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Abstract

The semiconductor industry is a complex industry with various supply and demand uncertain-

ties. Since most of the supply chains within the semiconductor industry can be described as

a multi-item multi-echelon supply chain, determining the stock positions and their targets is a

difficult task. ams AG acknowledges this. Furthermore, most products for ams AG are highly

customized. Therefore, a product is produced for a limited number of customers. This report

provides a method to determine the possible stocking points while customer lead-times differ for

each order. Furthermore, the software package ChainScope is used to optimize the safety stock

settings. ChainScope is based on the Synchronized Base Stock (SBS) policy. A case study is

performed to compare the current (safety) stock settings to the optimized settings. The (safety)

stock settings are optimized under the constraint that the desired fill rate is achieved against

minimal inventory costs.
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Executive Summary

Introduction

The semiconductor industry is characterized by long cycle times, short product life-cycle, prolif-

erating product variety, yield, and customer demand uncertainty. A company operating in the

semiconductor industry is ams AG. ams AG is divided into three business units, Image Sensor

Solutions, Optical Sensor Solutions, and Advanced Optical Sensors. This project focuses on

the Image Sensor Solutions.

Currently, a clear company strategy is missing to make two crucial decisions regarding inventory

control. The first decision is determining the possible stocking points within the supply chain.

Secondly, how to determine the safety stock targets for these stocking points. Due to the

relatively long throughput times and the varying customer lead-times, the production of the

products has to be started based on forecasted demand. However, since every order can have a

different requested customer lead-time, a method is proposed to determine the customer order

decoupling point. Furthermore, the demand and supply uncertainties should be considered to

determine the safety stock levels. Therefore, the following assignment is defined:

Design a policy to determine the (safety) stock locations and targets considering supply and

demand uncertainties to obtain the desired service levels against minimal inventory levels.

Current situation

First of all, the current situation is analyzed to identify the characteristics to develop the design.

This results in the following characteristics:

• Limited number of customers for most of the products.

• The products have a serial, assembly or a divergent supply chain.

• Every order has a different customer lead-time.

• Most customer demand is stationary and follows the gamma distribution.

• Demand and throughput uncertainty are the main uncertainties obtained in the semicon-

ductor supply chain.

• Customer demand that is not fulfilled is backordered.

• The inventory policy operating under a periodically review moment.

• The performance is measured in the confirmed line item performance and the requested

line item performance.

Based on these characteristics, the design is developed.

Design

The design can be divided into three steps (Figure 0.1). The first step is determining the

customer order decoupling point. Since the customer lead-time is differently for every order,

a method is proposed to determine the modeled customer lead-time. Based on the minimal

customer lead-time that excludes the orders that have extreme order requests, within one week,
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the modeled customer lead-time is determined.

The second step is determining additional stocking points. For this study, two main reasons

are considered to place an additional stocking point. The first reason is a bottleneck location.

Secondly, when a component is used for multiple end items in stage X, and in a stage down-

stream (X-1) in the supply chain, this component can only be used for fewer end items, stage X

is a possible additional stocking point. The commonality in end items and customers indicates

this.

The last step is to optimize the (safety) stock settings for the locations determined as stocking

points in the previous steps. This is done by the software ChainScope which is based on the

Synchronized Base Stock policy. Under a fill rate constraint, the optimal (safety) stock settings

are calculated.

Figure 0.1: Proposed method steps

Results

A case study is performed to provide ams with insights into the proposed method. Different

scenarios for the throughput time, desired fill rate, and the modeled customer lead-time are

analyzed. The case study shows significant reductions in (safety) stock costs with the same or a

better fill rate. These reductions are achieved by better inventory placement and by optimizing

the (safety) stock settings using ChainScope.

However, this depends on the case. For some cases, an investment at a certain location is

necessary to achieve the desired performance. Although, for most cases, the overall average

inventory on-hand costs are significantly reduced while the performance is even better.

Recommendations

Using the proposed method to locate the possible stocking points results in a significant re-

duction in (safety) stock with the same or better performance in a few cases. Therefore, it is

recommended to consider the customer lead-times. At this moment there is stock located at

the end item for some products, while this is not necessary to achieve the same performance.
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Furthermore, the (safety) stock settings are optimized by using ChainScope. The tool gives

interesting insights into the (safety) stock levels needed to achieve the desired fill rate targets.

Using the tool will help set targets that will cover the demand and throughput time uncertainties

without holding unnecessary inventory. In the thesis, some recommendations are given on how

often the parameters should be updated.

Although, the study has two major limitations. Firstly, the customer demand is based on the

historical demand. It might be interesting to include the forecasted customer demand to de-

termine the (safety) stock settings. The other limitation is that the performance in the program

is measured in fill rate, while the performance measure that ams uses is RLIP. Interesting for

future research would be an independent simulation model that can compare both performance

measures.
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1 Introduction

Effective supply chain management is described as: ’a mechanism that delivers products quickly

with low inventories through the efficient routes, which lead to customer satisfaction and hence

new competitiveness in the global market’ according to Lee (2001) (p. 190). (Graves and

Willems, 2003) divided the range of decisions into three categories:

1. Network design: the number, location, and size of the nodes.

2. Product design.

3. Strategic placement of safety stock. In other words, how to deal with uncertainties within

the supply chain.

An exciting industry to conduct a study about these decisions is the semiconductor industry.

The industry is characterized by long cycle times, short product life cycles, proliferating product

variety and yield, and demand uncertainty. Therefore, the semiconductor industry is an inter-

esting research field where demand and supply uncertainties should be considered.

This research will focus on the first and the third decisions regarding where to place inventory

and how to handle the uncertainties within the supply chain. The study has been conducted

at ams AG. ams AG is located all over the world. However, a design center is located in

Eindhoven. Since a clear company strategy in setting the safety stock settings is missing, this

study was initiated to give ams some insights on how to manage the trade-off between inventory

and service levels.

As mentioned before, in this study, the placement of the inventory position is determined.

Thereafter, an approach is discussed to manage the demand and throughput time uncertainties

within the supply chain. The approach determines the target of the inventory position.

The rest of the thesis is structured as follows. The next sections describe the background of the

company and describe the problem in more detail. Next, the research design is described. First,

the available literature is reviewed. Secondly, the problem and the research goal are defined.

Thirdly, the scope of the project is given. Lastly, the research plan is discussed. The third

chapter is a detailed analysis of the current situation. This part analyzes the products, supply

chain structures, production strategies, customer demand, forecasting error, yield, throughput

time, inventory policy, performance measures, and safety stock. In chapter four, the method

designed is discussed. This method is applied to the situation of ams to compare it with the

current situation in a case study. Finally, a conclusion and recommendation are given to ams.

1.1 Background

In this section the background of the thesis is described. First of all, the company background

discusses the general information of ams AG (section 1.2.1), the high level supply chain (sec-

tion 1.2.2), the semiconductor characteristics in section 1.2.3, and their safety stock settings

(section 1.2.4). Furthermore, the problem is described in section 1.3.
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1.2 Company background

1.2.1 General information

ams AG designs and manufactures sensor solutions applicable to automotive, smart health

sensing, mobile & wearables, and computing. In total, around 8,500 people are working at

ams, distributed all over the world. The headquarters is located in Premstätten, Austria.

The 22 design centers are mainly located in Europe, 14 sales offices, and 25+ channel partners

worldwide. The manufacturing takes place in Austria and Singapore, and the testing process

in the Philippines.

Figure 1.1: Gobal Network from ams AG

ams AG is divided into three business units: Image Sensor Solutions (ISS), Optical Sensor

Solutions (OSS), and Advanced Optical Sensors (AOS). Each business unit is grouped into

multiple business lines (BL). During this thesis, the ISS business unit is within the scope of the

project. The other business units are out of scope.

The business unit ISS consists of five business lines. Because of confidential reasons, the five

business lines are called A, B, C, D, and E.

1.2.2 Supply chain

One of the characteristics of ams is the large variety in products, which results in many different

production processes within ams. In this section, a high-level supply chain is given in Figure 1.2.

Later some variations on the high level supply chain will be described. A short description gives

an idea of the operations in the front and back-end. The front-end operations consist of the

wafer fabrication and the wafer sort. In wafer fabrication, the process consists of multiple

layers. Each layer consists of multiple processing steps. These processing steps depends on the

product and technology used. A characteristic is the cycle pattern, in which the same steps

are repeated in the same sequence. When the wafer fabrication is finished, unsorted wafers

(UW) are stocked. During the wafer sort, the dies are tested individually. The dies that do not

meet the required specifications are rejected. The percentage of the dies that are not rejected

is called the yield percentage. After this process, the wafers are sorted (SW). The back-end

operations consist of assembly and final testing. During the assembly process, the dies are

2



assembled in a package. In the final step, which is final testing, the untested (UT) dies are

checked to guarantee that everything is working. Thereafter, the final tested (FT) dies are

packed and ready to transport to the customer.

Figure 1.2: High-level supply chain

1.2.3 Characteristics

• Distributed all over the world, as mentioned above.

• Hybrid supply chain

Some production steps are done internally, externally, or both.

• Product variety

ams has a product portfolio for five main industries, mobile, automotive, industrial, med-

ical, and computing. The different products within the product portfolio consist of 3D,

audio, capacitive, imaging, light, position, power management, smart lighting, and tem-

perature sensors.

• Short product life-cycle

In the high-tech world, the life cycles of products are relatively short because of the devel-

opment of new technologies. This is not the case for all products within the semiconductor

industry.

• Long cycle times

Semiconductor supply chains are typically represented by long cycle times, especially in

the first process step of the front-end operations, the wafer fabrication. This process takes

on average 8 - 12 weeks.

• Yield and demand uncertainty

Yield and demand uncertainty is a well-known problem in the semiconductor supply chain

that should be considered.

• Limited customers per product

A characteristic that distinguishes ams from other semiconductor companies is the limited

customers per product since most products are highly customized.

1.2.4 Safety stock

Within ams, the production engine considers the safety stock settings in two ways. The Safety-

Days-of-Supply (SDS) and Safety Stock (SS). The first type, SDS, is linked to the demand and

is time-based. The second type, SS, is a fixed quantity. The SS type is easier to understand.

However, it needs a regular review. The SDS dynamically links the forecasted volume, which

reduces the risk of obsolescence in a dynamic market.

3



1.3 Problem description

At this moment, there is no clear company strategy to make two crucial decisions regarding

inventory control. The first decision is how to determine the possible stocking points within

the supply chain. Currently, there is not a methodology that describes how to determine

the Customer Order Decoupling Point (CODP) and other possible stocking points within the

supply chain. The second decision is defining the desired safety stock levels at these inventory

points. At this moment, there is no policy to determine these targets. Determining the targets

involves multiple departments; master planners, division operations, and demand management.

These departments consider different uncertainties within the supply chain and based on their

experience and knowledge they determine a target for the safety stock. In other words, clear

guidelines to determine (i) the position and (ii) the safety stock level are missing. Since there

are no calculations to determine the safety stock, the inventory levels are probably higher than

necessary, while the desired service level could still be achieved.

Overall, guidelines are missing to support the departments within ams to determine the stock-

ing points and the safety stock targets. Therefore, this thesis proposes a design to manage

the uncertainties within the semiconductor industry while lowering the inventory levels and

achieving the desired service levels. This is done by determining the possible stocking points

and the safety stock targets within the supply chain.
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2 Research design

2.1 Literature review

Since there is not a clear strategy to determine the possible stocking points and the safety stock

targets, the available methods in the literature are reviewed. First of all, the factors that are

important to determine the CODP and other stocking points are discussed. Next, the different

uncertainties that are relevant to set safety stock are reviewed.

2.1.1 Stocking points

Single customer order decoupling point

First, the frameworks for determining the best production strategy, based on different factors

are discussed. Olhager (2003) describes the market, product, and production factors that affect

the position of the customer order decoupling point. An approach is provided to choose the best

production strategy based on the relative demand volatility and throughput time to delivery

time ratio. There are five different strategies, Make-To-Stock (MTS), Make-To-Order (MTO),

Configure-To-Order (CTO), Assemble-To-Order (ATO), and Finish-To-Order (FTO). These

strategies will be explained in more detail in the next chapter. Based on the factors mentioned,

the best strategy is chosen. Besides the market, product, and process-related factors, the

supplier-related factors are investigated by Rafiei and Rabbani (2009). Rafiei and Rabbani

proposes an analytical network process to determine the right decision based on the different

factors. Later research of Rafiei and Rabbani extends his earlier study by introducing new

decision criteria and family formation to decrease the complexity in decision making (Rafiei

and Rabbani, 2014). Forstner and Mönch (2013) proposes a heuristic to make these decisions

in the semiconductor supply chain. The order partitioning criteria of Olhager (2003) is used

as a reference approach. Furthermore, a genetic algorithm is defined to support the decisions.

Another study that proposes a framework to support the strategic decision is done by Sun et al.

(2010). The framework first decides whether a product has a make-to-order or a make-to-stock

production strategy based on the importance of on-time delivery service and the quoted lead

time. For products classified between these two strategies, secondary level criteria are used.

The second level criteria take into account the manufacturing variability and the aggregated

demand of the final product. Based on these criteria, the strategy is chosen. However, the

studies above focus on one single customer order decoupling point. Since the supply chain

of ams can have multiple stocking points, studies that researched multiple (customer order)

decoupling points are reviewed as well.

Multiple (customer order) decoupling points

Sun et al. (2008) describes a mathematical model that finds multi-decoupling points based

on the Bill of Materials (BOM) in a supply network. The factors considered are demand

variance and customer delivery time to determine the position of the decoupling points. The

mathematical model minimizes the overall costs in the supply chain while the desired service
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level is achieved. Kim et al. (2012) proposes a strategy that suggests additional stocking points

after the CODP boundary. The objective function minimizes the holding and service costs,

which is a nonlinear mixed integer programming problem. The study did an experimental

design in the semiconductor industry, which is comparable to the situation of ams.

Besides determining the position of the stocking points, it is important to discuss some methods

that focus on how to calculate the targets. Methods that are based on the Newsboy equation

are proposed by Houtum et al. (2004) and Shang and Song (2003). The newsboy equation

considers the holding costs and back-ordering costs to determine the optimal base stock level.

However, these approaches are limited to a serial inventory system. Diks and de Kok (1998)

discusses a method for divergent multi-echelon inventory systems. Nevertheless, no service level

constraint is considered. de Kok (2018) discusses a method for general multi-item multi-echelon

systems. This methodology is the Synchronized Base Stock (SBS) policy which is developed

by de Kok and Visschers (1999).

2.1.2 Safety stock

Yield uncertainty

The different uncertainties that are relevant to set the safety stock are widely studied in the

literature. Hung (1996) investigated the impact of yield uncertainty by using a simple variance

calculation formula. This formula is equivalent to the reorder point approach. Inderfurth and

Vogelgesang (2013) studied the yield uncertainty as well. However, this research took different

types of yield randomness into account and combined this with stochastic demand.

Demand and throughput time uncertainty

How stochastic demand is evaluated is studied by Nakashima (2014). Nakashima (2014) pro-

poses two options. The first option is based on historical demand data. The second option is

based on the forecasting error.

More recent research showed two approaches defining the safety stock levels to obtain a partic-

ular service level (Ziarnetzky et al., 2020). The first approach is demand-driven safety stock,

based on the study of Norouzi and Uzsoy (2013). This approach is only considering the demand

uncertainty. Hung and Chang (1999) proposes the second approach, which is cycle-time driven.

This method focuses on throughput time uncertainty.

Yield, demand, and throughput time uncertainty

Johnson (2005) studied the safety stock levels by using three different uncertainties. Firstly

the demand variability. Secondly, the demand, and throughput time variability. Finally, the

demand, throughput time and yield variability were considered. Research that considered a

more dynamic approach is done by Bahroun and Belgacem (2019). This study used a different

approach than the traditional approaches discussed above. The proposed method resulted

in a better performance than the traditional approach. However, the approach used is more

complex.
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2.1.3 Discussion

Several approaches exist in the literature to determine the production strategy (MTO, MTS,

CTO, ATO, and FTO). Different factors are studied, which contain market, product, produc-

tion, and supply factors (Olhager, 2003; Rafiei and Rabbani, 2009, 2014). Sun et al. (2010)

proposes an approach with two levels of criteria. However, these studies are focusing on de-

termining one single stocking point.

Sun et al. (2008) and Kim et al. (2012) focus on how to determine multiple decoupling points.

Both propose a mathematical model that minimizes the overall costs in the supply chain while

achieving the desired service level. Sun et al. (2008) proposes a model that uses the BOM in

the supply network to determine the decoupling points. Useful is the experimental design of the

study of Kim et al. (2012), which is done in a typical semiconductor supply chain. Furthermore,

multiple studies proposed a method to determine the targets for the stocking points by using

the newsboy equation (Houtum et al., 2004; Shang and Song, 2003). However, these studies

were limited to serial supply chains. More recent research by de Kok (2018) proposed a method

to manage general and divergent supply chains.

Furthermore, in the literature, three main uncertainties are considered, yield, demand, and

throughput time uncertainty. These uncertainties are widely studied in the literature. However,

the majority focus on one or two aspects and do not take into account all the uncertainties.

For example, Hung (1996) focuses on yield uncertainty by using a simple formula. Nakashima

(2014) describes two ways of considering demand variation, based on historical demand or on

the forecasting error. Ziarnetzky et al. (2020) proposes two different approaches, one that

is considering demand uncertainty and the other considering throughput time uncertainty.

Inderfurth and Vogelgesang (2013) and Johnson (2005) studied approaches that takes into

account multiple uncertainties.

Another aspect that has barely been investigated is considering a limited (one or two) number

of customers. In particular, to determine the stocking points in the supply chain to have a

minimal risk while holding inventory on stock. For a company like ams AG, this aspect is very

important since most products are customized.

Overall, the different uncertainties within the semiconductor industry (yield, demand, and

throughput time uncertainty) are widely studied. However, these methods mainly focus on

the assumption that demand is normally distributed, which is often not the case in reality.

Furthermore, the research in determining multiple stocking points within the semiconductor

industry is limited. In particular in a situation where the majority of the product is customized

for one special customer. Therefore, by combining the existing methods and considering the

characteristics of the semiconductor industry, the literature gap in the multi-echelon inventory

in the semiconductor industry will be filled.
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2.2 Problem definition and assignment

The main problem is a missing overall strategy on determining the possible stocking points and

the safety stock levels (section 1.3). Currently, the decision-making is based on experience and

knowledge, where multiple factors influence the decision. The research goal is formulated by

comparing the current situation to the desired situation.

The current situation is already discussed in section 1.3. In the desired situation, the ideal

world is described. In the ideal world, a procedure and a tool are created that supports the

master planners, division operations, and demand management. The procedure and tool should

support in determining the optimal stock positions and targets. First, the procedure describes

how to work and which rules are followed to determine the stock positions for different products.

Thereafter, a tool should optimize these positions and their targets.

This procedure and tool have the following advantages for ams:

• Determines the optimal production strategy and therefore the optimal customer order

decoupling point

• Standardized way of working

• Gives better insights on how to manage the desired service levels and the inventory levels

• Optimized balance between inventory levels and service levels, which reduces the risk of

inventory obsolescence and unnecessary stock

• Optimal stock positions and targets

Overall, the procedure and tool will support ams to provide better guidance on the invent-

ory levels. Better guidance results in lower inventory while the desired service levels are still

achieved. Furthermore, the tool leads to a standardized way of working and an overall policy

for setting inventory levels within ams.

Based on the current and desired state and the literature review, an inventory policy is needed

for the different business lines within ams. The policy should contain characteristics and un-

certainties relevant to the semiconductor supply chain, especially for ams. The most important

uncertainties are demand, yield, and throughput time uncertainty. This results in the following

assignment:

Design a policy to determine the (safety) stock locations and targets considering supply and

demand uncertainties to obtain the desired service levels against minimal inventory levels.

The policy provides ams a framework to determine the location and level of the stock in their

supply chain and make the trade-off between the service and inventory levels. Furthermore,

the policy considers the different uncertainties obtained in the semiconductor industry.

Sub-assignments:

Based on the research goal, the assignment is divided into sub-assignments to structure the

report. The first sub-assignments will focus on defining a method, which is compared with the
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current situation of ams in the last sub-assignment.

1. What is the current performance in terms of inventory levels and service levels?

How is the current performance in terms of service and inventory levels to compare the

developed methodology in the case study.

2. How to combine multiple factors to determine the stocking points for different products?

In literature, there exist multiple factors that should be considered to determine the

production strategy. Since other factors than throughput time are important as well,

these factors discussed in the literature should be considered. These factors can be used

to determine the production strategy for a product and therefore the CODP and other

stocking points. Moreover, the characteristic that distinguishes ams from other compan-

ies, the limited number of customers per product, should be considered as well.

3. Which factors should be considered to set the (safety) stock targets?

This part defines the (safety) stock formula based on the literature. The formula of the

(safety) stock used in the model that is proposed should capture the demand and supply

uncertainties.

4. How to control the stock points?

An inventory management model is formulated to control the stock points within the

supply chain of ams. In this part, the inventory policy used is defined. In this model,

the stock points determined in the second step are used, and the (safety) stock formula

defined in the previous sub-assignment is used, which captures the different uncertainties.

An important note is that the model should be understandable for the planners.

5. How to optimize the inventory levels and compare the performance of the model proposed

and the current situation?

Finally, the performance of the model is compared with the current situation by using a

simulation model or a software package. To compare the current situation with the model

formulated in the fourth sub-assignment the inventory levels and the performance should

be measured. The model designed will be used to optimize the inventory levels.

The sub-assignments will be answered by defining an decision support system that determines

(a) the stock positions and (b) how to control these stock points in terms of inventory levels.

Finally, this policy is analyzed to compare the performance with the current situation.

2.3 Scope

This project’s scope is described by a bounded supply chain and different products from the

business unit ISS classified by an ABC/XYZ analysis. The supply chain is bounded by excluding

the raw materials. This analysis classifies products based on the annual sales and the demand

volatility (Figure 2.2), executed by an external company. The analysis is used to classify the

product customer combinations based on the demand volatility and the annual sales revenue.
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The reason to use the ABC/XYZ classification is that it classifies the suitable products for

safety stock.

The bounded supply chain is shown in Figure 2.1. Because of the following three reasons,

the raw materials (RM) are not considered in this thesis. First, most of the products use

the same raw material. Secondly, there is a relatively high safety stock for the raw materials

(Appendix A). Lastly, the assumption that the suppliers deliver on-time. Therefore, from this

point on, the inventory control of the raw materials is out of scope. There is assumed that the

raw materials are available and delivered on time. The goods that are in the project’s scope

are semi-finished and finished goods (FG).

Figure 2.1: Scope high level supply chain

Within ams, the product groups classified as good candidates for safety stock are AX, AY, BX,

and BY. The reason for this is that AB represents 95% of the annual sales, and X and Y are

classified as stable and medium volatile demand, respectively.

Figure 2.2: ABC/XYZ classification adapted from ams (2021)

Figure 2.2 gives a visualization of the scope of the project. Based on the classification for good

candidates for safety stock, the scope of the project is chosen. Therefore, the products in the

project’s scope are AX, AY, BX, BY products. Products in the New Product Development

(NPD), End-of-Life (EOL), AZ, BZ, CX, CY, and CZ are not in the project’s scope. This

results in 175 products from the business unit ISS in the scope of the project.

2.4 Research plan

This master thesis will consist of two parts. The first part consists of the second and third

sub-assignments. The second part covers the first and last two sub-assignments. The output

of the first part will be used for the second part. For the second part, the research model of

Mitroff et al. (1974) is used.
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For the first part, the existing literature of section 2.1 will be used. Then, to determine the

production strategy, a framework will be formulated that determines the production strategy

per product based on the throughput time and other important factors as well.

For the production strategies MTO and MTS, a clear distinction could be made. When this is

not the case, there are multiple options (CTO, ATO, and FTO). Therefore, it will be harder to

determine the correct CODP. Next, for the third sub-assignment, the different safety approaches

that exist in the literature are considered.

For the second part, the research plan is based on the model of Mitroff et al. (1974). This

model is divided into four phases. The problem situation, the conceptual model, the scientific

model, and the solution. However, the phase that is missing, is the orientation phase, which is

the literature review.

Figure 2.3: Research model from Mitroff et al. (1974)

The first phase is conceptualization. In this phase, the assumptions, input parameters, restric-

tions, and performance measures are defined. In fact, the second and third two sub-assignments

can be seen as a part of the conceptualization phase, since the safety stock formulation and

possible inventory points are defined in these two parts.

The second phase is modeling. In this phase, the model is represented formally. In other words,

the model is defined in mathematical terms. The inventory model and safety stock approach

that is defined in the conceptualization phase will be used.

The next phase is the model solving phase. In this phase, the model and approach will be

simulated in a comparable setting to ams. Finally, the simulation or program is used to obtain

the performance and compare them with the current situation.

The last phase is the implementation phase. In this phase, the model is integrated into ams.

However, this is out of the scope of the master thesis. At the end of the master thesis, managerial

recommendations will be given based on the results obtained from the simulation or program

used.
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3 Detailed analysis

After defining the problem definition, the research goal, and the assignment, the current situ-

ation at ams AG is analyzed in more detail. First, in section 3.1, the characteristic that

distinguishes ams from other businesses is analyzed. Thereafter the variations on the supply

chains are discussed (section 3.2). Next, the products are classified into five (MTO, CTO,

ATO, FTO, MTS) different production strategies (section 3.3). Note that from this point, only

the products that have a CTO, ATO, FTO, or MTS strategy are further analyzed since the

other products are driven by customer orders and not by the forecast. Next, the customer de-

mand and forecasting bias are discussed (section 3.4 and section 3.5). Subsequently, section 3.6

analyzes the yield percentage. Thereafter, the throughput times are analyzed in section 3.7.

Moreover, the inventory policy of ams is discussed in section 3.8. Furthermore, section 3.9 dis-

cusses the performance measures and section 3.10 the safety stock settings. Finally, a summary

(section 3.11) is given to define the characteristics and requirement(s) for the design.

3.1 Products

In the scope of the project, there are a total of 175 products. Table 3.1 gives an overview of

how the 175 products are divided over the business lines.

Business line
Number of products

(#) (%)

A 64 36.57%

B 47 26.86%

C 43 24.57%

D & E 21 12.00%

Total 175 100.00%

Table 3.1: Number of products per business line

In particular, there is one characteristic that distinguishes ams from other companies within

the semiconductor. Due to the high customization of products, many products are produced for

one customer. Therefore, for all 175 products, the number of customers per product is shown

in Figure 3.1. Note that only the customers that are classified as active customers are taken

into account. Active is defined as customers that have placed an order in the last year.

Figure 3.1 shows for the business lines C and D & E, a significant number of the products

are customized for one special customer. For the business lines A and B, some products are

produced for multiple customers. From Figure 3.1 can be concluded that overall, most of the

products (58.9%) have only one customer, and a significant number (82.9%) of the products

have only four or fewer customers.
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Figure 3.1: Number of customers per product

3.2 Supply chain variations

In this section, the different supply chains that are in the scope of the project are discussed.

The high-level supply chain is already discussed in section 1.2.2. However, there are a few

variations on this supply chain that will be discussed. Note that the supply chains discussed

are still the main supply chains. Some products could have a production step less or more

which is not mentioned in this section.

The first variation is the supply chain that has two additional processes, test and burn-in

(Figure 3.2). The burn-in process detects early failures in the devices and is used for reliab-

ility markets like the automotive industry (A). This process is mainly used for relatively new

products. When products are longer in production, these steps are no longer required. In that

case, after the external assembly step, the final test is performed.

Figure 3.2: Supply chain with burn-in process

The second variation is the supply chain with the assembly structure (Figure 3.3). Multiple raw

materials (RM) are used for the assembly process. The materials combined result in the final

product. Products from the business line B are characterized by the assembly supply chain

structure.

For special cases, the process Through-Silicon Via (TSV) is used. Figure 3.4 shows an example

of this supply chain. This technique is used to create 3D integrated circuits. Another special

process is the Wafer Level Chip Package (WLCSP), which is packing the wafer in extremely

small packages. An external supplier performs this process. When a product has a single wafer,

the TSV process is not executed. Some of the products within the business line C are classified

as these special cases.
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Figure 3.3: Assembly supply chain

Figure 3.4: Supply chain with TSV process

An example of a short supply chain is a product that consists of the two process steps, wafer

fabrication and sorting. Most of the products within the business line D consists of these two

processing steps.

However, the supply chains discussed above are the supply chain for one single end product.

Some components could be used for multiple end products, which is discussed further in the

thesis. This results in divergent supply chains.

3.3 Production strategies

The five different production strategies used within ams are make-to-stock (MTS), make-to-

order (MTO), configure-to-order (CTO), assemble-to-order (ATO), and finish-to-order (FTO).

The last three strategies are used when the strategy is not a full MTS or MTO strategy, and

therefore a mixture between these two strategies. For the CTO, ATO, and FTO, the first part

in the supply chain is forecast-driven, from the customer-order-decoupling-point (CODP), it is

order-driven. The production strategies are described as follows:

• Make-to-stock: All production steps start based on the demand forecast.

• Make-to-order: All production steps start once a customer order is received.

• Configure-to-order: The first production step in the front-end (wafer fabrication) is

based on forecast. First, the untested wafers are stored. Wafer test and back-end opera-

tions start when a customer order is received.

• Assemble-to-order: The front-end production steps start based on forecast. Then, the

dies that are tested and classified as good are stored. Finally, the back-end production

steps start once a customer order is received.

• Finish-to-order: All the production steps start based on forecasted demand, except

final testing. This is done once the customer order is received.
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The different production strategies used within the supply are shown in Figure 3.5. The figure

shows that before the CODP, the production is driven by the forecasted demand. After the

CODP, the production is driven by the customer orders. Olhager (2003) defined the CODP

as: ’the point in the manufacturing value chain for a product, where the product is linked to a

specific customer order’.

Note that the CTO strategy is not logical since untested wafers are stored. From an inventory

point of view, it is unusual to store products that have still to be sorted since it is unknown

how many good dies are stored at the end. However, the reason to store untested wafers is that

the wafers will be customer-specific after this step. Therefore it makes sense to apply the CTO

strategy.

Figure 3.5: Production strategies

As mentioned in the project’s scope, this project focuses on the products categorized in the

business unit ISS, based on the ABC/XYZ classification (175 products). 21 products have a

contractual obligation, and for these products, the CODP and safety stock target are already

determined.

In this section, the production strategy is determined for the 154 products without a contractual

obligation. The production strategy is determined based on the throughput time feasibility,

which is formulated on the customer’s request for each product. This means which strategy is

applicable based on the average throughput time and the average lead-time that the customers

request. In other words, where the CODP is located in the supply chain. In this thesis, it is

important to determine the production strategy since there is no need for safety stock for the

MTO strategy products. Using the throughput time feasibility leads to Table 3.2.

Table 3.2 shows that 51% of the products should have an MTO strategy. As mentioned before,

the remainder of this thesis is focusing on the products with a CTO, ATO, FTO or MTS

strategy.
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Business line
Production Strategy

Total
MTS CTO ATO FTO MTO

A 0 20 1 0 38 59

B 5 21 7 5 3 41

C 0 7 0 0 26 33

D & E 2 6 0 0 13 21

Total 7 54 8 5 80 154

Table 3.2: Production strategies

3.4 Customer demand analysis

According to the employees, 2021 is a tough year in terms of customer demand. The reason is

the extremely high demand which is one of the side effects of COVID-19. Therefore, the total

demand in the business unit ISS in units is analyzed. Figure 3.6 shows the total customer

demand per quarter over the years in units. As the figure shows, the total customer demand

in units in the second quarter of 2021 is significantly higher than the years before. Based on

this, the year 2021 is excluded from the data set used in the remainder of the project. Next,

the coefficient of variation, average order size, and frequency, and stationarity of the customer

demand are discussed.

Figure 3.6: Total customer demand in units - business unit ISS

3.4.1 Coefficient of variation

The demand distributions that are primarily applicable in the inventory control are reviewed.

The first widely used distribution is the normal distribution (Teunter et al., 2010). However,

the normal distribution has a disadvantage, the probability of negative demands. This is

possible when large coefficients of variation occur. The coefficient of variation (CV) is a relative

variability measure and is determined by dividing the standard deviation (σ) by the average

(µ). The coefficient of variation is classified by Hopp and Spearman (2008). Three classes are

defined, low, moderate, and high. If the CV < 0.75, it is classified as low, if 0.75 ≤ CV < 1.33

it is moderate, if the CV ≥ 1.33 it is high.
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Based on this classification, the coefficient of variation is determined based on the monthly

customer demand in units. The CV is determined by dividing the standard deviation of the

monthly demand in units by the average monthly demand in units. As mentioned before, the

data from 2021 is excluded. Only the data from 2019 and 2020 is used to analyze the customer

demand. This leads to Table 3.3, which shows that most products have a moderate or high

coefficient of variation.

Class CV
Number of products

(#) (%)

Low CV < 0.75 18 24.32%

Moderate 0.75 ≤ CV < 1.33 42 56.76%

High CV ≥ 1.33 14 18.92%

Total 74 100.00%

Table 3.3: Coefficient of variation classification

Because most customer demand of the products have a moderate or high CV an alternative

is reviewed in the literature for the normal distribution. A distribution that has non-negative

values is the gamma distribution. This distribution is suggested by Aviv and Federgruen (2001)

and Das (1976).

3.4.2 Average monthly order size and number of orders

Furthermore, two additional customer demand characteristics are analyzed, the average number

of monthly orders and the average monthly order size. These two values are shown in the scatter

plots in Figure 3.7 for every product. Since half of the products have an average order size below

400 units per month (Figure 3.7a), and the other half above 1000 units per month (Figure 3.7b),

the data is separated into two figures.

(a) Average order size per month < 400 units (b) Average order size per month > 1000 units

Figure 3.7: Average number of monthly orders versus average monthly order size

The figures show that for most products the average number of orders per month is below 4.

Next, the average monthly order size is very different for all products. Half of the products have

a relatively low monthly average order size (Figure 3.7a) in comparison to the other products

in Figure 3.7b. This depends on the business line of the products. The products shown in

Figure 3.7a are almost all products from the business line B. The majority of the products in

Figure 3.7b are products from the business line A and C.
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3.4.3 Stationarity

According to Pyke et al. (1998), it is important to test how the average demand is behaving over

time. It impacts the number of units that have to be ordered to fulfill the expected demand.

This concept is known as stationarity. Before, ams performed a statistical analysis to detect

seasonality in the data. However, as mentioned before, one of the side effects of the COVID-19

situation is the high demand in the semiconductor industry. Therefore ams has decided to

disable the analysis since March 2020.

Nevertheless, detecting stationarity is important. ams did not perform any tests to detect sea-

sonality since March 2020, because these data could result in detecting false trends. Therefore,

the data of 2020 is excluded. The data from 2017, 2018, and 2019 is analyzed to check whether

the data is stationary or nonstationary. Since the demand of every product has to be analyzed

individually, the Dickey-Fuller test (Dickey et al., 1986), which is a statistical test.

Since the data of 2020 is excluded, there was no data for 8 products that are relatively new.

This results in checking the stationarity of the customer demand of 66 products. The ana-

lysis shows that 60 products have stationary data, and for 6 products the data is

nonstationary.

In the case of nonstationary demand, the paper of Alrefaei et al. (1999) described a method

how to determine (safety) stock levels. The parameter α is introduced, which is multiplied

by the random noise that is observed in the demand. By varying the parameter α between

0 and 1, the random noise can be considered. An α equal to zero means that the demand

is stationary. In addition, the papers consider the forecasting error by computing the mean

absolute deviation. Another technique that takes into account throughput time and demand

uncertainty is a periodic dynamic reorder point control policy proposed by Babai et al. (2009).

Based on the desired service level, the order quantity to fulfill the demand during one period

is determined. These methods can derive relatively easily the order quantity, which considers

uncertainties within the supply chain.

3.5 Forecast bias

Within ams, the forecast performance is measured in forecasting bias. The forecasting bias

indicates whether there is an over- or under-forecast. In other words, an over-forecast means

that the forecasted demand is higher than the actual demand, and an under-forecast means

that the forecasted demand is lower than the actual demand. The forecast is essential for the

products not completely produced based on customer orders (MTS, CTO, ATO, and FTO).

To visualize whether the forecast is greater or smaller than the actual demand, Figure 3.8 shows

the forecast bias per month for each business line. The total amount of products they expected

to sell is forecasted and compared to the actual number of products sold for each month.

Since the wafer fab process has to be started based on the forecast, the forecast five months
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earlier is used to calculate the forecast bias. In other words, the forecast bias of January 2020

is calculated by dividing the forecast of August 2019 by the actuals of January 2020. The five

months are chosen by the company and used in their own analysis as well.

Figure 3.8: Monthly forecast bias

A positive bias (>100%) means an over-forecast. A negative bias (<100%) means that the

forecast was lower than the actual demand. The figure above shows that it is tough to forecast

the customer demand over the months. For example, the business line B (green), in May 2020,

the forecast was 63.94% of the actual demand. The next month the forecast was 125.85% of

the actual demand.

3.6 Yield

One of the uncertainties of the semiconductor industry is the yield (section 2.1). The yield

percentage represents the number of dies that meet the specified requirements. This percentage

is based on the total number of dies on the wafer. After the sorting process, the yield percentage

indicates how many good dies there are.

The standard deviation of the yield is calculated for the sorting processes. This standard

deviation is based on the data from the last six months. This results in a standard deviation

of the yield below 1% for 94% of the sorting processes in the project’s scope. Only 6% of the

processes have a standard deviation of the yield that is between the 2% and 4%.

In addition, the concept of binning is not used within ams. Binning is the concept of down-

grading. When the specified requirements are not met for a certain product, the product is

categorized as a product with a lower performance.

3.7 Throughput time

Table 3.4 shows the average and standard deviation of the throughput time (TT) of each

process in the high level supply chain in days. The throughput time is defined as the time

that is required to pass through the process from the inventory point before the process to the
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inventory point after the process. This includes the processing, inspection, move and queue

time. For the first processing step, the wafer fabrication, the throughput times are very different

per technology used. Therefore, these are grouped by the technology family. Sort is subdivided

into two groups, the non-B, and the B business line(s). Test and packing does not differ in

throughput time between the business lines. The assembly process used depends on the business

line. Based on this, the processes are subdivided per business line. However, an important note

is that especially for the assembly process, the throughput times are highly dependent on the

product and technology used. This results in lower standard deviations than Table 3.4 shows.

Process Technology Family / BL
Actual TT (days)

Process BL
Actual TT (days)

µ σ µ σ

WaferFab C35 70.4 19.1 Test 8.8 3.6

C35EE 100.1 25.0 Assembly B 39.6 16.2

C80 62.8 13.0 D 34.2 14.7

H18 208.5 18.1 E 31.6 13.6

H18EE 237.3 47.7 C 30.3 20.2

H35 80.6 19.7 A 40.3 20.2

S35H 146.6 42.9 Packing 7.7 0.9

Sort Non-B 9.5 2.8

B 19.8 6.1

Table 3.4: Throughput time in days

As Table 3.4 shows, there is a significant difference between the throughput times in the wafer

fabrication. Especially for the S35H and H18(EE) the average throughput time and standard

deviation are significantly higher than the other technologies.

3.8 Inventory policy

Two kinds of inventory policies are used within ams. An (R, s, nQ)-policy is used for the

inventory position after the wafer fabrication and sorting process. For the other inventory

positions, the inventory policy is described as an (R, s)-policy. It is unnecessary to define a

policy for the raw materials since the raw materials are out of this project’s scope.

An (R, s, nQ)-policy means that if the inventory position is below the reorder level (s) at a

review moment, n times Q units are ordered to bring the inventory position back or above to

the reorder level. The n is the minimum integer needed to increase the inventory level to a

number of units above or equal to the reorder level (Donselaar, van and Broekmeulen, 2014).

The review period (R) can be, for example, daily, weekly, or monthly.

The reorder level (si) at stage i consists of (i) the expected demand during the average through-

put time and review period (based on the forecast) and (ii) the safety stock target (SS) at stage

i. The expected demand during the average throughput time and review period is also called

cycle stock. Note that for every period, the forecast will differ. Therefore, the reorder level

(si) can change every period. No multiple integers of Q are required or the inventory positions
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with an (R, s)-policy. In this case, the number of units needed to bring the inventory position

back to the reorder level (si) is ordered. For the inventory position after the wafer fabrication,

Q is equal to the lot size of the wafer fab, which is 25 wafers. For the inventory position after

the sorting process, the Q is equal to 1 wafer.

3.9 Performance measures

The performance within ams is measured by two Key Performance Indicators (KPIs).

• Confirmed Line Item Performance (CLIP):

The first confirmed date versus the actual goods issue date.

• Requested Line Item Performance (RLIP):

The last requested date versus the actual goods issue date.

The first confirmed date is defined as: the date that is first confirmed by ams to a customer

request. The last requested date is defined as: the last date requested by the customer. As

the customer can change their mind, the goal is to measure RLIP to the last customer request.

Since the products are customized there is not a fixed customer lead-time (CL). All orders

have different customer lead-times, even the same product that is sold to the same customers

could have different customer lead-times. The RLIP is used in a dynamic market and makes

the RLIP fully customer-facing.

Table 3.5 and Table 3.6 show the performance of 2020 and 2021 for the five business lines within

the business unit ISS per quarter. The targets within ams are set per business unit. Therefore

the targets are the same for every business line. The RLIP target of 2020 was set set to X1%,

and the target of 2021 is X2%. For the CLIP, the target of 2020 was Y1%, for 2021 the target

is Y2%. The targets are classified as confidential information.

Business line
RLIP 2020 RLIP 2021

Q1 Q2 Q3 Q4 Total Q1 Q2 Total

A 70% 56% 74% 62% 65% 74% 45% 60%

B 69% 60% 65% 62% 64% 65% 37% 51%

C 50% 43% 44% 43% 45% 47% 27% 37%

D & E 97% 96% 89% 84% 91% 35% 10% 23%

Total 71% 60% 59% 62% 63% 63% 36% 50%

Table 3.5: RLIP 2020

Business line
CLIP 2020 CLIP 2021

Q1 Q2 Q3 Q4 Total Q1 Q2 Total

A 98% 96% 92% 93% 95% 94% 83% 89%

B 95% 94% 98% 95% 95% 99% 94% 96%

C 82% 66% 78% 79% 76% 94% 59% 77%

D & E 100% 97% 96% 98% 98% 100% 90% 95%

Total 95% 92% 93% 92% 93% 97% 88% 93%

Table 3.6: CLIP 2020
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Note that only the products that have a CTO, ATO, FTO, or MTS strategy are considered

in the analysis above. In Appendix D the performance (RLIP and CLIP) of all the products

within a business line is shown. The performance of both is comparable, as expected. Table 3.5

shows that the performance in 2021 is significantly lower than in 2020. The main reason is the

high demand in the semiconductor industry, one of the side effects of the COVID-19 situation.

3.10 Safety stock settings

There exist two safety stock settings. This could be a fixed amount of safety stock (SS) or

safety-days-of-supply (SDS). The SDS is linked to the demand section 1.2.4. Within ams, there

is no distinction between inventory classified as safety stock or as cycle stock. Furthermore,

the desired safety stock targets are not necessarily located at the stocking points. Therefore,

the value of the current safety stock is calculated based on the current safety stock settings.

Business line Safety stock percentage

A 31.6%

B 17.7%

C 17.6%

D 15.2%

E 0.4%

Total 20.1%

Table 3.7: Safety stock

Table 3.7 shows the percentage of safety stock for each business line if the desired safety stock

target is actually located at the stocking point. This percentage represents the value in safety

stock based on the total value of the on-hand inventory. Especially in the business line A,

there is a relatively high percentage of safety stock. There is almost no safety stock for the

business line E since these products are produced based on customer orders. In total, 20% of

the inventory on-hand is safety stock within the business unit ISS. The other 80% consists of

a surplus in cycle stock or finished goods that are delivered soon.

Furthermore, the safety stock settings considers the yield percentage. For example, when a

safety stock of 400 units is set, and the sorting process has a yield of 50%, automatically 800

units are started in production.

3.11 Summary

This chapter discussed the important aspects that have to be considered in the design. This

section gives a summary that highlights the most important findings based on the analysis.

• The project’s scope consists of 175 products divided over five business lines (A, B, C, D,

and E).

• The number of customers is limited. The majority (58.9%) of the products have only one

customer. Especially in the business lines C, D, and E, most products are produced for
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one special customer.

• Five production strategies exist within ams; MTS, CTO, ATO, FTO, and MTO. For 80

products, all production steps are started once a customer order is received (MTO). For

these products, there is no need for safety stock. The other 74 products are classified

as MTS, CTO, ATO, or FTO products. These products require safety stock. Therefore

these products are further analyzed.

• The supply chains obtained have a serial, assembly or a divergent structure.

• Two commonly used distributions are considered for the customer demand, the normal

and the gamma distribution. In addition, the coefficient of variation is calculated. Most

of the products have a CV higher than 0.75. Furthermore, the average number of orders

per month is relatively low since most products are sold to one special customer.

• The Dickey-Fuller test is used to check the data whether it is stationary or not. For the

majority of the products, the data is stationary (60/66).

• Since multiple processing steps are started based on the forecast, the forecast bias is

analyzed. The forecast bias is calculated by comparing the actuals with the forecast of

five months earlier. The monthly forecast bias shows that it is a challenge to predict the

customer demand per month.

• The yield is defined as the percentage of working dies on a wafer. The majority of the

sorting processes have a standard deviation of the yield percentage below 1%.

• The throughput time of the main process steps are analyzed. In particular the wafer fab

process and the external assembly have relatively high throughput times. For the wafer

fab the throughput times are dependent on the technology family.

• The inventory policy of ams is described as an (R, s, nQ)-policy for the stocking points

after the wafer fabrication and sorting process. For the other stocking points an (R, s)-

policy is used. The reorder level (s) is calculated at every review moment since the

forecast for every period can be different. The lot size for the wafer fab is 25 wafers and

for the sorting process, one wafer.

• The performance is measured in two ways, the RLIP ,and the CLIP. ams set the RLIP

target for 2020, and 2021 to X1%, and X2%, respectively. The CLIP target for 2020 was

Y1% and for 2021 it is Y2%. For each business line the observed performance is different.

Therefore, the target is not met for every business line.

• 20% of the inventory consists of safety stock. Especially the business line A has more

safety stock than the other business lines.
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4 Design

In this chapter, a design is developed to reach the project’s goal; designing a method to determ-

ine the (customer order) decoupling points and (safety) stock targets within the semiconductor

supply chain. At the same time, the desired service levels have to be reached with a minimum

inventory level. In particular, the RLIP, which indicates the performance based on the lead-

time that the customer requests. This chapter consists of three sections, the conceptual design,

the detailed design, and the solution.

Firstly, the conceptual design is discussed. In the conceptual design, the basic idea, charac-

teristics, and requirement of the method are explained. Furthermore, based on the available

literature, some techniques that discuss similar problems are reviewed.

The second part, the detailed design, explains the conceptual design in more detail. This is

based on one of the methods discussed in the conceptual design. Finally, a method is proposed

to solve the detailed design.

4.1 Conceptual design

Based on the findings of the detailed analysis in section 3.11 the characteristics and requirements

are defined for the design.

Characteristics

• Limited number of end customers

Since most products are customized for one or a few customers the number of end cus-

tomers is limited.

• Serial, assembly, and divergent supply chain

For products that are fully customized, a serial or assembly supply chain is obtained.

Since some components are used for multiple products, these supply chains should be

seen as a divergent supply chain.

• Customer lead-time

In the dynamic market where most of the products are customized, no fixed customer

lead-times are used. Even the same products that are ordered by the same customer

could have a different customer lead-time. In other words, almost every order placed has

a diverse customer lead-time.

• Gamma distributed and stationary customer demand

When high coefficients of variations are observed for customer demand that follows the

normal distribution, there is a higher probability of negative demand. An alternative

suggested by Aviv and Federgruen (2001); Das (1976) is the gamma distribution, which is

characterized by non-negative demand. Most products have a moderate or high coefficient

of variation for the customer demand, which could lead to negative customer demand.

Therefore, the gamma distribution is used in the remaining of this thesis for the customer
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demand. Furthermore, for 90.9% of the products, the data of the customer demand is

stationary. Therefore the following assumption is made: all the customer demand data is

stationary.

• Demand and throughput time uncertainty.

The three main uncertainties observed in the semiconductor industry are demand, through-

put time, and yield uncertainty. The demand and throughput time are obviously. The

yield uncertainty is not considered because of two reasons. The first reason is that bin-

ning is not used within ams. Secondly, for most sorting processes (94%) the standard

deviation of the yield is below 1%. Compared to the demand and throughput time uncer-

tainty, the yield uncertainty is relatively low. Therefore, the yield uncertainty is negligible

and not considered. Note that the yield percentage is constant and automatically taken

into account in the orders that are produced.

• Periodical reorders

The inventory policy is operating under a periodically review moment.

• Backorders

Customer demand that is not immediately fulfilled is delivered later to the customer.

• Lot sizing

For the wafer fabrication and sorting process, a lot size of 25 and one wafer is used,

respectively. For the other processes no lot size restrictions are considered.

Requirement

• Service level: RLIP and CLIP

The desired service level in terms of CLIP and RLIP should be achieved while minimal

costs are obtained.

The design aims to first determine the possible stocking points within the supply chain of

the semiconductor industry. After that, a decision support system is used to determine the

best stocking point(s) and the (safety) stock targets. In particular, the customer lead-time

is a essential aspect in determining the CODP. This policy helps manage the uncertainties

and guarantees a certain service level (RLIP and CLIP) while lowering inventory costs during

periodic inventory reviews. The safety stock target that is determined is a number of products

that are on top of the forecasted demand. It will cover the demand and throughput time

uncertainties for a certain period.

4.1.1 (Customer order) decoupling point

The first step of the design is locating the possible stocking points within the supply chain.

Section 2.1.1 discussed different methodologies to determine the decoupling points within the

supply chain. The most important criteria are the ratio of the delivery lead-time and throughput

time Olhager (2003). Furthermore, the studies of Rafiei and Rabbani (2009) and Sun et al.

(2010) consider some additional factors. These factors are categorized in the market, product,

process, and supplier-related factors. However, these studies are focusing on the production

strategy (MTS, ATO, FTO, and MTO), and therefore are choosing one single customer order
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decoupling point. Sun et al. (2008) and Kim et al. (2012) propose methods to determine

multiple decoupling points, which consider different costs factors within the supply chain.

Based on above literature there is one factor that determines the CODP, the planned through-

put time versus the customer lead-time. However, since this thesis is focusing on the

semiconductor industry that produces customized products, it is important to consider the

customers’ requests. In addition, there are no fixed customer lead-times for the customized

products, so every order could have a different customer lead-time. The customer lead-time

is defined as the difference between the booking date and the customer’s request

date. Furthermore, there are multiple reasons to define additional stocking points within the

supply chain. However, since the safety stock considers the demand and throughput time un-

certainty, there is chosen to limit the reasons for possible stocking points to two factors. First of

all the location of the bottleneck and secondly the commonality within the supply chain.

Locating the bottleneck within the supply chain is essential to maximize the output of the

manufacturing system. When the process that is classified as bottleneck has a consistent

supply of parts, the idle time is reduced (Roser et al., 2002), and the utilization of that process

is maximized. The second reason is commonality. Commonality is used to reduce the risk

of placing safety stock within the supply chain, especially in a setting where the number of

customers is limited. Ma et al. (2002) states that one of the major benefits of commonality is

risk-pooling. Next, based on the factors discussed in the reviewed literature (market, product,

process, and supplier factors), commonality is used to determine where a possible stocking

point could be placed in the supply chain. Commonality can be seen as a product-related

customization opportunity and as a market-related factor (Rafiei and Rabbani, 2014).

In this thesis, we choose two kinds of commonality, commonality in (i) customers and (ii)

end products. Since the number of customers per product is limited, it is important to

consider the number of customers. It could be that the number of end products is the same

and the number of customers is different. A higher number of customers will decrease the risk

of holding inventory. This is explained by the following example. Component A is used for

one end item and sold to one customer. Component B is used for one end item as well and

sold to three customers. This results in the same commonality in end products and a different

commonality in customers. If the customer for component A decides not to place any orders

anymore, it results in no demand for component A. For component B, there is still demand

if the number of customers decreases. Therefore, holding inventory for component B has less

risk than holding inventory for component A. The commonality in customers and end products

indicates this. Note that the order size and frequency of the customers are important as well.

The commonality in customers is defined as the number of identical and active (excluding

EOL) customers for a component. This number is obtained by using the number of customers

for the end product of that component. The commonality in end products is defined as the

number of identical and active (excluding EOL) end products for a component.
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However, two situations should be distinguished from one another. In the first situation, only

one stocking points is located, which is the CODP. The second situation is characterized by

multiple stocking points.

CODP

As mentioned before, the planned throughput time and the customer lead-time are chosen

to determine the CODP within the supply chain. The modeled customer lead-time can be

determined in multiple ways:

1. The minimal customer lead-time.

2. The minimal customer lead-time without the extreme order requests.

3. The average customer lead-time minus k times the standard deviation of the customer

lead-time.

4. x% percentile of the customer lead-time.

When using the minimal customer lead-time, the extreme customer requests (within one/two

days) are taken into account. However, this is not realistic. Using the minimal customer lead-

time without the extreme customer requests is more reasonable. The third option considers

the variation in the customer lead-times. In this situation, most of the customer orders will

be fulfilled within the requested lead-time. The value of k can be defined based on the desired

RLIP. However, some customers place their orders for multiple months. On the other hand,

some customers would like to receive their order within a few days. These two reasons have a

high effect on the average and standard deviation of the customer lead-time. Therefore another

option is considered, option 4. The last option (4), determines the modeled customer lead-time

by using a percentile. The following example explains this. A 10% percentile means that 10%

of the data is lower or equal than the number of the 10% percentile. In other words, 10%

of the requested orders have a lower or equal customer lead-time than the modeled customer

lead-time. For the case study, the options that take into account the majority of the customer

requests are chosen. Based on the above reasoning, options 2 and 4 are chosen to determine

the modeled customer lead-time.

Location of the bottleneck

As mentioned above, locating the bottleneck within the supply chain is essential. This location

determines the maximum output of the manufacturing system. Minimizing the unproductive

time from a certain process can be done by locating a buffer before the bottleneck. This buffer

provides the bottleneck process with a consistent supply, which results in a maximum utilization

of the process.

Commonality

Commonality can be used to determine an additional stocking point or help determine a CODP

with less risk. A higher commonality is reducing the risk since the specified component is used

in multiple end products and has multiple customers. When one of the customers decides to

decrease his demand, the inventory can still be used to fulfil the other customers’ demand or

for the other end items. Therefore, two options are possible, placing an additional stocking
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point (i) upstream in the supply chain or (ii) downstream in the supply chain.

There is a lower risk of holding inventory when the commonality is higher in a stage upstream

in the supply chain. The reason is that the same component can be used for multiple end

products and customers. Therefore, it is logical to place an additional stocking point more

upstream in the supply chain. A stage downstream in the supply chain can result in a lower or

equal commonality.

As mentioned in section 3.3, the CTO strategy means placing inventory after the wafer fab-

rication process. This strategy is used because for some products, after the sorting process,

the dies on the wafer are customer-specific. This is the same as a decrease in commonality.

However, if the component is not decreasing in commonality, the component can still be used

for all the possible customers. In this case, it is more logical to place the inventory one stage

more downstream in the supply chain. This results in two main advantages that reduce the

risk of holding inventory in the semiconductor supply chain.

• Immediately feedback of the wafer fabrication process, since it is known how many good

dies there are. It could be that there are some issues with a particular technology in the

wafer fab. After the wafer fabrication, this feedback is received shortly after the processes

by doing the sorting process directly after the wafer fabrication.

• A known number of good dies on stock. Holding inventory before the sorting process

means holding the untested wafers on stock. However, from an inventory point of view

it is more logical to know how many good dies there are on stock to fulfil the customer

demand instead of untested wafers.

Altogether, there are two options: (i) placing an additional inventory point upstream in the

supply chain if the commonality increases or (ii) placing the stock after the wafer sort process

if the commonality does not decrease after this processing step.

4.1.2 (Safety) stock targets

After determining the possible stocking points within the semiconductor industry’s supply

chain, the next step is to choose the best stocking point(s) and set the reorder levels for a

certain period. It could be possible that there is only one stocking point. The other possibility

is a combination of stocking points.

For a single stock point, simple formulas are proposed to determine the safety stock, including

the demand and throughput time uncertainty. These methods are based on a demand dis-

tribution. However, the majority assumes that the customer demand is following the normal

distribution. There are some methods for the gamma distribution. For example, Bischak et al.

(2014) defined a simple heuristic where the standard gamma distribution is used to obtain the

safety factor. Furthermore, to determine the safety factor, the ratio between back-ordering

costs and holding costs is used. However, an important condition for the approaches above

is that the correct distribution is used. Therefore the customer demand has to be analyzed

with a goodness of fit test. Furthermore, the methods discussed so far are focusing on a single
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stocking point. This is the case in the first situation. However, the other situation considers

multiple stocking. Therefore, some papers that describe a multi-echelon problem are discussed

as well.

A problem that arises when implementing a multi-item multi-echelon system is managing the

inventory levels of components used for multiple end items. In this case, the customer demand

pattern is different since it could be that the customer demand of the end items follows not the

same distribution.

A multi-echelon inventory system is discussed by Houtum et al. (2004). To calculate the the

optimal base stock level, the Newsboy equation is used. This equation considers the back

ordering costs and holding costs. An advantage of this method is that it is using relatively

simple calculations. In addition, back-orders are considered, which are satisfied in a first-come-

first-serve order. Moreover, it assumes reorder intervals. Furthermore, it proposes a method

when the demand distribution is unknown, the two moment fit (Osogami and Harchol-Balter,

2006). This method solves the problem of the different customer demand patterns. However,

there are two main problems, (i) the paper is limited to a serial inventory system, (ii) it assumes

constant throughput times. Note that the Newsboy equation can be used for a single stocking

point situation as well.

A study that solves the problem of a serial inventory system is discussed by Diks and de Kok

(1998). The study considers a divergent supply chain for which the system places the orders

periodically. The goal of the research is to minimize the holding and penalty costs per period.

However, problems that arise by using this method are the assumption that the final demand

is normally distributed, throughput times are constant, and there is no service level constraint.

Another study that does consider a service level constraint is the study of van der Heijden

(2000). This research proposes a method to control divergent networks under a periodic review.

The objective is to minimize the holding costs within the supply chain while the desired fill

rates are obtained. This method assumes that the demand per period is stationary in time,

and demand that is not immediately fulfilled is backordered. Furthermore, lot sizing is not

considered. Next, the demand distribution is unknown and the model is using the mean and

standard deviation as well. Nevertheless, it assumes constant throughput times.

A more recent study of de Kok (2018) discussed a method for general multi-item multi-echelon

(MIME) under a base stock policy, the Synchronized Base Stock (SBS) policy. This policy

is based on two structural characteristics of a MIME system, the Bill-of-Material (BOM) and

the item cumulative throughput times. The main difference between the SBS and many other

planning and control concepts is the material availability check, which will be discussed in more

detail in the next section. Earlier research has shown that the SBS policy is applicable in the

high tech industry (de Kok et al., 2005; van Waveren, 2020; Schouten, 2018). In addition,

the newsvendor problem is an applicable technique used in the SBS method. Based on these

findings, there is chosen to discuss the SBS in more detail in the next section. By implementing
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the SBS policy for the semiconductor industry, a problem arises since fixed throughput times

are assumed. This problem can be solved by assuming that the throughput times follow the

normal distribution, and by considering the standard deviation.

Furthermore, two problems should be addressed, (i) how to manage extreme orders, and (ii)

how to consider demand uncertainty. For the first problem two situations are assumed. In the

first situation the customer demand is stable, no orders are placed that have a huge quantity

size in comparison with the average order size. The second situation considers these extreme

orders. The extreme orders (outliers) are defined as an order size is equal to 6 times or more

the average order size. In the literature there are no strict rules to define outliers. For the first

situation the methods discussed can be used. However, for the second situation two options

are considered to manage the extreme demand.

1. Assume that extreme orders have a customer lead-time that is minimally equal to the planned

throughput time of product. In this case the extreme orders are managed as the product is

produced by the MTO strategy.

2. When these extreme orders are placed on a regular basis, the CODP can be reconsidered,

or an additional stocking point can be located.

The second problem is the decision how to determine demand uncertainty. As discussed in the

literature section, the demand uncertainty can be determined in two ways. The first option is

based on the historical demand. The alternative is the forecasted demand. In both situations

the huge orders have an impact on the standard deviation. However, since the first production

step starts based on the forecast it would make sense to define the safety stock based on the

forecasted demand. The safety stock would then manage the mismatch between actual demand

and the forecasted demand.

4.2 Detailed design

The previous section gives a general description of how to determine the possible stocking points

and how to manage the stocking targets. This section discusses how to determine the possible

stocking points in more detail. Thereafter, the method is discussed to determine the target

levels of a stocking point, the Synchronized Base Stock (SBS) policy (de Kok and Fransoo,

2003). The policy is based on the algorithm proposed by Diks and de Kok (1999).

4.2.1 Supply network

Before introducing the method to determine the possible stocking points, the supply network

is introduced. This is described by parent-child relationships between the items. The following

sets are introduced:

N : set of all items

E: set of end items, items that are not used in any other item and are delivered to the customers

Ek: end item k
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I: set of intermediate items

Vi: set of successors of item i

Wi: set of predecessors of item i

aij: is introduced as the number of items i that are required to produce one item of its parent

item j, which is in this thesis equal to 1 for all items.

For each item i, i = 1, 2, .., N and for item j, j = 1, 2, .., N . For the end items, k ∈ E,

Figure 4.1: Example supply chain

Figure 4.1 shows an example of a supply chain consisting of nine items, N = {1, 2, 3, 4, 5, 6, 7, 8, 9},
and three end items, E = {1, 2, 3}. The intermediate items are I = {4, 5, 6, 7, 8}. Two end

items can be produced from item 4, V4 = {1, 2}. The items that are required to produce one

unit of item 4 are indicated by W4 = {6, 8, 9}. Furthermore, every stocking point has a low

level code (LLC). For the end items, the LLC is equal to 1, for a stage upstream in the supply

chain, the LLC is equal to LLC + 1.

4.2.2 (Customer) order decoupling point(s)

Since the time between the order is placed and the customer would receive the order can

be different for every order, even for the same product, the modeled customer lead-time is

determined. The next step is locating the CODP for each end item. Therefore the following

variables are introduced:

MCLi: modeled customer lead-time for end item i

X: desired modeled customer lead-time percentile

Ti: average throughput time of item i

T c
ij: cumulative throughput time on the path from item i to item j, including i and j

Subsequently, for each end item the modeled customer lead-time (MCLi) is determined by two

options:

The first option is excluding the customer lead-times that have a value below or equal to 7

days. The second option is choosing the value based on the desired percentile X, which can be

done in Microsoft Excel using the percentile function.
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Next, the CODP has the following constraint, to ensure that the CODP location is not too far

upstream in the supply chain to fulfil customer orders on time:

T c
ij ≤MCLi (1)

Note, that when the CODP is located after the wafer fabrication step, it makes more sense to

locate the CODP one stage downstream in the supply chain because of the reasons mentioned

in the conceptual design (section 4.1).

To locate the other possible stocking points the commonality and utilization variables are

defined:

COMPi
: commonality in end products for item i

COMCi
: commonality in customers for item i

Ui: utilization of process of item i

The commonality can be derived from the BOM, for example, based on Figure 4.1, ComP8 = 3.

The commonality in customers can be derived from the customer data base. Then based on

these values an additional inventory point that is located more upstream than the CODP is

determined by the following steps:

1. set i equal to the location of the CODP

2. if COMPi+1
> COMPi

and COMCi+1
> COMCi

then locate an additional inventory

position on COMCi+1
, if not go to step 4

3. i = i+ 1

4. repeat step 2, 3 until the most upstream location in the supply chain is reached

In addition, processes that have a high utilization level can be defined as a bottleneck location.

If the utilization level of a process is higher than a certain number, it can be seen as a bottleneck

location.

4.2.3 Cost function and constraints

To define the cost function and the constraints that are relevant for a multi-item multi-echelon

system the following variables are introduced:

Di(t): independent demand for item i in period t

Gi(t): dependent demand for item i in period t

yi(t): quantity of item i that becomes available at the start of period t from the transformation

activity generating item i

ri(t): quantity of item i released at the start of period t immediately after receipt of yi(t)

Ii(t): physical inventory of item i at the start of period t, immediately before receipt of yi(t)

SSi(t) : safety stock of item i in period t

Bi(t): backlog of item i at the start of period t, immediately before receipt of yi(t)

Ji(t): net inventory of item i at the start of period t, immediately before receipt of yi(t)

32



hi: holding costs of item i per time unit t

pi: penalty costs of end item k per time unit t

αk: non-stock out probability at end item k

α∗k: target non-stock out probability at end item k

βk: fill rate at end item k (P2)

β∗k : target fill rate at end item k

According to Pyke et al. (1998), the fill rate (P2) is defined as: ’fraction of customer demand

that is met routinely; that is, without backorders or lost sales’ (p. 245).

The independent demand is the demand for the end items, which is equal to the customer

demand. For these end items, the demand is not known, and are based on a forecast. Therefore,

the item set P is defined as:

P : set of items i with Di(t) > 0 for some t > 0

Cost function and service level constraint

A cost function is defined which considers holding and backordering costs for all items at the

end of a period t:

C(t) =
N∑
i=1

(hiIi(t) + piBi(t)) (2)

However, since multiple periods are used, the long-run average should be used. In addition

to ensure a desired customer service level, a customer service level constraint is defined. The

performance of the inventory system is measured by the fill rate, β. For all end items a fill rate

is defined.

βk ≥ β∗k , k ∈ P (3)

Material release constraints

The following equations define the material release constraints. These constraints consider the

availability of materials and ensure that there is not released more than physically available.

The equation below means that increase in the backlog cannot exceed the exogenous demand.

Bi(t+ 1)−Bi(t) ≤ Di(t), ∀i, t ≥ 1

Next, the released quantities are non-negative

ri(t) ≥ 0, ∀i, t = 1, ..., T

Based on the above equations, the inventory balance equation can be defined:

Ii(t+ 1) - Bi(t+ 1) = Ii(t)−Bi(t)−Gi(t)−Di(t)− ri(t− Li), ∀i, t = 1, ..., T
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However, this is the case when the planned throughput time can be seen as realistic.

4.2.4 SBS policy and algorithm

The Synchronized Base Stock (SBS) policy is based on the algorithm developed by Diks and

de Kok. The algorithm determines the near-optimal echelon base-stock levels and allocation

fraction. In this section algorithm is shortly discussed.

First some variables are introduced:

Si: base stock level of item i

CSi: cycle stock of item i

qj: allocation fraction to stockpoint j

Ui: all items on the path from the root items to item i, exclusive item i

The base stock level Si consists of two parts, (i) the expected customer demand during the

throughput time (Ti) and the review period (R), and (ii) the safety stock (SSi). The expected

customer demand during the throughput time and review period is also defined as the cycle

stock (CSi). The safety stock covers the variability in throughput time of the processes and

customer demand.

The algorithm starts with determining the base stock levels of the end items (LLC = 1) by

satisfying the following newsboy styled equation:

αi
k =

∑
j∈Ui

hj + pk

hk +
∑

j∈Uk
hj + pk

(4)

Subsequently, the base stock levels and the allocation fractions for the next intermediate items

with LLC = 2 are determined such that they satisfy Equation 4. Until the sum of the allocation

fraction (
∑

j∈Vi
qj) is close to 1, the allocation fraction is adjusted. In the case that the base

stock level of a stockpoint with LLC = 2 is less than the sum of the base stock levels of its

successors, the base stock levels of the successors are adapted. A more detailed explanation of

the algorithm can be found in Diks and de Kok (1999).

4.3 Solution

As discussed before, the first step is determining the number of stocking points. After doing

this, there are two options, (i) there is one single stocking point (CODP) or (ii) there are

multiple stocking points. In the case of a single stocking point, the base stock level can be

calculated by using the newsboy equation (Equation 4). In the other situation, the complexity

is much higher since the allocation fractions have to be calculated. Therefore, ChainScope, a

software program that is based on the Synchronized Base Stock (SBS) policy will be used. The

program assumes an infinite production capacity.
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4.3.1 Single stocking point

For a single stocking point, the optimal base stock policy can be derived from Equation 4. Since

this stocking point is the only stocking point in the supply chain, it is the stocking point that

has to fulfill the customer demand for this end item. This results in the following formula that

is proposed by Shang and Song (2003) as well:

S∗ = F−1(
p

h+ p
) (5)

By using Equation 5, the optimal base-stock level is calculated, where F−1 is the inverse

cumulative distribution of the demand during the throughput time. The parameters to use

F−1 can be derived from the historical data, which is explained in more detail in the next

subsection. In the case the penalty cost pi is unknown, it can be derived from Equation 4.

Note that this method is only considering demand uncertainty. How to manage the throughput

time uncertainty is covered in the next subsection.

4.3.2 Multiple stocking points - ChainScope

In the situation where multiple stocking points are determined in the supply chain, a software

program that analyzes and optimizes multi-item multi-echelon systems is used. The goal of the

software is to achieve the desired service levels for the end items while minimizing the inventory

holding costs. In this section, the model inputs are explained. ChainScope is developed by prof.

de Kok. The main advantage of SBS policies, as discussed in section 4.2, is that SBS possesses

an allocation mechanism. The following section will discuss the relevant input parameters and

output to use the software.

Throughput time - input

The throughput time is based on the expected throughput time, which is a fixed number. How-

ever, as discussed in section 3.7, the observed throughput time varies. Therefore, throughput

time variability has to be considered. By assuming that the throughput times follows the normal

distribution the following formula can be used to include the variation in the throughput time.

Where, (µT i) is the average throughput time, (σT i), the standard deviation of the throughput

time for each item i, and Z is the value from the standard normal distribution for the desired

percentile X. The Z value for the desired percentile X can be looked up in Appendix F.

Ti = µT i + Z ∗ σT i (6)

Customer demand - input

The customer demand is the independent demand Di observed per period for the end items.

The method assumes that the demand in the end items is independent and identically

distributed. By using the two moments fit method, the parameters of the gamma distribution

can be derived by using the average and standard deviation of the customer demand:
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µ =
α

β
, β =

µ

α
(7)

σ2 =
α

β2
, α =

µ2

σ2
(8)

BOM structure - input

Furthermore, the structure of the supply chain is based on the bill of material. This structure

is based on the item-successor relations as discussed in section 4.2.

Service level - input / output

The desired service level is measured in fill rate (βi). The fill rate is the fraction of customer

demand that is fulfilled immediately without any backorders. A target fill rate (β∗i ) is given as

input parameter, and ChainScope gives the calculated fill rate βi as output.

Review period - input

Moreover, the review period (R) is the period between the release decisions for an item.

Lot size - input

First of all, the lot size variable is introduced (Qi) as the lot size of item i. The lot size is the

order batch quantity. For the stocking points after the wafer fabrication and sorting process,

the released quantity (ri) depends on the process’s lot size (Qi). The released quantity is a

multiple integer of the lot size (nQ). For the wafer fabrication, the lot size is equal to 25 wafers,

and for the sorting process, the lot size is equal to one wafer. The number of dies per wafer

depends on the product. For the other processes, lot sizing is not considered.

Customer order lead-time - input

For each end item, the modeled customer lead-time should be determined.

Holding and penalty costs - input

The holding cost (hi) is used as input parameter for each item in the supply chain. The penalty

cost (pi) is not used as input parameter in ChainScope. Based on the holding cost and the

non-stock out probability, the penalty cost is determined using (Equation 4) for the end items.

Average inventory on-hand - output

The output is the average inventory on-hand that consists of the safety stock and the average

cycle stock.
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5 Case study

This chapter discusses the results by applying the proposed method in terms of safety stock

and average inventory on hand. Ten cases are selected that differ in the supply network and

the number of locations with safety stock to compare the current situation with the proposed

method. First, the possible stocking points are determined. These determined stocking points

are used as input in ChainScope to optimize the inventory levels. Two situations are compared.

In the first situation, the current safety stock settings are compared with the proposed safety

stock settings by ChainScope. In the second situation, the current average inventory on-

hand is compared with the average inventory on-hand proposed by ChainScope. Distinguish

these two situations is because of two reasons. First, no distinction is made between cycle stock

and safety stock (section 3.10). Second, the desired safety stock targets are not necessarily

located at the stocking points. Note that the scales on the vertical axis of the figures are

hidden because of confidential data.

5.1 Case selection

Ten cases are selected that differ in the number of positions with safety stock, end items, and

total customers. In other words, the complexity of the supply chain. In addition, the cases differ

in terms of customer demand. For these cases, the current safety stock settings are compared

to the calculated safety stock settings with the proposed method.

Case Business line Positions with safety stock End items Total customers

1 A 1 1 1

2 A 1 3 5

3 B 2 1 1

4 A 2 2 15

5 B 2 3 18

6 A 3 1 2

7 B 3 2 25

8 B 3 3 22

9 A 4 4 39

10 B 4 7 17

Table 5.1: Case selection

5.2 Validation

The software package ChainScope is used to measure the performance of a situation. However,

ChainScope is limited in measuring in terms of performance measures. The software can meas-

ure the fill rate. As mentioned in the previous chapter, the fill rate is the fraction of customer

demand immediately fulfilled. However, the performance within ams is measured in RLIP. The

RLIP indicates the percentage of the orders fulfilled within the customer lead-time. Since these

are two different performance measures, it is necessary to check whether these performance
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measures are in the same range as the observed RLIP. By using the evaluation function of

ChainScope, the situations can be compared. Based on the average and standard deviation of

the customer demand of the end items, the supply chain structure, and the average on-hand

inventory, the situation can be evaluated. For the ten selected cases, the performance is com-

pared with each other in Table 5.2. The average on-hand inventory of the beginning of month

X and month X + 1 is used. Subsequently, the average calculated fill rate in ChainScope and

the observed RLIP of these months are compared. The fill rate is measured for the location

that is the CODP. For some cases, there is a slight difference in the values. However, this can

be caused by the low number of orders in the period observed. The fill rate is calculated for

the customer order decoupling points in the current situations.

Case/

Performance
1 2 3 4 5 6 7 8 9 10

RLIP 50.0% 80.4% 100.0% 77.0% 44.4% 81.3% 87.5% 96.4% 59.6% 74.2%

Fill rate 53.2% 79.2% 99.2% 75.7% 45.4% 80.3% 88.5% 100.0% 61.9% 76.5%

Table 5.2: RLIP - Fill rate

For the remainder of the case study, we assume that the fill rate is similar to the RLIP based

on the above table. Furthermore, the values obtained for the cases with a single stocking point

are validated with the output of ChainScope. For both methods, the calculated safety stock is

the same. Therefore, ChainScope is used to calculate the settings for all cases.

5.3 Parameter setting

The parameters used in the software package ChainScope are introduced. Some parameters

could have a relatively high impact on the results and are further investigated in the sensitivity

analysis.

5.3.1 Input parameters

First of all, the supply chain structure is based on the bill of materials. For the items and end

items in the supply chain, the following parameters are introduced:

Item End item

Parameter Symbol Value Parameter Symbol Value

Desired percentile

throughput time
X 95% Modeled customer lead-time MCLj MCLminj

Throughput time Ti Average customer demand µj

Holding cost hi Standard deviation customer demand σj

Review period Ri 7
Target fill rate β∗j 90%

Lot size Qi

Table 5.3: Input parameters

For a few parameters, the values depend on the case. For these parameters, no value is given in

Table 5.3. The throughput time is calculated by using Equation 6. For the modeled customer
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lead-time the minimal customer lead-time, excluding the orders with a request within one week

is used. The modeled customer lead-times are based on the data from 2020. The review period

is set to once a week (R = 7) for all processes. Furthermore, the lot size for the wafer fabrication

is 25 wafers, and for the sorting process, one wafer. For the other stocking points, no lot size

restrictions are considered. Next, as mentioned in section 4.1, the demand uncertainty can be

determined based on the historical demand and the forecasted demand. However, the amount of

available data to analyze the forecasted demand is limited. Therefore, the historical demand

is used to determine the average and standard deviation of the customer demand. Furthermore,

the values of the throughput time, review period and customer demand are expressed in days.

5.3.2 Output

The output that is relevant for the case study is shown in Table 5.4. For each item, the safety

stock and average cycle stock are given as output. For the end items, the calculated fill rate is

given.

Output Symbol

Safety stock item i SSi

Average cycle stock item i CS∗i
Fill rate end item j βj

Table 5.4: Output

5.4 Results

The first step is determining the CODP and other possible stocking points. Since there are no

bottleneck processes for these cases, the bottleneck criterion is not considered. The possible

stocking points are used as input for the ChainScope software. The next step is calculating the

(safety) stock levels for these stocking points.

5.4.1 Stocking points

In Figure 5.1 the current situation for each case is shown on the left-hand side. For the current

situation, the yellow triangle indicates an inventory position with a safety stock setting. In

the proposed situation, the yellow triangle indicates determined stocking point by using the

proposed method. It could be that these determined locations will have no safety stock, which

is indicated by 0% in the triangle. Note that cycle stock can still be located at other possible

stocking points (blue triangles). Remember that raw materials are not taken into account. The

first triangle is the inventory position after the first process step. In the proposed situation,

the modeled customer lead-time (MCL) is determined by the minimal customer lead-times

without the extreme requests within one week. The customer order decoupling points

are based on the throughput time (Ti) and the MCL. For example the first case, the MCL is

equal to 51 days. The throughput time of the process most downstream in the supply chain is

8 days. The process one stage upstream in the supply chain has a throughput time of 9 days

and the next one 37 days. Based on this, the last two processes are executed when a customer

order is received, resulting in a CODP after the first three processes. Another example is case
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3. As mentioned in the design chapter, locating inventory after the sorting process is more

logical if the commonality is the same. Both components are produced for the same number of

customers and end items. Therefore, the CODP is located one stage more downstream in the

supply chain than based on the MCL. Another additional stocking point is located for example

is case 7. For both end items, the CODP is located as a finished good. However, the component

used for the two end items is determined as a possible stocking point with safety stock (yellow)

because of the commonality of the component.

Figure 5.1: Stocking points current vs proposed situation MCL min without extreme requests
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In the proposed situation, there are fewer stocking points for cases 3, 4, 6, and 9. Case 7 and

8 have the same stocking points. The cases with more stocking points than in the current

situation are 2, 5, and 10. The reason for an increasing number of stocking points with safety

stock are the different modeled customer lead-times for each end item. Especially in case 10,

many stocking points are determined.

5.4.2 Inventory levels

After locating the possible stocking points, the stock levels are calculated. As mentioned at

the beginning of this chapter, two situations are compared. Firstly, the safety stock settings.

Secondly, the average inventory on-hand.

Safety stock

First of all, the current safety stock settings are used to evaluate the performance of these

settings in the proposed situation. Table 5.5 shows the calculated fill rate achieved with the

current safety stock settings. Note that the calculated performance in Table 5.5 is different

than in Table 5.2. In Table 5.5 only the safety stock settings are considered, the cycle stock is

excluded.

Case 1 2 3 4 5 6 7 8 9 10

Fill Rate 88.1% 57.0% 99.8% 93.1% 91.0% 99.5% 41.6% 54.4% 81.4% 1.9%

Table 5.5: Current calculated fill rate: proposed situation MCL min without extreme requests

For some cases, the calculated fill rate is relatively low, for example, case 2. Case 2 has a fill

rate of 57.0%, while the safety stock is located at a stage that could fulfill the orders within

the requested CL for the three end items. It seems that the current safety stock settings are

not high enough to manage the demand uncertainty. The percentage at the locations

indicates the percentage of the total value in safety stock at that location of that

supply chain. In other words, for case 7, 72.6% of the total value in safety stock is located in

the middle of the supply chain. Next, case 7 has a relatively low fill rate as well. The reason is

that the majority of the safety stock (72.6%) is located upstream in the supply chain, while the

CODP for end items 1 and 3 are located at the end items in the proposed situation. In other

words, the safety stock should be located more downstream to achieve a better performance.

This is the same for cases 8 and 10. For case 10, this results in a very low fill rate.

In Figure 5.2 the current settings are compared with the proposed situation, where the fill

rate is set to the desired service level. As mentioned in the input parameter section, the fill

rate target is set to 90%. In the sensitivity analysis, other fill rate targets will be analyzed.

Figure 5.2 shows the total value of safety stock with the current safety stock settings in euros.

Furthermore, it shows the total value of safety stock to achieve a fill rate of 90% when the MCL

is determined by the minimal CL without the requests within one week.

Cases 7 and 8 show that the correct position of the safety stock is essential to achieve the

desired performance. In the current situation, most of the value in safety stock (>70%) is
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Figure 5.2: Safety stock in e - 90% fill rate

located upstream in the supply chain. Locating the safety stock at the end items, as in the

proposed situation, results in a higher fill rate. For cases 2, 7, 8, 9, and 10, an investment in

safety stock is needed to achieve a 90% fill rate, which is logical since the current performance

is significantly lower for these cases (Table 5.5).

However, only comparing the safety stock settings does not address the total value of inventory

in the supply chain. It could be that an investment in safety stock is needed, while the total

average inventory on-hand decreases. Therefore, the total average inventory on-hand in the

current situation and the proposed situation is compared.

Average inventory on-hand

Figure 5.3 shows the total average inventory on-hand in the current situation and in the pro-

posed situation. The corresponding RLIP of that period is shown in Table 5.6. Note that the

observed performances are different than in Table 5.2, since other data is used.

Case 1 2 3 4 5 6 7 8 9 10

RLIP 87.5% 80.8% 66.7% 70.2% 73.7% 84.2% 52.2% 67.9% 46.0% 80.3%

Table 5.6: Observed RLIP current situation - Q1 2021

Figure 5.3: Average inventory on-hand in e - 90% fill rate

In all cases, the average on-hand inventory calculated to achieve a fill rate of 90% is lower,
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except in case 2. Moreover, the performance improved significantly in most cases. For case 3,

4, 6, 7, 9, and 10 the total value of the average inventory on-hand in euros is significant lower

than in the current situation.

It is important be aware of the following two facts to clarify the huge differences between the

average inventory on-hand. First, in the proposed situation, the historical demand is used,

while in the current situation, the production is started based on the forecasted demand. As

discussed in section 3.4, the demand in the second quarter of 2021 is increased significantly,

which could clarify the high average inventory on-hand in the current situation. Second, it

could be that some extreme orders in terms of order size are placed, which are considered in

the current situation and not in the proposed situation.

Based on the ten cases, the average costs in the inventory on-hand can be reduced by 45%.

This is achieved with a better performance. However, since there is a mismatch between the

reality and the proposed situation, this mismatch should be taken into account. For example,

by assuming that 20% of the value of the average inventory on-hand in the current situation

represents the forecasted demand and extreme orders. In that case, there is still a decrease of

30% in the average inventory on-hand costs while the average fill rate increase by 26%.

5.5 Sensitivity analysis

As mentioned at the beginning of this chapter, multiple input parameters impact the (safety)

stock settings. Therefore, the influence of a few input parameters is analyzed by a sensitivity

analysis. First of all, the impact of the target fill rate is analyzed. Secondly, the different

scenarios for the throughput time percentile are considered. Finally, three situations for the

modeled customer lead-time are analyzed. The holding costs are not analyzed in the sensitivity

analysis since increasing or decreasing the inventory costs for the whole supply chain does not

change the stock settings. This would be interesting when for one stage the holding costs change

more or less than another stage. However, this is not considered. Furthermore, the sensitivity

analysis does not consider the customer demand since the impact is already analyzed using

different cases with different customer demand.

5.5.1 Service level target - fill rate

The service level is calculated in fill rate. In the first situation, a 90% target fill rate is chosen.

However, since the RLIP target is set per year within ams, other targets are analyzed as well.

Figure 5.4 shows the costs of the current safety stock settings in comparison with other fill rate

targets. The corresponding fill rates of the current situation are shown in Table 5.5.

The figure shows that a 10% difference in fill rate can significantly impact the investment in

safety stock that is needed. For some cases, a relatively higher investment is needed. However,

this depends on the variability in the throughput time and customer demand. For case 1 and

6, a relatively higher investment is needed to achieve a fill rate of 80% instead of 70%. This is

between the 44% and 45%. For the other cases this is between 35% and 40%. The two cases
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Figure 5.4: Safety stock in e - different fill rate targets

with a relatively higher investment needed to increase the fill rate from 80% to 90% are 1 and

5. An increase in value of 52.5 % is needed. Case 3 and 8, need a relatively low investment

(37% - 38%). For the other cases this is between the 45% and 47% to improve the fill rate from

80% to 90%.

More interesting is the total average inventory on-hand, which is shown in Figure 5.5. For all

cases all proposed scenarios are below the current average inventory on-hand, except for case

2 with a fill rate of 90%. The current observed RLIP for this case is 80.8% (Table 5.6). In

the proposed situation a fill rate of 80% is achieved while the average inventory on-hand value

decreased by 12%.

Figure 5.5: Average inventory on-hand in e - different fill rate targets

Overall, case 7 highlights the importance of locating the safety stock at the correct position.

In the current situation, the fill rate is equal to 41.6%. At the same time, a fill rate of 70% can

be achieved with a slightly lower safety stock level. Furthermore, the huge differences in costs

for the different fill rate targets emphasize the importance of having a clear service level target.
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5.5.2 Throughput time uncertainty

Since ChainScope assumes fixed throughput times, Equation 6 is used to include the variability

in throughput time. Using this method results in different throughput times if the desired

percentile changes. Therefore, different scenarios are chosen. For the cases above, a 95%

percentile is used. The following scenarios are chosen to analyze the impact of the throughput

time uncertainty: a 80%, 90%, and 98% percentile. The corresponding Z value can be found in

Appendix F.

Figure 5.6 shows the value in safety stock needed to achieve a fill rate of 90%. The investment

needed depends on the variability in the throughput time. For most cases, it increases in the

same range. In particular, two cases (7 and 10) need a relatively higher investment. The main

reason is the higher uncertainty during the assembly process for both cases. Most cases need

an investment between the 12% and 15% in safety stock value to calculate the safety stock

settings with a 98% percentile instead of a 80% percentile.

Figure 5.6: Safety stock in e - throughput time scenarios - 90% fill rate

Figure 5.7 shows the total average inventory needed for the different throughput time scenarios.

Only for case 2 an investment in the total average inventory on-hand is needed. For the majority

of the other cases a significant reduction in average inventory on-hand can be achieved, even

with the 98% throughput time percentile scenario.

Figure 5.7: Average inventory on-hand in e - throughput time scenarios - 90% fill rate
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5.5.3 Modeled customer lead-time scenarios

As described in section 4.1, there are multiple options to determine the modeled customer

lead-time. In the situations above, the modeled customer lead-time is determined by using the

minimal customer lead-times excluding the requests within one week (MCLmin). To analyze

the impact of this parameter, two additional possibilities are considered. In the first one, the

modeled customer lead-time is determined by a 10% percentile (MCL10%). In the second one,

the modeled customer lead-time is determined by a 25% percentile (MCL25%). In other words,

10% or 25% of the orders have a lower customer lead-time than the modeled customer lead-

time. This result in a CODP that can not fulfill 10% or 25% of the customer orders within the

customer lead-time. Note that these settings are calculated with a target fill rate of 90%. For

all cases the data of 2020 is used to determine the modeled customer lead-time.

Appendix G shows the modeled customer lead-times of each case for each scenario. For some

cases, the MCL where the orders with a CL within one week are excluded has a higher MCL

than the other two options. This is possible if multiple orders have a very low CL, which are

included in the 10% and 25% fractile, and excluded in the other option. An example is case 4.

10% percentile

Figure 5.8 shows the new (customer order) decoupling points in the situation where the 10%

fractile determines the modeled customer lead-time. Since the cases with the same stocking

points as the previous setting lead to the same results, these cases are not shown in the figure

(case 3, 7, 8).

Figure 5.8: Stocking points current vs proposed situation MCL 10% fractile
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25% percentile

For the situation where the modeled customer lead-time is based on the 25% fractile, the cases

are shown in Figure 5.9. The cases with the same stocking points as the 10% fractile are not

shown (case 4, 6, 10).

Figure 5.9: Stocking points current vs proposed situation MCL 25% fractile

Average inventory on-hand costs

The cases that are not shown in Figure 5.8 and Figure 5.9 can be noticed in Figure 5.10. For

these cases, the costs are equal to the previous setting. Interesting is the differences between the

modeled customer lead-times, which could lead to significant savings. For example case 1, there

is only a difference of 12 days, MCLmin = 51 and MCL10% = 63. This results in a CODP that

is one stage more upstream in the supply chain. Locating the CODP one stage more upstream

results in a decrease of 58% in safety stock costs while the same fill rate is achieved. For the

case that the 25% fractile determines the MCL, the product can be completely produced based

on customer orders (MTO).

Another significant reduction in safety stock costs is shown for case 6. The CODP for the 10%

and 25% fractile is located after the sorting process, which results in a decrease of 52.5% in

safety stock costs with the same performance. As mentioned before, it is also possible that an

investment is needed since the 10% or 25% has a lower MCL than the MCLmin situation. This

results in a CODP more downstream in the supply chain, where the holding costs are higher

than upstream in the supply chain. For example case 6.

In addition the average inventory on-hand for the different scenarios is shown in Figure 5.11.

The figure shows, particularly for cases 2 and 10, that there is a significant difference in the

average inventory on-hand for the different scenarios.

The above scenarios that determine the modeled customer lead-time differently show that it is
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Figure 5.10: Safety stock in e - different MCL scenarios - 90% fill rate

Figure 5.11: Average inventory on-hand in e - different MCL scenarios - 90% fill rate

very important to include the customer lead-time. Even by only excluding the orders with a

customer lead-time within one week, the (safety) stock costs can be reduced. Furthermore, by

increasing the customer lead-time minimal, the CODP can be replaced more upstream in the

supply chain. This could results in significant reductions in (safety) stock costs with similar or

better supply performance.

5.6 ChainScope implementation

In this section, some recommendations are given for implementing ChainScope to optimize the

safety stock settings.

• Fill rate target

As mentioned in section 3.9, the service level target is determined once a year for each

business unit. Updating the fill rate targets at the same time as the target is set within

ams is recommended. However, it might be better to define a service level target for each

business line instead of a business unit. The reason is the relatively high difference in

achieved RLIP between the business lines (section 3.9).

• Modeled customer lead-time

As the case study has shown, the MCL is a parameter with a relatively high impact on
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the performance and costs. It determines the CODP of the end items. However, there

are multiple possibilities to determine the MCL. How the MCL is determined depends

on the desired performance and should be chosen by ams. Therefore, it is recommended

to review these locations and the data once a year, at the same time as the service level

target is set.

• Customer demand data

It is important to be aware of the extreme orders that can significant impact on the

settings calculated by ChainScope, especially the safety stock levels. Furthermore, it is

important to use a data set that includes the customer demand for at least one year. For

products that have a stable demand pattern, this is not essential. However, for products

with a low volume, a bigger data set better represents demand pattern. The customer

demand data should be reviewed in the same frequency as the safety stock levels.

• Desired percentile throughput time

The desired percentile of the throughput time can be defined for each business line or

business unit. However, some products could be more important than others. Therefore,

it is recommended to determine different percentiles based on the importance of the

product. For example, for less important products, a 90% percentile, and for important

products, a 98% percentile. These percentiles and the corresponding throughput times

can be reviewed in the same frequency as the safety stock settings.

• Holding cost

It is recommended to update the holding costs twice a year. These values will not change

significantly every month.

Currently, the safety stock settings are reviewed once a quarter. Due to the relatively long

throughput times for the wafer fabrication and assembly process, it takes some time to realize

the safety stock targets. Therefore, it is recommended to review the safety stock settings once

a quarter. This results in updating the throughput times and average and standard deviation

once a quarter as well.

All the required data has to be filled in in a standard Microsoft Excel format. This could be

done automatically. However, each case (supply chain) has to be imported separately in the

program. Subsequently, the cases can be optimized.
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6 Conclusion and recommendations

The final chapter concludes the project by providing the main conclusions in the first section.

Next, the implications and recommendations for ams AG are discussed. Finally, the research

limitations and directions for future research are given.

6.1 Conclusions

The main problem was that a clear company strategy is missing to determine the possible

stocking points and to set appropriate inventory targets to manage the uncertainties in the

supply chain. Therefore, the goal of the project was:

Design a policy to determine the (safety) stock locations and targets considering supply and

demand uncertainties to obtain the desired service levels against minimal inventory levels.

To achieve the goal of the project, the assignment was divided into multiple steps. Some of

these steps need to be answered first to provide a policy that achieves the research goal.

How to combine multiple factors to determine the stocking points for different products?

The first step is determining the (customer order) decoupling point(s). Based on the following

two reasons it is important to consider the requests of the customers. First, most products

are customized and are produced for a limited number of customers. Secondly, the requested

customer lead-time is different for each order. Therefore, the CODP is determined based on

the modeled customer lead-time versus the planned throughput time. The modeled customer

lead-time can be determined in different ways. Other reasons to locate an additional stocking

point within the supply chain are bottlenecks and commonality.

Which factors should be considered to set the (safety) stock targets?

The three main uncertainties obtained in the semiconductor industry are yield, demand, and

throughput time uncertainty. Since the yield percentage is constant for the products within

the project’s scope, it is not considered. Therefore, the project focuses on the demand and

throughput time uncertainty.

How to control the stock points?

The policy used to control the multi-item multi-echelon inventory system is the Synchronized

Base Stock (SBS) policy. This policy is based on two structural characteristics: the bill of

material and the item cumulative throughput times.

How to optimize the inventory levels and compare the performance of the model proposed and

the current situation?

A program that is based on the SBS policy is ChainScope. This software can evaluate the
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current situation and optimize the (safety) stock settings while the desired service level is

achieved with minimal holding costs.

After answering the steps above, the current situation is compared to the proposed policy in a

case study. The following can be concluded from the case study.

It is crucial to consider the customer lead-times since for some products the (safety) stock is

located at a stage while the CODP is located more upstream in the supply chain. By stocking

the (safety) stock more upstream in the supply chain, significant reductions in (safety) stock

costs can be achieved with similar or better performance. Even by a minimal impact on the

modeled customer lead-time, it is for some cases possible, to locate the (safety) stock and the

CODP a stage upstream in the supply chain. Furthermore, the safety stock settings can be

reduced in some cases, with the same or better performance. However, in some cases, the

CODP is located more downstream in the supply chain. For these cases, an investment is

needed to achieve the desired performance. Next, the target set for the service level has a high

impact on the safety stock costs.

Furthermore, comparing the average inventory on-hand of the current situation with the pro-

posed situation in section 5.4 leads to interesting insights. Based on the ten cases, the total

average inventory on-hand costs can be reduced by 45% with an average increase in fill rate

of 26%. However, note that there is a mismatch between the average on-hand inventory in

the current situation and the proposed situation. In reality, the reduction in average invent-

ory on-hand will be lower. Moreover, the case study shows significant reductions in (safety)

stock costs can be achieved with the same or even better performance in different scenarios.

This is achieved by better placement of the safety stock and by optimizing the settings using

ChainScope.

6.2 Recommendations ams AG

This thesis provides insights into the semiconductor supply chain, the CODP location’s effect,

and other stocking points to locate (safety) stock. Furthermore, the ChainScope software is

used to determine optimal (safety) stock levels.

The main recommendation that follows from this study is the importance of where to locate

the CODP and the other possible stocking points. Currently, safety stock is located at stages

downstream in the supply chain, while the CODP is located more upstream in the supply

chain. This results in higher safety stock costs, while the same performance can be achieved

by replacing the safety stock at the CODP. In the proposed method, the CODP is based on

the modeled customer lead-time. This can be determined in different ways. However, most

important is determining a clear CODP.

Therefore, the new way of working must be shared and discussed with the employees making

these decisions. Being aware of these concepts and understanding them will help reduce the

costs in terms of safety stock while the same performance can be achieved.
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Next, the importance of the target service level is highlighted. At this moment, a service level

for a complete business unit is set. However, significant differences are obtained within the

business unit. It might be better to set a target for each business line. This leads to a more

clear understanding of what the expected performance is within each business line.

After defining the possible stocking points, ChainScope is used to optimize the (safety) stock

settings for the proposed supply chains. The case study can be seen as a pilot for the business

unit ISS. As in the current situation, the safety stock settings are reviewed once a quarter.

This is also recommended if ChainScope will be used. The review frequencies for the input

parameters are summarized in Table 6.1.

Parameter Symbol Update frequency

Desired percentile throughput time X Quarterly

Throughput time Ti Quarterly

Holding cost hi Half-yearly

Modeled customer lead-time MCLj Yearly

Average customer demand µj Quarterly

Standard deviation customer demand σj Quarterly

Target fill rate β∗j Yearly

Table 6.1: Update frequency parameter settings

6.3 Limitations

The study has five limitations that should be mentioned. The first limitation is a small data

set. Secondly, the limitation of the used software. Furthermore, three limitations are based on

assumptions.

The first limitation is the size of the forecasting data set. Since the forecast are generated

each month, there was a minimal amount of data available. Therefore, the demand input

parameters are based on the historical demand. This resulted in a mismatch between the

current and proposed situation.

Secondly, ChainScope measures the performance in fill rate. However, the performance measure

that ams is using is the RLIP. There is validated that these performance measures are in the

same range. Nevertheless, they are never exactly similar. In reality, the obtained performance

could be slightly different than the calculated performance in the case study.

Furthermore, the assumption of stationary demand. For the products in the scope of the

project, the customer demand data was stationary. However, this might not be the case for all

products within the company.

The last limitation is the assumption of infinite production capacity. In this case, all the safety

stock targets can always be produced independently of the size. However, in reality, this could

be different. This could to a lower performance because of capacity issues. This is the same

for the assumption of infinite raw materials.
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6.4 Future research

For future research, there are many directions for this project. The first direction is considering

the forecasted demand. In the study, the (safety) stock settings are based on historical demand.

However, since most of the customer order decoupling points are located in the middle of the

supply chain (CTO, ATO, or FTO), the production is started based on the forecasted customer

demand. Therefore, it would be interesting to include the forecasted demand. This will reduce

the mismatch between the current and proposed situation in terms of average inventory on-

hand. This results in a more realistic comparison of the situations.

In addition, an independent simulation that can calculate the RLIP can strengthen the research

findings. In that case, there can be validated whether the calculated RLIP is similar to the

calculated fill rate using ChainScope.

Another direction is how the modeled customer lead-time is determined. Future research could

investigate how the customer importance based on the ABC/XYZ classification could be con-

sidered. At this moment, each order has the same weight, independent of the customer classi-

fication or order size. Including this would give a more weighted modeled customer lead-time.

Furthermore, future research could investigate how this proposed approach would perform with

stationary demand or in a finite production capacity setting. The last direction could be the

reliability of the raw material suppliers.
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Appendix A Safety stock raw materials

Product Safety days of supply

1 60

2 60

3 99

4 60

5 60

6 99

7 99

8 60

Table A.1: Safety stock raw materials

Appendix B One-sample Anderson-Darling test

In this master thesis the Anderson-Darling test is used to determine the distribution of the

demand. The one-sample AD test statistic is calculated by the following formula:

AD = −n− 1

n

n∑
(i=1)

(2i− 1)(ln(x(i)) + ln(1− (xn+1−i)))

The sample of size n should be order from the smallest to the largest element in the sample:

(x(1), < ... < x(n)). The underlying theoretical cumulative distribution F (x) is the distribution

that is compared to the sample.

Furthermore the AD-test is defined as:

• H0: The data follow a specified distribution

• Ha: The data do not follow a specified distribution

When the observed p-value is lower than the chosen significance level, α it means that there is

evidence against the H0. In other words, the data do not follow the specified distribution.

xx



Appendix C Customer demand analysis

To determine the specific distribution, goodness of fit techniques are used. Goodness of fit

techniques are defined as: ’methods of examining how well a sample of data agrees with a given

distribution as its population’ (DAgostino, 1986, p.1)

The techniques that are widely used in the literature are (DAgostino, 1986):

• Chi-square test

• Kolmorogov-Smirnov (KS) test

• Anderson-Darling (AD) test

The three techniques mentioned above are reviewed in the literature. Then, the best technique

is selected to fit the demand distribution.

Massey (1951) states that the KS test is superior to the Chi-square test. However, for the one-

sample test, several observations are mentioned between the KS and AD test in the literature:

• The AD-test is more sensitive than the KS-test to the shape and the scale of a distribution

(Anderson and Darling, 1954).

• The AD-test is applicable to small samples (Pettitt, 1976).

• The AD-test is very sensitive in detecting differences at the tail of a distribution (Engmann

and Cousineau, 2011).

• The AD-test is able to detect very small differences (Engmann and Cousineau, 2011).

Therefore, based on the reviewed literature, the demand is analyzed with the AD-test for this

thesis. The AD-test is explained in more detail in Appendix B. For the AD-test, the p-value is

used to determine whether the demand follows a specific distribution. A significance level (α)

of 0.05 is chosen because this α is mostly used in the statistics.

Furthermore, the sample size of the data of the demand is an important factor. One data

point means the demand of one period. Lewis (1961) suggests using a minimal sample size

of 9. However, 9 data points are relatively low. Therefore, a minimal sample size of 12 is

chosen, which is equal to one year of data. By using this approach, relatively new products are

excluded, which are in this case 8 products.

BL
Enough data points Not enough data points

Total
≥ 12 ≤ 8 < 12

A 19 0 2 (2) 19

B 34 4 0 (4) 38

C 5 1 1 (2) 6

D 1 0 0 (0) 1

E 7 0 0 (0) 10

Total 66 5 3 (8) 74

Table C.1: Data points - Demand analysis
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In Table C.1 the majority of the products have more than 12 data points (89.2%). For these

products the demand distribution can be fit with the AD-test. The other products that have

less than 12 data points, are analyzed in more depth.

From the eight products that have less than 12 data points, all the products are relatively

new. These products are sold since the beginning of 2020 and do not fit the normal or gamma

distribution. Note that the demand from 2021 is not taken into account.

This results in 66 products (89.2%) for which the demand distribution can fit with the AD-test.

Table C.2 shows the results of the AD-test, which is performed in Minitab, a statistical software

package.

Business line
Distribution

Total
Normal (N) Gamma (G) Other

A 4 11 4 19

B 2 14 18 34

C 1 3 1 5

D 0 1 0 1

E 0 4 3 9

Total 7 33 26 66

Table C.2: Distribution fitting

From the 66 products, 50% follows the gamma distribution. 10.6% follows the normal distri-

bution, and 39.1% does not fit the normal or gamma distribution. For these products, the

demand is analyzed in more depth.

For the 26 products that do not fit the normal or gamma distribution, the demand is aggregated

to two and three months. Table C.3 shows that for 16 products the demand does fit the normal

or gamma distribution.

Fitting

Non-fitting Total
Period 2 months 3 months

TotalNumber of outliers 0 outliers 1 outlier 0 outliers 1 outlier

Business line Other N G N G N G N G

A 4 0 1 1 0 0 0 0 1 3 1 4

B 18 3 3 0 0 4 1 1 1 13 5 18

C 1 0 0 0 0 0 0 0 0 0 1 1

D 0 0 0 0 0 0 0 0 0 0 0 0

E 3 0 0 0 0 0 0 0 0 0 3 3

Total 26 3 4 1 0 4 1 1 2 16 10 26

Table C.3: Demand analyses: others
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For 10 products, it was not possible to fit one of the distributions. These products are further

analyzed in Figure C.1 and are categorized into three groups (i) too few data points, (ii)

too many months with no demand or strange demand, and (iii) demand that still not fits a

distribution.

Figure C.1: Products that does not fit normal or gamma distribution

This results in a total of 56 (75.7%) products that fit the normal or gamma distribution, which

Table C.4 shows. From these 56 products, 40 products fits the normal distribution and 16 fits

the gamma distribution.

BL

Tested Untested

TotalFit
No fit Total New

Normal Gamma
Total

(#) (%) (#) (%) (#) (%) (%)

A 5 13 18 85.71% 1 4.76% 19 90.48% 2 9.52% 21

C 1 3 4 57.14% 1 14.29% 5 71.43% 2 28.57% 7

B 10 19 29 76.32% 5 13.16% 34 89.47% 4 10.53% 38

E 0 5 5 62.50% 3 37.50% 8 100.00% 0 0.00% 8

Total 16 40 56 75.68% 10 13.51% 66 89.19% 8 10.81% 74

Table C.4: Demand distributions
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Appendix D RLIP & CLIP
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Appendix E Customer demand end-items case study

Case End item
2020 week 1 - 53 2020 week 28 - 53

CV
Average number of

monthly orders

Average monthly

order size
CV

Average number of

monthly orders

Average monthly

order size

1 1 1.1 10 13200 1.1 5 16400

2 1 0.9 31 96323 1.4 12 46333

2 3.5 1 1000 - 0 -

3 0.9 32 6188 0.7 18 3333

3 1 1.4 6 80 1.4 3 80

4 1 0.4 116 13569 - 49 15184

2 0.7 107 10855 0.7 63 10690

5 1 0.7 121 4496 0.9 53 4321

2 1 21 71667 0.8 16 63438

3 2.3 9 2667 1.9 5 1800

6 1 0.5 88 10391 0.4 39 8767

7 1 0.5 212 50 0.8 58 59

2 2.6 6 10 2.4 2 21

8 1 0.8 40 223 0.7 13 248

2 3.5 1 50 - 0 -

3 1.1 33 170 1.5 16 124

9 1 1.1 38 11184 0.8 25 9800

2 0.8 65 7846 1 29 9397

3 0.7 59 1458 0.6 21 2548

4 0.8 96 8938 0.8 51 12157

10 1 0.9 25 14 0.8 14 13

2 0.9 22 25 0.9 10 19

3 0.7 50 137 0.9 18 123

4 1.2 21 929 1.7 6 667

5 1.2 31 261 1.7 12 168

6 1 25 88 1 10 61

7 1 19 138 1.3 5 170

Table E.1: End-item monthly customer demand analysis
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Appendix F Standard normal distribution table
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Appendix G Modeled customer lead-times

Case End items MCL excl. within 1 week MCL 10% fractile MCL 25% fractile

1 E1 51 63 143

2 E1, E2, E3 41, 102, 21 5, 102, 22 53, 102, 42

3 E1 101 129 163

4 E1, E2 22, 23 76, 3 116, 7

5 E1, E2, E3 10, 12, 11 5, 8, 3 21, 21, 4

6 E1 35 107 146

7 E1, E2 8, 9 4, 3 24, 4

8 E1, E2, E3 23, 102, 8 3, 102, 2 26, 102, 4

9 E1, E2, E3, E4 10, 10, 10, 10 8, 11, 5, 4 25, 31, 13, 19

10 E1, E2, E3, E4, E5, E6, E7 44, 9, 35, 119, 25, 31, 12 59, 4, 2, 2, 25, 44, 32 75, 16, 2, 3, 37, 64, 43

Table G.1: Modeled customer lead-times - different scenarios
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