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Abstract

Trajectory segmentation is the problem of partitioning a trajectory into different movement phases.
There is a large body of work on the problem of segmenting individual trajectories, such as
Behavioral Change Point Analysis (BCPA) which fits a model to statistical features of trajectories
to compute likely points of change in behavior. However, there is very little work on algorithms
for segmenting a set of trajectories. The aim of this work is to generalize segmentation to multiple
trajectories in a model-based context.

We define a graph-like representation of model-based segmentations and an information cri-
terion that can evaluate the quality of these representations, based on their complexity and the
models fit to the movement phases and breakpoints of these phases. Our representation is a dir-
ected acyclic graph, wherein edges represents a movement phase of a group of subtrajectories,
and vertices represent changes in movement or grouping behavior. We generalize movement mod-
els including BCPA to this group setting, and formalize our optimization objective with these
generalized models.

Furthermore, we present three heuristic algorithms to compute such segmentations. A clus-
tering approach is presented which builds clusters of close subtrajectories with similar movement
from a trajectory set and greedily selects a subset of the clusters to form a valid segmentation.
We relate the cluster selection problem to Weighted Set Cover to provide context on the problem
and our greedy solution. We also present an incremental method, where we build a complete
segmentation for a trajectory by adding trajectories to the segmentation one by one. We define
the subproblem of adding a trajectory to a segmentation and describe how our solution to this
problem yields a complete segmentation. The last method we present solves the problem in two
steps. This method first discovers which sets of subtrajectories are considered to be grouped, by
computing the trajectory grouping structure, a graph that represents subgroups in a set of traject-
ories. These subgroups are then segmented separately using an dynamic programming algorithm
that generalizes the existing algorithm for model-based segmentation of individual trajectories.

Finally, we present results obtained from experiments on synthetically generated trajectories
and real data sets of moving animal and human entities. We used a simple implementation of the
heuristic segmentation methods to run these experiments with different methods and models. We
conclude our work with a discussion of the results and future work on model-based segmentation
of trajectory groups.
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Chapter 1

Introduction

Figure 1.1: Model-based segmentations of multiple baboon trajectories. The result
is a directed graph, which follows the course of the trajectories. In this examples
it is largely a path, which splits into several parallel edges, when the movement
of subgroups require a different model parameter for a good fit. The figures differ
in the segmentation algorithm and model that was used (see Section 1.1). On the
left: the Brownian bridge movement model, where yellow corresponds to a lower
diffusion coefficient than red. On the right: an optimization version of Behavioral
Change Point Analysis applied to persistent velocity, where darker blue corresponds
to higher autocorrelation.

The spatial tracking of moving objects is becoming easier as technology advances, providing
more and more movement data of entities such as cars, animals, people or even hurricanes. Most
object tracking happens with the use of GPS, which results in a sequence of timestamped geo-
graphic coordinates, representing the movement of an entity over some time period. We refer to
this sequence as a trajectory. Depending on the tracking hardware that is used, other features
such as altitude, velocity or location inaccuracy might also be recorded. There is a recent push
in multiple scientific fields where these data are analyzed, to observe not only where these entities
are at what times but also to understand why.

The number of devices that can be used for GPS tracking is increasing, with the global use of
smartphones being an example of this. This requires novel techniques to analyze this type of data
on larger spaces and larger timescales, and in particular with a large number of entities moving
at the same time. The analysis of such movement data gives rise to many geometrical problems
that we can study algorithmically.

One of these is the trajectory segmentation problem. This problem tasks us with dividing the
movement of an entity into multiple phases describing different movement states. Finding these
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CHAPTER 1. INTRODUCTION

phases and the behavior they describe can lead to insights into movement patterns of tracked
entities. Taking ecology as an example, the stop-overs of migrating birds can be identified with
segmentation of the migration flight trajectories [2]. This example nicely leads the way for a
subsequent question; if we have data of several birds, possibly moving together, can we segment
the movement of trajectory groups. In particular, can we represent the movement phases and
spatial organization of multiple entities with a segmentation.

We tackle this problem by first investigating segmentation approaches for individual traject-
ories, then aim to generalize these methods to a group of trajectories. Essentially there are two
often studied lines of algorithmic work on the problem of trajectory segmentation. These are
criteria-based segmentation and model-based segmentation. In a criteria-based segmentation each
segment, i.e. a subtrajectory resulting from the segmentation, fulfills a certain (geometric) cri-
terion. These criteria can be a bound on the variance in speed, or staying within a region of a
certain radius, for example. Depending on the type of criteria, there are several criteria-based seg-
mentation algorithms, which we will discuss further in the section on related work. Model-based
segmentation contrasts the predefined nature of criteria in criteria-based segmentation by instead
fitting movement models to the data.

Criteria-based segmentation has been generalized to multiple trajectories using abstract cri-
teria [10] and by clustering based on distance [16]. However, model-based segmentation so far has
not been generalized to this multiple trajectory setting. This is what we aim to do in this thesis,
which we illustrate in Figure 1.1.

1.1 Related work

From a perspective where multiple trajectories are analyzed, grouping whole trajectories or parts
of trajectories is an interesting aspect of the trajectory analysis problem. This grouping is often
done based on similarity measures [32], which are able to describe the distance between trajectories
and subsequently evaluate their similarity. Common measures include the Fréchet distance [8] and
discrete Fréchet distance [18], where the distances of trajectories is measured while allowing a tem-
poral offset. Another common similarity measure is the longest common subsequence (LCSS) [33],
where trajectories are interpreted as sequences. Trajectory sequences then are clustered if their
sequences are similar in that they can stretch while still having the same order of sequences. Dy-
namic time warping, a distance-based measure that allows temporal phase shifts, has been used
by Haase and Brefeld [23] to analyze similarity between movements in a soccer game.

Grouping subtrajectories based on similarity measures is a large part of most clustering prob-
lems [1, 7, 9, 11]. A relevant problem for which clustering methods are often used is map construc-
tion [9, 7], where networks are constructed using sets of compact clusters obtained from multiple
trajectories. These networks might represent traffic infrastructure or commuting patterns [11] for
example. The problem of (k, l)-center clustering asks, given a set of trajectories and a maximum
Fréchet distance, whether there are a given number of clusters that represent the trajectories with
at most the maximum Fréchet distance. An approximation algorithm for this problem was in-
troduced by Driemel et al. [19] and later improved upon by Buchin et al. [13]. Practically viable
algorithms based on these approaches were presented by Buchin et al. [6, 14]. In the context of
representing multiple trajectories using clusters, Agarwal et al. [1] describe how clustering subtra-
jectories can define sets of similar movement based on topological characteristics of the data, and
how a selection of clusters can form a decomposition of a trajectory set.

Apart from representing trajectories with sets of clusters, the grouping component that plays
a role in the context of multiple trajectories can also be studied. The motivation for this is
the ability to tell which trajectories are grouped at certain time intervals. Buchin et al. [12]
proposed a method for finding the underlying grouping structure of a set of trajectories, given
a closeness measure. This structure can be represented with a geometric graph where each edge
resembles a group. This structure is then subsequently used to find maximal groups within the
data. While this method only uses the closeness measure as a way of grouping trajectories, Group
Diagrams, introduced by Buchin et al. [16], allow for any similarity measure to be used, such as
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CHAPTER 1. INTRODUCTION

the aforementioned Fréchet distance or equal- or similar time distances. To represent the given
trajectories, Group Diagrams use representative segments for each group.

Another movement analysis problem is the segmentation of trajectories, where a trajectory is
broken up into multiple segments based on some feature(s) of the trajectory. Informally, these
features can represent some facet of the entities behavior, such as a stop-over for migrating birds,
or run speeds in tracked running data. Depending on the type of analysis that is to be performed
on trajectory data, segmentation methods can answer different research questions. To describe
multiple movement patterns in trajectory data, the behavior in sections, or phases, of movement
is quantified such that these phases can be expressed in terms of some measure that relates to the
behavior being analyzed.

Movement models provide a way of describing such phases using statistical models fit to
their movement features. The Brownian motion model and its trajectory application Brownian
bridges [24] can be used to describe movement phases in a trajectory based on model parameters.
Brownian bridges assume trajectories can be modeled by random walks between two locations with
varying variance parameters indicating different behaviors. Statistical models can also be used to
report change-points between segments, focusing on where the most likely points of change are for
the varying movement characteristics. The Behavioral Change Point Analysis (BCPA) method,
which models the underlying movement of a trajectory as a stochastic process in order to find
points of behavioral change, was first introduced by Gurarie et al. [21]. This model-based method
is able to model any time-series variable that can be obtained from given trajectory data. It uses
likelihoods and a sweep-line algorithm to find the points of change in the underlying process, which
can then be presented either as a continuous estimation function or a discrete set of change-points.
Movement models have been especially helpful in ecologic fields where trajectory data of animals
are analyzed, which provides a motivation for the development of new segmentation techniques.
These studies often go further than just the segmentations themselves, diving deeper into ecolo-
gical animal-specific features. Examples of this include the usage of BCPA to discover integration
ratios for black cockatoos [27], or how sequential collecting of movement states between BCPA
change-points give insights into behavioral classes [31].

An alternative to model-based segmentation is segmentation using criteria on trajectories.
Segmentation then occurs such that each subdivided part of a trajectory satisfies some global
criterion. These criteria place constraints on topological features of the data, such as trajectory
locations fitting inside a disk with a fixed radius or the range of heading angles fits some maximum
range. Aronov et al. [5] paint a broader picture of the criteria-based segmentation problem, and
provide a method for computing an optimal segmentation for two classes of criteria. Agagnosto-
poulos et al. [4] have researched how to optimize the computation of distance-based criteria for
efficient segmentation methods. A general framework for criteria-based segmentation allowing for
different classes of stable criteria is presented by Alewijnse et al. [15]. In the above approaches
the behavior in each segment can only be defined by the set of criteria it satisfies. Additionally,
they are suitable only for single trajectories. Buchin et al. [10] have generalized this concept of
criteria-based segmentation to a collective movement context. The Compact Flow Diagrams they
introduce nicely represent segmentations of multiple trajectories with a directed acyclic graph
structure wherein trajectories are represented by paths through the graph.

Trajectory data often contains additional attributes alongside a set of timestamps with cor-
responding location, such as velocity or heading angle. The topic of semantic trajectories and
their segmentation aims to augment trajectories with contextual data that is obtained from en-
vironmental knowledge of the analyzed trajectory [26]. Behavioral states or criteria can then be
defined using these augmented data. Ogawa et al. [29] have proposed an algorithm to segment se-
mantic trajectories using machine learning methodologies, where models are trained on video data
of trajectories. This shows that machine learning can play a role in model-based segmentation
methods.

The usefulness of any segmentation method might differ depending on the trajectory data
to be analyzed, or the features that are to be examined via segmentation of the data. To aid
new and existing researchers in getting an overview of segmentation methods for trajectories,
several works summarize a set of segmentation methods and list advantages and disadvantages
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CHAPTER 1. INTRODUCTION

of each in relation to different properties of trajectory segmentation. Gurarie et al. [22] have
outlined the segmentation problem as a whole, listed different segmentation methods and compared
results of several methods. A similar overview and comparison is given by Edelhoff et al. [20],
where the segmentation problem is generally deconstructed and some methods are evaluated with
simulated data to analyze their usefulness with relation to common research questions in trajectory
segmentation.

1.2 Contributions

We study the problem of group segmentation in a model-based context by defining a segmentation
representation that encapsulates the models fit to the data as well as subgroups of the trajectories
that are segmented. Examples of such segmentations are depicted in Figure 1.1. This repres-
entation is inspired by Compact Flow Diagrams [10] and Group Diagrams [16], which represents
segmentations in a graph-like manner. For evaluating segmentations we define an Information Cri-
terion (IC) which serves as a metric for group-based segmentations. Similarly to how Alewijnse
et al. [3] have adopted and modified the Bayesian Information Criterion (BIC) to express the IC
score of a single-trajectory segmentation, we derive an IC that is able to evaluate segmentations
in a multiple trajectory setting. The IC indicates how well the models fit to the representation,
while counter-acting overfitting by adding a complexity penalty term. We then employ this IC to
define the model-based segmentation problem in a group setting as an optimization problem.

In Chapter 3 we present three heuristic methods for computing a segmentation according to our
defined representation, using elements from related work on clustering [12] and single-trajectory
segmentation using movement models [3]. These approaches include a clustering method, where
we construct clusters of subtrajectories and give them a score based on their estimated information
gain. We see that the problem of selecting a subset of clusters to obtain an optimal segmentation
in terms of the IC is related to the Weighted Set Cover problem [1]. We then greedily select
a set of non-overlapping clusters to obtain a valid segmentation. We present an incremental
approach where a complete segmentation of the given trajectory set is built incrementally, adding
trajectories one at a time, and merging their segmentations into the complete result at every
iteration. We aim to solve the problem of how to add a trajectory to a segmentation representing
a set of trajectories such that afterwards the segmentation also represents the given trajectory.
The third approach involves two steps that separate the problem into finding a grouping structure
and segmenting these groups. The trajectory grouping structure algorithm [12] is implemented to
perform the first step, while we use the single-trajectory model-based segmentation algorithm of
Alewijnse et al. [3] together with generalized movement models to segment the resulting groups.
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Chapter 2

Group segmentation

To segment trajectory groups, we first have to address how to represent such a segmentation
and how to evaluate the quality of a segmentation. This chapter provides an overview of the
representation and evaluation of segmentations and shows how we tackle these questions.

By explaining how we define and represent our segmentations and evaluate these using different
models we lay out the prerequisite material for Chapter 3, where we present several heuristics to
the segmentation problem. We first describe the notation that is used for trajectories and seg-
mentations throughout this thesis in Section 2.1. In Section 2.2 we introduce our representation
for model-based group segmentation and place it with relation to other representations. In Sec-
tion 2.3 we show how we can evaluate these segmentations and present model-based segmentation
of multiple trajectories as an optimization problem. The models used in the segmentation repres-
entation will be discussed in Section 2.4, where we generalize location and movement models to
groups and give a short motivation and background on these models.

2.1 Notation

We first describe the terminology and notation of trajectories and then define segmentations and
their notation. We define a trajectory τ as a sequence 〈(z1, t1), (z2, t2), . . . , (zn, tn)〉, where zi
are locations and ti are timestamps. We assume the locations zi are points in the Euclidean
plane, however, most of the methods we present would generalize to higher dimensions. We write
τ(ti) = zi to denote the location of trajectory τ at time ti.

Given such a trajectory, we implicitly interpolate movement between the timestamped locations
to obtain a continuous trajectory. If we assume entities move between points at a constant velocity,
we can linearly interpolate between these points based on the two accompanying timestamps.
Under this assumption a trajectory can be interpreted as a polygonal curve. Note that we do
not assume constant velocity when fitting movement models to subtrajectories. However, when
visualizing trajectories, we will draw them as polygonal curves.

We can indicate a subtrajectory by a time interval and a trajectory as follows: τ [ti, tj ] denotes
the subtrajectory described by the points 〈zi, zi+1, . . . , zj〉 and timestamps 〈ti, ti+1, . . . , tj〉 that
belong to trajectory τ . Note that in the work done in this thesis we will only use time intervals
that start and end on timestamps for which there is a corresponding location in the ’indexed’
trajectories.

The input to our methods is a set of trajectories T = {τ1, τ2, τ3}. For such input trajectory
sets, we make the assumption that all trajectories in the set share the same set of timestamps.
A subtrajectory of a single trajectory in a trajectory set T can be denoted with τk[ti, tj ], such
that τk ∈ T . It will also be useful to be able to mention only a subset of the trajectories, such as
T ⊆ T . We can then denote a set of subtrajectories on a time interval in a similar fashion, namely
as T [ti, tj ]. Formally, we then have T [ti, tj ] = {τk[ti, tj ] | τk ∈ T}. Additionally, for some T ⊆ T
let T (ti) = {τk(ti) | τk ∈ T}, e.g. the set of locations of trajectories in T at time ti.

Model-based Group Segmentation 5
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A segmentation breaks up a trajectory, or in our case a set of trajectories, into smaller sets
of subtrajectories. We call these subtrajectory sets segments. A segment s is defined on a time
interval for a subset of trajectories in the segmented trajectory set T . We let tα(s) and tβ(s)
denote the start and end times of s, respectively. Let Γ(s) denote the trajectories in T whose
subtrajectories are contained in s. Note that we always have Γ(s) ⊆ T , and t1 ≤ tα(s), tβ(s) ≤ tn
as a segmentation is only defined on the points and timestamps of the trajectories in T .

2.2 Representing segmentations

There are different ways to represent a segmentation of multiple trajectories. To get a better
understanding of what resulting representations we are interested in, we first discuss segmentation
representations from related work, and define a model-based representation which we base our
segmentation techniques on.

2.2.1 Related representations

There are several related works that also consider segmentation in a the context of multiple
trajectories. These works introduce different ways to represent such segmentations.

Compact flow diagrams An abstract representation which uses directional acyclic graphs is
a Compact Flow Diagram (CFD) [10], where vertices of a graph represent behavioral states and
edges indicate transitions between those states. Specifically, vertices correspond to some criterion.
For example, one criterion could be that the velocity is bounded by 10 m/s. Additionally to the
vertices representing behavioral states, a CFD also has a start vertex s and end vertex t, and
paths from s to t represent the different behavioral states that some trajectory in the set goes
through. Every trajectory in the set is represented by one such path, such that the trajectory
can be segmented into subtrajectories in such a way that the segments fulfill the criterion of the
corresponding states. Note that the time of change is not indicated since neither the vertices or
edges have a temporal component. With additional visualization, a CFD can be used to highlight
behavioral patterns from a trajectory set. An example of a CFD is shown in Figure 2.1. The
behavioral states in this example would thus relate to different criteria, such as speeds within a
range, a heading angular range, or staying inside an area with fixed radius.

Group diagrams Group Diagrams (GD) [16] focus on the geometry of the movement by rep-
resenting multiple trajectories using a geometric graph. In such a graph, the vertices repres-
ent timestamped geographical locations and edges represent movement between locations. Con-
sequently, a path in this graph can be interpreted as a trajectory in itself. Similar to Compact

Figure 2.1: An example of a Compact Flow Diagram, where the vertices represent
different behavioral states C1, . . . , C6 and directional edges between these states in-
dicate state transitions. An example path would be 〈s −→ C3 −→ C2 −→ C4 −→ C1 −→ t〉,
which would represent at least one trajectory which follows the state sequence
C3, C2, C4, C1.

6 Model-based Group Segmentation



CHAPTER 2. GROUP SEGMENTATION

Figure 2.2: A diagram indicating how our work relates to Compact Flow Diagrams
and single trajectory based segmentation methods. The arrows indicate generaliz-
ation from single to multiple trajectory contexts. Where Compact Flow Diagrams
generalized single trajectory criteria-based segmentation, our methods generalize the
single trajectory model-based variant of segmentation.

Flow Diagrams, Group Diagrams also represent trajectories with paths in a graph, and since paths
are in itself similar to trajectories Group Diagrams provide an intuitive representation.

Single trajectory criteria-based segmentation The above representations generalize criteria-
based segmentation of individual trajectories to the setting of multiple trajectories. There is ex-
tensive work on criteria-based segmentation of single trajectories [5, 15, 2]. These methods are
generalized to a group setting by Compact Flow Diagrams and Group Diagrams. In our work,
we do not take criteria-based segmentation as a starting point for generalization. Instead, we
tackle the generalization of model-based segmentation to a group setting by starting from single
trajectory model-based segmentation methods introduced by Alewijnse et al. [3].

Trajectory grouping structure Another relevant related data structure that expresses groups
in a set of trajectory is the trajectory grouping structure [12]. The aim of this structure is to find
maximal groups based on certain constraints that tell whether a set of subtrajectories form a group.
As an intermediate step in this algorithm, a graph is created where each edge represents one or more
subtrajectories that are close, based on a closeness threshold ε. Since we will be using this part
of the algorithm in one of the segmentation approaches we introduce in Chapter 3, we describe
it in more detail in the following paragraphs. Although the complete work on the trajectory
grouping structure results in a definition and representation that differs from the intermediate
graph result which we are interested in, we will be referring to this intermediate graph as the
“grouping structure” to still make it clear where it originates from.

The goal is to find a set R of subtrajectories we call groups such that the entire trajectory set
T is covered by non-overlapping groups in R. A group r ∈ R is defined as a set of trajectories
Tr ⊆ T on a time interval [tα(r), tβ(r)], where tα(r) and tβ(r) are the start and end time of group
r. A more concise description for r then is the set of subtrajectories Tr[tα(r), tβ(r)].

In order for R to be a valid grouping structure for T , we define the following constraints. For
two groups r1, r2 ∈ R that have overlapping time intervals, we must have Tr1∩Tr2 = ∅. Conversely,
if we have Tr1 ∩ Tr2 6= ∅ then the time intervals must not overlap. Finally, each trajectory τ ∈ T
must be represented by a sequence of non-overlapping groups in R such that the entirety of τ is
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τ1

τ2

τ3

(a) (b)

Figure 2.3: A visualized example of the intermediate result of the trajectory grouping
structure method [12], where a graph representing close subtrajectories on different
time intervals is constructed. (a) A set of color-coded trajectories {τ1, τ2, τ3}. (b)
The graph generated from the trajectories in (a). The directed edges represent the
groups. The colored boxes next to the edges represent the trajectories “contained”
in those groups.

covered by the groups in the sequence. If a grouping structure satisfies these conditions, it is a
valid grouping structure for T .

The existing trajectory grouping structure algorithm uses a closeness parameter ε that de-
termines how close trajectories must be in order for them to be considered grouped. This method
groups two trajectories τ ′, τ ′′ ∈ T with a single link restriction. If the distance d(τ ′[t], τ ′′[t])
between τ ′ and τ ′′ at time t is at most ε then they are considered directly ε-connected at time t.
If there is a sequence of trajectories τ ′ = τ0, ..., τk = τ ′′ where for all i, τi and τi+1 are directly
ε-connected at time t, then τ ′ and τ ′′ are considered to be ε-connected at time t.

Given the parameter ε, for increasing time ti the algorithm will record ‘connect’ and ‘dis-
connect’ events for pairs of trajectories. Two trajectories τ1, τ2 ∈ T will connect at time ti
if d(τ1[ti−1], τ2[ti−1]) > ε and d(τ1[ti], τ2[ti]) ≤ ε. They disconnect if the reverse holds, e.g.
d(τ1[ti−1], τ2[ti−1]) ≤ ε and d(τ1[ti], τ2[ti]) > ε. A visualization of an example trajectory grouping
structure graph is shown in Figure 2.3.

We process the list of all connect and disconnect events for all pairs of trajectories in chronolo-
gical order. For increasing time t, we keep track of all groups at time t with a graph GR = (V,E).
Each vertex vi ∈ V represents trajectory τi ∈ T , and there is an edge ei,j = (vi, vj) ∈ E if and
only if τi and τj are directly ε-connected. We then keep track of all the connected components
C ∈ C(G) in the graph, and give them a timestamp t(C) indicating the time at which they last
changed. The connected components at that point represent the different groups, since a path
between two vertices vi, vj means that τi and τj are ε-connected. We let TC denote the set of
trajectories represented by component C. A connect event with trajectories τi, τj adds the edge
ei,j , while a disconnect event removes it. If a connect event at time t′ joins two components C1, C2,
we can add two groups to our resulting group structure R; TC1

[t(C1), t′] and TC2
[t(C2), t′]. We

then let C ′ = C1 ∪ C2 denote the newly formed component, and set its timestamp t(C ′) := t′. In
the case of a disconnect event for trajectories τi, τj , if the component C for which vi, vj ∈ C is
broken up into two components C1, C2 then we add the group TC [t(C), t′] to R. We update the
list of components with C1, C2 replacing C, and set t(C1), t(C2) := t′. When all events have been
processed, we have obtained a grouping structure R for trajectory set T .

2.2.2 Model representation

Segmentation techniques are often used to visually explore data sets of moving objects. We focus
on group segmentation, where a set of trajectories is segmented into different phases of movement
and groups. Our starting point for a representation includes Compact Flow Diagrams and Group
Diagrams to obtain a representation that accommodates the usage of models in our segmentation.
As seen in these related representations, using graphs generally allows for an underlying grouping
structure to be intuitively described. Our work differs from the work on Compact Flow Diagrams
and Group Diagrams in that we use models to describe the behavioral states and change points,

8 Model-based Group Segmentation



CHAPTER 2. GROUP SEGMENTATION

Figure 2.4: A visually represented model-based segmentation graph GS = (V,E).
The ellipses containing points represent the vertices v ∈ V , where the shape of the
ellipsis of each vertex v represents the location model fit to the point set P (v) with
parameter θ(v). While the behavior in the movement models fit to the edges e ∈ E
is not visualized, the thickness of the line belonging to each edge e represents the
amount of subtrajectories represented by e. Larger values of |M(e)| are represented
with thicker lines.

and as such we have model parameters to describe how our models can be fit to the data.
Given a set of trajectories T , we let a directed acyclic graph S = (V,E) represent a segment-

ation of T . As before, we assume every trajectory τ ∈ T contains n observations. We then
switch the functions that vertices and edges have in a Compact Flow Diagram, letting edges in
our graph describe movement with a model parameter component and letting vertices describe
the modeled locations in between sections of movement. We thus make the distinction between
movement models which model the movement characteristics of one or more subtrajectories, and
location models which model the location distribution of one or more points. Using this setup
we are also able to assign timestamps to vertices with which we can deduce the time intervals
on which segments are defined. Formally, for a vertex v ∈ V we use θ(v) to denote the location
model parameters assigned to v and for an edge e ∈ E we use σ(e) to denote the movement model
parameters assigned to e. We use vector notations for θ and σ to emphasize that there might be
more than one model parameter depending on the model used. We also let P (v) denote the points
represented by v, and let M(e) denote the subtrajectories that are represented by e. Note that in
this case P (v) = T [ti] for some T ⊆ T and 0 ≤ i ≤ n, and M(e) = T [ti, tj ] for some T ⊆ T and
0 ≤ i < j ≤ n. We can use the location model parameters to place the vertices onto a 2D plane1

to clearly indicate where the segments in the segmentation start and end geographically. We do
not assume our graphs to be planar, as edges may intersect. Figure 2.4 shows an example where
the different parts of the representation are visualized. Note the explicit depiction of the location
models and the thickness of segments, which represents the amount of subtrajectories contained
in each edge.

Our model-based representation abstracts from the models used in its vertices and segments.
As long as a location or movement model is able to express the location or movement of multiple
subtrajectories in terms of a set of parameters, it can be used in this representation. For placing
vertices in geographical locations found by the segmentation, we do not necessarily require explicit
x, y coordinates from the location model parameters, but rather an indication of a central location
obtainable from the parameters.

2.3 Evaluating segmentations

To evaluate segmentations in the representation we have defined in Section 2.2.2, we use an inform-
ation criterion (IC). First we describe the IC and its usage, then we formulate the segmentation

1For example, a circular normal distribution is defined on central x, y coordinates with a variance parameter.
These coordinates can then be used to place the vertex.
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problem as an optimization problem with the IC.

2.3.1 IC definition and usage

To evaluate a segmentation as defined by our model-based representation, we want to have some
measure with which we can estimate the quality of a segmentation. Two segmentation features
that we can relate to its quality are its complexity and how well the models fit to its locations
and movement. A well-known measure for finding an optimal model within a given set of models
is the Bayesian information criterion (BIC), which balances a model’s complexity with its log-
likelihoods to obtain a value that when minimized, corresponds to the optimal model. This balance
is a solution to model overfitting, which is a problem that applies to model-based segmentation.
For a model with likelihoods L̂, number of observations n and complexity k, the BIC is defined
as:

BIC = k ln(n)− 2 ln(L̂) (2.1)

A variation of this IC is Akaike’s information criterion (AIC), which differs from the BIC in
interpreting the complexity of a model, and is used as a more statistical way of determining which
model to select.

AIC = 2k − 2 ln(L̂) (2.2)

We first describe how we define our model log-likelihoods and model complexity with relation
to our segmentation representation defined in Section 2.2.2. The likelihood of a model is often
formulated in terms of some model parameters. For an edge e ∈ E in a segmentation, we use some
movement model to determine the log-likelihood of the subtrajectories in e, denoted as M(e),
given model parameters σ(e). We then write the log-likelihood of edge e as LL(M(e) | σ(e)),
and similarly write LL(P (v) | θ(v)) for the log-likelihood of vertex v with points P (v) and model
parameter θ(v). An important observation to be made is that the movement models only model
the subtrajectories between locations, and that the location models are modeling points that are
not modeled by the movement models. From here we assume independence between the movement
and location models. To summarize the log-likelihoods of all the models in the segmentation we
can then simply sum the log-likelihoods of the movement and location models. The complexity
of a segmentation can be stated in terms of its number of vertices |V | and/or its number of edges
|E|.

Now consider some segmentation S which segments trajectory set T where trajectories have
n points. Let C(S) be some function of |V | and |E|. We then apply the IC on our segmentation
representation in a similar fashion to the form of the IC defined in [3]. This gives us the following
formula:

IC(S) = lnn · C(S)−
∑
v∈V

2 · LL(P (v) | θ(v))−
∑
e∈E

2 · LL(M(e) | σ(e)) (2.3)

In the BIC (and AIC in a similar fashion) the complexity term consists of the model complexity
multiplied with some penalty weight. This complexity penalty weight is different for both IC’s, and
since we will be generalizing our movement models to groups the complexity weights may no longer
match with the log-likelihoods that are obtained from movement and location models. We thus
leave the complexity penalty weight as a variable parameter p. Additionally, there is a relation
between |V | and the location model log-likelihoods, as well as between |E| and the movement
model log-likelihoods. Let C(V ) and C(E) denote the complexity function C(S) separated into
two parts for V and E. We can now express these relations in the IC by splitting up the IC into
two parts ICloc and ICmov for the locations (vertices) and movements (edges) respectively:

ICloc(S) = p · C(V )− 2 ·
∑
v∈V

LL(P (v) | θ(v)) (2.4)
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ICmov(S) = p · C(E)− 2 ·
∑
e∈E

LL(M(e) | σ(e)) (2.5)

Note that we use the same complexity penalty weight p for both the location and movement parts.
It is possible to have two different factors, which gives more separate control over the location and
movement complexity in the segmentation, however we simply use equal values since exploring
data with different penalty factors lies outside this work’s scope. We can sum the two parts to get
a complete IC of a segmentation which we use to evaluate our segmentations:

IC(S) = ICloc(S) + ICmov(S) (2.6)

2.3.2 Optimizing the IC

We now use the IC to define the segmentation problem as an optimization problem similar to [3].
If, for some trajectory set T , we find the segmentation which minimizes the IC, we have found an
optimal segmentation according to the IC. We define this problem formally as MultiTraject-
oryModelSegmentation, or MTMS:

MTMS(T , n): Given a trajectory set T , where each τ ∈ T consists of n time-stamped locations,
and a complexity weight p, find an optimal segmentation S such that for all segmentations S ′ of
T :

IC(S) ≤ IC(S ′)

The definition of the optimization problem does not help us directly in finding an optimal
solution, but we can interpret solutions or segmentations with lower IC scores as better solutions.
The formal definition of this problem provides us with an optimization objective we aim to fulfill
with model-based segmentation techniques.

2.4 Generalizing models to groups

The information criterion we have defined in Equation 2.6 for our segmentation representation
uses the log-likelihoods of multiple points or subtrajectories. For a vertex v in a segmentation S
with representation graph GS we now need to compute LL(P (v) | θ(v)), and for an edge e we
need to compute LL(M(e) | σ(e)). For our purposes, we do not believe modeling a set of points
with a location model requires complex methods, since we are mostly focused on some measure
of closeness for the vertices in a representation graph. A simple location model is described in
Section 2.4.3. However, expressing the log-likelihood of multiple subtrajectories requires movement
models that are generalized to groups.

Multiple movement models have been presented with which an entity’s movement can be de-
scribed. We consider the Brownian Bridge Movement Model (BBMM) and the Behavioral Change
Point Analysis (BCPA) to test our methods with. In the field of trajectory analysis and segment-
ation, these models have previously been used to describe the movement behavior of different
animals by finding change-points in the fitted model parameters [3][21]. In Sections 2.4.1 and 2.4.2
we will discuss how to apply these models in a group setting. For both BBMM and BCPA we will
formulate the log-likelihood of a subtrajectory such that in describing the general model-based
segmentation technique we can use these likelihoods regardless of which model is being used. The
step-by-step process of how we obtain the generalized log-likelihoods will be from the perspective
of a trajectory set T rather than from the perspective of edges in segmentation representation
graphs, since the locations of trajectories at different timestamps need to be explicitly mentioned
in the models.

2.4.1 Brownian Bridge Movement Model

Brownian motion is an existing framework for describing animal movement. This type of movement
closely relates to random walks, where we can express a path in terms of a diffusion coefficient. A
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(a) σ2
m = 0.120 (b) σ2

m = 3.808 (c) σ2
m = 12.60

Figure 2.5: Three randomly generated trajectories with varying behavior to showcase
the effect of different diffusion coefficient values in the Brownian bridge movement
model. The diffusion coefficient values under each trajectory maximize the BBMM
log-likelihoods LL(τ | σ2

m) for each trajectory τ . A higher value of σ2
m results in more

erratic behavior.

path or trajectory between two points can also be described with Brownian motion using Brownian
bridges. These Brownian bridges are an established component in trajectory analysis and will be
useful for segmentation purposes as we will see further on in this section. First we will expand
upon the ways we can model our (sub)trajectories using these Brownian bridges, and how we
reach a likelihood estimation for a segment. For most formulas below, the reasoning from [24] is
followed.

Let us first consider the simple example of a single bridge between two points. Consider two
points a and b observed at times ta and tb respectively. We can then use a Brownian bridge
process to model the location distribution of the entity at any time ta ≤ tz ≤ tb. The location
distribution of an entity moving from a to b with Brownian motion is additionally defined by a
diffusion coefficient σ2

m which describes the general deviation of the entity. Figure 2.5 gives a
visual example of how the diffusion coefficient can describe different trajectories. Let tab := tb− ta
denote the time it takes for the entity to move from a to b, and let taz := tz − ta denote the
time it takes for the entity to move from begin point a to some location at time tz. The observed
location’s mean µ(t) and circular variance σ2(t) of the normal distribution at time tz are given by:

µ(tz) = a+ (b− a) · t
tab

(2.7)

σ2(tz) =
t(tab − t)

tab
σ2
m (2.8)

To account for measurement errors in the observed locations, points a and b can be considered
as random variables. We use the same approach, and let these correspond to circular normal
distributions, N (a, δ2aI) and N (b, δ2b I) for the starting and end position respectively. To accom-
modate these uncertainties of the bridge edge points, we have to change the formula of variance
σ2(tz) slightly:

σ2(tz) = tabα(1− α)σ2
m + (1− α)2δ2a + α2δ2b (2.9)

α = taz/tab (2.10)

Using the above, we can also obtain a likelihood for an independently observed location z
between two points a and b, given a diffusion coefficient. This allows us to describe the Brownian
movement behavior of a so-called Brownian bridge. Let z be a point observed at time tz between
two points a and b. The likelihood of the Brownian bridge formed between a and b with observed
location z can be written as:

L(a, b, z, σ2
m) =

1

2πσ2(tz)
exp{−[z − µ(tz)][z − µ(tz)]

>

2σ2(tz)
} (2.11)
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(a) Example subtrajectories of two differ-
ent entities, displayed in red and blue.

(b) The underlying Brownian bridge movement of
the trajectories in (a), where only uneven observa-
tions are considered. The bridges are shown by the
bold black lines, the intermediate independent obser-
vations are labeled with z1k and z2k for k ∈ odd(i, j) =
{i+ 1, i+ 3, i+ 5}.

Figure 2.6: An example of the structure of Brownian bridges in a segment with
multiple bridges.

Note that the diffusion coefficient σ2
m is used implicitly in σ2(tz). Writing σ2

m as one of the
parameters helps us indicate what diffusion coefficient value we assign to Brownian bridges later on.
For a more detailed description of how the likelihood function for a Brownian bridge is obtained,
see [24].

To describe the Brownian movement of a subtrajectory with multiple bridges we only consider
the odd observations for Brownian bridge links. For some subtrajectory τ [ti, tj ], we then consider

only those points zk with i < k < j where k− i is odd. This gives us b (j−i)−12 c bridges, for which
we can take the product of their likelihoods (since their likelihoods are independent) to get a total
likelihood for τ [ti, tj ]. To reduce notation complexity, let odd(i, j) denote the integers k for which
i < k < j and k − i is odd. Figure 2.6a and Figure 2.6b provide a visual example of how to
divide a subtrajectory into several bridges using observations zk with k ∈ odd(i, j). We obtain the
following formula for the likelihood of a subtrajectory modeled with Brownian bridges:

L(τ [ti, tj ], σ
2
m) =

∏
k∈odd(i,j)

1

2πσ2
k(tk)

exp{−[zk − µi(tk)][zk − µk(tk)]>

2σ2
k(tk)

} (2.12)

where:

µk(tk) = zk−1 + αi(zk+1 − zk−1)

σ2
k(t) = (tk+1 − tk−1)αk(1− αk)σ2

m + (1− α)2δ2k−1 + αkδ
2
k+1

αk =
(tk − tk−1)

tk+1 − tk−1

We now have defined the likelihood for a single subtrajectory and are left with defining the
likelihood for a group of trajectories. Note that we consider a ’group’ to be a set of subtrajectories
that are considered as grouped (this classification of groups will be mentioned in segmentation
methods later on and is not important for this chapter on movement models) and as such we
wish to define the Brownian bridge likelihood of this group given a diffusion coefficient. For
simplicity, we consider some set of trajectories T = {τ1, . . . , τm} which is assumed to be a group
from start to finish. For a set of subtrajectories, given that they are on the same time interval, the
following notation is very similar. The total likelihood of the model parameter L(T , σ2

m) will apply
the diffusion coefficient σ2

m to every trajectory in T . We use Equation 2.12 and its underlying
approach for the likelihood computation.

If each of the trajectories τ ∈ T has their own likelihood L(τ, σ2
m), then we can add these

likelihoods together when determining the likelihood of all the trajectories in the group. We
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assume independence between the observations of the different trajectories, and we use the fact
that we can take the sum of log-likelihoods instead of a product of likelihoods. This gives us the
Brownian Bridge log-likelihood for a trajectory group T , which we write as LLBBMM(T , σ2

m) to
indicate that we are using the logarithms of the likelihood terms.

LLBBMM(T , σ2
m) =

∑
τ∈T

log(L(τ, σ2
m)) (2.13)

Finally, let us relate this log-likelihood to the IC. If e is some edge in a segmentation S
with representation graph GS , then if Brownian bridges were used in segmentation S we simply
have LL(M(e) | σ(e)) = LLBBMM(M(e) | σ(e)). Note that due to the segmentation using
Brownian bridges we can implicitly assume σ(e) represents only a diffusion coefficient σ2

m when
using LLBBMM.

2.4.2 Behavioral Change Point Analysis

The Behavioral Change Point Analysis (BCPA) as presented in [21] is a framework for finding
changes in movement behavior. It essentially tries to find points where the behavior of a trajectory
changes. The BCPA abstracts from the feature of the trajectory that it is modeling with a
stochastic process. For example, variables such as the trajectory’s velocity, heading angle or time
delay between points can all be modeled by such a process to find points where these variable likely
change. Note that we say “likely”, since the BCPA algorithm by itself can either select the most
likely change-point or give an output that averages parameter values for every observed location
of the trajectory data. The algorithm performs a windowed sweep over a trajectory, meaning
it considers a small time interval for increasing times while performing likelihood estimation to
evaluate whether there is a change-point in the current window. In this regard BCPA already
differs much from the Brownian bridges in the sense that by itself it is already capable of showing
when the movement behavior in a trajectory changes, while the Brownian bridges simply describe
movement behavior. The movement behavior itself is then described by BCPA in terms of an
autocorrelation coefficient which serves as a parameter to the model. In this section we will
explain how we use the BCPA model to obtain log-likelihoods for single subtrajectories, as well as
how to generalize the BCPA model to obtain log-likelihoods for subtrajectory groups.

Whereas Brownian bridges used the observed points of movement data, with the BCPA model
we have to choose what time-series variable of any given trajectory we wish to model. Two variables
regularly used with the window-sweep BCPA algorithm are the persistent velocities or the turning
speeds of an entity. However, since our segmentation model lies within a group context, we also
will consider variables that make use of possible grouping aspects. We consider using the distance
to the centroids or the distance to the k-nearest neighbor at each point of a trajectory. Here the
centroid at some time ti for trajectories T is the average point of the point set T [ti]. These two
variables only make sense in a group context however, as for a single trajectory they would both
be zero at all times. We discuss these variables further down this section.

Let us first describe the persistent velocities and turning speeds. For some trajectory τ with
timestamped points 〈(z1, t1), (z2, t2), . . . , (zn, tn)〉, let Φ(ti) be the absolute compass direction. The
velocity V (ti) and turning angle Ψ(ti) are then written as:

V (ti) =
|zi − zi−1|
ti − ti−1

(2.14)

Ψ(ti) = Φ(ti)− Φ(ti−1) (2.15)

The persistent velocity Vp and turning speed Vt at time ti are then defined as:

Vp(ti) = V (ti) · cos(Ψ(ti)) (2.16)

Vt(ti) = V (ti) · sin(Ψ(ti)) (2.17)

We use Vp(τ) and Vt(τ) to describe the sequence of persistence velocities or turning speeds of a
(sub)trajectory τ . The difference between high and low Vp values is visualized in Figure 2.7, where
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(a)
(b)

Figure 2.7: Two example trajectories highlighting the visual difference between dif-
ferent values of the persistent velocities Vp(τ). The trajectory in (a) has Vp values
close to zero as it contains sharp turns where the velocity the trajectory had in its
previous direction is almost entirely lost. In (b) we see the opposite, where almost
straight lines result in the trajectory keeping its momentum in a single direction.
This trajectory consequently has high Vp values.

two trajectories with low and high Vp values are shown. Of these two variables, the persistence
velocity is considered to be a robust fit for the Gaussian processes the BCPA uses to model the
movement features and as such is used the most often [21]. In theory, we could also try and
obtain a likelihood formula that takes two autocorrelation values as arguments, and maximize
our segment likelihoods with two parameters in our segmentation methods later on. These two
parameters would then encapsulate both the persistent velocities and turning speeds. However,
Vp(τ) and Vt(τ) are not necessarily independent, depending on the data τ is sampled from. Since
finding the relationship between Vp and Vt is neither the focus of this work or within its scope, we
opt to consider only one of the two at any time in our BCPA applications.

In a setting where we have some trajectory set T consisting of m trajectories, the centroid z̃i
at any point in time ti can be defined as:

z̃i =
1

m

∑
τ∈T

τ [ti] (2.18)

Here the points τ [ti] are point vectors being summed and multiplied by a scalar, giving us the
average point or centroid z̃i. The distance for each trajectory τ at time ti is then given by
dist(z̃i, τ [ti]). The distances to the k-nearest neighbor are defined similarly. For a trajectory τ
at time ti, let 〈τ1[ti], ..., τm−1[ti]〉 be the sequence of points belonging to the other trajectories
in T , sorted on their distances to τ at time i, namely dist(τ [ti], τj [ti]) for 1 ≤ j ≤ m − 1. The
distance to the k-nearest neighbor for τ at time ti is then written as dist(τ [ti], τk[ti]) for a given
1 ≤ k ≤ m− 1.

From here we give a short description of how we can calculate log-likelihoods that indicate how
well the model fits to a subtrajectory, and generalize this notion to groups. This log-likelihood,
which we will write as LLBCPA(τ [ti, tj ]) for some subtrajectory τ [ti, tj ], is expressed in terms of
a parameter called the autocorrelation coefficient ρ. The log-likelihood describes how well an
autocorrelation coefficient value ρ fits to the subtrajectory. Although the implication of different
values of ρ might not be immediately intuitive, a general interpretation is that higher ρ values
indicate the modeled variables (persistent velocities, turning speeds or others) stay consistent over
time. The autocorrelation coefficient thus essentially drops when a subtrajectory is considered
where the modeled variable wildly varies. Let W denote the underlying Gaussian process we are
modeling the model parameters of some subtrajectory τ [ti, tj ] with. Note that we do the following
steps with explicit notation of subtrajectories on some time interval [ti, tj ] instead of “complete”
trajectories. This will help connect the formulas used here with the usage of the BCPA model
in later sections where log-likelihoods are used mostly for subtrajectories. We use µ̂ to indicate
the mean of the persistence velocities Vp(τ), and σ̂ to indicate the standard deviation of Vp(τ).
Finally, let δi := ti − ti−1 to reduce notation complexity. We can write the probability density
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function of W at some time ti, written as Wi, with ρ as the autocorrelation coefficient as:

f(Wi |Wi−1, µ̂, σ̂) =
1

σ̂
√

2π(1− ρ2δi)
exp

( (Wi − ρδi(Wi−1 − µ̂))2

2σ̂2(1− ρ2δi)

)
(2.19)

Using the above probability density function, with W modeling Vp(τ), we can simply write the
likelihood for a subtrajectory τ [ti, tj ] with autocorrelation coefficient ρ as:

L(τ [ti, tj ], ρ, µ̂, σ̂) =

j∏
k=i

f(Wk |Wk−1, µ̂, σ̂) (2.20)

Finally, the likelihood for a group of subtrajectories T [ti, tj ] and a given autocorrelation coef-
ficient ρ we define as the sum of the log-likelihoods of the BCPA fitted to each subtrajectory
τ [ti, tj ] ∈ T [ti, tj ]:

LLBCPA(T [ti, tj ], ρ) =
∑
τ∈T

log(L(τ [ti, tj ], ρ)) (2.21)

Similarly to the log-likelihood of the Brownian bridges, for edge e in a representation graph
GS we can indicate the log-likelihood LL(M(e) | σ(e)) = LLBCPA(M(e) | σ(e)) if the BCPA
model was used in S. When we write LLBCPA we implicitly assume σ(e) represents only an
autocorrelation coefficient ρ.

2.4.3 Location model

In this section we will describe how to obtain a log-likelihood function for a segmentation in the
context of locality, by providing a location model for vertices in our representation graph that
uses an ellipsoid normal distribution on sets of trajectory points. More formally, if v is a vertex
in the representation graph S, we want to express LL(P (v) | θ(v)). If T is the set of trajectories
segmented by S, it is easy to see that P (v) matches some set of points T [i] at time ti, for some
set T ⊆ T . To be able to formally define the location model we use, we have to be explicit in
our notation of points within T [i], and thus we continue with this style of notation described in
Section 2.1.

We can consider the set of points T [i] at time ti to be sampled from some distribution. Let this
distribution be a multivariate normal distribution on random variables X and Y , representing the
x and y coordinates of the trajectory locations, with means µx, µy and variances σ2

x, σ
2
y respectively.

The correlation coefficient of the two variables is defined as:

ρ =
cov(X,Y )

σxσy
(2.22)

where cov(X,Y ) is the covariance of X and Y , in turn defined as:

cov(X,Y ) =

∑
(xi − µx)(yi − µy)

n− 1
(2.23)

We can use the correlation coefficient in the following density function for the bivariate distri-
bution on X,Y :

f(x, y | µx, µy, σx, σy, ρ) =
1

2πσxσy
√

1− ρ2
e
− 1

2(1−ρ2)

[
( x−µxσx

)2−2ρ( x−µxσx
)(
y−µy
σy

)+(
y−µy
σy

)2
]

(2.24)

Given our sample point set T [i] at time ti, with measured means µ̂x and µ̂y, we can compute
the likelihood of this sample set for given variances σ̂x, σ̂y (and ρ̂, which can be computed from
T [i], σ̂x and σ̂y) as:

L(T [i] | σ̂x, σ̂y) =
∏

(x,y)∈T [i]

f(x, y | µ̂x, µ̂y, σ̂x, σ̂y, ρ̂) (2.25)
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It is important to note that in this likelihood computation, the likelihood for each point set T [i]
uses the estimated mean of only the locations in T [i]. The log-likelihood of this location model
can then be expressed using only σ̂x and σ̂y as parameters. Switching back to the representation
graph S perspective; for a vertex v with points P (v), we can write the log-likelihood of the location
model with parameters θ(v) as:

LLLOC(P (v) | θ(v)) = logL(P (v) | θ(v)) (2.26)

Again, note that we assume implicitly that θ(v) represents model parameters σ̂x and σ̂y when
using LLLOC.

A general note on this model is that by only using one value for both its horizontal and vertical
variance, equivalent to having σ̂x = σ̂y, we can simplify the model to a circular normal distribution
instead. This also leaves only one parameter in the log-likelihood function to be estimated when
maximizing the log-likelihood.
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Chapter 3

Heuristic group segmentation
methods

In Chapter 2 we have defined a representation for our model-based segmentations of multiple
trajectories, and we have defined an information criterion to evaluate these segmentations. In this
chapter we introduce three heuristic approaches which tackle the optimization problem defined in
Section 2.3.2.

Two of the heuristic methods use a previously developed method for segmenting single traject-
ories using movement models which are not generalized for groups [3]. We can apply this algorithm
on a set of subtrajectories which we assume to be a group, using the generalized movement models
to obtain log-likelihoods instead. In Section 3.1 we give a short description of this algorithm and
its usage in our segmentation methods.

The generalization of the segmentation problem to multiple trajectories involves finding sets
of subtrajectories that are similar in terms of movement and closeness. The segments in our
representation can be compared to clusters, which closely relates the grouping part of our seg-
mentation problem to the field of trajectory clustering. We describe an approach in Section 3.2
that involves clustering subtrajectories. The subtrajectory clustering problem has been related
to the Set Cover problem [1], which forms the general idea behind the clustering segmentation
approach we propose.

To see whether combining segmentations to create one segmentation for a trajectory set is a
viable approach, we designed an incremental segmentation approach in Section 3.3. With this
approach we combine the segmentations obtained by segmenting given trajectories separately,
while trying to minimize the IC of the overall segmentation. We utilize the fact that the IC for
a segmentation can be obtained by summing the IC values of different parts of the segmentation,
allowing us to quickly compute changes in the IC of a segmentation when merging or adding
segments.

Finally, in Section 3.4 we solve the segmentation problem with a two-step approach. In the first
step we focus on obtaining a graph structure that represents the underlying grouping behavior
of the input trajectory set. The second step can then segment the edges in this graph, which
represent sets of subtrajectories, assuming that these subtrajectories are grouped in the time
interval represented by each edge. For the first step we use an existing method for finding this
trajectory grouping structure, defined in [12]. In the second step we apply the model-based single
trajectory segmentation algorithm in [3], using the generalized movement models from Section 2.4
to apply the algorithm to groups.

3.1 Segmenting groups

An existing method of segmenting a single trajectory with movement models is presented in [3].
Similar to how we evaluate our segmentation representation, this approach defines an optimization
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(a) Appending Opti−1 with the single link
between timestamps ti−1 and ti (red arc) to ob-
tain the optimal segmentation for entry Oi,x.

(b) Extending the last segment of Oi−1,x to ti to
obtain the optimal segmentation for entry Oi,x.
Here j is the start time of the last segment of
Oi−1,x. The last segment of Oi−1,x (dashed red
arc) is replaced with the extended segment (red
arc) on interval [tj , ti].

Figure 3.1: A visualization of how Oi,x can be calculated as one of two options.

goal to minimize a given information criterion (IC) over segmentations of some trajectory τ . The
optimal segmentation for subtrajectory τ [t1, ti], named Opti, is computed for increasing values of
i. The last segmentation Optn is the optimal segmentation for the full trajectory τ [t1, tn] according
to the IC.

To compute Opti for some time ti the algorithm simultaneously builds a two-dimensional table
O where the dimensions are the timestamps t1, ..., tn and a discrete set of parameters σ1, ..., σm.
The set of discrete parameters is computed in a pre-processing step where for all possible time
intervals [ti, tj ] for 1 ≤ i < j ≤ n, the model parameter that maximizes the log-likelihood for
subtrajectory τ [ti, tj ] is added to the set of parameters. We let k denote the number of parameters
in this set. Entry Oi,x then contains the optimal IC for a segmentation of τ [t1, ti] whose final
segment has a corresponding movement parameter value of σx. The segmentation represented by
Opti is simply the minimal IC value found among all Oi,x for 1 ≤ x ≤ k. For a table entry Oi,x,
there are two possible options:

1. Append: The optimal segmentation for Oi,x is equal to the optimal segmentation Opti−1
appended with a new segment τ [ti−1, ti] appended at the end, with an assigned movement
model parameter of σx. The new IC obtained by appending is computed as:

ICap(Oi,x) = IC(Opti−1) + p− 2 · LL(τ [ti−1, ti] | σx)

2. Extend: The optimal segmentation for Oi,x is equal to the segmentation of Oi−1,x, where
the last segment is extended with the link τ [ti−1, ti]. The new IC obtained by extending is
computed as:

ICex(Oi,x) = IC(Oi−1,x) + p− 2 · LL(τ [ti−1, ti] | σx)

Either the append or the extend option must give an optimal segmentation for entry Oi,x and the
choice between these options can be checked just using already filled entries of O and Opt. In
Figure 3.1 these options are visualized. Recall that p is used to indicate the complexity penalty
weight. The IC for entry Oi,x can be computed as the minimum IC of the append and extend
options:

IC(Oi,x) = min(ICap(Oi,x), ICex(Oi,x)) (3.1)

The problem is then solved with a dynamic programming approach to fill out the table and
ultimately get an optimal segmentation for τ , according to a given IC. This algorithm computes
the optimal segmentation Optn in O(nk) time.

This algorithm can by itself be used for single trajectories, given a movement model to cal-
culate the log-likelihoods used in Equation 3.1. A few examples of such segmentations, using the
Brownian bridge, BCPA with Vp and BCPA with Vt movement models, are shown in Figure 3.2.
However, with the movement models we have generalized to groups in Section 2.4, we can also use
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(a) A generated trajectory τ with n = 100
points.

(b) A segmentation of τ using the ap-
proach from Section 3.1 with Brownian
bridges as a movement model, and com-
plexity weight p = 10. Segments have a
color ranging from yellow (low diffusion
coefficient) to red (high diffusion coeffi-
cient).

(c) A segmentation of τ using the approach
from Section 3.1 with BCPA modeling the
persistent velocities Vp(τ), and complex-
ity weight p = 3. Segments have a color
ranging from teal (low autocorrelation) to
dark blue (high autocorrelation).

(d) A segmentation of τ using the ap-
proach from Section 3.1 with BCPA mod-
eling the turning speeds Vt(τ), and com-
plexity weight p = 3. Segments have a
color ranging from teal (low autocorrela-
tion) to dark blue (high autocorrelation).

Figure 3.2: Segmentations of a single generated trajectory using the method described
in Section 3.1.

this algorithm to segment a group of (sub)trajectories. Given such a set T ⊆ T , each Opti then
simply represents the optimal segmentation for T [t1, ti].

Note that if we use this algorithm with a set of trajectories or subtrajectories, we assume that
they form a group from start to end. If the trajectories or subtrajectories given are not close
or have different movement behavior, the resulting segmentation of this algorithm might poorly
represented all the trajectories in the set. In the heuristic methods described in the next few
sections, we will use this algorithm strictly on single trajectories or trajectories which we assume
to be grouped. We use SDP (T ) to indicate the segmentation of some (sub)trajectory set T , or
SDP (τ) for the segmentation of a single (sub)trajectory τ , whenever we use this algorithm in the
remainder of this work.

3.1.1 Maximizing likelihoods with model parameters

In Sections 2.4.1 and 2.4.2 we have described how to compute the Brownian bridge and BCPA
log-likelihoods for trajectory groups, or edges in our segmentation representation. We also have
defined a simple location model to compute log-likelihood for its vertices in Section 2.4.3. The
information criterion defined in Section 2.3.1 does not specify what movement model and location
model parameters are used to calculate the log-likelihoods of vertices and edges in the segmentation
representation. Since we want higher log-likelihoods which result in a lower IC score, we ideally
would have parameters such that the log-likelihood for any given vertex or edge is maximized.
These parameters then represent location or movement most accurately. A method which searches
for parameters to maximize a likelihood is often called Maximum Likelihood Estimation (MLE).
In this section we will shortly go over ways we estimate the best fitting parameters in our models.
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0
1
2
3

Begin Point(s)
End Point(s)

(a) A set T = {τ0, τ1, τ2, τ3} of four gener-
ated trajectories with n = 100 points each.

(b) A segmentation of T using the ap-
proach from Section 3.1 with Brownian
bridges as a movement model, assuming
that the trajectories in T are grouped.

Figure 3.3: A set of trajectories being segmented using the method described in
Section 3.1, while it is assumed that they form a group from start to end.

In related work on single-trajectory segmentation using Brownian bridges, finding the optimal
diffusion coefficient such that the likelihood of a group segment is maximized is solved by using
a golden section search [3]. This method is able to optimize σ2

m such that a maximum of the
likelihood function is found, and since in a single-trajectory context there can only be one maximum
likelihood value this method works for parameter estimation for Brownian bridges. However, in
our case the likelihood function of a group is a sum of multiple likelihood functions, and there
can be multiple maximum likelihood values for different values of σ2

m. As such, we apply a
different one-sided bounded search algorithm for finding the optimal diffusion coefficient for a
group segment.

We run into the same issue when optimizing the autocorrelation coefficient for group segments
in the BCPA model. Since we know the value of the autocorrelation coefficient are bounded in the
interval [0, 1], we can use a search algorithm for finding maximums bounding the domain in [0, 1].

The location model we defined takes two parameters, σ̂x and σ̂y to describe the horizontal and
vertical variance. Although one could be tempted to use the fastest algorithm to optimize these
parameters for a set of points, the amount of points for which optimization needs to occur is at most
the amount of trajectories in the segmented set, |T |. Especially when studying animal movement,
the amount of trajectories often do not seem to be so large as to cause the optimization of the
location models to have a higher impact on running time than the optimization of the movement
models.

3.2 Clustering method

The segments in the model-based representation can be related to clusters, in the sense that they
contain subtrajectories that are similar based on movement or closeness measures. To obtain a
complete segmentation for a trajectory set, we have to select a number of clusters such that the
full trajectory set is covered by the selected clusters. In related work on subtrajectory cluster-
ing, the cluster selection problem was related to the Set Cover problem [1]. A Set Cover
problem instance (U , C) describes a universe U with elements {x1, . . . , xn} and a set of subsets
C = {C1, . . . , Cm}, where Ci ⊆ U for 1 ≤ i ≤ m. The required solution to this problem is a set
S ⊆ C that satisfies

⋃
C∈S C = U . We will relate our cluster selection problem to the Set Cover

problem as well, and use this relation to build a solution from the cluster set.

In Section 3.2.1 we will go into more detail on the construction and definition of the clusters
in the cluster set C, and what choices we make regarding the relevance of a cluster. Here we also
discuss the potential size of C, and give a formula for a cluster’s score using several aspects from
the IC definition. Section 3.2.2 describes how exactly we cover the trajectory set, or U , with a
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selection of clusters that represents a valid segmentation. The details of the relation to the Set
Cover problem and the greedy solution are explained in Section 3.2.3.

3.2.1 Constructing relevant clusters

Given a trajectory set T , we define a cluster c as a set of subtrajectories on some time interval.
Let the set of the trajectories corresponding to a cluster c be written as Tc. We then write tα(c)
and tβ(c) to indicate the start and end time of c, such that c is defined on the interval [tα(c), tβ(c)].
Using the notation convention described in Section 2.1, we can indicate the set of subtrajectories
of c on its time interval with Tc[tα(c), tβ(c)]. A segmentation of a trajectory set T can then be
expressed in terms of a set of non-overlapping clusters. Note that this set can also contain clusters
containing a single subtrajectory.

To construct these clusters, let us consider some time interval [ti, tj ]. Let c denote a potential
cluster with tα(c) = ti and tβ(c) = tj . If Tc is some subset of T [ti, tj ], we consider c to be a
relevant cluster if the following all hold:

1. The movement of the subtrajectories in Tc is similar.

2. The set of start points of the subtrajectories in Tc satisfies some closeness measure.

3. Similarly, the set of end points satisfies some (other) closeness measure.

The above requirements still leave some details open to interpretation. While in [1] the similarity
along the subtrajectories is determined using Fréchet distance, we wish to express the similarity
with generalized movement models. One way of expressing this is performing a check whether the
maximized log-likelihood of the movement model on the subtrajectories in Tc is above a certain
threshold γ. More formally, we require LL(Tc[ti, tj ] | σ) ≥ γ, where σ represents the movement
model parameters which maximize the log-likelihood for Tc[ti, tj ].

Next, the closeness measure for the start and end points can either be a location model or a
simple distance threshold. We opt for a distance threshold which removes the need to maximize
location model likelihoods as well as movement model likelihoods for all possible clusters. With
some point distance threshold δ, we can either require single or full linkage of the start or end
points. Let us consider the point set Tc[t] for some time t, which, without loss of generality, is
either the start or end time of some potential cluster c. If we let the points in this set represent
vertices of a graph, where two distinct points zi, zj ∈ Tc[t] share an edge if dist(zi, zj) ≤ δ, single
linkage requires this graph to be connected. Full linkage requires the graph to be a clique, implying
that for every two distinct points zi, zj we have dist(zi, zj) ≤ δ. When using this method in later
sections, we will only use single linkage. For some specific applications of this method, where a bit
more context on the grouping characteristics of the entities is available, using full linkage might
prove more useful.

When looking at a time interval [ti, tj ], we have now determined what clusters we want to
consider for a segmentation on this time interval, based on the three constraints described above.
To reduce the number of total clusters to consider for a segmentation of trajectory set T , with
|T | = m, we construct a cluster set C[ti, tj ] on time interval [ti, tj ] that contains at most m
clusters. Let T := T [ti, tj ] denote all subtrajectories on time interval [ti, tj ]. We create a cluster
c containing a random subtrajectory τ [ti, tj ] ∈ T , setting Tc := {τ [ti, tj ]} and removing τ [ti, tj ]
from T . Then we try to add other single subtrajectories τ ′[ti, tj ] ∈ T to Tc[ti, tj ] and check
whether c still satisfies the constraints for relevant clusters. If τ ′[ti, tj ] can be added to c without
breaking the constraints, we let Tc[ti, tj ] := Tc[ti, tj ]∪{τ ′[ti, tj ] and remove τ ′[ti, tj ] from T . When
all subtrajectories have been considered or added to the cluster we add c to C[ti, tj ] and repeat
this process by creating another cluster with one of the remaining trajectories in T and checking
whether we can add single subtrajectories to this new cluster. In the event that a cluster c is created
with some subtrajectory τ [ti, tj ] ∈ T and no other subtrajectory can be added without breaking
the constraints, which includes the case where the maximized log-likelihood of the movement
model LL(τ [ti, tj ] | σ) is below the threshold γ, we still add c to C[ti, tj ]. If C[ti, tj ] does not
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(a) A simple set of two tra-
jectories τ1, τ2 with three
timestamps t1, t2, t3 and
corresponding locations.

(b) All clusters that can be created from τ1 and τ2, colored dif-
ferently for clarity. Note that we have not visualized clusters on
only one timestamp, such as the set of two points {τ1[t1], τ2[t1]}.

Figure 3.4: An illustration of clusters constructed from two example trajectories.

contain some subtrajectory τ [ti, tj ] there is a possibility that this subtrajectory is not covered by
the final segmentation due to the way we select clusters for the segmentation. Following these
steps, we obtain at least one, and at most m clusters for any time interval [ti, tj ].

For a trajectory set T with trajectories having n points and corresponding timestamps, there
are O(n2) time intervals to consider. Let C = {C[ti, tj ] | 1 ≤ i < j ≤ n}, where each C[ti, tj ] is the
set of relevant clusters obtained for time interval [ti, tj ] with the method above. Since each C[ti, tj ]
contains at mostm clusters, we obtain a total ofO(n2m) relevant clusters for T . A small example of
two trajectories and their corresponding possible clusters are shown in Figure 3.4a and Figure 3.4b,
respectively. The large number of clusters to consider can be scaled down by first segmenting each
trajectory separately using the movement model applied in the clustering algorithm, obtaining
a segmentation S(τ) for each τ ∈ T . Let br(S(τ)) be the set of timestamps obtained from all
vertices in the segmentation of τ . In other words, br(S(τ)) represents the timestamps where the
behavior of τ changes according to the segmentation. Now let U =

⋃
τ∈T br(S(τ)). If we only

consider creating clusters on time intervals [ti, tj ] with ti, tj ∈ U and ti < tj , then the amount of
relevant clusters can be decreased significantly depending on the complexity of the segmentations
of each τ ∈ T . We will use this tactic in the experiments on real data to speed up the computation
time.

3.2.2 Cluster selection

We now have a set C consisting of O(n2m) clusters. Note the time intervals of different clusters
in C may overlap. We can produce a valid segmentation from C by selecting a subset S ⊆ C for
which the following requirements hold:

1. For any two clusters c1, c2 ∈ S for which there is time overlap, e.g. tα(c1) < tα(c2) < tβ(c1)
or tα(c2) < tα(c1) < tβ(c2), the corresponding trajectory sets Tc1 and Tc2 must be disjoint
Tc1 ∩ Tc2 = ∅.

2. Conversely, if two clusters c1, c2 ∈ S share at least one trajectory such that Tc1 ∩ Tc2 6= ∅,
their time intervals must not overlap.

3. For every trajectory τ ∈ T , there must exist a set of clusters S(τ) ⊆ S that together represent
τ . It should be possible to write this set S(τ) as a sequence of clusters c1, . . . , ck where the
following hold:

(a) Each cluster ci ∈ S(τ) contains a subtrajectory of τ , such that we have τ [tα(ci), tβ(ci)] ∈
Tci [tα(ci), tβ(ci)].
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(b) For each pair of consecutive clusters ci, ci+1 in the sequence we have tβ(ci) = tα(ci+1),
such that there are no gaps between clusters in the sequence.

Since there can be multiple ways to select a cluster set S to represent a valid segmentation of
T , we have to make choices between different clusters containing different sets of subtrajectories
on varying time intervals. Following the reasoning behind the information criterion, we want to
balance the resulting segmentation complexity with the log-likelihoods of location and movement
models. We can give clusters a score based on their contribution to the IC of the resulting
segmentation. However, we cannot encode the effect in terms of complexity that picking some
cluster c has on the complete segmentation, yet we still have to combat overfitting by continuously
letting smaller clusters with better fitted models be picked. Picking a larger cluster that contains
a large number of subtrajectories and covers a large time interval will most likely result in less
complexity in the overall segmentation, therefore countering overfitting. We use the log-likelihood
LL(Tc[ti, tj ] | σ) together with the size of the cluster, defined by both its size |Tc| and length
tβ(c) − tα(c), to express the estimated usefulness of a cluster with a scoring function F (c). This
heuristic measure allows us to make decisions on which cluster to select in a segmentation.

We consider a scoring function which adds parameterized size and length bonuses to the log-
likelihood value to get a cluster score. For better readability, let LL(c) denote the maximized
movement model log-likelihood of a cluster c, and ttotal = tn − t1 denote the total duration of
trajectories in T . Then we have:

F (c) = LL(c) + psize
|T (c)|
|T |

+ plength
tβ(c)− tα(c)

ttotal
(3.2)

The size and duration score parameters psize and plength in F (c) work similarly to the IC complexity
weight p used in Equations 2.4 and 2.5, giving some control over the segmentation construction
in terms of segment size and length. However, this also requires two parameters to be tweaked for
different data sets which makes experimentation on data difficult.

3.2.3 Weighted Set Cover and greedy solution

Now that we have formulated a scoring function in Equation 3.2, we are still left with the problem
of which clusters to select from a cluster set C, based on their scores. As seen in [1] we can relate
the Weighted Set Cover problem to this cluster selection problem. Recall that the Set Cover
problem has already been introduced in the introduction of Section 3.2. Here we first introduce the
Weighted Set Cover problem, then introduce the relation to our cluster selection problem, and
finally describe how we use a greedy solution to heuristically solve the cluster selection problem.

To convert an instance (U , C) of the Set Cover problem into an optimization problem, we
apply a weight function to the sets in C, denoted as w : C −→ R+. We then have a Weighted Set
Cover problem instance, where the optimal solution is a set S ⊆ C which minimizes the total
weight of its picked sets

∑
C∈S w(C) while satisfying

⋃
C∈S C = U .

We now let U denote all the points of the trajectories in a trajectory set T , such that U =⋃
τ∈T {zi | (zi, ti) ∈ τ}. We still let C = {C1, . . . , Cm}, but each Ci now represents a set of points

corresponding to the subtrajectories in some cluster ci. This can be written as Ci = {z ∈ τ | τ ∈
Tci}. Additionally, let the weight of a set Ci ∈ C be the score of corresponding cluster ci, e.g.
w(Ci) = F (ci). In the previous section we have outlined the requirements for the selected cluster
set in order to obtain a valid segmentation. A set of clusters S for which those requirements
hold clearly satisfies the set cover problem, as all trajectories are fully covered by the clusters in
S. However, a solution to the Weighted Set Cover problem does not incorporate the non-
overlapping aspect we demand from selected clusters. This means that a solution the Weighted
Set Cover problem does not necessarily solve the cluster selection problem, as the requirements
may not be met.

The optimal solution to a Weighted Set Cover instance can be approximated with a
greedy approach, picking the set with the lowest weight each iteration. We do the same, adding
the cluster c ∈ C with the highest score, such that F (c) ≥ F (c′) for all c′ ∈ C, to the cluster set

Model-based Group Segmentation 25



CHAPTER 3. HEURISTIC GROUP SEGMENTATION METHODS

S each iteration. However, to adhere to the valid cluster selection constraints described in the
previous section, we remove clusters that overlap with c from C when c is picked. Clusters c and
c′ overlap if the following two statements hold:

1. Tc′ ∩ Tc 6= ∅

2. (tα(c) < tα(c′) < tβ(c)) ∨ (tα(c′) < tα(c) < tβ(c′))

We continue the greedy selection of clusters this way until C is empty. At that point it may still be
the case that there are subtrajectories left uncovered by S. We add all uncovered subtrajectories
as new single-subtrajectory clusters to S to be able to fully cover T . This gives us a heuristic
solution to the segmentation problem using a clustering approach.

3.3 Incremental method

Given the complex nature of the segmentation problem for multiple trajectories, we explore an
incremental approach, where we build a segmentation from smaller segmentation parts. In Sec-
tion 3.1 we have seen a segmentation approach that finds the optimal segmentation by temporally
iterating over the given trajectory. Instead of finding the optimal segmentation at every time ti,
we consider finding the optimal segmentation for larger subsets T ⊆ T , given the segmentation
of T minus some trajectory τ ′. More formally, we define this subproblem as follows. Given a
trajectory τ , a trajectory set T and its segmentation S(T ), can we find a segmentation S(T ∪{τ})
in a reasonable time.

Starting with one single-trajectory segmentation, we add other such segmentations to it re-
peatedly, eventually resulting in a segmentation for the full trajectory set. To realize this method,
we formalize a way to add a single-trajectory segmentation to a multi-trajectory segmentation.
In the remainder of this section, we will refer to segmentations S as sets of segments representing
movement. However, keep in mind that the segmentation representation we are building towards
with this approach is not defined as such a set.

Given a segmentation S that represents one or more trajectories and a segmentation Sτ that
only represents trajectory τ , the goal is to create a new segmentation S′ that represents the
segmentation S combined with τ . Let H denote a chronologically ordered set of timestamps for
which S contains one or more vertices. Assume we have a segmentation Sτ that represents only
τ , which is simply a graph representing a path. For each time t ∈ H, do the following:

1. Let S′ := S∪Sτ . This is the segmentation where τ is not grouped with any of the trajectories
represented in S at any time.

2. Let S(t) denote the segments s ∈ S that have starting time tα(s) = t and some end time
tβ(s). Consider some t for which S(t) 6= ∅. For each segment s ∈ S(t) we then compute
the information criterion value of a modified segmentation of S′ where the subtrajectory
τ [tα(s), tβ(s)] is added to s, while the remainder of τ is now represented by a set of simple
paths in Sτ . Note that there can be multiple simple paths since adding τ [tα(s), tβ(s)] to s
splits of the path formed by Sτ . Figure 3.5 shows the merging of the subtrajectory of τ with
s. In multiple iterations of this algorithm Sτ might be split more often or even completely
merged with S. Additionally, the merge might create a new vertex in Sτ if the there is
no vertex in Sτ with time equal to tα(s) or tβ(s). This event is also shown in Figure 3.5.
We then compute the IC score of S′ after this potential merge which we write as ICs(S

′).
Let Tdel(s) be the segments that will be deleted due to the merge, and let Tadd(s) be the
segments that are added. We interpret the merging of subtrajectory τ [tα(s), tβ(s)] with s as
the deletion of s combined with the addition of segment s ∪ τ [tα(s), tβ(s)], therefore these
segments are contained in Tdel(s) and Tadd(s) respectively. Then, we compute the IC score
of S′ before the merge of τ into s as:

ICs,before(S
′) =

∑
τi∈Tdel(s)

−2 · LL(τi | σi) + p (3.3)
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Figure 3.5: A visual explanation of how some subtrajectory τ [tα(s), tβ(s)] is merged
into a segment s ∈ S(t). (a) Segmentation S′ = S ∪ Sτ . Component Sτ is drawn
in blue, S in black. The intermediate points of the segment belonging to Sτ are
connected with a dotted blue line. (b) The time interval [tα(s), tβ(s)] (red lines)
forms a subtrajectory on τ , which is then checked for closeness of starting points and
end points to s. (c) The subtrajectory τ [tα(s), tβ(s)] is merged into s, leaving two
(new) segments in Sτ .

In a similar fashion, the IC score after the merge is computed as:

ICs,after(S
′) =

∑
τi∈Tadd(s)

−2 · LL(τi | σi) + p (3.4)

Here we implicitly let σi denote the optimal model parameter assigned to subtrajectory τi.
For segments that will be deleted, namely s and one or more segments in Sτ , we already
know their parameters from S′ before the merge. The movement model is refitted to s ∪
τ [tα(s), tβ(s)], while new segments in Sτ are left with the parameters they were assigned
before they are split up. In total, this requires us to only recalculate the movement model
parameters for one subtrajectory set. We then write the change in IC score for the merge of
s as ICs,change(S

′) = ICs,after − ICs,before.

3. We then consider the segment s for which the IC score change caused by merging decreased
the most. More formally, we have smax := argmins∈S(t)ICs,change(S

′).

4. If ICs(S
′) ≤ IC(S′), modify S′ such that the subtrajectory τ [tα(smax), tβ(smax)] is added to

smax, and the subtrajectories of τ [tprev, tα(smax)] and τ [tβ(smax), tnext] are represented by
new segments s′ ∈ Sτ . Here tprev is the first timestamp before tα(s) in Sτ , and tnext is the
timestamp of the first timestamp after tβ(s) in Sτ .

5. Let IC(S′) := ICs,after(S
′).

The above steps can then be repeated with S := S′ and x := x(smax), until all times in H have
been processed. Doing this for all trajectories then gives a segmentation representing the given
trajectory set T .

3.4 Two-Step method

In the IC defined in Section 2.3, both the log-likelihoods of locations at vertices and movement
at edges define the quality of any given segmentation. We can divide the objective of minimizing
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(a) (b)

(c)

Figure 3.6: A visual example of a two-step approach for segmentation. In (a) we see
an example set of trajectories. A grouping structure for these trajectories is shown in
(b). The different color boxes represent different groups, where wider boxes indicate
more subtrajectories contained in the group. After obtaining this grouping structure,
we then further segment the groups based on movement, shown in (c).

this IC into finding what trajectories are grouped on which time intervals and further segmenting
these groups. With this strategy in mind we present a two-step method for segmenting a set
of trajectories. In Figure 3.6 we visually outline the separation of the grouping and movement
segmentation of such a two-step approach. We use the trajectory grouping structure algorithm
described in Section 2.2.1 to find groups in the given trajectory set.

Given a grouping structure R, the second step consists of segmenting the sets of subtrajectories
corresponding to groups r ∈ R. For each group r ∈ R, the set of its subtrajectories is denoted
by Tr[tα(r), tβ(r)]. We use the generalized model-based segmentation algorithm described in
Section 3.1 to get the segmentations for each group. Recall that we use SDP (Tr[tα(r), tβ(r)] to
indicate the resulting segmentation of the group segmentation algorithm for input Tr[tα(r), tβ(r)].
The segmentation S for the complete trajectory set T is then simply obtained with the union of
the group segmentations:

S =
⋃
r∈R

Sr (3.5)
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Chapter 4

Experiments

We have experimentally evaluated the heuristic methods we proposed for solving the model-based
segmentation problem for multiple trajectories. In this chapter we outline these results while
commenting on the advantages and disadvantages of the approaches. The visualization of result-
ing segmentation representations is done by drawing colored lines of varying width to represent
segments. The color of these lines is used to indicate the movement model parameter fit to each
particular segment. A simple Python implementation of the approaches was used to run exper-
iments on trajectory data that was either generated or sampled from real data sets. We first
present several experiments on synthetic data which serve to compare different approaches using
different movement models and highlight differences in their resulting segmentations in Section 4.1.
Additionally, we compare their actual running times in our implementation to obtain an estimate
of their relative time performance. Secondly we run some of the approaches on real data sets, in-
cluding a group of wild baboons [28] and a set of skiing trajectories obtained from a GPS tracking
phone app. The resulting segmentations of these experiments we will compare visually and based
on their IC score.

4.1 Comparing approaches with synthetic data

To get a clear overview of the effectiveness of each segmentation approach, we first segment smaller,
synthetic trajectory data to quickly compare approaches. The trajectories are generated using a
trajectory generation algorithm described by Technitis et al. [30]. Trajectories generated with this
method normally move randomly from a fixed start point to a fixed end point, given a maximum
velocity and a specified amount of locations. We vary the location of the start and end point
around fixed points to generate multiple trajectories that together resemble group movement from
one location to another. With these specifications we are able to set the number of trajectories m
and amount of locations per trajectory n and generate a corresponding trajectory set T .

We have designed two simple test cases that should test whether the approaches are able to
recognize grouping changes and movement behavior changes. The first example set is generated
in a “Y”-shape, indicating a change in the grouping structure around the point where the group
splits up into two paths. This trajectory set, denoted as TY is shown in Figure 4.1(a). The second
example set is generated with the idea that a “good” segmentation should be able to pick up
movement changes within a group and segment the change appropriately. For this example we
generated two trajectories τ0, τ1 which move straight over two parallel lines up until the halfway
point in time, say t 1

2
. From there, trajectory τ0 keeps moving straight to its end point, while τ1

also moves to its endpoint but with different, more erratic movement. This trajectory set which
we denote as TM is shown in Figure 4.1(b).

We use several combinations of segmentation approaches and movement models to segment
sets TY and TM . We first focus on TM . For this set we do not use the centroid distances and
k-nearest neighbor distances BCPA variables, as the centroid distances are equal for both traject-
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0
1
2
3
4

(a) Trajectory set TY which was generated in a
“Y”-shape.

0
1

(b) Trajectory set TM = {τ0, τ1}. The behavior
of τ1 changes at the halfway point.

Figure 4.1: Two sets of generated trajectories with the purpose of verifying whether
our segmentation approaches are able to pick up grouping and movement changes.

(a) A two-step segmentation of TM with
Brownian bridges.

(b) An incremental segmentation of TM with
Brownian bridges.

(c) A clustering segmentation of TM with
Brownian bridges.

Figure 4.2: Segmentations of TM using the BBMM in the three approaches. The
diffusion coefficient σ2

m of each segment is visualized with a color in the range yellow
to red. Yellow represents lower diffusion coefficient values and red represents higher
diffusion coefficient values.

ories and the only possible k-nearest neighbor distance with k = 1 does not behave differently.
The segmentations of TM using BBMM are shown in Figure 4.2, the segmentations using BCPA
with persistent velocities Vp are shown in Figure 4.3. From this point forward, the segments in
segmentations will be visualized with a color indicating the model parameter value. For segment-
ations made with BBMM, yellow indicates a lower diffusion coefficient and red a higher diffusion
coefficient. To easily distinguish between BBMM and BCPA segmentations, the segments for
BCPA segmentations use a different color range; teal indicates a low autocorrelation coefficient,
while dark-blue indicates a higher autocorrelation coefficient. We observe the trajectories in TM
are segmented as expected, being grouped on the first half and for the most part segmented further
separately.

Now we consider trajectory set TY . The segmentations made using approaches with Brownian
bridges are shown in Figure 4.4. For each of the approaches, we see that the splitting of the
trajectories is reflected in the segmentations. The part where this split happens is also described
with higher diffusion coefficients, which indicates more erratic behavior. This clearly stems from
the change in direction, as the trajectories move rather straight along their paths outside the split.

Next, we apply the approaches to TY using BCPA with different model variables. First we
consider the persistent velocities Vp, which is the variable traditionally modeled with BCPA. The
segmentations using this model are shown in Figure 4.5. All three approaches are able to pick up
on the splitting of the group and segment accordingly, with varying degrees of complexity. The
main difference we see in the clustering segmentation is the slightly increased complexity of the
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(a) A two-step segmentation of TM with BCPA
modeling persistent velocities Vp.

(b) An incremental segmentation of TM with
BCPA modeling persistent velocities Vp.

(c) A clustering segmentation of TM with BCPA
modeling persistent velocities Vp.

Figure 4.3: Segmentations of TY with BCPA modeling persistent velocities Vp. The
autocorrelation coefficient ρ of each segment is visualized with a color in the range teal
to dark-blue. Teal represents lower autocorrelation coefficient values and dark-blue
represents higher autocorrelation coefficient values.

(a) A two-step segmentation of TY with
Brownian bridges.

(b) An incremental segmentation of TY with
Brownian bridges.

(c) A clustering segmentation of TY with
Brownian bridges.

Figure 4.4: Segmentations of TY using the BBMM in the three approaches. The
diffusion coefficient σ2

m of each segment is visualized with a color in the range yellow
to red. Yellow represents lower diffusion coefficient values and red represents higher
diffusion coefficient values.
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(a) A two-step segmentation of TY with the
BCPA model and persistent velocities Vp as
model variable.

(b) An incremental segmentation of TY with
the BCPA model and persistent velocities Vp as
model variable.

(c) A clustering segmentation of TY with the
BCPA model and persistent velocities Vp as
model variable.

Figure 4.5: Segmentations of TY using the BCPA model with the persistent velocities
Vp as a model variable in each of the approaches. The autocorrelation coefficient ρ
of each segment is visualized with a color in the range teal to dark blue, where
teal represents a low autocorrelation coefficient and the dark blue represents a high
autocorrelation coefficient.

segmentation compared to the two-step and incremental approaches. Recall that the complexity
parameters psize and plength used in the clustering approach do not directly translate to a complex-
ity weight used in an (estimated) IC score for the constructed segmentation (see Equation 3.2).
We set the complexity weight to the same value in all segmentations in Figure 4.5, but are given
slightly more complexity by the clustering approach. Although this may not be too noticeable
with this set of trajectories, it emphasizes that the scoring function really only approximates the
complexity part of the IC.

The second BCPA model variable we consider is the distance to the centroids. The resulting
segmentations are shown in Figure 4.6. In terms of grouping, all approaches are able to find the
y-shaped grouping in the trajectory set, and the segment autocorrelation coefficients make sense
for the model parameter. The other distance-based variable we used is the k-nearest neighbor
distances, with k = 2 for this example. These segmentations can be found in Figure 4.7, and are
able to distinguish the different grouping phases. The autocorrelation coefficients are once again
acting as expected in this scenario with the 2-nearest neighbor BCPA model variable being used.

To test the efficiency of our algorithms, we ran the implementation of each approach on a
generated data set of ten trajectories with 500 points, measuring the total computation time.
These times are reported in Table 4.1. The difference in times between using Brownian bridges
or using BCPA likely stems from the log-likelihood computation requiring knowledge of Vp values
at a larger time interval, while the Brownian bridges directly compute likelihoods from locations.
The clustering approach is noticeably slower, due to the large amount of candidate clusters that
have to be constructed.
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(a) A two-step segmentation of TY with the
BCPA model and centroid distance as model
variable.

(b) An incremental segmentation of TY with the
BCPA model and centroid distance as model
variable.

(c) A clustering segmentation of TY with the
BCPA model and centroid distance as model
variable.

Figure 4.6: Segmentations of TY using the BCPA model with the distances to the
centroids as a model variable in each of the approaches. The autocorrelation coeffi-
cient ρ of each segment is visualized with a color in the range teal to dark blue, where
teal represents a low autocorrelation coefficient and the dark blue represents a high
autocorrelation coefficient. The top-right segment in each segmentation has a lower
autocorrelation coefficient. This can be explained by this segment only containing
two subtrajectories, while the segment below contains three. This means that the
subtrajectories in the top-right segment move further away from the centroid than
the trajectories below, resulting in a lower autocorrelation coefficient.

Computation times

Segmentation method BBMM BCPA (Centroid distances) BCPA (k-NN) BCPA (Vp)
Two-step 9.995s 32.708s 32.996s 157.142s
Incremental 13.822s 36.105s 35.919s 204.064s
Clustering 427.720s 199.578s 184.531s 1094.283s

Table 4.1: The computation times of different combinations of segmentation al-
gorithms and movement models. Each method was used to segment a trajectory
set with m = 10 and n = 500. Running times are given in seconds.
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(a) A two-step segmentation of TY with the
BCPA model and 2-nearest neighbor distance
as model variable.

(b) An incremental segmentation of TY with the
BCPA model and 2-nearest neighbor distance as
model variable.

(c) A clustering segmentation of TY with the
BCPA model and 2-nearest neighbor distance
as model variable.

Figure 4.7: Segmentations of TY using the BCPA model with the 2-nearest neighbor
distance as a model variable in each of the approaches. The autocorrelation coeffi-
cient ρ of each segment is visualized with a color in the range teal to dark blue, where
teal represents a low autocorrelation coefficient and the dark blue represents a high
autocorrelation coefficient. We see the same visual effect as in the centroid distances
segmentations, where the top-right segment has a lower autocorrelation coefficient
than the bottom-right segment. For the two subtrajectories in the top-right segment
the 2-nearest neighbor distances keep increasing, while the 2-nearest neighbor dis-
tances for the three bottom-right subtrajectories do not change much, resulting in a
higher autocorrelation coefficient in the bottom-right.
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4.2 Experiments on real data

To further evaluate our methods we ran several of the segmentation algorithms on two real data
sets. First we segment a data set of multiple baboon trajectories, moving through a wildlife reserve
over the span of a few days [17, 28]. Then we segment a data set consisting of geese migration
flights [25]. To evaluate our approaches on these data sets, we compare their IC scores and explore
the segmentations visually to find good and bad decisions made by the segmentation approaches.

4.2.1 Segmentation visualization

In this section we visualize segmentations similarly as in Section 4.1, where BBMM segments are
drawn with a yellow-red color palette and BCPA segments in a teal-dark blue color palette, on
top of transparent black lines following the actual trajectories. Lighter segment colors indicate
lower parameter values for these models, and darker colors indicate higher parameter values. For
segmentations using BCPA, the parameters (autocorrelation coefficient ρ) must lie in the range
[0, 1]. The correct color for a parameter in that range can then be obtained by linearly interpolating
between the palette colors. The diffusion coefficients in the BBMM can take any positive value,
with larger values occurring when the scale of the trajectories is larger. If some x is the maximum
diffusion coefficient in the segmentation we want to visualize, the color for any segment can be
obtained with linear interpolation on the range [0, x]. In cases of parameter value outliers, this
can result in a large gap between the colors in a segmentation, which we will see an example of
later.

4.2.2 Segmenting Baboon trajectories

We attempt to make the visualization of the segments align more with the data by drawing arcs
that follow the movement that a segment captures. The difference between visualizations with and
without arcs is shown in Figure 4.8(a) and Figure 4.8(b), where we show an example segmentation
on the baboon data set with and without arcs. Depending on how much a visualization is improved
with arc segments we will decide whether to use arcs in the other visualizations in this section.
Additionally, it is possible to draw the location models fitted to vertices as ellipses. This would
make vertices where trajectory locations have a larger spread stand out among other vertices. We
have implemented a simple version of this, but found that visualizing these ellipses causes too
much clutter. Figure 4.8(c) shows an example segmentation with the location models visualized.

From the baboon data set, fifteen trajectories with the most consistent reports of locations
over time were selected. For each of these trajectories we sampled a subtrajectory on a fixed
time interval during the seventh day of tracking. The resulting trajectory set Tbaboons contained
m = 15 trajectories with n = 1000 points each. The reason for subsampling was twofold: it
decreased computation time which helped in running multiple experiments quickly and reduced
the amount of backtracking occurring in the resulting trajectories. We use the term backtracking
to describe subtrajectories which move back along a previously traversed path. Segments that
capture the entire back-and-forth movement in one segment will become harder to visualize as
these segments will start and end at similar points, no longer visually representing the movement
of the subtrajectories.

Figure 4.9 shows a two-step segmentation of the baboon data, using Brownian bridges. Addi-
tionally, in Figures 4.9(b) and (c) we have highlighted how two trajectories in the set are represen-
ted by the segmentation. Observe that most of the spikes are matched by the diffusion coefficients
of the segments, except for one spike in (c). This segmentation seems to be rather complex, with
segment parameters following optimal values very erratically, almost on a per-bridge level. This
is a disadvantage of the two-step approach, since the grouping structure stays the same regardless
of the complexity weight. To verify this, we increased the complexity penalty weight to try and
obtain a segmentation that was less complex, but increasing this parameter to very high values
did not result in changes in the segmentation output. In (b) and (c), note that the parts where
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(a) An example segmentation of the baboon
data set using BCPA as a movement model with
straight lines representing segments. Note that
the movement of the subtrajectories in the seg-
ments does not always match a straight line.

(b) The same segmentation as in (a) with arcs
instead of straight lines representing segments.
For the majority of the segments, these arcs fol-
low the movement of the subtrajectories in each
segment. However, a clear example of an arc not
following this movement is the segment in the
bottom left, where the movement is skipped by
a straight line. These “faulty” arcs are caused
by implementation issues we did not resolve.

(c) The same segmentation as in (a) now with
arcs and with location model ellipses drawn
transparently. The ellipses are drawn based
on the parameters used in the location models,
σx, σy.

Figure 4.8: A comparison of different visualization methods for segmentations, based
on a baboon data segmentation which used the BCPA model.
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(a) The baboon data set segmented with the two-step approach using
Brownian bridges.
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(b) A graph comparing the segment diffusion
coefficients (red line) and the optimal diffusion
coefficients (black line) for trajectory τ10 in the
baboon set. If these lines are close for some
time interval, the segmentation represents the
trajectory well on that interval. The optimal
diffusion coefficients with relation to each seg-
ment or edge e is the diffusion coefficient that
maximizes the likelihood for subtrajectory of τ10
over the time interval corresponding to e.
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(c) Similar to (b), the optimal diffusion coeffi-
cients and the coefficients of the segments rep-
resenting another one of the trajectories, τ12, in
the baboon set.

Figure 4.9: Two-step segmentation of the baboon data set using the BBMM.
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Figure 4.10: The baboon data set segmented with the two-step approach using BCPA
with persistent velocities Vp.

Figure 4.11: The baboon data set segmented with the incremental approach using
BCPA with persistent velocities Vp.
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Figure 4.12: The baboon data set segmented with the incremental approach using
Brownian bridges.

the optimal and segment coefficients stay close to zero for some time correspond to two large time
shifts in the data, originating from temporal intervals in the tracking of the baboons.

In Figure 4.10 the two-step approach using the BCPA model with persistent velocities segments
the baboon set. We can see the trajectories move somewhat erratically around the point where
the river splits, also backtracking shortly at times. Due to this behavior the two-step approach
has split the group in which the baboons crossed the river up into multiple subgroups. The
autocorrelation coefficients in this segmentation are either very low or very high, which is an
interesting result. We suspect that fitting the generalized BCPA model to groups that do not
have similar movement (a consequence from the first step in the two-step algorithm) results in the
high contrast of autocorrelation values. For example, the incremental approach using BCPA with
persistent velocities shown in Figure 4.11 has more nuanced autocorrelation coefficients assigned
to its segments.

We furthermore segmented the baboon data set with the incremental approach using Brownian
bridges and BCPA with centroid distances. The segmentation using BBMM is shown in Fig-
ure 4.12. The diffusion coefficients seem to align with the behavior that is seen in the trajectories.
For example, the small segment with high diffusion coefficient on the left falls in line with a small
group of baboons which move in the other direction from the group, erratically moving around a
small area, then returning to the main group. The trajectories underneath the large red segment
at the bottom look somewhat straight, but since there is a skip in time between GPS observations
here the high diffusion coefficient instead models the clutter on the left of the segment.

We will now look at segmentations using distance-based BCPA variables. Since the two-step
approach already groups the trajectories, we do not expect modeling distance-based variables in
the second step to give meaningful results. We therefore use the incremental approach to evaluate
the use of these variables. In Figure 4.13 we see an incremental segmentation of the baboon set with
centroid distances used in the BCPA model. Figure 4.14 shows an incremental segmentation using
BCPA with 4-nearest neighbor distances. While the autocorrelation coefficients of the segments
are harder to interpret the results with, the behavior in relation to the rest of the group should be
captured for each trajectory. From the two segmentations we can see that the centroid distances
and 4-nearest neighbor distances act similarly, since the autocorrelation coefficients of the two
segmentations are similar for the same parts in the trajectory set.
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Figure 4.13: The baboon data set segmented with the incremental approach using
BCPA with centroid distances.

Figure 4.14: The baboon data set segmented with the incremental approach using
BCPA with 4-nearest neighbor distances.
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Figure 4.15: A set of m = 5 geese migration flight trajectories, with n = 1880 points
each. While there are five geese in this set, we can clearly see two groups for the
majority of the trajectory data. Additionally, the small black spots on the inside of
the corner have been verified to be stop-overs where the geese rest or feed. These
stop-overs would ideally be picked up on by our segmentation methods.

4.2.3 Segmenting geese trajectories

From the geese data, we obtained the longest trajectory set for which all points were time-aligned
between trajectories. This set can be seen in Figure 4.15. The segmentations using the BBMM
can be seen in Figure 4.16. In all three approaches, the stop-overs in the geese trajectories are
not recognized as different segments. These stop-overs contain points that are very close together
already, as the geese almost do not move compared to the larger flights they take in between. The
diffusion coefficients in the Brownian bridges that fit some movement well scale with the length of
the bridges themselves. For example, a large portion of flight that deviates only slightly will have a
larger diffusion coefficient maximizing the log-likelihood than a very small section of movement as
seen in the stop-overs, even if the movement is erratic on this smaller scale. While the movement
of the baboons constantly stayed on the same “scale”, in the geese data there is a stark contrast
between movement lengths. The Brownian bridges and BBMM as a movement model are not that
well suited to this type of data. The segmentation approaches are able to group the trajectories
in the two groups that the geese clearly fly in.

The segmentations using BCPA with different variables can be seen in Figures 4.17. Model-
ing persistent velocities with BCPA seems to have a positive effect on the segmentation of the
stop-overs, except for the incremental approach, for which we obtained a less complex segmenta-
tion. The BCPA modeling distance-based variables was not able to capture the stop-overs at all.
Segmentations with centroid distances are shown in Figure 4.18 and segmentations with 2-nearest
neighbor distances are shown in Figure 4.19. Since the distances to the centroids or 2-nearest
neighbors do not change much during a stop-over due to there being almost no movement, the
segmentations fit larger segments to the data covering these stop-overs. The usefulness of distance-
based BCPA variables most likely depends on the purpose of the segmentation or the context of the
data. When trying to capture behavioral differences (regardless of grouping, as we are interested
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(a) The geese data segmented with the two-step
approach using the BBMM.

(b) The geese data segmented with the two-step
approach using the BBMM.

(c) The geese data segmented with the two-step
approach using the BBMM.

Figure 4.16: Segmentations of the geese data using the BBMM as a movement model.
Note that the stop-overs are not segmented differently.

(a) The geese data segmented with the two-step
approach using BCPA with persistent velocities
Vp.

(b) The geese data segmented with the incre-
mental approach using BCPA with persistent
velocities Vp.

(c) The geese data segmented with the cluster-
ing approach using BCPA with persistent velo-
cities Vp.

Figure 4.17: Segmentations of the geese data using BCPA with persistent velocities
Vp. The stop-overs are somewhat captured by the two-step and clustering approach,
while the incremental approach does not segment most of them.
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(a) The geese data segmented with the two-step
approach using BCPA with centroid distances.

(b) The geese data segmented with the incre-
mental approach using BCPA with centroid dis-
tances.

(c) The geese data segmented with the clus-
tering approach using BCPA with centroid dis-
tances.

Figure 4.18: Segmentations of the geese data using BCPA with centroid distances.
The stop-overs are not captured by these segmentations.

specifically in the stop-overs here) these distance-based variables are not helpful.
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(a) The geese data segmented with the two-step
approach using BCPA with 2-nearest neighbor
distances.

(b) The geese data segmented with the incre-
mental approach using BCPA with 2-nearest
neighbor distances.

(c) The geese data segmented with the cluster-
ing approach using BCPA with 2-nearest neigh-
bor distances.

Figure 4.19: Segmentations of the geese data using BCPA with 2-nearest neighbor
distances. The stop-overs are not captured by these segmentations.



Chapter 5

Discussion & future work

In this thesis we have introduced a model-based representation for the segmentation of a group or
a set of trajectories. This representation captures both how subtrajectories group together as well
as characteristics of the movement and when these change. As such it generalizes the segmentation
of individual trajectories, but also adds a layer of complexity since subgroups need to be identified.

We also propose an approach to evaluate these segmentations using an information criterion
that integrates both how well a movement model fits to a group, and to what extent the point at
which the model changes can be mapped to a location (model). The penalty of the information
criterion is the complexity of the representation. Together, the segmentation representation and
the information criterion cleared the way for us to define the algorithmic problem of segmenting
trajectory groups using models formally, while abstracting from the choice of movement or location
models. This allows us to use the algorithms developed for this problem with a movement model of
choice, and we demonstrate how to use group segmentations with the Brownian bridge movement
model and Behavioral Change Point Analysis.

Unfortunately, the algorithmic problem most likely cannot be solved optimally by an efficient
algorithm, since even just clustering points, which occurs as a subproblem, is NP-hard. The IC
score of a segmentation is defined both by its grouping aspects (location models) and log-likelihoods
of movement phases (movement models), which leaves a large number of possible segments or
segmentation options. We therefore proposed three heuristic methods to solve the segmentation
problem; a two-step, an incremental and a clustering approach. They explore the large space of
different segmentations by considering smaller divisions, based on grouping (two-step method) or
movement and grouping (incremental, clustering).

We evaluated these heuristics for the movement models mentioned above on various synthetic,
animal movement and skiing data sets. While the two-step approach is able to consistently group
trajectories based on a closeness threshold, this takes away from grouping happening on a move-
ment basis. In other words, where the incremental and clustering approaches can choose to group
subtrajectories because they moved similarly, the two-step approach does not have this choice,
and groups subtrajectories solely on distance. This does show in the information criterion scores,
which often were higher for the two-step approach than for the other approaches. In cases where
the closeness threshold is known for the given trajectory set, the two-step approach is a useful
method for segmenting the data. Overall, the two-step approach gave segmentations of the real
data sets that were visually interesting and intuitive.

The incremental and clustering approaches require significant amounts of parameter tuning.
While the incremental approach works by directly trying to increase the IC score of its segment-
ation, we have found unexpected segmentation behavior due to the way we interpret complexity
in our models, which we tried to counteract by slightly modifying the IC computation in the ap-
proach. The clustering approach could be improved by further studying the relevance of potential
clusters, which we describe using a scoring function based on their size and length. We have ob-
served that the scoring parameters – which should have some indirect relation to the complexity
penalty weight – are difficult to tune accordingly to the data. We propose that having a better
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understanding of what clusters to select and how to quantify their relevance, can help improve
the quality of the clustering segmentations further. Currently, an important limitation for the
clustering approach is its efficiency, which in particular limited the size of the data sets it could
be used for.

In the model-fitting we made the simplifying assumption that we could add up the log-
likelihoods. However, this corresponds to multiplying likelihoods, which would only be correct
when the movements are independent. Arguably this is not a problem when determining the
model parameter for a given segment, assuming that a parameter that is suitable for the indi-
vidual trajectories is also suitable for the group. However, it may cause a problem when deciding
whether to group trajectories, since no matter whether subtrajectories are grouped or not, their
likelihoods are added up. A similar problem arises when combining movement and location mod-
els, since we again simply sum the log-likelihoods, while they are not necessarily independent. We
expect that better models –and with this a better information criterion– for group segmentation
may considerably improve the results of our algorithms.

We focused on the Brownian bridge movement model and an optimization version of Beha-
vioral Change Point Analysis (BCPA). BCPA can use different movement characteristics, and in
many cases the persistent velocity is used as a characteristic. Using group-specific characteristics
like distance to the centroid or to some neighbor gave interesting results, which warrant further
investigation.

So far, we use a very simple visualization, essentially just drawing the straight-line graph
corresponding to the segmentation. However, since the locality of segments is only tied to its
start and end points, the in-between movement of its subtrajectories is often not represented
by a straight line from the start to the end point. Drawing arcs that best fit the in-between
subtrajectories addresses this issue to a certain degree, but not in a robust way. Furthermore, if
entities retrace their previous movement in their trajectories, segments might start and end on
very close points while their subtrajectories move towards a far away area and back. Furthermore,
when segments are very long, we again end up with an abstract representation of the movement.
It is an interesting open problem how to visualize the segmentation of a group in a way that it is
easy to interpret and extract useful information from segmentations.
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