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Abstract

Model Predictive Control (MPC) is a control strategy where the control law optimizes the
input based on the current system’s response as well as the response in a foreseeable future.
The advantages of this strategy is that it can respond to certain dynamics before they occur.
However, to accurately predict this future response, an accurate description of the system must
be provided. In the current industry, predictive controllers are tuned based on a model that
represents the dynamics of the system at the time it is modelled. Classical system identification
techniques in one hand, can be used to improve and/or assess model accuracy but still resort to
a certain model definition. Off–line data–driven control design, on the other hand, removes the
necessity of a model by directly describing the dynamics of the system as a relation of previously
measured inputs and outputs. Adding to this data–driven control design, this thesis introduces a
new approach to directly obtain the corresponding rate–based data–driven predictive controller
of the system, which removes tracking offsets. Furthermore, while both system identification
and data–driven control minimize modelling errors, the dynamics of any system are known to
change over a substantial time–window. As the system dynamics change, the performance of
the controller deteriorates. Regardless of how robust the controller is, at some point, it must be
redesigned. An approach that circumvents the performance degradation issue through recursively
updating the predictive controller is also proposed in this thesis. This is to ensure that in real–
time, at any time, the dynamics of the predictive controller match those of the system it operates
on. The recursive algorithm can either be combined with an off–line data–driven predictive
controller which ensures the initial response is optimal, or can be used without any initial system
knowledge as a plug–and–play predictive controller. The proposed methods will be tested on
various simulated models as well as on a real–life Buck DC-DC Power converter.
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Chapter 1

Introduction

Model predictive control (MPC) [1, 2] is a control strategy that employs a system model to
predict its future behaviour. By predicting future system trajectories, MPC can anticipate for
changes in the tracking reference and constraints. Computation of the MPC control law requires
solving an optimization problem online, in order to minimize a cost function that penalizes the
future tracking error. However, the performance of an MPC controller is highly depending on
the model that is utilized for predictions, i.e. for building the so-called prediction matrices.

A prediction model is commonly obtained using either first principles or system identification
techniques. Uncertainties caused by poor parameter and/or order estimations, noisy data and
wear off the system over time influence the controller performance. In the last decades, elim-
inating the modelling step from the controller design procedure has gained increasingly interest
in the field of control engineering [3]. This “Data–Driven” (DD) approach eliminates the mod-
elling step by directly building the controller from data instead. DD predictive control design
can be primarily categorized in two ways: a direct method that predicts the future states as
a linear combination of previously measured input/output (I/O) data, or an indirect method
which estimates the controller matrices (or prediction matrices) from input/output data. This
input–output data can be either measured from an experiment session on the system prior to
building the controller, or on–line while the system is controlled by the data–driven controller.

A direct approach to DD control is presented in [4] and further expanded in [5], [6] and
[7]. This approach parametrizes the future output as a linear combination of past inputs and
outputs, and future inputs using Hankel matrices of off–line measured input/output data and
a set of coefficients that is computed on–line. This so–called Data–Enabled Predictive Con-
trol (DeePC) removes the necessity of computing any prediction model estimate. However the
number of optimization variables depend on both the size of the measured input–output data
matrices and the prediction horizon. Reference tracking in DeePC can be achieved by shifting
the equilibrium [8] or including integral action [6]. Furthermore, [5] researched stability and
robustness properties of the resulting controller, and more recently proposed a more practically
feasible stability guarantee [9]. As this method maps measured data directly, it is more sensitive
to noise. However [7] introduces an approach to reduce the influence of noise in the controller
signal.

Indirect data–driven methods, such as Subspace Predictive Control (SPC), are presented in
[10] and [11]. SPC is a control algorithm that estimates the controller matrices directly from off–
line data, whilst simultaneously using on–line previously measured input/output data to estimate
the current state of the system. The estimation procedure is based upon subspace identification,
as presented in [12]. SPC shares the same tuning parameters as MPC, such as the output and
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input weights and the (control/prediction) horizon. Therefore, tuning these parameters on a
subspace predictive controller yields the same effects as doing so on an equivalent MPC. This
makes SPC an intuitive and user–friendly data–driven control method. Furthermore, integral
action can be implemented into the resulting controller by modifying the controller matrices after
they are estimated, as shown in [11]. Instead of using on–line measured previous input/output
data, [13] shows that if the states are measurable, the controller matrices can be completely
computed off–line. This results in a data–driven controller that operates on–line like a model–
based controller. Additionally, [14] introduced a method to validate the performance of the
resulting controller.

In addition to DD controllers which are constructed using off–line data, [15, 16, 17] show that
DD controllers can alternatively be constructed using on–line data. This removes the necessity of
having to perform an off–line experiment and allows for automatic adjustments for time–varying
systems. However, the initial small amount of present data means that initial control inputs
are unreliable. Furthermore, as the data is collected in a closed–loop, it can not be assumed
that the control input excites the system persistently, which is required to estimate the system
dynamics accurately. To circumvent these issues, [15] suggests to run the system in open loop
until a minimum amount of data has been gathered to compute the controller. A method to
improve persistency of excitation is proposed in [16] which only updates the controller matrices
if the newly fed input does sufficiently excite the system. Alternatively, [17] attempts to improve
the excitation through the cost–function.

Therefore, we identify two main problems. First, proper reference tracking in a model–
predictive controller is done by either including an input reference, or augmenting the model to
include an integral action. The problem is however, that both of these methods require the model,
which is unknown when building the controller directly from data. Secondly, the dynamics of
all physical systems are prone to change over a substantial time–window. As off–line generated
controllers (including data–driven ones) are defined from one batch of data, which represents the
system at one time–instance, the resulting controller will lose performance. Because of this, it
must be redesigned eventually. On–line data–driven controllers compensate for this behaviour
by automatically updating their controller matrices. This additionally allows for true plug–and–
play controllers. However, on–line DD controllers lack formal convergence guarantees and suffer
in computational efficiency. Motivated by these problems, in this thesis the following research
problems have been considered:

1. zero–offset reference tracking for a constrained output feedback data–driven predictive
controllers, assuming only I/O data of the system is available,

2. performance degradation of a predictive controller in closed loop for time–varying or non–
linear systems, again assuming only on–line I/O system data is available.

The thesis is structured as follows: the prerequisite information about MPC and SPC is
explained in Chapter 2. Next, we introduce a novel method that allows proper reference tracking
for the SPC control law in Chapter 3. The on–line data–driven controller research and the
corresponding recursive data–driven predictive controller are introduced in Chapter 4. Here, we
present our approach for an efficient on–line update rule and analyse convergence properties of
the resulting algorithm in closed–loop. After the main part of the thesis, in Chapter 5, a real–life
simulation on a DC–DC Voltage Buck–Converter will be presented with the new algorithms.
The thesis is concluded in Chapter 6.

Recursive Data-Driven Predictive Control 2



Chapter 2

Preliminaries

Model–predictive control is a control algorithm that computes the control input by minimizing
a cost function over a finite horizon. This allows MPC to respond to predictable system behaviour
and reference changes before they occur. In this chapter, we introduce the standard linear MPC
algorithm. Furthermore, we also introduce how to build the same predictive controller from data
using the indirect data–driven SPC approach.

2.1 Model Predictive Control

In this section the classical MPC algorithm will be presented. Consider a discrete, linear and
time-invariant system:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k), k ∈ N,
(2.1)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the input, y(k) ∈ Rq is the output and k denotes the
discrete–time index. As we are dealing with sampled–data systems, it is a fair assumption to
consider the feed through term D = 0. The control objective is to find an optimal control input
sequence U∗k := U∗(x(k)) that steers the output to the reference by minimizing the following
cost function:

J(x(k), Uk) := (yN |k − rN |k)TQ(yN |k − rN |k)

+

N−1∑
i=0

(
(yi|k − ri|k)TQ(yi|k − ri|k) + (ui|k − rui|k)TR(ui|k − rui|k)

)
:= (Cx0|k − r(k))TQ(Cx0|k − r(k)) + (Yk −Rk)TΩ(Yk −Rk)

+ (Uk −Ruk)TΨ(Uk −Ruk),

(2.2)

Recursive Data-Driven Predictive Control 3



2.1. MODEL PREDICTIVE CONTROL

where x0|k = x(k), u0|k = u(k), xi+1|k = Axi|k +Bui|k and yi|k = Cxi|k. Moreover, ri|k and rui|k
are the output reference and corresponding input reference, respectively. Furthermore,

Yk =
[
yT1|k yT2|k . . . yTN |k

]T
, Uk =

[
uT0|k uT1|k . . . uTN−1|k

]T
,

Rk =
[
rT1|k rT2|k . . . rTN |k

]T
, Ruk =

[
(ru1|k)T (ru2|k)T . . . (ruN |k)T

]T
,

Ω =


Q

Q
.. .

Q

 , Ψ =


R

R
.. .

R

 .
(2.3)

Above Q and R are positive definite symmetric weighting matrices of appropriate dimensions,
and N is the prediction horizon (we assume that a control horizon equal to the prediction horizon
is used for brevity).

The future predicted outputs Yk can be rewritten to a function of the future outputs Uk and
the current state x(k):

Yk =


CA
CA2

...
CAN

x(k) +


CB 0 ˙̇ ˙ 0
CAB CB ˙̇ ˙ 0
...

...
. . .

...
CAN−1B CAN−2B ˙̇ ˙ CB

Uk
= Φx(k) + ΓUk.

(2.4)

Substituting equation (2.4) into (2.2) yields:

J(x(k), Uk) := UTk (Ψ + ΓTΩΓ)Uk + 2UTk ΓTΩ(Φx(k)−Rk) + (Ruk)TΨRuk − 2UTk ΨRuk
+ (Cx(k)− r(k))TQ(Cx(k)− r(k)) + (Φx(k)−Rk)TΩ(Φx(k)−Rk).

(2.5)

The unconstrained MPC control law (i.e., if output and input constraints are neglected) can
be computed by taking the gradient of J with respect to Uk and setting it equal to 0, i.e.:

∇Uk
J(x(k), Uk) = 2(Ψ + ΓTΩΓ)Uk + 2ΓTΩ (Φx(k)−Rk)− 2ΨRuk = 0, (2.6a)

which yields

U∗k (x(k)) = −G−1(F (Φx(k)−Rk)− 2ΨRuk), (2.6b)

where

G = 2(Ψ + ΓTΩΓ), F = 2ΓTΩ. (2.6c)

When output and input constraints are added to the minimization of J , the constrained MPC
control law is computed on–line, by solving a quadratic program, i.e.,

min
Uk

1

2
UTk GUk + UTk (F (Φx(k)−Rk)− 2ΨRuk)

subject to: LUk ≤ b−MΦx(k),

(2.7)

where the derivation of the matrices L, M and the vector b is illustrated next. It is worth
mentioning that the terms in (2.5) that do not depend on Uk are omitted in (2.7), as they do
not influence the corresponding optimum.

Recursive Data-Driven Predictive Control 4



2.2. SUBSPACE IDENTIFICATION OF THE PREDICTION MATRICES

Consider a set of given linear constraints in the outputs and inputs:

umin ≤ ui|k ≤ umax, ∀i = 0, 1, ˙̇ ,̇ N − 1,

ymin ≤ yi|k ≤ ymax, ∀i = 1, 2, ˙̇ ,̇ N.
(2.8)

Then these constraints can be expressed as a single inequality for each i as
0
0
−Iq
Iq

 yi+1|k +


−Im
Im
0
0

ui|k ≤

−umin
umax
−ymin
ymax

 , yielding:

Mi+1yi+1|k + Eiui|k ≤ bi, ∀i = 0, 1, ˙̇ ,̇ N − 1, and MNyN |k ≤ bN .

(2.9)

These constraints can be aggregated as followsM1 ˙̇ ˙ 0
...

. . .
...

0 ˙̇ ˙ MN


 y1|k

...
yN |k

+

E0 ˙̇ ˙ 0
...

. . .
...

0 ˙̇ ˙ EN−1


 u0|k

...
uN−1|k

 ≤
 b0...
bN

 , or

MYk + EUk ≤ b.

(2.10)

Note that the definition ofM, E and b is not unique, any alternative notation that satisfies (2.8)
can be used. Substituting the future predicted outputs (2.4) into equation (2.10) results in

LUk ≤ b−MΦx(k), with L = (MΓ + E). (2.11)

For both the constrained and unconstrained controllers, the MPC control law is extracted from
U∗k (x(k)) as follows:

u∗k(x(k)) = [Im 0(N−m)×m]U∗k (x(k)). (2.12)

Note that this implementation of reference tracking by including an input reference in the cost
function is often overlooked. The benefit of this method is that the original model of the system
does not need to be altered, therefore no further modification are required in the constraints or
applying the actual input to the system.

The steps to build a model–based predictive controller for a linear, time–invariant system are
presented [1, 2]. Next, we show how to build the same controller without a model by identifying
Γ and Φx(k) directly from data.

2.2 Subspace Identification of the Prediction matrices

Instead of identifying a model of the system to build the prediction matrices, this section will
introduce a method that eliminates the model by identifying the prediction matrices directly from
data. Equation (2.7), and the definitions of the matrices therein, show that to compute same
quadratic program without a model, only an estimate of the “forced–response” matrix Γ and
the “free–response” Φx(k) is required. To identify these prediction matrices (Γ and Φ), we start
by rewriting the inputs and outputs into an ARMAX model [12]. Hereby it is assumed the I/O
data is collected in an off–line, open–loop experiment where the input satisfies the persistence of
excitation condition. Let the Hankel matrix of a signal be defined as

zk :=


z(k)

z(k + 1)
...

z(k +N − 1)

 , Zk :=
[
zk zk+1 zk+2 . . . zk+L

]
, (2.13)

Recursive Data-Driven Predictive Control 5



2.2. SUBSPACE IDENTIFICATION OF THE PREDICTION MATRICES

such that the I/O data can be structured as

Up = U0, Yp = Y1,

Uf = UN , Yf = YN+1,
(2.14)

which represent the so–called “past” and “future” data. L is the measurement length, and
bounds on L will be introduced later. The distinction between the vector notation Zk and zk is
that the former presents future data predicted using data up to and including k and the latter
presents known measured data. Following [10, 13, 15], the relation between these past and future
data can be described as

Yp = ΦXp + ΓUp, Yf = ΦXf + ΓUf ,

Xf = ANXp + CUp,
(2.15)

where Xp =
[
x(0) x(1) ˙̇ ˙ x(L)

]
, Xf =

[
x(N) x(N + 1) ˙̇ ˙ x(N + L)

]
, and C is the

extended controllability matrix C =
[
AN−1B ˙̇ ˙ AB B

]
. According to [18], as long as Nq ≥

n, it is guaranteed for an observable system that there exists a matrix M such that AN+MΦ = 0.

Let W ,
[
UT
p YT

p UT
f

]T
; this allows us to rewrite Yf without state information:

Yf = ΦANXp + ΦCUp + ΓUf

= −ΦM(Yp − ΓUp) + ΦCUp + ΓUf

=
[
Φ(C +MΓ) −ΦM Γ

]
W.

(2.16)

For given W and Yf we can obtain the least–squares estimated prediction matrices:[
P1 P2 Γ

]
= YfW

†, (2.17)

where [.]† represents the Moore-Penrose pseudo-inverse, P1 = Φ(C + MΓ) and P2 = −ΦM .
Hereby it should be noted that L ≥ (2m + q)N to ensure (2.17) has a solution. [12] Points out
that if the input is uncorrelated with both the measurement noise and the process noise, the
influence of noise will vanish when L→∞.

Since the state is not measurable, estimating Φ directly as in [13] is not possible. Fortu-
nately, it is not required. Instead, Φx(k) can be estimated on–line using the previous inputs and
measured outputs as

Φx(k) = ΦANx(k −N) + ΦCuk−N
= −ΦMΦx(k −N) + ΦCuk−N
= −ΦMyk−N+1 + Φ(C +MΓ)uk−N

=
[
P1 P2

] [ uk−N
yk−N+1

]
.

(2.18)

The on–line estimation of Φx(k) depends on the unknown M and the accuracy of the estimate is
not guaranteed to improve for any sequence length shorter than N . The data–driven predictive
controller now resorts to solving the following quadratic program:

min
Uk

1

2
UTk GUk + UTk F (

[
P1 P2

] [ uk−N
yk−N+1

]
−Rk)− 2UTk ΨRuk

subject to: LUk ≤ b−M
[
P1 P2

] [ uk−N
yk−N+1

]
,

(2.19)

where G, F and L are defined using the estimated Γ.

Recursive Data-Driven Predictive Control 6



2.3. PROBLEM STATEMENT

Remark 1. Since Φx(k) is computed using previous I/O data, it should be noted that due to this
poor initial estimate, the quadratic program may not be feasible at start. This can be circumvented
by relaxing the output constraints via soft–constraints. These can be added as

min
Uk,εsc

1

2
UTk GUk + UTk F (

[
P1 P2

] [ uk−N
yk−N+1

]
−Rk)− 2UTk ΨRuk +

1

2
εTscΣεsc

subject to: LUk −Dεsc ≤ b−M
[
P1 P2

] [ uk−N
yk−N+1

]
,

(2.20)

where εsc is a vector containing the soft–constraints, D is a matrix used to only relax desired
constraints with soft–constraints, where Dεsc ∈ R2N(q+m), and Σ is a diagonal matrix used
to penalize the usage of non–zero soft–constraints (where the diagonal values of Σ are usually
substantially larger than those in Ω or Ψ).

Remark 2. In contrary to the SPC algorithm presented in [10], our implementation shifts the
output data by 1. As we assume the system is strictly proper, this shift allows us to

1. directly identify the correct prediction matrices without removing the first row manually
afterwards,

2. predict the future outputs using the current output yk, which results in a faster response to
unpredictable dynamics.

Furthermore, they suggested that by performing an Singular Value Decomposition (SVD) matrix
reduction on P1 and P2 reduces noise influences in their estimations. However, for this reduction,
the order of the system should be estimated. Improperly estimating this order can result in
significantly worse performance.

2.3 Problem Statement

The data–driven control algorithm presented in Section 2.2 shows that a predictive controller
can alternatively be defined directly from data. This removes the steps involving system identific-
ation and on–line state estimation and thereby simplifies the MPC design process. However, due
to the lack of a model, zero offset in constant reference tracking problems are not guaranteed, be-
cause computing the correct input reference is not possible. Additionally, the algorithm assumes
the prediction matrices are estimated from a linear time–invariant system, while in practice, this
is almost never the case. While SPC is an optimal unconstrained controller, it is based on one
finite data set, measured at one moment in time. This lead us to formulate the following two
main problems treated in this thesis:

Problem 1: How to design a constrained output feedback data–driven predictive controller
with zero offset only from I/O data and without any model knowledge of the system?

Problem 2: Using only I/O data, how to prevent performance degradation of a data–driven
predictive controller when the system dynamics no longer match the estimated dynamics in the
controller?

Recursive Data-Driven Predictive Control 7



Chapter 3

Integral–Action Data–Driven
Predictive Control

Embedding an integral action into a model–based predictive controller is known to improve
reference tracking, and guarantee zero–offset tracking for constant set-points. Furthermore, it
also removes effects from constant disturbances. Including this integral action transforms the
controller into a rate–based controller, as it controls the rate of change in the input instead of
the input itself. Because of this, the input reference corresponding to the output reference is no
longer required.

3.1 Adding Integral–Action to Data–Driven Predictive
Controllers

Rate–based controllers are to this end defined by an augmented state

xI(k) :=
[
∆x(k)T y(k)T

]T
, where ∆x(k) := x(k)−x(k−1) and an incremental input ∆u(k) :=

u(k)− u(k − 1) [2]. With this state, we construct the augmented model as follows:

xI(k + 1) =

[
A 0
CA I

]
xI(k) +

[
B
CB

]
∆u(k)

y(k) =
[
0 I

]
xI(k).

(3.1)

The cost function changes to:

Jx,∆Uk
:= (yN |k − rN |k)TQ(yN |k − rN |k) +

N−1∑
i=0

(
(yi|k − ri|k)TQ(yi|k − ri|k) + ∆uTi|kR∆ui|k

)
:= ∆UTk (Ψ + ΓTI ΩΓI)∆Uk + 2∆UTk ΓTI Ω(ΦIxI(k)−Rk)

+ (y(k)− r(k))TQ(y(k)− r(k)) + (ΦIxI(k)−Rk)TΩ(ΦIxI(k)−Rk),
(3.2)

Recursive Data-Driven Predictive Control 8
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where ∆Uk = [∆uT0|k . . .∆u
T
N−1|k]T . The actual control input is obtained as u(k) = u(k − 1) +

∆u∗(k). By substituting the integral model (3.1) into (2.4), we obtain

ΦI =


CA I

CA2 + CA I
...∑N

i=1 CA
i I

 , ΓI =


CB 0 ˙̇ ˙ 0

CAB + CB CB ˙̇ ˙ 0
...

...
. . .

...∑N−1
i=0 CAiB

∑N−2
i=0 CAiB ˙̇ ˙ CB

 . (3.3)

Here, it stands clear that this augmented model does not physically exist. Therefore, it can not
be directly measured. Using only input/output data measured on the physical system, how to
design an output feedback data–driven predictive controller with zero tracking offset? Next, we
state a result that allows us to derive these integral action prediction matrices directly from data
by manipulating the input used in the experiment.

Theorem 1. Let ∆Ui|k =


u0|k − u(k − 1)
u1|k − u0|k

...
ui−1|k − ui−2|k

 and [Φ]i, [Γ]i (respectively [ΦI ]i, [ΓI ]i) represent

the corresponding row–blocks of Φ, Γ (respectively ΦI , ΓI) w.r.t. output yi|k. Then it holds that

yi|k = [ΦI ]ixI(k) + [ΓI ]i∆Ui|k (3.4a)

= [Φ]ix(k) + [Γ]iUi|k, (3.4b)

for all i = 1, . . . , N .

Proof: Consider first the trivial case, i = 1, and let y0|k = CAx(k − 1) + CBu(k − 1). Then
we have that

y1|k =
[
CA I

]
xI(k) + CB∆U1|k

= CA (x(k)− x(k − 1)) + y0|k + CB
(
u0|k − u(k − 1)

)
= CAx(k) + CBu0|k

= [Φ]1x(k) + [Γ]1U1|k.

(3.5)

Next, consider the case of an arbitrary i > 1 and assume that (3.4) holds for all j = 1, . . . , i− 1.
Then we have that

yi|k =
[∑i

j=1 CA
j I

]
xI(k) +

[∑i−1
j=0 CA

jB . . . CB
]u0|k − u(k − 1)

...
ui−1|k − ui−2|k


= CAi(x(k)− x(k − 1)) +

[
CAi−1B CAi−2B . . . CB

] u0|k − u(k − 1)
...

ui−1|k − ui−2|k


+
[∑i−1

j=1 CA
j I

]
xI(k) +

[∑i−2
j=0 CA

jB . . . CB 0
]u0|k − u(k − 1)

...
ui−1|k − ui−2|k

 .

(3.6a)
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By extracting the term with the largest power of A in each sum in [ΦI ]i and [ΓI ]i, the remaining
terms form [ΦI ]i−1 and [ΓI ]i−1 respectively. Furthermore, as the last entry of [ΓI ]i−1 equals

zero, the latter part of (3.6a) (starting at
[∑i−1

j=1 CA
j I

]
xI(k)) equals yi−1|k. Therefore,

yi|k = CAix(k) +
[
CAi−1B CAi−2B . . . CB

]  u0|k
...

ui−1|k


− CAix(k − 1)−

[
CAi−1B CAi−2B . . . CB

] u(k − 1)
...

ui−2|k

+ yi−1|k

= CAix(k) +
[
CAi−1B CAi−2B . . . CB

]  u0|k
...

ui−1|k

− yi|k−1 + yi−1|k

= [Φ]ix(k) + [Γ]iUi|k.

(3.6b)

Note that, we used that yi|k−1 = yi−1|k, which is true assuming there is no model-plant mismatch.
Hence, the equations (3.4) hold by induction for all i = 1, . . . , N .

The result of Theorem 1 indicates that it is possible to estimate the prediction matrices
corresponding to the rate–based predictive control algorithm by manipulating the data fed to
the system in the experiment. That is, the experiment is performed based on (3.4b), where the
designed input is simply fed to the system; then, in the identification step, the vector ∆Ui|k is
constructed from u(k), from which the integral matrices in (3.4) can be identified using (2.17).

The implementation of the integral action DPC still requires estimation of ΦIxI(k). In this
case, the unconstrained integral DPC law changes to

∆U∗k (x) = −G−1F

([
P1I

P2I

] [∆uk−N
yk−N+1

]
−Rk

)
= −G−1F (ΦIxI(k)−Rk) ,

which is similar to the method used in Section 2.2. Here, P1I
and P2I

are obtained as (2.17), but
using the differentiated input (3.4). Integral action also allows to assert directly rate–constraints
on the input. As such, the constraints become:

Mi+1yi+1|k + Eiui|k +Ki∆ui|k ≤ bi, or

MYk + EUk +K∆Uk ≤ b,
(3.7)

where Mi+1, Ei and bi are re–defined appropriately, in contrast with (2.9), to accommodate for
the newly introduced rate constraints specified via Ki. Furthermore,

Yk =
[
P1I

P2I

] [∆uk−N
yk−N+1

]
+ ΓI∆Uk, (3.8a)

Uk =


Im 0
Im Im
...

...
. . .

Im Im Im Im


︸ ︷︷ ︸

Ltr

∆Uk +


Im
Im
...
Im


︸ ︷︷ ︸
1N

u(k − 1). (3.8b)
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Substituting (3.8) in (3.7) yields:

b ≥M
([
P1I

P2I

] [∆uk−N
yk−N+1

]
+ ΓI∆Uk

)
+ E (Ltr∆Uk + 1Nu(k − 1)) +K∆Uk,

(MΓI + ELtr +K) ∆Uk ≤ b− E1Nu(k − 1)−M
[
P1I

P2I

] [∆uk−N
yk−N+1

]
.

(3.9)

Remark 3. A solution for adding integral action to the SPC algorithm was presented in [11],
which differs from our approach, as follows. Firstly, therein integral action is added only for a
specific ARIMAX model structure, which allows using a discretized derivative of the output for
feedback. This clearly is not extendable to general linear structures, as it will amplify the meas-
urement noise. In contrast, we develop a data–driven analogue of the rate–based method (also
called the velocity form model) [2] for adding integral action to model–based predictive control,
which is applicable to general linear systems. Secondly, in [11], integral prediction matrices are
derived based on algebraic manipulations on the estimated prediction matrices of SPC without
integral action. In contrast, Theorem 1 shows that estimation of integral prediction matrices can
be done directly from data, in the same way as estimation of normal prediction matrices, by
suitable data manipulations.

Let us now formalize the procedure to obtain the prediction matrices and implement the
developed i-DPC algorithm:

Algorithm 1. i-DPC Scheme

1. Design an input signal u(t) and perform an experiment on the plant to collect the output
data y(t).

2. Compute ∆u(k) and use it to build the matrices Up, Uf as in (2.14). Build also the output
matrices Yf , Yp from y(k).

3. Apply (2.17) to obtain the respective prediction matrices P1I
, P2I

,ΓI .

4. Choose the performance matrices Q,R and compute G and F in (2.6a).

5. Construct the constraint matrices as in (3.9).

6. Apply the predictive control law online via your favorite QP solver.

Remark 4. Theorem 1 actually indicates a much broader result than just the SPC implement-
ation. It suggests that if the difference of the input applied in the experiment is used in any
identification/estimation procedure, the corresponding integral action augmented system estim-
ate is obtained.

Remark 5. i-DeePC
Following Remark 4, it means that the rate–based DeePC controller, corresponding to the original
DeePC controller [5], can be obtained as follows: Consider the following notation

HL(z) :=


z0 z1 . . . zT−L
z1 z2 . . . zT−L+1

...
...

. . .
...

zL−1 zL . . . zN−1

 .
Suppose the data sequences {ud, yd} are obtained in an experiment session on an LTI system G,
assuming udk is persistently exciting upto order T . Then it can be proven that the sequence {ū, ȳ}
is also a trajectory of G if and only if there exists α ∈ RT−L+1 such that [5][

HL(ud)
HL(yd)

]
α =

[
ū
ȳ

]
.
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Following Theorem 1, if we obtain ∆ud from ud, we can prove that the sequence {∆ū, ȳ} is a
trajectory of GI if and only there exists α ∈ RT−L+1 such that[

HL(∆ud)
HL(yd)

]
α =

[
∆ū
ȳ

]
,

where GI is G augmented with an integral action.

In the next section we provide an illustrative example of the proposed i-DPC, and provide a
comparison to the alternatives.

3.2 Position control for a linear motor

Consider the simplified motion dynamics of a linear motor [19], as shown in 3.1:

ẋ(t) =

[
0 1
0 −50

]
x(t) +

[
0

0.5

]
u(t) +

[
0

0.5

]
d(t)

y(t) =
[
1 0

]
x(t),

where the first state (the output) is the position and the second state is the velocity. The system
is discretized with a sampling time of Ts = 0.02 s. The input force is constrained between
−500 N ≤ u(k) ≤ 500 N, and displacement is limited between −0.165 m ≤ y(k) ≤ 0.165 m. In

Figure 3.1: The linear motor setup

order to collect data from the system we design an experiment where the input is a PRBS signal
with an amplitude of ±80 N, clock sample 1 and length 2052 samples. The output is corrupted
by a white noise sequence with variance σ2

e = 0.005.
We now compare the results of using a data-driven predictive controller without integral

action (i.e., the SPC algorithm) with the developed i-DPC algorithm. For this case, the control
performance parameters are given by N = 15, Q = 6e5, and R = 0.05. We then perform the
estimation of the integral prediction matrices in (2.17) with L = 2000.

Fig. 3.2 presents the closed–loop simulation results for the developed i-DPC and the standard
SPC as presented in [10]. Also, between t = 2 s and t = 4 s we apply a constant disturbance
force of amplitude d(k) = 30 N.
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Figure 3.2: Linear motor example: closed–loop response comparison between SPC and i-DPC.

Due to the poor initial estimation, the initial response of both methods is a bit slower.
Note that the proposed integral action implementation removes the effect of the disturbance
completely, whereas the SPC data–driven controller without integral action fails to remove the
offset.
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3.3 Comparison of i-DPC with the state–of–art

Next, we compare i-DPC with the SPC algorithm with integral action added as in [11], which
builds prediction matrices indirectly, by estimating non–integral prediction matrices first and
then adding up individual terms in these matrices:

Yk =


y(k)
y(k)
...

y(k)

+
[
P̄1I P̄2I

] [ ∆uk−N
∆yk−N+1

]
+ Γ̄I∆Uk, (3.10a)

where, [
P̄1I P̄2I

]
= Ltr

[
P1 P2

]
, Γ̄I = ΓLtr, (3.10b)

and the SPC cost function is modified appropriately using the new definition for Yk. In [11], the
prediction matrices are obtained using a QR-decomposition instead of the general least-squares
solution. Furthermore, they use SVD to reduce the noise influence on P1 and P2. Only after
that, the integral action is added as shown in (3.10). For the SVD we used the actual system
order 2 (best case scenario). However, note that in practice, this is not known and must be
estimated. The comparisons are made by taking the Frobenius norm between the estimated
and model–based individual matrices {P̂1I

−P1I
, P̂2I

−P2I
, Γ̂I −ΓI} and also by computing the

following prediction error criterion:

ε = ‖Yf − Ŷf‖2. (3.11)

The test sets for (3.11) consist of Yf and Yp block matrices containing 800 +N samples.
Figure 3.3 shows the error between the estimated matrices while Figure 3.4 portrays (3.11),

both for an increasing horizon N . The Frobenius norm criterion yields comparable results, with
estimation of P2I

considerably improving for i-DPC with the horizon length. Most importantly,
the prediction error criterion shows that the method developed in this paper for direct estimation
of integral prediction matrices can significantly outperform the indirect approach of [11] for
adding integral action to the SPC.
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Figure 3.3: Linear motor example: estimation errors for integral prediction matrices computed
using estimated SPC and i-DPC prediction matrices, respectively.

Figure 3.4: Linear motor example: prediction error comparison for different prediction horizons
for integral prediction matrices computed using estimated SPC and i-DPC prediction matrices,
respectively.
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Chapter 4

Recursive Predictive Control

Off–line data–driven predictive control estimates the prediction matrices based on one set of
data, measured at one time instance on the system. The benefit is that the experiment used
to collect this data can be optimized for estimation. However, the resulting prediction matrices
only provide an accurate prediction for the measured system dynamics, around the operating
point of the system in the experiment. Therefore, time–varying or non–linear aspects of the
system are not captured in the estimation. On–line data–driven control approaches eliminate
this issue through continuously updating the controller with on–line measured input–output data
[15, 16, 17, 20]. Theoretically, the controller should therefore always optimally control the sys-
tem, at any time, around any operating point. However, it is not guaranteed that the on–line
measured data is optimal for estimation. Tracking a steady reference means that the dynamics
of the system are not frequently excited. Therefore, the resulting input/output data is generally
very poor for estimation. This dual–problem between designing a controller that generates an
input that is both suitable for reference tracking and identification can be solved in various ways.
To address this problem, [20] included input disturbance with a chosen variance, but the control-
ler only used the disturbance if the estimation error was satisfactory. Another option is to use a
parameter that indicates how exciting the measured data is, and only update the measurement
using exciting data samples [16]. Alternatively, [17] and [21] modify the cost function to automat-
ically balance between estimation and tracking. [20] and [16] also use a recursive implementation
of subspace identification for the prediction matrices, that uses the QR-decomposition as basis.
This chapter is organized as follows. In Section 4.1 we will introduce an alternative recursive
estimation procedure to estimate the prediction matrices on–line. We then use the recursive
estimation algorithm with the off–line SPC control law to build a Recursive Data–Driven Pre-
dictive Controller (RDPC) in Section 4.2. Section 4.3 assesses the dual–problem of identification
and control, and introduces a solution by modifying the predictive control problem.

4.1 Recursive Identification of the Prediction matrices

Recursive identification methods identify the parameter estimates computed recursively. This
means that there is an previous estimate based on data up to t− 1, and this estimate is updated
using the newly measured sample. This is in contrary to off–line or batch methods, like SPC
least–squares estimation introduced in Section 2.2, which identify the parameter estimate from
one batch of data[22] [23]. In this section, the recursive least–squares (RLS) method is explained.
RLS is the recursive implementation of the batch–wise least–squares estimation, as used in
subspace identification.
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Consider the following least–squares estimation as used in subspace identification (2.17):

[
P1 P2 Γ

]
= Yf

Up

Yp

Uf

T

Up

Yp

Uf

Up

Yp

Uf

T

−1

. (4.1)

Note that the pseudo–inverse [·]† has been replaced with the equivalent right–side expression
(ZZ† = ZZT (ZZT )−1). Let us introduce the following

θT =
[
P1 P2 Γ

]
, φk =

 uk−2N

yk−2N+1

uk−N

 ,
WL =

[
φ1 φ2 . . . φL

]
=

Up

Yp

Uf

 .
(4.2)

This further yields

θ̂L =
(
WLW

T
L

)−1
WLYT

f

=

(
L∑
t=1

φtφ
T
t

)−1 L∑
t=1

φty
T
t−N+1.

(4.3)

Equation (4.3) implies that the large Hankel matrices multiplications can be carried out as a
sum of vector multiplications. In order to formulate the recursive expression, consider the new
variable XL

X−1
L :=

L∑
t=1

φtφ
T
t

=

L−1∑
t=1

φtφ
T
t + φLφ

T
L

= X−1
L−1 + φLφ

T
L.

(4.4)

Substituting (4.4) into (4.3) yields

θ̂L = XL

(
L∑
t=1

φty
T
t−N+1

)

= XL

(
L−1∑
t=1

φty
T
t−N+1 + φLyTL−N+1

)
,

(4.5)

note that,

θ̂L−1 = XL−1

L−1∑
t=1

φty
T
t−N+1,
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therefore,

θ̂L = XL

(
X−1
L−1θ̂L−1 + φLyTL−N+1

)
= XL

(
X−1
L θ̂L−1 − φLφTL θ̂L−1 + φLyTL−N+1

)
= θ̂L−1 + XLφL

(
yTL−N+1 − φTL θ̂L−1

)
,

(4.6)

which shows that to update θ̂L from θ̂L−1, only the data sequence at time instant L is required.
The final step is to remove the necessity of inverting XL every iteration, which is unwanted
as XL is dimensionally the largest matrix in this algorithm, and computing the inverse is a
time–consuming operation. This can be done by applying the Woodbury inversion lemma [24]:

XL =
(
X−1
L−1 + φLφ

T
L

)−1

= XL−1 −
XL−1φLφ

T
LXL−1

1 + φTLXL−1φL
.

(4.7)

Also notice that

XLφL = XL−1φL −
XL−1φLφ

T
LXL−1φL

1 + φTLXL−1φL

=
XL−1φL

1 + φTLXL−1φL
.

(4.8)

Therefore, the prediction matrices can be identified in an recursive manner through the following
set of equations[22][23]:

ek = yk−N+1 − θ̂Tk−1φk,

Kk =
Xk−1φk

1 + φTkXk−1φk
,

θ̂k = θ̂k−1 +Kke
T
k ,

Xk = Xk−1 −Kkφ
T
kXk−1.

(4.9)

Here, θ̂0 = 0N(2m+q)×Nq and X0 = αIN(2m+q), where α� 1 to ensure the inverse approaches
0. Given the notation of φk in Equation (4.2), it should be noted that to initiate the recursive
identification, enough data must have been gathered to completely build φk, in order to avoid
leading zeros. The prediction matrices can be extracted from the estimation of θk, as seen in
(4.2) (note the transpose). This recursive identification algorithm however still assumes the input
persistently excites the system. In the next section, we continue by implementing this recursive
identification algorithm within the data–driven predictive controller, and with that taking the
first step into building the recursive predictive controller.

4.2 Recursive Predictive Control

The previous section introduced the adaptation of the classical recursive identification proced-
ure as seen in [23] to identify the prediction matrices used in a data–driven predictive controller.
This section we introduce a predictive controller, which updates its prediction matrices from
on–line measured I/O data. As both the identification and the controller are already presented
in (4.9) and (2.5), the basic recursive predictive controller without reference tracking can be
formalized in the following algorithm
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Algorithm 2. The RDPC scheme

1. Initialize the prediction matrix θ̂0 and X0, weight matrices Ω and Ψ as well the constraint
matrices E and M,

2. Measure yk and use that together with previous outputs and inputs to build φk and yk−N+1

as in (4.2),

3. Update the prediction matrix θ̂k as shown in (4.9),

4. Extract P1, P2 and Γ from θ̂k and use those to update the controller matrices G, F and L,

5. Solve the quadratic program with your favourite QP solver,

6. Apply the first input to the system and repeat from step 2.

Theorem 1 states the relation that if the difference of the input is used in the estimation
instead of the actual input applied to the system, the estimation will yield the system estimate
augmented with an integral action. Hence, we can design the corresponding integral action
recursive data–driven predictive controller (i-RDPC) as follows:

Algorithm 3. The i-RDPC scheme

1. Initialize the prediction matrix [θ̂I ]0 and X0, weight matrices Ω and Ψ as well the constraint
matrices E and M,

2. Measure yk and build [φI ]k =
[
∆uTk−2N yTk−2N+1 ∆uTk−N

]T
and yk−N+1 as in (4.2),

3. Use [φI ]k to update the prediction matrix [θ̂I ]k as shown in (4.9),

4. Extract P1I
, P2I

and ΓI from [θ̂I ]k and use those to update the controller matrices G, F
and L,

5. Compute ∆U∗k by solving the quadratic program with your favourite QP solver,

6. Apply uk = uk−1 + ∆u∗k to the system and repeat from step 2.

Before applying either of the algorithms above, one must properly define the initial behaviour
of the control loop. The loop can be initialized in two ways:

� With a warm start
The recursive least–squares algorithm can be initialized using an off–line generated data–
set, as how one would build the off–line SPC controller. Using this data, X0 can be correctly
initiated as:

X0 =
(
WLW

T
L

)−1
.

Alternatively, using the definition of the prediction matrices, see Equation (2.16), a model–

estimate of the system can be used to initialize θ̂0. A correct initialization of X0 cannot be
obtained, but α can be decreased based on the confidence in the model. As the controller
can provide an initial prediction, the constraints can be satisfied and therefore no additional
steps are required. However, the recursive estimation should only initiate once enough
samples have been measured to construct φk with system data.

� As a blank controller
In this scenario, the prediction matrices are initialized without any prior system knowledge.
As such, two problems arise. First, the controller cannot guarantee the output constraints
are satisfied. Secondly, the initial control input is zero. The second is a problem because
the initial N(2m+ q) updates of the recursive estimation completely fit the current φk to
the current yk−N+1. If the inputs in that φk are zero, it will fail to provide any estimates
for P1 and Γ and the controller cannot control the system. To circumvent this issue, the

Recursive Data-Driven Predictive Control 19



4.3. CLOSED LOOP CONVERGENCE ANALYSIS

system should be controlled in open loop until at least 2N samples have been collected,
using any exciting, non-zero input. To circumvent the first problem, the system should be
controlled in open loop until the estimate of θ̂k can be used to provide a proper prediction,
which requires another 2N samples.

Even though the prediction matrices are updated continuously, in its current algorithm,
the prediction matrices represent the system from the moment the controller starts. This means
that if the system changes in this time–window, the prediction matrices will require a substantial
amount of new exciting data to correctly “un-fit” the older system dynamics. To increase the
speed to which the prediction changes to the new dynamics, a forgetting factor can be included
[22]. Forgetting factors are factors that decrease the influence of older data over more recently
measured data. The following two approaches are presented in [22]:

ek = yk−N+1 − θ̂Tk−1φk,

Kk =
Xk−1φk

λ+ φTkXk−1φk
,

θ̂k = θ̂k−1 +Kke
T
k ,

Xk =
(
Xk−1 −Kkφ

T
kXk−1

) 1

λ
,

(4.10)

where the forgetting factor λ is usually chosen close to 1 (for example 0.99 or 0.96). Smaller
values for λ will reduce influence of older data faster but may jeopardize the current estimation.
Due to this notation, λ has an exponential effect on Xk. The second approach has a linear effect
on Xk:

ek = yk−N+1 − θ̂Tk−1φk,

Kk =
Xk−1φk

1 + φTkXk−1φk
,

θ̂k = θ̂k−1 +Kke
T
k ,

Xk = Xk−1 −Kkφ
T
kXk−1 +R1,

(4.11)

where the forgetting factor R1 � 0 ensures the variance always stays above R1 (here, Z � 0
and Z � 0 denote the matrix Z is positive definite and positive semi-definite, respectively). In
contrary to λ, R1 allows for more freedom in its construction, thus bounding variances for some
parameters less than others. Furthermore, due to the linear behaviour, it is significantly less
aggressive, which is beneficial for an on–line identification.

Here the basic recursive predictive control algorithm is presented. While some initial problems
are discussed, it is still not guaranteed whether the identification will converge to the actual pre-
diction matrices. The next section will assess closed–loop convergence properties and introduce
methods to improve the convergence of the estimation to the actual prediction matrices.

4.3 Closed Loop Convergence Analysis

Just as subspace identification, RLS guarantees convergence if the input is uncorrelated with
the noise and is persistently exciting. This raises the question arises whether this identification
works in a closed–loop presentation too. As the recursive identification is directly expressed from
the standard, batch–wise, subspace identification of the prediction matrices, this section will use
that notation for simplicity.
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Figure 4.1: Control loop

Consider the closed–loop representation as shown in Figure 4.1. Given the plant model P1,
P2 and Γ, and the controller matrices C1, C2 and C3, the closed–loop dynamics can be expressed
as:

Yf = P1Up + P2Yp + ΓUf − P2Vp + Vf ,

Uf = C1(Rp −Yp) + C2Up + C3(Rf −Yf ),
(4.12)

where Vp and Vf are Hankel matrices of the measurement noise v. Rp and Rf are the Hankel
matrices containing the reference. For clarity of this derivation, only the estimation of Γ is
considered. In an open–loop case, Γ can be estimated using the following projection [12]:

Wp =
[
UT
p YT

p

]T
,

Γ̂ = YfW
⊥
p

[
UfW

⊥
p

]†
,

(4.13)

where [.]⊥ represents the orthogonal null projection, i.e. Z⊥ := I − ZT (ZZT )−1Z. If the noise
v is uncorrelated with the input u (as in the case of open–loop experiments), the noise influence
of the estimation of Γ vanishes as L → ∞. However, when u is computed by a controller in
closed–loop, u will be correlated with the noise v, thus the convergence guarantee no longer
hold. Instead, it will approximate to the following:

YfW
⊥
p = ΓUfW

⊥
p − P2VpW

⊥
p + VfW

⊥
p ,

UfW
⊥
p = C1RpW

⊥
p + C3RfW

⊥
p − C3YfW

⊥
p .

(4.14)

To remove the direct relation of Uf in Yf and vise-versa, substitute the equations in (4.14) into
each other:

YfW
⊥
p = Γ(C1Rp + C3Rf − C3Yf )W⊥

p − P2VpW
⊥
p + VfW

⊥
p ,

UfW
⊥
p = C1RpW

⊥
p + C3RfW

⊥
p − C3(ΓUf − P2Vp + Vf )W⊥

p ,
(4.15)

which rewrites to

YfW
⊥
p = (I + ΓC3)

−1
[ΓC1Rp + ΓC3Rf − P2Vp + Vf ] W⊥

p ,

UfW
⊥
p = (I + C3Γ)

−1
[C1Rp + C3Rf + C3P2Vp − C3Vf ] W⊥

p .
(4.16)

As such, the approximate estimate of Γ̂cl is computed as:

Γ̂cl = YfW
⊥
p

[
UfW

⊥
p

]†
= (I + ΓC3)

−1
[ΓC1Rp + ΓC3Rf − P2Vp + Vf ] W⊥

p

×
(
[C1Rp + C3Rf + C3P2Vp − C3Vf ] W⊥

p

)†
(I + C3Γ) .

(4.17)
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From (4.17) two limit cases can be identified.

1) if vk → 0 : Γ̂cl → Γ,

2) if (Rf + Rp)W
⊥
p → 0 (insufficient excitation) : Γ̂cl → −C−1

3 .
(4.18)

These two cases means that Γ̂cl will either converge to the actual system or to the inverse of the
controller, which are equivalent to the two limit cases in the classical system identification theory,
although proven in the frequency domain [22]. The identifications of P1 and P2 will converge
following the same limit cases, however they approach −C−1

3 C1 and −C−1
3 C2 respectively if

the reference is insufficiently exciting. In an on–line scenario, the reference is generally not a
persistently exciting signal. To circumvent this issue, we introduce tools to improve the accuracy
of the prediction matrices.

Remark 6. In this derivation, process noise is omitted. However, as the state is expressed as
a linear combination of previous inputs and outputs, the effects of process noise can be directly
expressed through −P2Vp. Even though that will affect Yf , it has no effect on the outcome of
this analysis.

Remark 7. The result from Equation (4.17) suggest that if a closed–loop experiment is required
to collect data for the off–line SPC controller, only a persistently exciting reference is required.

4.3.1 Using a continuously updating controller

According to [25], the estimation of θ̂ will converge to the plant if one of the following
situations apply:

1. A sufficiently exciting reference signal is present;

2. C is a controller of sufficiently high order;

3. C is a controller that switches between several settings during the experiment.

For the last situation, these include non–linear and/or time–varying controllers. Furthermore,
these situations only apply if the actual system can be described by the chosen model structure.
Along with that, the estimation may not be consistent if the noise model is misspecified. To
reflect this theory to the proposed controller, the following can be stated:

1. No assumptions can be made on the reference;

2. As the controller is computed using the last N inputs and outputs, the controller has an
order of N . However, as it at the same time, controls the next N inputs, the order of the
controller is insufficient;

3. Due to the inclusion of constraints, the predictive controller becomes a non-linear controller.
Furthermore, as the controller is continuously updated using the recursive estimation, it is
time–varying as well;

4. We assume the system can be described in the model structure, however as no noise model
is specified, it is unsure if consistency can be achieved.

This suggests that θ̂ converges to the plant dynamics as long as the controller sufficiently changes.
However, that immediately imposes a conundrum. If θ̂ converges, the controller converges too,
therefore the controller no longer changes, and thus the convergence of θ̂ is no longer guaranteed.
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The result of this is that θ̂ will converge to the system dynamics initially, but once the output
settles to the reference, the input generated by the controller will not sufficiently excite the
system. As θ̂ continuously updates and depending on how low the covariance matrix Xk is,
the estimation might slowly diverge, provided that the corresponding controller still tracks the
reference. This results in loss of prediction performance and constraint assessment, two key
features of a predictive controller.

4.3.2 Including a Strongly Persistently Exciting condition in predictive
control problem

The previous subsection elaborated on the free benefits of using a recursively updating con-
troller. However, as it also showed that this may not be sufficient, a stronger guarantee is
required. Hence, we will introduce a few methods in order to ensure a strongly persistently ex-
citing (SPE) input is also applied to the system, while still solving the cost function optimization.
The signal u is said to be persistently exciting up to order n if the matrix [23][26]

R̄n =


Ru(0) Ru(1) . . . Ru(n− 1)
Ru(1) Ru(0) . . . Ru(n− 2)
...

. . .
. . .

...
Ru(n− 1) . . . Ru(1) Ru(0)

 , (4.19)

is non-singular, with Ru(i) = Ēu(t)u(t− i) being the correlation function at lag i. The signal is
strongly persistently exciting if [21]

ρlb � R̄n � ρub, ρlb � 0, (4.20)

where Z � X means that X − Z is positive semi-definite. In practice, R̄n can be estimated for
u as

R̄N =
1

L

L∑
i=N

uk−iu
T
k−i, (4.21)

or, in a matrix form as

UHp =
[
uk−N−L uk−L−N+1 . . . uk−N

]
,

R̄N = UHpU
T
Hp.

(4.22)

In (4.21), L represents an SPE horizon and by imposing L ≥ N , one guarantees that R̄N is
singular if u is persistently exciting over this horizon. By keeping L small, one ensures that the
controller is continuously computing an SPE input. Additionally, as this excites the output in
real–time, it also ensures the estimation is closer to the actual system dynamics. Furthermore,
as the cost function computes the new inputs, the SPE condition should apply to these as well.
In order to write this condition in a way that we can use to solve the predictive controller
optimization, consider first the shifted matrix:

UH =


u(k −N − L) . . . u(k −N) u(k −N + 1) u(k −N + 2) . . . u0|k

u(k −N − L+ 1)
. . . u(k −N + 1) u(k −N + 2)

. . .
. . . u1|k

...
. . .

. . .
...

. . .
. . .

...
u(k − L− 1) . . . u(k − 1) u0|k u1|k . . . uN−1|k


=
[
UHp UHf

]
,

(4.23)
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where L ≥ 0. This allows us to write the following optimization problem:

min
Uk

1

2
UTk GUk + UTk F (

[
P1 P2

] [ uk−N
yk−N+1

]
−Rk)− 2UTk ΨRuk

subject to: LUk ≤ b−M
[
P1 P2

] [ uk−N
yk−N+1

]
− eig(UHUT

H) ≤ −ρlb1N .

(4.24)

It should be noted that the upper bound of the eigenvalues is not imposed, as it is assumed
the controller seeks to minimize Uk. With the inclusion of the constraint on the eigenvalues,
this becomes a non-linear problem. Non-linear problems cannot be solved with a standard
QP–solver and require alternative, less efficient solvers. Given that this solver has to compute
the eigenvalues of a matrix possibly multiple times, it is not expected this control law will run
efficiently. Because of this, we introduce a few alternative implementations that can be computed
faster.

� The Determinant
The determinant of a matrix is equal to the product of the eigenvalues. Furthermore,
for any non-singular matrix the determinant is non-zero. Asserting a lower bound on the
determinant therefore asserts a non-zero bound on the eigenvalues. However, it does not
assert an exact lower bound on the eigenvalues in general. Furthermore, to find a suitable ρ
for this method, one should consider that the value of the determinant scales exponentially
with the prediction horizon. This changes the cost–function to:

min
Uk

1

2
UTk GUk + UTk F (

[
P1 P2

] [ uk−N
yk−N+1

]
−Rk)− 2UTk ΨRuk

subject to: LUk ≤ b−M
[
P1 P2

] [ uk−N
yk−N+1

]
− det(UHUT

H) ≤ −ρlb.

(4.25)

Do note that as UHUT
H is positive semi-definite, the determinant of this matrix must be

greater than or equal to zero.

� The Trace
At the other end of the determinant, is the trace. The trace is the sum of the diagonal
values, and the sum of the eigenvalues as well. Computing the trace results in a quadratic
equation with respect to Uk. This does still means standard QP solvers cannot be used,
but Quadratically Constrained Quadratic Program (QCQP) solvers are widely available,
and rather efficient. If the gradient of the constraints with respect to Uk can be provided,
the QCQP problem can run faster and give more reliable results [27]. Fortunately, the
gradient of the trace with respect to Uk can be easily computed. Suppose Ui

H is the ith
row of UH . Then the values on the diagonal of UHUT

H can be expressed as

[UHUT
H ]ii = ‖Ui

H‖2.

Given that each Ui
H contains the first i values of Uk, ∇Uk

‖Ui
H‖2 results in

∇Uk
‖Ui

H‖2 = 2
[
11×i 01×N−i

]
Uk,

and the gradient of the trace of UHUT
H with respect to Uk can be computed by summing

the gradients for each value on the diagonal

∇Uk
tr(UHUT

H) = 2
[
N N − 1 . . . 1

]
Uk.
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It must be noted that the value of the trace is generally dominated by the larger eigenvalues,
and the value of the trace cannot determine if UHUT

H is singular. To prevent the trace
from considering non-zero constant inputs as “persistently exciting”, the average of the
signal u can be removed as:

R̄N =

L∑
i=N

(uk−i − 1N×1µ(uk−i))(uk−i − 1N×1µ(uk−i))
T , (4.26)

where µ(z) is the average of the sequence z (which is equivalent to the expected value).
This can be computed in a matrix form as

µ(uk−i) =
1

N
11×Nuk−i

(uk−i − 1N×1µ(uk−i)) = (I − 1

N
1N×N )uk−i = Tµuk−i

R̄N = TµUHUT
HT

T
µ .

(4.27)

As Tµ is only a linear transformation, the gradient is multiplied with this matrix too.
Therefore it maintains the computational efficiency. This changes the cost–function to:

min
Uk

1

2
UTk GUk + UTk F (

[
P1 P2

] [ uk−N
yk−N+1

]
−Rk)− 2UTk ΨRuk

subject to: LUk ≤ b−M
[
P1 P2

] [ uk−N
yk−N+1

]
− Tr(TµUHUT

HT
T
µ ) ≤ −ρlb.

(4.28)

� Excite in the least exciting direction
Instead of improving the SPE by asserting bounds on the eigenvalues of UHUT

H , [17]
introduced a method that steers Uk to the least exciting direction. Consider the following
SVD:

UHp = USΣSV
T
S

=
[
cs0 cs1 . . . csN

] σs0 0 . . . 0
. . .

...
...

σsN 0 . . . 0


vs0...
vsL


T

,
(4.29)

which shows that the matrix can be expressed as a set of orthonormal directions with each
a corresponding magnitude. Note that only the previous inputs are used to compute this
SVD (UHp). Here, the direction with magnitude σs0 is excited the most, while the direction
with magnitude σsN is the least excited direction (or, if R̄n is singular, not excited at all).
With respect to the actual system, consider that the direction of N inputs represents a
combination of individual inputs. The least exciting direction expresses a combination
of inputs that has not been applied to the system in the given horizon. This results to
minimizing the following criterion:

min
Uk

(ρcsN − Uk)T (ρcsN − Uk), (4.30)

where ρ denotes the excitation level, which is bounded as 0 ≤ ρ ≤ max ‖Uk‖, where
max ‖Uk‖ can be computed from the given input constraints. Including (4.30) into (2.19)

Recursive Data-Driven Predictive Control 25



4.4. ILLUSTRATIVE EXAMPLE

yields:

min
Uk

1

2
UTk (G+ 2)Uk + UTk F (

[
P1 P2

] [ uk−N
yk−N+1

]
−Rk)− 2UTk (ΨRuk + ρcsN )

subject to: LUk ≤ b−M
[
P1 P2

] [ uk−N
yk−N+1

]
.

(4.31)
The benefit of this method, is that the problem remains a quadratic problem. However,
there is much less control on how persistently exciting Uk really is. By applying the next
input to the system, the SVD of the next UHp changes, and it is not guaranteed the current
least exciting direction is the previously least exciting direction.

Remark 8. When including the SPE term to the constraints, including a soft–constraint in the
optimization problems (4.24), (4.25) and (4.28) is mandatory. This is to prevent that given the
previous inputs, no Uk exists that satisfies the constraint and makes the problem infeasible.

Remark 9. The methods introduced above will steer the controller to generate a SPE input.
However, this SPE input is not optimal for tracking and will introduce unwanted tracking offsets.
Therefore, the controller should switch between computing an input suitable for estimation and
an input suitable for reference tracking. While not necessary, one could disable the recursive
estimation updates as long as the controller is not generating an SPE signal. This prevents
however possible detection of system–controller mismatches, but at the same time, prevents the
controller from adjusting based on data that is mostly noise as well. For this, we propose a rough
metric εk that can be used to assess how useful the data was in the estimation. This is obtained
through the a posteriori error ēk and the a priori error ek, as follows:

ek = yk−N+1 − θ̂Tk−1φk,

ēk = yk−N+1 − θ̂Tk φk
= yk−N+1 − θ̂Tk−1φk − ekKT

k φk

= ek(1−KT
k φk), or alternatively:

ēk = ek(
λ

λ+ φTkXk−1φk
) = ekεk.

(4.32)

The resulting εk is a scalar between 0 and 1 that weights the a priori error ek to the a posteriori
error ēk. If εk approaches 0, the current φk is completely fitted into the estimation, if εk ap-
proaches 1, the current data did not change θ̂k. εk can therefore be used in 2 ways: it can either
be used to determine whether the current φk adds useful data, where it can skip the update if not,
or can be used to assess if the last SPE inputs did still provide useful data for the estimation,
and disable the control law that emphasizes on persistency of excitation if so. As long as new
unique data is fed to the recursive estimation, εk will increase. However, this data does not need
to contain system dynamics. Therefore, it is important to ensure that the initial on–line data is
by default persistently exciting. Fortunately, as the controller will change substantially initially,
the results in Subsection 4.3.1 suggest that the input is by default persistently exciting.

4.4 Illustrative example

Consider again the linear actuator introduced in Section 3.2. In this simulation, we compare
the off–line i-DPC with the recursive i-RDPC algorithm. To illustrate the effect of a parameter
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change in the system, at t = 10s, the friction coefficient doubles. The simulation will be corrupted
with a white noise sequence with variance σ2

e = 0.005.
For both controllers, the following parameters have been used: R = 0.05, Q = 3e4 and

N = 15. In the recursive controller, we initialize [θ̂I ]0 = 0 and X0 as an identity matrix with
gain α = 1e6. Furthermore, a forgetting factor R1 = 1e-5I is included to incorporate future
model changes. The recursive controller generates an SPE input by forcing the next input to
excite in the least excited direction, using ρ = 2.5e5, see equation (4.31).

The off–line i-DPC controller is built using the same open–loop experiment as in Section
3.2. The recursive controller runs in open loop between 0 and 4N samples, using a white noise
sequence with a variance of σ2

u = 5 as input. The recursive identification initiates after 2N
samples have been collected. From t = 1.2s to t = 4s, the loop closes and the controller runs
with the SPE conditions, after t = 4s it loses this condition and the quadratic program is equal
to that of the off–line i-DPC.

Aside from the output and input plots, the prediction error has been added as well. This
prediction error is the norm of the difference of the predicted output using the identified prediction
matrices compared to the actual future outputs, that is computed noise–free (similar to (3.11)).
The simulation results are shown in Figure 4.2.

The effect the SPE condition in the recursive controller can be observed in the output and
input plots. After t = 4s, when the SPE condition is dropped, the controller tracks the system
accordingly and the prediction error converges to that of the off–line i-DPC. After the system
changes at t = 10s, both controllers show a significant increase in the prediction error and
tracking error. However, while this error does not reduce for the i-DPC, the recursive i-RDPC
adjusts the prediction matrices to this new model and recovers optimal tracking.
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Figure 4.2: Simulations on a linear actuator using an off–line i–DPC (blue) and the recursive
i–RDPC (red)
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Chapter 5

Implementation on a DC-DC
Buck Converter

Data–driven controllers are built without a model, directly from measured system input/out-
put data. Hence, DD controllers avoid the difficult step of creating a model, and the inaccuracies
caused by poor parameter estimation. However, this advantage cannot be illustrated through a
simulation, as it simulates the controllers on a model. In the simulation, the best performance
the DD controller can achieve, is the performance of an equivalent model based controller. As
such, in this chapter, we illustrate the resulting DD controllers on a real system instead. Due to
the circumstances in which this graduation project is executed, the system used will be a crudely
built DC-DC Voltage buck converter. The setup and the controller are introduced in section 5.1,
followed by the results of the experiment in section 5.2.

5.1 The Setup

A DC-DC Voltage buck converter is a step down voltage regulator. As it operates as a
switched–mode power supply, buck converters are very energy efficient. Figure 5.1 shows the

S
LindiL

Ccap Rres

+

−

Vin

+

−

Vo

Figure 5.1: Schematic of a DC-DC Voltage Buck Converter

schematic of the buck converter used. In the setup, the switch S is controlled by a pulse–width
modulated (PWM) signal, where u(t) is the duty cycle.

This system will be controlled using an Arduino Uno as shown in Figure 5.2, which provides
both the PWM signal and the input voltage Vin. Considering that the Arduino Uno runs on a
16MHz microprocessor, it is doubtful the Arduino can solve a quadratic program in a feasible
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Figure 5.2: The circuit in connection with the Arduino board

sampling time (note that in general, buck converters are fast). Instead, the Arduino will run
as an interface, where the actual control input will be computed by a python script. The
communication is specifically designed to be as minimal as possible, requiring only 2 bytes to
send a new control input, and 1 bytes send + 2 bytes received to obtain the last measurement.
Thanks to this control setup, the controller has a sampling frequency of 250Hz. This is limited
due to a latency in Windows between when USB data is received and when it is read in the python
script. To compensate for this lower sampling rate, the buck converter is built using a capacitor
and an inductor with a relatively high capacitance and inductance. Otherwise, the controller
would simply control something without any measurable dynamics. In this setup, the following
component values are used: Rres = 10kΩ ± 1%, Ccap = 470µF ± 20%, Lind = 830µH ± 10%
and Vin = 5V.

Furthermore, to ensure the switching behaviour of the PWM input does not cause unwanted
harmonics in the output, the PWM frequency is increased to 62500Hz (instead of the default
960Hz). The output y(t) = Vo is measured using an 10bit Analog-to-Digital-Converter (ADC),
yielding a resolution of 4.9mV. Together, this imposes the following constraints on the system:

0 ≤u(t) ≤ 1

0 ≤y(t) ≤ Vin
(5.1)

Next, we continue with the experiments on different predictive controllers and discuss the
results.
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5.2 Experiments

To ensure zero–offset reference tracking, every controller tested on the system will include an
integral action. Let us introduce the controllers.

� A model–based predictive controller. This is designed from the following model

d

dt

[
Vo(t)
iL(t)

]
=

[
− 1
RresCcap

1
Ccap

− 1
Lind

0

] [
Vo(t)
iL(t)

]
+

[
0
Vin

Lind

]
u(t),

y(t) =
[
1 0

] [Vo(t)
iL(t)

]
,

(5.2)

or, equivalently,
ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t).

This model is discretized using a zero-order holder with a sampling time of Ts = 4ms. Using
this model, an integral action MPC is designed, by obtaining the augmented state space
matrices (AI , BI and CI) as in (3.1) and building the cost function as show in Equation
(3.2). To obtain the state estimate, an Luenberger observer is built on the integral action
model as follows:

x̂I(k + 1) = (AI − LICI)x̂I(k) +BI∆u(k) + LIy(k), (5.3)

where the observer gain LI is obtained using the LQR command in MATLAB1.

Remark 10. Due to the high component values, the current in the circuit can become sig-
nificantly larger than the saturation current on the Arduino (20mA). If the current drawn
in the circuit is larger than the saturation current, the voltage of the Arduino is automat-
ically reduced to prevent damaging the board. This effect causes a non-linear behaviour in
the response that is not visible in the model.

� An off–line i-DPC controller. Prior to the actual control experiment, an open–loop
experiment is performed to obtain system input/output data. This experiment has a
length of 2000 samples, using a RBS input between [0, 1] with clock period 1. Using this
off–line experiment data, the controller is applied to the system in closed–loop following
the steps in Algorithm 1.

� The i-RDPC controller, following the steps explained in Algorithm 3. The prediction
matrices are initialized as zero matrices, and X0 = 1e6I3N . Because of this, the experiment
starts in open–loop, using an RBS input between [0, 1] and clock period 1, until 5N samples
have been collected. After 3N samples, the recursive estimation initiates. Furthermore, no
forgetting factor is included and no SPE method has been included into the control law.

All three controllers are designed using the same controller tuning parameters: Q = 1, R =
100 and N = 15. The goal is to track a square wave reference with period of 4s between 1V and
4V for 10 seconds.

The closed–loop experiments with each controller on the system are portrayed in figures 5.3,
5.4 and 5.5. Next to the output and input plots, a zoom section is provided that zooms in at the
rising flank at t = 4s. Thanks to the integral action, all three of the controllers show excellent
tracking performance, as the output oscillates between 2-4 steps of the ADC. Even though all

1Li = dlqr(Ai’, Ci’, 1000*eye(3), 1)’;
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Figure 5.3: Buck converter controlled by an MPC with integral action

controllers show some overshoot, the magnitude thereof varies significantly. The model based
controller shows the largest overshoot. A likely explanation for this is that when disregarding
the fact that the current saturates, the system has a very oscillatory response. As this non-
linear behaviour is not included into the model, the controller attempts to dampen the response.
Thanks to the prior open–loop experiment, the i–DPC controller shows the best performance.
The overshoot is minimal, while maintaining the same rise time as the other two controllers. The
controller performance of the plug–and–play i-RDPC show that the initial input and the initial
conditions of the controller generate a sufficient input signal to properly identify the prediction
matrices. However, unlike the off–line i-DPC controller, there is still some overshoot and steady–
state tracking error has a larger variance.
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Figure 5.4: Buck converter controlled by the proposed off–line i–DPC

Figure 5.5: Buck converter controlled by the proposed recursive i–RDPC
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Chapter 6

Conclusions

In this thesis we analysed two different problems arising in data–driven predictive control. The
first problem is to achieve zero–offset reference tracking for constant references in a data–driven
predictive controller, assuming only input/output data is available. Even then, the data–driven
predictive controller is built from one finite set of data, measured at one time moment. This
means that the resulting controller only operates optimally when the system dynamics match
the observed dynamics in the data set of the experiment. Due to time–varying and/or non–
linear behaviour in the system, this is almost never the case. The second considered problem is
therefore how to prevent loss of performance due to mismatch in the estimated dynamics and
the actual system dynamics, again assuming only input/output data is available and, without
re-designing the controller.

In Chapter 3, we developed a new approach that obtains the corresponding integral action
prediction matrices of the system by only modifying the input data used in the least–squares
estimation. This allows us to build a rate–based data–driven predictive controller, which achieves
zero–offset reference tracking for constant references by controlling the rate of change of the input
instead of the input itself. Thanks to this, the resulting controller is also capable of removing
the tracking offset caused by constant disturbances.

To prevent the loss of performance due to mismatch in the estimated dynamics and the
actual system dynamics, in Chapter 4 we introduced a recursive data–driven predictive controller.
This controller uses a recursive least–squares algorithm that updates the prediction matrices of
the controller each time sample using on–line measured input/output data. Because of this,
the prediction matrices and the corresponding controller are continuously updated to match
the dynamics of the system in real–time. Besides that, we introduced several methods that
enforce the controller to generate a strongly persistently exciting input, such that the recursive
estimation is guaranteed to converge during closed–loop control. The recursive data–driven
predictive controller can not only be used to continuously update a controller that is initialized
off–line, but also without any initialization, as a plug–and–play controller.

The new control algorithms are simulated on a linear actuator model, and they are used in
an experiment on a real–life DC-DC Voltage buck converter system. The results of the experi-
ments illustrate the effectiveness of the proposed algorithms in terms of tracking performance,
robustness, disturbance rejection, adapting to system changes and noisy measurements. In future
work, it is a point of interest to develop a stability criterion and achieve recursive feasibility of
the data–driven controllers (either recursive or off–line).
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