In figure 2a, the anomalies (in orange) are the points with the lowest
amount of other points in its neighbourhood (dashed circles). In figure 2b, one
of the anomalies is the same as in the previous case because it has no points
in its neighbourhood. However, the other anomaly in this case is the point
with 3 points in its neighbourhood because this number deviates more from the
other points in its neighbourhood compared to the points in the other cluster
(those all have 2 or 3 points in their local area). One of the most used density-
based algorithms is DBSCAN [17]. This algorithm calculates, for each point,
how many points are in its local neighborhood. If it has many points in its
neighborhood the point is called a core instance. Core instances and the points
in the neighborhoods of the core instances are marked as the normal points, all
other points are considered anomalies.

Randomized algorithms. Randomized algorithms do not calculate absolute
densities or distances like the previous two methods. Instead, they rely on
partitioning the data to obtain a model that can classify anomalies. These
partitions can conveniently be stored in the form of a tree to optimize the
running time to O(n log n). Isolation Forest [33] and Robust Random Cut Forest
[22] are examples of random forest algorithms for anomaly detection.

Of course, distance-based-, density-based-, and randomized anomaly detec-
tion algorithms are somewhat related: if a point is close to many points it
generally resides in a more dense area of the feature spaces and this point will

9

(a) Global anomalies (b) Local anomalies

Figure 2: The difference between global- and local density-based anomalies.

usually then be harder to isolate for an algorithm like Isolation Forest. However,
we will see later on in this thesis that in practice, results of different methods
can vary significantly.

2.3 Isolation Forest

The most important anomaly detection algorithm in the context of this thesis is
Isolation Forest, as our algorithm relies on a similar principle to detect anoma-
lies. Therefore, we will explain this algorithm in more detail. Liu et al. [33]
proposed an anomaly detection algorithm named Isolation Forest (iForest) in
2008. As its name suggests, this algorithm finds anomalies based on how iso-
lated a point is. Isolation in this context is defined as how easy it is to separate
an instance from the rest of the instances, using a separation process detailed
below. In the original iForest paper, isolation is argued to be a good indication
of anomalies under the following two assumptions about anomalies:

• Anomalies are rare: compared to normal instances, anomalies are a mi-
nority and they do not occur in large clusters.

• Anomalies are different: the attributes of an anomaly differ significantly
from those of normal instances.

10

If these assumptions about the anomalies are true, then isolating an anomaly
should be easier (i.e., it takes fewer steps) than isolating a normal point.

iForest construction. The iForest algorithm works by creating an ensemble
of trees called Isolation Trees (iTrees) that are created by partitioning the data
recursively. The authors of iForest [33] showed that they can use subsamples
to generate iTrees that act as sketches of the full data. A random dimension
is chosen and the data is split at a random splitting point, between a mini-
mum and a maximum value. Because anomalies are assumed to be rare and
well-separated, these points are more likely to become isolated (i.e., the only
inhabitant of their part) sooner than normal points. The information about the
partition is stored in the form of an iTree, where internal nodes are empty and
every point is stored in an outer node (leaf). When the trees have been con-
structed, an anomaly score is calculated for every point. The anomaly score of
a point in the iTree is based on the path length from the root of the tree to the
leaf containing the point. Having a lower average path length corresponds to
the point receiving a higher anomaly score. Figure 3 shows how iForest isolates
points and illustrates why anomalous points are usually isolated more quickly
than normal points. The normal point that we isolate in 3a is surrounded by
many points from the large cluster it is a part of. Therefore, after any random
split, the point is likely still in the same part of the partitioning as many other
points from the cluster. It takes 13 random cuts to isolate this normal point.
The anomalous point that is marked as orange in figure 3b is far from most other
points in at least one of the dimensions. Therefore, a split in that dimension is
likely to cut off most other points from the anomalous point. In this example,
it only takes 4 cuts to completely isolate the anomalous point. In other words,
it has a path length of 4 in the iTree.

As argued before the path length for anomalous points is expected to be
shorter than average. Therefore it is not necessary to fully build the iTree, but
only to isolate points at levels up to a shorter than average depth in the tree.
This reduces the running time of the algorithm. The fact that not the full tree is
built is reflected in the scoring of the points: if the point resides at the maximum
depth for that tree a penalty is added to the anomaly score to account for the
part of the tree that was not completely built. In that case, the path length
will be calculated as the path length in the tree, plus the expected average path
length of the sub-tree that would occur beyond the height limit of the iTree.
The expectation is based on the number of points residing at that node. Because

11

(a) Isolating a normal point in 13 random
cuts

(b) Isolating an anomalous point in 4 ran-
dom cuts

Figure 3: Partial construction of an iTree in two examples, showing why anoma-
lies generally take fewer cuts to isolate.

of the random nature of the algorithm scores from multiple iTrees have to be
combined to obtain a robust anomaly score for a point.

Weaknesses of iForest. The algorithm does not take absolute distance into
account because of scale independence [22]. This means that in data where
purely distance-based anomaly detection algorithms would perform well, iForest
can have problems because it is making random cuts between a data dependent
minimum and a maximum, no matter the absolute distance between those ex-
tremes. This can cause high false positive rates and inconsistent results.
The algorithm is sensitive to the sample size [22]. Isolation Forest uses a sample
of the full data to build iTrees. This mechanism makes it unlikely that many
anomalies are used in building the iTrees. This is beneficial to reducing swamp-
ing andmasking effects [33]. Swamping refers to the effect that normal instances
are classified as anomalous. Masking refers to the opposite effect: anomalies are
classified as normal. This can happen because there is a small, but dense cluster
of anomalies, that take many partitions to isolate. However, by using a sample
this small cluster will likely be represented by only a few points, making the
anomalies once again easy to isolate.

However, it has been found that if iForest does not include any anomalies in
the sample and, for example, two clusters are present in the sample, it will later
classify the anomalous point as a part of one of the two clusters (normal point).
If the anomaly would have been included in the sample, then this behaviour
would not occur [22]. This example shows that iForest is sensitive to those

12

anomalies that may be included in the sample.
The algorithm suffers from ghost clusters because of the binary partitioning [23].
The fact that each individual cut in iForest is along a single dimension (i.e. a
straight line), can lead to unwanted classification behaviour. An example of
this phenomenon is a ghost cluster : if we have, for example, a cluster at (0,0)
and (5,5) in the sample, then iForest will have a bias towards classifying points
around (0,5) and (5,0) as normal. A visualization of this issue can be found in
Extended Isolation Forest [23].

2.4 Evaluation metrics and data

Now that we have discussed widely used anomaly detection techniques, it is also
important to have a way to compare them to one another. In low-dimensional
spaces, it is easy to visualize results, but it is still challenging for an algorithm
to detect anomalies in this setting. In high-dimensional space it is more difficult
to visualize results and we need to have an automatic way to measure and
benchmark different anomaly detection algorithms.

ROC-AUC score. Receiver operating characteristic (ROC) is a way of mea-
suring the accuracy of a binary classifier. Since anomaly detection is essentially
a binary classification task, characterized by a great class imbalance, ROC also
works well as a measure of performance of anomaly detection algorithms. The
ROC-curve can be understood as the true positive rate on the y-axis, against the
false positive rate on the x-axis. The true positive rate is defined as the number
of true positives (TP) divided by the total number of positives (P). The false
positive rate (FPR) is defined as the number of false positives (FP) divided by
the number of negatives (N). The area under the ROC-curve (ROC-AUC) is a
measure that indicates the probability that the classifier correctly predicts the
class of a random instance. A completely random classifier is therefore expected
to have a ROC-AUC of 0.5. Good classifiers have scores close to 1, and if the
score is below 0.5, one can simply reverse the decision function of the classifier
to get a score above 0.5.

Contamination. In our analysis, we consider two types of contamination:

1. Data contamination refers to the degree of contamination in the data.
This is calculated by dividing the number of true anomalies in the data

13

by the total size of the data (times 100% if we want to express it as a
percentage).

2. Algorithm contamination refers to the fraction of the full data that the
anomaly detection algorithm is instructed to return as anomalous. Isola-
tion Forest and the algorithm we propose both have this contamination as
an input parameter. If we set it to 0.01, that means the algorithm returns
the top 1% of points with the highest anomaly score as the anomalies.

Ideally, the algorithm contamination parameter should be set to closely
match the data contamination. If we set the algorithm contamination lower,
then the algorithm is guaranteed to miss anomalies. If we set it too high, then
it is guaranteed to classify some normal points as anomalies. Therefore, we ar-
gue that if two algorithms score similarly in terms of ROC-AUC, the algorithm
that achieves this score with its contamination parameter set closer to the data
contamination is performing better.

Gaussian ditributions. In our results and other figures, we often use Gaus-
sian distributions [21]. A Gaussian distribution, often called normal distribu-
tion, is a distribution that is characterized by the following probability function:

f(x) =
1

σ
√
2π
e−

1
2 (
x−µ
σ)2

Where roughly 68% of the data is expected to fall within 1 standard deviation
σ of the expected mean µ, and almost 95.5% is expected to fall within 2σ of µ. It
is important to use Gaussian distributions in evaluation because many variables
found in the real world resemble a Gaussian distribution. For example, the
amount of error a machine arm has when placing down an object at a specified
point resembles a Gaussian distribution.

14

3 | Algorithms
In this chapter, we describe the two anomaly detection algorithms we develop
in this research, random shift forest and randomly shifted quadtree forest. Fur-
thermore, we highlight the differences and similarities to Isolation Forest.

3.1 Random Shift Forest

The main algorithm that we develop is the Random Shift Forest (RSF). This
algorithm works for any number of dimensions by using random dimension se-
lection to partition the data. The algorithm works in multiple stages that we
break down in detail in the upcoming sections.

Preliminary steps. First of all, we assume the input of RSF is a d-dimensional
Euclidean point set P . The value of point p ∈ P in dimension i is referred to as
pi. For each dimension i of P , we compute the minimum, minp∈P pi, and max-
imum, maxp∈P pi, valued points. From these points, we compute the minimum
min(P) and maximum max(P) values across all dimensions. The range r of P
is calculated as r = max(P) − min(P). We initialize k empty trees. For each
tree T , and for each dimension i (i ∈ 1, . . . , d), a random shift rsTi is picked
satisfying 0 ≤ rsTi ≤ r. These i random shifts are applied to each point by
addition: pTi = pi + rsTi .

Then, a d-dimensional hypercube B with side length 2 · r is created that
can fit all points in P , even after randomly shifting them. All k trees in the
ensemble will use a copy of B as a root node. Lastly, a maximum number of
points pmax that can reside in the same leaf is set in this step.

A sub-sample S of the data is used to build the k trees that will be used to
generate the anomaly scores. We typically use a fixed sample size nsamples of
128 or 256, similar to iForest [33]. A maximum depth depthmax is determined
for the trees, it depends on the expected depth for a point in the sample.

A random order V is generated for each tree. This is a vector of length
depthmax of integer values, chosen uniformly at random (with repetition) from
the range {0, 1, · · · , d − 1}. This vector decides in which order the dimensions
will recursively be cut in half when we build the tree. At depth j in the tree,
the element with index j from V will be the dimension that is cut in half at that
depth, for every node at that depth that still needs to be divided.

15

If the difference between the ranges of the dimensions is large, some dimen-
sions can disproportionately influence the number of splits needed to isolate a
point. In this case, we first perform min-max normalization on the data to
equalize the relevancy of the dimensions. For each dimension i of each p ∈ P
we calculate a new value p′i with the following equation:

p′i =
pi −minp∈P pi

maxp∈P pi −minp∈P pi

Building the trees. We build k trees T1, T2, · · · , Tk where Ti is linked to the
sample of shifted points Si. For a point in sample Si we recursively insert it in
tree Ti until it either reaches maxdepth, or the point is isolated.

The insertion process is as follows: for a point s ∈ Si we first insert it in the
root node of Ti. Then we recursively do the following steps: check if the number
of points in the current node u ∈ Ti is smaller than pmax. If this is the case, add
s to the points in u. Otherwise, we check if u has children uleft and uright . If it
does not, we split node u at depth j in half along dimension Vj , spawning two
children nodes. We then check whether the value of si for dimension j is smaller
or larger than the split value, and recursively insert it in uleft or uright based on
this check: this is the node whose bounding box contains s. Furthermore, any
other points that may have been residing in u are also evaluated with the split
value and inserted in the corresponding child node uleft or uright . This ensures
that all points reside in the leaves of the tree after each update.

To evaluate the points, we want all of them to reside in the leaves of the trees.
Therefore, when adding points to the fitting child nodes, they are deleted from
the parent node. This is important because otherwise points that are inserted
earlier would be more likely to reside at a smaller depth, changing their anomaly
score. If a point reaches a leaf at the maximum depth of the tree, it is always
added to that leaf, regardless of the number of nodes currently residing in that
leaf. For points that reach a leaf at depthmax holding more points than pmax,
we define a penalty that is applied during the scoring phase of the algorithm.

A notable difference to iForest is that in RSF we have a parameter called
granularity. When a few points are clustered together, RSF will usually take
more splits to isolate these points. These points can form so-called micro-
clusters [3], which can be a form of a collective anomaly. To allow the user
of the algorithm to detect these micro-clusters we use a different pmax in each
group of trees. Instead, we create trees with varying values for pmax. So, instead

16

of splitting cells until a point is isolated, we only keep splitting until there are
at most pmax points in the cell, where pmax is anywhere between 2 and m (we
do not use more than m = 5 in our experiments). This helps to detect micro
clusters that typically consist of 1 to 4 points in the sample as anomalous.
Furthermore, it increases the likelihood that if an anomaly is included in the
random sample, the algorithm can still detect points that are close to it as
anomalies. Figure 6a is an example of a situation where the algorithm that did
not use the granularity principle would have unwanted classification behaviour.
Note that in Isolation Forest, granularity is used in a different context. There,
granularity of the results can be changed using the height limit of the iTrees
[33].

After the previous steps, we have k trees containing nsamples points. These
trees act as sketches of the full data to evaluate all other points with. Figure 4
shows a tree decomposition of a small set of points. Furthermore, paths to an
anomaly (in orange) and a normal points (in blue) are highlighted, illustrating
how a normal point generally has a higher path length than an anomalous point.

Figure 4: Tree decomposition of a small point set generated by RSF, highlighting
a path to an anomaly (in orange), and a normal point (in blue)

Scoring the points. In the first tree, we use the raw input coordinates of the
points. But, in the other trees we add a random shift to all of the coordinates of

17

the points. This is important because we want to avoid having a bias towards
certain initial positions of the points as is illustrated in figure 5. In sub-figure
5a it takes more than 3 times as many cuts to isolate the blue points, than it
takes to isolate the orange points. This is counter-intuitive because all 4 points
are close together. In iForest this problem is addressed by using a random cut
value between a minimum and a maximum in each new tree in the forest. In the
case of RSF, we eliminate the randomness of the cutting procedure. Instead,
we shift the points by a random amount between a minimum and maximum
in each dimension. This means that the split values in RSF are still random
relative to the points, but not relative to the other splits within the same tree.
In sub-figure 5b the points have been shifted relative to the grid, but have the
same pairwise distances between them as in sub-figure 5a. However, it takes
5 to 7 cuts to isolate each point in this case. This illustrates that if we shift
points randomly in each new tree of the forest, eventually the bias seen in 5a
will average out.

(a) The orange points are isolated within
2 cuts, the blue points after 7 cuts

(b) All points take at least 5 cuts to iso-
late

Figure 5: Effect of the random shift

The points that are not in the sample are then evaluated against this ensem-
ble of trees. This means that they are inserted in these trees to check at what
depth they would become isolated, but the point itself is not added to the tree,
ensuring that it does not contaminate the sample. Therefore we can score the
points without changing the sketch. The score in the tree is the depth of the
point in that tree. If the depth of a point is equal to depthmax, then a penalty is

18

applied to its score, since the point would most likely be at greater depth if the
full tree was built. The formula we use for the score of a point at the maximum
depth is:

score(p) = maxdepth + log nleaf

Where nleaf is the number of points in the parent node of the point. We add
this amount, because it is an estimation of the expected depth of the subtree
that was never built below the leaf.

After each point has been evaluated in each tree, the scores are accumulated.
This means that for each point, its score will be the cumulative depth in all k
trees. Then, this score is divided by the number of trees, to obtain the average
path length A(p).

To make this score easier to interpret, we apply the same transformation
technique that is used in Isolation Forest [33]. First, we compute the expected
path length of unsuccessful search in a Binary Search Tree (BST) [41], referred
to as c(n):

c(n) = 2H(n− 1)− (2(n− 1)/n)

Here, H(i) is the ith harmonic number, estimated by ln i + γ, where γ is
Euler’s constant. n is the number of points in the tree, i.e. the sample size.
Now we transform the scores with the following equation:

s(p) = 2−
A(p)
c(n)

As c(n) is the same for all points in a tree, the sorted order of the points
will be reversed by this function. In the end, scores of anomalous points will be
closer to 1, and scores of normal points will be closer to 0.5.

The user can input the level of contamination c expected in the data, and
the algorithm will return the top c% points with the highest anomaly scores as
the anomalies.

Parameters. The RSF algorithm has four parameters: contamination, gran-
ularity, sample size, and number of trees. In the coming paragraphs, we explain
these 4 parameters and how they can influence our results.

• Contamination: the value of the contamination parameter is the fraction
of the total number of points that RSF marks as anomalous. RSF ranks all

19

input points with the anomaly score function and sorts the points on this
score. If we set the contamination parameter to 0.1, then RSF will mark
the top 10% of most anomalous points as anomalies and the remaining 90%
as normal points. It is therefore important that the user of the algorithm
has some knowledge of the expected fraction of anomalies in the data: if
the contamination parameter is lower than the actual contamination of
the data, then we are guaranteed to have false negatives. In some figures
we refer to this parameter as c.

• Granularity: this parameter controls how the maximum number of points
per cell changes as more trees are added to the forest. If we set this pa-
rameter to 10, then the first 10 trees can only have 1 point in each leaf
(except for those at depthmax), the next 10 trees can have 2 points per leaf,
and so on. By lowering the granularity parameter the user increases the
likelihood that RSF detects points in smaller micro-clusters in the data as
anomalous. Furthermore, it reduces masking effects because having a few
anomalies in the sample has a smaller effect on the way the trees are built,
as is illustrated in figure 6. This figure shows a Gaussian distribution of
128 points, and 2 anomalous points that are close together in the bottom
right. In sub-figure 6a the maximum number of points that can reside in
a cell is 1. Since the anomalous points are so close together, it takes more
splits to isolate them. The two points in orange are the most anomalous
according to the algorithm, even though they belong to the Gaussian dis-
tribution. In sub-figure 6b however, the maximum number of points in a
leaf is set to 2. Now, the true anomalous points are isolated in fewer splits
than any of the points from the Gaussian distribution. The algorithm will
correctly label these two points as anomalous.

• Sample size: to build the trees RSF uses a sub-sample of the full data.
The parameter allows the user to use any integer below npoints to set
nsamples. Therefore, this parameter controls the absolute number of points
that will be drawn randomly from the data to create the samples. We
typically use 128 or 256 samples for the best results in our experiments.

• Number of trees: because the trees RSF builds are highly randomized,
we need multiple trees to increase the reliability of the output. This pa-
rameter enables the user to control how many trees RSF will build. In
other words, it lets the user of the algorithm pick k. Adding more trees

20

(a) at most 1 point per leaf (b) at most 2 points per leaf

Figure 6: Effect of increasing the maximum number of points per leaf

increases the stability of the output, but it also increases the running time
of the algorithm linearly.

Complexity analysis. The most time- and memory-intensive stage of the
algorithm is the evaluation of the points that were not used to create the trees. If
we set the maximum depth of a tree to a multiple of log nsamples then evaluating
a point in a single tree has time complexity O(log nsamples). Evaluating all
points in all trees then has time complexity O(k · n log nsamples). We conclude
the explanation of RSF by providing pseudocode in algorithm 1, and subroutines
2 (insert) and 3 (score).

21

Algorithm 1: RSF - Random Shift Forest -
1 Let P be a set of points with d dimensions;
2 Let k be the number of trees;
3 for j from 1 to k do
4 Let rsj1, rs

j
2 . . . rs

j
d be uniformly at random chosen real numbers

between 0 and max(P)−min(P);
5 for p in P do
6 for i from 1 to d do
7 pj .i = p.i+ rsji ;
8 end
9 end

10 end
11 The root cell ranges from min(P) to min(P) + 2 · (max(P)−min(P))

in all d dimensions ;
12 Pick a sample S of size nsamples to construct k trees stored in set T ;
13 for j from 1 to k do
14 for s in S do
15 INSERT(sj , Tj)
16 end
17 for p in P \ S do
18 SCORE(pj , Tj)
19 end
20 end
21 Sort all points of P by anomaly score;
22 return top c fraction of P as the anomalous points

22

Algorithm 2: INSERT(p, C)
1 if Cdepth = depthmax then
2 add p to Cpoints;
3 pscore = Cdepth + penalty;
4 return;
5 else if Cnpoints < maxpoints and C is a leaf then
6 add p to Cpoints;
7 pscore = Cdepth;
8 return;
9 if C is a leaf then

10 Split C in half, spawning child nodes Cleft and Cright ;
11 Let Cfitting be the child node fitting p;
12 INSERT(p, Cfitting);
13 for Every point pC still in C do
14 Let Cfitting be the child node fitting pC ;
15 INSERT(pC , Cfitting);
16 end

Algorithm 3: SCORE(p, C)
1 if Cdepth = depthmax then
2 pscore = Cdepth + penalty;
3 return;
4 else if Cnpoints < maxpoints and C is a leaf then
5 pscore = Cdepth;
6 return;
7 Let Cfitting be the child node fitting p;
8 SCORE(p, Cfitting);

23

3.2 RSQT Forest

For the 2-dimensional setting, we developed a simplified variation of the RSF
algorithm that we call RSQT Forest (Randomly Shifted QuadTree Forest). This
algorithm does not use random dimension ordering, but cuts in the middle in
both dimensions simultaneously, dividing the space into 4 equal parts, this data
structure is otherwise known as a quadtree. Since we add the random shift, it
becomes a quadtree with random shift. A quadtree with a random shift is a
data structure that has been used in the past, for example for the travelling
salesman problem [5]. A quadtree has depth at most log(slroot

mindist
) + 3

2 , where
slroot is the side length of the root node and mindist is the minimum distance
between any two points [14]. Since mindist can be arbitrarily small in the input
data, a maxdepth was used in this algorithm, but it still had issues detecting
anomalous micro-clusters of a few points. Whether a small cluster of points
should be seen as an anomaly or not depends on the context, so the granularity
parameter was added to RSF to control the size of the clusters that can be
detected as an anomaly. We should mention that RSQT Forest does not use
random sampling. These techniques were added to RSF because they are critical
to performance on big datasets with many dimensions. For the 2-dimensional
case with a few thousand points these techniques barely change the behaviour
of the algorithm in practice. Since RSQT Forest does not use random sampling,
it builds the full trees with all points in the data. Therefore, RSQT Forest
has a running time of O(k · n log n). Pseudocode of the algorithm is presented
below in algorithm 4. This algorithm shows how one tree is created, in practice
we execute this subroutine up to 100 times to obtain more stable results. The
scores are combined in the same way as in the RSF algorithm.

24

Algorithm 4: RSQT - Randomly Shifted Quadtree -
1 Let P be a set of points with 2 dimensions;
2 Let a, b be uniformly at random chosen numbers between 0 and

max(P)−min(P);
3 for p in P do
4 p.x+ = a;
5 p.y+ = b;
6 end
7 The root square cell now ranges from min(P) to

min(P) + 2 · (max(P)−min(P)) in both dimensions ;
8 Consider cell c with four possible children c1, c2, c3, c4;
9 if cell c has more than maxpoints points then

10 Split c in the middle in both dimensions to create the children.
Recursively call RSQT(c1), RSQT(c2), RSQT(c3), and RSQT(c4);

11 Return the union of the obtained partitions as the partition of c;
12 else if c has fewer points then
13 Return {c} itself as the partition of c;

25

4 | Results and discussion
In this chapter, we describe the experiments we performed with RSF and RSQT.
First, we highlight the 2-dimensional synthetic datasets used to demonstrate
the performance of RSQT Forest. Then, we use these datasets to show how
RSQT Forest compares to other widely used anomaly detection algorithms.
Afterwards, we compare RSF to other anomaly detection algorithms. To this
end, we use both synthetic and real-world data. The former type is useful to
analyse the behaviour of the algorithm under different circumstances, while the
latter type is suited to demonstrate real-life effectiveness compared to other
algorithms. Finally, we analyze the influence of the four parameters of RSF,
and show how scalable the algorithm is.

4.1 Experimental setup

RSF and RSQT Forest are implemented in Python, and are publicly available on
GitHub. 1. We use the following 4 anomaly detection algorithms as baselines:

• Robust covariance is an implementation of the statistical algorithm
FAST-MCD [44].

• One-Class SVM is a statistical algorithm that tries to find a non-linear
decision boundary that separates normal points from anomalies [43].

• Local Outlier Factor (LOF) is a nearest neighbour approach that uses
distance to neighbours as an approximation for local density [10].

• Isolation Forest is an ensemble method that is detailed in chapter 2 of
this thesis.

The implementations of these algorithms that we used are all part of the
scikit-learn package for Python [38]. Furthermore, this package was used to
generate some of the synthetic datasets. All experiments were carried out on a
2.4 GHz Windows laptop with 8 GB of RAM.

1https://github.com/Thijs3/Anomaly-Detection-with-RS-Quadtree

26

https://github.com/Thijs3/Anomaly-Detection-with-RS-Quadtree

4.2 RSQT Forest on 2-dimensional datasets

In this section, we compare RSQT Forest to other anomaly detection algorithms
on 2-dimensional synthetic datasets.

Dataset types. We generated multiple synthetic datasets to compare the
characteristics of our algorithm to those of other anomaly detection algorithms.
They are mainly used to observe the behaviour of different algorithms when data
has different types of shapes and distributions. Our synthetic datasets are all in
2-dimensional Euclidean space. They can be divided into 3 groups. One group
consists of datasets of geometric shapes constructed from straight lines. These
datasets resemble structures commonly found on geographical maps, such as
T-junctions and highways. The second group consists of curved shapes. These
types of shapes could also occur on geographical maps (a river, for example).
The last group contains datasets consisting of Gaussian distributions [21].

Noise. The coordinates of the points making up the noise are generated uni-
formly at random from the domain of the normal points. This means that all
values between the minimum and the maximum are evenly likely to appear as
a coordinate of the noise. The goal of the anomaly detection algorithms is to
detect as much of the background noise as possible as anomalies. The con-
tamination parameter of the anomaly detection algorithms (if this parameter
is present) is set to match the fraction of random noise in the data. We use
the following synthetic datasets to compare the performance of RSQT to other
anomaly detection algorithms:

• Two-moon dataset: The two moons dataset from scikit-learn. The
moon shapes have equally many points.

• Nested squares dataset: Two squares with the same center but different
side lengths.

• Cross dataset: Two lines placed in a plus shape.

• T-junction dataset: Two lines placed in a T-shape. This simulates a
T-junction that could occur in geographical data. Anomalies could then
be seen as faulty GPS data.

• Parallel lines dataset: Two lines following a Gaussian distribution in
one dimension and a fixed value in the other dimension.

27

• Rectangles dataset: Two rectangles with the same center point.

• Nested circle dataset: Four circles of different sizes, with the same
center point.

• Two-circle dataset: Two sets of points on the outlines of two circles,
both containing equally many points. One has a diameter twice as big
as the other one, and the smaller circle is completely on the inside of the
larger one. Both circles have the same center point.

• Gaussian dataset: A single Gaussian distribution

• Small cluster dataset: Two Gaussian distributions with different center
points. The first Gaussian distribution has center point (0,0), has a stan-
dard deviation of 2.0, and contains 80% of all normal points. The second
Gaussian distribution contains the remaining 20% of normal points, has
center point (5,5) and a standard deviation of 0.2.

• Mixed Gaussians dataset: Two Gaussian distributions with different
center points and standard deviations, each containing half of the normal
points.

Each of these synthetic datasets consists of 1000 points in total: 75 points
of random noise and 925 normal points. The contamination is therefore 75

1000 =

0.075.

Discussion. In figure 7 we show the result of running iForest and RSQT Forest
on the two moons dataset. Furthermore, for RSQT Forest we visualize the
partitioning. We observe that RSQT Forest is able to detect the random noise
in the center as anomalous, whereas iForest classifies these points as normal. On
the other hand, iForest is wrongly classifying points in the tails of both moons
as anomalies. This phenomenon is caused by the fact that iForest does shrinking
after each cut, such that absolute distance between points is not reflected in the
anomaly scores of iForest. RSQT Forest is not perfect either: it classifies some
points that are part of the moon shapes as anomalies.

Figure 8 shows the comparison of RSQT Forest to Robust covariance, One-
Class SVM, LOF, and iForest on 2-dimensional datasets consisting of straight
lines, resembling roads on geographical maps. In the nested squares dataset,
RSQT Forest is classifying the random noise points as anomalies more often

28

Figure 7: Comparison of Isolation Forest to RSQT Forest on the moons dataset

than all other algorithms. The other algorithms mainly have trouble with clas-
sifying the noise on the interior of the squares as anomalies. Even on such a
simple dataset, RSQT Forest is the only algorithm out of these 5 that is clas-
sifying the points in the same way a human would. In the cross dataset and
T-junction dataset, there is a similar pattern: Robust covariance and One-Class
SVM include much of the noise as normal points, Isolation Forest makes a few
misclassifications, and Local Outlier Factor and RSQT Forest classify almost all
points correctly. In the parallel lines dataset, Isolation Forest classifies much of
the noise as normal points. Only RSQT Forest is able to classify most noise as
anomalous and to report the points near the ends of the lines as normal. In the
rectangles dataset, we see similar results as in the squares dataset: only RSQT
Forest is able to classify all the points that are part of the rectangles as normal
points.

29

Ne
st

ed
 S

qu
ar

es

Robust covariance One-Class SVM Local Outlier Factor Isolation Forest RSQT Forest

Cr
os

s
T-

Ju
nc

tio
n

Pa
ra

lle
l L

in
es

Re
ct

an
gl

es

Figure 8: Comparing anomaly detection algorithms to RSQT Forest on map-like
data.

30

In figure 9, RSQT Forest is compared to the other algorithms on the datasets
including curved shapes. In the nested circles dataset, only RSQT Forest is able
to identify almost all of the random noise as anomalies. The other algorithms all
classify some of the points that are clearly on one of the circles as anomalous.
In the two circles dataset, LOF is also able to identify points in the interior
as anomalous, but it still classifies many points between the inner and outer
circles as normal. Once again, RSQT Forest is the most accurate at classifying
random noise as anomalous. In the moons dataset, only LOF and RSQT Forest
are classifying points in the center as anomalies, whereas all other algorithms
classify points belonging to the outer tails of the moons as anomalies.

Figure 9: Comparing anomaly detection algorithms to RSQT Forest on curved
shapes.

Finally, in figure 10 the same 5 algorithms are compared on datasets con-
sisting of 1 or 2 Gaussian distributions. In the first dataset, a single Gaussian
distribution, all algorithms classify most of the noise as anomalies. RSQT Forest
is making some mistakes when it comes to noise points that are in micro-clusters.
We attribute this to the fact that RSQT Forest does not use sampling, so this
issue should be resolved in RSF. In the next dataset, with a small cluster and
a larger cluster, we see that RSQT Forest and iForest classify global outliers
best. A local approach like LOF will classify some points belonging to the
small cluster as anomalies because they have a lower local density than their

31

tightly packed together neighbouring points. One-class SVM is classifying some
points near the center of the large cluster as anomalies. In the mixed Gaus-
sians dataset, where both clusters have the same number of points, something
similar happens. RSQT Forest and Isolation Forest classify the points in the
cluster with lower variance as normal, whereas LOF identifies anomalies in both
clusters.

Figure 10: Comparing anomaly detection algorithms to RSQT Forest on Gaus-
sian distributions.

We tested existing widely used anomaly detection algorithms and RSQT
Forest on a variety of datasets. We conclude that in a majority of these cases
RSQT Forest is performing similarly to the best performing other anomaly
detection algorithm, and in some cases, it is outperforming all of the other
algorithms. Especially in the two circles, two squares, and two moons datasets,
RSQT Forest is the only algorithm capable of detecting anomalies positioned
between the normal clusters.

32

4.3 RSF on 3-dimensional datasets

In this section, we compare RSF to iForest on 3-dimensional datasets. We
use two synthetic and one real dataset to visualize the results of using both
algorithms.

Datasets. We use the swiss roll dataset and the s-curve dataset to evaluate
performance on a 3-dimensional dataset. These datasets are planes that are
formed into a roll and an "S" shape, respectively. They consist of 4950 points
in our results, and 50 points with coordinates chosen uniformly at random are
added as the noise. Therefore both 3-dimensional synthetic datasets consist of
5000 points. Finally, we use the KKDCUP99 SMTP dataset to demonstrate
results on a real dataset in 3 dimensions.

Discussion. In figure 11 the anomalies predicted by iForest and RSF are
plotted in orange. Similar to the 2-dimensional results, iForest is not detecting
the random noise in the center. RSF does a much better job at this, detecting
almost all of the random noise as anomalies. At the same time, iForest is
classifying points near the edges and top of the roll as anomalies. RSF also
makes some mistakes, but to a much smaller extent than Isolation Forest.

(a) iForest anomalies (c=0.01) (b) RSF anomalies (c=0.01)

Figure 11: Predicted anomalies in the swiss roll dataset for iForest and RSF

In figure 12 something similar occurs: this time iForest is not detecting most
of the random noise in the center, while RSF is predicting close to every point of
noise as anomalous. One of the reasons we think iForest is not good at finding
anomalies is because it has a bias introduced by the shrinking mechanism. Be-

33

cause of this mechanism, iForest will split 2 points near the end of a distribution
from each other in 1 cut, no matter the distance between them. Therefore the
path length of a point near the edge of a cluster will likely have a lower average
path length in iForest than in RSF.

Since we are plotting a 3-dimensional dataset in figures 11 and 12, not ev-
ery point is visible. Additional figures on these 2 datasets, from a variety of
viewpoints, can be found in the appendix.

(a) iForest anomalies (c=0.01) (b) RSF anomalies (c=0.01)

Figure 12: Predicted anomalies in the s-curve dataset for iForest and RSF

The result in figure 13 is remarkable, as RSF is able to detect most of the
anomalies. On the other hand, iForest reports none of the anomalies, despite
using a much higher contamination setting. RSF was consistently able to detect
more than 20 of the anomalies in this dataset, while only reporting 40 points in
total. We assume that the reason why iForest is not reporting the anomalies is
because it does not take absolute distance between points into account enough.
As stated before, iForest will cut points near the outside of a cluster off in 1 cut.
Therefore, it is reporting normal points near the edge of the dense clusters as
anomalous. The fact that the true anomalies are much further away does not
play a big role in iForest, but it does in RSF.

34

(a) The labelled dataset, used as ground truth

(b) iForest predicted anomalies (c=0.005) (c) RSF predicted anomalies (c=0.0003)

Figure 13: Anomalies in SMTP dataset: ground truth, iForest, and RSF.

35

4.4 RSF on real datasets

In this section, we compare RSF to iForest on a variety of real datasets. These
datasets are labeled, so we can quantitatively compare the algorithms. We use
ROC-AUC score as the accuracy measure.

Datasets. To compare the performance of our algorithm to that of iForest in
a real setting, we use datasets that are also used in the original iForest paper
[33]. Our motivation for this choice of datasets is that we can replicate the
performance from this paper, verifying their results and ensuring we benchmark
RSF and RSQT Forest on datasets that iForest performs well on.

We used two datasets from the KDDCUP99: The HTTP and the SMTP
dataset [26]. These contain data about network traffic, and the goal is to detect
intrusion. Intrusion in this context means that an attacker tries to connect to
the network. In the HTTP dataset, about 0.4% of the connections are labeled
as bad, meaning they are created by attackers. In the SMTP dataset only 30
connections (0.03% of all data) are marked as bad. This makes the SMTP
dataset the dataset with the smallest fraction of anomalies that we used. Both
of the datasets have 3 dimensions, therefore they can also be visually presented
and analyzed.

We also use the statlog landsat satellite dataset that consists of multi-
spectral values in a 3-by-3 neighborhood in a satellite image. The instances are
placed in 7 classes (but class 6 never appears in the data) as follows:

1. red soil

2. cotton crop

3. grey soil

4. damp grey soil

5. soil with vegetation stubble

6. mixture class (all types present)

7. very damp grey soil

In the iForest paper, the least common 3 classes of this dataset (class 2, 4,
and 5) were considered to be anomalous. It was found during the experiments
that using just one of the classes as the anomalous class would lead to a more

36

accurate classification in terms of ROC-AUC. This is the class called cotton
crop. We therefore both replicate the experiment with classes 2, 4, and 5 as
anomalous classes, and create a new version with just class 2 as the anomalous
class.

The Pima Indians Diabetes Database is a dataset of diagnostic mea-
surements that can be used to predict whether or not a patient has diabetes.
Patients with diabetes are less common (35% of all cases), so they will be the
anomalous class. Since the anomalous class is relatively large, classifying anoma-
lies is expected to be difficult: the effect of masking will be much greater since
many anomalies are expected to be included in the sampling phase of both
iForest and RSF.

The next dataset is the statlog shuttle dataset. It is a dataset with 9

numerical attributes that are used to classify shuttles in 7 classes. Classes 1

(rad flow) and 4 (high) combined account for 93% of all cases, so they will be
seen as the normal instances.

The final real dataset that was used is the ForestCover dataset. The full
data has 7 classes that denote the most common species of trees in a forest. 10
numerical attributes that correspond to ecological factors in the forest, are used
to predict the type of prevalent trees. In the experiment, we focus on class 2

(lodgepole pine) against class 4 (cottonwood/willow). In this case, class 2 makes
up 99.1% of all instances and should therefore be classified as normal.

The ForestCover, shuttle, and satellite datasets were all obtained from the
UCI Machine Learning Repository [15]. The Pima Indians Diabetes Database
can be found on Kaggle 2. Table 1 gives an overview of all the real datasets
described above, including the number of instances, number of dimensions,
anomaly class, and anomaly rate.

Dataset Instances d Anomaly class Anomaly pct
ForestCover 286048 10 cottonwood/willow (class 4) 0.96%
HTTP 567497 3 attack (marked 1) 0.39%
Pima 768 8 positive (marked 1) 34.9%
Satellite 6435 36 classes 2, 4, 5/ class 2 32%/12%
Shuttle 49097 9 classes 2, 3, 5 & 7 7%
SMTP 95156 3 attack (marked 1) 0.03%

Table 1: Overview of real datasets (d = number of dimensions).

2https://www.kaggle.com/uciml/pima-indians-diabetes-database

37

https://www.kaggle.com/uciml/pima-indians-diabetes-database

Discussion. Table 2 shows the performance of iForest and RSF on a variety
of real datasets in terms of ROC-AUC. In all of the cases, the ROC-AUC of the
two algorithms is fairly close, with RSF having a higher score in 4 of the 7 cases.
The SMTP dataset stands out because RSF is able to get a similar ROC-AUC
score with a much lower contamination parameter than iForest. In this dataset,
the number of anomalies (30) is very small compared to the total size of the
data (±100.000). In such cases, it is desirable that an algorithm does not need
to output many false positives, but iForest is detecting many normal points as
anomalous. If we set the contamination parameter to a lower value, such as in
sub-figure 13b, iForest does not detect any of the true anomalies. Therefore it
will then have a ROC-AUC score close to 0.5, which corresponds to not doing
any better than an algorithm that returns random points. In sub-figure 13a we
showed the true anomalies as labeled in the dataset, where we noted that there
are 10 more anomalies that are not visible in the figure because they are part of
the large cluster. Therefore, we can not expect any density-, distance- or tree-
based anomaly detection algorithm to find those anomalies based on the three
features in the dataset. In sub-figure 13c the contamination parameter is set to
match the true anomaly rate in the data (0.03%), and RSF is still able to de-
tect all of the anomalies except for the 10 obscured anomalies mentioned before.

Dataset ROC-AUC Contamination
iForest RSF iForest RSF Data

HTTP 0.998 0.992 0.05 0.05 0.039
ForestCover 0.876 0.892 0.24 0.18 0.0096
Pima 0.641 0.675 0.45 0.42 0.35
SMTP 0.853 0.831 0.06 0.0005 0.0003
Shuttle 0.983 0.974 0.075 0.075 0.007
Satellite (3 anomaly classes) 0.688 0.723 0.32 0.32 0.32
Satellite (1 anomaly class) 0.946 0.968 0.13 0.125 0.12

Table 2: ROC-AUC score in real datasets for iForest and RSF

These real dataset experiments show that RSF has a similar performance to
iForest in practice, and in some cases, can do better than iForest in terms of
false-positive rate.

38

4.5 Running time and parameters

We have seen that RSF is as good or better than other anomaly detection
algorithms when it comes to finding anomalies in a variety of synthetic and real
datasets. In this section, we analyze the running time of RSF. Running time
is important for anomaly detection algorithms, as real-world applications often
include big data. Finally, we investigate the influence of the RSF parameters
on its performance in terms of ROC-AUC score.

Running time. Running time is important for every algorithm, especially
algorithms that are made to be used on big data. In chapter 3, we argued that
RSF has a theoretical running time of O(k · n log nsamples). Since we do not
have to increase k and nsamples necessarily when we deal with bigger datasets,
the running time is expected to increase linearly with respect to input size n.
One assumption we made when arguing about this running time is that all
dimensions in the data are relevant. If some of the dimensions turn out to be
irrelevant when it comes to distinguishing anomalies, then we need to make
more cuts to isolate points. Therefore we may need to increase depthmax, which
in turn increases the running time of the algorithm. Another solution in the
case of high-dimensional data is to select a subset of dimensions, as is argued in
[33].

2
10

2
12

2
14

2
16

2
18

2
20

Number of points

2
1

2
1

2
3

2
5

2
7

2
9

R
un

ni
ng

 ti
m

e

Running time of RSF as data size increases

(a) Running time of RSF as the number of
points increases

20 40 60 80 100
Number of dimensions

0

5

10

15

20

25

R
un

ni
ng

 ti
m

e

Running time of RSF as number of dimensions increases

(b) Running time of RSF as the number
of dimensions increases

Figure 14: Running time of RSF

Figure 14 shows how the running time of RSF is affected by the size of
the dataset. The number of points in sub-figure 14a changes from 1024 (210)
to 1, 048, 576 (220) and comes from a single generated Gaussian distribution.

39

The observed increase in running time corresponds to the theorized O(k · n ·
log nsamples) from chapter 3, in terms of the increase in the total number of
points. If assume the number of samples is constant, the running time scales
linearly with the input size. Additionally, when the number of dimensions is
increased, while keeping the same number of points, the running time also in-
creases. The increase is smaller with each added dimension because once the
number of dimensions is too large compared to the number of points, the curse of
dimensionality causes each point to be isolated quickly. Furthermore, the rela-
tive extra overhead of an extra dimension decreases as the number of dimensions
grows.

Parameters. In chapter 3, we introduced the 4 parameters of RSF: contam-
ination, granularity, sample size, and number of trees. In figure 15 we plot the
values of these parameters against the ROC-AUC scores on the shuttle dataset.
This figure provides an indication of the way ROC-AUC scores are influenced
by changing the parameters. Does the score rely heavily on the parameters
set by the user, or does RSF perform well with a wide range of parameter val-
ues? Ideally, the score is robust to any reasonable amount of change to the
parameters.

In sub-figure 15a, the contamination (c) parameter has the highest score
when it is set to 6.5% (or 0.065). In general, it is advisable to have the contam-
ination parameter higher than the true contamination in the data, otherwise
there will be guaranteed false negatives in the result. Simultaneously, depend-
ing on the application the contamination parameter should be as low as possible
to avoid too many false positives.

The next examined parameter is the granularity (g) in sub-figure 15b, rang-
ing from 1 (after each tree maxpoints increases by 1) to 25 (maxpoints is 1 for
each of the 25 trees in the ensemble). We notice a decline in scores when g > 10.
The optimal value for this parameter is highly dependent on the number of (mi-
cro)clusters in the data. In general, if some of the anomalies form a cluster, it
is advisable to use a lower value for g. Since this parameter can have a large
impact on the outcome of the algorithm the expert using RSF must have some
understanding of the domain and typical anomalies in the data.

The third parameter is the number of trees in the ensemble. Since we have
many degrees of randomness in the algorithm, results per tree can vary greatly.
Therefore multiple trees should be used to increase the reliability of the results.
In sub-figure 15c the number of trees ranges from 1 to 100. Experimentally the

40

results converge quite rapidly: using more than 25 trees does not change the
ROC-AUC scores significantly.

The final parameter is the sample size (s). This parameter can greatly affect
the accuracy of the results, as is clear from sub-figure 15d. If it is too small,
there is no good representation of the full data. If it is too large, masking effects
are introduced by the inclusion of anomalies in the sample. In general, we advise
using 128 to 512 samples, using larger sample size if there are more clusters in
the data.

5 6 7 8 9 10
Contamination

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Shuttle data scores (k=25, g=5)

(a) Effect of contamination on ROC-AUC
score

5 10 15 20 25
Granularity

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Shuttle data scores (k=25)

(b) Effect of granularity on ROC-AUC
score

20 40 60 80 100
Number of trees

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Shuttle data scores (g=5)

(c) Effect of the number of trees in the
forest on ROC-AUC score

200 400 600 800 1000
Sample size

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
-A

U
C

Shuttle data scores (k=25, g=5, c=0.065)

(d) Effect of sample size on ROC-AUC
score

Figure 15: Effects of the parameters of RSF on performance

41

5 | Streaming and parallelism
In this chapter, we show that RSF construction can be easily implemented
in the streaming and parallel models using z-sparse recovery sketches. A z-
sample recovery algorithm [19; 36; 30] recovers min(z, ‖x‖0) elements from x

such that sampled index i has xi 6= 0 and is sampled uniformly, where ‖x‖0 of a
vector x counts the number of non-zero entries of x. Constructions of z-sample
recovery data structures are known which require space O(z) and fail only with
probability polynomially small in n [6].

Algebraically, the streaming and distributed anomaly detection algorithms
use union and subtraction set operators that are done using z-sparse recov-
ery sketches. Indeed, we use the subtraction and union operators to develop
dynamic streaming algorithms where batches of points are inserted or deleted
in a streaming fashion. As an example, assume that we have three data sets
P1,P2,P3 where P3 ⊆ P1 ∪P2 and P1 ∩P2 = ∅. Suppose we would like to find
the anomalies of P = P2 ∪P1\P3. Since the size of these sets may be extremely
large, we cannot afford to store them entirely. Instead, we store a sketch of each
of them. To this end, we compute the sketches S1,S2,S3 of P1,P2,P3, respec-
tively, and then apply the sketching operation S1+S2−S3 to obtain anomalies of
P. Similarly, we can use the union operator to implement a parallel algorithm.
In particular, suppose we have multiple data sets P1, · · · ,Pm and our goal is
to compute anomalies of the union set P = P1 ∪ · · · ∪ Pm. We first compute a
sketch Si of the point set Pi. Then, we compute the summation S1 + · · ·+ Sm
using which we can compute anomalies of the point set P, efficiently. Below,
we detail the streaming approach for RSF.

Streaming Algorithm. Let S be a dynamic stream of inserts and deletes
of points of a point set P ⊂ Rd. We let Pt be the set of points that are inserted
but not deleted from the beginning of the stream until time t. Let F be the
RSF that we build offline if we run the RSF algorithm with the input point set
Pt. We would like to develop a dynamic streaming algorithm that at any time
t of the stream reports the same anomalies as the offline forest Foffline finds
for Pt. To this end, in the course of the stream, we maintain z-sample recovery
sketches for every internal node and leaf of trees of the RSF F . In particular,
for each tree T in the RSF F we do the following.

42

We denote by (pmax + 1)-SR(u), the (pmax + 1)-sparse recovery sketch that
we maintain for the internal node or the leaf u in the tree T , where pmax is
the maximum number of points that a leaf can have before we split it. Upon
insertion of a point p, starting from the root of T , we traverse the path of
the nodes whose rectangles contain p till we end up with the leaf u whose
corresponding rectangle contains p. We add p to the (pmax +1)-sparse recovery
(pmax+1)-SR(v) of any node v that we see along this path including the leaf u.
Observe that this is different than the offline version of RSF where points are
stored only in leaves.

Suppose the leaf u is at level ` and the rectangle that corresponds to u is
rect(u). If the leaf u has fewer than pmax points, we do nothing; otherwise (i.e.,
if u has pmax points) we pick the entry V[`] of the random vector V and then
split the rectangle rect(u) at the middle point of the side of rect(u) that is along
the dimension V[`]. Then, we create two leaves u1 and u2. Let u be the parent
of these two and let u1 and u2 be the children of u. We also initialize (pmax+1)-
sparse recovery sketches for both u1 and u2. From the (pmax+1)-sparse recovery
sketch of u, we extract the point set P (u) of u and add each point q ∈ P (u) to
the (pmax +1)-sparse recovery of the leaf whose rectangle contains q. Later, we
add p to the (pmax + 1)-sparse recovery of the leaf whose rectangle contains p.
If both u1 and u2 have fewer than pmax we add p to the (pmax+1)-SR(v) of the
leaf whose rectangle contains p and stop. Otherwise, that is if one of them, say
u1 is empty and the other one, say u2 contains pmax + 1 points, we recurse the
splitting procedure with the leaf u2.

Upon deletion of a point p, starting from the root of T , we traverse the
path of the nodes whose rectangles contain p till we end up with a leaf u whose
corresponding rectangle contains p. We delete p from the (pmax + 1)-SR(v) of
any node v that we see along this path including the leaf u. Suppose the leaf u is
at level ` and the rectangle that corresponds to u is rect(u). Let v be the parent
of u in level `− 1. If after deletion of p from (pmax + 1)-SR(v), the node v has
more than pmax points in its subtree, we stop and do nothing; otherwise (i.e., if
v has fewer than pmax points), we then delete the children of v and recursively
check the parent of the node v till we have a node whose subtree contains more
than pmax points, but its children have fewer than pmax points each.

Observe that such sketching algorithm cannot be done if we use iForest
instead of RSF. Suppose we have two data sets P and P ′ where P ′ ⊆ P. Suppose
that we cannot store these point sets in the memory, so we need to sketch
them. In particular, suppose for the point set P, iForest finds a random split

43

value C along a randomly chosen dimension, that splits P into two subsets
P1 and P2. We store z-sparse recovery sketches S1 and S2 of P1 and P2.
Similarly, suppose for the point set P ′, iForest finds a random split value C ′

along a randomly chosen dimension, that splits P ′ into two subsets P ′1 and P ′2,
respectively. Observe that iForest picks C and C ′ at a random value along
a randomly chosen dimension, so with very high probability, C and C ′ are
not the same. We store z-sparse recovery sketches S′1 and S′2 of P ′1 and P ′2,
respectively. Now, suppose the set P\P ′ has fewer than z points in one side of
the split value C. Since the split values C and C ′ are not the same, we cannot
use the subtraction operations S1 − S′1 and S2 − S′2 to recover all points that
are in the side of C that has fewer than z points. However, using RSF, the
above is possible. Suppose we have two RSF trees, one for P and one for P ′.
Furthermore, suppose both trees use the same random order. Then, any node
at a level i of both trees use the same set of split values starting from the root
of both trees going along the path that ends at that node. Therefore, we can
use set minus operations on sketches of ancestors of the node to find anomalies
of the ancestors of the node.

44

6 | Conclusion
In this final chapter, we reflect on the extent to which the goals set in the in-
troduction were met by our research. First, we discuss how future work could
address the limitations of our research. Finally, we end the thesis with conclud-
ing remarks.

6.1 Limitations and future research

In this section we address the limitations of this thesis and discuss how these
issues could be resolved in future research.

We introduced a way to implement RSF in a distributed and streaming
setting. However, due to time constraints, we did not implement and test this
method. Therefore, empirical evidence that the technique works is missing.
Future research should focus on implementing this algorithm to verify that it
performs well through experiments.

Additionally, future work should focus on exploring the limits of the sample
sizes used in this research. For the datasets used in the experiments, a small
sample size was enough to achieve good ROC-AUC, and increasing sample size
did generally not improve the results in terms of ROC-AUC. When the algorithm
is used in a real-world streaming setting, there could be cases where there are
so many normal clusters in the data that a larger sample size is necessary to
represent all of them consistently.

Furthermore, we did not implement a way to sample the data when it is
arriving in a stream. For a static dataset, it is straightforward to take a random
sample from the whole set, but in a stream of unknown length and time of
arrival, it becomes more difficult to create a sample that represents the stream
as a whole accurately. A possible way this could be achieved is to include newly
arriving points with a probability that is based on the anomaly score of the
point: anomalous points should have a smaller probability to be included in
the sample. However, the probability should be greater than 0. This way, a
new normal cluster of sufficient size will still have a good probability of being
included in the sample, regardless of the length of stream and time of arrival.

Another issue that was not solved for the streaming setting is that we as-
sume that we know the limits of the numerical range of a feature. In a static
dataset, it is easy to find the minimum and maximum of each of the features and

45

normalize them accordingly. In the streaming setting, if we know nothing about
the arriving data, this range changes over time as new points arrive. Therefore
the algorithm only works correctly if we have prior knowledge of the minimum
and maximum values a feature can have.

Lastly, future work could explore different types of data. We focused on
multidimensional numerical datasets, but other types of data should also be
compatible with RSF. For example, graph data could be converted in some way
such that RSF can extract anomalies. Furthermore, ways to include categorical
data in the input would be useful.

6.2 Concluding remarks

In the introduction, we stated the goal of this thesis was to explore the possi-
bility of a general-purpose unsupervised anomaly detection algorithm that uses
isolation to detect anomalies that can be used in big data models. The RSF
algorithm proposed in chapter 3 is such an algorithm that can be adapted to
the distributed and streaming model. RSF uses recursive partitioning to isolate
points, similarly to iForest. At the same time, constructing RSF has a different
source of randomness than iForest, making it suitable for parallel computation
and infinite data streams. Furthermore, RSF showed promising results on both
synthetic and real datasets. It has similar or better ROC-AUC scores compared
to iForest, while often having to report fewer points as anomalies. Moreover,
it is better at finding anomalies that are surrounded by normal points, as was
demonstrated in figures 11 and 12.

46

References
[1] Ahmed, S., Lee, Y., Hyun, S.-H., and Koo, I. Unsupervised ma-

chine learning-based detection of covert data integrity assault in smart
grid networks utilizing isolation forest. IEEE Transactions on Information
Forensics and Security 14, 10 (2019), 2765–2777.

[2] Alghushairy, O., Alsini, R., Soule, T., and Ma, X. A review of
local outlier factor algorithms for outlier detection in big data streams. Big
Data and Cognitive Computing 5, 1 (2021).

[3] Amer, M., and Goldstein, M. Nearest-neighbor and clustering based
anomaly detection algorithms for rapidminer. In Proc. of the 3rd Rapid-
Miner Community Meeting and Conference (RCOMM 2012) (2012), pp. 1–
12.

[4] Amer, M., Goldstein, M., and Abdennadher, S. Enhancing one-class
support vector machines for unsupervised anomaly detection. In Proceed-
ings of the ACM SIGKDD workshop on outlier detection and description
(2013), pp. 8–15.

[5] Arora, S. Polynomial time approximation schemes for euclidean traveling
salesman and other geometric problems. Journal of the ACM (JACM) 45,
5 (1998), 753–782.

[6] Barkay, N., Porat, E., and Shalem, B. Efficient sampling of non-
strict turnstile data streams. Theor. Comput. Sci. 590 (2015), 106–117.

[7] Ben-Gal, I. Outlier detection. In Data mining and knowledge discovery
handbook. Springer, 2005, pp. 131–146.

[8] Bolton, R. J., Hand, D. J., et al. Unsupervised profiling methods for
fraud detection. Credit scoring and credit control VII (2001), 235–255.

[9] Braei, M., and Wagner, S. Anomaly detection in univariate time-series:
A survey on the state-of-the-art. arXiv preprint arXiv:2004.00433 (2020).

[10] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof:
Identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data (New York,

47

NY, USA, 2000), SIGMOD ’00, Association for Computing Machinery,
p. 93–104.

[11] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detection: A
survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[12] Datar, M., and Muthukrishnan, S. Estimating rarity and similarity
over data stream windows. In European Symposium on Algorithms (2002),
Springer, pp. 323–335.

[13] De Benedetti, M., Leonardi, F., Messina, F., Santoro, C., and

Vasilakos, A. Anomaly detection and predictive maintenance for photo-
voltaic systems. Neurocomputing 310 (2018), 59–68.

[14] De Berg, M., Van Kreveld, M., Overmars, M., and Schwarzkopf,

O. Computational Geometry: Algorithms and Applications (3d edition).
Springer, 2008.

[15] Dua, D., and Graff, C. UCI machine learning repository, 2017.

[16] Escalante, H. J. A comparison of outlier detection algorithms for ma-
chine learning. Programming and Computer Software (01 2005), 228–237.

[17] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In KDD-96 Proceedings (1996), vol. 96, pp. 226–231.

[18] Faria, E. R., Gama, J. a., and Carvalho, A. C. P. L. F. Novelty
detection algorithm for data streams multi-class problems. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing (2013), Asso-
ciation for Computing Machinery, p. 795–800.

[19] Frahling, G., Indyk, P., and Sohler, C. Sampling in dynamic data
streams and applications. In Proceedings of the 21st ACM Symposium on
Computational Geometry (2005), pp. 142–149.

[20] Goldstein, M., and Uchida, S. A comparative evaluation of unsuper-
vised anomaly detection algorithms for multivariate data. PloS one 11, 4
(2016), e0152173.

[21] Goodman, N. R. Statistical analysis based on a certain multivariate com-
plex gaussian distribution (an introduction). The Annals of mathematical
statistics 34, 1 (1963), 152–177.

48

[22] Guha, S., Mishra, N., Roy, G., and Schrijvers, O. Robust ran-
dom cut forest based anomaly detection on streams. In Proceedings of the
33nd International Conference on Machine Learning (2016), M. Balcan
and K. Q. Weinberger, Eds., vol. 48 of JMLR Workshop and Conference
Proceedings, JMLR.org, pp. 2712–2721.

[23] Hariri, S., Kind, M., and Brunner, R. J. Extended isolation forest.
IEEE Transactions on Knowledge and Data Engineering 33, 04 (apr 2021),
1479–1489.

[24] Hariri, S., and Kind, M. C. Batch and online anomaly detection for
scientific applications in a kubernetes environment. In Proceedings of the
9th Workshop on Scientific Cloud Computing (2018), ScienceCloud’18, As-
sociation for Computing Machinery.

[25] Hawkins, D. M. Identification of outliers, vol. 11. Springer, 1980.

[26] Hettich, S., and Bay, S. D. The UCI KDD Archive, 1999.

[27] Hodge, V., and Austin, J. A survey of outlier detection methodologies.
Artificial intelligence review 22, 2 (2004), 85–126.

[28] Jin, W., Tung, A. K., Han, J., and Wang, W. Ranking outliers
using symmetric neighborhood relationship. In Pacific-Asia conference on
knowledge discovery and data mining (2006), Springer, pp. 577–593.

[29] Johnson, R. A., Wichern, D. W., et al. Applied multivariate statis-
tical analysis, vol. 5. Prentice hall Upper Saddle River, NJ, 2002.

[30] Jowhari, H., Saglam, M., and Tardos, G. Tight bounds for lp sam-
plers, finding duplicates in streams, and related problems. In Proceedings
of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems (2011), pp. 49–58.

[31] Keresztes, J. C., Diels, E., Goodarzi, M., Nguyen-Do-Trong,

N., Goos, P., Nicolai, B., and Saeys, W. Glare based apple sorting
and iterative algorithm for bruise region detection using shortwave infrared
hyperspectral imaging. Postharvest biology and technology 130 (2017), 103–
115.

49

[32] Kriegel, H.-P., Kröger, P., Schubert, E., and Zimek, A. Loop:
local outlier probabilities. In Proceedings of the 18th ACM conference on
Information and knowledge management (2009), pp. 1649–1652.

[33] Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. In
2008 Eighth IEEE International Conference on Data Mining (2008), IEEE,
pp. 413–422.

[34] Liu, Y., Pang, Z., Karlsson, M., and Gong, S. Anomaly detection
based on machine learning in iot-based vertical plant wall for indoor climate
control. Building and Environment 183 (2020), 107–212.

[35] Manevitz, L. M., and Yousef, M. One-class svms for document clas-
sification. Journal of machine Learning research 2, Dec (2001), 139–154.

[36] Monemizadeh, M., and Woodruff, D. P. 1-pass relative-error lp-
sampling with applications. In Proceedings of the Twenty-First Annual
ACM-SIAM Symposium on Discrete Algorithms (2010), M. Charikar, Ed.,
SIAM, pp. 1143–1160.

[37] Papadimitriou, S., Kitagawa, H., Gibbons, P. B., and Faloutsos,

C. Loci: Fast outlier detection using the local correlation integral. In
Proceedings 19th international conference on data engineering (Cat. No.
03CH37405) (2003), IEEE, pp. 315–326.

[38] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,

R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[39] Pincus, R., Barnett, V., and Lewis, T. Outliers in statistical data.
3rd edition. Biometrical Journal 37, 2 (1995), 256–256.

[40] Portnoy, L., Eskin, E., and Stolfo, S. Intrusion detection with un-
labeled data using clustering. In Proceedings of ACM CSS Workshop on
Data Mining Applied to Security (2001), pp. 5–8.

[41] Preiss, B. R. Data Structure and Algorithms: With Object-oriented De-
sign Patterns in Java. John Wiley & Sons, 1999.

50

[42] Rakotosaona, M.-J., La Barbera, V., Guerrero, P., Mitra, N. J.,

and Ovsjanikov, M. Pointcleannet: Learning to denoise and remove
outliers from dense point clouds. In Computer Graphics Forum (2020),
vol. 39, Wiley Online Library, pp. 185–203.

[43] Rätsch, G., Schölkopf, B., Mika, S., and Müller, K.-R. SVM and
boosting: One class. GMD-Forschungszentrum Informationstechnik, 2000.

[44] Rousseeuw, P., and Driessen, K. A fast algorithm for the minimum
covariance determinant estimator. Technometrics 41 (08 1999), 212–223.

[45] Rousseeuw, P. J., and Hubert, M. Anomaly detection by robust statis-
tics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discov-
ery 8, 2 (2018), e1236.

[46] Tang, J., Chen, Z., Fu, A. W.-c., and Cheung, D. A robust outlier
detection scheme for large data sets. In 6th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (2001), Citeseer.

[47] Thottan, M., and Chuanyi Ji. Anomaly detection in ip networks. IEEE
Transactions on Signal Processing 51, 8 (2003), 2191–2204.

[48] Verleysen, M., and François, D. The curse of dimensionality in data
mining and time series prediction. In International work-conference on
artificial neural networks (2005), Springer, pp. 758–770.

[49] Zimek, A., and Filzmoser, P. There and back again: Outlier detection
between statistical reasoning and data mining algorithms. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 8, 6 (2018),
e1280.

51

Appendices
A. Viewpoints s-curve

Figure 16: Additional viewing angles s-curve data (left: iForest, right: RSF)

52

Figure 17: Additional viewing angles s-curve data (left: iForest, right: RSF)

53

B. Viewpoints swiss roll

Figure 18: Additional viewing angles swiss roll data (left: iForest, right: RSF)

54

Figure 19: Additional viewing angles swiss roll data (left: iForest, right: RSF)

55

	List of Figures
	List of Tables
	Introduction
	Problem statement
	Outline

	Background
	Anomalies
	Anomaly detection algorithms
	Isolation Forest
	Evaluation metrics and data

	Algorithms
	Random Shift Forest
	RSQT Forest

	Results and discussion
	Experimental setup
	RSQT Forest on 2-dimensional datasets
	RSF on 3-dimensional datasets
	RSF on real datasets
	Running time and parameters

	Streaming and parallelism
	Conclusion
	Limitations and future research
	Concluding remarks

	References
	Appendices

