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Abstract 
This master thesis has been realized in collaboration with Philips Research. The main objective was to 

develop an unsupervised machine learning model for detecting and labeling characteristics, or as referred 

to in this work, landmarks, of the volumetric flow rate (VFR) waveform measured in an animal study. 

Machine learning has mainly been applied to predicting and classifying pathological states, using 

parameters derived from these landmarks of signal segments or the whole signal segments as input. In 

addition, previous work investigating the VFR waveform has commonly been scoped to characterizing only 

one cardiac cycle, where the landmarks were either manually marked or by using a customized algorithm. 

Therefore, we have identified a gap in using machine learning for the actual detection and labeling of the 

landmarks in the VFR waveform. This work proposed a model which combined components of 

unsupervised learning, namely hierarchical clustering, and derivative analysis to automatically detect and 

label successive landmarks in VFR signal segments of one minute. In this work there were four landmark 

groups of interest which were defined based on available literature. We used hierarchical clustering for 

first finding the global peaks of each cardiac cycle, after which we used the first- and second order 

derivative of the VFR waveform to define windows were the remaining landmarks were expected to occur. 

The model was evaluated by analysis of the periodicities which were computed as the number of 

timestamps between successive landmarks belonging to the same group. The differences in periodicities 

between landmark groups were then used to evaluate if the model managed to detect and label some 

landmarks better than others. The differences were expected to be around 0 since the periodicity between 

successive landmarks within each landmark group should be separated by approximately the same period. 

The results of the model evaluation showed that the differences of periodicities between the global peaks 

and one specific landmark group yielded more variability compared to the two other landmark groups. In 

addition, the proposed model was validated by a domain expert, who concluded that the model performed 

satisfactory for detecting selected landmarks in a subset of the results. The model validation also 

confirmed the results obtained in the model evaluation, namely, that the model had difficulties detecting 

and labeling landmarks of one specific landmark group. Based on the results of the model validation, we 

believe that our model is a step towards automating the process of detecting and labeling landmarks, 

which could aid in development of a method used to perform non-invasive hemodynamic monitoring in a 

clinical setting in the future.  
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1 Introduction 
In this first chapter, we introduce this work with respect to context, state-of-the-art and research 

questions. In addition, we present the outline of this master thesis, which gives an overview of what can 

be expected from the remainder of the report.  

1.1 Context 
The cardiovascular system is one of the main building blocks of the human body. It is a network of arteries 

and veins through which blood is transported from the heart to tissues, enabling cellular function. 

Cardiovascular diseases account for 31 % of deaths globally, where 85% are due to strokes and cardiac 

arrest [1]. Even though many factors contribute to the development of cardiovascular diseases, the 

outcomes are eventually linked to the failure of the cardiovascular system to provide oxygenated blood to 

the tissues [2]. If the cardiovascular system fails to provide the required quantity of oxygenated blood to 

meet the body’s metabolic demands, the body reaches a clinical state of shock [3], [4]. Depending on the 

duration of oxygen deficiency, inadequate perfusion and oxygenation of the tissues can result in organ 

failure or worst-case death [3], [4].  

Patients with severe cardiovascular diseases are often subjected to hemodynamic monitoring [4], [5]. 

Hemodynamic monitoring is used to measure various hemodynamic parameters, where two key 

parameters commonly associated with blood flow are cardiac output (CO) and stroke volume (SV) [3]. CO 

represents the volume of blood flowing from the heart to the circulatory system per minute whereas SV 

measures the volume of blood flowing from the heart to the circulatory system per heartbeat. To measure 

such parameters, various commercial hemodynamic monitoring methods have become available in the 

last decades, where the main issue of many methods is their invasive nature which inherently introduces 

risks to the patient [6], [7]. Therefore, the trend has shifted towards usage and development of 

noninvasive hemodynamic monitoring methods [5]–[7].  

Two arterial pulse wave signals reflecting on blood flow are blood volumetric flow rate (VFR) waveforms 

and Pulse Wave Doppler velocity (PWD) waveforms [2]. The gold standard hemodynamic measurement 

method for the VFR waveform is the invasive perivascular flow sensor, whereas a common method for 

measuring the velocity waveform is Pulse Wave Doppler (PWD) ultrasound which is a noninvasive 

measurement method [2]. These waves are often studied through arterial wave analysis. Arterial wave 

analysis is a method used to analyze and unravel patterns of the waves and gain insights about progression 

of cardiovascular diseases and therapies [2]. A ‘wave’ in the context of hemodynamics is based on a 

definition by Hughes et al. [8]. Hughes states that a wave is a simultaneous alternation of both pressure 

and flow while moving through a blood vessel. On the other hand, the ‘waveform’ of both the VFR or PWD 

signals indicates the flow pulse signal measured at a specific arterial location [2].  

In this work, we wish to automate the process of detecting key features of the VFR waveform measured 

by perivascular flow sensor. We hope that this model can be used in the future for development of a 

noninvasive hemodynamic monitoring method. 
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1.2 State of the art 
The ability to characterize these pulse waveforms over the cardiac cycle is considered important for 
establishment of baselines against which pathological changes can be assessed [9], [10]. In previous 
studies, the temporal VFR and PWD waveforms have been characterized by the detection of key features 
in the waveform associated with the cardiac cycle measured at the common carotid artery (CCA) [9]–[12]. 
The term cardiac cycle refers to all events taking place in the cardiovascular system from the start of one 
heartbeat to the start of the next [13], whereas the CCA is one of the most important arteries supplying 
oxygenated blood to the brain [14]. The CCA is currently of interest when performing point-of-care 
ultrasound (POCUS) in the ICUs due to that this artery is often easily accessible [6]. The characteristics, or 
as referred to in this master thesis, landmarks, are often (1) labelled through customized algorithms or 
manual notation and (2) used for characterizing the waveform of only one cardiac cycle.  

Applying machine learning on different physiological signals is an active field of research and open for 
exploration. Physiological signals can be defined as signals describing a physiological phenomenon [15]. 
With respect to this master thesis, we identified that machine learning is not commonly used for detecting 
landmarks in physiological signals, however, machine learning and neural networks have been applied for 
predicting physiological states using physiological signals and hemodynamic parameters derived from 
landmarks as input [16]–[18]. In other words, the landmarks are computed beforehand for creating 
features which are then used as input for prediction or classification tasks. However, it was noted that in 
many of the approaches, clustering was commonly used as an unsupervised learning approach on 
biological data. Therefore, in this work, the idea is to use clustering to perform the pre-work by detecting 
and labeling landmarks which then could be used for further analysis.  

1.3 Research questions and research goal 
In this section, the research goal and research questions are defined. The goal in this work is to explore 
the VFR waveform to (1) detect and label landmarks of the VFR waveforms and (2) determine if the 
obtained landmarks can be used to describe the waveform in terms of state-of-the-art descriptors in 
accordance with a consensus article [19].  

We formulate one research goal which we have used to develop two research questions. The research 
goal of this work is the following: 

Research Goal: Develop a model for automatically detecting and labeling landmarks of the volumetric flow 
rate (VFR) waveform. 

Based on this goal we formulate the first research question (RQ1), which we attempt to answer by 
developing a model and iteratively improving it.  

Research Question 1: How can we apply machine learning techniques for automating the detection and 
labeling of landmarks in signal segments measuring the volumetric flow rate (VFR) waveform? 

In addition to detecting and labeling landmarks, we are also interested in exploring if these landmarks can 
be used to describe the waveform of interest based on key descriptors defined in a consensus article [19]. 
These descriptors were actually defined for another waveform, namely, the pulse wave doppler (PWD) 
waveform. However, we believe that the same descriptors can be used for describing the VFR waveform, 
which could be useful for better understanding the blood flow in the CCA. Therefore, the second research 
question (RQ2) was formulated. 

Research Question 2: Can we use the landmarks obtained by the model for describing the volumetric flow 
rate (VFR) waveform in terms of state-of-the-art descriptors? 
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1.4 Approach 
In this section, an overview is given of how the research goal can be achieved and how the research 

questions can be answered in accordance with the process of the chosen methodology CRISP-DM (Cross 

Industry Standard Process for Data Mining) [20]. This methodology was chosen because (i) it is not 

restricted to a specific industry, and (ii) the process model is clear and simple as it follows a specific number 

of steps, where the model can be iteratively improved.  

The main foundation for the understanding the data was to first get two types of domain knowledge. 

Firstly, the study from which the data was collected had to be researched. This required (1) having sessions 

with experts who were present during the study for discussing the process and (2) exploring all available 

documents. In addition, it was important to reflect on the sources contributing to errors associated with 

the study. Secondly, it was essential to understand the underlying physiology of the heart and circulatory 

system.  

After acquiring the necessary domain knowledge of the physiology and study, the next step was to prepare 

the available data for modeling. This implied verifying the correct data and identifying missing values, 

where sometimes sessions with experts had to be scheduled for clarification. After exploring the data, we 

incorporated domain knowledge for defining the expected waveform and the desired landmarks, which 

were important factors when choosing the modeling approach.  

Since the data of interest was a physiological signal measured by a sensor, the possible sources of error 

had to be identified. Many sources of error were identified, which gave us an understanding what 

deviations could be expected in the signal. Finally, by reflecting on the possible errors in the data, a data 

cleaning method was developed for excluding interrupted waveforms. This was the final step before the 

modeling approach.  

After the correct data had been verified and data preparation had been performed, modeling  techniques 

were chosen. In the first iteration of the model, the chosen modeling techniques were applied, and the 

respective model evaluation was performed. By following the chosen methodology CRISP-DM, the model 

was then improved by incorporating additional components of the first-and second order derivatives of 

the waveform for detecting and labeling landmarks, after which the model was evaluated. 

Finally, the model was validated by a domain expert and scientists from Philips Research. In this model 

validation session, five cardiac cycles in five randomly chosen signal segments containing the labeled 

landmarks were shown to the domain expert who then determined if the landmarks were detected and 

labelled correctly. In addition, the domain expert gave thoughts about if these landmarks could be used 

for describing the waveform in terms of key descriptors. In the end, the conclusions were that the model 

was able to detect and label some of the landmarks better than others. Consequently, some descriptors 

could be used based on the values of the landmarks.  
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1.5 Outline 
The outline of the remainder of this master thesis is as follows: 

Chapter 2 provides selected articles in the related work with respect to the link between machine learning 

and physiological signals which is the foundation of the gap in research which we aim to address. In 

addition, we present preliminaries with respect to all phases of the chosen methodology CRISP-DM, the 

underlying physiology of the heart, and performing measurements in a study. These preliminaries will give 

the reader the preliminary knowledge we believe is required to better understand the work presented in 

the remainder of the thesis.  

Chapter 3 presents the business understanding by describing the objectives of this work, the study, the 

different sources of error in the study, the goals with respect to data mining, and finally, the technical tools 

that were used. 

Chapter 4 begins with providing an overview of the consensus article and presenting the key descriptors 

used to describe the waveform. In addition, more related work regarding finding landmarks is given by 

reviewing selected articles. The remainder of the chapter gives an extensive explanation of data 

exploration, data understanding, data preparation, sources of error in the signal itself, and data cleaning.  

Chapter 5 presents the initial model and the revised model in this work. The first model represents a naïve 

approach which is then improved based on the limitations from the first model evaluation. The second 

model iteration is then explained and evaluated. 

Chapter 6 describes the model validation. In this chapter five cardiac cycles in randomly chosen signal 

segments containing the landmarks detected by the model are shown to the domain expert who validates 

the results.  

Chapter 7 provides a summary of this work and explains the limitations of the proposed model with respect 

to which possibilities of future work are discussed. Finally, we conclude this master thesis by giving some 

final words with respect to the project. 
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2 Related work and preliminaries 
The objective of this chapter is to present related work and discuss any topic that we believe is required 

to follow the remainder of this thesis. We start by giving an overview of the chosen methodology. Then 

we present selected articles for introducing the related work with respect to the current situation 

regarding machine learning using physiological signals. In this related work, we do not discuss the methods 

for detecting and labeling landmarks since this requires understanding the VFR signal. Therefore, a more 

specified related work section addressing the state-of-the-art with respect to characterizing the VFR 

waveform will be given in Section 4.2. After the related work section, we provide background information 

with respect to criteria when performing measurements in research. This is important to discuss since this 

work uses measurement data collected in a study. Finally, the physiology of the heart is explained, which 

we believe is essential for understanding the waveform of the VFR signal discussed later in this master 

thesis. 

2.1 CRISP-DM methodology 
In this master thesis, the cross-industry standard process for data mining (CRISP-DM) methodology is 
applied. CRISP-DM is an industry-independent process model that is considered a standard methodology 
for data mining projects [20]. In this section, the CRISP-DM methodology together with its various phases 
are presented. 

The CRISP-DM is divided into six iterative phases. These six phases are (1) Business Understanding, (2) Data 
Understanding, (3) Data Preparation, (4) Modeling, (5) Evaluation, and (6) Deployment. The idea is that 
the chosen model is iteratively improved and developed until the best model has been achieved. The 
iterative nature of the approach can be depicted in Figure 1 [21].  In the following sub sections, these 
different phases will be described in detail.  

 

Figure 1. CRISP-DM process model [21] 
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2.1.1 Business understanding 
The objective of the business understanding phase is to define the objectives of the research, together 
with available resources, requirements and limitations [22].  In other words, the current business situation 
should be evaluated. In addition, the goal of the project should be defined in terms of the considered data 
mining approach in our case, clustering [20].  

2.1.2 Data understanding 
In the data understanding phase, the data is collected from different data sources, after which the data is 
explored and described. Describing the data implies giving e.g., the format of the data and number of 
datapoints, whereas, exploring data can be done by visualizing it in different graphs or investigating 
different characteristics in terms of basic statistics [22]. Finally, the quality of the data must be assessed 
e.g., noise in a signal or missing data points [20], [22].  

2.1.3 Data preparation 
In the data preparation phase, the selection of the final data for the modeling is performed based on 
defined inclusion and exclusion criteria [20]. In addition, any necessary manipulation to the data should 
be performed e.g., combining data sets, or computing new features from the raw data. In this phase any 
necessary data cleaning should be performed before the modeling part [20].   

2.1.4 Modeling 
In the modeling phase, the entire modeling process is described. Firstly, different modeling techniques are 
selected based on the objective of the research and the available resources, where it is important to 
motivate the choice of a specific technique. After selecting and motivating the choice of technique(s), the 
testing design is performed. The testing design implies e.g., dividing the data into a training and test set. 
After the designing the testing set up, the model itself is built. Model building requires choosing all 
necessary parameters for the model and explaining the algorithm of the model. Finally, the model must 
be assessed with respect to the requirements of the model [20].  

2.1.5 Evaluation 
After the model has been built and executed, the model itself and the process performed thus far must be 
evaluated with respect to the objectives set in the business understanding phase. In this phase the results 
are discussed and if the model does not meet the requirements, any necessary changes should be added 
by iteratively improving the model [20], [22].  

2.1.6 Deployment 
In the final phase of the methodology, is the deployment phase. Deployment of the model could be a final 
report or code. In this case, a final report will be produced, and code will be implemented based on the 
requirements of the company [20]. We do not address deployment in detail since the deployment of this 
work will include handing in this master thesis and code.  
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2.2 Machine learning and physiological signals 
In this section, selected articles are presented to give an overview of the link between machine learning 

and physiological signals. These articles were found by using key words such as ‘machine learning’ ‘pulse 

wave’ ‘clustering’ ‘doppler’ ‘pattern recognition’ ‘ppg’ ‘signal morphology’ ‘k-means’ etc. These articles 

were chosen from many as examples on how artificial intelligence has been applied in the field of 

predicting and classifying different pathological conditions based on various physiological signals. Many 

other articles were found but not further analyzed. 

• In a study by Miao et al. K-means clustering is used for clustering different features of the 
transcranial Doppler (TCD) waveform into either normal, abnormal, or borderline subclass of TCD 
spectral waveform. In this study a computer-based statistical pattern recognition system was 
developed through combining K-means clustering, canonical discriminant analysis and the 
Bayesian Gaussian classifier. This research extracted multi-dimensional features from the TCD 
waveforms, which were then used for classifying the spectral waveform as either normal, 
abnormal, or borderline subclass by means of the system [17]. 
 

• An example of a study using clustering of local extremes was performed by Gamage et al. [18]. 
More specifically, K-means clustering was used for classifying Seismocardiographic (SCG) signal 
events based on the morphology of the signal. The SCG signal is a measurement of vibrations 
caused primarily by inherent mechanisms of the heart e.g., closing and opening of the different 
heart valves and is measured at the surface of the chest [18]. The objective of this study was to 
cluster the time domain amplitude of the signal to investigate how different respiratory phases 
affect the SCG morphology, and through this analysis gain insight for improving the usage of SCG 
monitoring for detecting unwanted cardiac events e.g., heart failure [18]. This study is also an 
example of how clustering using an internal validation index (Silhouette index) for determining the 
optimal number of clusters can be used for clustering features of a physiological waveform, and 
thus, make predictions of a patient’s physiological state.  
 

• In a study by Slapničar et al [16] the photoplethysmogram (PPG) waveforms, together with the 
first and second order derivative waveforms were used as input in a new spectro-temporal 
residual neural network in order to model the relationship between PPG and blood pressure (BP). 
The objective was to use raw PPG signal segments and their respective derivatives for predicting 
systolic blood pressure (SPB) and diastolic blood pressure (DPB). The SPB and DPB were obtained 
from arterial blood pressure (ABP) signals by using a customized peak and valley detector. In 
addition, for comparison, the classical machine learning method Random Forrest was 
implemented, using several features from both the frequency and temporal domain constructed 
by hand, as input. In the end, the findings were that the deep-learning approach yielded better 
results over traditional machine learning [16].   

Based on the overall review, we noted the following: (1) There seems to be a gap in research of using 
machine learning for detecting the actual landmarks associated with the waveform of interest, and instead 
the landmarks are computed beforehand as means for creating features, which then are used as input for 
prediction or classification tasks, (2) clustering is commonly used as an unsupervised learning approach on 
biological data, (3) machine learning of different variants were applied on a wide range of different 
physiological signals and therefore, this field is open for exploration.  
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2.3 Measurement process 
Since this work uses measurement data collected from a study, some background information of 
performing measurements are given. This section is written based on information from Chapter 5 in the 
book Research Methodology written by Peter Pruzan [23].  

In general, a measurement is a quantification of something that has an associated magnitude and unit e.g., 
weight in terms of kilograms or positional change in terms of meters per time unit [23]. The idea of 
performing measurements is to close the gap between how the physical world is seen and the actual 
physical world itself. When investigating this gap, one key concept is understanding the precision of the 
measuring instrument and the accuracy of the measurements. The formal definitions of accuracy and 
precision are the following: 

• Accuracy: The accuracy of a measurement refers to its closeness to some external “truth” 
measurement [24]. With respect to the measurement instrument itself, the accuracy is the degree 
to which the new instrument manages to produce similar measurements when compared to 
measurements obtained by a “gold standard” measurement instrument [24]. Accuracy is 
quantified by the obtained bias [25]. 

• Precision: The precision of a measurement is associated with the ability to repeat a measurement 
with respect to a previous observation measured by either the same or different raters [24]. A 
precise measurement instrument would be able to produce repeated measurements all of which 
are close to each other in value. Precision is normally quantified as the resulting standard deviation 
of the measurements [25].  

Based on these definitions one can conclude that if a measurement instrument is precise and the 
measurement process is accurate, then there is a higher chance of obtaining measurements that are 
uniformly distributed around the ground truth value [23]. Based on the book by Pruzan [23], there are 
three main criteria commonly used in literature when assessing the quality of measurements in a 
measurement process. These three criteria are validity, reliability, and reproducibility/replicability, all of 
which will be discussed as follows [23]. 

Validity of measurements refers to their respective trustworthiness. In other words, did the measurement 
process manage to measure what it was expected to measure. Again, validity of measurements is closely 
coupled with the precision of the measuring method and the accuracy of the obtained measurements. 
Even though the measurement instrument is precise, if it produces measurements far from the ground-
truth, then the measurements shouldn’t be considered valid. For example, invalid measurements would 
be considered measurements obtained by an un-calibrated measurement method. Based on these 
arguments, both precision and accuracy of the measurement instrument and process should be 
considered when addressing validity of measurements [23]. 

Reliability of measurements is associated with the consistency and stability of repeated measurements. 
Reliability of repeated measurements is more linked to the precision of the measurement instrument and 
the presence of random errors, both of which should be considered when assessing the degree of 
instability of the measurement instrument [23].  

Reproducibility of measurements is the ability of another researcher to reproduce one’s measurements 
and study. In other words, if someone is not able to replicate the measurement process and produce 
comparable results, then the measurements should not be considered reproducible. Reasons for lack of 
reproducibility of results could be due to mistakes made in the experiment, uncalibrated measuring 
instruments, or simply due to the level of skills and experience of the researcher [23]. 
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Finally, we want to address the importance of understanding potential sources of measurement error. 
Measurement errors can be a consequence of many factors e.g., measurement process itself, outdated 
technology used for obtaining the measurements, or even misconception of the definition of what is being 
measured [23]. Typically, when analyzing measurement errors, random and systematic errors are 
commonly considered. Random errors or unbiased errors are errors of some degree which equally likely 
overestimate as underestimate the measurements. In other words, the errors are inconsistent. On the 
other hand, systematic errors or bias occur when the measurements are consistently underestimated or 
overestimated e.g., measurements obtained by a wrongly calibrated measurement instrument are most 
likely subjected to systematic error. The problem is that systematic errors may be difficult to detect and 
therefore, crucially affect resulting measurements. Therefore, it is essential to consider and evaluate the 
possible sources of systematic errors in advance [23]. 

2.4 Cardiac cycle 
In this section, a description of the different phases of one cardiac cycle is given. Understanding the cardiac 
cycle plays a crucial role in this work since these different phases are expected to be reflected in the data, 
namely, the VFR signal. This in turn also aids in detecting the deviations in the waveforms due to underlying 
physiology. 

The cardiac cycle refers to all events taking place in the cardiovascular system between the start of the 
current heartbeat to the start of the next [13]. The cardiac cycle is divided into two main phases, namely 
diastole which represents the period of relaxation, and systole which represents the period of contraction 
[13].  

 

Figure 2. Illustration of the different chambers of the heart taken from Chapter 1 of the book Atherosclerotic 
Plaque Characterization Methods Based on Coronary Imaging by Athanasiou et al. [26]. 

In the diastolic phase, deoxygenated blood returns to the heart through the superior and inferior vena 
cava and fills up the right atrium. As a result of filling the right atrium, the pressure in this atrium increases. 
When the pressure in the right atrium exceeds the pressure in the right ventricle, the valve known as the 
tricuspid valve, opens and the blood flows into the right ventricle [26] In parallel, the oxygenated blood 
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from the lungs flow into the left atrium. Again, as the pressure increases in the left atrium, the valve known 
as the mitral valve opens resulting in the blood flowing into the left ventricle [26].  

The systolic phase refers to the contraction of the heart, namely, when blood is ejected to the lungs from 
the right ventricle, and to the circulatory system from the left ventricle [13]. Beginning of systole is marked 
with closing of the Atrioventricular (AV) valves, namely the mitral and tricuspid valves. When the AV valves 
close the ventricles start to contract however, the semilunar valves (pulmonary valve and aortic valve) 
remain closed until the pressure is high enough to exceed the pressures in the pulmonary artery and aorta 
[13]. The phase just before the semilunar valves open is known as the isovolumetric contraction [26]. 
When the aortic pressure is exceeded, the semilunar valves open, resulting in that blood gets ejected into 
the circulatory system and the lungs [13]. Since this work analyses the blood flow in the CCA, this work is 
focused on the events happening in the left chambers of the heart, which are reflected in the VFR signal 
waveform.   

The closing of the semilunar marks the end of systole and beginning of diastole [27]. The point in time 
when the semilunar valves close is known also known as the dicrotic notch. The location of the dicrotic 
notch has been used for early evaluation of diseases e.g., occlusion or arterial spasm [27].  
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3 Business understanding 
In this section, all relevant information and preparation for the analysis is given, namely, background of 
the study, the available resources, associated limitations and chosen technologies and tools used for the 
modeling. Firstly, the objectives of the research are defined in Section 3.1. After the objectives are defined, 
the study from which the data was collected is explained in Section 3.2. The data used in this work were 
different physiological measurements measured by various hemodynamic measurement instruments. 
Therefore, a proper error analysis of the study must also be performed which is discussed in Section 3.3. 
In Section 3.4, the data mining goals are given. Finally, Section 3.5 describes the technical tools used in this 
work.  

3.1 Objectives 
This master thesis is a research conducted in collaboration with Philips Research. The goal for Philips 
Research was to gain insights from analyzing measurements of various  hemodynamic parameters, which 
could be used for aiding the development of a non-invasive hemodynamic monitoring method. We believe 
that the goal can be realized by the research performed in this work. 

The data used in this master thesis  was collected in an animal study performed by Vrij University Medical 
Center (VUMC) in Amsterdam. The main goal of the study for VUMC was to investigate the effect of surgical 
and anesthesiologic interventions on perfusion of the liver, with the objective to gain insight of how these 
interventions might affect hemodynamically stable patients during liver surgery.  

The signal of interest is the pulsatile signal representing volumetric blood flow rate (VFR), which was 
measured at the common carotid artery (CCA) by the Transonic flow sensor. In this research, related work 
associated with analyzing both Pulse Wave Doppler (PWD) signal waveforms and VFR waveforms are 
applied on the pulse signal obtained by the Transonic flow sensor. The main difference between the PWD 
waveform and the VFR waveform is that PWD measures the velocity of the blood (units cm/s), whereas 
the Transonic flow sensor measures the volume of blood passing the measurement point over time (units 
mL/min). It is feasible to apply the methods used for the PWD waveforms on the VFR waveforms since 
blood velocity can be transformed to flow by multiplying the velocity with the arterial cross-sectional area. 
The PWD signal was also measured in our study but is out of scope in this work.  

The objective of this study is to automate extraction of universally recognized features or so-called 
landmarks of successive cardiac cycles from the VFR waveform. Capturing these landmarks can be used to 
describe the VFR waveform and this way provide insights about the blood flow in the carotid artery. The 
objective is that our model can be used as a component in developing a non-invasive hemodynamic 
monitoring method in the future. 

3.2 The study 
The study was conducted on 14 female Yorkshire pigs, where the animal is from now on referred to as 
subject. In the study, various hemodynamic measurement methods were used in different places on the 
subject for monitoring hemodynamic parameters.  

Firstly, five Transonic flow sensors were placed in five different arteries. The five arteries were the 
descending aorta, v porta, a hepatica, common carotid, and femoral artery. In addition to the five flow 
sensors, the following measurement devices were used for data collection: PiCCO system and FloTrac 
system through arterial line in the femoral artery, Swan Ganz in the jugular vein, and fixed ultrasound (US) 
probe on the skin above the carotid artery. 

There were two data collection sets in the study. The first set of measurements were divided into 4 blocks, 
where each block contained 4 steps that were performed in the same order each time. Each block was 
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associated with an administered medication and the steps were associated with positional change. In the 
first block no medication was administered, and the measurements were taken four times approximately 
15 minutes apart. 

The first medication to be administered was Nitroglycerin which is a vasodilator [28]. Vasodilators are used 
to widen the arteries which decreases systemic vascular resistance. By decreasing the systemic vascular 
resistance, the resistance that the heart must overcome to eject blood to circulatory system is lower and 
blood flow increases [28]. In a clinical setting, Nitroglycerin is commonly used for treatment of e.g., chronic 
heart failure and angina [28].  

The second medication administered in the study was Adrenaline which was infused during the first three 
steps in the third block. As oppose to Nitroglycerin, Adrenaline constricts the arteries, making it a 
vasoconstrictor [29]. Adrenaline increases both cerebral and coronary perfusion pressures and has been 
used as a standard medication for many decades when performing cardiopulmonary resuscitation (CPR)  
[29].  

Finally, in the fourth block, a combination of the aforementioned medications was administered. The 
effect of the combination was studied by Lurie et al. [30] with the objective of obtaining insight if the 
combination of the adrenaline, vasopressin and nitroglycerin would be more effective for increasing blood 
flow to the brain and heart when performing cardio pulmonary resuscitation (CPR), than using only 
adrenaline [30]. The authors found that the combination of the three drugs increased both the blood flow 
to vital organs and the coronary perfusion pressure when compared to only adrenaline.  

The second set of measurements were performed in the end of the study. In this phase, the medication 
Lipopolysaccharide (LPS) was administered. The number of measurements in this phase differed per 
subject, but in general three measurements were obtained per subject from this phase. 

Each subject was identified by a number associated with the study. The inclusion and exclusion criteria for 
the subjects were the following. We excluded the first two subjects as their data was collected in a test 
setting. We chose to exclude the first two subjects since we did not have information about the difference 
between the testing environment and the actual study. In addition, one more subject had to be excluded 
due an interruption in the study because of physiological reasons. This subject did not have available data. 
Therefore, we included the remaining 11 subjects that (1) did not participate in the testing of the study 
and, (2) had data available from the whole study period and for which the study was not interrupted for 
physiological reasons. 

3.3 Sources of error in the study 
In the study, different physiological measurements were obtained through various measurement 
instruments. In this section, the different sources of error are analyzed in a systematic way.  

In this section, potential sources of measurement errors with respect to the measurement process are 
presented and discussed. In general, the reflection of these factors should be considered prior to the 
design of the measurement process, however, as the study has already been conducted, this section 
presents an analysis based on available documentation and discussions associated with the study, and 
literature.  
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Figure 3. Flowchart showing an overview of the workflow from the measurement process to performing 
data preparation and analysis. These phases in the workflow also gives an overview where possible sources 
of error can occur.  

The measurement process in Figure 3 illustrates the study on high level for one subject. As described in 
section 3.2, the process starts by attaching various measurement instruments. The measurement process 
was the same for each subject. By observing the flow of the measurement process, multiple sources of 
error can be identified. 

After the surgery preparation of the subject, the measurement devices were placed. The following 
measurement instruments were used in the study: the Swan Ganz catheter, PiCCO system, FloTrac system 
for measuring CO, Transonic flow sensors (TFS) for measuring blood flow in five different arteries, and 
Lumify ultrasound probe (L12) for obtaining PWD velocity and B-Mode showing the arterial diameter in 
the carotid artery. In addition, Philips documentation of the study mentioned additional monitoring 
devices. These devices were oxygen saturation (SpO2) sensors, attached to the tail of the subject, and 
electrocardiogram electrodes (ECG) on two different places for measuring heart rate. Analysis of the 
measurement instruments is essential for the error analysis and in this work, the measurement 
instruments of interest are the PiCCO system and the Transonic flow sensor, both of which will be 
presented and discussed as follows.  

The PiCCO system measures cardiac output CO by using two techniques; continuous pulse contour analysis 
and intermittent transpulmonary thermodilution for calibration attached at a peripheral artery e.g., 
femoral [25]. Pulse contour analysis continuously monitors arterial pressure waveform from which it 
computes the beat-to-beat stroke volume [25]. The limitation of pulse contour analysis is that the arterial 
pressure waveform is highly dependent on the systemic vascular resistance, which is variable that varies 
between and within individuals [25]. The limitation resulting from changes in the systemic vascular 
resistance can be addressed by using transpulmonary thermodilution for calibration. Around the 
calibration points, the PiCCO system measures CO with a precision of <20% [25]. It is difficult to estimate 
the true accuracy and precision of the PiCCO system since there are many factors contributing to the 
variability of the results e.g., patient population, study methodology or the imprecision of the gold 
standard hemodynamic measurement method, Swan Ganz system, which PiCCO is often compared to [25].  
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The PiCCO system is of interest since the calibration points of the PiCCO system are used for computing 
signal segments for the analysis. The motivation for choosing the timepoints of the calibration points is 
that in the future, the blood flow in the carotid artery around the calibration point can be compared to 
calibrated cardiac output (CO) obtained by PiCCO. The calibration points of PiCCO were chosen over Swan 
Ganz calibration points because the PiCCO system was calibrated before the Swan Ganz system. How these 
signal segments are computed will be described later in the report. 

Transonic flow sensor is a so-called perivascular flow sensor which is considered the gold-standard for 
invasive flow measurement [2]. These sensors consist of two ultrasonic transducers and one acoustic 
reflector [31]. These transducers exchange ultrasound signals between each other, and this way alternate 
the intersection with the flowing blood in both downstream and upstream directions [31] as depicted in 
Figure 4 [32]. The measurement of the flow sensor is the so-called transit-time which is a measure of the 
travel time for the ultrasound wave between the transducers [31]. The difference between the transit 
times between the downstream and upstream directions are then used for computing the blood volume 
over time which provides the measurement of blood flow.  

The accuracy of the flow sensors used in this study was given in the specification document provided by 
Philips. The flow sensors had not been calibrated for approximately 10 years, yielding an absolute accuracy 
of ±15%. For example, for a measurement of 10L/min the value could be anywhere between 8.5L/min and 
11.5L/min. Attempts to reduce the error were performed prior to the time of writing this master thesis, 
however, the results were inconclusive. The precision was not documented. 

The Transonic flow sensors (TFS) were attached in five different arteries over the course of the experiment 
to measure blood flow rate. The raw signal is measured in volts, for which each flow sensor has a specific 
volt [V] to flow [ml/min] conversion factor depending on the size of the flow sensor. The largest flow sensor 
is normally attached to the largest artery, in this case the aorta. In addition, each flow sensor has an 
associated channel in the Transonic flow system. 

 

 

Figure 4 The transit-time ultrasound technology used in the Transonic flow sensor. Illustration is obtained 
from an article by Lee et al. [32] 
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From discussions with experts present during the experiments and documentation from the study, these 
flow sensors were attached surgically in the arteries. The attachment was not problem free in terms of 
finding the right location and fit around the artery. In addition, as also stated in the article by Mynard et 
al., [2] these sensors require proper acoustic coupling between the sensor and vessel wall. This is achieved 
by using different coupling agents e.g., coupling gel, which according to the specification of the sensor 
results in the highest accuracy. [33].  

In summary, the main sources of error in the measurement process are (i) the measurement instruments 
and (ii) the procedure of attaching and placing these instruments. In addition, it should be mentioned that 
the physiology of the subject plays a crucial role in the error analysis. However, the sources of error in the 
data itself will be discussed later in this report, where possible errors caused by physiology are analyzed. 
However, based on this section, there are many factors adding to the complexity of the data with respect 
to the study and the measurement process. 

3.4 Data mining goals  
In this section, preliminary success criteria from a data mining perspective is given. The main data mining 
approach chosen for analyzing the data is clustering. The objective is to use clustering to group local 
extrema associated with different phases of the cardiac cycle to find so-called landmarks of the VFR 
waveform. We want to investigate if these landmarks can be found by applying a commonly used machine 
learning approach of clustering and this way automate the process without having to label the landmarks 
a priori. 

In this work, we wish to detect and label these landmarks of one cardiac cycle, repeatedly over a segment 
of cycles of the Transonic flow sensor signal. We believe that landmarks of the VFR waveform during 
systole and diastole could be useful in characterizing and analyzing the blood flow in the common carotid 
artery (CCA), and later on used for predicting cardiac output (CO). Therefore, signal segments around 
PiCCO calibration points were computed such that later on, comparisons can be made to CO 
measurements measured by PiCCO. The segment length of the signal for the analysis was chosen to be 
one minute, evenly distributed around the point of calibration (±30 seconds on each side of the calibration 
points). This segment length was a period chosen by experts. The period of one minute was considered a 
suitable length since many features in hemodynamics are measured with respect to a period of one minute 
e.g., heart rate in units beats-per-minute (BPM).  

For the unsupervised method, the same segment length was kept. Therefore, manually marking these 
landmarks would not be feasible since each subject has multiple segments, and each segment has multiple 
periods. This detection and labeling would have had to be automated somehow and still; the obtained 
landmarks would need to be verified by domain experts. In other words, marking these landmarks 
correctly would require more advanced domain knowledge and a specific tool for even detecting these 
landmarks, both of which are out of scope in this work. 

With respect to domain knowledge of the heart functionality and the sensors, it is also difficult to know 
what we can expect from the data due to the various sources of error contributing to uncertainties in the 
data. Therefore, this work should be considered as an opportunity to explore the signal and iteratively 
reflect on the obtained domain knowledge for understanding the data better. As we are to explore the 
signal, we believe that the approach of using unsupervised learning is a more naïve approach in a sense 
that it is not restricted by uncertainties in the signals, whereas supervised learning would require more 
domain knowledge in advance.  

Since we are going to use unsupervised learning, the extent to which our model manages to answer the 
research questions requires expert validation. Therefore, the results and their significance should be 
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validated by a domain expert to determine the extent of which the landmarks are detected and labeled 
correctly. 

3.5 Technical tools 
This research uses the Matlab version R2020a. Using Matlab was a request by Philips Research and has 
been used throughout the project. Therefore, all implemented data analysis and figures have been 
computed using  Matlab.  
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4 Data understanding and preparation 
The objective of this section is to build on the foundation of Chapter 3 by exploration and understanding 
the available data sets for the modeling part. The main data used in this research were the time points of 
PiCCO calibration timeseries stored in the Case Report Form (CRF) data set, and the VFR sensor signals 
stored in TDMS files. In addition, to understanding the data, some related work regarding analysis of the 
VFR and PWD waveforms will be presented. Finally, all necessary exploration, preparation, and cleaning 
will be explained. 

4.1 Descriptors of the VFR waveform  
To build on business understanding given in Chapter 3, some related work on how to describe both VFR 
and Pulse Wave Doppler (PWD) waveforms are given. To recap, PWD waveforms represent the blood 
velocity waveform measured by Ultrasonography using the phenomenon of Doppler effect [34]. 

In an expert consensus document by Kim et al. [19], a nomenclature is presented for arterial and venous 
Doppler waveforms with the objective to promote better communication with respect to terminology of 
the Doppler waveform among practitioners [19]. Initially, the description of peripheral arterial Doppler 
waveforms was based on (i) audibly recognizing if systolic and diastolic components of the cardiac cycle 
were present or absent; and (ii) displaying these components with respect to the zero-flow baseline. These 
two factors provided the basis for the original descriptors of the Doppler waveform, namely, triphasic, 
biphasic and monophasic waveforms [19].  

 

Figure 5. An illustration obtained from the article by Kim et al. [19]. Figure (A) shows a triphasic 
waveform (B) shows a bi-phasic waveform and (C) shows a monophasic Doppler waveform [19]. 
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The triphasic waveform displayed three components of the cardiac cycle (1) systole; (2) early diastole 

reversal flow and (3) low forward flow in later diastole [19]. In the biphasic, component (3) is absent, 

whereas the monophasic waveform is characterized by no crossing of the baseline and therefore, no 

negative flow [19]. 

In the consensus document, the conclusions were that instead of using three descriptors for describing 

phasicity, two descriptors should be used instead, namely, monophasic, and multiphasic. Monophasic is 

used for waveforms that do not cross the zero-flow baseline and have a forward flow throughout the 

cardiac cycle, and multiphasic is used for when a flow waveform crosses the zero-flow baseline with both 

forward and reverse directions [19].  

The second key descriptor was considered to be flow direction. Flow direction can be either defined as 
antegrade if the direction of flow is considered normal (forward flow), and retrograde if flow occurs against 
normal circulation (reversal flow) [19]. Two other types of flow direction were given but they were 
considered out of scope in this research. 

For analyzing resistance of the waveform, high-resistive waveforms have a sharp upstroke followed by a 
rapid downstroke and can be either multiphasic or monophasic. Low-resistive waveforms are 
characterized by a downstroke that is prolonged in late systole. In addition, low-resistive waveforms have 
forward flow throughout the cardiac cycle, making them monophasic. Finally, the third resistance form is 
a hybrid that is monophasic but has features of both rapid downstroke with continuous forward flow over 
the whole diastolic phase. This hybrid type also contains an end-systolic notch which is the result of fast 
deceleration after which the diastolic acceleration starts. This type of waveform is called an intermediate 
resistive waveform [19]. 

In summary, the blood flow velocity waveform should be characterized through flow direction, phasicity, 
and resistance. Flow direction refers to either forward or backward flow, whereas phasicity indicates if 
there indeed is only forward directional flow, or both reverse and forward flow. Finally, the resistance can 
be investigated based on the steepness of the upstroke and downstroke and the phasicity. In this work, 
the analyzed waveform is not the PWD velocity waveform but the VFR waveform. However, since the 
volumetric flow rate can be computed using blood velocity, we believe that the VFR can also be 
characterized using these descriptors. 

4.2 Detecting landmarks of the cardiac cycle 
Characterizing VFR and PWD velocity waveforms over the cardiac cycle has been applied for defining 
baselines for modelling and assessing pathological changes [9], [10]. In previous studies, the PWD and VFR 
waveforms have been characterized by detecting features or as we call them, landmarks, inherent to the 
cardiac cycle [9]–[11]. Since in this work we wish to characterize the VFR waveform by detecting landmarks 
and investigate if these landmarks can be used to describe the waveforms in terms of descriptors in the 
consensus article, this section will discuss the state of the art with respect to these requirements and is an 
important component in the related work for this master thesis.  

In a study by Holdsworth et al. [35], the landmarks of the velocity waveform measured by Pulse Wave 
Doppler US were used to characterize the waveform. The objective of the study was to find easy and well-
defined features from individual waveforms and use these features for synthesizing an archetypal 
waveform and investigating cycle-to-cycle variability [35]. The landmarks were found on a cycle-by-cycle 
basis by using an automated routine [35]. For example, the systolic maximum and the maximum systolic 
acceleration were of interest and their validation was performed graphically.  
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In a study by Gwilliam et al., [9] temporal profiles of the volumetric flow rate (VFR) were used to investigate 
how the VRF waveform changes when pulse moves through the carotid three which were though to 
provide good input functions for modelling hemodynamics. This research adopted the methods from 
studies Holdsworth et al. [35] and Ford et al. [10], which were based on using the characteristics of 
individual flow waveform and averaging these features to create an archetypical waveform. In this study, 
the VFR was measured by phase-contrast (PC) magnetic resonance imaging (MRI) in the carotid arteries, 
including the CCA. The landmarks of interest in this study are shown in Figure 6 [9]. The points P1, P2, P3, 
M0, M1, M2 were noted manually, where the global peak P1 represented the portion of systole of the 
cardiac cycle and was considered as the initial point. Furthermore, the landmarks P2, P3, M0, M1 and M2 
were computed based on change in sign of the waveform gradient. The rests were computed by means of 
a semi-automated algorithm, incorporating linear interpolation. The results from this study supported the 
findings from Holdsworth et al. [35] and Ford et al. [10] which was that the archetypical waveform can be 
used to regulate cycle-to-cycle variability. In addition, these waveforms were obtained from different 
locations along the carotid tree and carotid arteries. Since multiple carotid arteries in different locations 
were of interest, conclusions could be drawn about if there were statistically significant differences 
between the waveforms in these locations. 

 

Figure 6.Figure obtained from the study by Gwilliam et al. [9], showing landmarks of interest in the study. 

An additional study of interest was done by Rafati et al. [11], where waveform characteristics were 
investigated for characterizing atherosclerosis. Atherosclerosis is when plaque is formed on the inside 
arterial walls, which can result in e.g., occlusion of major arteries [26]. For evaluation of atherosclerosis, 
the main features given in this article were Peak Systolic Velocity (PSV), end diastolic velocity (EDV), peak 
diastolic velocity (VD) and velocity of incisura between systole and diastole wave (VI), as depicted in Figure 
7  [11]. These landmarks were computed from the waveform which was obtained by an envelope detection 
algorithm called the Modified Geometric Method. From these features three parameters were derived 
namely, resistive index (RI), pulsatile index (PI) and dicrotic notch index (DNI) [11]. These indices have been 
previously used for prognosing cardiovascular diseases [11]. In this study, a semi-automated method was 
used to evaluate the diagnostic importance of these indices. The authors concluded that these parameters 
make useful means for evaluating carotid atherosclerosis development [11]. 
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Figure 7. Illustration of the PWD waveform showing the landmarks of interest [11]. 

Based on previous research, features, or landmarks in terms of local extremes of a cardiac cycle have been 
used to evaluate development and status of cardiovascular and cerebral diseases. The following key 
observations were made based on these articles: 

• Essential features of the velocity and VFR waveform that were often mentioned and identified 
were; maximum peak systolic velocity, end diastolic velocity, minimum velocity of the dicrotic 
notch, and peak diastolic flow [9], [11], [12], [35] and are commonly used to describe these 
waveforms and analyze pathological changes.  
 

• For detecting these features, the authors have used customized algorithms or manual notation.  
 

• Based on these articles only one cardiac cycle of the PWD and VFR signal is normally of interest 
per subject and detecting features over repeating cardiac cycles in a signal segment is lacking in 
the field. 

4.3 Datasets 
The main datasets used in this work were intermittent measurements documented in the Case Report 
Form (CRF) data and the sensor signals measuring VFR stored in TDMS files. Each subject had its own CRF 
dataset in MATLAB - data format. This data contained the measurements obtained at the calibration points 
of the Swan Ganz and PiCCO systems. The number of TDMS files containing the VFR signal segments varied 
per subject   

As described in section 3.2, the study had two sets of data collection phases. The first data collection phase 
had four blocks with four steps in each, whereas the second data collection phase was one block with 
approximately three steps depending on the subject. In each of these blocks both the Swan Ganz and 
PiCCO system were calibrated and the cardiac output documented manually in the CRF. Therefore, the 
CRF dataset contained on average 18 calibration points per subject. Among all 11 subjects, 207 datapoints 
were available measured at the calibration points of both PiCCO and Swan Ganz systems. 

In addition, the Transonic flow system also outputted instantaneous flow measurements, which were 
documented in the CRF at the time of calibration. These values turned out to be useful since they gave an 
indication of the magnitude of the blood flow at the point of calibration as captured by the Transonic flow 
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sensor. When exploring the VFR pulse signal segments computed around calibration points, these 
intermittent measurements gave an indication of what can be expected of the Area Under the Curve (AUC) 
over one minute around calibration points, as this would give the volume of blood passing the 
measurement location over one minute.  

Finally, the VFR sensor signals were stored in segments of different lengths in so-called TDMS – files. The 
available data in these files will be discussed and described in more detail in the following sections.  

4.3.1 Exploring VFR sensor signal in five different arteries (Channel 10 data) 
As mentioned in section 3.2, the VFR was measured by Transonic flow sensors in five different arteries. 
The arteries were the hepatica, carotid, portal, aorta and femoral. In this section, the data obtained by the 
sensors of the so-called Channel 10 data are described. Channel 10 refers to that for each artery, 2 
channels were reserved. Namely, one channel contained instantaneous pulsatile signal, and the other 
channel contained an averaged signal. 1 

For each subject a set of files of format TDMS were available. The format TDMS stands for National 
Instruments Technical Data Management Streaming, and contains measurement data, recorded by 
National Instrument (NI) software. The number of files varied per subject but on average there were 15 
files available, depending on the number of times the sensors were tested. Combining the signal data in 
the TDMS files yielded the full signal over the study period. Furthermore, each TDMS file contained 
respective metadata of the signals. Some TDMS files contained data from a test phase, which was 
sometimes indicated in the file name, but this was an exception not a rule.  

The objective was to use the raw pulse signal to estimate the flow at calibration points. As mentioned 
before, each artery reserves two channels e.g., channel 1 and channel 2, where even channels contained 
the instantaneous pulse signal and the odd channel contained the average signal. As it is not documented 
how the average signal was computed, the raw pulse signals in the even channels were used for estimating 
the flow.  

There were multiple uncertainties associated with the pulse signal. Firstly, the signal was measured in volts 
(V) and had to be converted to flow rate (L/min) or (mL/min). This calibration factor was sensor specific 
and is dependent of the size of the sensor. For each subject, a specific look-up table was provided. In 
addition, sometimes the electrodes of the sensors were swapped which meant that parts or even the 
whole signal could be inverted.  

The idea was to process Channel 10 data, and then use the pulse VFR signal at the common carotid for 
modeling. The problem was that when calculating the area-under-the-curve (AUC) of the signal segment 
±30 sec around the calibration points of CCA and aorta, these values could be negative. Based on domain 
knowledge, it is possible to have occasionally reversed flow (negative flow), however, having reversed flow 
for 1 minute is not possible. This statement was confirmed by experts. In Figure 8, the signal segments of 
all five arteries measured from Subject 5 at calibration point number 2 is shown. In this figure, the AUC of 
the CCA flow was -21 mL/min, whereas in the CRF the value 220mL/min. 
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Figure 8. Alignment of the pulse signal in all the arteries of Channel 10 data around PiCCO calibration 
point number 2 of subject 5. Illustration produced by Matlab function [36]. 

As the pattern of finding unfeasible AUC values repeated itself, it turned out that Channel 10 – data would 
not be suitable for the remaining of the research. This is because (1) the flow values could not be matched 
with the intermittent sensor data in the CRF, and (2) AUC could obtain negative values. In the case of the 
example given above for Subject 5, inverting the signal segment would not help because (1) the waveform 
would look different than the remaining of the signal and (2) the value would still not match the one in the 
CRF. Therefore, the Channel 1 – data containing the sensor signal of only the carotid was considered. This 
data will be described in the following section. Figure 8 was created using an open source Matlab function 
[36]. 

4.3.2 Exploring VFR sensor signal in the common carotid artery (Channel 1 data) 
As explained in end of the previous section, since the AUC of the signal segments of both the CCA and 
aorta in Channel 10 data could not be matched with the values in the CRF, only the CCA in Channel 1 data 
was considered. The same check as for Channel 10 data was performed on the CCA signal segments in 
Channel 1 data, namely, the AUC of the signal segment ±30 sec around the calibration point was computed. 
The AUC of these segments yielded the volume of blood passing the measurement point over 1 minute, 
which were comparable with the values in the CRF. The results for Subject 5 are presented in Table 1. 
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Table 1. Table showing the AUC of the signal segments around the calibration points compared to the flow 
of the CCA documented in the CRF. The two last values are NaN because no signal is available during these 
calibration points. 

By observing the results in Table 1, the values at each calibration point differed on average by approx. 
0.005 mL/min. Based on the results of this check, which was also performed on the remaining subjects and 
giving similar results for most of the subjects, the Channel 1 data was assumed to be correct. This 
assumption was also confirmed by scientists who had worked with the data prior to this work. 

After verifying that the data was correct, every signal segment at each calibration point for each subject 
were generated, yielding on average 18 figures per subject. An example of a figure showing one of the 
signal segments around a calibration point is given below in Figure 9. 

 

Figure 9. Example of the VFR sensor signal in the common carotid artery measured from Subject 3 at 
PiCCO calibration point 1. 

Calibration Point AUC of sensor segment CCA (±30 sec) [L/min] Flow CCA documented in CRF [L/min]

1 0.266 0.264

2 0.227 0.22

3 0.318 0.305

4 0.251 0.244

5 0.279 0.266

6 0.209 0.198

7 0.319 0.319

8 0.310 0.311

9 0.426 0.429

10 0.369 0.371

11 0.445 0.442

12 0.242 0.242

13 0.289 0.283

14 0.271 0.25

15 0.336 0.342

16 0.281 0.28

17 NaN 0.235

18 NaN 0.187
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By visually inspecting these figures (Figure 9), following questions were proposed without considering the 
underlying physiology of the signal: 

I. What is the waveform morphology of the signal? Some signals might have more distinguishable 
local extrema than others, and maybe it differs based on the nature of the study. The following 
cases were considered based on speculations of the waveform morphology: 
 

o Local extrema are on the upstroke of the pulse wave. 
o Local extrema are on the downstroke of the pulse wave. 
o No clear local extrema are present.   

 
 

II. Is there initial inherent noise in the signal due to the sensor itself? Some signals had indication of 
inherent noise in the signal throughout the surgery due to the sensor itself. Noise in the signal 
could also be present due to medication administration or positional change of the subject. These 
types of interventions could weaken the attachment of the sensors or alter the location of the 
sensor, which in turn could introduce temporary noise in the signal in the form of local noise. The 
following cases were considered: 
 

o There is no inherent noise due to initial attachment of the sensor. 
o There is inherent noise due to initial attachment of the sensor. 

 

III. Are there interruptions because the signal is lost? Following question II. it should be determined 
if a potentially lost signal should be excluded. The following cases were considered: 
 

o The interruption occurs due to a lost signal and should be excluded from the data analysis. 
o The interruption occurs due to a potentially lost signal but should not be excluded from 

the data analysis. 
 

IV. Is the signal inverted? In some cases, the VFR signal was inverted which resulted in negative flow 
over the one-minute window of interest. This could be verified by computing the area-under-the-
curve (AUC) of the whole segment to get an indication of the volume of blood flowing in the CCA 
during that one minute. If this was negative, then the signal was inverted, since now the data is 
assumed to be correct. 
 

V. What is the calibration factor from voltage to flow? As explained earlier the pulse wave obtained 
from the Transonic flow sensor was measured in volts. Therefore, a calibration factor had to be 
verified to convert the pulse wave from volt to flow (unit: liters per minute). 
 

To the best of our knowledge, the waveform morphology has an upstroke, a downstroke, and local maxima 
and minima (local extrema) associated with either the upstroke, and global minimum and maximum for 
each cycle of the waveform. The strength and presence of local extrema differs per calibration point which 
indicates that the consequences of the interventions play an important role, as each calibration point is 
associated with an intervention. Furthermore, based on conversations with experts, there are various 
factors that might affect the signal e.g., the attachment of the sensor, the sensor itself and individual 
physiology of the subject.  
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These questions were proposed before considering any underlying physiology that might affect the VFR 
signal. Therefore, to analyze the flow rate signal, the expected waveform when including the physiology 
of the subjects will be defined. In addition to technical noise, there are physiological reasons contributing 
to the noise in the flow rate waveform, which will also be discussed in the upcoming section where the 
aim is to understand the VFR sensor signal.  

4.4 Understanding VFR sensor signal in the common carotid artery (Channel 1 data) 
In previous sections, the data to be used in this research was explored. In this section, the VFR waveform 
is explored further by also incorporating the domain knowledge. Firstly, the expected waveform and 
periodicity of the VFR waveform is discussed after which the landmarks of interest will be defined. 

4.4.1 Expected waveform of the VFR sensor signal 
In Section 2.3, the different phases of the cardiac cycle were discussed. In this section, the expected 
waveform of the VFR pulse signal measured by the Transonic flow sensor will be defined. The assumption 
is that the underlying physiology of the heart function can be captured by the VFR waveform. Therefore, 
a good starting point is to divide the waveform of one heartbeat into a systolic and a diastolic phase. 

Based on domain knowledge of the cardiac cycle given in Section 3.1, the systolic phase starts after the 
Atrioventricular (AV) valves close. In terms of the waveform morphology of the VFR waveform, this would 
be the point in time just before the acceleration to the systolic peak. More specifically, this would 
represent the upstroke to the systolic peak, where the blood reaches its maximum flow. The peak systolic 
flow occurs during the rapid ejection after opening of the semilunar valves, which allows the blood to flow 
into the circulatory system. In the literature, the systolic peak is one of the main characteristics of the 
PWD/VFR waveform, defined as the maximum or global peak of one cycle in the PWD/VFR waveform [9], 
[12]. 

From the systolic peak, the waveform has a downstroke to the local minimum in the early diastole (Early - 
DF). Reverse flow is possible in the CCA and the deduction was made that if there is reverse flow and the 
zero-flow baseline has been crossed, the cardiac cycle has entered an early diastolic phase [19]. After 
speaking with professionals, the conclusions were that reversal flow in fact might occur during the closing 
of the semilunar valves which is also known as the dicrotic notch. However, in this work, Early-DF is used 
because it describes better the phase of interest in the cardiac cycle.  

From the Early-DF, it is expected that a local maximum of the late diastolic phase of forward flow also 
known as the peak diastolic flow (PDF) follows with a short upstroke and positive acceleration from the 
local minimum of Early-DF. The PDF rises from a vascular elastic recoil in the diastolic phase [12], making 
it a local maximum. 

Finally, from the PDF the diastolic phase ends in the end-diastolic flow (End-DF) which is defined as the 
end diastolic minimum flow [12], which is a local minimum before the start of the systolic phase of the 
next heartbeat [9], [10]. From the PDF to End-DF, blood flow declines and the acceleration drops before it 
increases again in the systolic phase. 

In summary, the expected waveform of one heartbeat of the Transonic flow rate signal can be divided into 
systole and diastole, where three characteristics (local extrema) are expected from the diastolic phase and 
one global maximum in the systolic phase per cardiac cycle. Based on these characteristics, we wish to 
describe the waveform based on the consensus article by Kim et al. namely using key descriptors: (1) 
direction of flow; (2) phasicity, and (3) resistance. In Section 4.4.3, where the landmarks are formally 
defined, motivation for the choice of these specific landmarks are given. 
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4.4.2 Periodicity of the VFR waveform 
Another essential part of the cardiac cycle and therefore, an essential factor of the VFR signal, is the inter-
beat interval (IBI), which is defined as the time between sequential contractions of the heart [37]. 
Essentially, the IBI represents the periodicity of the VFR signal. This is an important factor in this work 
since two successive landmarks of the same kind are separated by periodicity.  

To determine the IBI, a range of feasible heartrate values should be estimated for the chosen flow 
segment. The initial estimation of the IBI will be determined based on available literature, where similar 
studies on the same subject have been performed. Note that finding a study with the same experiment 
protocol and set-up is not feasible.  Therefore, the objective was to review articles where (1) the same 
animal was investigated, and (2) similar medication was administered during the study. In addition, it is 
essential to note that for the subjects in our study, the hemodynamic parameters alter based on the inter- 
and intraspecies factors e.g., age, weight, and breed [38].  

After reviewing studies [39]–[41], it is clear that when performing experiments such as the one in this 
work, reproducibility is difficult to achieve. In the reviewed studies, the breed, weight, or medication 
differed with our study. However, the objective of this review was to obtain an understanding of the range 
of feasible heartrates of the subject. 

As already mentioned from the study description in Section 3.2, the subjects underwent both medication 
administration and positional change, implying that there are multiple sources contributing to the range 
for possible heart rates. The two drugs administered were adrenaline and nitroglycerin. However, when 
combined, what happens to the heart rate is unclear. In the reviewed articles, the heart rate range varied 
between the lower bound of the average heart rate, 50bpm, and the upper bound of the average heart 
rate, 170bpm.   

In the end, the average upper bound of 170bpm was used as an initial estimation of the periodicity based 
on the study by Shen et al. [41], since adrenaline was also administered in the study. Furthermore, there 
is some additional heart rate variability (HRV) which might further increase the upper bound, however, 
the HRV is not known and therefore an approximation of the average heartrate is chosen based on 
literature. Notice that the approximated periodicity is a rough estimation and determining the upper 
bound for the heartrate would require analyzing the ECG signal obtained from the study which is out of 
scope of this master thesis. 

The heartrate in beats-per-minute can be converted to datapoints per beat as the sampling rate of 120 Hz 
is known, and therefore, can be used as the initial estimation of periodicity in terms of number of 
timestamps. 

4.4.3 Definitions of landmarks 
Finally, the landmarks of the expected VFR waveform will be defined. There are two major contributing 
factors for defining the landmarks, namely the expected morphology of the waveform and periodicity. 
Periodicity implies that the same landmarks in successive heartbeats will be separated by a period that is 
approximately the average IBI. The definitions of the landmarks are the following: 

Landmark 1 (Peak Systolic Flow): The peak systolic flow is defined as the global maximum of the heartbeat 
and a local maximum in the full signal segment. In other words, it is the highest value in one cardiac cycle 
and it is the only landmark representing the systolic portion [9], [10]. 

Landmark 2 (Early Diastolic Flow): This landmark occurs after the PSF and is defined as the local minimum 
of early diastole or as minimum flow in dicrotic notch [35]. A local minimum is the smallest value compared 
to neighboring values (set of values), however not the smallest value of all values in the signal. This 
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landmark occurs after a downstroke from the PSF and can be negative. As stated in Section 2.3, negative 
flow can occur in early diastole. Therefore, the assumption is that the landmark after the peak systolic flow 
in many cases represents the global minimum in the cardiac cycle.  

Landmark 3 (Peak Diastolic Flow): This landmark occurs after an upstroke from the early diastolic 
minimum flow. It is the highest value in the diastolic phase [12]. Therefore, this landmark is defined as a 
local maximum flow rate between the minimum early diastolic flow and minimum end diastolic flow. 

Landmark 4 (End Diastolic Flow): This landmark occurs after the downstroke from the peak diastolic flow. 
It marks the end of the diastolic phase and the start of the systolic phase of the next period, namely, it 
occurs just before the contraction of the heart. It is a local minimum in diastole [35]. 

 

Figure 10. Figure showing the landmarks of interest. The red points represent the PSF landmarks, the blue 
points represent the Early-DF landmarks, the black points represent the PDF landmarks and finally, the 
green points represent the End-DF landmarks. 

In summary, based on domain knowledge, the shape and therefore, the landmarks during one period of 
the VFR waveform are expected to occur in the following order: starting from the minimum end-diastolic 
flow (End-DF) represented by the green mark in Figure 10, the signal continues to a local maximum, also 
known as the peak systolic flow (PSF) represented by the red mark in Figure 10. For one period the PSF 
represents the global maximum. After the PSF, the (Early-DF) follows in the form of a local minimum, 
possibly negative, which is represented by the blue mark in Figure 10, finally the signal ends at the peak 
diastolic flow (PDF) which is represented by the black mark in Figure 10. From the PDF the cardiac cycle 
ends back at the End-DF.  

The waveform shown in Figure 10 is what is expected from the signal. However, due to technical noise in 
the signal, interventions, and physiology, the morphology of the signal might differ in terms of the number 
of local minima and maxima together with their respective location. In other words, there can be multiple 
sources contributing to the noise of the signal. These possible sources of error will be discussed in the 
following section. 
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4.5 Sources of error 
In this section the sources of error in the VFR sensor signal are discussed. The two major sources 
contributing to error in the VFR waveforms were identified as underlying physiology and technical noise. 

4.5.1 Physiology 

Firstly, it is essential to consider the underlying physiology of the subject itself. Since measurements are 
made at the common carotid artery (CCA) by the Transonic flow sensors, it is necessary to mention the 
effects of cerebral autoregulation. Cerebral autoregulation is an intrinsic functionality of the body which 
regulates cerebral blood flow by keeping the flow constant for a broad range of blood pressure values [42].  

The porcine animal model is often used when studying the human brain due to similarities in e.g., 
development and anatomy of the brain [43]. Analyzing the effect of cerebral autoregulation is out of scope 
in this master thesis, however, it is essential to consider that the interventions and postural changes 
performed in the study might affect the measurements obtained by TFS at the CCA, however, the effect 
of cerebral autoregulation will be considered an unquantifiable source of error.  

When exploring the segments around the calibration point, a specific deviation was noted in the signal. 
This deviation looked like a skipped heartbeat as depicted in Figure 11 at approximately time point 
12:18:10. This phenomenon is called Ectopic heartbeat. Ectopic heartbeats are irregularities in the heart 
rhythm and can be noted as discontinuations in expected regular periodicity [44].  

 

Figure 11. An example of a signal segment in which an Ectopic beat occurs. 

Ectopic heartbeats can be noticed in the signal through absence of the systolic peak in the period. In other 
words, if there is a systolic peak missing over the period in the signal then there is a heartbeat missing.  

In addition to Ectopic heartbeats, some waveforms show more fluctuation with respect to the systolic 
peaks and the early diastolic valleys. In Figure 12, the early diastolic flow shows rapid change in the 
amplitude between successive landmarks. This needs to be kept in mind when clustering local extremes, 
since the change in amplitude of these landmarks might result in that same landmarks get clustered into 
separate clusters. 
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Figure 12. Signal segment with fluctuations in successive Early-DF landmarks in the bottom of the signal. 

4.5.2 Technical noise 
Technical noise introduced by the Transonic flow sensor (TFS) occurs in the signal as low frequency noise 
as depicted in Figure 13. More specifically, this type of noise can be defined as densely occurring local 
extremes (local minimum/maximum) around the landmarks of interest and are assumed to have no 
physiological significance but it simply represents a biproduct of the measuring process using the TFS.  

 

Figure 13. Technical noise may occur in the form of densely occurring local extremes in the waveform. It is 
assumed to be noise inherent to the Transonic flow sensor. 
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From discussions with experts present in the experiments and documentation from the surgery, these flow 
sensors were attached surgically in the arteries. The attachment was not problem free in terms of finding 
the right location and fit around the artery. In addition, as also stated in the article by Mynard et al., these 
sensors require proper acoustic coupling between the sensor and vessel wall [2].  

In conclusion, the attachment of the flow sensors around the CCA may cause densely occurring local 
extremes which affects the detection of landmarks as these landmarks may be surrounded by noise. The 
factor that separates the noise from the actual landmarks is the periodicity, namely the inter-beat interval. 
In other words, two landmarks of the same type should occur at timepoints that differ by the periodicity 
of the waveform.  

4.6 Data preparation 
As explained in section 3.2., the VFR data were stored in TDMS files. As explained in the previous section, 
the TDMS files containing the so-called Channel 1 data is used in this work for which the following factors 
need to be considered. In this section, the data preparation phase for obtaining VFR signal segments 
around PiCCO calibration points is explained.  

Firstly, the data stored in the TDMS - files had to be converted to Matlab data. A script by National 
Instruments (NI) was used to read the TDMS file into a Matlab structure. This script was provided by Philips 
Research to be used in this work. The obtained Matlab data was a structure that contained 12 fields. The 
data of each field are presented in a Table (see Appendix A) were the original names of each field were 
kept. Later, only the relevant data was stored in a separate structure when preparing for the modeling. 

The data was converted separately for each subject to identify deviations in the measurement process and 
which TDMS files contained the relevant data. The following deviations were identified: 

• TDMS file contained structure data with empty fields. If the fields were empty, then the TDMS file 
was excluded.  

• TDMS file contained data from the test phase prior to the start of calibration points of PiCCO - and 
Swan Ganz systems. Sometimes a test phase could be indicated in the name of the TDMS file, but 
this also was inconsistent. The test files were excluded if the signal in the TDMS file ended before 
the first PiCCO calibration point. 

Each TDMS file of Channel 1 data contained in general three signals, which had to be visually inspected to 
find the pulse signal due to inconsistent naming of the signals. These signals have been added to Appendix 
B. 

After all empty and test files were excluded, the pulse signal had been verified, and the time segments 
were computed for each signal segment, all the TDMS files for the subject were combined and sorted 
based on time. At this point the signal was still measured in volts (units V). The conversion from volt to 
flow was done by using a calibration factor of 400mL/min defined by domain experts and documentation. 

After the full signal had been converted to a volumetric flow rate (VFR) signal , the signal segments of ±30 
seconds around each PiCCO calibration point. The idea is that the landmarks of each heartbeat in this 
segment can be used for analyzing blood flow in the carotid in future research.  

After calibrating the signal and computing the signal segments used for modeling, the polarity of the 
sensors needed to be verified. Namely, based on domain knowledge, it is possible for the waveforms to 
be momentarily negative for physiological reasons (reversal flow) but in our case, also if electrodes of the 
sensors were swapped manually. After discussing with experts present in the study, it turned out that the 
electrodes of the sensors could be either occasionally swapped or swapped throughout the whole surgery. 



36 
 

In case the polarity of the electrodes was swapped, the signal was inverted and therefore also the AUC 
negative. Therefore, by computing the AUC of the signal segments over 1 minute, we were able to verify 
when the electrodes had been swapped. 

4.7 Data cleaning 
In this section, the necessary data cleaning part is given. Just like with any signal, we expect to have signal 

segments that cannot be used for the analysis due to noise inherent to the measurement process of using 

sensors. The objective is to develop a method to quantify when periodicity is violated such that the whole 

signal segment should be excluded.  

At this point we cannot do this by investigating the periodicity itself since that would require knowing the 

landmarks, in particular the global maxima of each period in the VFR waveform. On the other hand, visual 

inspection of each signal segment is impractical. Therefore, we explore what can be considered feasible 

flow values in the sensor waveform and what can be considered clear deviations in these values. Again, 

there can be times when there are occasional deviations such as Ectopic heartbeats, however, the 

objective is to find when a large part of the signal or even the whole signal is corrupted.  

We believe that by computing robust statistics of subsegments using a sliding window throughout the 

signal segment, results in a better understanding what can be considered feasible for the values in the 

waveform and for detecting when interruptions occur. The analysis is performed per subject due to inter 

subject dependencies. The chosen statistics are the median, the 25th percentile and the 75th percentile of 

the flow rate values captured in the sliding window. These statistics make robust estimates since extreme 

values are excluded. 

The first step is to compute these subsegments using a sliding window through all the signal segments 

computed in the Section 4.6. The sliding window should cover a couple of heartbeats to capture the 

deviation occurring over a longer period and not only due to a physiological phenomenon such as an 

Ectopic heartbeat, which we believe occurs in this signal only during one period. Since each signal segment 

contains 1 minute of measurements, a feasible window size could be using the ventilation rate, namely, 

how many breaths the subject took per minute. Based on the study protocol, the ventilation was 12-15 

breaths/minute. This indicated that one respiration cycle was 4-5 seconds. We chose the shorter period 

as window length. Since the average number of calibration points is 18, this would imply approximately 

270 windowed data segments per subject. After this, the 25th percentile, median and 75th
 percentile of 

each data segment were computed.  

To investigate the nature of the flow rate values, each computed statistic of all subsegments was plotted 

in its own histograms as depicted in Figure 14. No assumptions of the distribution were made since it is 

not known how underlying physiology and interventions affect the flow rate measurements. 
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Figure 14. Histograms showing the distribution of the 25th percentile, median and 75th percentile of the 
flow rate of the subsegments for Subject 4. The bin size is chosen to be 30. 

 

Figure 15. Scatter plots comparing the 75th percentile of each subsegment with both the median and 25th 
percentile of each subsegment. The color of the datapoints indicate the original signal segment which is 

associated with a calibration point which is abbreviated as CP in the legend. This plot shows each 
subsegment of Subject 4. 

Figure 14 shows the distribution of the data obtained from the above described approach for Subject 4. 

From the figure, it is clear that for this subject the 75th percentile of the flow rate in the windowed data is 

around 500 mL/min however, sometimes higher (around 700 mL/min) and sometimes lower (around 300 

mL/min). This is the result of the different interventions and physiology contributing to the change of flow 

rate. For the median flow rate, around 70 mL/min was measured most frequently. Finally, the 25th 

percentile indicated that sometimes negative flow occurred, and the most frequent value was around 0. 

From the domain knowledge, occasional negative flow is feasible. Based on this plot, no deviating or 

suspicious values were identified. In addition, the scatter plots show well grouped datapoints, with some 

groups containing slightly more variability than others, which can be the result of variating respiration rate.  

Next, we demonstrate how deviating flow rate values were detected. The subject with the noisiest signal 

segments was Subject 9, which will be used as example. Again, the histograms showing the distribution of 
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the median, 25th percentile and 75th percentile of the flow rate values in the windowed data were 

computed and plotted .  

 

Figure 16. Histograms showing the distribution of the 25th percentile, median and 75th percentile of the 
flow rate of the subsegments for Subject 9. The bin size is chosen to be 30. 

Compared to Subject 4 in Figure 14, the most frequent values for all statistics of interest is around value 

0. This seems strange since the waveform is expected to be periodic, which implies that there should be 

distinction between the statistics of the windowed data, especially for the 25th and 75th percentile. As was 

concluded from Figure 14, it would make sense that the 25th percentile can obtain values close to 0, 

however, having all three statistics being most frequently around 0 is not feasible. 

To identify which signal segment(s) contains the deviating values, we extracted the values from the first 

bins of each histogram and checked around which calibration point this windowed data was measured. In 

addition, scatter plots were created showing how the windowed data behaves per calibration point and if 

there are cases when whole signals are around zero. In this case there should be data points close to the 

origin. 

 

Figure 17. Scatter plots comparing the 75th percentile of each subsegment with both the median and 25th 
percentile of each subsegment. The color of the datapoints indicate the original signal segment which is 

associated with a calibration point which is abbreviated as CP in the legend. This plot shows each 
subsegment of Subject 9. 
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The main deviation is also captured in the scatter plot e.g., when observing CP 14 (light pink). For these 

data points all statistics, namely, median, 25th percentile and 75th percentile obtain flow rate values around 

0. This example also has some points scattered across the plot, indicating occasional interruptions in the 

pulse signal. This same holds for CP 7, CP 8, CP 10, and CP 11. In addition, it seems like CP 9 is completely 

interrupted which is indicated by no datapoints being visible in the scatter plot, since all are overwritten 

by measurements at later calibration points e.g., CP 11 and CP 14. Based on the figures of the histogram 

and the scatter plot, we can get indication of when there are interruptions in the signal segments. For 

example, when visually inspecting the signal segments at CP 11 and CP 14 in Figure 18, it is clear that the 

expected waveform is violated in both the left figure and right figure. The left figure shows no periodic 

signal whereas the right figure shows periodic data in the beginning of the signal, before the calibration 

point, after which the signal is interrupted. 

  

Figure 18. Interrupted flow waveforms for Subject 9. Examples are given at calibration point 11 (left) and 
at calibration point 14 (right). 

Due to limited domain knowledge of the signal waveform with respect to feasible flow rate values, we 

shouldn’t exclude a signal without verifying that there indeed are multiple missing periods resulting in that 

the three statistics of interest are around 0. By performing this analysis, we obtain indication about which 

signal segments could contain missing periods that are not for example Ectopic heartbeats. By visually 

inspecting the signal, we check if the waveform lacks periodicity in the form of multiple missing peaks, 

similar to the examples shown in Figure 18, such that there are periods during which the flow rate 

measurements are continuously close to the x-axis.  

If there is only one missing systolic peak, like depicted in Figure 11, this signal segment shouldn’t be 

excluded. However, based on the length of the window, the subsegments should contain multiple periods 

and therefore, also capture if the signal contains more than one missing period. 

If the waveform meets the exclusion criteria, we exclude the complete signal segment. Manually excluding 

signal segments through visual inspection can be used in data cleaning of physiological signals, due to the 

uncertainties associated with underlying physiology itself and measurement processes. By using this data 

cleaning approach, we can find the signal segments with interrupted periodicity, which can then be 

excluded from the analysis. We performed this data cleaning approach for each subject.  

Based on the lessons learnt in this project, the following noise detection method can be used for 

identifying when the signal might contain missing periods. To achieve this, the following steps were taken: 
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1. For each subject, divide the signal segments into subsegments of length l, where l contains the 
signal over 4 seconds. This segment length is expected to contain multiple heartbeats and 
therefore captures the periodicity of the signal even in the presence of physiological deviations 
e.g., Ectopic heartbeats where one heartbeat is missing.  

2. Compute the 25th percentile, median and 75th percentile for each subsegment.  
3. Inspect the three histograms showing the 25th, the 50th and the 75th percentiles of all subsegments 

per subject and detect deviations from expected values. If one of the statistics obtain multiple 
subsegments with too low or too high values, then there is a high chance that the periodicity 
cannot be detected, and the signal remains e.g. close to the x-axis.  

4. Create scatter plots comparing the 75th percentile to both the median and the 25th percentile. This 

approach is chosen because when periodicity can be detected in the signal, then the 75th  

percentile obtains significantly higher values than the other two. It is also expected that the 

statistics of subsegments from the same signal segment are scattered densely in groups. Some 

groups can have more variability than others depending on fluctuations in the signal segment. If 

there are groups close to the origin belonging to the same signal segment, then the compared 

statistics indicate missing periods in that signal segment. The same argument applies for groups 

that are scattered around significantly higher values than the rest of the groups. 

5. Based on these plots, identify the signal segments with missing periods. Visually inspect these 

signal segments to determine if this indeed is the case. If the signal segment contains multiple 

missing periods consecutively, we exclude the whole signal segment since we do not know what 

uncertainties and errors it might introduce in the modeling.  

Finally, we discuss briefly what kind of limitations our method might introduce in the modeling part. Based 

on the way we estimated the window size it could be that we have overlooked some spikes in the data. 

The term spikes refer to significantly higher flow rate values than the neighboring peaks. In case these 

spikes occur only ones in the window, then the chosen statistics will not capture this deviation as the high 

value of the spike might be only visible in the 90th or 95th percentile. Therefore, we cannot determine 

based on this approach if there is high frequency noise in the data in the form of spikes occurring irregularly 

in the signal segment. This limitation must be kept in mind in the modeling phase since we do not know 

its effect on the results.  
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5 Modeling 
In this chapter we address the first research question which is how we can automate detecting and labeling 
landmarks. We do this by identifying the requirements for our model, testing two model candidates, and 
evaluating them. In the terms of the CRISP-DM methodology, this section can be divided into the following 
subsections: (1) selecting modeling technique(s); (2) building the model(s) and (3) assessing and evaluating 
the model(s) [22].  

5.1 Select modeling technique(s) 
When selecting a modeling technique, the expected output and the requirements should be set. The goal 
of the algorithm is to detect and label the defined landmarks to be used for characterization of the VFR 
signal and future analysis. The following requirements should be met by the model: 

I. The landmarks of each period should be detected and labeled. 
II. The landmarks should be separated from the technical noise present in the signal. 
III. The model should detect when Ectopic heartbeats occurs. 

The objective is to use machine learning for finding the landmarks of the VFR signal from each cardiac 
cycle, from now on referred to as period, and asses if these landmarks can be used to describe the signal 
segment in terms of (1) phasicity (2) direction of flow and (3) resistance.  

Based on the first requirement, namely that landmarks from each period should be detected and grouped 
together, applying machine learning for this task seems like a feasible approach. As opposed to supervised 
learning, unsupervised learning does not require labeling of landmarks a priori. In many previously 
conducted research articles presented in Section 4.2, the landmarks are either manually labelled by 
experts or by using a custom-made algorithm. In addition, the waveform of one period (cardiac cycle) per 
subject is normally of interest, whereas in this work the objective is to automate the labeling of landmarks 
of all periods occurring over one minute around all calibration points for all subjects. 

Based on the scope of this work, it is not feasible to label landmarks manually for a supervised learning 
approach because: (1) it is not doable to label all landmarks for such a large number of periods, and (2) 
there is not enough domain knowledge to ensure that the landmarks are labeled correctly. Therefore, an 
unsupervised learning algorithm should be considered for clustering landmarks.  

A commonly used unsupervised learning technique is clustering, which is a method for clustering data into 
groups based on their similarities. It is common enough that an article was written for the soul purpose 
for addressing common mistakes when clustering biomedical data [45]. Further, after inspecting the data, 
we thought that using clustering would make a great starting point. In the following section, an overview 
of different clustering methods is given with respect to the above given requirements.  

5.1.2 Clustering algorithm for detecting landmarks 
In this section, the different clustering algorithms will be evaluated with respect to the requirements set 
to our model.  The four commonly used algorithms are Hierarchical clustering, K-means clustering, DBSCAN 
clustering, and statistical methods e.g., Gaussian mixture models [45].  

Hierarchical clustering creates clusters in a tree looking structure also known as a dendrogram. A 
dendrogram groups similar data in a tree shaped structure where the root represents the entire dataset. 
The branches of the tree then form the clusters. Hierarchical clustering is useful when data contains 
clusters within clusters, or when the data may have nested relationships [45]. There are two ways to 
perform hierarchical clustering, namely agglomerative hierarchical clustering, and divisive hierarchical 
clustering [46], [47]. The agglomerative hierarchical clustering method uses bottom-up approach, namely 
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starting from the leaves and merging clusters based on a chosen distance metric up until the root is 
reached. In general, agglomerative is more used in applications [46] and is the approach chosen for this 
work.  The divisive hierarchical clustering method uses a top-to-bottom approach and starts from the root 
down until all single data instances have been reached [46].  

For the VFR waveform, hierarchical clustering was mainly considered since we expect nested structure in 
the local extremes due to the presence of technical noise (presented in Section 4.5.2) in the flow rate 
signal. For calculating the distances between clusters, the Ward linkage method was used. The Ward 
linkage is commonly used in hierarchical clustering as it computes the clusters based on the incremental 
sum of squares when merging clusters. In other words, the data is clustered in such a way that when joining 
clusters, the increase of the within-cluster sum of squares is minimized. The reason for choosing this 
linkage is that the Ward linkage not only considers the distance between clusters but also aims to minimize 
the within cluster variability [47]. 

The Ward’s linkage is calculated in the following way [46], [47]: 

𝑊𝑎𝑟𝑑(𝑆𝑖, 𝑆𝑗) =  
𝑛𝑆𝑖

𝑛𝑆𝑗
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, 𝑐𝑆𝑗

), 

Where 𝑆𝑖 and 𝑆𝑗 are two clusters to be merged and  𝑛𝑆𝑖
= |𝑆𝑖| and  𝑛𝑆𝑗
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2

 is the distance between centroid 𝑐𝑆𝑖
 of cluster 𝑆𝑖 and centroid 𝑐𝑆𝑗

 of cluster 𝑆𝑗. 

K-means clustering algorithm clusters data based on the distance of the datapoint to the center of the 
cluster, also known as a centroid based clustering algorithm [45]. This results in the clusters that are 
roughly  spherical in shape. The main parameter in K-means is the number of clusters, where the choice 
of this parameter may significantly affect the end-result of the algorithm [45]. In addition, the K-means 
algorithm performs poorly on irregularly shaped data [45] e.g., half-moon shaped clusters.  

K-means was considered due to its simplicity and intuition of the expected number of clusters. With 
intuition, we mean that ideally the local minima are clustered in two separate clusters, and the local 
maxima are clustered in two separate clusters. However, due to the uncertainty of the noise in the 
waveform, choosing the right number of clusters for separating the landmarks is essential. For example, if 
we were to choose K = 2 for clustering local minima, and there is some local noise in the form of a local 
minima close to the systolic peak, this results in that any local minima on the bottom of the signal will be 
clustered in the same cluster, if they are considered more similar in value than the local noise on the top 
of the signal. Therefore, due to the occurrence of local noise in the waveform, it is not certain what the 
optimal number of clusters will be to distinguish these landmarks. In addition, no assumptions should be 
made about the shape of the clusters, which is assumed to be spherical for K-means clustering. 

DBSCAN clustering is a density-based algorithm and  is useful for identifying densely connected data and 
for finding complex structures in lower dimensional data [45]. This algorithm has two main parameters: 
(1) epsilon and (2) minimum number of points.  

Epsilon sets the density of the cluster, whereas minimum number of points literally indicates the minimum 
number of datapoints in each cluster [48]. The minimum number of data points can be estimated based 
on periodicity, namely through estimating the heart rate. On the other hand, the DBSCAN is useful for 
excluding outliers of the data, making the right choice of epsilon essential . However, due to uncertainties 
in the signal such as fluctuations where the amplitude of successive landmarks introduces more variability 
of the flow rate measurements, the choice of epsilon becomes specific for each signal segment. In Figure 
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15, an example of a fluctuating signal is shown, where the variance of amplitude between local minima in 
the bottom of the signal is high. This could result in clustering landmarks as outliers if epsilon is wrongly 
estimated. Therefore, if we choose to use DBSCAN, epsilon will need to be set manually for each signal 
and if chosen wrong, some landmarks might be classified as outliers which is not desirable. 

 

Figure 19. Example of a signal segment where fluctuation occurs. This is a scenario when the DBSCAN 
clustering algorithm might cluster landmarks as outliers if the density parameter epsilon is incorrectly 
estimated. 

Statistical methods cluster data based on the fitting different statistical distributions to the data e.g., self-
organizing maps and Gaussian mixture models [45]. This approach was not considered suitable for our 
purpose since no assumptions were made of the distribution of the local extrema. 

After assessing the different clustering algorithms, the hierarchical clustering algorithm was considered 
the most suitable clustering algorithm for the objective of this research. Regarding the requirements set 
in the beginning of this section, the reasons for choosing the hierarchical clustering algorithm is the 
following: 

• Hierarchical clustering can be used when there is nested structure in the data, which is the case 
with the noisy local extremes/technical noise. 

• No specific number of clusters need to be set. 

• The Ward linkage finds clusters by minimizing the incremental sum-of-squares of merging 
clusters. It is useful because it not only considers the between cluster distance but also the within 
cluster distance. Minimizing the variance within clusters will aid in grouping the noise around the 
landmarks into the same cluster after which the actual landmarks can be identified in these 
clusters by choosing either the maximum or minimum value depending on if a local maximum or 
local minimum is of interest, respectively.  

In the next section we describe how we optimize hierarchical clustering. 

5.1.3 Choosing the optimal number of clusters 
For the hierarchical clustering the specific number of clusters were NOT defined beforehand and therefore, 
we needed an internal validation index to find the optimal number of clusters. If no internal validation 
index is used for determining the number of clusters, a threshold or cut-off value with respect to the 
distance between clusters would need to be defined. When considering only one signal segment, setting 
the threshold is not a tedious task since only the cutting point of the dendrogram need to be determined. 
However, this threshold could differ per signal segment and the cutting point would have to be chosen 
manually for each segment based on visual inspection of a dendrogram, and if chosen wrong, possibly 
exclude local minima or local maxima.  
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For an internal validation index, the Silhouette validation index was used. The Silhouette index for a 
datapoint indicates the strength of the membership of that point in the cluster. The Silhouette index is 
computed in the following way [49]:  

For a point 𝑖 in a cluster 𝐶. Firstly, the average distance 𝑎(𝑖) to all other data points in cluster 𝐶 is 
computed. Then the average distance 𝑑(𝑖, 𝐵) is computed to all other values in any cluster 𝐵 where 𝐶 ≠
𝐵. From here, the value 𝑏(𝑖) is computed:  

𝑏(𝑖) =  𝑚𝑖𝑛𝐶≠𝐵𝑑(𝑖, 𝐵) 

Using 𝑏(𝑖) and 𝑎(𝑖) the Silhouette index 𝑠(𝑖) for point 𝑖 can be computed: 

𝑠(𝑖) =  
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 

The value 𝑠(𝑖) ranges from -1 to 1, where the closer the value is to 1 the better this datapoint 𝑖 belongs to 
its own cluster. Finally, the average of the 𝑠(𝑖) of all points indicates the optimal number of clusters [18]. 
The closest value to 1 then determines the optimal number of clusters. This validation index was used 
since it had been noted in a previous article [18]. Later in the evaluation this index turned out to be 
effective, so no further validation indices were considered, however, we make note in future work that 
other validation could also be explored.  

5.1.4 Separate landmarks from local noise 
After choosing the method for clustering local extremes of the flow rate measurements, the requirement 
of separating the landmarks from the noisy local extremes is discussed. This should be done using a 
characteristic inherent to the expected waveform. We believe that by an inherent characteristic reflects 
on the true quality of the signal.  

Based on the choice of clustering algorithm (Section 5.1.3),  it is expected that densely occurring local noise 
around the actual landmarks get clustered in the same cluster. In addition, what separates the landmarks 
from each other and from local noise is periodicity. Therefore, the inter-beat interval (IBI) estimated in 
Section 4.4.2 can be used as an estimate of periodicity for separating the local extremes from noise. This 
is done by taking either the minimum or maximum value if the number of timestamps between successive 
extremes in the same cluster is smaller than the defined periodicity. We believe that periodicity should be 
robust since it is expected to be consistent throughout the signal segment. 

5.1.5 Detect physiological deviations  
In Section 4.5.1 we identified some physiological anomalies in the VFR signals. One noted anomaly was 

the Ectopic heartbeat. The Ectopic heartbeat should be considered since it could be impacting the 

effectiveness of the model.  

The Ectopic heartbeat can be detected when a systolic peak is missing and with hierarchical clustering, it 
is expected that the peak systolic flow values of each heartbeat get clustered in the same cluster. Then by 
calculating the time points between successive peak systolic flow values, the inter-beat interval (IBI) can 
be calculated. If there is one systolic peak missing during one cardiac cycle, namely, roughly twice the IBI, 
then we believe that an Ectopic heartbeat has occurred. 
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5.2 The first iteration of the model 
In this section, the model for computing the landmarks using hierarchical clustering is presented. The 
approach is based on clustering local minima and maxima of the VFR waveform, with the objective of 
detecting and labeling local maxima as either peak systolic flow (PSF) or peak diastolic flow (PDF), and local 
minima as either early diastolic flow (Early-DF) or end diastolic flow (End-DF).  

The goals of this model are:  

(1) to cluster the four landmarks in their own clusters 
(2) separate the landmarks from noise 
(3) detect deviations in the signal, namely Ectopic heartbeats 

The idea is to first cluster local minima and maxima of the raw signal separately into clusters and this way 
give them labels. Then the model uses periodicity of the waveform for excluding local noise for detecting 
the landmarks. From now on any local minima are referred to as valleys and any local maxima are referred 
to as peaks.  

In the case of the VFR waveform, 1D clustering of the original flow rate values turned out to be the best 
and simplest option, since adding additional dimensions did not contribute to the end results of the 
clustering. For example, dimensions such as the change in amplitude or time passed between two 
successive local maximum/minimum. 

The inputs of the model are the peaks and valleys of the raw VFR signal segment f, which is a timeseries 
of the flow rate values of a windows size of ±30 seconds around PiCCO calibration points, the sampling 
rate which in the case of the VFR signal is 120 Hz, and finally, an approximation of the highest average 
heartrate BPMmax  based on literature in Section 4.4.2. BPMmax is used for calculating the minimum 
periodicity between values in the same cluster. 

There are 4 main functions in the first iteration of the model: 

(1) Cluster peaks and valleys separately. 
(2) Exclude local noise from clusters expected to contain the global peaks and global valleys of each 
period in the signal segment. 
(3) Merge clusters in cases there are fluctuations in the signal causing landmarks of the same group to be 
clustered in different clusters. An example of when clusters require merging is given in Figure 20. These 
functions are discussed in further detail in following subsections.  
(4) Identify remaining landmarks. 

5.2.1 Cluster peaks and valleys 
Firstly, the model computed all local minima and maxima flow rate values (peaks and valleys) in the raw 
VFR signal.  After this, hierarchical clustering was implemented for clustering separately peaks and valleys, 
using the Ward linkage as the distance metric and the Silhouette evaluation index for determining the 
optimal number of clusters. When all peaks and valleys had been clustered, the centroids were computed 
for each cluster. The centroid of a cluster was defined as the mean of the values in that specific cluster.  

The model started by investigating two clusters, namely, cluster CpeaksMax and cluster CvalleysMin. Cluster 
CpeaksMax was the cluster with the largest centroid and containing peaks, whereas cluster CvalleysMin was the 
cluster with the smallest centroid and containing valleys. 

Based on landmark definitions and the expected waveform, the assumption was that the values in CpeaksMax 
and CvalleysMin contain the PSF landmarks and Early-DF landmarks, respectively. The reasons for investigating 
the aforementioned clusters first were the following: 
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• It is uncertain which clusters contain the values of End-DF and PDF, namely local extrema of each 
period. Therefore, it is natural to start searching for the landmarks of PSF and Early-DF as they are 
assumed to represent the global maximum and minimum of each period, respectively.  
 

• The values in CvalleysMin can answer the question if the cardiac cycles of the flow rate segment 
contain monophasic or multiphasic phasicity and if the flow direction of the cardiac cycle are 
antegrade or retrograde. If the cluster with the smallest centroid contain negative values, then 
there are cardiac cycles that are multiphasic and retrograde.  
 

• The global maxima of each period are expected to be clustered in CpeaksMax . These landmarks are 
important for deciding the resistivity of the segment since the upstroke and downstroke need to 
be analyzed.  
 

• By determining the global peaks and valleys of each period, both PDF and End-DF can be found by 
finding the largest and smallest values in the window ranging from the Early-DF landmark of a 
period the PSF landmark of the next period. The PDF and End-DF is used for analyzing resistivity.  
 

• If the cluster number of both PDF and End-DF are different to the cluster number of both PSF and 
Early-DF, then the clustering algorithm has managed to cluster the landmarks into four clusters 
which is expected from the algorithm.  

 

 

Figure 20. Example of a VFR signal when fluctuation in the signal results in the valleys of Early-DF of each 
heartbeat to be clustered in different clusters (pinks and blue clusters). In this case the pink and the blue 
cluster in the below figure should be merged. 
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5.2.2 Exclude local noise 
As concluded in section 4.5.2, the Transonic flow sensors introduce technical noise that is visible in the 
waveform as local noise/extrema around the actual landmarks. After computing clusters CvalleysMin and 
CpeaksMax containing the assumed PSF and Early-DF landmarks, any technical noise should be excluded in 
order to find the desired landmarks. 

The estimated periodicity is calculated by using the maximum heartrate BPMmax (beats/minute) which is 
chosen based on similar studies such as the one considered in this work (given in Section 4.4.2). Knowing 
BPMmax and the sampling frequency allows us to estimate a lower bound of the inter-beat interval (IBI). 
To generalize the term IBI, we call the estimated periodicity period which is calculated using equation: 

 

 𝑝𝑒𝑟𝑖𝑜𝑑 = 60 sec  ×  
𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝐵𝑃𝑀𝑚𝑎𝑥
                                                                                                        (1) 

  

In our model, the function excluding local noise is implemented in the following way: 

1. Compute the number of timestamps between successive values in the same cluster. Successive 
values are defined as values occurring after each other with respect to the occurrence of their 
time stamps in the signal segment. 

2. If the number of timestamps between successive values differ with less than the estimated 
periodicity, exclude either the smaller or the larger value. Choosing which value to exclude 
depends on if CvalleysMin or CpeaksMax is considered. If CvalleysMin is considered, then the maximum value 
of two successive values is excluded from CvalleysMin. If CpeaksMax is considered, then the minimum 
value of the two successive flow values is excluded from CpeaksMax. 

3. Step 1 and step 2 are repeated until there are no more successive values in the same cluster that 
differ with less than the estimated periodicity. 

5.2.3 Merge clusters 
The Early-DF landmark and PSF landmark per period can be missing if there are fluctuations in the VFR 
signal (Figure 20), resulting in that values of PSF or Early-DF might be clustered in separate clusters. 
Therefore, the model needs to check if clusters should be merged. Again, the objective is to use periodicity 
of successive values in clusters CvalleysMin or CpeaksMax to determine if there are landmarks missing from these 
clusters.  

Figure 20 shows a case where the blue and the pink cluster should be merged, since landmarks belonging 
to the Early-DF have been clustered in separate clusters. However, the tricky part is to recognize when 
there are actually values missing from the Early-DF or PSF, and not just one missing heartbeat due to 
physiology (Ectopic heartbeat), example can be seen in Figure 21 for subject 11 calibration point 1.  

When talking about merging clusters for detecting missing global maxima (PSF) of each period, we mean 
that if there are global maxima missing, then cluster CpeaksMax should be merged with the cluster containing 
peaks and having the second largest centroid. Respectively, if there are values missing in cluster CvalleysMin, 
then this cluster should be merged with the cluster containing valleys and having the second smallest 
centroid.  

The following cases for merging clusters were identified: 
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Case 1: If successive values in a cluster are separated by a period indicating missing values occurring non-
sequentially throughout the signal. This is when there is regular/periodic fluctuation in the signal e.g., due 
to respiration. 

Case 2: If successive values in a cluster are separated by a period indicating missing values occurring 
sequentially in the beginning of the signal. This is when there are higher/lower global extrema in the 
beginning of the signal. 

Case 3: If successive values in a cluster are separated by a period indicating missing values occurring 
sequentially in the end of the signal. This is when there are higher/lower global extrema in the end of the 
signal. 

Next, an assumption must be made of when the clusters should be merged. It is important that all the 
values from PSFs and Early-DFs are found, therefore, the chosen number of beats to be missed is one, 
which can happen when an Ectopic heartbeat occurs, as depicted in Figure 21 at approximately 738.075 
minutes. If there is one heartbeat missing between two successive PSF landmarks, the time between these 
landmarks would be approximately two times the periodicity. 

 

Figure 21. Example of an occurrence of Ectopic heartbeat at time in minutes 738.07 in the VFR signal. The 
red stars represent the peaks, whereas the blue stars represent the valleys.  

If there exists an interval that is approximately three times the periodicity, then the signal has skipped at 
least 2 heartbeats successively, which is an indication that landmarks have been clustered in separate 
clusters due to fluctuation.  

Therefore, the assumption for the VFR signal is that 2 heartbeats shouldn’t be missing sequentially. This 
results in that we chose the factor for the upper bound of missing periods to be 3. In other words, two 
successive values in the same cluster should not be separated by approximately 3 times the periodicity. 

Now, since local noise has been excluded by using the estimated period based on maximum heartrate 
from literature, the minimum period between successive values in a cluster is at least the period obtained 
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by using Equation 1. Therefore, a new estimation of the periodicity can be made by finding the minimum 
difference in timestamps between successive values from the same cluster.  

As mentioned before, the assumption now is that landmarks are missing if the time difference between 
successive landmarks is 3 times the minimum periodicity. This value is from now on referred to as maximal 
allowed periodicity (MAP). With respect to Case 1, Case 2 and Case 3 described above the following checks 
were made: 

• Case 1: the model checks if any difference of number of timestamps between successive values 
from the same cluster is larger than MAP. If yes, then merge with the next smallest/largest cluster. 

• Case 2: the model checks if the difference of number of timestamps between the first time point 
of the signal segment and the flow rate value from the cluster occurring first in the signal segment 
is larger than MAP. If yes, then merge with the next smallest/largest cluster.  

• Case 3: the model checks if the difference of number of timestamps between the last time point 
of the complete signal segment and the flow rate value in the cluster occurring last in the signal 
segment is larger than MAP. If yes, then merge with the next smallest/largest cluster. 

If any necessary merging has been performed, we might now have merged a cluster without any local 
noise with a cluster that contains local noise. Therefore, we repeat the steps given in section 5.2.2. and 
section 5.2.3 until none of the cases (Case 1, Case 2, and Case 3) occur. 

5.2.4 Identify remaining landmarks 
After the necessary merging and cleaning of the clusters were performed, the PSF and Early-DF landmarks 
of each period were expected to be found. These values were then used for finding the remaining 
landmarks namely end diastolic flow (End-DF) values and peak diastolic flow (PDF) values. Firstly, the local 
maxima representing the PDF landmarks were computed by using the timestamps of successive End-DF 
and PSF values. Then, the local minima of the End-DF are computed by using the timestamps of successive 
PDF and PSF. How these landmarks were computed are explained in more detail as follows. 

Firstly, the model ensures that the forward search starts from an Early-DF landmark of the current period 
and ends in the PSF landmark of the next period. Then the model finds all the peaks in this window that 
are not clustered in the same cluster containing the PSFs. This check is performed since we expect that 
PDF and PSF landmarks are clustered in separate clusters. Then from all these peaks detected in the 
window, the maximum peak is labelled as the PDF landmark of that period. This procedure is then 
repeated through all cardiac cycles, until all the PDF landmarks are obtained. 

For finding End-DF landmarks, the previously computed PDF landmarks and PSF landmarks were used for 
estimating the window in which the End-DF landmark of a period is expected to occur. The model then 
paired the PDF of the current period and the PSF of the next period to find the smallest valley between 
these values. This value was labelled as End-DF landmark of the current period. This procedure was 
repeated throughout all cardiac cycles in the signal segment. An example of how the model managed to 
label and detect landmarks is given in Figure 22.  

After the remaining landmarks (PDF and End-DF) were computed, the next step is to evaluate the model. 
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Figure 22. Final result of the clustering algorithm for subject 8 in the signal segment around PiCCO 
calibration point 1 where the landmarks have been labelled and detected. 

5.2.5 Evaluation of the first model iteration  
In this section, the model presented in the previous section is evaluated to determine its effectiveness. 
The CRISP-DM methodology is based on iteratively improving the model, based on identified limitations in 
the model evaluation. Two main limitations were identified in this approach: 

Limitation 1: It is possible to miss a global minimum of a period which violates the assumptions of the 
expected waveform and underlying physiology since this would imply that there is no diastolic phase. 

Limitation 2: It is possible that no local minima or maxima occurs between Early-DF landmark of the 
current period and the PSF landmark of the next period, implying that we won’t find remaining landmarks.  

When considering limitation 1, there are two factors to account for; (1) the requirement of obtaining 
separate clusters for Early-DF and End-DF is not feasible as can be depicted in Figure 23, (2) consequently, 
the choice of periodicity used for excluding local noise might result in global minimum of a period being 
excluded completely which violates the expected waveform.   

These factors were discovered when the order of occurrence of the landmarks was investigated. More 
specifically, after the model had computed all the landmarks, the landmarks were sorted based on the 
time of occurrence. Consecutively, the cluster labels of the sorted landmarks were used for (1) determining 
the number of clusters, (2) the order of occurrence of the landmarks during each period. If there were four 
clusters, then the assumption was that the model had managed to distinguish between four landmarks. If 
the there are two clusters, the algorithm has managed to find the global peaks and valleys of each period. 

If the algorithm finds three clusters, either PSF and PDF are clustered in the same clusters, or Early-DF and 
End-DF are clustered in the same cluster. This is not desirable; however, it can be that the values of Early-
DF and End-DF are similar in flow rate value such that hierarchical clustering still clustered these landmarks 
in the same cluster.  
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In the end, finding four unique clusters did not necessarily mean that all the landmarks were computed 
correctly. Therefore, the order of occurrence of the landmarks were assessed. Based on domain 
knowledge of the cardiac cycle, both systole and diastole should be possible to identify in the VFR signal. 
Firstly, the PSF represents the global maximum of the period in systole and the whole cardiac cycle. From 
the PSF, the signal should continue to a point in the period where the sign of the first order derivative will 
change from negative to positive in order to enter the phase of diastole, after which the systole starts 
again and we reach the global maximum of the next cardiac cycle. Therefore, we must assume that each 
period has at least one global peak and one global valley. This implies that there needs to be one landmark 
between two successive peak systolic flow landmarks.  

In the example of subject 3 at calibration point 15 (shown in Figure 23), limitation 1 of the current model 
can be identified. Limitation 1 is explained in the following steps:  

 

Figure 23. Limitation 1 of the current model showing the steps used for identifying how the model failed to 
label the desired landmarks. The steps are indicated by numbers 1-4. 

The steps illustrated in Figure 23 are explained as follows: 

Step 1: Starting from End-DF (green point) as labelled by the algorithm, the next landmark is PSF, after 
which the downstroke from PSF marks that the cardiac cycle enters diastole in the period.  

Step 2: Now, since landmarks of Early-DF and End-DF turned out to be clustered in the same cluster, when 
excluding local noise based on the estimated periodicity, the model excluded the landmark of Early-DF 
because the End-DF of the respective cardiac cycle was smaller and these values were separated by less 
than the periodicity. This implies that the model will not find a PDF landmark in the window between End-
DF landmark of the current period and PSF landmark of the next period  because there are no local maxima 
on the upstroke to the PSF. Consequently, no “End-DF” will be found either since this landmark has been 
wrongly labelled as Early-DF. 

Step 3: The problem continues since the End-DF is the global minimum of the period in Step 2 and is 
labelled as Early-DF. Now, if the landmark of Early-DF in Step 3 is larger than the End-DF in Step 2 and the 

1 2 3 4 
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time between these two points are less than the estimated periodicity, no Early-DF will be found in Step 
3. Successively, no other landmarks of the period in Step 3 will be found. This issue was detected since the 
order of landmarks will have two PSF landmarks in sequence. This violates the assumption of the flow rate 
signal waveform and the model excludes landmarks which should be detected based on the requirements. 

Step 4: Since no valleys were detected in Step 3, the landmark in Step 4 will be labelled as Early-DF correctly 
since the number of time stamps between the wrongly labelled Early-DF in step one is surely larger than 
the estimated periodicity. When the Early-DF is labelled correctly, the two remaining landmarks will be 
labelled by the algorithm.  

From this example, two main conclusions were drawn: (1) the periodicity estimated by the maximum 
possible heartrate in the literature might exclude landmarks in the case that landmarks belonging to 
different landmark groups have been clustered in the same cluster, (2) the initial assumption of the signal 
was wrong and the intuition that the landmarks can be clustered into four clusters, two for valleys and 
two for peaks, is not feasible since landmarks of Early-DF and End-DF can be clustered in the same cluster 
and therefore, be separated by a period less than the estimated period. This already is an indication that 
the model will not work for all signal segments. 

When considering limitation 2, there can be cases when there are no local extremes between the Early-
DF of a current period and the PSF of the next period. Limitation 2 was noticed based on cases like the one 
shown in Figure 24. In these cases, the number of unique clusters was 4, however, some cardiac cycle did 
not have any local extremes in the window ranging from an Early-DF landmark of the current cardiac cycle 
and the PSF of the next cardiac cycle. This was noticed when simply checking the number of values in the 
in each cluster.  

 Limitation 2 can be explained in the following steps as shown in Figure 24: 

 

 

Figure 24. Limitation 2 of the current model showing the steps used for identifying how the model failed to 
label the desired landmarks. The steps are indicated by numbers 1-4. 

1 

2 

3 

4 
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Step 1: Starting from End-DF (green point) as labelled by the model, the next landmark is PSF (red point), 
after which the downstroke from PSF marks that the cardiac cycle enters diastole in the period.  

Step 2: The landmark after PSF (red point) is Early-DF (blue point) as labelled by the model.  

Step 3 and Step 4: From Early-DF (blue point), we expect to find PDF landmarks (black point) and End-DF 
landmarks (green point). However, there are no local extremes on the upstroke from  Early-DF (blue) to 
the next PSF (step 4). The model should find an End-DF landmark. For this type of signal, it is difficult to 
say if the local minima and maxima found in the previous and successive cardiac cycle are due to technical 
noise in the signal which introduces local extremes. 

In summary, the following conclusion were made from the evaluation of the first iteration of the model. 
Firstly, the initial assumptions of the waveform were incorrect regarding landmarks of local minima that 
were expected to be clustered in separate clusters. Namely, in some cases Early-DF and End-DF are too 
similar in value and may therefore end up in the same cluster. As a result, by using the estimated 
periodicity for excluding local noise, Early-DF or End-DF landmarks may be excluded.  

Finally, in some cases there are waveforms with no local extremes between an Early-DF landmark in the 
current period and a PSF landmark in the next period. This implies that the model will not detect End-DF 
and PDF landmarks. In other words, the landmark End-DF might not be a local minimum. Specifically, we 
need to find End-DF in order to compute the upstroke to the PSF landmark which is used for describing 
the resistance of the waveform. Namely, if the artery had high, intermediate, or low resistance. As the 
model failed to meet Requirement I in Section 5.1, namely that the landmarks of each period should be 
detected and labeled, the conclusion is that the current model needs to be improved. In conclusion, there 
is too much uncertainty in the signal for only using a naïve approach of clustering for finding all the 
landmarks. The improvements to the model given in this section will be presented in the following section. 

5.3 The second iteration of the model 
Based on the evaluation of the first iteration of the model, in this section we present what we did to 
improve it. In order to improve the first model, an additional layer between clustering peaks and valleys, 
and labeling landmarks needed to be added. With respect to the CRISP-DM methodology, the limitations 
of the first iteration gave us a better understanding of the VFR waveform. What we learned from the first 
iteration of the model is summarized as follows: 

• Landmarks of Early-DF and End-DF can be clustered in the same cluster, and Early-DF is not 
necessarily the global minimum of each period for these signal segments. 

• The period based on the estimation of the maximum heart rate from literature is not a feasible 
estimation for excluding noisy local extrema since this period might exclude desired landmarks if 
two groups are clustered in the same cluster (illustrated in Figure 23).  

• End-DF is not necessarily a local minimum (illustrated in Figure 24). 

Based on these findings, using an estimated periodicity for excluding local noise, merging clusters, and 
investigating the order of occurrence and number of clusters will not be sufficient for finding landmarks. 
Based on previous work presented in Section 4.3, using the first order derivative has been applied for 
finding landmarks. In this work, we combine the approach of computing derivatives of the VFR waveform 
with hierarchical clustering for detecting and labeling landmarks.  

In Section 4.4.1, the expected waveform of the VFR signal was described. Based on the expected 
waveform, the characteristics of the expected first order derivative function of one period in the VFR - 
waveform can be described.  From now on the first order derivative will be referred to as the first order 
derivative (FOD) function of the VFR signal.  
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Again, the starting point of the period (cardiac cycle) is the End-DF landmark, which marks the point in 
time where the diastolic phase ends, and the systolic phase begins. After this point, a steep upstroke to 
the systolic peak (PSF landmark) occurs, the maximum first order derivative (FOD) of the period is achieved 
during this upstroke. From the PSF landmark, the FOD waveform starts to slow down.  Around the point 
of the PSF, the FOD of the signal crosses the x-axis and the sign changes from positive to negative. After 
this point, the steep downstroke starts from the PSF landmark to the Early-DF landmark. During the 
downstroke, the minimum FOD of the period will be achieved. After the minimum FOD, the slope of the 
FOD waveform starts to increase, and around the Early-DF landmark, the FOD waveform will cross the x-
axis and the sign changes from negative to positive. After the crossing of the x-axis, the FOD remains 
positive until a possible PDF landmark, where the velocity waveform would cross the x-axis from positive 
to negative. After this point, the FOD remains negative until the End-DF, where the FOD waveform crosses 
the x-axis from negative to positive marks the area of the end of diastole and start of the next cardiac 
cycle. 

The FOD is calculated using an open source function in Matlab [50] which fits a low order polynomial 
regression model in a sliding window. We use this function since it overlooks noise in the signal. In the 
next section we explain how we calculate the window size of the sliding window. 

5.3.1 Estimating window size 
In this section we describe how we estimated the window size used to computed FOD. For all the signal 

segments we plan to use the same window size. The way the window size is calculated needs to be 

effective for all segments.  

To meet these requirements, the window was estimated based on the steepness of the upstroke and 
downstroke to and from the systolic peak, respectively. In other words, the steepest incline and decline of 
each cardiac cycle in the signal should be captured with the estimated window size. Therefore, an 
approach was implemented where landmarks were marked manually in three periods of three different 
signals, after which the fraction of the period that is dedicated to both the upstroke to the PSF and 
downstroke from the PSF were calculated. The minimum fraction was then used to estimate the window 
size.  

Three VFR signal segments were chosen at the first calibration point based on the objective of finding the 
three segments with the least amount of technical local noise. These signals were chosen since no 
medication had yet been administered at this point, which excluded an additional source possibly altering 
one period.  

 

Table 2. This table shows the necessary data for computing the window size used for calculating the first 
order derivative of the VFR waveform. 

The columns shown in Table 2 are explained as follows. Column 1 represents the subjects from which the 

signal segments were used for estimating the window size. Column 2 represents the timestamp of the 

End-DF landmark of the previous cycle (previous End-DF). Column 3 represent the timestamp of the PSF 

landmark of the current cardiac cycle (current PSF). Column 4 represent the timestamp of the Early-DF 

landmark of the current cardiac cycle (current Early-DF). Column 5 represent the timestamp of the End-

DF of the current cardiac cycle (current End-DF). Column 6 represents the period of one cardiac cycle 

Subject
Timestamp End-DF 

(previous EndDF)

Timestamp PSF 

(current PSF)

Timestamp Early-DF 

(current EarlyDF)

Timestamp End-DF 

(current EndDF)

Period of one cardiac cycle 

(Period CC)
Fraction upstroke (FU) Fraction downstroke (FD)

Minimum(FU, FD) 

(Min Percentage)

Number of Timestamps 

(Num Timestamps)

Subject 3 2639 2653 2680 2736 97 0.14 0.28 0.14 14

Subject 5 2660 2675 2704 2750 90 0.17 0.32 0.17 15

Subject 8 3079 3093 3120 3168 89 0.16 0.30 0.16 14
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(Period CC). Column 7 represents the fraction of the upstroke from previous End-DF to current PSF (FU). 

Column 8 represents the fraction of the downstroke from current PSF to the current Early-DF (FD). 

Column 9 is the minimum between FD and FU. Column 10 is the number of timestamps of the cardiac 

cycle that makes up the minimum percentage. 

The period of one cardiac cycle which is shown in Column 6 is computed in the following: 

𝑃𝑒𝑟𝑖𝑜𝑑 𝐶𝐶 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑛𝑑𝐷𝐹 −  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐸𝑛𝑑𝐷𝐹 

The fraction dedicated to the upstroke from the previous End-DF landmark to the current PSF-landmark 

in the cardiac cycle shown in Column 7 is computed in the following way: 

𝐹𝑈 =  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑆𝐹 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑛𝑑𝐷𝐹

𝑃𝑒𝑟𝑖𝑜𝑑 𝐶𝐶
  

The fraction dedicated to the downstroke from the current PSF landmark to the current Early-DF 

landmark in the cardiac cycle that is shown in Column 8 is computed in the following way: 

𝐹𝐷 =  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑎𝑟𝑙𝑦𝐷𝐹 − 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑆𝐹

𝑃𝑒𝑟𝑖𝑜𝑑 𝐶𝐶
 

The minimum percentage minimum (𝐹𝑈, 𝐹𝐷) in Column 9 can then be used to compute the number of 

timestamps in the cardiac cycle that the window size should at least cover. This number of timestamps in 

Column 10 is computed in the following way 

𝑁𝑢𝑚 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠 = 𝑚𝑖𝑛(𝐹𝑈, 𝐹𝐷) × 𝑃𝑒𝑟𝑖𝑜𝑑 𝐶𝐶 

Table 2 shows that the window size should be roughly ~14-15 timestamps. However, it is better to 
underestimate than overestimate the window size since we want to capture the rate of change of each 
cardiac cycle where the VFR waveform changes abruptly. Therefore, the window size is chosen to be 10 
timestamps by taking the floor of the average estimated window sizes: 

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 = ⌊𝑎𝑣𝑔(𝑁𝑢𝑚 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠)⌋ 

The alternatives of how this window can be explored is discussed more in future work. 

5.3.2 Computing landmarks using first order derivative  
In this subsection, the second iteration of the model is explored   

As shown in the first iteration of the model, clustering local minima of the VFR signal segment did not work 

due to wrong assumptions of the waveform. In previous work, landmarks were detected and labeled based 

on analysis of the first order derivative (FOD) of the waveform. The global peak was in general noted 

manually as the initial point from where backward- and forward search for timestamps of sign change of 

the first order derivative for one period started [9], [10]. Therefore, instead of performing this task 

manually, we want to automatize finding the global peaks of each period for all periods in the signal 

segment by using the hierarchical clustering of peaks explained in Section 5.2. The PSF landmarks are 

therefore computed using the first model. After the PSF landmarks have been obtained, we analyze the 

first order derivative waveform of the signal to find the remaining landmarks.  

In Section 5.3.1, the window size used for fitting a low order regression model for computing first order 

derivative waveform of the whole VFR signal segment was defined. Again, this window size was chosen to 

be 10 timestamps. The following steps were performed in order to detect and label landmarks: 
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1. Use the first iteration of the model explained in Section 5.2 for clustering peaks, excluding local 

noise, and merging clusters to find global maximum of each period. We know based on definition 

that the global maximum in the cardiac cycle is the PSF landmarks, as opposed to the global 

minimum which can be either Early-DF landmarks or End-DF landmarks based on previous results. 

Therefore, it is feasible to assume that hierarchical clustering returns the landmarks of PSF. 

 

2. After the PSF landmarks have been computed, start from a PSF landmark. Perform forward search 
and find the first point in time where the FOD waveform changes sign from negative to positive. 
Take the minimum value in the window between this timestamp and the PSF landmark where the 
search began. This marks the landmark Early-DF. 
 

3. Go back to the next PSF landmark. Perform backward search and find the first point in time where 

the FOD waveform changes sign from negative to positive. Take the minimum value between this 

time stamps and PSF landmark where the search began. This marks the landmark End-DF. 

 

4. Take the window between the Early-DF landmark and the End-DF landmark and find the maximum 

value in this window. This marks the landmark PDF. 

 

 

 

Figure 25. In this figure the results of the model when using the added component of FOD for Subject 3 at 
calibration point 15. Compared to Figure 23, the model managed to detect and label the landmarks 
correctly. 

Compared to Figure 23, where limitation 1 of the first iteration of the model was illustrated, Figure 25 

shows that by using the new iteration of the model, limitation 1 will be addressed. However, this approach 

would not address limitation 2. 
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The reason for this is that when End-EDF is not a local minimum, then it might be that the first order 

derivative function crosses the x-axis from negative to positive only once during the cardiac cycle. This 

implies that when performing backward search from a systolic peak, the forward search from the previous 

systolic peak will result in the same sign change. In other words, performing backward search from a 

current systolic peak should return End-DF landmark and forward search from a previous systolic peak 

should return Early-DF landmark, whereas in this case, only Early-DF landmark is returned. Now, the 

number of times the first order derivative function crosses the x-axis is directly correlated with the chosen 

window size, which introduces more uncertainty to this approach. However, a smaller window size could 

result in capturing the technical noise explained in Section 4.5.2. instead of the actual landmarks. 

Therefore, the approach for estimating the window size given in Section 5.3.1 was chosen. 

In conclusion, limitation 1 may be addressed using only the first order derivative of the VFR waveform. 

This is because even though Early-DF and End-DF are similar in value, if there is a peak diastolic flow in 

between, the FOD-function will cross the x-axis from negative to positive at least twice resulting in finding 

Early-DF by forward search and End-DF by backward search. However, if there are no local extremes on 

the upstroke between the Early-DF landmark of the current period and the PSF landmark of the next 

period, then using only the FOD-function will not be sufficient. In the following subsection, the last step of 

the second iteration of the model is given, where the second order derivative (SOD) of the VFR waveform 

is computed in order to address limitation 2. 

5.3.3 Computing landmarks using second order derivative 
In this section, the approach for addressing limitation 2 presented in Section 5.2.5 will be discussed. To 

recap, limitation 2 is the case when no clear local extrema occur on the upstroke from Early-DF landmark 

to the next PSF landmark. If this the case, the first iteration of the model will not detect the remaining 

landmarks (PDF and End-DF). This limitation could neither be addressed by computing the first order 

derivative explained in Section 5.3.2. Therefore, a final component to the model had to be added, where 

using the second order derivative of the VFR waveform was incorporated.  

Using a combination of hierarchical clustering and the first order derivative function of the VFR waveform 

allows us to compute at least the following landmarks; (1) the PSF landmarks representing the global 

maximum of each period and (2) the Early-DF landmark which is obtained forward search from a PSF 

landmark. However, finding both Early-DF landmarks, End-DF landmarks and PDF landmarks are essential 

for describing resistivity of the artery, which is one of the key descriptors in the resent consensus article 

by Kim et al. [19]. On the other hand, the Early-DF landmarks are important for using the two remaining 

descriptors: flow direction and phasicity. 

This final component of the model is the function of the second order derivative (SOD) of the VFR 

waveform shown in Figure 26. The SOD was computed by differentiating the first order derivative obtained 

in Section 5.3.2.  



58 
 

 

Figure 26. In this figure all the necessary components for finding the landmarks are shown. The top 
illustration shows the raw VFR waveform together with the PSF landmarks detected and labelled by using 
hierarchical clustering. The middle illustration shows the first order derivative of the raw VFR waveform 
which was estimated through a first order regression model in sliding window throughout the signal 
segment. Finally, the bottom illustration shows the second order derivative of the waveform which is the 
final component in the model and is used for computing the End-DF landmark. 

Based on the domain knowledge with respect to the cardiac cycle, the diastolic phase ends and the systolic 

phase begins in the End-DF landmark. In the beginning of the systolic phase, we know that the rapid 

ejection is visible in the VFR waveform as a steep upstroke to the systolic peak. The start of the rapid 

ejection is also when the maximum acceleration of that period is achieved. In addition, there is a short 

time segment in the systolic phase which happens before rapid ejection which is called the isovolumetric 

phase. As we do not know the time period for the isovolumetric phase, we assume that this is the 

timestamp prior to the maximum acceleration of the blood flow in the systolic phase. Therefore, we 

redefined the End-DF landmark as the flow at the timestamp prior to the maximum second order 

derivative of the VFR waveform in each cardiac cycle. In other words, the End-DF landmark is estimated as 

the time point before the maximum acceleration in the window between the first time point that the FOD 

changes sign from backward search of the systolic peak and the systolic peak itself. This definition was also 

confirmed by experts to be a feasible time point of the End-DF landmark.  
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Figure 27. This figure showing the desired landmarks by obtained by the model. The top illustration shows 
all the desired landmarks. The middle illustration shows the first order derivative of the raw VFR signal 
segment and the time point of the sign change from negative to positive which is used for defining a 
window in which we expect to detect the Early-DF landmark. The bottom illustration shows the second 
order derivative of the raw VFR signal segment and the time point prior to the maximum acceleration of 
the cardiac cycle. This point in time is used for defining a window in which we expect to detect the End-DF 
landmark. 

As illustrated in Figure 27, the model managed to address limitation 2 defined in Section 5.2.5. which was 

identified for Subject 7 at calibration point 6. We believe that by using this model we are able to detect 

the defined landmarks. In the following section, the final model evaluation is performed. 

5.3.4 Evaluation of the second model iteration  
In this section the second iteration of the model will be evaluated. This will be done by re-visiting all the 

requirements set to the model in Section 5.1. and discussing systematically if the requirements were met. 

The first requirement is that the landmarks of each period should be detected and labeled. By using the 
second model iteration, the landmarks are believed to be detected and labeled correctly based on the 
functions described in the previous section. This is checked again by evaluating the periodicity between 
successive landmarks in each group. Since the model is expected to separate the landmarks from technical 
noise, second requirement can also be evaluated using this evaluation method. The second requirement 
is that the landmarks should be separated from the technical noise present in the signal. 

Before the periodicity between landmarks is investigated, a simple check can be performed regarding the 
number of landmarks in each cardiac cycle (period) in the waveform of the signal segment. It is expected 
that each cardiac cycle has the same number of landmarks, namely, one PSF landmark, one Early – DF 
landmark, one PDF – landmark, and one End-DF landmark. Since finding Early-DF and End-DF is based on 
analyzing the FOD waveform and SOD waveforms in a window ranging between two successive PSF 
landmarks, we can expect that if hierarchical clustering has found n number of PSF landmarks in a signal 
segment of 1 minute, then for all remaining landmark groups, we expect n – 1 number of landmarks in 
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each group. If this is not the case, then the model has missed landmarks. Therefore, we first check that 
each signal segment has the expected number of points. 

We observed two signal segments with missing PDF landmarks for Subject 14, namely, at calibration points 
4 and 10. The reason for this was that for these signal segments there still remains high frequency noise 
that was not captured in the data cleaning. This indicates that also the window size for computing the FOD 
and SOD is too large for noisy signals. In these cases, the time point of the maximum SOD which was used 
to compute End-DF landmark is the same time point of the first sign change of the FOD used for computing 
Early-DF. Since the End-DF is the time point prior to the maximum acceleration, the End-DF might get 
labeled at a time point before Early-DF. If this happens then the PDF will not be detected. This is a limitation 
of the data cleaning part, indicating that more extensive signal processing should have been performed, 
for example by using low pass filtering.  

These two signal segments for Subject 14 were then excluded from the remaining model evaluation 
because if there are landmarks missing, we cannot assume that the other landmarks have been computed 
correctly. The following step in the model evaluation was performed in the following way. Firstly, the 
periodicity between successive landmarks per group were computed. If the landmarks have been detected 
and labelled correctly, it is expected that the periodicity between landmarks in successive cardiac cycles is 
approximately the same length between successive PSF landmarks, successive Early-DF landmarks, 
successive End-DF landmarks, and successive PDF landmarks. Figure 28 shows how the periodicity 
between successive landmarks has been calculated. 

 

Figure 28. This figure shows how the periodicities of successive landmarks per landmark group are 
estimated for model evaluation. 
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After the periodicity has been computed between successive landmarks per group, we perform a 

comparison of the periodicities. As stated before, it is expected that these periods are approximately the 

same length. For example, Periodicity(End-DFi , End-DFi+1) should be approximately the same length as 

Periodicity(PSFi , PSFi+1). Therefore, the difference between these periodicities in each cardiac cycle should 

obtain a value around 0. The unit for the periodicities is the number of timestamps. Since the PSF are 

considered the initial time points for finding the remaining landmarks, we compute pairwise the difference 

between the periodicity between successive PSF landmarks and the periodicity between successive 

landmarks in the remaining groups, namely, Early-DF landmarks, End-DF landmarks and PDF-landmarks. 

After the differences have been computed, the distributions of these differences were plotted. Again, we 

explore this distribution per subject to better understand the inter-subject variability. As examples in this 

model evaluation, we show the distribution for Subject 5 and Subject 14 in Figure 30.  

 

Figure 29. This figure shows the distributions of the differences between the periodicities of the landmark 
classes. The illustration on the left shows distribution of the differences between the periodicities of 
successive PSF landmarks and the periodicities of successive Early-DF landmarks detected and labeled in all 
signal segments for Subject 5. The illustration in the middle shows distribution of the differences between 
the periodicities of successive PSF landmarks and the periodicities of successive End-DF landmarks detected 
and labeled in all signal segments for Subject 5. The illustration on the left shows distribution of the 
differences between the periodicities of successive PSF landmarks and the periodicities of successive PDF 
landmarks detected and labeled in all signal segments for Subject 5. The unit of the periodicities are the 
number of number of timestamps. 
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Figure 30. This figure shows the distributions of the differences between the periodicities of the landmark 
classes. The illustration on the left shows distribution of the differences between the periodicities of 
successive PSF landmarks and the periodicities of successive Early-DF landmarks detected and labeled in all 
signal segments for Subject 14. The illustration in the middle shows distribution of the differences between 
the periodicities of successive PSF landmarks and the periodicities of successive End-DF landmarks detected 
and labeled in all signal segments for Subject 14. The illustration on the left shows distribution of the 
differences between the periodicities of successive PSF landmarks and the periodicities of successive PDF 
landmarks detected and labeled in all signal segments for Subject 14. The unit of the periodicities are the 
number of number of timestamps. 

As depicted in Figure 29 and Figure 30, it is clear that the model performed worse for detecting and labeling 

landmarks in the signal segments of Subject 14 (Figure 30) than for Subject 5 (Figure 29). This can be 

concluded by inspecting the variability of the distributions. By looking at the illustration of Subject 5, the 

variabilities in the distributions of the differences are much smaller, indicating that the model performed 

better in detecting the landmarks since successive landmarks in each group occurred approximately with 

regular frequencies. However, when looking at the illustration of Subject 14, there can be cardiac cycles 

where the periodicity between two successive PSF landmarks  is approximately 300 time stamps larger 

than the periodicity of two successive PDF landmarks.  

Subject 5 and Subject 14 were chosen as examples because the histogram of Subject 5 shows results were 

the model managed to detect and label landmarks such that the variability of the differences between 

landmark periodicities remained relatively low, whereas the histogram for Subject 14 showed high 

variability especially when considering the periodicities of the PDF landmarks. In general, the periodicities 

varied the most for the PDF landmarks when analyzing the histograms of the other subjects as well. The 

histograms per subject can be found in the Appendix C.  

It is difficult to say why there is more variability for some subject and it would require us to visually inspect 

these signal segments. However, we expect that there still remains high frequency noise in the signal which 

leads to that both the FOD and SOD waveforms become too noisy for estimating the correct time points 
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used for determining the time range containing the landmarks. This is the result of uncertainties inherent 

to measuring physiological signals using sensors and physiology itself. As an example, we show the results 

of the model for signal segment at calibration point 9 of Subject 14 in Figure 31. This signal segment 

contains difference that obtained a lot of variability in the periodicities (including the example of the 

difference of approximately 300 timestamps between the periodicities of PSF landmarks and PDF 

landmarks).   

 

Figure 31. Example of a signal segment which failed to detect and label the landmarks as expected by the 
model. 

As can be depicted from Figure 31, this signal contains high frequency noise, which results in that the 

hierarchical clustering failed to detect the PSF landmarks. This noise is not the sort of technical noise of 

local extremes around the actual landmarks as we explained in Section 4.5.2, but it is noise which looks 

like a biproduct of the sensor being ill attached. In Figure 31, some peaks are much higher than others and 

therefore, using the functions that exclude noise and merge clusters by using the first model iteration 

could have excluded some of the global peaks in a similar manner to limitation 1 presented in Section 

5.2.5. When we further investigated the FOD and SOD, the window size is too large for this signal segment 

and when performing forward search of the Early-DF landmarks, the sign change was also missing for 

multiple periods making detection of Early-DF landmarks infeasible. This is also an example of the 

limitation presented in Section 4.7. 

In conclusion for evaluating requirement 1 and requirement 2 set to our model, it is difficult to know 

beforehand what to expect from the signal. Finding signal segments containing high frequency noise, like 

the one depicted in Figure 31, could be addressed by using more advanced signal processing approaches. 

Finally, for the third requirement, the algorithm should detect when Ectopic heartbeats occur, is checked 
by again using the periodicity between PSF landmarks, global peaks of each cardiac cycle. Now, as defined 
previously, an ectopic heartbeat implies that the number of time stamps between two PSF landmarks is 
approx. 2 times the actual periodicity. In addition, the heart rate variability (HRV) must be considered 
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when analyzing periodicity. HRV is commonly computed as the standard deviation of the normal-to-normal 
(NN) intervals obtained from QRS complexes in ECG-signals [51]. This data is not in the scope of this work 
and therefore, the standard deviation of the periods computed between all the successive PSF landmarks 
will be used as an estimation of HRV in a specific signal segment. 

The ectopic heartbeats were estimated setting an upper bound for the allowed periodicity. This upper 
bound was calculated by taking the average periodicity of all periods computed by taking the number of 
timestamps between successive PSF landmarks after which the standard deviation (HRV) was subtracted 
from this value. Finally, this value was multiplied by 2. Mathematically, if P contains all periodicities pi 
where i ϵ {1…,n-1} and n = number of PSF landmarks, then the upper bound UB for an inter-beat interval 
(period) between successive PSF landmarks is shown in Equation 2: 
 

 𝑈𝐵 = 2 × (𝑎𝑣𝑔(𝑃) − 𝑠𝑡𝑑(𝑃))                                                                                                     (𝟐)  

 
If the periodicity is above the upper bound it is labelled as an Ectopic heartbeat. This is a rough estimation 
for which more domain knowledge would be required to determine if this is a feasible way to determine 
if an Ectopic heartbeat occurred. The intuition of the method based on the available resources was 
confirmed feasible by a domain expert. Therefore, we can conclude that our model could also be used for 
detecting Ectopic heartbeats in the signal segment. 
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6 Model validation 
In this chapter, the model validation is presented. Model validation in this work is done together with a 

scientist who has been involved in this work from the beginning as a supervisor from Philips Research. In 

Section 6.1, the execution of the model validation is given. In Section 6.2, the results are discussed 

systematically based on the model validation session. Finally, in Section 6.3 a short discussion of the model 

validation regarding the requirements of the model is given. 

6.1 Execution 
The objective of the model validation is to determine if the landmarks were detected and labelled correctly 

and if these landmarks can be used in the future for describing the VFR waveform in terms of phasicity, 

resistance, and flow-direction. Understanding the VFR – waveform and the landmarks require experience 

and domain knowledge; therefore, the model and the findings should be validated by an expert. 

The data used for the model validation was chosen as follows. Firstly, five subjects were chosen at random 

from the total of 11 subjects. Then for each five subjects, one signal segment (±30 seconds around 

calibration point) was also chosen at random. Again, on average each subject has 18 signal segments. 

Finally, for each signal segment one cardiac cycle showing the landmarks is chosen and shown to the 

scientist in the form of a figure in a slide deck. For consistency, the full cardiac-cycle closest to the 

calibration point was chosen for the model validation.  

These five illustrations were shown to the scientist and the following question was asked per illustration: 

Question 1. Can we conclude that the detected landmarks in the figure represent the true landmarks, 

namely Peak Systolic Flow, Early-Diastolic Flow, Peak Diastolic Flow and End-Diastolic Flow? 

After all the five illustrations were shown the second question was asked, with the objective of 

determining if the landmarks could be used to describe the waveform. The second question was the 

following: 

Question 2. Can we use these landmarks for describing the waveform in terms of phasicity, flow direction 

and resistance?  

Since Question 2 is a more generic question which can be summarized for all illustrations the answer to 

this question will be given in the end of Section 6.2, whereas, more detailed answers to Question 1 will be 

presented per illustration in separate subsections. 

6.2 Results 
Five figures were shown to the scientist for model validation. In this section, these five figures are 

presented together with remarks made by the scientist regarding Question 1. The cardiac cycle shown in 

each illustration starts and ends at successive End-DF landmarks. The start and end of each cardiac cycle 

is indicated in each figure. 

6.2.1 Subject 6 at PiCCO calibration point 10 
In this subsection, the first cardiac cycle showing the landmarks of interest is discussed. Firstly, the scientist 

noted that it seemed like Early-DF has been correctly detected and labeled even though there were some 

other extremes on the downstroke. This indicates that the window size used for computing the first order 

derivative (FOD) used for finding Early-DF through forwards search made a good estimate, since the first 
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sign change from negative to positive of FOD occurs in the bottom of the signal and not at prior local 

extremes on the downstroke from the systolic peak. 

 

Figure 32. First cardiac cycle for model validation 

What was pointed out by the scientist is that the sensor itself contributes to noise and inaccuracies in the 

signal. This is uncertainty affects mainly the task of detecting and labeling PDF. This claim was also 

confirmed by the scientist who remarked that the PSF, Early-DF and End-DF landmarks seem to obtain 

correct values, whereas it is difficult to say if the PDF landmark is the actual landmark or noise. 

6.2.2 Subject 11 at PiCCO calibration point 13 
The second cardiac cycle to be discussed is around the 13th PiCCO calibration point for subject 11. During 

this cardiac cycle, there is a clear systolic peak and no disturbances on the downstroke or upstroke, 

resulting in that the FOD can capture the desired sign change.  

 

 

Figure 33. Second cardiac cycle for model validation 

Again, the same remark was made by the scientist, namely, that landmarks of PSF, Early-DF and End-DF 

are correctly detected but it is difficult to determine if the PDF landmark has been detected correctly 

because of the noise in the signal. 

6.2.3 Subject 10 at PiCCO calibration point 1 
In this subsection, the second cardiac cycle showing the landmarks of interest is discussed. This cardiac 

cycle represents the cardiac cycle closest to the calibration point of the signal segment chosen at random. 
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This signal segment shows a one-minute signal segment around the 1st PiCCO calibration point for subject 

10. 

 

Figure 34. Third cardiac cycle for model validation 

Figure 34 is an interesting example of the difficulty of determining the correct landmarks. Based on the 

definition of the PSF, this landmark represents the global maximum of one cardiac cycle. However, by 

looking at the systolic portion of this cardiac cycle, there are two local maxima in the top of the waveform. 

For the PSF landmark, the maximum of the two is chosen. However, it might be that due to noise 

introduced by the sensor, the actual PSF is in between these two local maxima. Another possibility could 

be that the local maxima occurring prior to the detected PSF, is the correct PSF landmark and the second 

local maxima is again noise introduced by the sensor. The scientist noted that this is a main challenge when 

measuring physiological signals using measurement instruments with their inherent limitations.  

For the rest, the PDF in this signal seems to have been detected and labeled correctly, as oppose to 

previous cardiac cycles shown in Section 6.2.1 and Section 6.2.2. where it is uncertain if the PDF were 

found. The detected Early-DF and End-DF landmarks are labeled correctly. 

6.2.4 Subject 5 at PiCCO calibration point 15 
In this subsection, the fourth figure (Figure 35) showing the landmarks of interest is discussed, namely, 

the one cardiac cycle measured for subject 5 at calibration point 15. In the scientist again made a remark 

about the PDF, the other landmarks were correctly detected and labeled.  

 

Figure 35. Fourth cardiac cycle for model validation 
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6.2.5 Subject 7 at PiCCO calibration point 4 
The final example presented to the scientist is the cardiac cycle measured at PiCCO calibration point 4 for 

Subject 7. In Figure 36, the desired landmarks are shown and discussed. Again, the conclusions of the 

scientist were that the PSF, Early-DF and End-DF landmarks were correctly detected and labeled by the 

model, whereas, the PDF landmark is not necessarily detected correctly. 

 

Figure 36. Fifth cardiac cycle for model validation 

6.3 Discussion 
Finally, remarks made by the scientist on Question 2 were that these landmarks indeed can be used for 

describing the waveform in terms of the key descriptors. As for Question 1, the main limitation of the 

model concluded from the model validation is the way the model computes the PDF landmark. Namely, 

due to the noise inherent to the sensors, it is difficult to say if the peak diastolic flow (PDF) detected by 

the model is actually the landmark or noise. The way this limitation affects this work is when trying to 

determine the resistance of the artery, mainly for determining if there is intermediate resistance which 

has an end systolic notch as trademark. 

Based on the model validation session, the scientist is more confident about the way the model is 

computing the PSF, End-DF and Early-DF landmarks. For future work, the way to determine peak diastolic 

flow (PDF) landmark should be further investigated. We believe that this would require more domain 

knowledge which is out of the scope of this thesis.  
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7 Conclusion  
In this chapter we conclude this master thesis by giving an overview of the research, the contribution of 

this work with respect to state of the art, after which, we discuss the main limitations of the approach 

together with possibilities of future work with respect to the limitations. Finally, we conclude by providing 

the final words of this work. 

7.1 Summary 
The objective of this thesis was to create a method using unsupervised learning for detecting and labeling 

landmarks. In addition, we explored the possibility of using the detected landmarks for describing the 

waveform in terms of key descriptors defined in a consensus article by Kim et al. [19], namely, flow 

direction, phasicity, and resistance of the artery. 

This objective was based on an identified gap in related work, where the two main conclusions were:  

(1) machine learning is mainly used for making predictions of pathological states and in many cases, 

parameters derived from landmarks or whole physiological signal segments are used as input. 

 (2) when detecting and labeling landmarks, only one cardiac cycle is normally of interest where the 

landmarks are either manually marked or by using a customized algorithm.  

The result of this thesis is a model for detecting and labeling landmarks inherent to the VFR waveform. 

This model is based on VFR signals measured by Transonic flow sensors and collected from a study with 

11 subjects. Specifically, signals were split into segments measured over 1-minute time period around each 

PiCCO calibration point per subject.  

To evaluate the findings, we computed the periodicities between successive landmarks in each group per 

subject. We analyzed each subject separately since we believed that inter-subject dependencies might 

affect the results. Based on domain knowledge, the expectations were that the periodicities between 

successive landmarks in successive cardiac cycles would obtain approximately the same periodicity. 

Therefore, we computed the differences between the periodicities of successive PSF-landmarks and the 

periodicities per remaining groups. These differences were then plotted in histograms to investigate the 

variability of these differences. The expectations were that the distribution would be centered around 0 

and the variability would be low. We found that: 

(1) for some subjects there was more uncertainty in the waveforms  

(2) the landmark for which the periodicities differed the most was the PDF-landmark. This finding was also 

made in the model validation. 

The model validation was performed in a session with a domain expert, where five randomly chose cardiac 

cycles containing the landmarks were shown and results were validated. The main remark was that it is 

hard to determine if the PDF landmark was the actual landmark or a local peak of noise introduced by the 

sensor. Specifically, due to the noise inherent to the sensors, it is difficult to say if the PDF landmark was 

detected by the model is actually the landmark or noise. In addition, the conclusions were that the since 

the Early-DF landmarks were detected correctly, the waveform could be described by commenting on if 

the waveform was multiphasic or monophasic and if the flow direction was retrograde or antegrade. The 

resistance was more difficult to  comment on due to the uncertainty of the PDF landmark, since deciding 

if the resistance is intermediate requires us to know the location of this landmark.  
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All in all, we managed to answer both our research questions. For research question 1, we found that by 

combing hierarchical clustering with derivative analysis we were able to effectively develop an augmented 

unsupervised learning algorithm to successfully detect and label selected landmarks in signal segments 

measuring VFR. In addition, according to the model validation, it was concluded that these selected 

landmarks could be used for describing the VFR waveform in terms of state-of-the-art descriptors. We 

believe that this method is a good step towards finding a method which detects landmarks that can be 

used in the future for developing a non-invasive hemodynamic monitoring method.  

Although this is a solution for filling the identified gap, there are many improvements that could be made 

which will be discussed in the following section.   

7.2 Limitation and future work 
Below we address different steps that could be taken to improve or expand certain aspects of the model, 

which were encountered while developing the method following the CRISP-DM process model. We list the 

ideas from most relevant to least relevant. 

One of the main components in our model was hierarchical clustering. For optimizing our approach, we 

had to choose an internal validation index for determining the optimal number of clusters since otherwise 

this would have had to be determined based on visual inspection of each dendrogram for each signal 

segment. For this task, the Silhouette index was chosen. Since using this validation index was considered 

to fulfill the requirements set to the model, we did not further explore other validation indices. However, 

for future work, other validation indices e.g., Davies Boudin index or Calinski-Harabasz index [45] could be 

used to compare the results obtained by using the Silhouette index. 

In the second iteration of the model, we estimated a window to fit a low regression model for computing 

the first order derivative (FOD) of the signal segment after which the second order derivative (SOD) was 

computed from the FOD [50]. The choice of the window size might have contributed to the high variability 

of the differences between periodicities of the different landmark groups presented in the model 

evaluation. An example illustrating this was Subject 14 (Figure 30), where the length of periodicities could 

differ by the second order of magnitude. This subject even had two signal segments where landmarks were 

missing. This was due to high frequency noise still being present in the signal segments. This was a 

limitation in the data cleaning part presented in Section 4.7, where signal segments were excluded only if 

there were missing periods in the segments. An idea that didn’t get implemented is applying low pass 

filtering on the signal segments or other more advanced signal processing methods. For determining which 

advanced methods could be used would require more domain knowledge in the field of signal processing.  

In the model validation session, we encountered a waveform where two local maxima were present in the 

top of the signal (Figure 34). The conclusions were that it is difficult to say which one of the peaks represent 

the PSF-landmark due to noise in the signal. One idea is applying a smoothing filter e.g., Gaussian filter. If 

the waveform is smoothed, the position of this PSF-landmark would likely get shifted somewhere in 

between these two values, which violates the definition of this landmark being the global peak of the 

cardiac cycle. The possibility of using smoothing for estimating the position of the landmarks would have 

to be further investigated. 

For evaluating the model, comparing results obtained by other physiological signal (ECG or PPG) peak 

detection algorithms could be explored and applied on the VFR signal. This would require work in (i) 

understanding these different physiological signals, and (ii) acquiring more experience with signal 
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processing. In addition, there are general peak detection algorithms available for any type of signals. 

However, using these general algorithms would require manually setting parameters such as the threshold 

for both the height and the distance between peaks which consequently would require exploration of 

different peak heights and periodicities.  

In addition, using these models for finding the correct landmarks a priori would allow us to explore other 

supervised learning. However, the labeling of the landmarks would still need to be verified by experts since 

analyzing these signals require more advanced domain knowledge.  

Another idea is to explore recurrent neural networks (RNNs), specifically, the Long Short-Term Memory 

(LSTM) architecture. RNNs using LSTM-architecture are commonly used in sequential data processing 

based on time points [52]. With respect to our domain, one physiological signal for which LSTM models 

have been explored is the electrocardiogram (ECG) signal [52], [53]. More specifically, LSTM models have 

been used for segmenting, detecting and predicting P-wave, QRS-complex, T-waves in the ECG signal which 

then could be used for making or confirming diagnoses [52], [53]. Since we can use the order and position 

of the landmarks of the VFR waveform, using RNNs incorporating the LSTM architecture could be used for 

automating detection and labeling these landmarks. 

7.3 Final words 
In this work, I gained experience in working within the field of applied data science. This was a great 

learning process as I had to perform research in the field of cardiology which was a completely new topic 

for me. In addition, this work was performed under unordinary circumstances introduced by the pandemic. 

With respect to the project, I learned that understanding the domain and the data takes time since there 

are so many factors e.g., physiology and sensor characteristics, contributing to the quality of the data that 

finding the best method can be difficult, and most likely there were some factors that were overlooked 

due to lack of domain knowledge. 

It is also important to understand that sometimes the chosen method doesn’t work out the way it was 

expected and that this is the nature of working with data and applying different approaches. In addition, 

working with physiological signals was also a new field for me, where so many sources of error may 

contribute to the end results. Therefore, the CRISP-DM methodology turned out to be a good choice for 

this project since it is suitable for revisiting steps in the process from business understanding to model 

evaluation, to support the findings.  

Finally, I am grateful to have been part of the team at Philips Research and knowing that my research has 

contributed to the development of a non-invasive hemodynamic monitoring technique which is an 

important project in the field of medicine. 
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Field Data Structure Size Explanation

chanIndices cell 1 x 1 Cell containing a double array with the indices of the channels. This array is 

[3,4,5]. This double array suggests that the signal segments are stored in these 

indices of propValues.

chanNames cell 1 x 10 Cell array containing the names of the arteries

data cell 1 x 12 Cell array for which cells 3 to 5 contain either an averge signal or pulse (raw) 

signal. Cell 1 and cell 2 are empty. Based on the available metadata, it is assumed 

that the respective artery from which the streams are obtained are shifted by two 

to the left in the cell array chanNames

rootIndex double 1 x 1 No information available

groupIndices double 1 x 1 No information available

groupNames cell 1 x 1 Empty

propNames cell 1 x 12 Nested cell array containing the explanation of properties of the measured data 

streams.  Cell 1 contains string name cell 2 is empty. Cells 3 to cell 5 contain a 1 x 7 

cell array with the following information: wf_start_time, wf_start_offset, 

wf_increment, wf_samples, NI_ChannelNames, NI_UnitDescription, unit_string. 

propValues cell 1 x 12 Nested cell array containing the data of the respective cells of propNames. Based 

on the size of the array, it is assumed that the data in each cell is the respective 

metadata of the signals in the cells in data   

objectPathsOrig cell 1 x 12 Cell array containing the paths of the channels. The paths are inconclusive, 

however, indicating which artery is connected to which channel. For example, cell 

3 contains the following information: /'Untitled'/'carotid '

numberDataPointsRaw cell 1 x 12 Double array containing the lengths of each signal segment in data. The first two 

entries are 0. 

dataType double 1 x 12 The base of the values in the signal streams in data. The signal segment are of base-

10. Two first entries are 0, rest is 10. 

dataTypeName cell 1 x 12 The type of the signal streams in data. The signal segments are of type double . Two 

first cells contain string void , rest contain string double. 
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