
 Eindhoven University of Technology

MASTER

Automatic algorithm configuration with search heuristics for the Train Unit Shunting Problem

van den Nieuwelaar, L.J.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/0fe0e813-6b66-441a-9d91-9b8662d87788

Automatic algorithm configuration with search

heuristics for the Train Unit Shunting Problem

Ludo van den Nieuwelaar (1383264)

Department of Industrial Engineering and Innovation Sciences
Information System Group

Supervisors:
Dr. Y. (Yingqian) Zhang - TU/e
Dr. Ir. L. (Laurens) Bliek- TU/e

Dr W. J (Wan-Jui) Lee - NS Reizigers

In partial fulfillment of the requirements for the degree Master of science in Operations
Management and Logistics

Eindhoven, September 2021

Abstract

The challenges encountered when creating a planning for the shunting yards of the Dutch
Railways (NS) are referred to as the Train Unit Shunting Problem (TUSP). Reinforcement
learning methods in the TUSP can create shunting schedules online. By doing so, rein-
forcement learning overcomes the rescheduling of a solution when disturbances occur. These
reinforcement learning methods inspired an approach to create an online planner that creates
a shunting plan in a similar way, while executing. However, the mechanism that determines
which action to take, the reinforcement learning agent, is replaced with a set of deterministic
rules, referred to as the deterministic agent. This deterministic agent is not creating a number
of feasible shunting plans that are satisfactory. To increase the applicability of the online cre-
ation of shunting schedules, this research considers a framework that can be used to increase
the number of feasible shunting plans created by the deterministic agent. The framework
consists of two sequential steps that first tries to find the optimal algorithm configuration
through an iterative Bayesian Optimization approach. In this step, we analyze the impact of
problem-related contextual information to increase the applicability of hyperparameter op-
timization techniques. The second step will consist of a Monte Carlo Tree Search (MCTS) to
handle the stochasticity that occurs from analyzing different scenarios with changing arrival
and departure sequences. This study shows that the Bayesian Optimization techniques that
do not use contextual information show a poor generalization from the training data to the
unencountered test data. When considering contextual information, the Bayesian Optimiza-
tion could generalize the training data to the not encountered test data. This generalization
problem occurs when the data is not homogeneous enough. Then the surrogate model is not
able to detect complexity differences within the contextual information. The results of the
Bayesian Optimization lead to an improved hyperparameter configuration for one group of
contextual information. We also show that the number of feasible scenarios can increase when
applying MCTS techniques, especially on a carousel shunting yard. However, this improve-
ment increases computation times.

ii

Executive summary

Research problem

This research project is executed in collaboration with the Dutch Railways, or NS. The NS
operates more than 5,000 train trips through which 1.3 million passengers are transported
daily. During off-peak and night hours, the carriages have to be prepared for another shift
at the shunting yards. Creating a movement and service planning for a shunting yard is a
challenge that is in the literature referred to as the Train Unit Shunting Problem (TUSP)
(Kroon et al., 2008).

Reinforcement learning approaches within the TUSP create a shunting plan online by keep-
ing track of the actions while executing the shunting plan. By doing so, reinforcement learning
overcomes the rescheduling of a solution when disturbances occur. These reinforcement learn-
ing methods inspired an approach to create an online planner that creates a shunting plan
in a similar way, while executing. But then, the mechanism that determines which action to
take is replaced with a set of deterministic rules. The actions that can be selected through
these deterministic rules are the Departure, Split, Connect, Setback, Wait, Service and Move
actions. All viable actions per train are assigned a priority value through deterministic rules
and the action with the highest priority value will be executed on the simulation model. For
simplicity is this method referred to as the deterministic agent. This deterministic agent is
in a state of development that it can create shunting plans. However, the deterministic agent
is not creating a number of feasible shunting plans that is satisfactory.

To increase the applicability of the online creation of shunting schedules and to increase the
number of feasible shunting plans, a framework is designed that consists of two improvement
steps. The first step focuses on configuring the deterministic rules of the deterministic agent
such that the most feasible shunting plans are generated. The priority values that are assigned
to each of the actions remain fixed when executing the algorithm. Therefore these priority
values of all the actions be considered as hyperparameters. Changing the hyperparameters
will change the dynamics of the algorithm since an action becomes less or more important than
other actions. To increase the applicability of hyperparameter optimization techniques, we
address the following problem: design a hyperparameter optimization approach to configure
a deterministic agent that focuses on maximizing the number of feasible solutions.

The second step of the framework focuses on the details of the deterministic rules of
the deterministic agent. The deterministic rules cover a large part of the actions that can
occur in the simulation model. However, some movement actions cannot be approached in
a deterministic manner since these actions depend on the composition of future arrival or
departure sequences. Then, the deterministic rules are not able to distinguish which track
is better and makes an arbitrary choice. We show in the second step of our framework that
a heuristic search algorithm is a suitable technique to overcome the stochasticity that arises

iii

from analyzing different problem instances with the deterministic rules of the agent.
To increase the understanding of our framework and thereby creating an increase in the

applicability of the online creation of shunting schedules. Our optimization framework will
be applied on a carousel shunting yard and a shuffleboard shunting yard.

Research approach

This thesis aims to improve the online planning capabilities of the deterministic agent by
applying the recent advancements in hyperparameter optimization techniques to find the op-
timal algorithm configuration and a heuristic search algorithm to handle stochasticity. This
research is guided by the following central question;

How can a framework of a hyperparameter optimization approach and a search
algorithm optimize an online planning heuristic to increase the number of feasible
shunting plans of parking-, routing- and service scheduling- subproblems of the
Train Unit Shunting Problem?

In this project, the formulated problem will be formulated as a Constraint Satisfaction
Problem (CSP). The main difference between a CSP and a typical optimization problem is
that CSP tries to generate a feasible solution with the given constraints instead of an optimal
solution regarding some objective function. The first step of the proposed solution framework
consists of a Sequential Model-Based Optimization technique that tries to construct a mapping
between a set of hyperparameters and the resulting number of feasible solutions. This mapping
will eventually be used to select the best hyperparameter configuration. The second part of
the framework introduces a search strategy to provide the deterministic agent with additional
information. The search strategy that will be used is the Monte Carlo Tree Search (MCTS)
because this search strategy has proven to work in sequential domains (Silver et al., 2016). The
MCTS follows a tree structure where all the nodes represent the states and the arcs represent
the movement actions. Every MCTS iteration adds a new trajectory and the success rate
of that trajectory to the tree, which eventually leads to a Monte Carlo estimate that can be
used to select the optimal movement action.

Solution methods

To solve the earlier described challenges, a framework is created that consists of two solu-
tion methods. The first solution method consists of a design of the Sequential Model-Based
Optimization (SMBO). The SMBO approach will consist of an iterative Bayesian Optimiz-
ation technique that will be placed as a wrapper over the simulation environment with the
deterministic agent. This Bayesian Optimization method will create a mapping from the se-
lected hyperparameters to the returned objective function. This is also known as a surrogate
model. Subsequently, this surrogate model will be used by an acquisition function to determ-
ine the best hyperparameter configuration to sample next. The response surface model is
modeled through Gaussian Processes and the most promising hyperparameter configurations
are chosen through a technique that is called Gaussian Process Upper Confidence Bound.
To create a shunting schedule from a scenario, the simulation environment only uses a single
logical core of a PC. Therefore, the Bayesian Optimization wrapper is formulated in such a
way that multiple shunting plans are created in parallel. Roughly taken, this decreased the

iv

computation times with a factor m where m is equal to the number of logical cores of the
used machine, which is eight in our research.

The second solution method is the implementation of an MCTS to handle the stochasticity.
The stochasticity only occurs with movement actions which means that the simulation model
contains redundant information for the MCTS. Therefore, an MCTS state space is formulated
that only considers the tracks where stochasticity occurs. The MCTS states are composed by
dividing the considered tracks, based on the smallest train, into dedicated parking spots which
all together form an MCTS state. Every time a train is parked on one of these tracks, the state
changes from s to s′. The actions that are responsible for this change in states are defined as
the individual tracks since the trains are parked consecutively. Then, MCTS iterations will
create trajectories by sequentially assigning trains to tracks that create a parking composition.
After all the trains in the arrival sequence are parked on the considered tracks is checked if
the trains can leave the considered tracks unobstructed. Then, the solution is feasible and
is backed up in a matrix that consists of the parking spots and all the trains in the arrival
sequence. Eventually, this matrix will be filled with Monte Carlo estimates that will be used
as additional information for the deterministic agent. The matrix with the Monte Carlo
estimates is recalculated after every time a train is parked on the tracks. In this way, the best
parking position can be determined for every train at every moment.

This framework is tested through experiments for two types of shunting yards, the carousel
and shuffleboard shunting yards. For every type of shunting yard, three associated types of
scenarios are formulated that all contain different complexities.

Results

The proposed framework consists of two steps. The first step consists of the hyperparameter
optimization approach through Bayesian Optimization. The first two experiments for the
Bayesian Optimization empirically determines the number of iterations required for conver-
gence and the batch size that prevents over-tuning the hyperparameters. These experiments
show that the speed of convergence can be increased by using a warm starting approach
where the hyperparameters of the original design of the deterministic agent are used as initial
iteration. To prevent the model from over tuning on similar training data, a new batch of
training data is sampled after every Bayesian Optimization iteration. After that, experiments
are executed that compare the hyperparameters optimized with Bayesian Optimization with
the hyperparameter of the original design of the deterministic agent. These experiments con-
sist of two types of approaches. Namely, one set of experiments that does not consider any
contextual information and one set with experiments that does consider contextual inform-
ation. The contextual information in these experiments is the deviation of scenarios based
on, among others, the number of train units. The experiments that do not consider any
contextual information show a poor generalization from best obtained hyperparameters on
the training data to the unencountered test data. The poor generalization occurs more often
when the surrogate model is not able to detect variations in the underlying complexity of
the contextual information (Char et al., 2019). This means that when considering contextual
information, the Bayesian Optimization should be better able to generalize the solutions.
After these experiments, it became apparent that the surrogate model was better able to
generalize the best found hyperparameter configuration obtained on the training data to the
not encountered test data. However, this difference can only be called statistically significant
for experiment E. Therefore can be concluded that splitting the scenarios based on contextual

v

information makes the complexity of the scenarios more homogeneous but does not create an
improved hyperparameter configuration for all instances.

The second step of the framework consists of the experiments that use the MCTS to handle
the stochasticity and thereby creating more feasible shunting plans. It can be concluded
that the feasibility rate increases the most from the MCTS enhancement when the shunting
yard is a carousel-like shunting yard. The shuffleboard-like shunting yards are not benefiting
from the extension with the MCTS. This difference is a result of the number of considered
tracks on both locations because more tracks means that it is easier for the MCTS to find
a good solution and also has the MCTS a better possibility to recover from earlier made
mistakes. Therefore, the deterministic agent of the carousel-like shunting yard has more
room for improvement. After analyzing the lacking increase in feasible shunting plans on the
shuffleboard location, it became apparent that each solution approach solves a unique set
of experiments. Therefore, an additional experiment is created where the different solution
approaches are placed in sequence. When placing the models in sequence, the number of
feasible shunting plans increases further for both locations and approaches similar feasibility
rates as the benchmark algorithm for some experiments. Therefore can be concluded that
there is an increase in feasible shunting plans when using the MCTS, but this comes with a
cost in the form of increased computation times. Combining the optimized hyperparameters
of experiment E with the MCTS leads to an additional increase in the number of feasible
shunting plans.

Conclusion and recommendation

This project focuses on solving the parking-, routing- and service scheduling- subproblems
of the Train Unit Shunting Problem (TUSP) for the Dutch Railways. The main objective
is to investigate to what extent a framework consisting of hyperparameter optimization and
heuristic search approaches can contribute to an increase in feasible shunting plans in an
online scheduling approach. By doing so, this research ensures increased applicability for
the creation of online shunting schedules. Furthermore, this framework demonstrated that
the number of feasible solutions could be increased by applying a hyperparameter optimiza-
tion technique and improving the search capabilities of the deterministic agent. An iterative
Bayesian Optimization method provided a technique to optimize the configuration of an al-
gorithm. Thereby, increasing the number of feasible shunting plans for one experiment and
increasing the applicability of these hyperparameter optimization techniques. Subsequently,
the MCTS introduced a method that is able to handle the stochasticity by creating Monte
Carlo estimates of feasible parking positions. These estimates are used to provide the determ-
inistic agent with additional information. By using this framework, the number of feasible
shunting plans increase substantiated and is approaching the performance of the benchmark
algorithm for some problem instances. However, due to the limited time frame of the master
thesis, some aspects and challenges are not included in the research. Therefore, we advise the
NS to explore the following aspects before using the designed approach. 1) Analyze and, if
necessary, improve the quality of the shunting schedules that are being made, 2) explore other
approaches to increase the number of solved instances for the shuffleboard locations, since
that performance is still lacking, 3) when using these approaches, consider a computational
speed-up method such as parallel computing.

vi

Preface

This report is written as the partial fulfillment of the requirements to obtain the degree Master
of Science in Operations Management and Logistics at Eindhoven University of Technology.
This project is done in collaboration with the Dutch Railways (NS), and it describes my
research of the past seven months on optimizing the online creation of shunting schedules for
the Train Unit Shunting Problem.

With this, I would like to take the opportunity to express my appreciation towards people
who provided guidance and support throughout the master thesis project. In particular, I
want to thank Yingqian Zhang. I’m very grateful that you have been my mentor during
my master and I want to thank you for the freedom I received to shape the direction of the
thesis towards hyperparameter optimization. Besides that, I would like to thank Laurens
Bliek for the clear guidance and feedback within the field of hyperparameter optimization. In
addition, I would like to thank Wan-Jui Lee, my company supervisor, for being inspirational
with the knowledge of the company and the Train Unit Shunting Problem and thank you for
the constructive discussions.

I want to give a special thank you to Martijn Beeks and Remco Coppens who helped me
improve my wring and Robbert Reijnen for his patience in answering the questions I had.
Finally, I want to show my appreciation to my close friends and girlfriend for keeping me
wholesome in a time where everyone is required to work from home. I especially want to
express my gratitude to my parents for their relentless support, without you I could not do
this.

Ludo van den Nieuwelaar
Tilburg, September 2021

vii

Contents

Contents viii

List of Figures xi

List of Tables xiv

List of Abbreviations 1

1 Introduction 2
1.1 Problem context . 2
1.2 The Train Unit Shunting Problem . 4
1.3 Research questions . 5
1.4 Outline . 6
1.5 Contributions . 6

2 Literature Review 8
2.1 Train Unit Shunting Problem literature . 8

2.1.1 Exact solution approaches . 8
2.1.2 Heuristic solution approaches . 9
2.1.3 Reinforcement learning solution approaches 11

2.2 Hyperparameter optimization . 13
2.2.1 Model-free optimization . 13
2.2.2 Model-based optimization . 14

2.3 Search algorithm . 16
2.3.1 Selection . 17
2.3.2 Expansion . 17
2.3.3 Simulation . 17
2.3.4 Backup . 18
2.3.5 Retrieving best solution . 18

2.4 Position of this research in the literature . 18

3 Problem Description 20
3.1 System description . 20

3.1.1 The shunting yard location . 20
3.1.2 The shunting scenario . 21
3.1.3 The simulation environment . 22
3.1.4 The deterministic agent . 24

viii

3.1.5 Suboptimal feasibility . 26
3.2 Scope of the problem . 28
3.3 Train Unit Shunting Problem through a deterministic agent 28

3.3.1 Hyperparameter optimization . 29
3.3.2 Handling of stochastic variables . 30

3.4 Research design . 31

4 Solution Methods 32
4.1 Bayesian Optimization for hyperparameter optimization 32

4.1.1 Adjustments to the TORS environment 32
4.1.2 Surrogate model and acquisition function 33

4.2 Monte Carlo Tree Search for handling stochastic variables 36
4.2.1 Adjustments to the TORS environment 36
4.2.2 Increasing computation efficiency . 38
4.2.3 Additional relocation heuristic . 40

5 Experimental Setup 41
5.1 Data generation . 41

5.1.1 Locations . 41
5.1.2 Instance generator . 42

5.2 Experiment description for hyperparameter optimization 45
5.2.1 Experimental design . 45
5.2.2 Defining the search space . 47
5.2.3 Objective and performance metrics . 47

5.3 Experiment description for handling stochastic variables 48
5.3.1 Experimental design . 48
5.3.2 Parameter settings . 49
5.3.3 Objective and performance metrics . 49

5.4 Benchmark algorithm . 50

6 Results 51
6.1 Hyperparameter optimization . 51

6.1.1 Training parameters . 51
6.1.2 Experiments without contextual information 54
6.1.3 Experiments with contextual information 56
6.1.4 Discussion on the hyperparameter optimization 59

6.2 Baseline results for handling stochastic variables 60
6.2.1 Violation analysis . 62

6.3 Improved hyperparameters and handling stochastic variables 64
6.4 Discussion . 66

7 Conclusion and Recommendations 68
7.1 Conclusion . 68
7.2 Limitations and recommendations . 70

Bibliography 71

A Detailed results for number of iterations 75

ix

B Detailed results without contextual information 77

C Detailed results with contextual information 78

x

List of Figures

1.1 Schematic representation of shunting yard Kleine Brinckhorst (retrieved and
adjusted from www.sporenplan.nl) . 2

1.2 The composition and dependencies of the different subquestions. 6

2.1 Time-space network formulation of a shunting schedule of a single train (re-
trieved from Jacobsen and Pisinger (2011)) 10

2.2 Representation of the local search graph, the arrows represent the changes the
local search algorithm can make. The nodes with the letters A, M, S, D and Pi
represent the arrival, movement, service tasks, departure and parking tracks,
respectively (retrieved from van den Broek (2016)) 11

2.3 Visual state representation of a state with nine tracks and departure request
(retrieved from Peer et al. (2018)) . 12

2.4 Iterative procedure of the Monte Carlo Tree Search, this iterative procedure will
be executed as many times as the computational resources permits (retrieved
from Sutton and Barto (2018)). 16

3.1 The components of the simulation environment TORS. Here (1) is the loca-
tion input file, (2) is the scenario input, (3) is the Markov Decision Process
environment, and (4) are the deterministic rules that control the environment. 21

3.2 Difference between a LIFO-track (left) and free track (right). The referred
tracks are depicted with the solid lines with the parked trains on top of them,
the dotted lines are the adjacent tracks. The numbers of the trains corresponds
to the number of departure and requires a different parking strategy. 21

3.3 representation of the arrival sequence and departure sequence with the matched
numbers accordingly. 22

3.4 Process flow of the action selection procedure of the deterministic agent. . . . 26
3.5 A graphical proof that an arbitrarly choice is suboptimal when there are mul-

tiple movement actions that have obtained an equal and highest value from the
same train. When there a three parking position and three trains that arrive
the optimal parking configuration can only be determined by considering the
arrival and departure sequence. 27

3.6 Results of the initial measurement on the shunting yard Kleine Binckhorst. . 28
3.7 General optimization framework, adjusted for the actual problem (retrieved

and modified from Eggensperger et al. (2019)). 29

4.1 Bayesian Optimization wrapper used throughout this thesis. 34
4.2 Flow chart of the implementation of the Monte Carlo Tree Search. 38

xi

www.sporenplan.nl

5.1 Graphical representation of the shunting yard Kleine Binckhorst, darker parts
are only considered by the TORS environment (retrieved and adjusted from
www.sporenplan.nl). The lengths of the tracks are given in the table accordingly. 42

5.2 Graphical representation of the idealized shunting yard, the darker parks are
considered in the simulation model. The lengths of the tracks are given in the
table accordingly. 42

6.1 Number of iterations to convergence, with and without guidance for training
and test instances. Guidance means the first Bayesian Optimization iteration
with the default hyperparameter configuration. 52

6.2 Average and one standard deviation of eight training and test data iterations
to determine the batch size. 54

6.3 Percentage of solved instances with the original hyperparameter setting and
with best hyperparameter configuration found by the Bayesian Optimization. 55

6.4 Percentage of solved instances for the location Kleine Binckhorst with the ori-
ginal hyperparameter setting and with the best hyperparameter configuration
found by the Bayesian Optimization per context, mean and standard deviations
are based on 15 iterations. 57

6.5 Percentage of solved instances for the Idealized location with the original hy-
perparameter setting and with the best hyperparameter configuration found
by the Bayesian Optimization per context. The mean and standard deviations
are based on 15 iterations. 58

6.6 Representation of the violations per location, scenario composition and the
enhancement method if used. 63

6.7 Violations of the default and the optimized hyperparameters for experiment E. 66

A.1 The hyperparameter sets for the Kleine Binckhorst of the first eleven solutions
that did not returned zero feasible scenarios when not using the warm start
approach (upper) and while using the warm start approach (lower). The colors
represent the underlying priority where green and red are the actions with the
highest and lowest priority, respectively. 76

A.2 The hyperparameter sets for the Idealized Location of the first eleven solutions
that did not returned zero feasible scenarios when not using the warm start
approach (upper) and while using the warm start approach (lower). The colors
represent the underlying priority where green and red are the actions with the
highest and lowest priority, respectively. 76

B.1 The best performing hyperparameters obtained when executing the experi-
ments without considering any contextual information for the Kleine Binck-
horst (upper) and the Idealized Location (lower). The colors represent the
underlying priority where green and red are the actions with the highest and
lowest priority, respectively. Each row depicts a Bayesian Optimization se-
quence and the first row depicts the default hyperparameters as reference. . . 77

xii

www.sporenplan.nl

C.1 The hyperparameter configurations obtained when executing the experiments
that consider contextual information for the location Kleine Binckhorst. The
upper, middle and lowest tables represent the found hyperparameters for the
scenarios A, B and C. The colors represent the underlying priority where green
and red are the actions with the highest and lowest priority per set, respectively.
Each row depicts a Bayesian Optimization sequence. 79

C.2 The hyperparameter configurations obtained when executing the experiments
that consider contextual information for the Idealized Location. The upper,
middle and lowest tables represent the found hyperparameters for the scenarios
D, E and F. The colors represent the underlying priority where green and red
are the actions with the highest and lowest priority per set, respectively. Each
row depicts a Bayesian Optimization sequence 80

xiii

List of Tables

3.1 Priority values specified for the shunting yard Kleine Binckhorst 24
3.2 Priority values specified for the movement heuristic on shunting yard Kleine

Binckhorst. The function of a track is represented between the brackets where
the parking tracks are divided in {Parking A} and {Parking B} for the tracks
{2,3,4,5} and {6,7,8,9} respectively. Besides that, extra constraints and extra
rewards rewards are allocated. 25

5.1 Length per train type and subtype . 43
5.2 Composition of three scenarios for the location Kleine Binckhorst with the total

train units, the incoming train units, the outgoing train units and the number
of train units per type. 44

5.3 A shunting scenario, generated by the instance generator. A scenario con-
tains events that enable the arrivals and departures of trains at a shunting
yard. These arrivals and departures correspond to one or more train units that
subsequently correspond to a service time and match number. 44

5.4 Composition of three scenarios for the location Idealized Location with the
total train units, the incoming train units, the outgoing train units and the
number of train units per type. 45

5.5 Priority values of the initial designed deterministic agent per action and per
location. 47

6.1 Optimal hyperparameter configuration for all experiments 60
6.2 Baseline results, percentage solved instance measured by analyzing 1,000 in-

stances per experiment. 60
6.3 Explanatory performance metrics that will be used to give an indication about

the quality of the solutions. actions . 61
6.4 Unique solved scenarios and newly created sequential model to solve the Train

Unit Shunting Problem . 62
6.5 Performance of the sequential model compared with the benchmark algorithm. 62
6.6 Experimental results with optimal hyperparameter configuration. 65

xiv

Abbreviations

BO Bayesian Optimization. 14, 15, 29, 30, 51–56, 58, 59

EI Expected Improvement. 14, 35

GP Gaussian Processes. 14, 33, 34

GP-UCB Gaussian Processes - Upper Confidence Bound. 14, 35

MCTS Monte Carlo Tree Search. 16, 18, 30, 36–40, 48, 49, 60–62, 65–67, 69

NS Dutch Railways. 2, 5–9, 11, 43, 50, 70

POI Probability of improvement. 14, 35

SLT Train type: Sprinter LightTrain. 21, 43, 45

SMAC Sequential Model-based Algorithm Configuration. 14, 15, 33, 34

SMBO Sequential Model-based Optimization. 14, 29

SNG Train type: Sprinter Nieuwe Generatie. 21, 43, 45

TORS Train Maintenance and Shunting Simulator. 20–22, 29, 32–34, 36, 37, 40–42, 46–48,
50, 51

TPE Tree-Parzen Estimator. 14, 33, 34

TUSP Train Unit Shunting Problem. 3, 4, 6, 8–10, 12, 13, 15, 16, 18, 19, 54, 68

VIRM Train type: Verlengd InterRegio Materieel. 4, 21, 43, 45

1

Chapter 1

Introduction

1.1 Problem context

The Dutch Railways, or NS, is the largest passenger railway operator in The Netherlands.
NS operates more than 5,000 train trips through which 1.3 million passengers are transported
daily. During rush- and peak- hours, almost all carriages will deploy to transfer passengers.
However, during off-peak- and night- hours, fewer carriages are used. During these hours,
the carriages have to be prepared for another shift which happens at the service depots or
also named shunting yards. The service depots execute minor maintenance and cleaning
activities to enhance the comfort and safety of the passengers. Besides that, redundant trains
are parked at these shunting yards. These service depots are primarily located in densely
populated areas and often close to central stations.

Creating a movement and service planning for a shunting yard is a challenge because the
incoming trains have to be matched to the outgoing trains, minor maintenance and cleaning
activities have to be allocated, and the trains have to be parked such that the right train
can leave in the right moment. The maintenance and cleaning activities can only occur on
dedicated tracks, which means that the trains have to be moved during their stay in the
shunting yard. These movements, and thereby all activities, are enabled through a complex
routing system where each train and track has its own length and where overtaking other
trains is impossible. Figure 1.1 gives a schematic representation of the shunting yard Kleine
Brinckhorst.

Figure 1.1: Schematic representation of shunting yard Kleine Brinckhorst (retrieved and adjusted from
www.sporenplan.nl)

2

www.sporenplan.nl

Currently, all activities on the shunting yards are scheduled manually by human planners.
Over the upcoming years, the number of carriages will increase, meaning more trains need
maintenance or cleaning. Expanding existing shunting yards or creating new shunting yards
is expensive, and therefore the capacity of the existing shunting yards has to be optimized
such that more trains can fit on a single shunting yard. To assist human planners in creating
an optimized planning, the demand for automated planning approaches increases.

In the current literature, this scheduling problem around the shunting yard is known as
the Train Unit Shunting Problem (TUSP) (Kroon et al., 2008). Almost all the developed
approaches solve subproblems of the TUSP in an offline manner which means that these
approaches can only generate entire solutions considering the subproblems (Haijema et al.,
2006; Van Den Akker et al., 2008; Haahr et al., 2015; van den Broek, 2016). When such an
offline approach is used, the whole solution has to be rescheduled when disturbances occur,
which makes it hard for human planners to use these methods to adjust or evaluate their
shunting schedules.

A more recent research direction is Reinforcement Learning. Reinforcement learning can
create a shunting plan online by keeping track of the actions while executing the shunting plan
and thereby overcome the rescheduling of a solution. The Reinforcement Learning direction
showed promising results for some subproblems of the TUSP (Peer et al., 2018; Lee et al.,
2020). These reinforcement learning methods inspired an approach to create an online planner
that creates a shunting plan in a similar way, while executing. However, the mechanism that
determines which action to take, the reinforcement learning agent, is replaced with a set of
deterministic rules. The actions that can be selected through these deterministic rules are
the Departure, Split, Connect, Setback, Wait, Service and Move actions. These deterministic
rules first select the viable actions. This is done by masking the actions that are not viable.
For example, a departure action is not viable and masked if the train is not on the departure
track. Subsequently, all the viable actions per train are assigned a priority value through
deterministic rules that could range from ‘assign a value when the action is viable for this
train’ that occurs for departure actions to ‘does the train on the ending track has to move
earlier than this train’ which occurs for movement actions. When all viable actions have
received a priority value, the action with the highest priority value will be executed on the
simulation model. These steps are repeated until all the trains in the simulation model have
left the shunting yard. Then, the shunting plan is called feasible. We will refer to this
method by calling it the deterministic agent. This deterministic agent could be used in future
works as demonstration data for reinforcement learning algorithms. Demonstration data can
improve the learning capabilities for reinforcement learning algorithms in large and complex
environment (Hester et al., 2018). This deterministic agent is in a state of development
in which it is able to generate shunting schedules. However, the deterministic agent is not
creating a number of feasible shunting plans that is satisfactory.

To increase the applicability of the online creation of shunting schedules and to increase
the number of feasible shunting plans a framework is designed that consist of two improve-
ment steps. The first step focuses on configuring the deterministic rules of the deterministic
agent such that an algorithm configuration is generated that creates the most feasible shunt-
ing plans. The priority values that are assigned to each of the actions remain fixed when
executing the algorithm. For the location Kleine Binckhorst are the departure, split, connect,
setback and wait priority values 400, 380, 280, 200 and 100 respectively1. This means that the

1The movement actions have multiple priority values based on the function of end track

3

departure and wait actions are the most and least important actions, respectively. Therefore
can these priority values of all the actions be considered as hyperparameters. Changing the
hyperparameters will change the dynamics of the algorithm since an action becomes less or
more important than other actions. Ideally, all possible hyperparameter configurations are
checked because this can lead to more solved instances. However, this is suboptimal consid-
ering the computational effort since a small number of hyperparameters leads to many pos-
sible configurations, which becomes difficult to evaluate considering the computation times.
Therefore, model-based hyperparameter optimization techniques will be used to overcome the
exhaustive computation times. Usually, hyperparameter optimization techniques are applied
to optimize a solution and thereby improve the results. However, we apply the hyperpara-
meter optimization techniques to improve the number of feasible shunting plans, which is a
satisfaction problem. This is a satisfaction problem since we do not consider the quality of
a problem but only if the solution is feasible. Besides that, we will investigate if contextual
information related to the problems requires a generalized or a specialized hyperparameter
configuration. To increase the applicability of hyperparameter optimization techniques, we
address the following challenge: design a hyperparameter optimization approach to configure
a deterministic agent that focuses on maximizing the number of feasible solutions.

The second step of the framework focuses on the details of the deterministic rules of
the deterministic agent. Many deterministic rules cover a large part of the actions that can
occur in the simulation model. However, some movement actions cannot be approached in
a deterministic manner since these actions depend on the composition of future arrival or
departure sequences. For example, when two parking actions are available for a single train
and each action leads to an empty parking track, where both tracks have different lengths.
Then, the deterministic rules are not able to distinguish which parking track is better. This
could only be specified when considering the departure sequence of the trains that will be
parked on these tracks in future time steps. It is possible to cover such situations with
deterministic rules, but then a large number of deterministic rules has to be added to cover
all possible configurations for all the problem instances. Currently, an arbitrarily choice
is made when the deterministic rules are not sufficiently specified. Therefore, we show in
the second step of our framework that a heuristic search algorithm is a suitable technique
to overcome the stochasticity that arises from analyzing different problem instances with
the deterministic rules of the agent. To increase the understanding of our framework even
further and thereby creating an increase in the applicability of the online creation of shunting
schedules. Our optimization framework will be applied on a carousel shunting yard and a
shuffleboard shunting yard.

1.2 The Train Unit Shunting Problem

Before the TUSP is elaborated, the composition of trains and their terms will be explained.
A train can consist of up to three train units, which are self-propelling vehicles that can drive
in both directions. These train units have individual names, consisting of the train unit type
and the number of carriages e.g. VIRM-4.

As previously illustrated, the planning problem on the shunting yard is a sequential
decision-making problem referred to as the TUSP. The TUSP consist of five different sub-
problems based on the description of Freling et al. (2005), where the first problem is the
Matching problem. The matching subproblem assigns incoming train units to outgoing train

4

units. This means that a train must be split if the incoming train does not have the right
composition, and subsequently, it must be combined with other train units. Besides that, the
match must be feasible regarding the time on the shunting yard considering the processing
times of the different maintenance and cleaning processes. In actual situations the matching
is often predefined because the NS wants the right train at the right track to cope with large
passenger demands in, for example, rush hours. Throughout the thesis, such a predefined
matching is used.

The second subproblem is the service scheduling. This subproblem focuses on the main-
tenance and cleaning activities that have to be done on dedicated service tracks. Since there
are a limited number of dedicated service tracks, the trains have to move during their stay
on the yard to enable the service. This creates a complex subproblem because firstly, the
service activities have to be done before the scheduled departure, and secondly, the service
scheduling on dedicated service tracks implies an even more complex routing subproblem.

Regardless of a train needing service or maintenance, whenever trains are not needed
for a service or maintenance job, they need to be parked somewhere on the shunting yard.
The parking is mostly done on the dedicated parking tracks. When considering the parking
problem, two major components provide lots of complexity. First, the departure sequence,
a departing train must depart smoothly without any blockage or inference of other trains.
Secondly, the trains need to be parked such that the lengths of the sequentially parked trains
do not exceed the length of the tracks. This all while considering that trains cannot overtake
each other.

Throughout the past section it can be noticed that the routing is another complex sub-
problem that influences almost all other subproblems. This is because a movement action
blocks other trains from moving and a complex relocation has to be executed when one train
needs to overtake another train.

Besides these problems, there is a last subproblem, the crew scheduling subproblem. This
subproblem relates to the personnel schedule necessary to execute the movement and service
activities on a shunting yard. This subproblem can be approached separately without inter-
fering with other subproblems. Therefore, this subproblem will be disregarded throughout
the master thesis.

1.3 Research questions

This thesis aims to improve the online planning capabilities of the deterministic agent by
applying the recent advancements in hyperparameter optimization techniques to find the op-
timal algorithm configuration and a heuristic search algorithm to handle stochasticity. This
research is guided through the following central question;

How can a framework of a hyperparameter optimization approach and a search algorithm
optimize an online planning heuristic to improve the number of feasible shunting plans of
parking-, routing- and service scheduling- subproblems of the train unit shunting problem?

This main question can be divided into multiple subquestions, which are;

1. What are the existing methods for solving the Train Unit Shunting Problem, and what
are the advantages and disadvantages?

5

2. What is hyperparameter optimization and what are applications for satisfaction prob-
lems?

3. What is a heuristic search algorithm and what are the applications for handling stochasti-
city?

4. What are the characteristics of the deterministic agent for the Train Unit Shunting
Problem?

5. How can an optimization framework be formulated in order to enable hyperparameter
optimization and heuristic search algorithms for the deterministic agent?

6. What is the performance of such an optimization framework compared to existing tech-
niques and how can this be explained?

1.4 Outline

The first three subquestions are answered in chapter 2 by executing a literature study. The
first part of that chapter will focus on the first research question, which aims to give a
broad view of the works done within the NS to solve the TUSP. This part is ordered based
on the considered approaches. The second part of the literature study will focus on the
hyperparameter optimization techniques and the third part of the literature study will focus
on a heuristic search algorithm. Finally, this chapter is finished with a description of the
academic gap the of this thesis.

The fourth research question is answered in chapter 3. Throughout this section, the
problem and an initial measurement will be formulated. The fifth subquestion is answered in
chapter 4 by elaborating on the integration of the improvement framework with the simulation
model that contains the deterministic agent. Moreover, the described solution approach is
transformed into an experimental setup. This experimental setup will be described in detail
in chapter 5. The performance of the implemented framework will be elaborated in chapter 6.
Besides that, this part answers the sixth subquestion. After this, the research is concluded,
and the recommendations are formulated in chapter 7. A representation of the dependencies
is given in Figure 1.2.

Figure 1.2: The composition and dependencies of the different subquestions.

1.5 Contributions

This master thesis increases the applicability of the online creation of shunting schedules and
hyperparameter optimization techniques by providing insights on the following:

6

• We study the effects of an online planning approach that is unique to reinforcement
learning combined with a deterministic control mechanism to solve the parking-, routing-
and service scheduling- subproblems of the of the Train Unit Shunting Problem. This
approach or the so-called ‘deterministic agent’, is developed by the NS and is used as
a base. This base is complemented with a framework to create more feasible shunting
plans. This framework consists of an approach to optimize hyperparameters to improve
the dynamics of the algorithm and this framework consists of a heuristic search algorithm
that is able to handle the stochasticity that can be found in different problem instances.

• We define a hyperparameter optimization approach, which is integrated into a frame-
work to configure the prioritization of an online planning heuristics, with the objective
of solving a satisfaction problem rather than an optimization problem. This approach
is used for the parking-, routing- and service scheduling- subproblems of the Train Unit
Shunting Problem.

• We extend our hyperparameter optimization approach to determine the influence of
problem-related contextual information. By making a difference in contextual informa-
tion throughout the experiments, greater insight into the generalizability of the determ-
inistic agent is gained.

• We extend our framework to determine the influence of different types of shunting
yards. Through the implementation of the framework on a shuffleboard shunting yard
and a carousel shunting yard greater understanding of the online creation of shunting
schedules is obtained.

Through these contributions, this work distinguishes itself and motivates a further re-
search to the applicability of hyperparameter optimization techniques on online planning
approaches.

7

Chapter 2

Literature Review

The goal of this literature review is to elaborate on the academic motivation to execute this
research. To accomplish this is the literature review deviated into two different parts. The
first part focuses on the current literature of the Train Unit Shunting Problem (TUSP) and
the second part focuses on the developments of the solution methods. Both are used to
formulate a clear academic gap that this research will substitute.

2.1 Train Unit Shunting Problem literature

There is much literature on the TUSP, either focusing on a specific subproblem or addressing
the subproblems in an integrated manner. The following section starts with an overview of
the approaches that have been used to solve the TUSP within the NS. This section can be
used to create a good understanding of the approaches that have previously been applied and
learn from their challenges, advantages, and disadvantages.

2.1.1 Exact solution approaches

The exact solution methods consist of approaches that can be solved through a Mixed Integer
linear Programming method. These exact approaches represent a large part of the existing
literature. The different subproblems that can be distinguished within the TUSP are for-
mulated in the work of Freling et al. (2005). Besides that, these authors were the first that
formulated a mathematical model to solve the matching- and parking subproblems of the
TUSP with tracks that could be accessed from both sides (free tracks). The model consists of
two steps, the first step matches the arriving train units to the departing train units, which
solves the matching problem. Where the second step assigns trains to a specific shunt track
which solves the parking problem. The other subproblems defined by the author are not
taken into consideration. The authors used the two-step approach because they believed that
the model would be intractable if solved at once, and with this formulation, the planners can
interfere with the obtained results between both steps. In the work of Lentink et al. (2006),
the model is extended with an approach to take the routing into consideration. This is done
by expanding the model to a four-step model which includes a step that counts for an estimate
of the routing costs between the matching and parking steps of Freling et al. (2005) and a
step that counts for the final routing costs (Lentink et al., 2006). The results of the model
were promising but not ready to be used because still manual modifications had to be made

8

to the planning to be feasible in real-world scenarios.
Lentink (2006) proposed a slightly different approach to solve all the subproblems of

the TUSP. The author proposed an integrated method to solve the matching and parking
problem in one model. The other subproblems are solved independently with information
that is passed on between the different parts. The integration of the matching and parking
subproblems is further elaborated in the work of Kroon et al. (2008). Kroon et al. (2008)
formulated a model based on Last In First Out tracks, Last In First Out tracks are tracks
that can be reached through only one side, the other side is connected to a bumper. Such
a model formulation led to an exponential number of new constraints due to the constraints
that restricted crossings. Crossings occur when a train unit obstructs other train units during
its departure of arrival1. Therefore, the model could only be solved in a reasonable time
through clique constraints. The formulations in the work of Lentink (2006) and Kroon et al.
(2008) served as input for the planning tool that was, at that time, used by the human
planners within the NS. Another research in the matching- and parking- subproblems of the
TUSP is the work of Haahr et al. (2015). Haahr et al. (2015) showed a comparison between
different formulated models to solve the matching and parking problem integrally. The most
interesting model is the constraint programming model. The main idea of the constrained
programming model is that the composition and changes in the composition are assigned to
the tracks instead of the events. This resulted in a model that does not scale well due to the
high demand for memory. To speed up the model, a delayed column generation heuristic is
proposed. This heuristic gives per track a set of feasible solutions, which reduces the number
of variables needed. With the improvement of the heuristic, the computation time is reduced,
however, this only holds for less constrained models.

In all the previous works, the service scheduling is not considered, this is done in the master
thesis of van den Bogaerdt (2018). The author relaxed decision diagrams on a mathematical
model for a multi-machine scheduling problem. The author used a shunting yard as a case
study and modeled every track as individual machines which used a decision diagram to
calculate an improved lower bound for the service scheduling problem. This model generated
successful results but did not take the other aspects of the TUSP problem into consideration.
Besides that, the formulated model showed its potential, but it has to be investigated further
before it can be used.

The research field of the exact approaches is not improving the last years. This is because
the mathematical approaches all have the same difficulties, namely minimizing the computa-
tion times. To decrease the computation time, the complexity of the models is often lowered,
which means that one of the subproblems is disregarded or calculated separately, which will
decrease the quality of the solution. Besides that, there are no exact solution approaches
that use an online planning structure. Therefore can be concluded that these approaches
are less suited for our approach since still a complete rescheduling has to take place when
minor disturbances occur. The following section will elaborate more on the heuristics and
metaheuristics used to solve the TUSP.

2.1.2 Heuristic solution approaches

The first heuristic that is formulated to solve the TUSP is a dynamic programming-like
heuristic (Haijema et al., 2006). The authors state that the quality of a problem consists

1The term crossings is firstly introduced by Gallo and Miele (2001).

9

of (I) the minimization of the movement and (de)couplings, (II) the grouping of train types
on a shunting track is maximized and (III) the minimization of disturbance risks. These
problems have a conflicting nature, and therefore, the TUSP is too complex to solve optimal
efficiently. The authors propose a heuristic that does not find an optimal solution but a
good, robust, and practical solution. This is done by decomposing the planning horizon into
smaller subproblems that relate to smaller planning periods. A planning period contains all
the consecutive arrival events and all the consecutive departure events. After the planning
periods are created, the planning periods are solved with a heuristic that relies on formulated
business rules. This heuristic only solves one specific planning period at a time. After all the
planning periods are solved, the heuristic is applied again, but now over the whole planning
horizon and the earlier formulated solutions of the planning periods. After this method is
tested on several test cases and a real-life scenario, the authors conclude that the heuristic
should be tested more to say anything useful about the heuristic. The authors state that
the model could be used to support the planners by generating a set of feasible plans where
the planners have to pick the optimal or most robust solution. However, because the model
heavily relies on business rules formulated by the same planners, the tool would hardly search
outside the solution space that is known by the planner. Which obstructs the method to find
different solutions.

Another heuristic is formulated by Van Den Akker et al. (2008). The authors describe an
algorithm that is used to solve a matching and parking problem, the routing is not taken into
consideration. Firstly, the greedy algorithm evaluates the planning horizon backwards and
when there is a departure event, it matches the departures to a shunting track. When there
is an arrival event, it is matched with a train that is currently on the shunting track. The
greedy part of the algorithm comes in when the model can take ‘shortcuts’ to the solution by
allocating a departure directly to an arrival. This greedy algorithm has the advantage that it
can always find a feasible solution in a reasonable time, it can only come at the cost of extra
shunting moves. However, according to the authors, the solution may not be of any practical
use if not improved upon.

Figure 2.1: Time-space network formulation of a shunting schedule of a single train (retrieved from
Jacobsen and Pisinger (2011))

Jacobsen and Pisinger (2011) formulated three metaheuristics to solve the parking- and
service scheduling- subproblems in an integral fashion. The three metaheuristics, (I) Guided
Local Search, (II) Guided Fast Local search and (III) Simulated Annealing, are used to solve
a model that has multiple goals. The first goal is that trains cannot block each other, the

10

second goal is that the trains do not depart with any delay, and finally, the makespan of the
service activities is minimized. To enable these methods the shunting schedule is represented
as a time-space network formulation (Figure 2.1). After the analyses, the Guided Fast Local
Search is not recommended by the authors, the solving method is fast, but it has a poor
performance in finding feasible solutions. The Guided Local Search and Simulated Annealing
have a better performance and converge in reasonable computation times. The performance
of these two algorithms is almost the same as a mathematical model which is used as a
reference. This mathematical model is only focused on finding feasible solutions. Due to
the slightly better computation times, the Guided Local Search is recommended over the
Simulated Annealing. However, the scenario used by the authors, in both the heuristics and
the mathematical model is still a simplified version of the reality.

In the work of van den Broek (2016) an integrated approach is proposed that uses a local
search algorithm to solve real problem instances. The author used a simulated annealing
algorithm that constructs a shunt plan which consists of the matching, service, parking and
routing activities in a suboptimal order. By modeling the activities as a graph with nodes,
small changes could be made through a local search algorithm without changing the structure
of the graph (Figure 2.2). The results were outperforming the used Opstel Plan Generator, a
tool that was used at the time to support the planners within the NS and therefore, the local
search algorithm was incorporated into the software tools.

Figure 2.2: Representation of the local search graph, the arrows represent the changes the local search
algorithm can make. The nodes with the letters A, M, S, D and Pi represent the arrival, movement,
service tasks, departure and parking tracks, respectively (retrieved from van den Broek (2016))

The heuristic solution approaches all suffer from the same problem that as soon as disturb-
ances occur the model has to reschedule the complete solution and thereby loses consistency.
Therefore are these approaches able to generate good initial solutions but not able to general-
ize with disturbances. This makes it hard to use these tools for small changes in the schedule
in a consistent manner because they do not conform to the logical reasoning of the human
planners. The next section will elaborate on the reinforcement learning approaches which are
theoretically better in generalizing the solutions.

2.1.3 Reinforcement learning solution approaches

In the work of Peer et al. (2018) the authors used a Deep Reinforcement Learning approach
to solve subproblems of the Train Unit Shunting Problem. In this work, the authors used a
Deep Q-Network to solve the matching- and parking- problems of the Train Unit Shunting
Problem. The authors introduce experience replay to reduce the underlying correlation in
combination with a visual state representation (Figure 2.3) which acts as a Markov Decision

11

Process. The performance of the model is measured with two measures, first the number of
solvable instances, to see the performance of the model, and secondly, the entropy measure to
evaluate to what extend the model uses a specific strategy. For the experiment, the authors
use instances generated by an instance generator ranging from 14 to 17 trains consisting of
two types of trains. The authors state that the performance of the model is good if compared
with a greedy algorithm. When the performance is compared with the solution developed
by van den Broek (2016) the performance in creating feasible solutions is still 10% lower.
However, the feasible shunting plans are more consistent since these are created through
execution of the shunting plans.

Figure 2.3: Visual state representation of a state with nine tracks and departure request (retrieved
from Peer et al. (2018))

Another work with the same case study is done by Lee et al. (2020). Here, the authors
took besides the parking- and routing- subproblems, the service scheduling subproblems into
consideration which is, according to the authors, one of the key components of the TUSP.
The authors formulate different triggers which indicate agents when to take actions, such a
trigger consist of a timer that counts down which indicates the time left until execution. To
counteract these triggers an extra wait action is added to the list of possible actions. This
method learns the agent the definition of time in a sequential planning problem. The size of
the action list is reduced to simplify the problem, this is done by removing the combining
and splitting actions. The problem is modeled as a Markov Decision Process and is solved
using a Deep Q-Network Reinforcement Learning agent. Due to the constrained environment
and the many available invalid actions, the agent does not end the episode when taking an
invalid action. Subsequently, a large negative reward is given and the state of the agent is
reset to the previous state and the policy is changed to a greedy policy. If the agents still
choose an invalid action after three attempts a large negative reward is given and the episode
is terminated. Besides the Deep Q-Network, another method is proposed, namely, the Value
Iteration with Post-States. This method is proposed to increase the learning speed and this
method shows the agent the deterministic transition function in advance. The real-world
experiment is executed on a relatively small number of trains, namely 4 to 7 trains. When
the results are analyzed it became apparent that the agent is capable of learning the concept
of time with the triggers that can be counteracted through the wait actions. However, when
the agent has to conform to many constraints there will be a trade-off between multiple
constraints, therefore the authors suggest a multi-objective approach for further research.

12

A work that continued on Lee et al. (2020) is the bachelor thesis of Barnhoorn (2020).
This work is not officially published but contains useful information for the master thesis that
will be executed. In this work, a multi-agent Deep Q-Network approach is used to improve
subproblems of the TUSP. The subproblems on which are being focused within this work
are the matching, including recombination and the parking subproblems. The author used a
multi-agent approach to reduce the number of actions that can be done by each agent, besides
that a global approximation function is used for all the different agents. The states of the
environment were represented through different vectors that were combined to a large vector.
The results obtained in this research proved that it is possible to schedule the matching and
parking subproblems with Reinforcement Learning but the performance was suboptimal on
a few aspects. This is because the model diverged after a certain training period. Besides
that, the complexity of input instances consisted only of four different trains, when scaling
the problem to seven different trains the performance of the model dropped. However, unless
the lacking performance a valuable conclusion can be made, the Multi-agent Reinforcement
Learning approach allows the algorithm the opportunity to recombine different trains before
leaving.

The reinforcement learning approaches have many similarities compared with the simula-
tion environment in our thesis. In these works, the interaction with the environment and the
online approach to create a shunting schedule is similar to the approach we consider in our
work. However, the way of determining which actions to take differs. The similarities in ap-
proaches between our work and the reinforcement learning methods can be used to determine
a suitable hyperparameter configuration method or a heuristic search algorithm by looking
at successful applications in the reinforcement learning domain.

2.2 Hyperparameter optimization

The literature for the algorithm configuration and hyperparameter optimization focuses on
finding the best possible set of hyperparameters regarding a certain objective function. Within
the hyperparameter optimization, two broad approaches can be distinguished, namely the
model-free and model-based approaches. The model-based approaches focus on creating a
probabilistic surrogate model and use that model to determine the next best hyperparameter
set. With a model-free approach such a model is not considered and the hyperparameter sets
are tested in a random directed fashion.

2.2.1 Model-free optimization

A very simplistic model-free hyperparameter optimization algorithm is the grid search. Grid
search is an exhaustive method where each hyperparameter receives multiple predefined values
that need to be tested. Subsequently, all possible combinations of all hyperparameters are
tested and the results are stored. After all combinations are tested the best hyperparameter
configuration is chosen. This method suffers from the curse of dimensionality because the
number of iterations increases exponentially with the number of hyperparameters. Tuning
hyperparameters can be approached as an optimization problem in which more combinatorial
optimization techniques can be used. Examples of combinatorial optimization techniques
are Evolutionary Algorithms. Evolutionary Algorithms are algorithms that are designed
with inspiration from nature, a form of an Evolutionary Algorithm is a Genetic Algorithm.
Genetic Algorithms are around since 1975 but the original paper is still to be found (Srinivas

13

and Patnaik, 1994). Genetic Algorithms consist of random searches that are directed towards
an optimal solution. The base of each Genetic Algorithm are the individual solutions, named
individuals, and the population is the full set of individuals. These individuals are used in
an iterative procedure where the individuals are tested against a fitness function and then
used to mutate and merge with other individuals such that more of the solution space will be
analyzed. After that, the procedure starts over and is repeated until a computational resource
is exhausted. The benefit of a Genetic Algorithm is that is almost applicable in every case.

Other Evolutionary Algorithm approaches are well suited for such optimization prob-
lems. However, the GA and similar model free approaches assume an easy-to-evaluate fitness
function which will not be the case throughout this thesis since the algorithm consist of a
simulation model. Therefore will the model-based approaches be formulated next.

2.2.2 Model-based optimization

Sequential Model-Based Optimization (SMBO) is a type of model-based optimization meth-
ods that tries to build a probabilistic model from an unknown objective function. This
objective function is approached as a black box and subsequently, this probabilistic model
is used in combination with an acquisition function to query the best possible move for the
algorithm to execute next. Probably one of the most famous algorithms is the Bayesian Op-
timization (BO) algorithm (Močkus, 1975). The way of formulating the probabilistic model
within BO can differ, throughout the literature are different probabilistic models proposed for
generating this surrogate model. The most common surrogate modeling technique is based
on Gaussian Processes (Rasmussen, 2003). Such a model tries to create a probabilistic model
with Gaussian Processes (GP), which has the advantage that it does not lose its acquired
distribution after optimizing the acquisition function. Besides that, it is possible with GP
to analytically derive the acquisition function. The acquisition function determines where to
query the following sample, this means that the acquisition function balances the trade-off
between exploration and exploitation. Some widely used acquisition functions within GP
are the Gaussian Process Upper Confidence Bound (Srinivas et al., 2009), the Probability of
Improvement(Kushner, 1964) and Expected Improvement (Močkus, 1975). With the Gaus-
sian Process Upper Confidence Bound (GP-UCB) the upper bound of the mean is calculated.
This is done for all the given points and the acquisition function searches the highest valued
confidence bound to place the next sample. The Probability Of Improvement (POI) considers
the best-observed value function and calculates the probability, with the GP, that the best
new value will exceed this initial value. The Expected Improvement (EI) will work similarly
as the POI but besides the probabilistic value, the actual improvement is considered.

Besides the BO there are other well-known methods for hyperparameter optimization. One
of these methods is named Sequential Model-based Algorithm Configuration (Hutter et al.,
2010). The dynamics of this Sequential Model-based Algorithm Configuration (SMAC) ap-
proach are similar to the BO optimization approach but instead of formulating a probabilistic
method with GP, a random forest regression method is used. Therefore, this approach is well
suited to combine continuous hyperparameters with categorical parameters where BO only
considers continuous values. Besides the surrogate model, SMAC can use similar acquisition
functions as formulated with BO.

The last model-based hyperparameter optimization method that will be described is the
Tree-Parzen Estimator (TPE) formulated by Bergstra et al. (2011). This approach creates a
tree with Parzen estimators which divides the obtained samples into two different categories

14

based on a small or large loss. Combining these trees gives a likelihood estimator to obtain
the best next samples. Combining these two trees can be done with some kernel density
estimators, e.g. the high loss estimates can be divided by the low loss estimates.

Contextual model-based optimization

When using model-based hyperparameter optimization, one hyperparameter set for a com-
plete problem might be suboptimal since the problem can consist of different complexities that
require different hyperparameters. Then, problem related contextual information is useful to
consider. With contextual model-based optimization problem related contextual information
is considered while selecting the optimal hyperparameters. When analyzing the literature of
contextual hyperparameter optimization two types can be distinguished. Finding a general
hyperparameter configuration for all contexts or finding a unique parameter configuration
for each context individually. First, the works that try to obtain a general hyperparameter
configuration for multiple contexts will be elaborated. The SMAC algorithm described in
Hutter et al. (2010) differentiates between multiple problem instances but the authors try
to find a configuration for all instances. In the work of Huang et al. (2006) the authors
use multiple-fidelity problems which are expensive to sample. Therefore the authors create
a single surrogate model to reduce the cost of the evaluation, subsequently, an augmented
expected improvement method is used as an acquisition function. In this work, the authors
try to create a generalized solution for multiple-fidelity optimization problems. A similar
approach is taken in the work of Forrester et al. (2007). Here, the authors try to optimize
a multi-fidelity problem by implementing a surrogate model of the expensive function. The
objective of the authors is to obtain a solution that can be generalized over the multiple-
fidelity’s. The main difference with the work of Huang et al. (2006) is that the authors are
using a different approach to obtain the surrogate model.

The other type of hyperparameter optimization focuses on finding an optimal set of hy-
perparameters for every context. First, some works are elaborated which demand a sequential
approach to different contexts. In the work of Bardenet et al. (2013) the authors introduced
an approach to find different configurations for a classification algorithm when applied on dif-
ferent data sets. This is done by introducing a ranking procedure that uses prior calculated
hyperparameter configurations to find a configuration for new data sets more quickly. This
research is extended in Yogatama and Mann (2014) by creating a more efficient method by
assuming an online learning approach. The following methods do not require a sequential
approach to different contexts. In the work of Bardenet et al. (2013) the authors introduce
another approach where they apply the ranking procedure to multiple data sets simultan-
eously by applying one iteration on each problem in turn. Another method is introduced by
Chung et al. (2020), here the authors used an offline contextual BO approach to optimize the
plasma density in a nuclear fusion reactor. To do this the authors use a simulation model
as a black box model which is optimized using Thompson Sampling (Thompson, 1933) as
acquisition function. The offline context is generated by using different input settings which
is not a part of the hyperparameter setting. The authors obtain successful results but the
bottleneck of expanding this approach to further works is the expensive computation time of
the simulation model. Due to the similarities in the work of Chung et al. (2020) and this thesis
this work can be used as inspiration for the problem approach. Finally, while writing this
thesis, another master thesis is completed that used contextual hyperparameter optimization
for the TUSP van der Knaap (2021). This approach is used to optimize the hyperparameters

15

of the Local Search approach developed by van den Broek (2016) which is described earlier.
Throughout that thesis a contextual hyperparameter optimization is applied to solve a satis-
faction problem. This research led to no improved in hyperparameter configuration, for any
of the context since the encountered difficulties in the contextual information are too hetero-
geneous. They were able to improve the performance by applying a portfolios with different
hyperparameters. That research will be used as inspiration for our thesis but it will not be
considered to make any statements about the behavior of the models since that work is not
peer reviewed.

2.3 Search algorithm

The following section will elaborate the search algorithm. The developed methods is a de-
viation on a reinforcement learning approach to solve the TUSP. More specifically, the se-
quential planning aspect of the reinforcement learning agent is used in our setup. Therefore,
we have looked to search strategies that have proved to work on a reinforcement learning
problems. One approach, the Monte Carlo Tree Search stands out. This approach is used
in the groundbreaking research to master the game of Go with reinforcement learning (Silver
et al., 2016). The Monte Carlo Tree Search (MCTS) is able to progressively expand the a tree
structured search to find more solutions, these structures are often used in two player games
and pathfinding algorithms. A tree search problem is characterized by states that can be
represented as nodes of a tree, the arcs between the nodes represent the available actions that
can be used to change between these states. In the MCTS literature three major directions
can be distinguished, namely, problems with one opponent, problems with multiple opponents
and problems without any opponents or also known as optimization problems (Chaslot, 2010).
For our thesis only the optimization related problems are interesting and therefore these will
only be discussed throughout this literature review. The MCTS consist of four steps that
are executed in a iterative manner until a predefined number of iterations is reached or a
computational resource is exhausted. This iterative procedure is given in Figure 2.4 and will
be elaborated step by step.

Figure 2.4: Iterative procedure of the Monte Carlo Tree Search, this iterative procedure will be executed
as many times as the computational resources permits (retrieved from Sutton and Barto (2018)).

16

2.3.1 Selection

The first step is the selection step, this step works as follows. From the root node, which is the
first node in the tree, a selection strategy is applied until a unseen node is reached. Therefore
the selection step balances the exploration and exploitation trade-off. This is because it can
focus on the exploration side to discover new unseen areas and it can focus on the exploitation
side to exploit the best results obtained results so far. In the literature are three different
strategies to handle this trade off in a structured manner, the first is the Objective Monte-
Carlo method devloped by Chaslot et al. (2006). This approach consist of two parts, a move
selection strategy and a backpropagation strategy. The move selection strategy uses the
Central Limit Theorem to approximate the probability of a specific Monte Carlo evaluation.
This approximation is subsequently used to exploit the best policy. The backpropagation
strategy gives the value of a move according the values and standard deviations of the child
nodes. This has the advantage that when not many simulations are made the values are
close to random which is desirable since the algorithm needs to gather enough information
before it chooses a direction. The more iterations are done, the more accurate the prediction
becomes. The second technique is introduced by Coulom (2006), this technique also consists
of a improved selection strategy and a backpropagation strategy. Here the backpropagation
strategy is similar as described in Chaslot et al. (2006). The selection strategy is based on
the probability to be better than the current move, this is done by considering the standard
deviation of each move. The third improvement method is inspired by the Multi-Armed
Bandits problem. In the Multi-Armed Bandits problem a well known technique to optimize
the exploitation and exploration trade-off is by calculating the Upper Confident Bounds for all
the options, and the solution with the highest value is chosen. The logic behind this method
is very simplistic; the highest valued Upper Confidence Bound has the highest potential value
and therefore gives the best result. The idea of the Upper Confidence Bound is transferred
to the situation with the tree structure (Kocsis and Szepesvári, 2006). The authors proposed
the Upper Confidence Bounds for Trees by approaching the choice of where to select the tree
as a multi-armed Bandit problem, here the value of a child node is the value estimate of
the Monte Carlo Simulation over which the upper confidence bounds are calculated. Then
the node with the highest confident bound is chosen. This approach naturally balances the
exploration and exploitation trade-off.

2.3.2 Expansion

The second step is the expansions step, this step decides where the tree will extend. A popular
expansion step is elaborated by Coulom (2006). With this method a single node is randomly
added per simulation iteration, this node corresponds to the first unseen node by the tree.
There are other methods, but these methods require large amounts of memory and do not
improve the results of the solutions.

2.3.3 Simulation

The third step is the simulation step, in this step a roll-out algorithm is followed. Roll-out
algorithms are simulations that start in the current environment state and roll-out over all
the possible future states until a final state is reached. To let the algorithm converge faster
a simulation strategy, or a bias, can be chosen (Chaslot et al., 2006). A simulation strategy
must conform two aspects, the first aspect handles the exploration and exploitation trade off.

17

If the exploration or exploitation is not balanced well the model can diverge. The second
aspect is regarding knowledge and search, this knowledge relates to the explicitly integrating
some strategies that direct the simulation model. The search relates to the opposite, so let the
simulation model search for better solutions. An example of this trade off could be integrating
the standard opening moves of a chess game in a simulation model or let the simulation model
search for their own. Adding knowledge often comes with high computational cost, while it
can be useful to speed up convergence of the simulation model.

2.3.4 Backup

The fourth step consist of a backup phase, in this phase the trajectories found in the first
two steps are backed up in a tabular format. In the works that define the different selection
strategies, also different backup strategies are formulated. Besides these strategies another
strategy exist. Normally the states visited in the roll-out phase are not backed up. However,
a speed up method is introduced by Gelly and Silver (2007). This method gives a Rapid
Action Value Evaluation of each action in state. Which means that not only the states that
follow the first two steps are stored in the backup phase, but also the states in the roll out
phase. This is a low variance approach that could enable a bias, the bias is counteracted with
a decaying weight.

2.3.5 Retrieving best solution

After the MCTS is executed the best solution has to be gathered. This can be formalized as
selecting the best child of the root node and to select this are different approaches possible.
The possible options are summarized in Chaslot (2010) and are elaborated below.

• Maximum child - the first proposed manner to select the best child is to pick the child
has obtained the highest cumulative value throughout the iterative MCTS procedure.

• Robust child - this method does not look at which nodes has received the highest value
but rather at which child node is most visited throughout the MCTS procedure.

• Robust max-child - this approach selects the child node that has the highest value
relatively to the highest visit count. This means that the child node with the highest
percentage of successful searches is the best possible node.

• Secure child - this method searches for the child where the under bound is maximized.
By using this approach the potentially best approach is selected.

The first two methods are straightforward but are much depending on the design choices of the
MCTS because when choosing a MCTS that focuses on exploration a robust child approach
is probably less suited because it can lead to unexpected behavior. Besides that, the other
approaches create a better view of the gathered information, therefore are these approaches
better suited to select the right child node.

2.4 Position of this research in the literature

The executed literature study provides the academic relevance and thereby the motivation
for this project. The previous formulated solving approaches provide a good understanding
of the complexities related to the TUSP. One of these complexities, the creation of robust

18

shunting schedules, is being solved with an online approach that can be found in the rein-
forcement learning approaches. Reinforcement learning for the TUSP inspired an approach
where the reinforcement learning agent is replaced with a set of deterministic rules. This
approach is cannot be found in any of the excising solution methods for solving the Train
Unit Shunting Problem. This approach is able to create robust shunting schedules but the
feasibility rate lacks. Fortunately, some techniques have been reviewed that can be used to
create the most optimal online algorithm and thereby improving the performance in terms of
feasibility. The first technique will be an hyperparameter optimization method. Based on this
literature review it appears that hyperparameter optimization techniques are often applied to
optimization problems and the application to an online satisfaction problem for the TUSP is
rather new and exciting. Furthermore, this literature review shows that contextual problem
related information are a good addition to the hyperparameter optimization to determine the
generalizability of a hyperparameter set. This project further designs techniques for searching
in online scheduling environments for the Train Unit Shunting Problem. By substituting these
gaps this research increases the applicability of hyperparameter optimization techniques and
broadens the applicability of the online creation of shunting schedules. As a final note, this
literature study is not an exhaustive literature review of the Train Unit Shunting Problem,
hyperparameter optimization or search algorithms. But rather, a broad literature review to
get an idea of the research field to provide a solid base for this master thesis project.

19

Chapter 3

Problem Description

The problem is described in the following section. First, the essential components and un-
certainties of a shunting schedule are elaborated. Subsequently, the scope of the problem is
described, and after that, a formal problem formulation is formulated. This chapter finishes
with the design of the research.

3.1 System description

This section describes the approach that is used throughout this thesis to create a shunting
plan. To create a shunting plan, a simulation model is used that is modeled as a Markov
Decision Process. This simulation model is named TORS and is used to create a shunting plan
by keeping track of the actions that are executed. This means that the shunting schedule
is created while executing the shunting plan or formulated otherwise, the shunting plan is
created online. The Markov Decision Process is formulated such that it can simulate all
possible scenarios on all the available shunting yards. Therefore, the simulation model needs
two components. The first component is a representation of a shunting yard and the second
component is a representation of all incoming and outgoing trains, which are named scenarios.
Both representations come in the form of changeable input files.

This Markov Decision Process moves from a state s to the next state s′ by taking action
a. To determine the right action, a set of deterministic rules is used. For simplicity, this set
of deterministic rules is referred to as the deterministic agent. This deterministic agent keeps
choosing actions until all the trains that should leave the shunting yard, have left. After all
the trains have left the shunting yard without any violation, the shunting plan is feasible, and
the scenario is changed to a new scenario for which a shunting schedule needs to be made.
Figure 3.1 gives a visual representation of how the different components work together to
create a shunting schedule. All the individual components will be explained in detail below.

3.1.1 The shunting yard location

The location input file gives a representation of the physical infrastructure. The physical
infrastructure on a shunting yard consists of a finite number of tracks connected through
different switches, and every track has its dedicated length. All tracks on the shunting yard
have a specific function and a specific end-point. First, are the functions elaborated. The
track through which the shunting yard connects to the main railway network is the gateway

20

Figure 3.1: The components of the simulation environment TORS. Here (1) is the location input file,
(2) is the scenario input, (3) is the Markov Decision Process environment, and (4) are the deterministic
rules that control the environment.

track. This track intents for traversing to and from the shunting yard and not for long-term
parking. The minor maintenance and parking can take place on dedicated service tracks and
parking tracks, respectively. Most often is a shunting yard equipped with a relocation track,
used to relocate trains since trains cannot overtake each other.

Each track has two end-points which are referred to as the A- and B- sides. If a track has
an A- and B- side that are connected to a switch, the track is considered a free track and then
the track can be reached through both sides. When the A- or B- side of a track is connected
to a bumper and the other side is connected to switch, the track is considered a Last-In-
First-Out-track or LIFO-track. Both the track types are depicted in Figure 3.2, and both
track types need a completely different approach regarding the scheduling of the activities on
the shunting yard. Therefore, two main shunting yard structures can be distinguished, the
shuffleboard structure and the carousel structure. The shuffleboard structured shunting yards
consist mainly of LIFO-tracks which require an advanced relation strategy, and the carousel
structured shunting yard has many free tracks which enable a carousel-like movement.

Figure 3.2: Difference between a LIFO-track (left) and free track (right). The referred tracks are
depicted with the solid lines with the parked trains on top of them, the dotted lines are the adjacent
tracks. The numbers of the trains corresponds to the number of departure and requires a different
parking strategy.

3.1.2 The shunting scenario

The trains that are used to create a shunting schedule are specified in the shunting scenario.
A shunting scenario consists of a specification of the trains that will arrive at a shunting yard
and the trains that will depart at the shunting yard. The trains considered in these shunting
schedules are self-propelling vehicles that can drive in both directions. A train can consist of
three train units, but throughout this thesis, a maximum of two train units is considered to
control complexity. The trains that will be used during the thesis are the Verlengd InterRegio
Materieel (VIRM), Sprinter Nieuwe Generatie (SNG) and the Sprinter LightTrain (SLT).
More specifically, the VIRM-4, VIRM-6, SNG-3, SNG-4, SLT-4, and SLT-6, where the number
refers to the number of carriages of each train unit. To create a smooth flow of trains from and
to the shunting yard, the schedule is made based on the planning of the main train network.

21

Figure 3.3: representation of the arrival sequence and departure sequence with the matched numbers
accordingly.

Therefore, the incoming trains arrive at predefined times and the departing trains have to
leave at predefined times. Both the predefined arrival and departure times are formulated in
the scenarios. Assigning different incoming train units to an outgoing train is referred to as the
matching problem. This matching problem is not considered throughout the master thesis,
and therefore is each train in the scenario file equipped with a predefined match number. This
number represents the allocation of an incoming train unit to a specific outgoing train, where
the number is the numerical order of leaving. To create the correct departing configuration,
arriving trains must be split and recombined to form the outgoing trains. An example of an
arrival and departure sequence with the matching numbers is given in Figure 3.3. As can be
seen in the figure, if two trains have to be combined to form a departing train, they obtain
the same match number. Besides that, every train unit has its own service time specified
in the scenario file. The service time variable must be zero before leaving the shunting yard
and executing the service can only happen at predefined service tracks. Some trains enter
the shunting yard and do not need any service. With these trains, the service time is already
zero in the scenario file.

3.1.3 The simulation environment

The location and scenario files are input variables for the simulation environment. This event
scheduling simulation environment is named the Train Maintenance and Shunting simulator
(TORS1). This Markov Decision Process is based on a discrete event scheduling technique.
This means that actions are taken in response to events, better known as triggers. The
Markov Decision Process stores these triggers and each trigger has its own time of execution.
The environment executes all triggers incrementally, based on the specified time. When a
trigger is executed, the trigger is removed from the trigger list. The triggers are added to
the environment through two methods. Firstly, by the events specified in the scenario file
that have to happen at strict predefined times, these are the arrival and departure events.
The second method to add triggers to the environment is in a reaction to other previously
executed triggers. When for example, a train decides to start a service action, that action
creates a ‘service-ended-trigger’. On this trigger, the train is done with the service, and that
train, or another train, can execute an action. Because the movement of a specific train
has much influence on the other trains, multiple other triggers are added before and after

1This abbreviation originates from the dutch translation.

22

the existing triggers to let other trains move. The deterministic agent uses these triggers to
choose actions that will be executed on the environment. For all trains in the simulation
model, similar actions are available. The actions that are available per train are explained
briefly because most of the actions are self-explanatory.

• Departure - The departure action lets a train leave the shunting yard. With this action,
the train is removed from the simulation model.

• Split - The split action splits a train in the simulation model, consisting of two train
units, into two trains.

• Service - This action activates the service. The service actions can be executed on
multiple dedicated tracks. This action can be considered a move action but then to the
dedicated service tracks. All the possible end-tracks are considered individual actions.

• Connect - The connect action is the opposite of the split action. Two trains merge into
one train. The composition of which train units are used is specified in the scenario file.

• Setback - The setback action sets the train in neutral gear such that the train can drive
both directions in future states. A setback action is required before a train can switch
from driving direction.

• Wait - The wait action lets the train do noting and let the possibility for other trains
to execute actions without any interruption.

• Move - The move action, moves the train from a starting track to an end-track. Here,
all the end-tracks are specified as a single action.

Besides that, there is an arrival action. This action is not chosen by the deterministic agent
but is executed when the trigger occurs. Then no other actions can be executed. Logically,
the action selection procedure starts after a train has arrived at the shunting yard and ends
after the train has departed from the shunting yard.

After an action is selected, that action will be executed on the environment. The execution
may lead to a violation of the environmental constraints. When one of these constraints is
violated, the shunting plan becomes infeasible. Then, the generation of the shunting schedule
stops and the environment starts over with another scenario. These violations are elaborated
below.

• Arrival track reserved - This violation occurs when the gateway track, on which the
trains arrive, is fully occupied and the action is an arrival action that ensures a new
arrival.

• Train cannot leave - This violation occurs when a departure action is chosen and the
right train was not on the gateway track. More specifically, the train with matched
number one is not presented on the gateway track.

• Did not depart - This violation occurs when a departure action must be chosen, the
wrong action is chosen, or the train was blocked by another train on the gateway track.

• Composition not present - The fourth violation is rather straightforward, this violation
occurs when a departure action is chosen and the train is not in the right composition.

• No actions left - The last violation occurs when there are no actions to choose from for
the deterministic agent.

23

3.1.4 The deterministic agent

The deterministic agent is the component that is responsible for the action selection. Before
this deterministic agent selects an action, it filters the infeasible actions. An action is infeasible
if the action cannot be executed in the environment due to action-related reasons. More
specifically, a departure action is infeasible when the dedicated train is not on the departure
track and the split action is infeasible when the train only consists of one train unit. Movement
or service actions become infeasible if the traversing track is not available or the end track is
fully occupied. Besides that, the service action becomes infeasible when the train does not
need any service. The connect action becomes infeasible when there are not two trains next
to each other that need to be combined or if a train consist already of two train units. All
other actions are always feasible.

After the feasible actions per train are determined, a set of deterministic rules is used
to determine the best action. The simulation model goes through each of the actions per
train and assigns a priority value to each by evaluating different deterministic rules. If a
deterministic rule is true, the priority value is assigned, and after all actions of all the trains
are valued, the action with the highest priority value is selected.

The deterministic rules can be divided into two categories. The first category assigns a
priority value based on the availability of an action. If an action is considered feasible, a
priority value is assigned. The actions for which such an approach is used are the Depar-
ture, Split, Connect, Setback and Wait actions. The specific values differ per location, but
the priority values of the shunting yard Kleine Binckhorst are formulated to give an impres-
sion (Table 3.1). These priority values are specified through experts’ domain knowledge by
estimating which action is more important. The actions in the other category are movement-

Table 3.1: Priority values specified for the shunting yard Kleine Binckhorst

Action Depart Split Connect Setback Wait

Reward 400 380 280 200 100

related and require a different approach with more rules. These Service and Move actions
are different because every move action can contain multiple different viable subactions. For-
mulated otherwise, for every reachable end track, a move action is created and if these end
tracks are service tracks, it becomes a service action. This creates lots of complexity since
there needs to be a distinction between these different end tracks. Currently, the distinction
between different actions is made by formulating more deterministic rules that consider the
different functions of tracks. If a subaction satisfies a deterministic rule, a priority value
is assigned to that subaction. The functions of the tracks are elaborated in section 3.1.1.
Besides these functions, some extra constraints are introduced that prioritize specific actions
more than other actions. These constraints are based on the next event, the service time and
the matched number of a train. A specification of these movement actions for the location
Kleine Binckhorst are formulated in Table 3.2. In this example the are the parking tracks
divided in {Parking A} and {Parking B} for the tracks {2,3,4,5} and {6,7,8,9} respectively.
The assigned priority values are specified through experts’ domain knowledge by estimating
which action is more important.

The formulated deterministic rules and constraints are used to distinguish the importance
between the functional groups of tracks. However, each function group can consist of multiple
tracks. Therefore, a small extra reward is added to each assigned value. These extra rewards

24

Table 3.2: Priority values specified for the movement heuristic on shunting yard Kleine Binckhorst.
The function of a track is represented between the brackets where the parking tracks are divided in
{Parking A} and {Parking B} for the tracks {2,3,4,5} and {6,7,8,9} respectively. Besides that, extra
constraints and extra rewards rewards are allocated.

Action Extra constraint(s) Assigned value

1 From any to {Gateway} Match number = 1,
next event = departure event

370 + extra reward

2
From {Service} or {Relocation} to
{Parking} or {Relocation}

Match number = 1,
service time = 0

220 + extra reward

3 From {Gateway} to {Parking B} Service time > 0 239 + extra reward
4 From {Gateway} to {Service} Service time > 0 240 + extra reward
5 From {Gateway} to {Parking B} Service time = 0 228 + extra reward
6 From {Gateway} to {Relocation} Service time = 0 230 + extra reward

7 From {Gateway} to {Parking A}
Match number 6= 1,
next event = departure event,
service time = 0

228 + extra reward

8 From {Gateway} to {Parking A} Match number 6= 1,
Service time > 0

201 + extra reward

9 From {Parking B} to {Service} Service time > 0 105 + extra reward
10 From {Parking A} to {Relocation} Service time = 0 101 + extra reward
11 From {Service} to {Relocation} Service time = 0 106 + extra reward
12 From {Service} to {Parking} Service time = 0 102 + extra reward
13 From {Relocation} to {Parking} NA 107 + extra reward

are small priority values that make a difference between multiple tracks within a similar
function group, based on the trains already on these tracks. This is done by comparing the
matched number of the train that is on a specific track with the matched number of the
train that analyses the action. When the train on a specific track has a lower match number
than the train that wants to execute the action, a small priority value is added based on
the difference of the matched numbers. Here, the highest extra reward is assigned when the
difference in match numbers is the closest to zero. This is done because the trains on a
track determine which specific track would be the best end track considering the departure
sequence. For the location Kleine Binckhorst are these extra rewards in the range from 0 till
3.

After all the trains’ actions are valued, the algorithm selects the action with the highest
priority value. This action is executed in the simulation environment. However, in some
cases, the highest valued action cannot be determined, which is caused by two exceptions.
The first exception occurs when there are multiple equal highest valued actions from different
trains. Then, the train with the lowest matched number is given priority since a lower match
number means an earlier departure, and therefore, this action will be more important than
the other actions. The second exception occurs when multiple actions have obtained an equal
and highest value within the same train. Such a situation occurs when the extra reward
cannot distinguish the priority between different tracks, mostly when the tracks are empty.
Then the importance of an action cannot be determined since that depends on other trains
on that track. In such cases, an arbitrary action is chosen to be executed in the simulation
environment. A summary of the action selection procedure of the deterministic agent is
depicted (Figure 3.4).

25

Figure 3.4: Process flow of the action selection procedure of the deterministic agent.

3.1.5 Suboptimal feasibility

The deterministic agent can select sufficient actions sequentially and thereby making feasible
shunting schedules. However, the number of feasible solutions is still not as desired. This
subsection identifies improvement areas in creating shunting schedules that will be addressed
in the remainder of this thesis.

Within the deterministic agent, the deterministic rules assign a priority value to an action.
The assigned value determines the importance of an action compared to all other actions
because the highest valued action will be chosen. The values specified in Table 3.1 show
that for the location Kleine Binckhorst the departure action is the most important action
and the wait action is the least important action, since these actions have the lowest and
highest values, respectively. When these priority values are changed, take for example that
the values of these two actions are switched, which means that the departure action becomes
the least important action and the wait action becomes the most important action. Then,
the dynamics of the deterministic agent will change to a situation where it will always choose
the wait action. Such a change is not desirable, but it gives a clear example that changing
the priority values will change the dynamics of the deterministic agent.

The assigned priority values can be considered as hyperparameters. Because, these pri-
ority values determine the dynamics of the shunting plan generation while remaining fixed
throughout the process of executing the actual schedule. Currently, the assigned priority val-
ues are determined through domain knowledge by estimating which action is more important,
these are not determined analytically. Besides that, the hyperparameter configurations are
currently formulated per location. This means that all the scenarios are solved with sim-
ilar generalized hyperparameters. It is thought that this is suboptimal since problem-related
contextual information might distinguish the importance of different actions. For example, a
scenario with 15 train units is currently solved with similar hyperparameters as a scenario with
17 train units. However, a scenario with 15 train units does not require combination actions
and with 17 trains, these combination actions are necessary. The number of splits and com-

26

binations are equal within all scenarios since we tried to make the scenarios as homogeneous
as possible.

Ideally, all possible hyperparameter configurations are checked because in potential can
optimizing the hyperparameters lead to more solved instances. However, this is suboptimal
since a few hyperparameters lead to many possible configurations, which becomes hard to
evaluate when considering the computation times. To overcome the exhaustive search to the
right hyperparameter configuration, a hyperparameter optimization technique will be used
that will consider problem related contextual information.

Another improvement area can be noticed in the second exception within the selection
of movement actions of the deterministic agent. This second exception occurs when multiple
actions have obtained an equal and highest value within the same train. Such a situation
occurs when the earlier formulated extra reward cannot distinguish between different tracks,
mostly when the tracks are empty. Then the importance of an action cannot be determined
since that depends on other trains on that track. In such cases, an arbitrary action is chosen to
be executed in the simulation environment. However, this arbitrary action is suboptimal due
to the lengths of the tracks in combination with the arrival and departure sequences. This will
be elaborated through an example that is depicted in Figure 3.5. As can be seen in this figure,
there is a shunting yard with two empty parking tracks of different lengths. The first track
has enough space for a single train, and the second track has enough length for two trains.
When three trains need to be parked on these tracks, an optimal configuration can be made
based on the layout of the tracks and the arrival and departure sequences. Assuming that all
the trains must be able to move to the gateway track unobstructed. In this figure are multiple
arrival sequences given with the numerical order of leaving where the lowest number has to
move to the gateway track first. Putting an arbitrary action in a shunting plan is inefficient

Figure 3.5: A graphical proof that an arbitrarly choice is suboptimal when there are multiple move-
ment actions that have obtained an equal and highest value from the same train. When there a three
parking position and three trains that arrive the optimal parking configuration can only be determined
by considering the arrival and departure sequence.

since an action could cause the shunting plan to become infeasible. To give some insights
about the arbitrary actions, an initial measurement is executed. This initial measurement
counts the number of arbitrary actions that occur in a scenario and for this measurement
100 scenarios are analyzed. This is measured for two location types, a carousel-like location
named Kleine Binckhorst and an Idealize Location that is named Idealized Location for
simplicity. The results of the initial analysis are visible where the left plot represents the
Kleine Binckhorst and the right plot the Idealized Location (Figure 3.6). The results for
the location Kleine Binckhorst show a higher median of arbitrary actions if compared with
the Idealized Location. Besides that, there is a noticeable difference in the deviation of the
measurements. More specifically, the higher the number of trains, the greater the deviation
in the number of arbitrarily moves, especially for the location Kleine Binckhorst. This means
that Kleine Binckhorst has the most potential to benefit from improving the random moves,
especially the scenarios with 17 train units. To overcome this suboptimal arbitrarily action

27

Figure 3.6: Results of the initial measurement on the shunting yard Kleine Binckhorst.

selection, a search algorithm will be introduced. This search algorithm tries to extend the
deterministic agent to handle the changing arrival and departure sequences. Formulated
otherwise, a search algorithm will be used to handle the stochasticity found in the specified
arrivals and departures of the analyzed scenarios.

3.2 Scope of the problem

The scope of the problem can be defined from the shunting schedule system description and
the formulated inefficiencies. This research will focus on improving the shunting schedule
generation by optimizing the hyperparameter configuration and handling the stochasticity
found in the scenarios. The following aspect will not be included in this research:

An explicit coverage of the routing - the routing of trains is necessary to enable the
movements of trains on the shunting yard. This is formalized as the routing problem. The
routing is implied through the event scheduling simulation environment but not explicitly
analyzed or adjusted. Always the shortest possible routing option is chosen when traversing
from a start track to an end track.

3.3 Train Unit Shunting Problem through a deterministic agent

The main challenge is to increase the number of online created feasible shunting plans by
optimizing the deterministic agent. The problem of creating a shunting schedule online can
be formalized as follows:
Given:

• A shunting yard location with tracks

• and a scenario file with specified arrival and departure events

The deterministic agent needs to:

• Sequentially decide, for all the trains on the shunting yard, which action to take

Such that:

• All trains can arrive and leave the shunting yard unobstructed

28

• and no violations occur by selecting the wrong actions.

This challenge can best be formulated as a Constraint Satisfaction Problem. The main differ-
ence between a Constraint Satisfaction Problem and a typical optimization problem is that
Constraint Satisfaction Problem tries to generate a feasible solution with the given constraints
instead of an optimal solution regarding some objective function. Currently, a shunting plan
is called infeasible when the deterministic agent chooses an action that triggers a violation,
and a shunting plan is called feasible if all trains can leave the shunting yard unobstructed.
Therefore, the specified violations can be considered the constraints that have to be satis-
fied. The feasibility of each scenario will be represented through a boolean value and the
boolean values of multiple analyzed scenarios will form the objective function. Throughout
this thesis, we will focus on satisfying and improving the number of feasible solutions by
creating a framework of two different approaches. The first approach focuses on optimizing
the hyperparameter configuration of the deterministic agent, and the second approach will
improve the deterministic movement rules by incorporating a search strategy that will handle
the stochasticity.

3.3.1 Hyperparameter optimization

To optimize the hyperparameters, a model-based optimization method will be used. Model-
based optimization methods try to construct a mapping between a set of hyperparameters
and the resulting number of feasible solutions. This mapping will eventually be used to select
the best hyperparameter configuration. Sequential Model-Based Optimization (SMBO) puts
the mapping and selecting the optimal hyperparameter set in an iterative procedure to find
the optima of the objective function.

Figure 3.7: General optimization framework, adjusted for the actual problem (retrieved and modified
from Eggensperger et al. (2019)).

A graphical representation of such an iterative procedure is given (Figure 3.7). Our
work uses the iterative procedure as follows; a Bayesian Optimization (BO) technique will
be used as an algorithm configurator. The BO selects a hyperparameter set (θn) in the
configuration space by using its acquisition function. This hyperparameter set is used in our
TORS environment with the deterministic planner to solve multiple scenarios. Eventually,
the objective of a feasibility rate (cn) and an error term (εn) is returned to the BO. BO
creates the mapping between the hyperparameters and all historically obtained results. This
mapping is the surrogate model and the BO uses this surrogate model within an acquisition
function to select the best hyperparameter set to test next. With every iteration, the mapping
improves until a stopping criterion is met, which will end the optimization procedure. A

29

stopping criteria can consist of a predefined number of iterations. This is all while considering
problem-related contextual information (zn). The error term, on the obtained result, consists
of independently distributed values across the observations. The pseudo-code of a basic BO
formulation is formulated algorithm 1.

Algorithm 1: Bayesian Optimization Algorithm
Input: Algorithm A, acquisition function a, surrogate model f , iterations N , historical queried

configurations D, context z, configuration space Θ
for n = 1, 2, . . . , N do

Select; θn = argmax
θ∈Θ

a(f)

Calculate; c(θn, zn, εn) = A(θn, zn)
Update; Dn with (θn, zn, cn)
Calculate; f based on Dn

end

3.3.2 Handling of stochastic variables

The second part of the framework incorporates a search strategy that handles the stochasticity
that occurs when analyzing different problem instances. These stochastic variables are the
arrival and departure sequences that need to be considered when the deterministic rules cannot
distinguish different tracks with similar functions. The search strategy that will be used is the
Monte Carlo Tree Search (MCTS). The MCTS follows a tree structure where all the nodes
represent the states and the arcs represent the movement actions. Every MCTS iteration
adds a new trajectory and the success rate of that trajectory to the tree. Such a trajectory
represents the sequential selection of movement actions and after many iterations, Monte
Carlo estimates of the optimal movement become apparent. These Monte Carlo estimates
will be used to determine the best action for a particular train in a deterministic manner while
considering the current state of the environment. Moreover, these Monte Carlo estimates are
a deterministic manner to summarize the stochastic arrival and departure sequences.

The MCTS consist of four steps which are executed in an iterative manner. These steps are
repeated until the computational resources are exhausted. When the computational resources
are exhausted, the Monte Carlo estimates can be derived. Then, the environment moves to a
new state and the procedure starts again. The four steps of the MCTS are formulated below.

• Selection - From the current simulation state, also formulated as the starting node, a
tree policy is followed based on the earlier obtained MCTS values to traverse to a new
state.

• Expansion - On arbitrarily iterations, the tree is expanded to make the solution space
of the search tree larger.

• Simulation - Through the previous two actions, a state is selected, and from this state
onward, the policy used within the MCTS is changed from a tree based policy to a
random policy. This means that the remaining solution space is searched with a roll-
out algorithm. This is done until a terminate state is reached.

• Backup - The actions taken in the first two steps are then backed up. This is done by
keeping track of the number of passes and the success rate of each pass. This means
that the states visited during the simulation step are not backed up.

30

3.4 Research design

In this section, the setup of the research will be elaborated. Throughout this thesis, the prob-
lems formulated in the past chapter will be solved. The next chapter, chapter 4, will elaborate
on the application of the solution methods. Eventually, in chapter 5 the experimental data
is generated. This is done for both the challenges simultaneously. The results for all the
experiments are discussed in chapter 6 and in that chapter, some additional analyses will be
done. Finally, all findings of the research are concluded in chapter 7.

31

Chapter 4

Solution Methods

This chapter describes the proposed solution framework. The first part of the solution frame-
work consists of the details of the hyperparameter optimization through Bayesian Optimiza-
tion. The second part of the solution framework focuses on implementing a search strategy
through Monte Carlo Tree Search.

4.1 Bayesian Optimization for hyperparameter optimization

This section explains how the hyperparameter optimization method will integrate with the
TORS environment and the deterministic agent. After that, the surrogate modeling technique
and acquisition function of the Bayesian Optimization will be elaborated.

4.1.1 Adjustments to the TORS environment

The implementation of the hyperparameter optimization will be done with an optimization
framework. An example of a general optimization framework is given in Figure 3.7. As seen
in that figure, the algorithm configurator is placed as a wrapper over the algorithm for which
the hyperparameters need to be configured. A similar approach will be used throughout
this work. We will create a wrapper that will be placed over the TORS environment with
the deterministic agent. Our wrapper will be formulated such that the interaction between
the wrapper and the TORS environment with the deterministic agent only consists of the
hyperparameters’ values and the obtained results.

In total, eight continuous hyperparameters will be optimized through this wrapper. Each
hyperparameter equals the priority value of an action in the TORS environment and the
movement action will be divided into two hyperparameters. This means that the following
actions will be considered throughout the hyperparameter optimization: departure, split,
connect, setback, wait, service and the movement actions. The movement actions are divided
in two categories, namely, ‘move entering’ and ‘move internal’. These are only two categories
to control the dimensionality of the model and thereby cope with the curse of dimensionality
that would occur when all the movement actions are added individually. Besides that, the
underlying movement strategy is currently not considered as a bottleneck. With this deviation
of the movement actions, the entering movements are concerned with the movements that
have the gateway track as start track and the internal movements are all other possible
movements. The difference between these two categories is made because there is a visible

32

distinction in the defined priority values (see Table 3.2 for the location Kleine Binckhorst).
Besides that, the entering movements are more important than the internal movements since
a violation is triggered if the gateway track is fully occupied.

To combine the hyperparameter optimization with the initially defined movement strategy,
a combined priority value is created. This priority value consist of a part that is determined
through the hyperparameter and a part that has the value it is originally designed with. To
give an example for this; if a train on the location Kleine Binckhorst wants to move from
the gateway track to the service track, a priority value of 240 is originally given. This priory
value is split into 200 and 40 where the 200 can be modified through the hyperparameter
optimization, and the 40 is remained fixed to keep the original movement strategy intact.
Logically, the part determined through the hyperparameter optimization is equal in size for all
movements throughout the move entering and move internal category. Formulated specifically
for the location Kleine Binckhorst (Table 3.2), for the move entering actions, a value of 200
is subtracted, which will be determined through the hyperparameter optimization. With the
internal movements, this value becomes 100.

Besides that, the results have to be gathered. Usually, the TORS environment with
the deterministic agent creates a shunting plan as output. This output is changed to a
representation of the feasibility of the analyzed scenarios. The feasibility of a set of scenarios
is determined through a summation of the binary variables if a shunting schedule is feasible
or not. This value will be returned to the Bayesian Optimization wrapper.

Finally, an improvement is executed, which changes the structure of the optimization
wrapper. This is because the TORS environment with the deterministic agent is designed to
use only a single logical core of the computer while executing. This creates the opportunity
to run different TORS environments, each with a deterministic agent, simultaneously. In a
practical sense, this means that every TORS environment must be allocated to a predefined
set of problem instances. This means that the process is split into multiple subprocesses
before the simulation starts. When all the subprocesses are done simulating, the processes
join back to a single core to calculate the Bayesian Optimization. When processes are joined
back together, the results are aggregated too. This way of working means that it could happen
that a logical core must wait on another core, but roughly this decreases the computation
time with a factor m, where m is equal to the number of logical cores of a machine. The
machines used for the Bayesian Optimization have eight logical cores, which means that the
number of scenarios of the experiments is a multiple of eight.

The changes in the wrapper that is necessary to efficiently combine the Bayesian Optim-
ization and the TORS environment with the deterministic agent are graphically represented
(Figure 4.1).

4.1.2 Surrogate model and acquisition function

The surrogate or response surface model tries to map the selected hyperparameters and con-
textual information and the objective function while considering the noise. Different methods
can be used to create the response surface model. The best-known approaches are Gaus-
sian Processes (Rasmussen, 2003), Sequential Model-based Algorithm Configuration (Hutter
et al., 2010), and Tree-Parzen Estimator (Bergstra et al., 2011). The difference between these
approaches is that Gaussian Processes (GP) uses Gaussian regression models to create the
response surface model where the Sequential Model-based Algorithm Configuration (SMAC)
and Tree-Parzen Estimator (TPE) are using structures based on decision trees. Therefore,

33

Figure 4.1: Bayesian Optimization wrapper used throughout this thesis.

the SMAC and TPE approaches are better suited when considering a more general search
space consisting of categorical and discrete values. Subsequently, these approaches require
more evaluation iterations to give accurate predictions. When using GP with categorical or
discrete values, modeling tricks must transform the values into the correct format. The time
complexity of all approaches differs a lot. GP consists of matrix multiplications which have
a time complexity of O(n3) where n represents the dimension of the n× n matrix (Strassen,
1969). SMAC and TPE use decision trees and to give an indication of the time complexity,
binary decision trees are used. The time complexity of binary decision trees are dependent
on the number of nodes, when each node requires O(1) to calculate, the time complexity of
the decision tree is bounded by the depth of the tree. Then the decision tree has a time
complexity of O(n) where n represent the depth of the decision tree (Buhrman and De Wolf,
2002). Therefore, the preference of the computational complexity is in favor of the decision
trees; however, the number of necessary samples to give a solid prediction is lower with the
GP approach. This is because the SMAC and TPE require multiple observations with the
same hyperparameter configuration. Besides that, all the hyperparameters used throughout
this thesis are continuous variables that does not prefer a method over another.

In this research is chosen to apply the Gaussian Processes in the Bayesian Optimization
framework to create the surrogate model. This is because the TORS environment with the
deterministic agent is an expensive algorithm and therefore an approach is preferred that
requires the least number of samples from this expensive algorithm. Formulated otherwise,
the surrogate modeling technique is used that is as efficient as possible with the obtained
samples. Besides that, the underlying time complexity of the surrogate model does not
become a bottleneck. These computation times are negligible compared to the computation
times that arise when using the TORS environment with the deterministic agent more often.
Besides that, the GP work well when considering only continuous variables.

GP is a stochastic process, often referred to as a collection of random variables, such
that every joint distribution of those random variables has a multivariate Gaussian distribu-
tion, meaning that every linear relationship between those variables is normally distributed.
Another advantage of the GP is that conjugation of prior GP distributions still results in
a GP distribution. The similarities between multiple sets of hyperparameters are denoted
through a single Gaussian Process with GP (µ, k) where, µ : d is the mean and k : d × d is
the kernel or covariance-function, µ, k ∈ R. These single GP formulations can be extended to
multivariate Gaussian Process formulations. This requires an extension where the covariance

34

is transformed to a covariance matrix. The proof of this is elaborated in Girolami (2011).
Besides the surrogate model, an acquisition function is needed that indicates the best

following hyperparameter configuration to sample. Like formulated in chapter 2, there are
different acquisition functions that all have their properties. As a reminder, often used acquis-
ition functions are the Probability Of Improvement (Kushner, 1964), Expected Improvement
(Močkus, 1975), and Gaussian Process Upper Confidence Bound (Srinivas et al., 2009). Prob-
ability Of Improvement (POI) returns the hyperparameters based on the point where the most
improvement can be achieved. This can result in some strange behavior where the best point
is selected based on the current minimum, which is unrelated to the size of the improvement.
Subsequently, Expected Improvement (EI) is a modification on POI that considers the expec-
ted improvement in these cases. The last option is the Gaussian Process Upper Confidence
Bound (GP-UCB) that searches the highest valued upper confidence bound and returns that
hyperparameter set. With GP-UCB, the position is returned with the most potential to be the
highest evaluated set of hyperparameters. A more elaborated explanation on these methods
can be found in chapter 2.

a(θn,Dn) = µn−1(θ) +
√
βnσn−1(θ) (4.1)

θn+1 = arg max
θ∈Θ

a(θn,Dn) (4.2)

For this research, the chosen acquisition function is the GP-UCB. This is done with Equa-
tion 4.1 where the first term µn−1 is responsible for the exploitation of existing areas. The
second term σn(θ) represents the standard deviation at point θ. This term is responsible
for the exploration of new areas in the search space. The importance of both parts can be
determined with the constant β. When the upper bound is determined, the Equation 4.2
is used to determine the highest value. The highest value is then transformed to a set of
hyperparameters that will be sampled next.

The actual implementation of the wrapper that contains the Bayesian Optimization with
the surrogate modeling and the acquisition function is visible in the pseudo-code below.

35

Algorithm 2: Implementation of the Bayesian Optimization framework
Input: Context z, number BO iterations N , number of logical processes LP , Batch size B, set with

problem instances I, TORS environment with deterministic agent A.
Output: c(θn, zn, εn) after testing, c(θn, zn, εn) from DN

Initialize surrogate model f
Initialize queried training configurations D0

Create training set and test data by excluding a random sample of size B from instances I
for n = 1, 2, . . . , N do

if n < 10 then
Select hyperparameters θn ∈ Θ randomly

else
Calculate f based on Dn−1

Select hyperparameter set θn from acquisition function with argmax
θ∈Θ

a(θn−1,Dn−1)

end
Select training batch with size B randomly from training set
Create subprocesses equal to number of LP and divide training data over LP
Calculate result c(θn, zn, εn) for training data with the TORS environment with the

deterministic agent A(θn, zn)
Merge subprocesses and c(θn, zn, εn)
Update queried configurations Dn with (θn, zn, cn)

end
Select hyperparameter set θn with the highest c(θn, zn, εn) from DN
Create subprocesses equal to number of LP and divide test data over LP
Calculate result c(θn, zn, εn) for test data with the TORS environment with the deterministic agent
A(θn, zn)

Merge subprocesses and c(θn, zn, εn)

4.2 Monte Carlo Tree Search for handling stochastic variables

This section describes how the Monte Carlo Tree Search will be integrated with the determ-
inistic agent. After that, some aspects are formulated that will increase the computational
efficiency.

4.2.1 Adjustments to the TORS environment

The TORS environment is an event scheduling simulation environment that moves from state
s to state s′ by taking action a. Every state in this simulation environment represents a
summary of all the available information in a shunting yard. However, the problem solved
with the Monte Carlo Tree Search only relates to movement actions. This means that there
is redundant information in the state space representation, making the MCTS inefficient if
used. Therefore a MCTS state space is formulated that only considers tracks where the
stochasticity occurs. For the location Kleine Binckhorst this is on the service and parking
tracks. The stochasticity per type of track will be handled through individual models with
their own MCTS state space. Therefore, the explanation of the solution methods will only
consider the parking tracks for the location Kleine Binckhorst, but the service tracks and
the stochasticity on other shunting yard locations will be approached similarly. The MCTS
states are formulated by dividing the tracks into dedicated parking spots, which form an
MCTS state. The parking spots are based on the smallest train that is available in the
scenario. This means that when there are four tracks of 180 meters, and the smallest train is
60 meters, there are 12 parking positions. Every time a train is parked on these four tracks,

36

the state changes from s to s′. The actions that are responsible for the parking of trains
are defined as the tracks numbers. When an action is chosen, the train is parked behind the
trains on that specific track and if the track is empty the train is forwarded to the beginning
of the track.

These parking positions combined with the trains that arrive at a shunting yard are
transformed to a tabular format. This matrix will be used to store the data which will
be gathered in the backup phase. The states and actions are used to create a search tree of
simulated trajectories. A trajectory is created by parking trains on tracks sequentially until all
trains in the arrival sequence are parked. After all the trains in an arrival sequence are parked
on the tracks is checked if all trains can leave the shunting yard unobstructed, according to
the given departure sequence. The implementation holds two similar matrices, both matrices
count which trains are on what position in the last state of the trajectory. However, one
matrix counts all the solutions and one matrix counts only the feasible solutions. In this
manner, the feasibility of certain parking positions for specific trains can be determined.

The sequence in which trains arrive at the shunting yard is not how the trains are parked
on the parking tracks. This is because each train can overtake other trains while moving
towards the parking tracks. This happens for example when a train needs service, then that
train can easily be overtaken by another train that does not need any service. Therefore, the
arrival sequence is randomized with every MCTS iteration. This different arrival sequence will
eventually create all possible parking configurations. The MCTS iterations result in two filled
matrices that, when divided, show percentages of logically distributed parking possibilities
because it is impossible to place the train which has to leave first behind another train.

To use the MCTS properly, a communication mechanism will be placed between the MCTS
state space and the TORS environment with the deterministic agent such that the MCTS can
always provide the most actual information. This is realized by creating a reactive MCTS that
starts when the tracks are empty, then MCTS iterations fill the matrices. After the matrices
are filled, the deterministic agent continues assigning priority values to the actions and if
the deterministic agent cannot assign a priority value deliberated, additional information
is retrieved from the matrices. When the deterministic agent has assigned a priority value
to all the actions. The action with the highest priority value will be executed on the TORS
environment which lets the TORS environment move to the next state. Then the matrices are
emptied and the procedure starts again. This new iteration starts with transferring the new
occupation of the parking tracks to the MCTS state space and the matrices are renewed with
simulation results of the adjusted arrival sequence. This iterative procedure keeps supporting
the deterministic agent until parked trains start to leave the shunting yard. Then too many
changes are happening in the parking tracks for which the MCTS continuously has to update
the matrices without using any of the additional information in the system. Therefore is
chosen to end the MCTS when the parked trains are leaving.

The information will be retrieved from the matrices by analyzing which parking spot is
available per track, considering that the trains will be parked consecutively. Then, only the
first consecutive free parking spot will be used. This means that there is only one parking spot
per track considered. This track and parking spot refers to a specific row of the matrices, the
columns of the matrices refers to individual trains. From these matrices the Robust max-child
can be created by dividing the matrices through each other. The Robust max-child approach
uses the deviation between the number of feasible solutions and the total number of passes
(Chaslot, 2010). This resulting matrix is used to extract the data for a train, considering the
earlier formulated parking spots. This means that a list with length n is subtracted where n

37

Figure 4.2: Flow chart of the implementation of the Monte Carlo Tree Search.

is equal to the number of considered tracks. This list contains multiple fractions normalized
through a min-max normalization to determine the underlying importance of the considered
tracks with the specific spots. Then, when the deterministic agent assigns a priority value to
a move action, additional information in the subtracted list is added to the priority value. If
the MCTS are not able to find any good solution, the normalized values are 0. This means
that the MCTS is neglected, and no distinction between tracks will be made. Then still an
random choice between the different tracks will be made.

There are some differences when using the MCTS approach for the service tracks or other
shunting yard types. The first difference for the service MCTS is the arrival sequence. Since
not all trains need service, it does not make sense to use the complete arrival sequence.
Therefore, the arrival sequence is changed to the trains that need service which already have
entered the shunting yard. When a service action is finished, the service time becomes zero
and that train can leave the service tracks and will not be considered in the MCTS anymore.
The differences between a carousel shunting yard and a shuffleboard shunting yard can be
noticed in how the trains are parked. In the MCTS state space for both locations, the trains
are always parked closest to the side that is giving the shortest way to the gateway track.
In a carousel-like shunting yard with free tracks, the trains are forwarded to the beginning
of the tracks. With LIFO-tracks, on a shuffleboard shunting yard, the trains move when
another train arrives at the same track because the side of the track where the trains arrive
is the side of departure. This means that when two trains are on a track and a third will be
newly parked, both parked trains move to make room for the new train. In this manner, the
MCTS methods can be applied to both types of tracks. The implementation of the MCTS
is depicted in the flow chart Figure 4.2. Besides the elaborated basic implementation, some
speed-up methods are implemented that will be elaborated in the following paragraph.

4.2.2 Increasing computation efficiency

The MCTS follows a tree policy in the selection step. This tree policy normally follows the
highest-scoring trajectory that is visible in both the matrices. This means that the best

38

scoring trajectory is exploited. To improve on this mechanism and to improve the speed of
convergence, an Upper Confidence Bounds for Trees is introduced by Kocsis and Szepesvári
(2006). This method is based on the multi-armed bandit Upper Confidence Bound algorithm
developed by Auer et al. (2002) but then formulated to a tree structure. The Upper Confidence
Bounds for Trees is calculated on all possible actions, and the highest valued confidence
bound is chosen because that node gives the highest potential value and therefore gives the
best result if repeated enough. Equation 4.3 gives the formula for calculating the Upper
Confidence Bounds for Trees, and Equation 4.4 will be used to select the best node. Here
w(s,a) is the number of successful moves of the considered child node. The values N(s) and
n(s,a) are the number of simulation passes for the parent and child node respectively. The
first part of the formula (w(s,a)/n(s,a)) focuses on exploiting the current policy, and the last
part of the formula focuses on the exploration of other, better, policies. The exploration and
exploitation are balanced naturally through the design of the formula but can be modified
by the exploration parameter c > 0 if necessary. This parameter is theoretically equal to

√
2,

and a higher parameter means more exploration.

UCT(s,a) =
w(s,a)

n(s,a)
+ c

√
lnN(s)

n(s,a)
(4.3)

a = arg max
a

UCT(s,a) (4.4)

The Upper Confidence Bounds for Trees starts working after the backup matrices are filled
to a certain amount. This is because it needs some data before it can actually be used. Then
the Upper Confidence Bounds for Trees is followed until a moment is reached where the no
deliberated action can be made. If the Upper Confidence Bounds for Trees cannot return
an action the selection step will be ended and the MCTS continuous to the expansions step.
Another speed-up method is introduced by Gelly and Silver (2007). This method gives a Rapid
Action Value Evaluation of action a in state s. This means that the states that follow the
tree-policy and the states in the roll out phase are stored. This low variance approach could
enable a bias; normally, the bias is counteracted with a decaying weight. However, a bias does
not matter in our work since we are not looking for an optimal value but rather a feasible
solution; therefore, the decaying weight is not used. This Rapid Action Value Evaluation
extension is applied by saving the last obtained MCTS state. Then the information of both
the tree policy and the roll out will be considered.

Besides the scientific substantiated approaches, two heuristics are introduced. The first
heuristic ensures that the roll out phase of the MCTS is biased to create full tracks. This
bias is created by taking the matched number of a train that has to be parked and looking
at the matched number of the last parked train of all considered tracks. For every considered
track, the difference in matched numbers is calculated, and the positive value closest to 0 is
the best place to park the train behind. If there is no positive value, then the train is parked
on a new track. The second heuristic takes the combination action into account. If a train,
which is already parked, needs to be combined with another train, which is not yet parked,
it cannot create a feasible solution in the roll out phase unless these trains are parked behind
each other. This forces the MCTS to converge to solutions where the combined trains are
parked behind each other. When the sequential parking is successful, the MCTS continuous
normally.

39

4.2.3 Additional relocation heuristic

When analyzing the results of the initial measurement, a potentially helpful optimization
approach was discovered. It became apparent that for the carousel-like shunting yard, many
scenarios fail because of non-deliberated early moves. More specifically, if the first train
that arrives at a shunting yard has match number 16, then the most optimal track is being
chosen for that train. After that, a second train, with match number 15, arrives the most
optimal track is chosen again. Unfortunately, the most optimal track for the second train
is a new track because it cannot leave the shunting yard if parked behind the train with a
higher match number. Therefore, two tracks are occupied with only one train each, which is
suboptimal. This situation worsens when considering that match number 16 is the highest
matched number that should arrive at the shunting yard. To overcome this problem, another
heuristic is implemented. This heuristic ensures that when there are more than two tracks
occupied, with a single train on at least one of the tracks, a relocation action is proposed,
such that the MCTS can find a better-suited parking spot. When more than one tracks
have a single train on it, the train with the highest matched number will be relocated. To
enable the relocation, the implemented algorithm is depicted (algorithm 3). The effect of this
extra heuristic only works when using it in combination with the MCTS. This is because, the
deterministic agent will assign the same priority values, which will result in a similar parking
composition. This means that if the MCTS is not used the TORS environment only moves
backward and forward without changing the situation.

Algorithm 3: Improved relocation heuristic,
Input: Track layout k ∈ K,
Output: Increased relocation reward

ureloc = 0
for k = 1, 2 . . . ,K do

uposition = position of most right train in k
if uposition = 1 then

if ureloc > uposition then
ureloc = uposition

end
if ureloc > 0 then

Increase relocation reward for train ureloc

40

Chapter 5

Experimental Setup

In this chapter, the details of the experiments are elaborated. The experiments are divided
into two parts, one for each part of the framework. First, a description of the data is
given. Then the experiments for the hyperparameter optimization will be elaborated and
subsequently, the experiments that focus on handling the non-stationary variables will be
elaborated. The scenarios and specifications of the locations will be similar for the experi-
ments in both parts of the framework. This chapter ends with a description of the benchmark
algorithm used in the experiments.

5.1 Data generation

The TORS environment can simulate the creation of a shunting plan on every shunting yard
in The Netherlands. To create a shunting schedule, two files are necessary, these are the
location and the scenario files. This subsection will elaborate on the locations and scenarios
that will be used throughout all the experiments.

5.1.1 Locations

The experiments will be limited to two locations. The first location is Kleine Binckhorst
and the second location is a shunting yard named Idealized Location. These two locations
are chosen because of the different types of shunting yards that require a different planning
approach. The Kleine Binckhorst is a carousel-like shunting yard close to The Hague central
station and is one of the smallest shunting yards of the NS. Moreover, this shunting yard gives
a realistic aspect on the experiments. Therefore, this shunting yard is often used for research
purposes (van den Broek, 2016; Lee et al., 2020). The Idealized Location is a small non-
existing shunting yard containing a shuffleboard-like layout. Each location will be elaborated
on in detail.

Kleine Binckhorst

The shunting yard Kleine Binckhorst consists of thirteen different tracks (Figure 5.1). This
shunting yard contains one gateway track denoted with number 15, eighth parking tracks,
indicated with numbers 2 to 8. Two dedicated service tracks are denoted with numbers 11
and 12 and finally, one dedicated relocation track, represented with number 13. Track number
10 is used in the TORS environment, but this track is only used as a transfer track to enable

41

the routing. All the routing possibilities and the dedicated lengths for each track can be seen
in Figure 5.1.

Track 2 3 4 5 6 7 8 9 11 12 13 15

Track length (m) 480 399 387 357 222 202 203 182 247 247 271 275

Figure 5.1: Graphical representation of the shunting yard Kleine Binckhorst, darker parts are only
considered by the TORS environment (retrieved and adjusted from www.sporenplan.nl). The lengths
of the tracks are given in the table accordingly.

Idealized location

The second location is the Idealized Location, this is a shunting yard that consists of five
tracks. There is one gateway track, three parking tracks, and one relocation track denoted
with 0, 2, 3, 5, 6, respectively. All these tracks and the dedicated lengths are visible in a
graphical representation (Figure 5.2). The difference with the shunting yard, Kleine Binck-
horst, is that there is no dedicated service track which means that service scheduling will not
be considered in these experiments. This also means that the service action will be neglected
in these scenarios.

Track 0 2 3 5 6

Track length (m) 400 500 500 500 500

Figure 5.2: Graphical representation of the idealized shunting yard, the darker parks are considered in
the simulation model. The lengths of the tracks are given in the table accordingly.

5.1.2 Instance generator

Each scenario contains the arrival and departure sequences that will be simulated. These
sequences cannot be made randomly, this is because the incoming trains need to be aligned
with the outgoing trains. Besides that, a train cannot depart at time t while the planned
arrival is at t + 1. Therefore, an instance generator is used. This instance generator is

42

www.sporenplan.nl

developed within the NS to make real-life scenarios by balancing the arrival and departures
and ensuring reasonable time for service activities. Throughout all the instances that will
be used in our experiments, all the trains arrive before the first train’s departure, and like
mentioned before, the maximum number of train units in a departing train is two. Both
are done to control the complexity of the instances. The scenarios for the location Kleine
Binckhorst are different from the idealized location. Therefore, the scenarios for each location
will be described individually. The trains considered in both locations are the SNG, SLT, and
VIRM trains, with three and four carriages for the SNG trains and four and six carriages for
the SLT and VIRM trains. For all these trains the lengths are given (Table 5.1).

Table 5.1: Length per train type and subtype

Train type SNG-3 SNG-4 SLT-4 SLT-6 VIRM-4 VIRM-6

Length (m) 60 76 70 101 109 162

The scenarios of the different locations cannot be compared to each other. This is because
these scenarios are specifically generated per location and each location has its own specific-
ations, with the associated complexity. For example, the shunting yard Kleine Binckhorst
contains more tracks and all tracks together are longer if compared with the Idealized Loca-
tion. Besides that, the location Kleine Binkhorst consists of service tracks and the Idealized
location not. The number of train units per location is determined by balancing the complex-
ity between the scenarios on a similar location. With this, all scenarios must be reasonably
complex to be solved by the deterministic agent. This means that all trains fit on the shunting
yard, but no experiment will have a feasibility performance that is near 100%, without any
applied optimization techniques. Therefore, each location consists of three types of scenarios,
all with different quantities of train units. The experiments for the location Kleine Binckhorst
contain 15, 16 and 17 train units and the experiments for the Idealized Location contain 10,
12 and 14 train units.

Scenarios for the Kleine Binckhorst

The scenarios used in the experiments for the Kleine Binckhorst consist of 15, 16, and 17
train units named scenarios A, B, and C, respectively. With scenario A, the total train units
are equal to the outgoing trains, indicating no combination is required, only splitting. This is
not the case for scenarios B and C, here trains have to be split and combined. If the incoming
train units is equal to the outgoing train units, still a split and combine action is required.
Throughout these scenarios, the train unit types are set to SLT and VIRM with subtypes of
four and six. The distribution of types is given for all number of trains units considered in
the scenario (Table 5.2). Train units of a similar type can be combined in a departing train.
The sets of departing train units for the SLT train types are {SLT-4, SLT-4} and {SLT-4,
SLT-6}. Equally, for the VIRM train unit types, the sets {VIRM-4, VIRM-4} and {VIRM-4,
VIRM-6} can be made. Besides these combinations, every train type can be a departing train
individually. The scenarios of the shunting yard Kleine Binckhorst include a representation
for the service times. A representation of a complete scenario of scenario type C is visible in
Table 5.3.

43

Table 5.2: Composition of three scenarios for the location Kleine Binckhorst with the total train units,
the incoming train units, the outgoing train units and the number of train units per type.

Number of train units Number of train units per type

Scenario Total Incoming Outgoing SLT-4 SLT-6 VIRM-4 VIRM-6

A 15 13 15 3 3 5 4
B 16 14 15 3 3 6 4
C 17 16 16 4 4 5 4

Table 5.3: A shunting scenario, generated by the instance generator. A scenario contains events
that enable the arrivals and departures of trains at a shunting yard. These arrivals and departures
correspond to one or more train units that subsequently correspond to a service time and match number.

Event
Number

Event
type

Time of
event

ID(s)
Display
name(s)

Service
time(s)

Matched
number

0 In 51074 2601 SLT6 0 1
1 In 40357 9401 VIRM4 1380 12
2 In 48744 2602, 2401 SLT6, SLT4 780, 540 9, 6
3 In 47214 9402 VIRM4 1380 15
4 In 50713 2603 SLT6 0 14
5 In 57037 2604 SLT6 0 8
6 In 40820 9403 VIRM4 1380 5
7 In 58876 2402 SLT4 540 2
8 In 39997 9404 VIRM4 1380 4
9 In 59625 8601 VIRM6 2100 13
10 In 59264 8602 VIRM6 0 3
11 In 61447 9405 VIRM4 1380 11
12 In 63576 2403 SLT4 540 16
13 In 57945 2404 SLT4 540 1
14 In 49104 8603 VIRM6 2100 7
15 In 45777 8604 VIRM6 0 10
16 Out 77632 2601, 2404 SLT6, SLT4 NA 1
17 Out 77271 2402 SLT4 NA 2
18 Out 78768 8602 VIRM6 NA 3
19 Out 79489 9404 VIRM4 NA 4
20 Out 84908 9403 VIRM4 NA 5
21 Out 80569 2401 SLT4 NA 6
22 Out 77992 8603 VIRM6 NA 7
23 Out 82654 2604 SLT6 NA 8
24 Out 84477 2602 SLT6 NA 9
25 Out 83716 8604 VIRM6 NA 10
26 Out 79128 9405 VIRM4 NA 11
27 Out 79849 9401 VIRM4 NA 12
28 Out 82098 8601 VIRM6 NA 13
29 Out 80209 2603 SLT6 NA 14
30 Out 81012 9402 VIRM4 NA 15
31 Out 85337 2403 SLT4 NA 16

44

Scenarios for the Idealized location

The experiments for the idealized location consist of scenarios with 10, 12, and 14 train
units referred to as scenarios D, E, and F, respectively. With these scenarios, the number of
incoming trains and outgoing trains differ per scenario. This is visible in Table 5.4. Therefore
contain all the scenarios split and combine actions. In these scenarios, the train unit type
SNG has a subtype of three and four and the SLT and VIRM types have a subtype of four and
six. With each number of train units, a unique distribution of the train type and subtypes
are given (Table 5.4). In the scenarios of the idealized location, every number of trains will
contain train units that have to be combined to match a departing train. The combinations
that can be made in the idealized location are in the sets of {SNG-3, SNG-3}, {SNG-3, SNG-
4}, {SLT-4, SLT-4}, {SLT-4, SLT-6}, {VIRM-4, VIRM-4} and {VIRM-4, VIRM-6} for the
SNG, SLT and VIRM types respectively. In contradiction to the scenarios generated for the
shunting yard Kleine Binckhorst, the idealized location scenario does not consider service
times.

Table 5.4: Composition of three scenarios for the location Idealized Location with the total train units,
the incoming train units, the outgoing train units and the number of train units per type.

Number of train units Number of train units per type

Scenario Total Incoming Outgoing SNG-3 SNG-4 SLT-4 SLT-6 VIRM-4 VIRM-6

D 10 8 6 2 2 2 1 1 2
E 12 9 6 2 2 2 2 2 2
F 14 11 8 2 2 3 2 2 3

5.2 Experiment description for hyperparameter optimization

This section will describe the experiments related to the first part of our framework, namely
the hyperparameter optimization. This is done by elaborating the design of the experiments,
the parameter setting and performance metrics.

5.2.1 Experimental design

The experiments related to hyperparameter optimization will be executed on the determ-
inistic agent without any applied enhancements. The experiments described in this section
are executed for both locations. Throughout these experiments, contextual information is
considered which is the deviation of the scenarios that are formulated in the previous section.

Before the Bayesian Optimization framework can be used, some information must be
present to compute the surrogate model. Therefore, each hyperparameter optimization
method will start with random iterations not selected through the Bayesian Optimization
technique. Each hyperparameter optimization approach will begin with nine random itera-
tions. After these nine iterations, it is still possible that no feasible solutions are obtained.
Therefore, we will investigate if a warm start method will provide an advantage to our op-
timization model. Lindauer and Hutter (2018) described an approach for warm starting a
model-based algorithm configuration. This approach is named warm starting Initial Design
(INIT) and will consider selecting a predefined hyperparameter set that has proven to give
reasonable results. The advantage of such a start procedure is that it substantially speeds up

45

the hyperparameter optimization but can introduce a bias to the search space. The hyper-
parameters that have proven to give reasonable results are the priority values it is originally
designed with. Therefore, these hyperparameters will be used throughout this experiment.
Besides, the effects of a bias in the search space are not considered a problem since it is
reasoned that the optimal solution contains similarities with the default hyperparameter set.

After the random iterations are executed, the number of Bayesian Optimization iterations
has to be determined. This number determines how often the optimization cycle is repeated.
Selecting the right number of iterations is complex since too many iterations create inefficient
computation times while the quality of the obtained solution can decrease. The quality of a
solution can decline with a larger number of iterations since the model searches for a hyper-
parameter configuration that is optimal on the training data, which cannot be generalized to
the test data. Formulated otherwise, the Bayesian Optimization is over-fitting on the training
data. Contrarily, early stopping the iterations might be possible in some situations and can
improve the quality of a found hyperparameter solution. However, then it might be hard to
determine the reliability of a solution (Falkner et al., 2018). Since there is no strict manner
to determine the right number of iterations, this is determined empirically. The empirical
evidence will be gathered through experiments for every location, with these experiments the
Bayesian Optimization is executed with a large number of iterations. Every time the Bayesian
Optimization finds an improved hyperparameter configuration, it is tested on the test set. By
keeping track of the training and test results with a large number of iterations the conver-
gence rate of the Bayesian Optimization approach can be noticed. Eventually, after a large
number of iterations the Bayesian Optimization procedure is not able to improve the training
and test results further. When that moment is reached, the required number of iterations
for convergence empirically be determined. This will be done by selecting the number of
iterations in which the Bayesian Optimization has enough time to converge without creating
inefficient computation times. The maximum number of iterations for the Bayesian Optim-
ization is set to 250 iterations and these experiments are executed with and without a warm
start procedure. This warm start procedure is added to see if convergence can be achieved
faster. For these experiments, the training and test batch sizes are set to 80 scenarios.

For the hyperparameter optimization, a division must be made between a training and
test set. From this training set, a batch is taken that is used to train the model. When
the optimal hyperparameter configuration is found, a similar-sized batch is taken to test the
model, this will be referred to as the test set. Distributing the data in a training and test set
is done with a holdout method. This means that the scenarios in the test set are extracted
from the training data, these cannot be seen during the training phase. Both the training
and test data require a batch of scenarios. Determining the size of these batches is a delicate
procedure, often in machine learning problems, a too small batch size is chosen. This leads
to a poor generalization to the test data and introduces the possibility to overfit on the
training data. However, selecting a too large batch size can create inefficient experiments due
to the exhaustive computation times. Therefore, a smaller batch size is cheaper in terms of
evaluation but will result in less accurate predictions.

There are no standardized approaches to determine the right batch size, therefore will
the batch size be determined empirically. To empirically determine the right batch size,
an experiment is created that executes a set of Bayesian Optimization iterations with an
increasing batch size per experiment. For both locations, batches of 64, 80 and 96 scenarios
are created. These numbers are chosen because the used machines can simulate eight TORS
environments simultaneously. Besides that, it is expected that the large deviation between

46

lowest and the highest batch size gives a clear representation of over-fitting. To increase the
robustness and prevent over-fitting even more, a new training batch is sampled with every
Bayesian Optimization iteration, which is a common approach (Hutter et al., 2013).

After determining the right number of iterations and the right batch sizes, the experiments
of the Bayesian Optimization are executed. As formulated earlier, the contextual information
represents the number of train units considered in a scenario. As can be seen in tables Table 5.2
and Table 5.4 the scenarios give insight into the difference in complexity. The quantities of
the incoming and outgoing trains differ with the total train units, this indicates split and
combine actions that require a more complex planning strategy. Besides that, the train types
considered in each scenario differ, indicating different lengths of trains and different strategies
to create a shunting plan.

The following two experiments focus on analyzing the importance of contextual informa-
tion with Bayesian Optimization. The first experiments use the Bayesian Optimization and
compare it with a TORS environment with the priority values it is originally designed with.
This original priority values will be referred to as the default hyperparameters and can be
found in Table 5.5. The comparison with these default hyperparameters is made because
these parameters represent the best scenario that could be created through the intuition of
human planners. Both the training and test data do not consider any contextual information
for both experiments, which means that no distinction is made between different scenarios.
The second experiments considers the contextual information per scenario. Here, multiple
smaller experiments are created based on the differences that can be found in each scenario.
Per scenario, an experiment will be used to show the difference between the default hyper-
parameters and the Bayesian Optimization approach to determine the hyperparameters.

Table 5.5: Priority values of the initial designed deterministic agent per action and per location.

Experiments Connect Depart
Move

entering
Move

internal
Service Setback Split Wait

Kleine Binckhorst 280 400 200 100 360 200 380 100
Idealized Location 320 400 300 100 NA 260 320 100

5.2.2 Defining the search space

Eight different hyperparameters need to be optimized. Each hyperparameter equals the prior-
ity value of an action in the TORS environment and the movement action will be divided into
two hyperparameters. All these hyperparameters together form the search space. Throughout
this research, we want to give the Bayesian Optimization model the opportunity to search
all possible priority configurations. Therefore, all these hyperparameters are tested in equal
finite domains, with an under bound of 0 and an upper bound of 400. The upper bound is
set to 400 because that is the maximum value specified in the default hyperparameters and
therefore can similar ranges be guaranteed.

5.2.3 Objective and performance metrics

The objective and performance metrics are elaborated for the hyperparameter optimization.
These performance metrics can be used to compare the results of the experiments between
the different experiments and obtain the best hyperparameter setting.

47

First-time-right performance - The first-time-right performance relates to the objective
formulated in chapter 3. To repeat on that shortly, the first-time-right performance is when a
scenario has been solved without any violation of the constraints. A scenario has been solved
when all the arrivals and departure events formulated in the scenario file can be executed.

After the first-time-right performance is calculated, the difference between the optimized
hyperparameters and the default hyperparameters will be statistically determined through a
t-test (Student, 1908). With this test is determined if the difference between the two means
is sufficient to be called significant.

5.3 Experiment description for handling stochastic variables

This second part will give a detailed description of the experiments regarding the non-
stationary variables. First, the design of the experiments will be elaborated. After that,
the parameter settings and the performance metrics are formulated.

5.3.1 Experimental design

For the experiments regarding the handling of the non-stationary variables, experiments are
created. The first set of experiments consist of the default hyperparameter configuration. The
default hyperparameter configuration consist of the priority values that the NS used while
designing the TORS environment. These experiments are applied to the locations Kleine
Binckhorst and the Idealized Location, each with their own scenarios that will be tested. For
the location Kleine Binckhorst three different experiments will be created;

• Plain heuristics - With this experiment, the TORS environment with the deterministic
agent is used without any improvements. This experiment is created to set a perform-
ance baseline.

• With MCTS - Within this experiment, the TORS environment with the deterministic
agent is extended with the MCTS.

• With MCTS and relocation - With this experiment, the TORS environment with the
deterministic agent is extended with the MCTS in combination with the advanced
relocation heuristic.

For the Idealized Location are the first two experiments used. The third experiment is not
relevant since the deterministic rules for the Idealized Location are designed to take more
complex relocation movements into account. The Idealized Location requires more complex
relocation actions because the location is designed with fewer but longer tracks. Besides that,
the Idealized Location only consist of LIFO-tracks.

Eventually, the model that reaches the highest feasibility rate on all the scenarios will
be compared with a benchmark algorithm. This benchmark algorithm will be elaborated in
section 5.4. This benchmark algorithm will be tested on the formulated scenarios for both
locations.

For these experiments, the data does not have to be divided into a training and test set.
In this case, it is more important to guarantee the accuracy of the performance metrics. This
is done by calculating the number of simulation runs suited to create a certain margin of
error. To calculate the number of runs per experiment, the Central Limit Theorem is used
(Boon et al., 2020). Central Limit Theorem provides a means for determining the number

48

of iterations for a simulation model to give an accurate performance metric. This is done
by estimating σ by doing a small number of simulation runs. In our research, to calculate
σ, 25 simulation iterations are done. With this σ the required number of iterations can be
calculated to obtain a (1 − α)% confidence interval based on the margin of error ε. The
formula to calculate the number of runs is given in Equation 5.1. For our research, we want
to obtain experiments with a confidence of 95%, with a margin of error of 3%.

n >

(
Zα/2 · σ

ε

)2

(5.1)

Due to many experiments, only a single group of experiments is used to calculate the confid-
ence and accuracy levels. This will be the scenario with 17 train units for Kleine Binckhorst’s
location because this is the most complex scenario. For the experiments, plain heuristics,
with MCTS and with MCTS and relocation the number of iterations are 1,041, 1,060, 1,010
respectively. To compensate a little for the exhaustive computation time, the number of itera-
tions n is set to 1,000. This means that the accuracy increases from 3% to around 3.1%. With
an accuracy of 3.1% the number of iterations becomes 988, 997 and 951 for the experiments,
plain heuristics, with MCTS and with MCTS and relocation, respectively.

5.3.2 Parameter settings

The MCTS has multiple parameters that can be used to guide the search process. First,
the computational resources. The MCTS uses computational resources to determine the
number of MCTS iterations. Commonly, the computational resources are expressed by a
computation time in which the MCTS must be able to generate as many results as possible.
When such an approach is used, the computation time needs to be long enough to gather
enough information but does not need too long such that unnecessary iterations are done.
To overcome this dilemma, the number of iterations will be used instead. Therefore the
computational resources are replaced by a counter that counts the number of iterations and
successful iterations. When the MCTS for the location Kleine Binckhorst reaches 1,000
successful iterations or 10,000 non-successful iterations, the procedure terminates, and the
filled table can be used to obtain the best possible move. For the Idealized Location, this is
set to 750 successful iterations and 20,000 non-successful iterations. The difference between
the parameters per location originates from complexity in the scenarios that arise through
the split and combination actions. The number of splits and combine actions is higher on the
Idealized Location since all scenarios require more split and combine actions and fewer tracks
are available to execute these actions.

The MCTS has a hyperparameter to balance the exploration and exploitation trade-off, for
this research, this parameter is set to 0.1 to focus more on the exploration. This parameter is
set to a low value because the RAVE speedup technique ensures that the values are exploited
enough.

5.3.3 Objective and performance metrics

The objective and performance metrics for these experiments will be used to compare the
different results and eventually compare them to benchmark studies. The performance metrics
are;

49

1. First-time-right performance - The first-time-right performance relates to the objective
formulated in chapter 3. To repeat on that shortly, the first-time-right performance is
when a scenario has been solved without any violation of the constraints. A scenario
has been solved when all the arrivals and departure events formulated in the scenario
file can be executed.

2. Violations - This performance metric keeps track of the violations that can occur in
the TORS environment. Every time a shunting plan is infeasible is counted which
violation has been violated. These violations can give insights into the quality of the
used extension of the deterministic agent. The violations considered throughout this
work are formulated in section 3.1.3.

3. Computation times - The computation time for all experiments are tracked. These can
be used to compare the different methods. The computation time differs per location,
this is dependent on the number of available actions, which is higher in the shunting
yard Kleine Binckhorst. However, this also depends on the computational power of the
used machines. Throughout this thesis, two different machines are used, and since the
shunting yard Kleine Binckhorst is more expensive to compute, a heavier machine is
used. The heavy machine contains an Intel Core i7-4710HQ 4th Gen quad-core 2.5-
3.5GHz 6MB Cache with 16 GB of RAM and the lighter machine, which is specifically
used for the Idealized Location, contains an Intel Xeon Platinum 8272CL-processor
dual-core 2.5-3.4GHz with 16 GB of RAM.

5.4 Benchmark algorithm

A benchmark algorithm is used to give a comprehensive view of the experiments and compare
the solutions. The benchmark used throughout this research is the local search algorithm de-
veloped by van den Broek (2016), named HIP. This benchmark algorithm uses a local search
model to improve some candidate solutions gradually. The candidate solution is formulated
as an activity graph that represents the shunting schedule. This graph is then used in the
simulated annealing, a stochastic variant of a local search algorithm, to make local changes
to the schedule and create a feasible shunting schedule. A graphical representation of that
approach is given earlier (Figure 2.2). This approach is currently implemented in the soft-
ware tools to support the planners of the NS. This benchmark algorithm can be used with
the earlier defined location and scenario files. Therefore an equal difficulty in scenarios can be
guaranteed. However, it should be taken into account that the way of generating the shunt-
ing schedule differs. The local search algorithm generates a shunting plan by analyzing the
solution holistically. If a disturbance occurs, the complete solution has to be rescheduled and
no information about the old solution is maintained. This makes the local search approach
less suitable for realistic scenarios that experience disturbances because it will be inefficient
to reschedule the complete solution with disturbances continuously. That is the main differ-
ence with our approach, the considered deterministic agent can create a shunting plan while
executing, which prevents the rescheduling of the solution with disturbances. Consequently,
the violations or computation times cannot be compared directly, but only, the number of
feasible solutions will be compared to indicate the performance against the benchmark.

50

Chapter 6

Results

This chapter will elaborate on the results obtained when implementing the optimization
framework to increase the feasibility rate of the TORS environment with the deterministic
agent. The first part shows the results of the hyperparameter optimization, which will be
used to configure the optimal deterministic agent. After that, the results of the second part of
the optimization framework are elaborated, focusing on enhancing the deterministic agent’s
search capabilities.

6.1 Hyperparameter optimization

Before the results of the hyperparameter optimization are formulated, the robustness of the
analyses is determined. This robustness is determined by selecting the right training paramet-
ers. The training parameters consist of choosing the optimal number of iterations necessary
for convergence and selecting the right batch size to prevent overfitting the results. After
that, the results of experiments regarding the context-free and contextual hyperparameter
optimization methods are elaborated, and finally, the best hyperparameter configuration is
selected which is used throughout the resulting experiments.

6.1.1 Training parameters

There is no standardized approach to determine the number of Bayesian Optimization itera-
tions necessary for a robust experiment. Therefore, the first set of experiments will be used
to empirically determine the stopping criteria of the Bayesian Optimization repetitions. The
stopping condition determines at which point to stop the search for better fitting solutions.
Choosing the correct value is a delicate procedure because a value too small will result in a
flawed model that will not converge to a better solution, and a value too large can result in
overfitting the model. Besides that, this section elaborates the results when the warm starting
Initial Design (INIT) approach is added to the model. The INIT approach uses a predefined
hyperparameter set that has proven to give the reasonable result to start a model-based al-
gorithm configuration approach. The predefined hyperparameters that have proven to give
reasonable results are the hyperparameter that are used while designing the deterministic
agent. Therefore, these hyperparameters will be used in the warm starting procedure.

This experiment is executed as follows, every time the BO finds an improved number
of feasible scenarios, the hyperparameters configuration is stored and these hyperparameters

51

are tested against the test set. Then, the feasibility rates, of the training and test data, are
stored and the BO procedure continues until another improvement in the number of feasible
scenarios is found. This iterative procedure is repeated until 250 different hyperparameter
configurations are analyzed. After that, the rate of convergence will be analyzed and the
number of iterations will empirically be determined. For these experiments, the batch sizes
of the training and test data are set to 80 scenarios. These experiments are executed for
the location Kleine Binckhorst and the Idealized Location with the experimental setups B
and E, respectively. These are used because these experiments have a medium complexity
compared with the other experiments on similar locations. Therefore, this will generate
the most divisive and robust results. Logically, the deterministic agent is used without any
additional enhancements.

The results of the experiments are given for both locations (Figure 6.1). The solid lines in
both graphs indicate the BO iterations and every time the model finds a better solution, the
line increases to that value. The dotted lines represent the test results. The color differences
show the difference between the warm start approach and the regular Bayesian Optimization
approach.

Figure 6.1: Number of iterations to convergence, with and without guidance for training and test
instances. Guidance means the first Bayesian Optimization iteration with the default hyperparameter
configuration.

The results show that the training phases of both locations can create improvements
when the number of iterations increases. The location Kleine Binckhorst gives only a single
improvement when considering the Bayesian Optimization without the warm start procedure.
A rationale for this is that only eleven solutions were found that did not returned zero feasible
scenarios in the whole experiment without the warm start approach. When using the warm
start procedure, more than 100 solutions were found that did not return zero. The first eleven
hyperparameters for both locations are depicted Appendix A. After an in-depth analysis it
became apparent that the hyperparameters of the Kleine Binckhorst have to be better aligned
with each other to create a feasible solution. This means that the hyperparameters of the
Idealized Location have to be less accurately aligned. A reason for this can be found in the
design of the shunting yard. The Idealized Location requires more relocation movements
and therefore the timing of certain actions (e.g. the timing of a connect action) has to be
less accurate than on the Kleine Binckhorst since there are multiple moments to execute the
action. Formulated otherwise, for the Idealized Location the deterministic agent can simply

52

keep relocating trains until an action becomes feasible and then the action can be executed.
Therefore, the feasible region, in the configuration space of all the hyperparameters, is smaller
and thereby harder to be found for the Kleine Binckhorst when not using any guidance.

When using the warm start procedure on the Kleine Binckhorst, multiple improving hy-
perparameter configurations are found that show improving results on the test data. This
means that the found hyperparameter set can be generalized to the test set. Therefore can be
concluded that the warm start approach has the desired effect for the location Kleine Binck-
horst. The results are improved when using the warm start approach while the computation
times remain efficient. Since the hyperparameters do not improve after 19 Bayesian Optim-
ization iterations is decided to set the maximum number of iterations for the experiments
related to the location Kleine Binckhorst to 30 iterations.

Then the results for the Idealized Location, the BO approach for the idealized location, is
depicted in the right figure (Figure 6.1). The improvements without the warm start approach
show a gradual increase in training results. This improvement can also be found in the
test results. When the warm starting procedure is added, similar gradual improvements can
be found, but the time frame in which the results are gathered is substantiated shorter, this
while the found solutions can be generalized to the test data. Therefore can be concluded that
the warm start approach has the desired effect for the Idealized Location. This warm start
extension will therefore be used throughout the following experiments. The last improvement
iteration for the Idealized Location with a warm start procedure is found after 68 iterations.
Therefore is decided to set the number of iterations for the experiments related to the Idealized
Location equal to 80.

The second set of experiments determines the number of scenarios within a batch used
for the training and test data. This batch size is determined empirically since this is a
complex procedure because too few scenarios in a batch mean that the solution cannot be
generalized on the test data. On the other hand, a batch size that is too large will not
overfit the data but is suboptimal since it adds expensive computation time. To test the
generalization, an experiment with an increasing number of batch sizes is trained and tested.
The experimental setup for the Kleine Binckhorst location consists of the BO with batch
sizes of {48, 64, 80, 96} and for the Idealized Location, these batch sizes become {64, 80,
96}. By including the 48 scenarios in a batch, for the location Kleine Binckhorst, the model
is empirically tested on a batch size with more efficient computation times. This difference is
made because the computation times of the Kleine Binckhorst are substantiated larger than
for the Idealized Location. The training and test results will be averaged over eight different
runs to ensure stability in the results. This experiment will be executed with the deterministic
agent without enhancements for the location Kleine Binckhorst and the Idealized Location
with experimental setup C and E, respectively. These setups give a good indication of the
right batch size considering the complexity of all the instances. The results of the training
and test data are presented (Figure 6.2).

Both graphs give the percentage of solved instances per batch size. The left chart displays
Kleine Binckhorst, and the right graph shows the results for the Idealized Location. The
points are averaged over eight runs where the error regions show the size of the standard
deviation. Note that the number of Bayesian Optimization iterations is 30 and 80 for the
Kleine Binckhorst and Idealized Location, respectively. With both experiments, the warm
starting approach is used. By using the warm starting approach, an under bound is created
that creates a certain rate of convergence which minimizes the fluctuations and severity of
the error regions.

53

Figure 6.2: Average and one standard deviation of eight training and test data iterations to determine
the batch size.

Both locations show that a batch size with fewer scenarios generalizes the solution found
on the training data to the test data worse. This means that the smaller batch sizes are more
overfitting the training data compared with larger batch sizes. With every batch size for the
location Kleine Binckhorst, there is a difference in performance between the training and test
results. This is minimized with a training batch size of 64 or 80 scenarios. However, the
deviation within the training set with a batch size of 80 is more minor and therefore more
stable. Thus, the batch size for the location Kleine Binckhorst is set to 80 scenarios. With
the Idealized Location, the training results can be generalized to the test data with the batch
sizes that contain 80 and 96 scenarios. The ideal batch size consists of 96 scenarios since
that point contains the slightest difference and variation between the training and test data.
Therefore, the batch sizes used throughout the following experiments consist of 80 and 96
scenarios for the locations Kleine Binckhorst and the Idealized location, respectively.

6.1.2 Experiments without contextual information

The experiments related to the contextual-fee hyperparameter optimization techniques will
be elaborated on first. These contextual-free methods do not consider any contextual inform-
ation. With these experiments, we tend to show the difference between the hyperparameters
used while designing the deterministic agent and the optimized hyperparameters. Besides
that, the results of these experiments show if a general hyperparameter set is better to solve
the scenarios of the TUSP than specialized hyperparameter configurations. This section tests
the hypothesis; an optimized hyperparameter set does not increase performance compared
with the default hyperparameters. If the hypothesis is rejected, the BO performs better
on both the training and test data, which means that an optimized and generalized hyper-
parameter configuration leads to more feasible scenarios than the default hyperparameter
configuration.

To test this hypothesis, an experiment is created that does not consider any of the con-
textual information. This means that there is no information available that separates the
scenario files. This experiment consists of both the location Kleine Binckhorst and the Ideal-
ized Location. To create an experiment that is reliable, each experiment will be the results
of 15 different runs. For both the training and test data, statistical evidence is gathered by
executing a t-test (Student, 1908). This t-test determines if the difference between the optim-

54

Figure 6.3: Percentage of solved instances with the original hyperparameter setting and with best
hyperparameter configuration found by the Bayesian Optimization.

ized hyperparameters and the default hyperparameters is significant, considering the mean of
both experiments. Note that a deterministic agent without enhancements is combined with
the earlier defined iterations and batch size. The best hyperparameter configuration and the
resulting test and training scores are depicted in Appendix C and a summary of the results
is visualized in Figure 6.3. The training and test data for the optimized and default hyper-
parameter sets are displayed through violin plots. Each violin plot gives the distribution of
the eight different points. With these plots, a larger size of the violin means a denser region.
The center of each violin consists of a miniature boxplot.

The violin plot and the boxplot for the location Kleine Binckhorst distinguish between
the default hyperparameter configurations and the optimized hyperparameter configuration.
Here, the optimized hyperparameters perform significantly better on the training data (t(20) =
3.68, p = 0.001). On the test data the optimized hyperparameters perform significantly
worse than the default hyperparameters (t(28) = −1.85, p = 0.038). The other violin
plot, for the idealized location, clearly distinguishes between the default hyperparamet-
ers and the optimized hyperparameters in the training data. This difference is significant
(t(22) = 9.76, p < 0.001). This phenomenon cannot be observed within the test data. Statist-
ically, the difference in the test data is not significant (t(28) = 0.62, p = 0.617). This means
that the solution found with BO cannot be transferred to the test set for both locations.

The training results of the Bayesian Optimization are higher than the training results ob-
tained with the deterministic agent and the default hyperparameters. However, the Bayesian
Optimization cannot use these improved hyperparameters to create more feasible scenarios
on the test data. This means that the model is overfitting the training data. Overfitting
on the training data is not a strange phenomenon when there is no contextual information
available (Char et al., 2019).

The overfitting in our case is a result of the warm start approach that is being used in
combination with the unavailability of the contextual information. This is because the default
hyperparameter set is used to warm start the Bayesian Optimization, which creates a lower
bound of the results obtained in the training phase. The increase from that lower bound
to the actual training results is a result of the different sampled training batches with every
iteration. The algorithm currently samples a new training batch with every iteration. This
technique is often applied with hyperparameter optimization to reduce the overfitting of a

55

model (Hutter et al., 2013). However, because the contextual information is missing, there
is no deviation in complexity, and consequently, this technique can create favorable batches.
Char et al. (2019) formulates that if the surrogate model is not able to detect variations in
difficulties between certain tasks, then an active task selector does more harm than good.
This approach creates a situation where a hyperparameter set that is almost equal to the
default hyperparameters in terms of general priority, with a favorable sampled batch makes
a substantiated difference in training results. But, these hyperparameters are not able to
create improved results on the test instances. This problem could be solved by applying any
form of selection while creating the batches. One could, for example, deviate the batches
that contain a certain level of complexity. But then, still, some contextual information is
considered. In the approaches where contextual information will be used, we do not expect
such an occurrence since the difficulty of the sampled scenarios is much more homogeneous.

6.1.3 Experiments with contextual information

The context in the context-based experiments refers to the deviation in the scenarios that
are formulated in chapter 5. These experiments aim to show the difference in performance
between the optimized hyperparameters and the hyperparameters the deterministic agent
is designed with. Through these results can be determined if it would be better to have a
unique hyperparameter configuration per context or a generalized hyperparameter configur-
ation that can be used for all considered contextual information. This section tries to answer
that through the following hypothesis; an optimized hyperparameter set does not increase
performance compared with the default hyperparameter setting. If this hypothesis is rejec-
ted, BO creates better solutions on the test data compared with the default hyperparameter
setting.

This hypothesis is tested for both the Kleine Binckhorst and the Idealized Location. For
both locations, all the scenarios are analyzed with BO and with the deterministic agent fit-
ted with the default hyperparameter setting. As with the contextual-free approaches, each
experiment will be repeated 15 times to ensure consistent results, and statistical evidence is
gathered through a t-test. The number of iterations, batch sizes, and algorithm type is similar
to the previous experiment to create comparable experiments. The best hyperparameter con-
figuration per iteration and the resulting test and training scores are depicted in Appendix C.
A summary of these experiments are displayed (Figure 6.4 and Figure 6.5). The results are
displayed through different bar charts with whiskers. The bars give the percentage of feasible
instances averaged over 15 runs, and the whiskers show the standard deviation for these runs.

We mentioned in the previous section that the experiments that consider contextual in-
formation should not overfit the training data, as became apparent with the context-free
approaches. When considering contextual information, the complexity within the analyzed
scenarios is much more homogeneous. The results for both locations, represented through
Figure 6.4 and Figure 6.5, show no overfitting on the training data. The training and test
results are not deviating much within these experiments. Therefore can be confirmed that
the overfitting of the context-free approaches is mainly due to the lacking homogeneity in the
complexity of the scenarios.

The results for the location Kleine Binckhorst are visible in Figure 6.4. In these graphs
there is a visible improvement on the training data when using BO. These improvements are
significant with, t(21) = 5.23, p < 0.001; t(27) = 2.75, p = 0.005 and t(22) = 1.78, p = 0.044
for the experiments A, B and C, respectively. Interestingly, the standard deviation becomes

56

Figure 6.4: Percentage of solved instances for the location Kleine Binckhorst with the original hyper-
parameter setting and with the best hyperparameter configuration found by the Bayesian Optimization
per context, mean and standard deviations are based on 15 iterations.

smaller, which means that the results become more consistent when using BO. This is a result
of the sampling strategy that selects new scenarios with every training iteration. Through
this method, much more scenarios are considered throughout the complete training phase and
therefore results contain less variability. The significant improvement found in the training
results is not visible on the test data. Here the best-tested hyperparameter configuration
scores similarly to the default hyperparameters, there is a slightly positive difference with
experiments A and C, but this is not significant. The student t-test shows that all the
differences are not significant on the test data with t(27) = 0.46, p = 0.326; t(27) = −0.32, p =
0.376 and t(22) = 0.26, p = 0.397 for the experiments A, B and C, respectively.

If the best performing hyperparameters are compared with the default hyperparameters
can be seen that experiment A obtains in seven iterations similar hyperparameters. This
hyperparameter set contains a similar priority as the default hyperparameters. The only
difference is that the connect action becomes irrelevant since no combination is required in this
experiment. Besides that, experiments B and C show two best performing hyperparameter
configurations. These are the default hyperparameters and a hyperparameter configuration
that increased the priority of the setback and move entering action and decreased the priority
of the split, service and connect actions. This means that the trains are earlier parked than
the service is applied which indicates that the carousel movement on the shunting yard is
switched to the other direction. This means that the trains are firstly parked and the trains
leave the shunting yard through the relocation track. As a result, the setback action becomes
one of the most important actions on the shunting yard since a train must be relocated before
it leaves the shunting yard.

The results for the Idealized Location are visible in Figure 6.5. When analyzing the results
obtained after training the model. The Bayesian Optimization approach can obtain a higher
percentage of solved instances per experiment group compared with the deterministic agent
with the default hyperparameters. These differences are statistically significant with t(23) =
2.06, p = 0.026; t(20) = 7.41, p < 0.001 and t(19) = 3.43, p < 0.001 for the experiments D,
E and F, respectively. Within the training results, the standard deviation becomes smaller
when using the BO. Similarly, as for the location Kleine Binckhorst, this results from the
sampling strategy that selects new scenarios with every training iteration. Through this
method, much more scenarios are considered throughout the complete training phase, and

57

Figure 6.5: Percentage of solved instances for the Idealized location with the original hyperparameter
setting and with the best hyperparameter configuration found by the Bayesian Optimization per context.
The mean and standard deviations are based on 15 iterations.

therefore, results contain less variability. When looking at the results obtained after testing
the best found hyperparameters. The differences in the percentage of solved instances between
the two Bayesian Optimization and the default hyperparameters become slightly smaller
with experiment D. Besides that, the standard deviation of these optimized hyperparameter
configurations is smaller than with the default hyperparameters. However, the differences in
test results for experiment D are not significant (t(21) = 0.55, p = 0.295). With experiments
E and F, the test data shows an increase in the percentage of solved instances when comparing
the optimized hyperparameters with the default hyperparameters. The standard deviations
of both approaches remain similar in these experiments. Statistically, the test results of
experiment E are significantly different when using BO instead of the default hyperparameters
(t(28) = 3.45, p = 0.001). Contrary, the results of experiment F are not significant (t(28) =
1.38, p = 0.089).

If the best performing hyperparameters of the Idealized Location are compared to the
default hyperparameters can be seen that the split action has a lower priority, in all the
experiments, than it was initially designed with. In almost all the experiments the split
action becomes an action with one of the lowest priorities which means that a train is first
parked before it is split. However, the Bayesian Optimization creates only for experiment E
a significant improvement.

Experiment D and F show both that the move internal action has a substantiated lower
priority value if compared with experiment E. This means that when all the trains in a
scenario must be combined, the deterministic agent changes its strategy. Within the new
strategy trains are being relocated until an action becomes feasible and then the action will
be executed. This can be noticed by some of the optimal hyperparameter configurations of
experiment E. Some of these hyperparameter configurations have almost similar and highest
priority values for the departure, move internal, setback and split actions. This strategy
creates in our approach a feasible solution but in real life is such a solution highly inefficient
since relocation actions are very expensive.

With this analysis, the results of the locations Kleine Binckhorst and the Idealized Loca-
tion cannot be compared to each other because the complexity of the physical layout differs.
However, it is possible to compare the locations in terms of the differences between the BO and
the default hyperparameter configuration. The differences between the two approaches are

58

smaller on the location Kleine Binckhorst than the differences on the Idealized Location. This
means that the BO can improve the results more on the Idealized Location. The difference in
improvements between both locations is a result of the quality of the initial shunting strategy.
The results obtained on the location Kleine Binckhorst are much more intuitive for a human
planner since a carousel movement can be made, which makes creating optimal deterministic
rules easier. When a train arrives at the Kleine Binckhorst, the human planner always tries
to follow the same carousel movement. However, within the Idealized Location, this carousel
movement cannot be made, and a more complex relocation technique has to be used. This re-
location technique is less intuitive for human planners. Therefore, for the Idealized Location,
it is much harder for a human planner to formulate a solid shunting strategy and thereby
optimal deterministic rules. As a result, the dynamics of the initial deterministic rules for the
Kleine Binckhorst are closer to the optimum than for the Idealized Location. Consequently,
the formulated hypothesis for the location Kleine Binckhorst can be accepted. This means
that the BO does not create better results than the default hyperparameter configuration.
For the Idealized Location, can the hypothesis be partly rejected, which means that BO can
develop better solutions for experiment E than the default hyperparameter setting, the other
improvements can be seen but are not statistically significant.

6.1.4 Discussion on the hyperparameter optimization

Now that all the experiments are executed, can the best hyperparameter configuration be de-
termined per location and experiment. The experiments that do not consider any contextual
information for both locations result in a poor generalization from best-obtained hyperpara-
meters on the training data to the test data. The poor generalization occurs more often when
considering contextual hyperparameter optimization techniques (Char et al., 2019). This of-
ten happens when the surrogate model is not able to detect variations in the complexity of
contextual information (Char et al., 2019). Moreover, when comparing the test results of the
BO with the default hyperparameter configuration can be noticed that the performance is
almost equal to each other, for both locations. Consequently, can the default hyperparameter
configuration be considered the best hyperparameter when not considering any contextual
information.

When considering contextual information, the poor generalization from the training to
the test instances reduces substantiated since the complexity is logically separated through
the contextual information. However, the BO could not generate a significant improvement
on the training and test data for the location Kleine Binckhorst. After analyzing the results
per iteration it became apparent that a similar performance could be obtained by turning the
carousel movement in the other direction. However, this did not lead to an improved result
and therefore is the default hyperparameter configuration the best configuration that can
be applied for experiments A, B and C. The priority values of the optimal hyperparameter
configurations are visible in Table 6.1.

The results of the Idealized Location showed a better generalization from the training
to the test data. More specifically, the contextual approach finds an improved hyperpara-
meter configuration for experiment E. Experiment E, only consisted of a significant difference
between the optimized and the default hyperparameters for both the training and test data.
Therefore, the best hyperparameter configuration is selected by taking the best scoring hy-
perparameter considering the training and test results. This hyperparameter configuration
had the highest number of feasible scenarios on the training data and the one to highest num-

59

ber of feasible scenarios on the test data. Experiments D and F significantly improved the
training data, but this improvement was not significant on the test data. Therefore, the best
hyperparameter configuration for these experiments is the default configuration. A summary
of the optimal hyperparameter configuration per experiment is given (Table 6.1).

In conclusion, the Bayesian Optimization approach is not able to improve the hyperpara-
meter configuration for carousel shunting yards. This is because it is more intuitively for
the human planners to design an optimal hyperparameter configuration due to the carousel
movements. For the shuffleboard locations this intuitive advantage diminishes and therefore
it is less likely that the hyperparameters are close to the optimum. However, only a signi-
ficant difference can be made when all the trains in a scenario must leave the shunting yard
combined.

Table 6.1: Optimal hyperparameter configuration for all experiments

Experiments Connect Depart
Move

entering
Move

Internal
Service Setback Split Wait

A, B and C 280 400 200 100 360 200 380 100
D, F 320 400 300 100 NA 260 320 100
E 309.24 274.10 301.04 148.32 NA 202.80 106.10 40.92

6.2 Baseline results for handling stochastic variables

The baseline results for handling the non-stationary variables consist of the results of the
deterministic agent without any additions (plain heuristics), and the deterministic agent im-
proved with the Monte Carlo Tree Search (MCTS). For Kleine Binckhorst, an additional
enhancement combines the deterministic agent with MCTS and an improved relocation heur-
istic. This section will consider the hyperparameter configuration of the deterministic agent it
is originally designed with for all experiments, A till F, formulated in chapter 5. The baselines
are formulated through an experiment that analyzes 1,000 scenarios per approach and per
experiment. Besides that, both locations are considered throughout this baseline formulation.
The results are visible in Table 6.2.

Table 6.2: Baseline results, percentage solved instance measured by analyzing 1,000 instances per
experiment.

Percentage feasible experiments A B C D E F

Solved with plain heuristics 85.60% 51.80% 55.90% 49.20% 32.60% 14.50%
Solved with MCTS 86.50% 56.90% 58.00% 47.50% 32.60% 15.30%
Solved with MCTS and relocation 91.70% 63.40% 60.70%

The table shows that the enhancement methods improve the performance on all the scen-
arios for Kleine Binckhorst. For the Idealized Location only scenario F, which consists of
14 train units, shows an improvement. To give a more thoroughly understanding of the res-
ults, other performance metrics can be observed. These are the average computation time
per scenario and the average number of relocation actions executed. Both are displayed in
Table 6.3. As can be observed in the table, the computation times of the experiments ex-
ecuted on the location Kleine Binckhorst (experiment A, B, and C) are much higher than
the computation times of the experiments related to the Idealized Location (experiments D,

60

Table 6.3: Explanatory performance metrics that will be used to give an indication about the quality
of the solutions. actions

Average computation time per experiment (sec) A B C D E F

Solved with plain heuristics 28.45 28.17 30.25 4.76 8.48 10.45
Solved with MCTS 56.31 56.31 87.13 37.66 35.42 49.05
Solved with MCTS and relocation 66.99 118.01 93.48

Total number of relocations per experiment A B C D E F

Solved with plain heuristics 2,535 10,485 10,971 39,466 16,052 31,517
Solved with MCTS 2,916 7,384 8,712 37,829 19,588 30,932
Solved with MCTS and relocation 12,183 17,933 19,236

E, and F). This is because the number of available actions for the Kleine Binckhorst is much
higher than in the Idealized Location since there are more tracks and the service activities are
enabled in those scenarios. Consequently, the deterministic agent must assign more priority
values, which is time-consuming since it needs to be repeated for every train when changing
from state. This makes it complex to compare the computation times of both locations to
each other. Therefore, the computation times are compared with experiments on similar loc-
ations. When using MCTS, the computation times increase a lot. This is because the MCTS
must be repeated every time something changes on the tracks. Therefore, the computation
time increases relatively the most, with the experiments on the Idealized Location. Besides
that, the roll out phase of the MCTS for the Idealized Location finds a solution less easily,
and therefore, it needs more iterations before convergence. If the MCTS and the improved
relocation are added to the deterministic agent of the Kleine Binckhorst, the computation
time increases a little more because the relocation action can trigger more MCTS iterations.
Consequently, the MCTS is a costly addition to the deterministic agent.

The number of relocation actions can say something about the solutions’ quality because
relocation actions are expensive to have in a shunting schedule. This is because valuable
time is required to execute the relocation since the train driver must walk to the other
side of the train. These relocation actions are not an objective but rather an explanatory
performance metric that will give more insights into the approach. As can be seen, the number
of relocation actions increases over the experiments for the location Kleine Binckhorst. For
this location, more train units require a more complex movement strategy and, therefore,
more relocation actions. Consequently, the MCTS increases the quality of the solution by
making fewer relocation actions, but this comes at a cost, which is the computation time of
the scenarios. When adding the MCTS and the advanced relocation strategy together, the
number of relocation actions increases, which means that the quality of the solution decreases.
But nevertheless, the number of solved instances increases even further. The results of the
Idealized location are slightly different. Here the total number of relocation actions is much
higher than with the other location. This makes sense since the shuffleboard design of the
shunting yard requires more relocation actions before a suitable shunting plan can be made.
Besides that, it is expected that the MCTS results in fewer relocation actions because the
quality of these actions is higher. Moreover, it was expected that the increase in the number
of train units was connected to an increasing number of relocation actions. This is because
more train units should create more relocation actions. However, this cannot be observed
from the obtained results.

Next, an in-depth analysis is executed to look at what scenarios are solved through which
enhancement method. This in-depth analysis is done to give a broader understanding of the

61

Table 6.4: Unique solved scenarios and newly created sequential model to solve the Train Unit Shunting
Problem

Experiment A B C D E F

Solved with plain heuristics 21 59 54 25 43 13
Solved with MCTS 10 51 87 8 43 21
Solved with MCTS and relocation 34 99 91

Total 65 209 232 33 86 34

created approaches. With this analysis, it became apparent that most of the enhancement
approaches were solving similar scenarios. However, each enhancement method also had a
part that was uniquely solved by that specific approach. To indicate how often this occurred,
a table is made that consists of the uniquely solved instances per approach (Table 6.4). Sub-
sequently, this means that these enhancement methods can solve more scenarios if grouped.
Therefore, another experiment is created that uses the different models sequentially to solve
the scenarios. If a method is not able to create a feasible solution, another approach will be
tried. The performance of these subsequent methods is displayed in Table 6.5.

If the performance of the sequential model is compared with the benchmark algorithm,
the performance of experiment A comes close to the performance of the benchmark algorithm.
Experiments B and C obtain a performance increase of more than 20% compared with the
baseline model, but still, the benchmark algorithm solves 17 or 18% more scenarios. The
performance increase of experiments D, E, and F can be considered moderate and does not
increase to a level that can approach the performance of the benchmark algorithm. The main
takeaway is that the experiments with more train units benefit more from the sequential
model than experiments with a small number of train units. The computation times for the
sequential model are similar to the computation times for the enhancement that contained
the MCTS and the improved relocation strategy, namely 31.68 sec, 118.01 sec, 113.46 sec,
19.23 sec, 56.12 sec, 77.66 sec for experiment A till F, respectively.

Table 6.5: Performance of the sequential model compared with the benchmark algorithm.

Experiment A B C D E F

Solved with sequential model 97.50% 79.90% 81.40 % 50.00% 36.90% 16.60%
HIP (benchmark algorithm) 99.90% 98.70% 99.20% 99.90% 98.00% 74.10%

Based on these obtained results can be concluded that the enhancement methods have the
desired effects, especially for the Kleine Binckhorst. The added value for the location Kleine
Binckhorst is much higher than for the Idealized Location. This is because the number of
possible end tracks is higher for the Kleine Binckhorst which means that it is easier for the
MCTS enhancement to find a good solution. Since there are more simulation possibilities.
Besides that, due to the large number of considered tracks on the Kleine Binckhorst is the
deterministic agent better able to recover from earlier made mistakes. Which means that
the MCTS enhancement can be applied again. This is often not possible for the Idealized
Location due to the low number of tracks.

6.2.1 Violation analysis

The obtained results can be analyzed more thoroughly by analyzing the violations that caused
the infeasible actions. A summary of these violations per experiment can be found in Fig-

62

ure 6.6. This figure shows that the violations per location differ, for the location Kleine
Binckhorst (experiments A, B, and C) the largest violation is train cannot leave, after that a
large part of the scenarios fail because of the violation composition is not present, the other
violations are negligible. Experiment A for the Kleine Binckhorst consist of a total of 15 train
units and 15 outgoing trains. This means that there is no combination required when solving
experiment A. With 16 train units, the number of splits and combinations become two and
one, respectively. With 17 train units the number of splits and combinations becomes one and
one, respectively. This means that the total number of splits and combinations is higher with
experiment B than with experiment C. Consequently, an increase with violation composition
not present is visible. However, it is interesting to see that only the splitting causes an increase
in the violation, composition not present, when it is executed together with a combination.

Figure 6.6: Representation of the violations per location, scenario composition and the enhancement
method if used.

This can be concluded since experiment A requires two splits no combination and there is
no violation with composition not present is present. Contrary, the violation train cannot
leave increases throughout the different experiments. This indicates that the movements on
the tracks become more complex when solving for more train units. Formulated otherwise,

63

the deterministic agent is, to a lesser extent, able to recover from earlier mistakes when the
number of train units increases.

The Idealized Location (experiments D, E, and F) does not suffer from the violation arrival
track reserved while it consists of another violation, namely, no actions left. This violation
means that the simulation model has put itself in a deadlock position, and it has no possible
actions left. After an in-depth analysis, it was thought that a part of this violation could be
allocated to the fact that the relocation track is full. Then the trains cannot relocate, which
means that the simulation model quickly runs out of viable actions. To confirm this statement,
the length of the relocation track of the idealized location is temporally extended from 500
to 3,000 meters. With this extension, all the arriving trains fit on the relocation track and
therefore this error should occur less often. For this additional experiment, the plain heuristics
are used with the experiment that suffers the most from this violation, namely experiment
F. This experiment is executed by analyzing 1,000 scenarios. When increasing the relocation
track to an unrealistic size, the number of feasible instances increases to 20.5%, but the
expected results did not occur. Most violations decreased while the violation no actions left
increased. The violation train cannot leave decreased with 6.3%, the violation composition not
present decreased with 2%, the violation did not depart remained the same and remarkably
the violation no actions left increased with 2.3%. After a more thorough analysis, it became
clear that the characteristics of the shunting yard and the scenarios have a dependency on
each other and therefore, a combination of multiple variables is causing a violation. We will
explain this by formulating a combination of dependencies. The percentage of available track
length when all the trains are on the tracks is 47.3% when considering experiment D this
increases to 69.4% when considering experiment F. This means that the available space for
movements decreases with 20%. This in combination with the increasing number of splits
and combinations, and the fact that a maximum of only four trains can make a move (since
there are only four different tracks), makes the decision to choose the right action and not
get a violation even harder.

Like we mentioned before, with every increasing number of train units in the scenario, the
number of splits and combinations increases. However, the number of times a composition
is not present decreases when comparing experiments E and F with 12 and 14 train units,
respectively. After analyzing some of the results more thoroughly, it became apparent that it is
more likely that the simulation stops because it has no actions left than when the composition
is not present. This can happen because the error composition not present only occurs when
the trains are being departed, thus late on the simulation timeline. In contrast to that, the
error no actions left can occur everywhere in the timeline of the simulation model. Therefore,
it is more likely that a scenario becomes infeasible because there are no actions left instead
of an infeasible scenario through a composition that is not present.

6.3 Improved hyperparameters and handling stochastic vari-
ables

This section will elaborate on the results when combining the improved hyperparameters
with the analyzed search strategy. The default hyperparameter configuration is the best
configuration for almost all the scenarios, only for experiment E, a significant improvement can
be made when choosing other hyperparameters. This section only focuses on the improvement
that can be made in experiment E because the results of the default hyperparameters are

64

formulated in the previous section. For these experiments, the baseline experiment is repeated
but then with the improved hyperparameter configuration. The values of the optimized
hyperparameter configuration is given in Table 6.1. The results of these experiments are
given in Table 6.6.

Table 6.6: Experimental results with optimal hyperparameter configuration.

Experiment E Feasible Computation time Nr. relocations

Solved with plain heuristics 46.50% 6.52 sec 14,787
Solved with MCTS 45.70% 66.86 sec 14,912
Solved sequential model 50.70% 49.72 sec NA

If the results of the plain heuristics are compared with the baseline results, the percentage
of feasible instances increases by 13.9%. This means that the optimized hyperparameters
contribute to more feasible scenarios. When comparing the results that use the MCTS with
the baseline, a difference of 13.1% can be noticed. The MCTS also makes an improvement,
but this improvement is smaller. This can be explained by the fact that the hyperparameter
optimization is executed with the plain heuristics. Therefore, the resulting hyperparameter
configuration is optimized to work best on plain heuristics. When placing the models in a
sequence, an improvement of 13.8% can be realized. Therefore, the difference in hyperpara-
meters results in roughly 13% more feasible scenarios when looked over the different exper-
iments. Interesting to see is that the plain heuristics and the MCTS enhancement increase
with similar margins.

Another aspect is the computation times. The computation times for the plain heuristics
are almost similar when comparing for both hyperparameter configurations but the com-
putation times for the MCTS extension increases by more than 30 seconds. These higher
computation times are a result of an increase in demand for additional information. The
sequential methods only deviate around the 6 seconds in favor of the optimized hyperpara-
meters. This makes sense since there are more feasible scenarios with the plain heuristics and
thereby fewer scenarios for which both methods must be applied. The number of relocation
actions decreases which makes sense since the connect action has the highest priority and the
split action has the smallest priority. In this way, mostly complete trains are moved instead
of train units which results in fewer relocation actions.

A comparison of the violation is made in Figure 6.7. The violations train cannot leave
and composition not present benefit the most from the improved parameters. Especially
the violation composition not present occurs less often. This behavior is as expected since
the connect action has received the highest score (Table 6.1). This means that the improved
hyperparameter configuration better connects trains and creates more feasible shunting plans.
The violations no actions left stayed the same after the hyperparameter optimization.

65

Figure 6.7: Violations of the default and the optimized hyperparameters for experiment E.

6.4 Discussion

Many experiments are executed, which generate lots of results. This section will discuss the
findings of the last chapter shortly. In the first paragraph, the results of the hyperparameter
optimization are elaborated, the second paragraph will shortly recap the baseline results and
the final paragraph will elaborate on the combination of both approaches.

The first part of this section elaborates the results of the experiments that compare the
hyperparameters optimized through Bayesian Optimization with the default hyperparamet-
ers. These experiments consist of two types of approaches. Namely, one set of experiments
that does not consider any contextual information and one set with experiments that does
consider contextual information. The contextual information in these experiments is the de-
viation of scenarios based on among others, the number of train units. The experiments that
do not consider any contextual information show a poor generalization from best-obtained
hyperparameters on the training data to the unencountered test data. The poor generaliza-
tion occurs more often when considering contextual hyperparameter optimization techniques,
especially when the surrogate model is not able to detect variations in the underlying com-
plexity of the contextual information (Char et al., 2019). Therefore, the poor generalization is
reduced by including the contextual information within the experiments. It became apparent
that the surrogate model could better generalize the best-found hyperparameter configuration
obtained on the training data to the not encountered test data. This means that splitting
the scenarios based on contextual information makes the complexity of the scenarios more
homogeneous but does not create an improved hyperparameter configuration for all instances.
More specifically, the Bayesian Optimization approach is not able to improve the hyperpara-
meter configuration for carousel shunting yards. This is because it is more intuitively for
the human planners to design an optimal hyperparameter configuration due to the carousel
movements. For the shuffleboard locations this intuitive advantage diminishes and therefore
it is less likely that the hyperparameters are close to the optimum. However, the Bayesian
Optimization can only create a significant difference when all the trains in a scenario must
leave the shunting yard combined.

Then the experiments that use the MCTS to handle the stochasticity and thereby creat-

66

ing more feasible shunting plans. It can be concluded that the feasibility rate improves the
most when the shunting yard is a carousel-like shunting yard. The shuffleboard-like shunting
yards are not benefiting from the extension with the MCTS. This difference is a result of
the number of considered tracks in the MCTS because more tracks give the MCTS more
options and also a better possibility to recover from earlier made mistakes. Therefore, the
deterministic agent of the carousel-like shunting yard has more room for improvement. After
analyzing the lacking number of feasible shunting plans on the shuffleboard location, it be-
came apparent that each solution approach solves a unique set of experiments. Therefore,
an additional experiment is created where the different solution approaches are placed in
sequence. When placing the models in sequence, the number of feasible shunting plans in-
creases further for both locations and approaches similar feasibility rates as the benchmark
algorithm for some experiments. Therefore, there is an increase in feasible shunting plans
when using the MCTS, but this comes with costs in the form of increased computation times.
Combining the optimized hyperparameters with the MCTS leads to an improvement. This
is mainly because the simulation model is better able to combine train units which decreases
the violation composition not present.

67

Chapter 7

Conclusion and Recommendations

This research project is a study that focuses on solving the parking-, routing- and service
scheduling- subproblems of the Train Unit Shunting Problem (TUSP) for the Dutch Railways.
The main objective is to investigate to what extent a framework consisting of hyperparameter
optimization and heuristic search approaches can contribute to creating more feasible shunt-
ing plans in an online scheduling approach. By doing so, this research ensures increased
applicability for the creation of online shunting schedules and increased applicability of hy-
perparameter optimization techniques. For this research, a literature study is executed. This
literature study provided a broad understanding of the approaches that are researched to solve
the TUSP. Besides that, insights are created about hyperparameter optimization techniques
and heuristic search techniques. Subsequently, these insights are used to design a framework
for optimizing the hyperparameters and designing a better search technique that is able to
handle stochasticity. In this chapter, the conclusion and subsequently the recommendations
are formulated.

7.1 Conclusion

Throughout this project, a simulation model is used to create a shunting plan. This is
done by executing the shunting plan online and keeping track of the executed actions. The
actions are selected by a deterministic agent that consists of a set of deterministic rules. Each
deterministic rule assigns a predefined priority value to an action. When all viable actions
are equipped with priority values, the highest valued action is executed in the simulation
environment. This process is repeated until all trains in the simulation model have left the
shunting yard. Then, the shunting plan is called feasible. In order to cope with the demand
to create more feasible shunting plans and to increase the applicability of hyperparameter
optimization techniques a framework, of two sequential steps has been designed accordingly.
An iterative Bayesian Optimization technique is designed to optimize the priority values
that remain fixed when executing the algorithm. Changing the hyperparameters will change
the dynamics of the algorithm since an action becomes less or more important than other
actions. Within this Bayesian Optimization, the response surface model is modeled through
Gaussian Processes and the most promising hyperparameter configurations are chosen through
a Gaussian Process Upper Confidence Bound approach. The problem is formulated as a
satisfaction problem and in the experiments contextual information is distinguished. The
experiments are executed on two types of shunting yards, a carousel shunting yard and a

68

shuffleboard shunting yard. The contextual information distinguished in these experiments is
the deviation of scenarios based on, among others, the number of train units. The experiments
that do not consider any contextual information show a poor generalization from best-obtained
hyperparameters on the training data to the unencountered test data, for both locations. The
experiments that consider contextual information show that the surrogate model was better
able to generalize the best-found hyperparameter configuration obtained on the training data
to the not encountered test data. However, this difference can only be called statistically
significant for one experiment that consisted of a single contextual category on the shuffleboard
shunting yard. For all other contextual categories, the hyperparameters from the initial design
were the best hyperparameters. Therefore can be concluded that splitting the scenarios based
on contextual information makes the complexity of the scenarios more homogeneous but does
not create an improved hyperparameter configuration for all instances.

The second part of the framework, a Monte Carlo Tree Search (MCTS) heuristic, is
designed to handle the stochasticity. Stochasticity can arise when movement actions are ap-
proached in a deterministic manner because these actions can depend on the composition
of future arrival or departure sequences. Previously, a random choice was made if the de-
terministic rules were not sufficiently specified. We designed an MCTS to overcome these
random choices by using Monte Carlo estimates of feasible parked trains. The parking of
trains is called feasible if all the trains can leave to the gateway track unobstructed. The
computation times of this MCTS are made efficient by incorporating a bias in the simulation
phase. Subsequently, the MCTS is integrated with the existing deterministic rules through
a proactive MCTS that gathers new Monte Carlo estimates whenever a change in the dedic-
ated tracks occurs. In this manner, the MCTS always contains the most actual information.
The experiments are executed on two different types of shunting yards, a carousel shunting
yard and a shuffleboard shunting yard. Besides this MCTS, another relocation strategy is
implemented for the carousel-like shunting yard. After the experiments can be concluded
that the feasibility rate improves the most when the shunting yard is a carousel-like shunting
yard. The shuffleboard-like shunting yards are not benefiting from the extension with the
MCTS. This difference is a result of the number of considered tracks in the MCTS because
more tracks give the MCTS more options and also a better possibility to recover from earlier
made mistakes. Therefore, the deterministic agent of the carousel-like shunting yard has more
room for improvement. After analyzing the lacking number of feasible shunting plans on the
shuffleboard location it became apparent that each solution approach solves a unique set of
experiments. Therefore, an additional experiment is created where the different solution ap-
proaches are placed in sequence. When placing the models in sequence, the number of feasible
shunting plans increases further for both locations and approaches similar feasibility rates as
the benchmark algorithm for some problem instances. Therefore can be concluded that there
is an increase in feasible shunting plans when using the MCTS but this comes with a costs in
the form of increased computation times.

Overall, the framework presented in this work showed exciting and novel methods for ap-
plying hyperparameter optimization techniques and optimizing the number of feasible shunt-
ing plans. More specifically, this framework demonstrated that the number of feasible solu-
tions could be optimized by applying a hyperparameter optimization technique and improv-
ing the search capabilities of the deterministic agent. An iterative Bayesian Optimization
method provided a technique to optimize the dynamics of an algorithm, thereby optimizing
the number of feasible shunting plans and increasing the applicability of these optimization
techniques. Subsequently, the MCTS introduced a method to handle the stochasticity by

69

creating Monte Carlo estimates of feasible parking positions. These estimates are used to
provide the deterministic agent with additional information. By using this framework the
number of feasible shunting plans increase substantiated and is approaching the performance
of the benchmark algorithm for some problem instances.

7.2 Limitations and recommendations

This research project served as an investigation to what extent an optimization framework
could increase the applicability of hyperparameter optimization techniques and the number
of feasible shunting plans generated by a set of deterministic rules in a simulation model.
Thereby, increasing the understanding and applicability of the online creation of shunting
schedules. This work shows a proof of concept with such an optimization framework but due
to the limited time frame of the master thesis, some aspects and challenges are not included
in the research. Therefore, we advise the NS the following;

1. First, throughout this work, the quality of the shunting plans is not considered, an
indication is given through the additional performance metrics, but this is not sufficient.
This means that the created shunting plans can consist of an unreasonable number of
moves or actions that do not make sense. When these approaches are used for future
researches, it is recommended to do additional research that focuses on explaining and,
if necessary, improving the quality of the solutions.

2. Secondly, the performance for the Idealized Location is much lower than the benchmark
algorithm, even with the best hyperparameters configuration and the Monte Carlo Tree
Search. Therefore, we recommend further optimizing the deterministic agent for the
Idealized Location with other approaches that might be better suited for shuffleboard
locations.

3. Thirdly, when using this optimization framework in future applications is recommended
to use the sequential model. This model creates the highest number of feasible shunting
schedules on all experiments. When using that model, some speed-up methods might
be helpful. Throughout this thesis, a parallel approach is used, but this specification
should depend on the implementation details of the future application.

70

Bibliography

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256. 39

Bardenet, R., Brendel, M., Kégl, B., and Sebag, M. (2013). Collaborative hyperparameter
tuning. In International conference on machine learning, pages 199–207. PMLR. 15

Barnhoorn, Q. (2020). A multi-agent approach to the train unit shunting problem. 13

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). Algorithms for hyper-parameter
optimization. Advances in neural information processing systems, 24. 14, 33

Boon, M., , van der Boor, M., van Leeuwaarden, J., Mathijsen, B., van der Pol, J., and
Resing, J. (2020). Stochastic Simulation using Python. Eindhoven University of Technology,
Department of Mathematics and Computer Science. 48

Buhrman, H. and De Wolf, R. (2002). Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43. 34

Char, I., Chung, Y., Neiswanger, W., Kandasamy, K., Nelson, A. O., Boyer, M., Kolemen,
E., and Schneider, J. (2019). Offline contextual bayesian optimization. Advances in Neural
Information Processing Systems, 32:4627–4638. v, 55, 56, 59, 66

Chaslot, G., Saito, J.-T., Bouzy, B., Uiterwijk, J., and Van Den Herik, H. J. (2006). Monte-
carlo strategies for computer go. In Proceedings of the 18th BeNeLux Conference on Arti-
ficial Intelligence, Namur, Belgium, pages 83–91. 17

Chaslot, G. M. J.-B. C. (2010). Monte-carlo tree search. Maastricht University. 16, 18, 37

Chung, Y., Char, I., Neiswanger, W., Kandasamy, K., Nelson, A. O., Boyer, M. D., Kolemen,
E., and Schneider, J. (2020). Offline contextual bayesian optimization for nuclear fusion.
arXiv preprint arXiv:2001.01793. 15

Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72–83. Springer. 17

Eggensperger, K., Lindauer, M., and Hutter, F. (2019). Pitfalls and best practices in algorithm
configuration. Journal of Artificial Intelligence Research, 64:861–893. xi, 29

Falkner, S., Klein, A., and Hutter, F. (2018). Bohb: Robust and efficient hyperparameter
optimization at scale. In International Conference on Machine Learning, pages 1437–1446.
PMLR. 46

71

Forrester, A. I., Sóbester, A., and Keane, A. J. (2007). Multi-fidelity optimization via surrog-
ate modelling. Proceedings of the royal society a: mathematical, physical and engineering
sciences, 463(2088):3251–3269. 15

Freling, R., Lentink, R. M., Kroon, L. G., and Huisman, D. (2005). Shunting of passenger
train units in a railway station. Transportation Science, 39(2):261–272. 4, 8

Gallo, G. and Miele, F. D. (2001). Dispatching buses in parking depots. Transportation
Science, 35(3):322–330. 9

Gelly, S. and Silver, D. (2007). Combining online and offline knowledge in uct. In Proceedings
of the 24th international conference on Machine learning, pages 273–280. 18, 39

Girolami, M. (2011). A first course in machine learning. Chapman and Hall/CRC. 35

Haahr, J., Lusby, R., and Wagenaar, J. (2015). A comparison of optimization methods for
solving the depot matching and parking problem. Technical report. 3, 9

Haijema, R., Duin, C., and Van Dijk, N. M. (2006). Train shunting: A practical heuristic
inspired by dynamic programming. Planning in intelligent systems: aspects, motivations,
and methods, pages 437–475. 3, 9

Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D., Quan,
J., Sendonaris, A., Osband, I., et al. (2018). Deep q-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32. 3

Huang, D., Allen, T. T., Notz, W. I., and Miller, R. A. (2006). Sequential kriging optim-
ization using multiple-fidelity evaluations. Structural and Multidisciplinary Optimization,
32(5):369–382. 15

Hutter, F., Hoos, H., and Leyton-Brown, K. (2013). An evaluation of sequential model-based
optimization for expensive blackbox functions. In Proceedings of the 15th annual conference
companion on Genetic and evolutionary computation, pages 1209–1216. 47, 56

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2010). Sequential model-based optimiza-
tion for general algorithm configuration (extended version). Technical Report TR-2010–10,
University of British Columbia, Computer Science, Tech. Rep. 14, 15, 33

Jacobsen, P. M. and Pisinger, D. (2011). Train shunting at a workshop area. Flexible services
and manufacturing journal, 23(2):156–180. xi, 10

Kocsis, L. and Szepesvári, C. (2006). Bandit based monte-carlo planning. In European
conference on machine learning, pages 282–293. Springer. 17, 39

Kroon, L. G., Lentink, R. M., and Schrijver, A. (2008). Shunting of passenger train units: an
integrated approach. Transportation Science, 42(4):436–449. iii, 3, 9

Kushner, H. J. (1964). A new method of locating the maximum point of an arbitrary mul-
tipeak curve in the presence of noise. 14, 35

Lee, W.-J., Jamshidi, H., and Roijers, D. M. (2020). Deep reinforcement learning for solving
train unit shunting problem with interval timing. In European Dependable Computing
Conference, pages 99–110. Springer. 3, 12, 13, 41

72

Lentink, R. (2006). Algorithmic decision support for shunt planning. Number 73. 9

Lentink, R. M., Fioole, P.-J., Kroon, L. G., and Van’t Woudt, C. (2006). Applying operations
research techniques to planning of train shunting. Planning in Intelligent Systems: Aspects,
Motivations, and Methods, pages 415–436. 8

Lindauer, M. and Hutter, F. (2018). Warmstarting of model-based algorithm configuration.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32. 45

Močkus, J. (1975). On bayesian methods for seeking the extremum. In Optimization tech-
niques IFIP technical conference, pages 400–404. Springer. 14, 35

Peer, E., Menkovski, V., Zhang, Y., and Lee, W.-J. (2018). Shunting trains with deep rein-
forcement learning. In 2018 ieee international conference on systems, man, and cybernetics
(smc), pages 3063–3068. IEEE. xi, 3, 11, 12

Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer school on
machine learning, pages 63–71. Springer. 14, 33

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrit-
twieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the
game of go with deep neural networks and tree search. nature, 529(7587):484–489. iv, 16

Srinivas, M. and Patnaik, L. M. (1994). Genetic algorithms: A survey. computer, 27(6):17–26.
13

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. (2009). Gaussian process optimization
in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995.
14, 35

Strassen, V. (1969). Gaussian elimination is not optimal. Numer. Math, 13:354–356. 34

Student (1908). The probable error of a mean. Biometrika, pages 1–25. 48, 54

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
xi, 16

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika, 25(3/4):285–294. 15

Van Den Akker, M., Baarsma, H., Hurink, J., Modelski, M., Jan Paulus, J., Reijnen, I.,
Roozemond, D., and Schreuder, J. (2008). Shunting passenger trains: getting ready for
departure. 3, 10

van den Bogaerdt, P. (2018). Multi-machine scheduling lower bounds using decision diagrams.
Master’s thesis, TU Delft. 9

van den Broek, R. W. (2016). Train shunting and service scheduling: an integrated local
search approach. Master’s thesis, University Utrecht. xi, 3, 11, 12, 16, 41, 50

van der Knaap, L. (2021). Contextual hyperparameter optimization for the train unit shunting
problem. Master’s thesis, Technische Universiteit Deflt. 15

73

Yogatama, D. and Mann, G. (2014). Efficient transfer learning method for automatic hy-
perparameter tuning. In Artificial intelligence and statistics, pages 1077–1085. PMLR.
15

74

Appendix A

Detailed results for number of
iterations

This appendix gives a part of the hyperparameters that are obtained in the experiment to de-
termine number of iterations. Figure A.1 and Figure A.2 give the first eleven hyperparameter
sets that did not returned zero feasible scenarios for the location Kleine Binckhorst and the
Idealized Location, respectively. Within both figures the upper table represents the hyper-
parameters found when not considering the warm start approach, the lower table represents
the hyperparameters when using the warm start approach. As can be seen when comparing
these figures, the Bayesian Optimization is not able to align the hyperparameters of the Kleine
Binckhorst such that many feasible solutions can be created, this improves when using the
warm start approach. Note that eleven hyperparameters are chosen as reference since only
eleven solutions were found that did not returned zero feasible scenarios in the experiment
without the warm start approach for the Kleine Binckhorst.

75

Figure A.1: The hyperparameter sets for the Kleine Binckhorst of the first eleven solutions that did
not returned zero feasible scenarios when not using the warm start approach (upper) and while using
the warm start approach (lower). The colors represent the underlying priority where green and red are
the actions with the highest and lowest priority, respectively.

Figure A.2: The hyperparameter sets for the Idealized Location of the first eleven solutions that did
not returned zero feasible scenarios when not using the warm start approach (upper) and while using
the warm start approach (lower). The colors represent the underlying priority where green and red are
the actions with the highest and lowest priority, respectively.

76

Appendix B

Detailed results without contextual
information

This appendix gives the hyperparameters that are obtained within the experiments that do
not consider any contextual information. The first row of the tables in Figure B.1 gives the
default hyperparameters and as can be seen does the obtained hyperparameter configurations
not deviate much from that priority. Therefore can be concluded that the overfitting is a
cause of the inefficient sampling strategy.

Figure B.1: The best performing hyperparameters obtained when executing the experiments without
considering any contextual information for the Kleine Binckhorst (upper) and the Idealized Location
(lower). The colors represent the underlying priority where green and red are the actions with the
highest and lowest priority, respectively. Each row depicts a Bayesian Optimization sequence and the
first row depicts the default hyperparameters as reference.

77

Appendix C

Detailed results with contextual
information

This appendix gives the obtained hyperparameters when the contextual information is con-
sidered per experiment. Figure C.1 and Figure C.2 represent the obtained hyperparameters
for the Kleine Binckhorst and the Idealized Location, respectively. Figure C.1 clearly shows
that there are two hyperparameter configurations that obtain similar training and test results
for the location Kleine Binckhorst. One of these configurations is the default hyperparameter
configuration. The improved hyperparameters are not able to create a significant improvement
on the test data for the Kleine Binckhorst. Figure C.2 shows that the default hyperparameters
are not the best configuration for the Idealized Location since every iteration finds an im-
proved hyperparameter configuration. However, the performance is only significantly better
with experiment E.

78

Figure C.1: The hyperparameter configurations obtained when executing the experiments that consider
contextual information for the location Kleine Binckhorst. The upper, middle and lowest tables rep-
resent the found hyperparameters for the scenarios A, B and C. The colors represent the underlying
priority where green and red are the actions with the highest and lowest priority per set, respectively.
Each row depicts a Bayesian Optimization sequence.

79

Figure C.2: The hyperparameter configurations obtained when executing the experiments that consider
contextual information for the Idealized Location. The upper, middle and lowest tables represent the
found hyperparameters for the scenarios D, E and F. The colors represent the underlying priority
where green and red are the actions with the highest and lowest priority per set, respectively. Each row
depicts a Bayesian Optimization sequence

80

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem context
	The Train Unit Shunting Problem
	Research questions
	Outline
	Contributions

	Literature Review
	Train Unit Shunting Problem literature
	Exact solution approaches
	Heuristic solution approaches
	Reinforcement learning solution approaches

	Hyperparameter optimization
	Model-free optimization
	Model-based optimization

	Search algorithm
	Selection
	Expansion
	Simulation
	Backup
	Retrieving best solution

	Position of this research in the literature

	Problem Description
	System description
	The shunting yard location
	The shunting scenario
	The simulation environment
	The deterministic agent
	Suboptimal feasibility

	Scope of the problem
	Train Unit Shunting Problem through a deterministic agent
	Hyperparameter optimization
	Handling of stochastic variables

	Research design

	Solution Methods
	Bayesian Optimization for hyperparameter optimization
	Adjustments to the TORS environment
	Surrogate model and acquisition function

	Monte Carlo Tree Search for handling stochastic variables
	Adjustments to the TORS environment
	Increasing computation efficiency
	Additional relocation heuristic

	Experimental Setup
	Data generation
	Locations
	Instance generator

	Experiment description for hyperparameter optimization
	Experimental design
	Defining the search space
	Objective and performance metrics

	Experiment description for handling stochastic variables
	Experimental design
	Parameter settings
	Objective and performance metrics

	Benchmark algorithm

	Results
	Hyperparameter optimization
	Training parameters
	Experiments without contextual information
	Experiments with contextual information
	Discussion on the hyperparameter optimization

	Baseline results for handling stochastic variables
	Violation analysis

	Improved hyperparameters and handling stochastic variables
	Discussion

	Conclusion and Recommendations
	Conclusion
	Limitations and recommendations

	Bibliography
	Detailed results for number of iterations
	Detailed results without contextual information
	Detailed results with contextual information

