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Abstract—Thermal cameras interpret the captured scene by
sensing the temperature of the objects, enabling thermal cameras
to perceive barely visible objects in particular situations, such
as poor illuminating and foggy environments. This motivates
autonomous driving systems to include thermal cameras in the
suite of the sensors, which compensates for the over-reliance
of conventional RGB cameras on visible light. In recent years,
a decent amount of researches pursued semantic segmentation
tasks using RGB imaging, which aims to provide a class label to
each pixel in an image and which requires costly annotation work.
However, there has been little discussion on semantic segmenta-
tion using thermal imaging. Moreover, few relevant datasets have
been published. Therefore, this work aims to train a semantic
segmentation model using thermal imaging with an unsupervised
domain adaptation (UDA) method. Our UDA approach consists
of two stages: a) unpaired image-to-image translation; b) self-
training with prototypical pseudo label denoising. Comprehensive
experiments show our method can significantly improve the
performance compared to without domain adaptation.

I. INTRODUCTION

After nearly four decades of gestation, autonomous driving
is now becoming a reality. This benefits from the accelerated
growth of deep neural networks in computer vision in recent
years. However, safety is one of the most frequently stated
problems with autonomous driving. The study of [1] claims
that 75% of pedestrian fatalities in the U.S. occurred in a dark
environment. One of the key factors is the limitation of RGB
cameras. RGB cameras are widely used environmental sensors
for autonomous driving. However, they are unreliable in poor
illumination environments, such as low and excessive lighting,
resulting in possible hazards. A solution addressing this prob-
lem is applying thermal cameras instead of RGB cameras. The
reason is that thermal cameras sense the transmitted infrared
radiation of objects independent of the illumination. Therefore,
incorporating a thermal camera in the suite of the sensor would
fill the missed points in the interpretation of the environment.

Deep neural networks (DNN) have developed rapidly in
recent years, which has led to their increasing use in computer
vision. One of the major topics to be investigated in com-
puter vision with DNN for autonomous driving is semantic
segmentation. It aims to classify each pixel in an image
into predefined classes, e.g., vehicles, buildings, roads, etc.
Currently, many studies on semantic segmentation of RGB

(a) Thermal image (b) before adaptation (c) Our prediction

Fig. 1: Overview of the proposed UDA framework. stage 1:
a RGB-to-thermal translation model generates thermal images;
stage 2: a target segmentation model is trained using a self-
training method. (proto: prototypes).

images have yielded remarkable achievements. Nonetheless,
although thermal cameras are gradually becoming crucial
support to autonomous driving, the semantic segmentation of
thermal images has been sparsely discussed compare to RGB
semantic segmentation. In this paper, we present a method to
learn a thermal semantic segmentation model.

Learning a semantic segmentation model with conventional
supervised learning methods typically requires a large amount
of pixel-wise annotation. Manually annotating a semantic
segmentation dataset is highly laborious and time-consuming.
Intuitively, one feasible way to reduce annotation cost is by
training with existing annotated data that is used for a similar
task. However, since deep neural networks are sensitive to
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domain misalignment, the performance usually is not ideal.
In order to effectively avoid duplication of labeling efforts,
recent researches proposed unsupervised domain adaptation
(UDA) methods for semantic segmentation [2]. The objective
of UDA is to decrease the domain gap between the labeled
source domain and the unlabeled target domain by some
specific methods. Thereby a semantic segmentation model for
the target domain can be trained with the annotated source
data.

A considerable amount of approaches of UDA for se-
mantic segmentation have been introduced. Among them,
the generative-based methods and self-training strategy have
promising performance [2]. The objective of the generation
model is to transfer the style of the annotated source domain
data to the style of the target domain while preserving the
semantic information of the source domain data. In this way,
the distribution of the original source domain is relocated
and aligned to the distribution of the target domain. Since
the source domain data are explicitly annotated, the semantic
segmentation model of the target domain can be learned with
the adapted source domain data.

One representative generative-based UDA framework is
CycleGAN [3]. The framework contains two generative ad-
versarial modules, executing image translation between two
domains in both directions. CycleGAN framework can transfer
the color and the texture of the target images to the source
images. However, it disregards the semantic characteristics
of the objects. This may result in a semantic inconsistency
between the adapted source data and the target data. This
will ultimately render the adapted source model incapable of
correctly predicting the target domain data, even if it performs
well on the adapted source domain data.

The adaptation of self-training-based strategies (e.g., [4]–
[7]) is conducted in the process of training the segmentation
model. On the basis of the source domain semantic segmen-
tation model, pseudo-labels for the target domain data are
generated by means of a confidence-based threshold criterion.
The pseudo-labeled target domain data can then be used to
retraining the source domain semantic segmentation model.
New pseudo labels are thus iteratively obtained and then used
to refine the semantic segmentation model. Gradually, the
new semantic segmentation model generates more accurate
pseudo labels, while the original source domain semantic
segmentation model is adapted to the target domain. How-
ever, self-training-based methods require a robust pre-trained
segmentation model to generate reliable pseudo labels. This
is difficult to achieve for adaptation issues with large domain
gaps.

While some UDA approaches for semantic segmentation
(e.g., [8]–[10]) have been carried out on some paired do-
mains (e.g., synthetic-to-real), there have been few empirical
investigations into adaptation between RGB and thermal image
domains. Hence, this work explores the ways to realize RGB-
to-thermal unsupervised domain adaptation. Densely discussed
domain adaptation tasks (e.g., synthetic-to-real, day-to-night)
deal with domain gaps caused by virtual bias or illumination.
Therefore, the domain gaps are weakly dependent on semantic
contents. Differently, thermal images and RGB images repre-

sent semantic contents in entirely different ways. An RGB
camera captures the visible spectrum, while a thermal camera
records the emitted infrared radiation from the objects. This
results in RGB images representing the captured sceneries by
their colors, while thermal images present the temperature of
the pixel locations in the scene as different shades of gray.
This difference in representation yields a significant domain
gap between the RGB domain and the thermal domain. Con-
sequently, RGB-to-thermal is more challenging than synthetic-
to-real domain adaptation.

In this paper, we aim to solve this UDA problem by a
combination of a generative-based method and a self-training-
based method. We propose that these two approaches can
compensate for each other’s shortcomings. The generative-
based method can generate images close to the style of the
target domain. Still, due to the lack of semantic consistency,
these generated images do not represent the actual semantic
features of the target domain properly. Meanwhile, the self-
training-based method is able to adapt at the semantic level,
but a reasonable pre-trained model is essential due to the
requirement for the correctness of the pseudo labels. By
combining these two approaches, the self-training method can
further refine the model semantically on the basis of the
generative-based method, which in turn can provide a reliable
pre-trained model for the self-training-based method.

With both techniques, the thermal semantic segmentation
model learned with our method improves significantly over
the model without domain adaptation. We found that the
generative-based-method was able to translate RGB images
into thermal images effectively, and to a certain extent
achieved semantic consistency after the translation. The self-
training-based method can further promote the domain adapta-
tion based on the generative-based method and attain a better
semantic segmentation performance. Our contributions are:
• We propose a RGB-to-Thermal UDA method of the

combination of a generative-based method and a self-
training-based method. The generative-based method gen-
erates annotated thermal data. After learning a thermal
semantic segmentation model with the generated target
data, the self-training-based method can further increase
the performance of the thermal segmentation model.

• We show the effectiveness of the generative-based method
and the self-training-based method.

• The proposed method achieves 5-fold mIoU increase
in segmentaion task on Freiburg IR thermal data when
compared to the thermal augmentation without adaptation
from Freiburg RGB data.

II. RELATED WORKS

We first show generic semantic segmentation studies. After
this, we focus on semantic segmentation for thermal images.
After having a background on semantic segmentation, we
will present existing approaches in the field of unsupervised
domain adaptation research.

A. Semantic segmentation
Benefiting from the rapid development of deep convolu-

tional neural networks, a considerable amount of semantic
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segmentation model have been proposed. The first architec-
ture for semantic segmentation is FCN [11]. Inspired by it,
recent researches such as PSPNet [12], Deeplab [13] and its
variations [14], [15] have achieved compelling performance.
However, their performance strictly relies on the quality and
quantity of training datasets. Great efforts have been paid on
collecting and labeling semantic segmentation datasets (e.g.,
Cityscapes [16], PascalVOC [17]). One naive way to reduce
annotation cost is to train models using data from a similar do-
main without considering the domain gap. However, degrades
the performance of segmentation method considerably.

B. Semantic segmentation of thermal images

The research of semantic segmentation of thermal images
can be divided into two main directions: unimodal thermal
semantic segmentation and multimodal semantic segmentation
including the thermal domain. The studies of unimodal thermal
semantic segmentation are dedicated to developing networks
to accommodate the features of thermal images. Li et al.
[18] adaptively incorporate edge prior knowledge as guidance
to train the semantic segmentation network with a dataset
of diverse indoor and outdoor scenarios. Xiong et al. [19]
propose a multi-level correction network with a multi-level
attention module, which aims to capture the inter-class and
intra-class contextual dependencies by a multi-level correction
process, and a multi-level edge enhancement module combines
precise context information and edge prior knowledge in each
level to correct the final feature representation. They evaluate
their approach on their own dataset. Different from unimodal
thermal semantic segmentation researches, multimodal focus
on learning networks that can adapt to multiple domains, such
as thermal and RGB. Sun et al. [20] proposed an encoder-
decoder architecture containing two encoders to obtain the
features of thermal and RGB images separately. Ha et al. [21]
developed an architecture for multi-spectral image segmenta-
tion, combining the thermal and visible light information to
obtain boosted segmentation performance.

Different from the aforementioned works, we train a seman-
tic segmentation model of thermal images without requiring
any manual annotation work. Instead, we apply unsupervised
domain adaptation method to adapt labelled RGB domain
dataset, then use it to train a thermal semantic segmentation
model.

C. Domain adaptation for semantic segmentation

UDA can be broadly divided into seven categories: classifier
discrepancy [22], [23], domain adversarial discriminative [24],
[25], generative-based [3], [9], [26], [27], self-training [5]–[7],
entropy minimization [28], [29], curriculum learning [30], [31]
and multi-tasking [32], [33]. Among these, generative-based
and self-training based methods are the most relevant to our
approach.

Generative-based approaches employ a strategy of gener-
ative adversarial learning. This includes the training of both
the generator and the discriminator. The learning process is
that the discriminator strives to correctly distinguish whether
the image is real or generated, while the generator aims to

generate fake images that can fool the discriminator. Liu and
Tuzel [26] apply this idea to build the Coupled Generative
Adaversarial Networks, which can generate corresponding
pairs of images in different domains from same random
noise samples. Yu et al. [27] proposed Simulated Generative
Adversarial Networks, whose generation is conditioned on
the source data. The objective of SimGAN is to refine the
simulated images into real ones, which initially shows the idea
of adapting source data to a target domain (synthetic-to-real).
Bousmalis et al. [34] proposed a task oriented domain adap-
tation approach Pixel DA, where the learning process of the
domain adaptation and task is decoupled. Notably, generative
adversarial networks lack constraints on image content during
domain adaptation. To overcome this, CycleGAN [3] applies
a bidirectional architecture to implement domain adaptation
in both source-to-target and target-to-source to constrain the
image-level translation on a modest scale. Building on the
success of CycleGAN, Cycada [9] further introduced semantic
consistency into the construction of CycleGAN. It uses a
pre-trained semantic segmentation model to classify images
before and after translation, and then encourages the two
classifications to be consistent as a way to preserving semantic
information during translation. However, this approach of
semantic consistency may not achieve positive results for
adaptation tasks with large domain gaps.

The self-training approach involves employing highly con-
fident network predictions estimated from unlabeled data to
produce pseudo-labels, which are then used to retrain the
network. At the same time, the pseudo-labels are iteratively
updated in the training process. Zou et al. [5] firstly proposed
to use pseudo labels in self-training for semantic segmen-
tation. Yet, it has the shortcoming of frequently generating
noisy labels. To overcome this, in their paper [6], Zou et
al. developed confidence regularized self-training framework.
In this approach, pseudo-labels are treated as continuous
latent variables that are jointly optimized using alternating
optimization. Nevertheless, in the aforementioned self-training
methods, pseudo labels only get updated after the entire
training stage. Without updating the pseudo labels on time, the
model can easily overfit the noisy labels. Therefore, Zhang et
al. [7] proposed a self-training strategy with an online pseudo
label denoising technique, which can rectify the pseudo labels
based on the distance between the sample and class features.

The above approaches have been applied to many domain
adaptation tasks, for example, synthetic-to-real domain adap-
tation, art style transfer, day-to-night domain adaptation, etc.
However, the unsupervised domain adaptation problem of
RGB-to-thermal has been rarely discussed. Vertens et al. [35]
indirectly achieve the adaptation from RGB to the thermal
domain for semantic segmentation, but this is based on their
perfectly aligned RGB and thermal images. This paper thus
investigates the feasibility of unsupervised domain adaptation
for the semantic segmentation task of thermal images.

III. METHODOLOGY

This section describes our approach to thermal semantic
segmentation using unsupervised domain adaptation tech-
niques, transferring knowledge of RGB data to thermal data.
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Fig. 2: Cycle-consistent architecture for RGB to thermal image-to-image translation. Upper part of the architecture is the cycle
architecture for RGB to thermal domain translation, while the lower part is for thermal to RGB domain translation.

We define the RGB domain as source domain, while thermal
domain as target domain. We use the source data XS , source
labels YS , target data XT without target labels YT to approach
the unsupervised domain adaptation problem. Our objective is
to learn a model f that makes accurate predictions on the
target data XT . We go over our methodology in more depth
below.

A. Unpaired image-to-image translation

Simply learning a source domain model fS in a supervised
fashion can achieve decent performance on the source data
XS . However, the source domain model cannot perform well
when evaluated with target data XT due to the domain gap
between the target and source domain. Therefore, to alleviate
the performance difference caused by the domain gap, we
align the target and source domain distribution through an
image-to-image translation approach. Specifically, our goal is
to learn a mapping model that can translate source data into
the target domain without losing content information. With
the target domain oriented translations of source data and
their corresponding labels, a target domain model fT can be
learned.

We denote this mapping model as GS→T . GS→T can be
learned through the adversarial learning technique, where we
train it to translate the source domain data xs into target
domain style samples GS→T (xs) that can fool a target domain
adversarial discriminator DT . Concurrently, DT is trained to
correctly distinguish GS→T (xs) from real target data xt. We

apply adversarial loss to train GS→T and DT , which can be
expressed as Equation 1.

LGAN S→T = Ext∼XT
[logDT (xt)]

+ Exs∼XS
[log (1−DT (GS→T (xs))]

(1)

LGAN T→S = Exs∼XS
[logDS(xs)]

+ Ext∼XT
[log (1−DS(GT→S(xt))]

(2)

While the learning objective of DT is to maximize the
adversarial loss by making correct domain classification,
GS−T tries to minimize the loss by generating more realistic
target domain style samples. Subsequently, we can learn a
target model fT in a supervised fashion with the convincing
translations GS−T (XS) and YS .

Nevertheless, simply applying the aforementioned adversar-
ial training approach mentioned above does not assure that
GS−T will generate valid target domain style samples for
learning the target model fT , due to the fact that GS−T is not
restricted to retaining content information but only performs
style transfer.

To further encourage GS→T (xS) to preserve content and
structure information, we apply the cycle-consistency archi-
tecture from [3]. This architecture realizes the preservation
through reproducing the original image xS from its translation
GS−T (xS), i.e. GT→S (GS→T (xs)) ≈ xs. The target to
source mapping model GT→S can be learned in synchro-
nisation with GS→T in the same way (see Equation 2),
together with source domain discriminator DS . Specifically,
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the reconstructions of two domain samples is trained with the
cycle-consistency loss (Equation 3), where the reconstruction
errors are penalized with the L1 penalty.

Lcyc = Exs∼XS
[‖GT→S (GS→T (xs))− xs‖1]

+ Ext∼XT
[‖GS→T (GT→S (xt))− xt‖1]

(3)

Altogether, the overall training loss for the image-to-image
translation architecture can be concluded as Equation 4, where
λ is the coefficient for weighting the contribution of the
cycle-consistency loss. Similar to [3], we set it to 10. The
architecture and overall training scheme is shown as Figure 2.

Ltrans = LGAN S→T + LGAN T→S + λLcyc (4)

After we learned a reasonable mapping model GS−T , we
can generate target domain style data GS−T (XS). We denote
the translated data as XTR. With XTR and YS , the target
model fT can be learned by minimizing a cross-entropy loss:

ptr = fT (xtr)

Lce(ptr, ys) = −E(xtr,ys)∼(XTR,YS)

K∑
k=1

1[k=ys] log
(
σ
(
p
(k)
tr

))
(5)

where 1 is the indicator function and σ denotes the softmax
function.

B. Self-training with prototypical pseudo label denoising

Although the unpaired image-to-image translation method
can generate target domain style images with consistent struc-
ture and content, the semantic information of the source data
is not considered during the domain adaptation process. That
may lead to a performance drop of target model fT when
evaluating with real target data XT . To further enhance the
performance of fT , we apply a self-training approach on the
resulting target model obtained by the unpaired image-to-
image translation method, which is denoted as fT0.

Traditional self-training approaches optimize a model
through iteratively generating pseudo labels of the target data
XT and training with samples that have a high-confidence
pseudo label. The high-confidence pseudo labels are deter-
mined by a hard confidence threshold, namely only the pixels
whose prediction confidence is higher than the threshold would
be utilized to train the model. We denote those valid pseudo
labels as hard pseudo labels.

However, the traditional self-training approaches using hard
pseudo labels have some limitations. Firstly, the hard pseudo
labels filtered by a fixed confidence threshold can be over-
confident, resulting in a false interpretation of the target
domain. Secondly, the hard pseudo labels only get updated
after the whole training process. In addition, when updating
the pseudo labels, although pseudo labels with low confidence
are not definitely incorrect, they are never considered since
their confidence is always lower than the threshold. This may
lead to dispersed features in the target domain.

To alleviate the lackings of traditional self-training ap-
proaches, we apply the online prototypical pseudo label

Fig. 3: Overall workflow of self-training with prototypical
pseudo label denoising

denoising technique proposed in [7]. The overall workflow
is demonstrated as Figure 3. Instead of using hard pseudo
labels, we apply fixed soft pseudo labels and adjust them with
weights obtained by a clustering method. The fixed soft pseudo
labels are the class-wise softmax scores of all pixels. More
specifically, we express the weighted pseudo labels as:

ŷ
(i,k)
t =

1, if k = argmaxk′

(
w
(i,k′)
t p

(i,k′)
t,0

)
0, otherwise

(6)

where ŷ(i,k)t represents the hard weighted pseudo label of
pixel x(i)t , ω(i,k)

t is the weight for adjusting the probability of
belonging to class k and the p(i,k)t,0 is the soft pseudo label,
which is initialized by the pre-trained target model fT0 and
fixed throughout the complete training process. Finally, the
weighted soft pseudo label is converted as a hard pseudo label
in one-hot form.

The prototype η(k) is the feature centroids of class k, which
is defined based on the fact that the prototypes are located
closer to the centroids of the underlying clusters. Thus, we
assign a higher weight for class k if the distance between
fT (xt)

(i) and η(k) is relatively shorter. Conversely, classes
with longer distances are assigned with lower weights. In gen-
eral, this weight assigning strategy can be implemented in the
form of the softmax score over the distances between features
and prototypes. Equation 7 is the formula for computing the
weights.

ω
(i,k)
t =

exp
(
−
∥∥∥f̃T (xt)

(i) − η(k)
∥∥∥)∑

k′ exp
(
−
∥∥∥f̃T (xt)

(i) − η(k′)
∥∥∥) (7)

Similar to the work from [7], instead of extracting the
features of training data with the updated target segmentation
model fT , we also apply the momentum encoder [36] as the
feature extractor, denoted as f̃T in Equation 7. The momentum
encoder f̃T is updated following:

θa,n+1 = mθa,n + (1−m)θb,n,m ∈ [0, 1), n ∈ N (8)
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where θa is the parameter of the momentum encoder f̃T
and θb is the parameter of the target segmentation model
fT . n is the number of training epochs. When n equals 0,
both θa and θb are equal to the parameter values of the pre-
trained target model fT0. m is the momentum coefficient
which we set as 0.999. During training, fT is updated by
backpropagation, while f̃T itself is not updated, but fine-tuned
by fT . This makes the transformation of f̃T smoother, which
in turn ensures that f̃T always extracts reliable data features
throughout the training process.

The prototypes η(k) are initialized by using features of
the complete target dataset extracted by the pre-trained target
segmentation model fT0. As mentioned above, we compute
the average feature values of the target domain data as the
prototypes η(k). More specifically, η(k) are calculated as
shown in Equation 9, where 1 is the indicator function whose
purpose is to count and calculate only the pixels in the dataset
classified as k.

η(k) =

∑
xt∈Xt

∑
i fT (xt)

(i) ∗ 1
(
ŷ
(i,k)
t == 1

)
∑

xt∈Xt

∑
i 1

(
ŷ
(i,k)
t == 1

) (9)

Nevertheless, in order to update prototypes online during
training, it is very time-consuming to compute prototypes for
the entire target dataset. Hence, we calculate the prototypes of
a batch of data within each iteration and then update the overall
prototypes by moving the average. We denote the prototypes
of a batch of data as η(k)b . So we update the overall prototypes
η(k) as:

η(k) ← (1− λ)η(k) + λη
(k)
b (10)

Where λ is the moving-average momentum coefficient. We
set it to 0.0001.

To update the target segmentation model fT , we apply
symmetric cross-entropy loss, which has tolerance to the noise
of pseudo labels. It can be expressed as:

Lsce = αLce (pt, ŷt) + βLce (ŷt, pt) (11)

where α and β are the balancing coefficients, which are
set to 0.1 and 1 respectively similar to [7]. Lce is defined in
Equation 5.

C. two-stage training scheme

In our process, we first apply the unpaired image-to-image
translation technique to translate an annotated RGB dataset
into the thermal image style. Subsequently, we train a semantic
segmentation model with the translations of the RGB dataset in
a supervised fashion. The performance of the trained semantic
segmentation model may not be optimal due to remained
domain gap. Thus we further optimize the semantic segmenta-
tion model using the self-training algorithm with prototypical
pseudo label denoising technique.

IV. EXPERIMENTS

This section begins with an introduction to the experimental
setup, which includes the construction of the training model
for image-to-image translation, the setup of the semantic
segmentation model we employ, the training details in the
two stages and the dataset we use for training and evaluating.
After this, we present our experimental results qualitatively
and quantitatively and discuss the effects of our method by
comparing them with baselines.

A. Implementation

1) Network Architecture: We apply the architecture of
CycleGAN from [3] as our image-to-image translation model.
Differently, since a thermal image has one channel, while an
RGB image has three channels, we set the input layer input
channel numbers of the mapping models and discriminators
as shown in Table I:

Network nin nout

GS→T 3 1
GT→S 1 3
DS 3 1
DT 1 1

TABLE I: Mapping models and discriminators channel num-
bers configuration

where nin is the input channel number of the input layer,
nout is the output channel number of the output layer.

Regarding the segmentation model, we adapt Deeplabv2
[13] with ResNet101 [37] as the backbone. The penultimate
convolutional layer is configured to contain 256 filters, in order
to create a feature space of a reasonable amount of features.

2) Training Details: During the training process of the
image-to-image translation model, the training image is firstly
cropped to a random size and aspect ratio, and then resized
to 512 × 256. In addition, the cropped image is normalized
with mean and standard deviation of 0.5 and 0.5 respectively.
Similar to the strategy from [3], we randomly select samples
from an image pool that contains 50 previously generated
images to train the discriminators. We train the image-to-
image translation model for 130 epochs. Both generators and
discriminators are optimized by the Adam optimizer with a
learning rate of 0.0001 and a batch size of 4.

After the image-to-image translation model is trained, we
translate the complete source domain dataset into the target
domain style. The image is resized to 512 × 256 and also
normalized. The output image is denormalized and resized to
the original size.

We train the thermal semantic segmentation model with
the translation of the source domain dataset. Similar to the
image translation model training process, the translations are
randomly cropped and resized to 512 × 256. We apply the
Adam solver with the initial learning rate of 0.0001, reduced
by a factor of 0.1 following a scheduler with a patience of 10
epochs.

Once the process of learning the thermal semantic segmen-
tation model with translations is complete, we further refine
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CycleGAN FR-Tr FR-T 84.6 47.2 61.2 37.6 25.7 34.3 57.2 33.8 70.8 58.2 62.9 51.4 52.1 +43.7

Self-training
FR-Tr +
FR-T∗

FR-T 86.7 51.4 65.0 42.5 26.3 31.5 60.2 43.0 73.8 58.9 74.9 33.7 55.8 +47.4

Joint FR-Tr +
FR-T∗

FR-T 87.0 51.4 65.5 44.3 26.6 34.1 59.5 43.9 73.4 57.4 76.9 52.0 56.4 +48.0

Joint FR-Tr +
FR-T∗

FR-T-night 84.6 53.7 68.9 46.3 21.0 33.6 49.9 44.3 51.7 41.8 81.5 46.0 52.5 +44.1

TABLE II: Quantitative performance comparison of our thermal semantic segmentation model and baselines on the Freiburg
thermal dataset. The mIoU gains of baselines are marked as dash(-). CycleGAN: segmentation model trained with RGB image
translations; Self-training: refined segmentation model with self-training; Joint: joint segmentation model; FR-RGB: Freiburg
daytime RGB dataset; FR-T: Freiburg daytime thermal dataset; FR-T∗: Freiburg daytime thermal dataset without labels but
soft pseudo labels and prototypes; FR-Tr: translation of FR-RGB; FR-T-night: Freiburg thermal night-time test dataset

(a) Thermal image (b) Groundtruth (c) Upper-bound (d) Lower-bound (e) CycleGAN (f) Self-training

Fig. 4: Qualitative performance comparison of our thermal semantic segmentation model and baselines on the Freiburg thermal
dataset.

the model with the self-training approach with online pseudo
label denoising for 10 more epochs. We adapt the Adam solver
with the initial learning rate of 1e6, reduced by a factor of 0.1
following a scheduler with a patience of 500 iterations.

3) Dataset: We conduct the experiments using the Freiburg
dataset [35]. The dataset contains 12501 daytime thermal
images and also 12501 time-synchronized RGB images. Al-
though the thermal images and RGB images are perfectly
aligned, we ignore this correspondence and disrupt them as
two separate datasets to investigate the adaptation between the
two domains. The dataset provides RGB image annotations.
We use the annotated RGB images as the source dataset and
the thermal images as the target dataset. In addition, the dataset
contains a test dataset with 32 annotated thermal images. We
use this test dataset to evaluate the performance of our model.
The pixel-wise semantic annotation of the training dataset and
test dataset contains 13 classes, including Road, Sidewalk,
Building, Curb, Fence, Pole/Signs, Vegetation, Terrain, Sky,
Person/Rider, Car/Truck/Bus/Train, Bicycle/Motorcycle, and
Background. The thermal images have full black masking on
both sides, we intercept the part with information in the middle
and crop the RGB images in the same area. The original

thermal images have a bit-depth of 16 bits. Similar to [35],
we crop the thermal images to relevant range [21800, 25000]
and normalize them to [0, 1].

B. Baseline Comparison

We qualitatively and quantitatively compare the perfor-
mance of our method with the lower-bound and upper-bound
baselines. We use the source domain model without domain
adaptation as the lower-bound baseline. With respect to the
upper-bound baseline, a target domain model train with fully-
supervised method is used. The model uses Freiburg ther-
mal images and their corresponding RGB labels as training
data. The quantitative results are listed in Table II. Unlike
extensively studied domain adaptation tasks, such as synthetic
to real domains, we observe that in the absence of domain
adaptation, RGB domain models are incapable of making
correct predictions for thermal domain data. The mIoU score
of this model is only 8.4. This poor performance is to be
expected since there is a large domain gap between the
RGB and thermal domains due to the difference in object
representation. In contrast, the mIoU score of the thermal
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(a) RGB images (b) Thermal images (c) CycleGAN translations (d) GAN translations

Fig. 5: Image-to-image translation results. The white clothes in the first row and the white car in the second row are translated
as low temperature (dark color in thermal images). This demonstrates the tendency of the image-to-image translation model
to generate inverse colors when translating RGB images to thermal images.

model trained supervisedly is 66.2. Our model achieves a
mIoU score of 55.8, which has a boost of 564% compare
to the lower-bound baseline. Nevertheless, there is still a
considerable performance gap between our method to fully-
supervised method.

We also used the translation of the RGB test dataset to
evaluate the segmentation model trained with the translation
of the RGB train dataset. The third row of Table II shows
it reaches a mIoU score of 62.5, which shows that the
translations are informative enough to train a segmentation
model with them, although during translation, there is still
an information leakage of 3.7 mIoU score compare to the
semantic segmentation model trained with the real thermal
dataset.

V. DISCUSSION

In this section, we first discuss the effectiveness of the
unsupervised domain adaptation in the two stages separately.
Secondly, the results of an optimised solution are discussed.
Finally, we demonstrate the ability of our approach to address
the ultimate goal, i.e. to classify barely visible objects under
poor illumination conditions.

A. The effectiveness of Unpaired image-to-image translation

Figure 5 shows some thermal images translated using our
image-to-image translation model. As a comparison, we also
offer images translated by a model trained with the traditional
generative adversarial learning method. Benefits from the
correspondence between the RGB data and the thermal data of
the Freiburg dataset, we are also able to compare the translated
images with the real thermal images.

It can be seen that a model trained with the traditional
GAN approach does not generate convincing thermal images.
Still, with the use of the cycle consistent architecture, the
translated thermal images are closer to the real thermal images,
while the structure and content information of the original
RGB images are significantly preserved. This indicates that
visually our method is effective in adapting the RGB domain
to the thermal domain. However, by comparing them with real
thermal images, we observe that there are still differences in

how the objects are presented, although they look similar. The
presentation of objects in a translated image is not defined
purely by the temperature of the objects, but also by the shade
of their color. Specifically, objects with a darker color tend to
be translated as higher temperature objects, i.e., they appear
whiter on the thermal image.

Positively, this difference in object representation did not
have a disproportionate impact on the semantic segmentation
task. We train the target domain segmentation model with
the translations generated by the translation model. When the
model is evaluated with the test dataset, the model achieves
a mIoU score of 52.1. Class-wise IoU score can be seen in
Table II. Some qualitative results are shown in Figure 4. By
observing the translated dataset, we found the following ex-
planation for this phenomenon. The translated thermal images
are not generated strictly according to the temperature but
are influenced by the color of the objects at the same time.
This may cause similar objects to appear in the translation as
having significant temperature differences. Yet, these objects
exist in different shades of color, such as the vehicles in the
picture, this ensures that the correct temperature conversion
exists in the translation. In other words, we can summarise
this as the target domain is a subset of the domain in which
the translated thermal images are located. In this way, we can
use the segmentation model trained with translated thermal
images to correctly classify the real thermal images as well.

B. The effectiveness of prototypical pseudo label denoising

The results in Table II (row 4 and 5) show that after
continuing to refine the target segmentation model using the
self-training with prototypical pseudo label denoising method,
we get a 3.7 improvement in mIoU scores with respect to
only using CycleGAN. Furthermore, the individual IoU scores
for most of the classes have improved. This proves that this
method is effective for RGB-to-thermal domain adaptation.
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(a) Thermal image (b) Groundtruth (c) Iteration 0 (d) Iteration 1000 (e) Iteration 5000

Fig. 6: Iteratively degenerated poles in the self-training process.

(a) Rate of pole pixels classified as different classes (b) Rate of bike pixels classified as different classes

Fig. 7: Rate of pole and bike pixels classified as different classes.

Fig. 8: Class-wise IoU differences and class densities. Classes
are sorted by density. Low density classes pole and bike show
negative IoU differences before and after self-training.

With the benefit of rectification based on prototypes, we
were able to produce more reasonable pseudo labels. Also,
the online update of prototypes allows us to further correct
the pseudo labels. However, it is worth noting that two classi-
fications, namely poles and bicycles, underwent degradation.

Figure 8 shows that these two classes are two of the
most sparse classes in the Freiburg dataset. Sparse classes
are those with low densities, where density is the number of
pixels belonging to a particular class as a proportion of the
total number of pixels in the dataset. Additionally, Figure 7a
demonstrates that the pixels of poles are mostly misclassified
as buildings and vegetation as measured by their class rate. The
class rate is the fraction of pixels belonging to a pole or a bike
that are classified as different classes. This is legitimate since
buildings and vegetation have a lot of overlap with poles in
the actual scene. This can also be observed in Figure 6, where
poles are gradually degenerated to buildings. Similarly, we also
find in Figure 7b that after fine-tuning, more pixels belonging
to bicycles are misclassified as vehicles and people, which
again have a lot of overlap with bicycles. More examples can
be seen in Figure 9 and 10. We can therefore conclude that
the prototypical pseudo label denoising method has a positive
effect on most classes in the task of thermal translation-to-
thermal domain adaptation, but can cause some sparse classes
to degenerate into overlapped ones.

C. Joint classification and night time thermal images classifi-
cation

Considering the degeneration of the pole and bike classes
after self-training, we combined the models before and after
self-training, using the model without self-training to classify
pole and bike alone, while the other classes were classified
using the model after self-training. This gives us the best
solution we can produce, which is a mIoU score of 56.3.
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(a) Thermal image (b) Groudtruth (c) CycleGAN classification (d) Self-training classification

Fig. 9: Degeneration of bicycle. The bikes on the right hand side are misclassified as cars after self-training.

(a) Thermal image (b) Groudtruth (c) CycleGAN classification (d) Self-training classification

Fig. 10: Degeneration of pole. The poles in the middle of the image are misclassified as sky, building and vegetation.

(a) Thermal image (b) Groudtruth (c) Joint classification

Fig. 11: Joint classification result

The qualitative and quantitative results are shown in Figure.
11 and Table. II, respectively. It is necessary to be aware
that as the optimal solution requires two models to predict
the data simultaneously, the required computing power and
computation time are doubled.

The ultimate goal of the study of thermal semantic segmen-
tation is to train models that can effectively understand their
surroundings in the presence of poor illumination. We hence
also use night-time thermal test data to evaluate our optimal
model. Due to the difference in temperature between daytime
and nighttime, thermal images captured at different times of
the day give a different interpretation of the scene. In thermal
images, an object tends to have a darker colour at night relative
to daytime, i.e. it has a lower temperature. However, the
difference between daytime and nighttime for thermal images
is much smaller than for RGB images. The results show that
although the mIoU scores (52.5) have dropped relative to the
daytime thermal test data (56.3), our segmentation model still
can make decent classifications (see Figure 12).

VI. CONCLUSION

In this paper, we propose an unsupervised domain adap-
tation method for thermal semantic segmentation, in which
we adapt the RGB domain data to the thermal domain.
This allows training a thermal semantic segmentation network
without requiring per-pixel labeling of thermal images nor
needing to have a 1-on-1 matching RGB images for each
thermal image. Our approach resorts to unpaired image-to-
image translation and self-training with prototypical pseudo
label denoising technique. The proposed method essentially
increases the semantic segmentation performance compared to
without domain adaptation. It is worth noting that the method
used in this article has limited performance for minority
classes, such as pole and bicycle. Future research could be
undertaken to constrain the self-training process for minority
classes to ensure that the learning of these classes is successful.
Secondly, the current approach ends up learning a joint domain
of translations of the RGB domain and the thermal domain.
Thus, another research direction could investigate narrowing
down the learned domain to the real thermal domain, or
attempting to generate more realistic translations.
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(a) RGB image (b) Thermal (c) Groundtruth (d) Classification

Fig. 12: Night-time thermal images classification
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