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Abstract

Safety stocks levels of a tank container operator depends on the demand uncertainty, the
network’s structure, the corresponding demand types matched with tank container types,
and the timing aspects. This project is executed at Den Hartogh Logistics in search of
improvements in its safety stock level determination of tank containers. First, a forecast
module is developed to estimate the demand at each hub individually of the different
demand types. Secondly, different adaptive robust optimization models are used for the
determination of the safety stock levels. Since the large size of the problem, cuts are made
in the network based on the corresponding planning horizon for reducing computation
time. The different robust optimization models use different approaches to incorporate the
adaptive nature and the integrality restrictions of tank containers. These approximation
variants are necessary to deal with integrality in the second stage in a computationally
convenient manner. Thirdly, a redistribution module is developed to redistribute the tank
containers to their initial safety stock level. This redistribution module does not contain
uncertainty anymore and can be solved with a mixed linear integer program for the entire
network. The results seem promising, and the current estimates of safety stock levels of
internal experts are reasonably close in line with the results of the robust model. Although
slightly more tank containers in general are preferred for the network of DH. If it is possible
to decrease computation time even further for this scale of problems, future research could
focus on a multi-period model, even improving the current situation.
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Management summary

Introduction
Setting safety stock levels right is vital for tank container operators such as Den Hartogh
Logistics. Having too low safety stock levels results in losses of demand and will diminish
customer satisfaction. Having too high safety stock levels results in increased costs, which
can challenge the competitiveness of Den Hartogh Logistics. Therefore, it is essential to
balance these contradictory motives and set safety stock levels just right. Within Den
Hartogh Logistics, the current safety stock levels are registered in the SLM file. Den
Hartogh Logistics wants a review on these safety stock levels and a scientific method for
determination of these safety stock levels. To answer this challenge, the following main
research question is formulated:

How should Den Hartogh logistics set their tank-container safety stock levels per tank type
and apply its stock level management in the network of Europe?

It is crucial to determine safety stock levels to incorporate the demand uncertainty, the
network, the multi-commodity, and the corresponding timing aspect. The pricing compo-
nent is assumed to be fixed.

Design
The problem consists of three phases. The first phase is revealing the demand structure and
construct an adequate forecast for DH. For the first phase a basis ETS model, a SARIMA
model, and the highly advanced LOESS model are used for forecasting. Furthermore, the
general demand patterns over time are investigated for DH.

The second phase is the translation of the forecast values towards actual safety stock levels
for each hub and tank type. It is opted to use adaptive robust optimization for obtain-
ing the safety stock levels. Robust optimization is suitable since no known probability
adequately describes the demand data. Adaptability is required since, there exists a tim-
ing difference between demand occurrence and its actual loading data, which creates an
opportunity to pool inventory between neighboring hubs. The timing difference between
demand occurrence and its loading date is called ”decision days” in this thesis. Robust
optimization is able to meet all the constraints within a specified range which is stated in
the uncertainty set for the uncertain parameters. Thus, by incorporating such a structure,
Den Hartogh Logistics can guarantee a specific fill rate with their safety stock levels within
the range of the uncertainty set. However, due to the large instance of the problem, some
approximations methods are necessary. Especially, the adaptability and the integrality
of the decision variables make the problem computationally challenging and thus require
approximations. Integrality can be approximated by applying continuous relaxation on
certain decision variables. For approximating the adaptability affine decision rules are
used which is generally computationally fast. Also, a hybrid method using the affine deci-
sion rules in an iterative procedure solving both the primal and dual problem obtaining a
more accurate solution but general against more computation time. The different approx-
imations and their corresponding performance is evaluated. Additionally, even when using
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these approximations the problem size remains too large, and it is necessary to divide the
network into parts. However, the effect of dividing the network into parts is likely small
because only neighboring hubs can pool inventory.

The last optimization phase consists of the redistribution of tank containers towards their
initial safety stock levels after demand has occurred in the most cost-efficient manner.
Additionally, the corresponding input parameters for the models need to be identified
through the transportation structure, the repositioning structure, the planning process,
and the related cost structure.

Results
The corresponding planning procedures are mapped. It is found that around 88% percent
of the demand arrives before six days of the loading date. To avoid re-planning, most
MMP planners start six days before the loading date with tank container assignment. In
this thesis, it is assumed that all demand arrives at two decision days. The corresponding
transportation time and transportation cost are found by using the available repositioning
data. However, these results are somewhat unsatisfactory with the many empty values
that occur on the different lanes. These empty values will be assumed as infeasible lanes
in the model. The accuracy of the LOESS model in forecasting is the best. Although,
finally the ETS model is selected for the forecasting module since it is easier to understand
and is only performing slightly worse than the more advanced model.

For the robust models, the model containing the hybrid approximation is outperforming
the approximation only using affine decision rules. This is in line with earlier work of
Bertsimas & De Ruiter (2016). The performance differs and around 40 % increase in
stock and costs, regardless if continuous relaxation is applied. Including integrality re-
strictions results in an increase of 10% of stock levels and costs on the first and second
stage of decision variables respectively. Since the hybrid approximation is more substantial
than the integrality restrictions, it is opted to use this approximation. Unfortunately, us-
ing integrality restrictions on the hybrid approximation is computationally too extensive.
Therefore, the model containing full continuous relaxation with hybrid approximation is
opted for usage for DH. To account for the bias of continuous relaxation, the safety stock
levels are rounded up.

The results of the robust model are promising and are reasonably close to the values
already in the SLM. For example, the SLM uses 2640 tank containers in total, whereas
the robust model uses 2880 tank containers without rounding. The robust model and the
SLM do thus differ around 9%. If accounted for the continuous relaxation by rounding
up, the difference is 18%. However, some exciting deviations are found. In general,
the model prefers more 20 Feet Special tank containers instead of the Swap Special tank
containers. It is possible to use less advanced tank containers to ensure lower costs in the
network. Another interesting observation is the need for more safety stock in low-demand
hubs. The current SLM values are too low in these hubs. However, after discussing this
with MMP planners, this can be partly because low-demand hubs generally have a longer
planning horizon. A more detailed analysis for each hub and tank type is present in the
results section, in which the robust model is benchmarked against the current values of
the SLM.

The results of the redistribution model highlight the substantial fraction of demand that
needs to be repositioned back towards hub 1 or hub 39. This model can reposition back
towards its initial safety stock levels.

Future improvements data quality
The data quality at Den Hartogh Logistics could be improved. The first improvement is
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by starting to register missed demand. By registering the missed demand, it is possible
to track better the current performance of the existing stock levels in the SLM. A second
data quality improvement is to identify the demand in demand characteristics and not
directly translate it into tank types. Tank types are already containing an interpretation
of the demand characteristics. Furthermore, it is crucial to correct data errors in the SPO
or OT to monitor the demand per demand characteristic correctly. Unfortunately, there
are still some errors in this process, and this may guide to misleading input data in the
corresponding forecasting models. Also, it would be advisable to mark lanes with an ISO
requirement in the SPO or OT templates, making it easier to distinguish the demand of
ISO tank containers directly. The last improvement on data quality is better estimating
the transportation costs of empty transshipments of indirect order fulfillment. Currently,
many missing values may cause unnecessary avoidance of specific lanes in the safety stock
determination models.

Future improvements robust optimization
There are also some model improvements possible to obtain better safety stock level deter-
mination. Currently, the computation time in all robust models is restrictive for using the
entire network. Another possibility could be the includance of the time with integrating
the repositioning strategy or usage of different plannings horizons for different types of
orders. This could even help Den Hartogh to integrate operational decision-making fully
and have floating safety stock levels over time. However, additional research is necessary
to reduce the computation time in such a large scale of problems to achieve this.

Business recommendations
The following business recommendations are given to DH based upon this research:

• It becomes apparent in section 6.3.4 that some safety stock levels may be outdated
and can be updated such as the hub 7, hub 46, and hub 41. Furthermore, the pro-
vided safety stock levels by the robust model provide a basis for critically reviewing
the current safety stock levels in the SLM at each hub for different tank types.

• The optimal tank type distribution is fairly close with the current tank type distri-
bution. Although, in general it is favored to have more cheaper non flexible tank
containers and slightly more tank containers overall.

• In the sensitivity analysis, it becomes apparent that individual standard deviation
at hub level per demand characteristic is the most influential on the cost structure
and the number of tank containers in the network. Therefore, it would make sense
to invest in advanced forecasting methods since this variance is causing the most
substantial costs.

• The approach and models used in this thesis is valuable for DH for safety stock
determination in the future. Although, since strong assumptions are necessary, it is
still required to review these safety stock levels by MMP planners.

• In this thesis, it becomes apparent that it is difficult to include all problem aspects for
safety stock determination. Further automation of the planning process is difficult.
Therefore, Den Hartogh should empower MMP planners with as many tools available
to enhance human decision-making. Providing them with a more accurate registering
of the stock levels, usage of inventory position instead of inventory level, and an
accurate safety stock level could help them make better decisions.
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Chapter 1

Introduction

1.1 Company description

Den Hartogh Logistics
This project is executed at DH, which is a 3PL company in the tank container industry.
A 3PL is in charge of the complete logistics from the loading site to the end delivery
station of the customer (Hofenk et al., 2011). Therefore, it could integrate intermodal
logistics into its process. Intermodal logistics uses multiple transport modalities in one
trip (Rondinelli & Berry, 2000). Modalities of logistics are, for example, train, truck, or
ferries. DH is thus responsible for the complete logistic trip. Despite the responsibility for
the entire trip, DH does not necessarily own all the transportation modes themselves. For
example, DH could book trucks, trains, and ships of external companies to transport the
tank container. However, DH always owns the tank containers used for transportation.
Therefore, container placement is a vital part of DH’s business and essential for serving
customers effectively.

The industry
The number of companies active in this transportation process of tank containers is limited.
In the global tank container industry, DH ranks as the 7th largest tank container operator
in 2020 (ITCO, 2020). The top 10 biggest tank container operators contribute 56% of the
total market share. The market share of DH results in 8.5 % between the top 10 operators
or a 4.8% total market share. Overall, DH is a medium sized tank container operator in
a market with not that many significant competitors.

The ITCO (2020) reports a relatively stable annual growth rate between 8-13 % between
2013 and 2019 for the market. The total demand is thus fairly stable. Most of the orders
at DH are centred in Europe and thus making DH one of the leading players in the tank
container industry in Europe. A leading position at a geographical level is crucial since it
can enhance a suitable network structure. Being significant in size allows quicker access to
tank containers, firstly because there are more tank containers in the network and secondly
because it is easier to access a tank container in a nearby hub. This advantage gives them
the ability to offer high-quality service at a competitive price.

The organisational structure
DH consists of business units transporting multiple chemical substances, including dry
chemicals, liquefied gasses, chemical liquids, and global. The business unit dry bulk con-
tains dry chemical transportation, which can be chemical products such as sugar. The
business unit liquefied gasses transports gasses that have been turned into their liquid
state. Gasses can be liquefied by the use of compression or adjusting temperature. The

1
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business unit of chemical liquids transports chemical liquids within Europe. The last busi-
ness unit is chemical liquids global. This business unit transports the same products as
liquid logistics but outside Europe or intercontinental transport between another continent
and Europe. The decision to split liquids logistics and global is due to the significant trade
inside the network of Europe. The focus of this thesis is only on the BU Liquid logistics
and the demand of BU global with one origin or destination in Europe.

1.2 Problem description

This Master project aims to solve the main problem of setting appropriate tank container
safety stock levels in Europe. The challenge for DH is to get the right tank container
at the right location at the right time while minimizing the costs associated. Demand
occurrence has four factors: the type of container is necessary, the location of the demand,
the delivery time constraints, and the financial feasibility of the order for DH’s network.
The first factor of what type of tank container is necessary will be treated in the section
1.2.1. The second factor of demand’s location and its timing has to do with the demand
uncertainty and will be present in section 1.2.4. Section 1.2.5 will treat the features of
the network impacting the profitability of an order and the interaction of the network.
Section 1.2.6 deals with the corresponding cost parameters.

1.2.1 Correlated multi-commodity structure

Multi-commodity is the usage of multiple products within the same network (Even et al.,
1975). DH uses multiple tank containers in the network, but it is essential to consider
that the tank containers themselves are not the product. The product that DH offers is
a service of transportation under certain conditions. For example, a customer requests a
particular volume of a chemical from A to B with some safety restrictions and some heating
equipment. In that case, it is up to DH to decide which tank container meets these demand
characteristics. In most cases, multiple tank container types fit the demand characteristics.
The most beneficial tank container type is not always trivial. For example, it can be better
to load order with no need for a heating system in a tank container with a heating system
since the order’s destination is low on tank containers with a heating system. While in the
other situations, the most basic tank container would be better. The matching of tank
types to the requested demand characteristics is the responsibility of an MMP planner.
Besides having a multi-commodity structure with multiple demand characteristics, it is
also correlated. This kind of puzzling will be referred to as the correlated multi-commodity
structure. Therefore, to reveal the true nature of demand, it is essential to consider the
demand characteristics and not the number of orders with a specific type of tank container.
This subsection will first treat all the demand characteristics, and later on, it will treat
the corresponding tank types possibly fitting the demand characteristics.

1.2.2 Demand characteristics

The demand characteristics are on the SPO or the OT. The SPO was used in the first
planning system, and the OT is used in the second planning system, but they are more or
less the same. If it is not possible to directly meet characteristics, some renegotiating can
occur to check other bussiness possibilities. However, in this thesis, it is assumed that the
demand characteristics are non-negotiable. Simply because it is impossible to distinguish
from the data which order is negotiable or not and if successful in which conditions it would
result. Some examples of these negotiations are: downgrading or upgrading the volume,
suggest another time window, suggesting another tank container type, or reselling the
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order to another logistic provider. The following variables are mentioned on the SPO or
OT.

Volume
An order contains a specific volume of litres for transportation. The tank containers types
do have different sizes to cope with the volume. For instance, an order transporting two
small tank containers is changeable into one large tank container order. A small order in
a large tank container is done frequently but has some prerequisites. It is essential to fill
the tank container outside the 20-80 % of its capacity. Otherwise, it will cause dangerous
situations with the liquid’s ability to move for specific products. This rule is known as the
ADR rule in transportation. However, it is possible to still transport products within the
ADR range of 20-80% by placing baffles inside the tank container. Nonetheless, baffles
do also have some disadvantages, limiting their use. Firstly, baffles are hard to clean.
Therefore, DH limits certain chemicals for transportation in baffled tank containers due
to congestion. Secondly, baffles are fixed to the tank container and are not easily be
removable. Therefore, it is hard to change the number of baffled tank containers with the
existing inventory.

Temperature control
Certain goods require temperature regulation for transportation. Almost all tank contain-
ers have temperature control systems, but the level of advancement differs. The standard
system on temperature regulation system on a tank container is using steam tubes. How-
ever, steam can reach too high temperatures at the tubes’ contact point for some products
and thus require more advanced temperature regulation. Using glycogen tubes or elec-
trical heating systems instead of the standard steam temperature systems can control
temperatures while maintaining low temperatures at the contact points. Therefore, some
customers require glycogen or electrical temperature regulation.

Lane requirements
The ISO sets size restrictions for stacking tank containers in transport. Stacking of tank
containers is necessary for large vessels and some trains. If a tank container is going to
use such a transport modality on a lane, it is necessary to have an ISO tank container
for stacking. This requirement is primarily present in the BU Global. Although it may
be possible to use only truck transportation within Europe, it can become too costly and
infeasible. Nonetheless, covering large distances in Europe with these transport modalities
can be cost-efficient and require ISO containers. Within the class of ISO tank containers,
there are two size types. The 20 feet ISO tank container and 40 feet ISO tank container.
The use of length measurement is sufficient since the containers’ width and height have size
restrictions. Although the customer does not request ISO, it is necessary to be competitive
for DH on specific lanes.

Safety procedures
A tank container can have a handrail to make it easier to access the tank container on
the top. Some customers require having such a handrail for safety. Most modern tank
containers do have such a handrail, but older models may still not have one. The absence
of a handrail occurs in ISO tank containers class. The safety policies in Europe are
frequently obligating a tank container with a handrail. The global trade is lagging in
this safety policy, and thus ISO tanks with a handrail do have still value in the global
network.

Blacklist previous products
Although the cleaning process is extensive, some degree of rest-product of chemicals may
still be present. Due to customers’ quality regulations, specific chemicals cannot mix with
the rest-products. Therefore, certain chemicals have a blacklist based on a tank container’s
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previous loading’s. This problem is rare and only exists with exceptional products. The
blacklist requirement thus needs to be checked by verifying the order data and is not a
tank container type. The software in plannIT controls this automatically and blocks tank
containers containing products on the blacklist.

Conclusion demand characteristics
The demand characteristics considered in this project are the volume, the heating system,
ISO requirements and the handrail. These characteristics are selected since they are the
most common in orders and the most present in the SPO or OT. Please note that the
characteristics easily could be extended, but the number of order demand characteris-
tics combinations will grow excessively, resulting in problems in the computation time of
models later on.

The distribution of the selected demand characteristic is in Figure 1.1. Demand charac-
teristic types D1, D5 account for around half of the total demand, and the other demand
types consist of smaller percentages. In reality, the number of demand characteristics
could be enlarged with more categories. The categories considered consist of 85 % of the
total demand present at the BU Liquid logistics and the BU Global considering an origin
or destination in Europe.

Figure 1.1: Distribution of demand per type

1.2.3 Categorizing tank container types

There are multiple different tank containers options to deal with the different demand
characteristics. The different options yield multiple different container types; names of
the most important types are shown in Table 1.1. The first choice is the size of the tank
resulting in two different types: ISO and swaps tanks. Both tanks do have the same frame
measurements. However, the swap tank has more volume by having one or two additional
compartments outside the frame. An ISO tank container is capable of all transportation
modes, whereas a swap tank is not.

The second option is regarding the heating system. The standard heating system is by
using steam tubes, and this is not mentioned in the tank container type’s name in Table
1.1. In case a more advanced heating system is installed, it will be called special. Within
the ISO category, the special heating system does not exist. However, a separate category
of tank containers of that size with no ISO requirement is the 20 Feet Special. The third
option is placing baffles inside the tank container or not. If nothing is mentioned in the
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name, then there are no baffles present. The fourth option is whether a tank container
has a handrail to access the top. However, at the Swap and the 20 Feet Special tank
containers, there is always a handrail to access the top of tank container, and therefore it
is not mentioned in the name of Table 1.1. Table 1.1 summarizes the tank container types
which apply to this thesis.

Name Max L ADR Range Special Heat Handrail ISO stack

20Feet Special 23750 5000-20000 yes yes no
ISO 23750 5000-20000 no no yes
ISO Baffled 23750 N/A no no yes
ISO HR 23750 5000-20000 no yes yes
ISO HR Baffled 23750 N/A no yes yes
Swap 29260 6150-24700 no yes no
Swap Baffled 33250 N/A no yes no
Swap Special 29260 6150-24700 yes yes no

Table 1.1: Main different tank container types

Specific container types
Although the main options are present in Table 1.1 which is around 85 % of the fleet
operating in Europe, there exist also options on the: ground operated, closed top-loading,
and separate compartments within a tank. These could be added to Table 1.1, but as
mentioned, it would enlarge the number of types extensively for a relatively small part of
the demand.

Conclusion tank container types
From the selected demand characteristics and the selected tank container types, it is
possible to deduce a Feasibility matrix stating which tank container fits a demand char-
acteristic with a 1 and a 0 for infeasibility. Due to confidentiality reasons this matrix is
omitted.

1.2.4 Demand uncertainty

Contracts
The demand at DH consists of tender contracts and spot contracts. Tender contracts
are typically for fixed charges and last for a longer time horizon. In comparison, spot
contracts have a shorter time horizon. So the demand has a more stable part with the
long contracts of the tenders and a more volatile part of the spot market. However, the
exact loading time of an order is mostly not pre-determined in the contract, thus still
impacting demand volatility with its timing. The tender contracts typically have an SLA,
which has to be met. In case the customer demands a high SLA, it generally has to pay
a higher price. At the same time, a low SLA gives DH more flexibility but generally a
lower reward. It is thus essential for DH to effectively tackle demand uncertainty to ensure
customer satisfaction and still be profitable. It is thus of great importance for DH to have
sufficient tank containers at each location to ensure a high fill rate.

Transport uncertainty
In addition to having uncertainty about the number of orders and their timing, there is also
some uncertainty in the delivery process itself. During the transport, there can be delays.
DH aims to use their slogan ”Getting it the first time right” by avoiding risky routes and
planning sufficient slack time between switching of transport modalities. Therefore, the
duration of the trip will be generally more prolonged, but with a much higher on-time
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delivery rate and less rerouting costs. Therefore, transport uncertainty will be out of
scope for this thesis.

Forecast global imbalances
Global imbalances of tank containers exist due to differences in the import and export of a
continent. Asia, for example, has a surplus in tank containers since more tank containers
get imported than exported. The network managers of DH meet once every nine months
and try to forecast these global imbalances. Each network manager states the expected
imbalances and changes in repositioning policies between continents. Additionally, these
meetings contain information surrounding general growth patterns and seasonal influences
on the global and continental markets. Adjusting the fleet distribution over the continents
may be a possibility regarding the implications of the market. The number of tank con-
tainers in the network of Europe is thus not constant and affected by changing global
imbalances, seasonal influences and trends. These imbalances need to be adjusted by ap-
propriate pricing or repositioning policies. Overall, this mostly happens in the European
ISO category because of its ability to use container ships.

Operational forecasting
A short-term forecast for Europe is not available at DH. However, the following procedure
is used in operational stock level management. The MMP planners are responsible for sub-
regions in Europe containing multiple hubs. Each MMP planner has regional knowledge
and is aware of the contracts and other frequently occurring orders. Therefore, a planner
tries to match his expectation of occurring demand within his sub-region with the current
existing inventory. The existing inventory is found in SLM, which provides insights into
the stock levels at DH over the hubs in Europe. Minimum and maximum stock levels
are set in the network by the planners’ experience and are incorporated in the SLM tool.
The SLM tool visualizes the shortages and surpluses by assigning colours indicating its
deviation from its desired stock level as shown in Figure 1.2.

Figure 1.2: Stock levels Europe of certain type tank container

1.2.5 Network

Figure 1.2 shows the network structure present in the SLM. The network structure is
important for several reasons.

• A shortage of one hub is solvable by a surplus of nearby other hubs. Transportation
times between hubs are crucial for determining which possible hubs can supply other
hubs on time.

• The network is not equilibrium due to the inflow and outflow of a hub is not equal
to each other. Regardless of the safety stock levels, it is necessary to relocate tank
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container towards hubs with a negative balance on import and export after some
time.

• Hubs central in the network are ideal for having stock since it increases tank con-
tainers’ assignment flexibility. The likelihood of assigning to an order increases since
these hubs have more links to demand possibilities.

• Having stock at the network’s boundaries is not attractive since it has only a few links
to demand observing hubs. However, due to the difficulty accessing the network’s
boundaries, it is necessary to have safety stock at these borders.

• Some hubs prefer stocking due to their low cost for storage or fast transit times to
other hubs. An example is Turkey in the network of Europe. The costs for storing
are low, and the costs for repositioning decrease by the easy access to the whole
Mediterranean area.

• Having a dense network makes it harder for a competitor to enter due to offering
unprofitable prices. Therefore, DH must effectively manage to invest in some parts
of the network and possibly reject other parts of the network.

1.2.6 Cost efficiency

The quoted costs
Previously, the price-elasticity of the global demand of tank containers at DH was inves-
tigated by (Holle, 2019). With pricing policies, it is possible to adjust demand due to its
elasticity. Table 1.2 displays the pricing components of an order.

Type cost Explanation

Direct job cost
Consist of cost items that are directly traceable to the order.
For example, fees for trains or vessels, hiring drivers
and trucks, or operating terminals.

Equipment cost The cost of having operating equipment of DH in the order.

Overhead cost This general fee covers general costs in the company such as
supportive business functions or employees.

Repositioning saving

The cost that might occur of repositioning, after the order has
arrived at its destination. In case the order arrives at a more
distant hub, it is not beneficial for the network of DH.Therefore,
DH quotes additional costs to cover the possible empty mileage.

Repositioning contribution
A discount by avoiding repositioning costs due to a beneficial
origin of the order. The exact opposite of the reposition contribution
and determining the possible benefit of the origin of an order.

Expected demurrage
In case the customer keeps the tank container longer than a
suggested time frame at the delivery site, it will pay
an additional fee which is called demurrage.

Market correction
Based on origin and destination a penalty fee for discouraging
certain container flows. Generally, these market corrections are
for balancing import and export flows of continents.

Quoted network margin The profit margin in the order.

Table 1.2: Pricing components of an order

Once the account manager and customer both accepted the order at DH, it is up to DH
to operate as cost-efficient as possible. This thesis will assume that pricing is fixed and
that creating additional demand by lowering spot rates is not a possibility. This thesis will
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thus merely focus on the costs that can vary due to the efficient execution of operations
in the network.

1.3 Research questions

The main research question central to this project is:

How should Den Hartogh logistics set their tank container safety stock levels
per tank type and apply its stock level management in the network of Europe?

In order to answer the main research question, the following sub research questions are
formulated.

RQ1: What are the current policies within Den Hartogh surrounding stock level manage-
ment of tank container distribution in Europe?

Answering this research question should give a complete conceptual understanding of
the problem. For instance, the procedures in determining tank types, order handling,
forecasting, and fleet management should reveal the corresponding decision structure for
safety stock level determination.

RQ2: Would it be advisable for DH to revise some of the stock level management poli-
cies?

This research question aims to link scientific literature available on stock level management
with the current business process at DH. It is vital to evaluate conceptual design solutions
to improve business value for DH. As a company deliverable, it would be valuable to find
conceptual solutions for reducing multi-commodity and demand uncertainty or solutions
enhancing the network structure of stock level management.

RQ3: Which assumptions and relaxations may be crucial for modelling while still main-
taining a representative business environment?

The answers to this sub-question serve as a preparation for the modelling phase. It is
a guideline on the musts of inclusion in the model and which details are less relevant.
It helps build a structure in the model that sustains as much business value as possible.
Additionally, it helps to identify the most influential assumptions for relaxation.

RQ4: How is the demand at DH distributed in Europe over the hubs, and what are the
cost and transportation functions between hubs?

This sub-question aims to gather the modelling and optimization stage’s input data. The
input data gathering consists of three main components: the demand process, the cost
structure, and the transportation structure. The demand data will provide insights into
the surpluses and shortages on the hub level. Furthermore, the development of a basic
forecast will serve as an input for the modelling and optimisation phase. The second
component is the cost structure. Some examples of these cost structures are: finding the
additional transport costs per hub of serving demand not directly from stock, finding the
holding costs at each hub, and finding the penalty costs of not meeting demand. The last
component is finding the transportation times between the hubs.
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RQ5: How should DH determine its decision parameters for its safety stock levels?

This sub-question aims to translate the problem from a qualitative nature to a quantitative
nature and apply scientific models to identify reasonable safety stock solutions. The
answering of this sub-question has a cyclic behaviour by trying to improve each time.

RQ6: What is the sensitivity of the design parameters in the found setting, and how should
Den Hartogh react?

Investigating the robustness and validity of the found solutions and provide guidance for
standardising stock level management is the goal for this sub-question. It gives insights if
the found input data or decision parameters slightly deviate. Such studies ensure a stable
business environment and help DH react to changing environments. Furthermore, it allows
DH to prioritize which parameters are the most important. Lastly, sensitivity analysis
helps to evaluate implementation risks and guidance for further improvements.

1.4 Business relevance & company deliverables

Currently, the safety stock levels at DH are determined by expert estimates in the SLM
file. DH wants to verify scientifically that these stock levels make sense. The company
deliverable of this thesis should thus be accurate estimates of the current safety stock levels.
Since these levels are changing due to varying demand patterns, it is crucial to create
sustaining value in the future, thus corresponding procedure of finding such safety stock
levels is also essential. In case a revised safety stock policy can boost operational utilisation
by 1 %, it results in treating 1.56 % more demand and using the mean profit per order
indicates that it is a significant amount for research. Since DH occasionally has to reject
demand and can generate slightly more demand with lower prices for some orders, it seems
realistic that additional capacity will sell. Maybe it will be to a smaller profit margin, but
still, it would make a significant impact. Another possibility is that operational utilisation
can be improved by having fewer tank containers while still satisfying the same demand
levels. Overall, a fleet reduction could save an significant amount in euros for DH yearly.
Although both rough calculations may deviate from these numbers, it is clear that only
a slight improvement in operational utilization would result in a significant additional
amount of profit for DH. Thus researching this topic is of significance for DH from a
business perspective. Despite the monetary value in the BU’s Liquid logistics and Global,
it could have value for other BU’s since these BU’s face similar characteristics. Please note
that, the actual monetary values have been omitted due to confidentiality reasons.

1.5 Thesis outline

This thesis has the following outline. Chapter 2 shows the relevant literature for all the
research questions. Chapter 3 discusses the methodology. Chapter 4 report the first
results regarding the obtained data. Chapter 5 uses the results in the data found to
design an appropriate model. Chapter 6 displays all the results. Finally, Chapter 7
discuss the business implications on the found results of the models and their limitations
and implications.



Chapter 2

Literature study

The first section will treat general literature on inventory management and industry char-
acteristic. This literature is necessary to answer the first research question and to bench-
mark the current performance of DH. The second section will treat literature on forecasting
and find the corresponding demand patterns that treat models for research question 4. The
third section is the central part of this thesis and describes different modelling approaches
to finding the safety stock levels and answering research questions 3 and 5.

2.1 Inventory literature

Inventory control policies
It is essential to define what is considered as safety stock. Safety stock is mostly used
to cover uncertainties in demand or its delivery process (Snyder, 1980). It should hedge
against a certain degree of uncertainty. DH experiences mainly uncertainty in the demand
process and therefore needs additional stock. To have sufficient stock a minimum stock
level is present in the SLM. This stock level is containing some expected demand and some
reserve stock for covering high demand time periods. DH is thus looking for a certain stock
level at each hub which satisfies a certain degree of overall fill rate. The definition of safety
stock for DH includes the expected demand and additional part for covering for covering
more uncertainty than expected. Bundling the expected demand and its safety stock is
done for operational purposes in the SLM for the ease of benchmarking. Another method
to reduce demand uncertainty is by the use of strategic incentives. Some of them are
mentioned in the book of Nahmias & Olson (2015). An example of tackling uncertainty
for DH could be by the usage of supply chain coordination or by incorporating more
business flexibility. An example of these strategic incentives at DH could be a discount
for customers to determine their time windows early.

The basestock policy in inventory control method in the container industry is done by
Buhayenko & Den Hertog (2017). In Figure 2.1 on the left hand side, the corresponding
continuous basestock policy (s, S) is shown. If the inventory level drops below s, an order
will be placed until the inventory rises towards the level S. However, the additional stock
will be delivered after L time periods. On the right-hand side of Figure 2.1, the stock
level of a hub in the Network of DH at the start of a day is shown. A few remarks on
the difference of the stock level at DH and the continuous basestock level policy. Besides
having an outflow of tank containers, there is also a natural inflow of products. Therefore,
an increase in the number of tank containers can be the natural inflow or a forced inflow
by their repositioning strategy. The outflow consists of the hubs own demand and possible
transshipments for fulfilling the demand of its neighbors. It is also a possibility that a

10



CHAPTER 2. LITERATURE STUDY 11

shortage of one tank type can be solved with the inventory of another tank container type,
which is not deducible from a single inventory level graph. Finally, the data for the stock
level at DH is only saved in the database for a specific time point, and Figure 2.1 may
suggest fixed review models. However, the inventory strategy of adjustment action of the
stock level is monitored throughout the day by MMP planners and is thus continuous.
The mathematical framework of the (s, S) is applicable but should be tailored to the
industry.

Figure 2.1: Left: Basestock policy (Lee et al., 2018), Right: DH hub stock level

Tank container industry
A general overview of frequently occurring problems in the intermodal 3PL industry is
the work of Powell (2003). It describes which resources are present such as the differences
in tank containers and the possible service requirements of customers in the industry.
Furthermore, the most critical decisions for the 3PL industry are present on operational,
planning, financial, and informational level. Knowing these decisions helps to identify the
modelling parameters. Lastly, it describes the control functions of planners, information
systems, and agents in the tank container industry. This paper contributes to the under-
standing of the industry and quickly identifying what types of decisions are vital.

The paper of Karimi et al. (2005) starts to sketch the most common problems in this
specific industry and proposes an LP model in positioning and hiring tank containers. This
paper includes many details such as multi-commodity, time windows, and cost differences
in loaded and empty transport. Therefore, it is excellent if the demand is known and a
schedule must be found. Nonetheless, since it is not including uncertainty, the value for
DH is limited.

A more mathematically orientated analysis of optimizing intermodal container logistics
is the Ph.D. dissertation of Sharypova (2014), which discusses several critical problems
within intermodal logistics, such as planning horizons, strategic cooperation initiatives,
and empty repositioning problems. The emphasis of her work is on the scheduled service
design network and creates different models for doing so with the formulation of multiple
constraints. A downside is her considerably small problem size, which is, in practice, not
realistic. The last chapter of her dissertation contains a novel approach using game theory.
By incorporating game theory, she makes it possible to view the complete supply chain
of competitors and incorporate the pricing component. Nonetheless, uncertainty is again
not used in this project.

A simulation approach for the tank container industry is present in Young Yun et al.
(2011). With the use of discrete-event simulation, the performance of several (s, S) policies
is tested, and empty reposition transactions and stock levels can be determined in that
paper for the tank container industry. By varying the instances of the decision variables,
it is possible to identify a good solution for DH. Simulation has the advantage of being
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able to simulate the company environment very realistically, but the downside of not being
optimal and its hardness in significantly large instances. However, as the number of hubs
increases, the corresponding possibilities explode and thus its simulation time. A genetic
search algorithm was developed to evaluate only valuable solutions. The genetic search
algorithm keeps in mind favourable parameter settings and samples solutions with a slight
deviation in the previously found favourable setting. The heuristic is called genetic search
because it has many similarities to genetic evolution by selecting good genes and dropping
unfavourable ones. By using this algorithm, it is possible to evaluate more significant
instances in simulation, and this is done for the container industry by (He et al., 2015)
and (Jung et al., 2004).

Actual system implementation of finding the appropriate safety stocks and assigning the
right amount of tank containers is in the article of Epstein et al. (2012). The procedure for
executing such a project is first to determine a forecast and then use this forecast in the
corresponding safety stock determination using a network flow model. First, determining
a forecast and using this forecast in a network flow model is very appealing. The downside
may be the assumption of the normal distribution to determine the appropriate safety stock
levels. Additionally, different tank types and demand types are not considered. Lastly,
a MILP assigns the right tank containers towards orders. The application structures
the process well and gives valuable implementation strategies and managerial insights,
which may be helpful for DH when DH opts for implementation. On top of that, the risk
of implementation and the financial benefits for that particular company are quantified,
which provide support and guidance for implementation.

2.2 Forecasting literature

Before selecting the appropriate forecast model, it is necessary to look at data availability.
Currently, the data available at DH is only data on the sales of tank containers. If
additional explanatory variables contain additional information on the influence of the
demand on tank containers, a multi-variate forecasting model is possible. However, DH
is currently not aware of these variables. Since the emphasis of this thesis is on how to
deal with variability in the determination of safety stock levels, the search for additional
explanatory variables for forecasting is out of the scope of this project. Therefore, it is
decided not to treat the category of multi-variate time series forecasting and focus on
univariate forecasting methods.

Time series characteristics
The book of Hyndman (2018) describes the procedures of forecasting extensively and
treats a wide selection of forecasting methods. Before selecting a model, it is essential
to look at the graphics of a time series. The graphics of a time series could contain a
trend, seasonality, cyclic behaviour, heteroscedastic error terms, or specific outliers in the
demand data. Several data transformation methods are used to remove these patterns
or select models that incorporate these features if these features are present. The goal
of forecasting is to obtain a forecast as accurately as possible and useability in practice.
Selecting a forecast is thus based on its accuracy and practicality.

Holt Winters
One of the most basic forecasting models is the exponential smoothing method. By using
an exponentially decreasing weight factor for the demand further in the past, the future
demand is estimated (Gardner, 2006). These models can be extended by using additive or
multiplicative Holt-Winters to deal with seasonality and other trends (Chatfield, 1978).
The multiplicative Holt-winters is more suitable in case the seasonality changes propor-
tionally to the level. In contrast, the more common additive model is used by a more stable
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seasonality (Hyndman, 2018). The error trend seasonality models (ETS) are optimizing
the parameters of the Holt-Winters model on the Akaike (AIC) or Schwarz (BIC) infor-
mation criteria. Both information criteria contain a term for the amount of parameters in
the model and the log likelihood of the model. These criteria aim to find the best fitting
model, but penalizing more parameters in the search of are more parsimonious model.
ETS models select forecast models on optimizing this criteria in the search of optimizing
a good parsimonious model. ETS models are generally easy to computationally obtain,
create a proper fit in most cases, and the corresponding parameters of the model are easy
to interpret.

SARIMA models
A more complex method to obtain forecasts is using linear regression on previous demand
values and previous forecast error terms to capture auto-correlative relations. These mod-
els first remove trends or seasonality by making use of finite differencing. Eventually,
the heteroscedastic error terms can be removed by applying the box-cox transformation
Nelson & Granger (1979). This class of models are known as the SARIMA models. These
models can generate a better fit than the ETS models, but the corresponding parameters
may be harder to interpret. For example, if the time series has a trend or seasonality, the
time series is transformed. The coefficients are an interpretation of the transformed time
series and considerably more difficult to understand.

LOESS regression
A possible disadvantage of a SARIMA model is its adaptation to sudden changes and
varying parameters. A SARIMA or ETS model has fixed model coefficients over time. A
LOESS regression is a non-parametric technique and uses regression but only uses a subset
of the data and applies weighted least squares to find a fit with the data (Atkeson et al.,
1997). By doing so, this type of forecasting can alternate trend levels and quickly adapt
to varying parameters. The algorithm is quite complex and may be hard to implement
and explain. However, in most cases, it will result in a better model.

Other univariate forecasting models
Other highly advanced forecasting methods are also possible such as neural networks with
auto-regressive terms (Zhang, 2003), Bayesian forecasting (Phillips-Wren et al., 2010) or
spectral analysis (Grzesica & Wicek, 2016). However, these methods are considered beyond
the scope of this master thesis. This master thesis emphasises the determination of safety
stock levels based on a forecast.

2.3 Safety stock determination literature

Deterministic models
As mentioned, the problem has four main characteristics: demand uncertainty, network
structure, multi-commodity, and the time windows. If the demand uncertainty gets omit-
ted, the problem will just be reduced to a significant scheduling problem as already solved
by (Karimi et al., 2005). These problems are generally transformed into network flow
problems solvable by a MILP if the cost structure is linear. Another excellent example
of operating such a model for a container operator is present in Lambert et al. (2009).
These types of problems can deal with relatively large instances in a reasonable amount
of time. Ignoring the network structure, multi-commodity or the time characteristic will
only reduce the size of the problem and making the problem more straightforward. In
case the costs are non-linear, the problem becomes much more difficult. Such non-linear
problems generally needs to be significantly smaller for solving and can, in most cases,
be solved by the use of Lagrangian relaxation, which has been done by Ghadimi et al.
(2020). To reduce the size in these non-linear problem ignoring a problem aspect such as
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the network, structure, multi-commodity, or the time aspect makes the problem instance
much smaller and better solvable. In some cases, it is even possible to solve these problems
exact by deriving derivatives and proving convexity as has been done for this industry by
Li et al. (2007). However, the demand uncertainty is too high at DH, and therefore these
deterministic models are inappropriate.

Models incorporating demand uncertainty
The simplest model with demand uncertainty has no multi-commodity, no time windows,
and no network structure. Solving this model result in the news-vendor equations (Petruzzi
& Dada, 1999). Adding time windows with these types of models result in the basestock
models with an example in Silver & Silver (2017). Incorporating the network structure,
multi-commodity, or other problem features combined with the time aspect generally will
result in large Markov state-space models (Wensing et al., 2018). On top of that, the
exact demand probabilities must be known to solve these models. To tackle these types
of problems, three mathematical techniques are considered in this thesis: stochastic opti-
mization, robust optimization, and simulation. These methods require much computation
time, and using the right aggregation level is a must. Making your model detailed gives
the ability to represent reality better. However, this representation can cause problems in
computation time, resulting in computational in-feasibility. In case a higher aggregation
level is considered, it may be possible to analyze the full problem. Therefore, choosing
the right aggregation level is important for the quality of the solution. Besides changing
the aggregation level, there also exist heuristics to decrease the computation time in these
types of problems with a review of some methods in He et al. (2015).

2.3.1 Stochastic optimization

Stochastic optimization assume a certain probability distribution for uncertain param-
eters and tries to optimize these problem incorporating the uncertainty. Whether this
method is appropriate depends on the demand at DH’s which will be reviewed in Chapter
4. Once the parameters of the demand distribution are found and seems reasonable, a
stochastic program can be formulated with uncertain parameters. The book of Powell
et al. (1995) contains different stochastic programming models in the logistic industries.
This book briefly sums the possibilities in modelling and encountered problems in practice
and should help select the appropriate model or DH. A more concrete example of safety
stock placement using stochastic programming is Schuster Puga et al. (2019). Typically
in these types of problems there exist a time window, the stochastic program contains
multiple stages to deal with different timing in decisions. So the first stage contains deci-
sion variables made before the realisation of the stochastic parameters, and a second stage
contains decision variables made after realising the stochastic parameter. If the stochastic
parameters are correlated with each other, it is necessary to fit a multi-variate distribu-
tion in stochastic optimization. An example of using such a multi-variate distribution is
present in Bertsimas et al. (2010).

2.3.2 Robust optimization

Robust optimization does not assume any probability distribution of the uncertain pa-
rameters in the model and is thus more general in comparison to stochastic optimization.
Generally, robust optimization can solve an optimization problem with uncertain parame-
ters that are allowed to vary in a specified interval (Ben-Tal & Nemirovski, 1999). Robust
optimization searches for a solution in which all the constraints are met under all pos-
sible outcomes of the uncertain parameter stated in the uncertainty set. It is essential
to understand that the solution of a robust optimization may not be optimal in many
demand scenarios, but at least the solution found is feasible in all scenarios. Since safety
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stock levels are set to cover also a certain degree of uncertainty (Snyder, 1980), robust
optimization may become helpful to ensure having enough stock in a specified range of
demand. Choosing a large size of the uncertainty set will result in a solution including
much inventory, avoiding any risks of stock-outs in the most extreme scenario. Setting a
too small size of the uncertainty set, makes it more likely that the true value of an uncer-
tain parameter is outside the range of the uncertainty set. Therefore choosing the proper
uncertainty set is an important decision and dependable on the objective of the company
and the corresponding data structure (Bertsimas et al., 2018). An excellent review of
all the current research on robust optimization is present in the paper of (Gabrel et al.,
2014). If the problem does not have any sequential decision-making, it is robust static
optimization, and if it has sequential decision-making, it is called adaptive optimization.
The paper of (Gabrel et al., 2014) provides a lot of solution methods for both types of
robust models. For example, papers that solve robust optimization problems by rewrit-
ing the problem with a robust counterpart (Gabrel et al., 2014). A robust counterpart
adds additional variables to the original problem and makes it solvable as a regular LP or
MILP with these extra variables. However, formulating these robust counterparts can be
difficult.

Choosing the uncertainty set
The most straightforward uncertainty set is a box uncertainty set. The box uncertainty
set simply restricts the uncertain parameter only to vary a certain amount (Chassein et
al., 2018). An extension of that is the budget uncertainty set, which creates an additional
restriction on the total amount of variation of all the uncertain parameters (Chassein
et al., 2018). In many practical application of robust optimization, the found standard
deviation of uncertain parameter is used in determination of the limit of a uncertainty
set (Moon & Yao, 2011). Other variations using ellipsoid or even polyhedral uncertainty
sets is also an possibility, but generally more complex in modelling (Bertsimas & Brown,
2009). However, when the observed demand displays multi-variate behaviour, advanced
construction methods for the uncertainty set are necessary. Advanced machine learning
methods on constructing these uncertainty sets are present in the article of Goerigk &
Kurtz (2020), and Shang et al. (2017).

Computational challenges
Including all problem aspects within a robust framework may be computationally chal-
lenging. These models are advanced and require a lot of computation time (Ben-Tal et
al., 2004). The work of Bertsimas & Sim (2003) is important in this area since he was
able to reformulate these problems by introducing a robust counterpart. Such reformula-
tion techniques will be required to solve problems of large instances. Other approximation
techniques such as the affine decision rules could help (Ouorou, 2011) or the finite scenario
approach (Marchetti-Spaccamela & Segal, 2011) to keep the problem tractable.

Robust optimization in tank container industry
The work of Erera et al. (2005) not incorporating demand uncertainty is improved by
Erera et al. (2009) by the use of uncertainty sets in robust programming. These two
papers are both on the empty repositioning of tank containers. With the corresponding
uncertainty set, the problem can be reformulated using its dual problem into a MILP
again but incorporating demand uncertainty. The approach and mathematical proof for
reformulating such problems are in Bertsimas & Sim (2003). The work of Erera et al.
(2009) distinguishes three inventory pooling strategy cases: no inventory pooling between
hubs, with inventory pooling between hubs, and have flexible large hubs in the first stage
which redistribute over smaller hubs in the second stage. However, a downside of the
papers in respect of the problem of DH, is not including tank types and not focusing on
safety stock levels, but on the repositioning decisions instead.



Chapter 3

Methodology

3.1 Finding the current inventory policy

The current inventory policy at DH is to be established by conducting interviews with the
corresponding MMP planners. The procedures used in tank allocation and redistributing
will be sketched in business process diagrams. These allocation procedures are to be
examined against the found literature, and if possible, improvement directions for reducing
the complexity and demand uncertainty in operations are given.

3.2 The forecast

The demand data of DH needs to be divided into different demand categories. After
obtaining these categories, it is possible to forecast the demand per demand category for
each hub. Before making the forecast, the corresponding features of the demand such as
trends, seasonality, cyclic variation and possibly heteroskedasticity need to be explored.
Doing this on beforehand makes it easier to select the right forecasting model. After
verifying the model performance and its practicability of the SARIMA, ETS, LOESS
forecasting models, it is decided to use the ETS forecast. Since the emphasis of this thesis
is not on forecasting, the forecasting model formulation and performances are in Appendix
C. Additionally, the forecast errors are to be investigated to see if the demands of hubs
are correlated and if possibly a probability distribution can be fitted on the error term. In
case a probability distribution can be fitted stochastic optimization is ought to be applied
and if not robust optimization.

3.3 Setting the safety stock levels

In case the demand displays multivariate behaviour, a multivariate stochastic program
is applicable. However, if the distributions of the forecast error term of the hubs differ,
robust programming is the method to use. It will be come apparent that no probability
distribution can be fitted and thus robust optimization is the method to use. The different
uncertainty sets will be tested to evaluate the model performance. Furthermore, the prob-
lem characteristics such as network, multi-commodity, and time windows are gradually
introduced in the optimization models. To reveal the sensitivity of the design parameters,
input parameters will be varied. For example the fill rate and the forecast error. By doing
so, the sensitivity’s relation to the total costs becomes more comprehensive. Lastly, the
redistribution of tank containers towards their initial safety stock levels which is not an
main objective of this thesis is in Appendix F.
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Chapter 4

Data analysis

Section 4.1, describes the IT structure at DH and how it is possible to obtain the data used
in this project. Section 4.2 explains how the raw data can be transformed and improved,
making it ready for usage. The last section describes the first results of the data without
interpretation of models.

4.1 Data description

Types of data sets
There exist three types of data sets that can be merged using their unique order ID. The
first data set is the order data. The order data contains transportation data, the order
arrival date, loading date, delivery date, origin, destination, the tank container assigned,
and product related material. The second type is the SPO or OT data. This data contains
information on requirements of transportation that the customer and DH account manager
agreed upon. The last data set is its financial data; the corresponding quoted prices to the
customer, which are mentioned in Table 1.2. Additionally, the actual direct related costs
to that order are in that data set for comparison. Merging these three data sets is possible
in Microsoft Excel by using sequential bundling functions on their order IDs.

Timing of data sets
The time span of representative order data is relatively small. The data originating before
March 2017 is not representative. At March 2017, DH merged with another company and
as a result had completely different demand data patterns. The end of the data set is
April 2021. In total there is four years of data available. Additionally, it is important to
mention that the corona pandemic may have affected demand from March 2020 till April
2021.

Switch of IT system
It is important to recall that this thesis uses data from two different BU’s. In the beginning,
both systems were running on Transfusion 1 (TF1). However, the BU liquid logistics
switched to the more advanced version of Transfusion 2 (TF2) midway 2019. In TF1,
the customer requirements were registered in the SPO. Whereas in TF2, the customer
requirements were registered in the order template (OT). Since the standard pre-order
(SPO) has been updated due to some errors, its improved version is present in TF2 as an
OT.
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4.2 Data preparation

4.2.1 Merging locations

The amount of hubs present in the operational SLM is 48. However, the demand consisted
of much more destinations. Since all cities outside Europe belong to the business unit
global, these hubs have been merged in the hub GLOB. After merging these cities, there
were still 92 city names remaining. Although a hub consists of a direct city location, DH
bundles some cities together. So the corresponding cities of the hubs had to be filtered
and renamed to the hub in the SLM. Due to confidentiality reason the map containing all
the hubs in Europe, is omitted.

4.2.2 Finding demand characteristics

There are ten different demand characteristics. These demand categories must be mutually
exclusive. If they would not be mutually exclusive, an order could arise in multiple demand
categories, resulting in multiple orders while it is just one customer order. This section
will explain how each demand category is distinguished from the SPO or OT customer
data. In the SPO, each variable contained a 0 for no and a 1 for yes. The OT contained
for each variable the values yes, no, null. Where null means the customer is indifferent.
The OT has also been converted to the 0 or 1 system.

ISO
The variable ISO required in the SPO/OT means that the customer requires an ISO tank
container. Nonetheless, the SPO and the OT report a large deviation in percentage of
total orders for this variable. In the SPO, this is 8 %, whereas, in the OT, this is 33 %.
The MMP planners indicate that this difference does not exist in reality. The problem
cause is related to customers checking the boxes of some requirements just to be sure.
Furthermore, some of the boxes are automatically checked in the OT, resulting in a much
higher requirement rate because customers forget to uncheck them. Therefore this variable
is considered useless. However, ISO requirements are primarily obligated by lane usage;
often the customer is not aware of this and is not the one to assign the ISO requirement to
an order. Therefore, it is possible to estimate ISO requirements only on lane occurrence.
The hubs of Russia, GLOB, Piraeus, Gebze, Mediterranean are almost only accessible
using ISO tank containers. Therefore, the additional variable ISO gets created, which has
a value of 1 in the situation the origin or destination is one of the above mentioned hubs.
Please note that, in reality also other lanes may have the ISO requirements. Nevertheless,
the number of lanes is 482, and on each lane, there are multiple route options, making it
extremely time-consuming to verify each lane manually. A fair amount will be estimated
using these hubs, but it will probably deviate a bit from the actual situation.

Special
Whether orders belong in the special category is determined through four variables. There
must be a special heating requirement, meaning that steam is not allowed, and instead, a
special heating system using electricity or glycol is required. Therefore the filter combina-
tion of heating required = 1, steaming allowed = 0, glycol allowed = 1 or electrical allowed
= 1. Due to data inconsistency in the electrical and glycol allowed criteria, these settings
are omitted. The result should represent reality since orders needing even more advanced
heating systems such as hot rosin orders are already omitted from the data.

Small/Large
DH characterises all tanks containing a volume above 24.700 litres as large. All containers
below will be considered small. It could be possible to divide size differences into more
categories. However, this would increase the dimensions again, and in the SLM file itself,
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this classification is not used. Using different size categories compared to what is used
in the SLM would make it hard to benchmark model performance against SLM stock
levels.

Baff
Baffling is necessary when the tank assigned to the order has a volume within the range of
20-80 % of the maximum capacity. Since the tanks differ in size despite being in one size
category, the real need for baffling can deviate a bit. Therefore the baffling range is set to
a level in which all tank container needs to be baffled. This range also makes sense from a
business perspective because if one container needs to be baffled in a large tank container,
DH is most likely to assign a smaller tank container, which does not have to be baffled.
The range for baffling is set if the requested volume is within the range of 5.200-19.200
litres.

4.2.3 Handling outliers

All the demand records have been included in the analysis since it includes an order.
However, sometimes other variables did contain incorrect information. For example, the
transportation time between two hubs was, in some cases, negative. These negative values
are a data recording error and are therefore omitted in the travel time analysis. In other
cases, the transportation time between two hubs was considerably large; in that case, the
order was also omitted. For the BU global orders of a duration longer than 225 days and
for the BU LL, 75 days was considered too large. Although, these durations were probably
correct. Some customers do have demurrage or require having intermediate access to a
product. Therefore the tank container stays fully loaded at sites or depot nearby the
customer, ready for direct retrieval. This service causes long durations, but the customer
directly pays for this long duration. Nonetheless, in this project, the travel time is only
relevant; therefore, these kinds of orders can be omitted. Like the cost data, sometimes a
series of orders got booked on a single order ID, resulting in non-realistic profit generation.
These orders have also been omitted since they were bundling series of orders which were
not tractable. Thus, in case an order got a profit contribution of 12.000 euros, which is
unrealistic, it got omitted.

4.3 Data analysis

This section will present the data before it gets used in the modelling phase. This section
aims to get an understanding of the network and the operating costs. The part of the
demand distribution will be present in section 6.2 since the demand requires adjustments
for trend and seasonality and thus is linked with forecasting.

4.3.1 Duration

Loaded transport duration
Within DH, there exist two types of transport. The first type is loaded transport, in
which the tank container is filled and directly assigned to a customer. The second type is
empty repositioning. Empty repositioning is not necessarily coupled to a customer, but
only delivering the tank container at a hub in shortage of tank containers. The duration
between loaded transport for customers and empty repositioning on the same lane will
differ. Firstly, because the customer needs to load and unload at their delivery site which
is causing additional time. Secondly, some customers require a tank container to wait
fully loaded and pay an additional demurrage fee so that when they require the good it
is available immediately. Lastly, to prevent tank containers from arriving late at their
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destination, DH aims to plan slack time and only use reliable routes in loaded transport.
In contrast, in empty repositioning, this is required to a lesser extent.

Figure 4.1: Left: Days transport LL, Right: Days transport Global

In Figure 4.1 the corresponding mean loaded duration of a customer order is shown. The
duration on a lane is not fixed, since there are multiple routes and the exact time of a route
can also depend on weekdays. On average, an order spends nine days in transport for the
LL and 33 days for Global. Furthermore, the number of days necessary to transport the
tank container to the following order is on average 13 and 55 days for LL and Global.

Empty transport duration
In Transfusion, it is also possible to find the empty repositioning movements and their
duration. It is easily obtainable by using a pivot table on the data with the variables
HubFrom and HubTo. In case a lane combination does not exist, it will be fixed to a high
value. This high value will make the lane very unfavourable or unfeasible. This situation
is realistic since this lane may not be financially feasible for DH, or simply no demand
occurs on that specific lane.

4.3.2 Transportation cost distribution

Due to the intermodal transportation, the cost of transportation are not accurately pre-
dictable by the amount of kilometer or its duration. Many operators do have different
freight rates, which differ inside a considerable interval. Using the financial interal KPI
JF pivot dataset of DH, linking these costs with the order data is possible. Only the
long-range transport modalities such as the trains and ferries are considered. These trans-
portation modes are better for long-range transport because moving by truck is the most
expensive mode to cover distances and is mainly used for shunting between terminals of
transport modalities. These shunting costs will thus always occur for an order and are
therefore less relevant in decision making. The absolute difference in the amount shunting
costs are too hard to estimate reasonably and differs too much for each individual lane to
incorporate. Lastly, the cost rates between empty transport and loaded transport differ.
However, the empty rates are not directly available, and therefore only the full rates are
considered in this thesis.

4.3.3 Other costs

Holding cost
The holding costs are found by searching for each hub the depot manually in TF. Holding
a tank container at a depot varies highly in price. In most cases, it is a small amount
to be paid. However, these depots want to avoid stocking in the long term. Therefore,
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they increase the price based on its duration. An example would be for the first five days
free, the second five days 6 euros per day, and after that, it gets fixed at 15 euros per day.
However, using the number of orders a tank container does per year and the duration of
a trip, it is deducible that a DH tank container does not frequently stand at a depot for
more than ten days. Therefore, the ten-day rate is picked as holding costs at each depot
to ensure a linear behaviour of holding costs to ease computations. The assumption of
directly applying the ten-day rate may be a bit questionable, but since the holding costs
are within the range of 0-12 euro daily rates, which is low compared to the other costs, it
does not matter that much. If the depot did not have any empty depot costs on its price
list, the mean of all the holding rate of 4.92 euros was picked.

Opportunity cost
The opportunity costs refer to the costs for DH that are associated with owning a tank
container. These costs include all costs related to the tank container, such as the invest-
ment costs, maintenance costs, and inspection costs. The finance department calculated
this already, and Table 4.1 displays the daily cost per tank type.

Tanktype Daily Rate

20 FeetSpecial €30
ISO Non Hr €18,1
ISO HR €18,1
ISO HR Baff €30
Swap €39,75
Swap baff €39,75
Swap Special €45,90

Table 4.1: Opportunity cost per tank type

Penalty cost
Penalty costs are the costs of missing an order. These costs are not actually paid, but can
be seen as the cost of missing revenue. The BU Global covers much larger distances and
thus has a more significant profit margin. Including the profit margin and the contribution
on overhead costs of the pricing components in Table 1.2 it is possible to easily obtain the
lost cost of a direct order.

It is important to mention that penalty costs can be determined on multiple methods.
One could argue that the penalty costs should be the full cost of losing an order, thus
the loss of an order. However, it could also be argued that the penalty costs should be
discounted for its duration as by Equation 4.1. With the following variables representing:
a being the planning horizon, the µrepostion mean duration of reposition in a trip, and the
µtransport the mean duration of transport. Since the model is capped at single period, the
full duration of an order falls potentially not within that time horizon. Correcting it for
the corresponding time horizon does take into account that longer time horizon and make
the comparison more fair.

Penalty = (Loss) ∗ α

µreposition + µtransport
4.1
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Model description

Section 5.1 treats the ETS forecasting model with their parameters. The SARIMA and
LOESS forecast models are in Appendix C. Section 5.2 explains robust optimization and
how to model it. Section 5.3 shows the robust optimization model tailored for DH. The
model approximating the adaptive robust optimization by using affine decision rules is
present in section 5.4. The the redistribution model of returning safety stock levels towards
their initial state after the occurrence of demand is in Appendix F.

5.1 Forecast models

A forecast model aims to provide a forecast at the start of each planning horizon for each
hub and every demand characteristic as accurately as possible.

Holt-Winters additive model
The additive Holt-Winters model is in Equation 5.1 (Hyndman, 2018). The ŷt+h|t term
denotes the dependent variable and thus the actual forecast value of the time series value
y for the h steps ahead forecast at time moment t. The t represents the current time with
its unit in days. The h represents the number of steps in units of t the forecast aims to
look ahead.

The additive Holt-winters model consists of three estimation parts. It uses the level
estimate `t, the trend estimate bt, and the seasonality part st. The level estimate is the
starting coefficient. The trend estimates the growth factor within a single time unit. The
seasonality factor estimates the effect on the demand depending on the season. For some
products, it is likely to experience more demand in certain months than other months.
The m represents the number of periods in a year, and since seasonality is set monthly, the
corresponding value will be 12. The α, β∗, γ are free parameters between 0 and 1.

ŷt+h|t = `t + hbt + st+h−m

`t = α(yt − st−m) + (1− α)(`t−1 + bt−1)
bt = β∗t(`t − `t−1) + (1− β∗)bt−1

st = γ(yt − `t−1 − bt−1) + (1− γ)st−m

5.1

An ETS model will be optimized for these free parameters based on the Aikaike Infor-
mation Criteria (AIC) value. A low AIC value is preferred, and therefore, the AIC gets
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minimized. The formula for the AIC value is in Equation 5.2. With the variable k repre-
senting the amount of parameters in the model and L the log-likelihood of the model in
equation 5.2.

AIC = 2k − 2ln(L) 5.2

5.2 Robust optimization modelling

As later will be shown in the results found in 6.2, it is deducible that there is no direct fit
with a probability distribution on the demand. Therefore, robust optimization seems to
be a suitable method to deal with the demand uncertainty. Before starting with modelling
DH’s environment, robust optimization in general needs some explanation. First static
robust optimization models are treated. Subsequently, the adaptive robust optimization
models are explained. Lastly, some approximation methods in solving these models will
be shown.

Static robust optimization
First, recall a general optimization problem of the form present in Equation 5.3. With
C ∈ Rn being a known cost vector vector of size n. The X represents the vector of decision
variables with dimension Rn. A ∈ Rm∗n are the coefficients interacting with the decision
variables. m is the number of restrictions. Lastly, the vector B ∈ Rm consists of the values
constraining the problem.

minimize CT ∗X

subject to AX ≤ B,
X ≥ 0

5.3

There can be uncertainty in the parameters of C, A, and B. In the case of uncertainty in
A or B, a problem solution that is optimal in the original problem may become infeasible
in reality. In the other case of uncertainty in C, the found optimal value can become
substantially far from optimality.

To deal with that robust optimization, considers a set in which the C, A, or the B can
vary. Recall Equation 5.3, but now uncertainty will be introduced in the A matrix in
Equation 5.4. In order to do so with convenient matrix notation, the constraints are
stated separately with index i. The formulation is per constraint for the total amount
of m constraints with index i. Additionally, the random parameter z influencing the
problem is of size k. All in all, resulting in the following dimensions for the parameters
in Equation 5.3: Di ∈ Rn, Ei ∈ Rn∗k, and z ∈ Rk. The matrix A gets thus decomposed
into Di + Ei ∗ z, with the Di being fixed and no uncertain components, the z being the
uncertain parameters, and the Ei being the coefficient of using the uncertain parameters.
The expansion (D + E ∗ z) can also be abbreviated with A(z).

minimize CT ∗X

subject to (Di + Ei ∗ z)TX ≤ Bi ∀z ∈ Z,
X ≥ 0

5.4

Lastly, the z parameters are considered in the uncertainty set, which is shown in Equation
5.5. For the sake of simplicity, the most basic box uncertainty set is used in Equation 5.5
with a lower limit f and an upper limit g.
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Z =
{
z ∈ Rk : f ≤ z ≥ g

}
5.5

Adaptive robust optimization
In static robust optimization, all decisions must be made before the realization of the
uncertain parameter z. However, if some decisions must be made before the realization
of the uncertain parameter and some decisions after the realization of the uncertain pa-
rameters, static robust optimization is conservative. Equation 5.6 shows the formulation
of an adaptive robust optimization. The X are the first stage decision variables, and the
Y (z) are the second stage decision variables after the realization of uncertain parameter
z. The CT is split into a vector for the first stage Ĉ. The original cost vector C is split
into a part containing the first stage decision variables Ĉ and a part containing the second
stage C̃ variables. For the A(z) the same splitting procedure has been applied. Lastly,
the definition of the uncertainty set in Equation 5.5 remains valid. By the use of this
formulation, it becomes possible to adapt to the uncertain parameter in different timing
moments.

minimize
x, y

ĈT ∗X + max
Z

C̃T ∗ Y (z)

subject to Â(z) ∗X + Ã(z) ∗ Y (z) ≤ B ∀z ∈ Z,
X, Y (z) ≥ 0

5.6

Affine decision rules
Since adaptive robust optimization can be computationally challenging, approximation
procedures are used in practice. One of these approximation methods is the use of affine
decision rules. In Equation 5.7 the affine decision rules are stated.

Y (z) = V z + u 5.7

In this case, the uncertain parameter z is of the dimension Rk, the V of the Rn∗k, and the u
of Rk. The adaptive variable Y (z) gets thus approximated by affine decision rules making
thus the problem static again, which makes it less computationally challenging.

Solving adaptive robust optimization
A more exact approach of solving adaptive robust optimization is an hybrid approxima-
tion method proposed in Bertsimas & De Ruiter (2016). The primal and dual have the
same optimal affine policies, but the number of affine constraints may be some magnitude
smaller in duality. By using both the primal and dual problem, the algorithm described
in Bertsimas & De Ruiter (2016) can provide more accurate and faster lower and upper-
bounds and solve the adaptive robust optimization with an iterative procedure faster and
with only a small optimality gap in respect of the exact solution of robust adaptive op-
timization. This procedure start with constructing an upperbound with the use of affine
decision rules and use the binding scenarios of that particular solution to construct a
lowerbound (Bertsimas & De Ruiter, 2016). Since this is thus a mixture of approximation
methods, it is reffereed to as Hybrid method in this thesis. It is stated, that it is possible
to use this algorithm with the first stage decision variables to be an integer, but not with
the second stage decision variables to be an integer (Bertsimas & De Ruiter, 2016). This is
due to dualization over the second stage variables making it not possible to use integrality
restrictions on the second stage.
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5.3 Single period with multi-commodity

First, this section starts with introducing the notation. Secondly, the cost functions which
are in the objective are explained. Thirdly, the constraints are formulated. Fourthly, the
construction of the uncertainty set is discussed. Lastly, everything is summarized in the
main problem formulation.

Problem description
This section aims to provide an understanding of the translation of the problem environ-
ment of DH to a modelling environment. An overview of the definitions of all the variables
is given in Table 5.1.

First of all, a set containing all the hubs in the network is created with the set I. Since the
tank containers flow from one hub towards another hub, it is necessary to have a second
set J containing again all the hubs in the network. The set C contains all the different
combinations of demand characteristics listed in Table ??. The last set consists of all the
different tank types P considered in this thesis, which are listed in Table 1.1.

There exist four cost coefficient input parameters. The: Ch
i is the price paid at location

i to the depot a tank-container for a days in euros. The a represents the number of days
DH uses to plan in the rolling time horizon planning. The CT R

i,j is the price of transporting
an empty tank container from hub i towards hub j. The CO

p is the price it costs DH to
have a tank container of tank type p for a days, regardless it usage of where it is in the
network. The last component is the CP and this is the price it costs DH for losing an
order which is shown in equation 4.1.

Regarding the forecast input parameters, there are two main parameters: the µi,c which is
the expected mean at hub i of demand characteristic c in the corresponding period of the
planning horizon a, and the forecast error σi,c. The Σc is the forecast error for all hubs
per demand characteristic c and thus one aggregation level higher. The Ψ is the forecast
error of all hubs and all demand characteristics.

There are also input variables which ensure feasibility. F T R
i,j ensures feasibility that inven-

tory coming from neighboring hub for demand fulfillment is on time. For example, if hub
j wants inventory of hub i, it checks the transportation time Ti,j and if it is below the
planning horizon a it is feasible. A feasible route gets assigned a one and an unfeasible
route gets a 0. The Fc,p check feasibility op tank type p for demand characteristic c based
on the upcoming results found in Table ??.

By efficient usage of the found forecast error on different forecast aggregation levels, the
size of the uncertainty set will be reduced. The parameters necessary for doing so are: the
γ restricts the amount of acceptable standard error for each hub i and each demand char-
acteristic c, the Γ restrict the forecast for the total demand for each demand characteristic
c, and the ∆ restrict the forecast of all demand.

Lastly, the corresponding decision variables. The Si,p is the first stage decision variable
and represents the safety stock level at hub i of tank type p. The Si,p is the main variable
and the key variable DH is looking for. The Qi,j,c,p states how much inventory of hub i
is used in the demand of hub j for the demand characteristic c and this fulfillment of the
actual demand Di,c is done with tank type p.

Notation Description
Set
I the set of hubs, indexed by i.
J the set of hubs, indexed by j.
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Table 5.1 continued from previous page
Notation Description
C the set of different demand characteristic, indexed by c.
P the set of different tank container types, indexed by p.
Input variables
a The planning horizon in days at the MMP department.

β
The fill rate which is allowed under the considered size of
the uncertainty set.

γ
Amount of individual hub forecast error allowed per
demand characteristic.

F T R
i,j

States if a route is feasible with a 1 and 0 for
infeasible for a pair of hub i and j.

µi,c Expected demand at hub i of characteristic c.
σi,c Standard error at hub of demand at hub i of characteristic c
Σc Standard error of all the hubs per demand characteristic c
Ψ Standard error of all hubs of all demand characteristics
Γc Total standard error of demand characteristic c
∆ Total standard error of demand
Ti,j Transportation time between hub i and hub j

Fc,p Feasibility matrix of demand characteristic c with tank type p
CT R

i,j Cost of transport between hub i and hub j

CH
i Cost holding a tank container at hub i for time period α

CO
p Cost of having a tank container of type p during time period α

CP Cost of missing an order
1 stage decision
variables
Si,p The amount of stock present at hub i of tank type p
Uncertain
parameter
Di,c The actual demand at hub i of demand characteristic c
2 stage decision
variables

Qi,j,c,p
The fulfillment of demand at hub j by hub i of characteristic c with
tank type p

Table 5.1: Definition variables in robust optimization

Assumptions
Some assumptions are necessary to model robust optimization. The main assumption
in this model is the usage of a single period model. With not having a time index for
multiple periods, it is impossible to have intermediate inflows and outflow of inventory in
one planning horizon of duration a. Additionally, a tank container can only get assigned
once, during the planning horizon of length a. Another assumption is bundling all the
demands of BU Global in one hub. However, the impact is low, since stock levels out
of Europe are not considered. This fictional, Global hub is necessary to correct for the
import and export balance in the network of Europe. The last assumption is having
identical penalty costs for each order. In reality, the margins on lanes can differ and thus
require more or less conservative stock levels depending on the penalty costs.

Cost functions
As explained in Chapter 4 the related costs occur in the network of DH and thus resulting
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in an objective function with the following components.

The holding costs are formulated in Equation 5.8. It contains all the stock present at the
start of a time period in the first stage decision of Si,p and everything that is used in the
second stage is subtracted with the variable Qi,j,c,p. The variables F T R

i,j and Fc,p ensures
that the inventory used is feasible for the demand characteristics and is feasible on time.
The plus function ensures that the holding costs can not become negative.

Holding cost =
∑
i∈I

(∑
p∈P

(
Si,p −

∑
j∈J

∑
c∈C

Qi,j,c,p(Di,c) ∗ Fc,p ∗ F T R
i,j

)+
∗ CH

i

)
5.8

The transshipment costs are calculated in Equation 5.9. All the transshipment of the
second stage decision variable Qi,j,c,p are multiplied with the corresponding cost coefficients
CT

i,j and summed over all indices for obtaining the total transportation costs.

Transship cost =
∑
i∈I

∑
j∈J

∑
c∈C

∑
p∈P

(
Qi,j,c,p(Di,c) ∗ Fc,p ∗ F T R

i,j ∗ CT
i,j

)
5.9

The penalty costs are calculated in Equation 5.10. The actual demand gets subtracted
by the amount of demand DH is able to fulfill in the second stage with variable Qi,j,c,p.
Again the plus function ensures, that penalty costs can not become non negative.

Penalty cost =
(∑

i∈I

∑
c∈C

(
Di,c −

P∑ J∑
Qj,i,c,p(Di,c) ∗ F T R

i,j ∗ Fc,p

)+
)
∗ CP 5.10

The opportunity costs are calculated in Equation 5.11. The opportunity costs simply
consisted of having the tank containers in the system and is thus equal to summing all
the first stage decision variables of the safety stock levels and multiplying it with the
corresponding cost of that type tank container during the planning horizon.

Opportunity cost =
∑
p∈P

(∑
i∈I

Si,p

)
∗ CO

p 5.11

Explanation constraints
Constraint 5.12 ensures that at least a fill rate of β is achieved in the allowance range
of the demand in the uncertainty set Z. It is doing so by comparing the amount of
transshipments and the actual demand realized.∑

i∈I

∑
j∈J

∑
c∈C

∑
P∈P

Qi,j,c,p(Di,c) ∗ Fc,p ∗ F T R
i,j ≥ β ∗

∑
i∈I

∑
c∈C

Di,c 5.12

Constraint 5.13 makes it impossible to sell more, than there is actual demand present for
each hub i of demand characteristic c.∑

p∈P

∑
j∈J

Qj,i,c,p(Di,c) ∗ Fc,p ∗ F T R
i,j ≤ Di,c 5.13

Constraint 5.14 ensures using more stock than there is initially allocated at each hub i for
each tank type p is impossible.∑

c∈C

∑
j∈J

Qi,j,c,p(Di,c) ∗ Fc,p ∗ F T R
i,j ≤ Si,p 5.14
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Constraints 5.15 makes the first stage decision variable Si,p integers and positively valued.
Furthermore, the second stage decision variables Qi,j,c,p are also integers and positively
valued. These values cannot be fractional or negative because partial tank containers or
a amount of negative tank containers do not exist.

Si,p, Qi,j,c,p ∈ Z+ 5.15

Defining the uncertainty set
The uncertainty set consists of five restrictions for reducing the size. Restrictions 5.16
and 5.17 are the box uncertainty constraint limiting the demand within γ deviations of its
mean in the forecast. Restrictions 5.19 and 5.20 are the budget uncertainty constraints
limiting the total deviation of the demand. The last restriction 5.17 is necessary to avoid
the situation of negative demand. This is a necessity since DH has some low demand hubs
with a high standard deviation, which otherwise would result in scenarios with a negative
demand.

W =
{
D ∈ R|I|∗|C| : Di,c ≤ µi,c + γ ∗ σi,c , 5.16

Di,c ≥ µi,c − γ ∗ σi,c , 5.17
Di,c ≥ 0 , 5.18∑
i∈I

Di,c ≤ Γ ∗ Σc , 5.19

∑
i∈I

∑
c∈C

Di,c ≤ ∆ ∗Ψ, i ∈ I, c ∈ C
}

5.20

The full model formulation
The complete model formulation summarizing all the previous cost functions, constraints,
and the uncertainty set of the adaptive robust optimization is in Model 5.21.

Removal plus functions
The holding cost and the penalty cost are dealing with the plus function to prevent having
negative costs. Whereas in the objective function, these plus functions are gone. The con-
straint 5.13 and 5.14 make these plus functions redundant. Since, the ∑p∈P

∑
j∈J Qi,j,c,p

matrix is always smaller or equal than the Di,c, the equation of the penalty costs function
can never attain negative values. The same reasoning holds for the equation of the holding
costs with the other constraint.

Integer demand
The demand, however, is still able to contain some numbers which are not integers.
Nonetheless, since µi,c, γ, and σi,c are all integers, the corner points of the uncertainty set
of the Di,c value will likely to be integers. The budget constraint may cause some values
to be not integrals at the corner point, but this will likely not consider many points.
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minimize
Si,p, Qi,j,c,p

max
W

∑
i∈I

(∑
p∈P

(
Si,p −

∑
j∈J

∑
c∈C

Qi,j,c,p(Di,c) ∗ Fc,p ∗ F T R
i,j

)
∗ CH

i

)

+
(∑

i∈I

∑
c∈C

(
Di,c −

∑
p∈P

J∑
Qj,i,c,p(Di,c) ∗ F T R

i,j ∗ Fc,p

))
∗ CP

+
∑
i∈I

∑
j∈J

∑
c∈C

∑
p∈P

(
Qi,j,c,p(Di,c) ∗ Fc,p ∗ F T R

i,j ∗ CT
i,j

)

+
∑
p∈P

(∑
i∈I

Si,p

)
∗ CO

p

subject to
∑
i∈I

∑
j∈J

∑
c∈C

∑
p∈P

Qi,j,c,p(Di,c) ,

∗Fc,p ∗ F T R
i,j ≥ β ∗

∑
i∈I

∑
c∈C

Di,c ∀ D ∈ W,

∑
p∈P

∑
j∈J

Qi,j,c,p(Di,c) ∗ Fc,p ∗ F T R
i,j ≤ Di,c ∀ D ∈ W, i ∈ I, c ∈ C,

∑
c∈C

∑
j∈J

Qj,i,c,p(Di,c) ∗ F T R
i,j ≤ Si,p ∀ D ∈ W, i ∈ I, p ∈ P,

Si,p ∈ Z+ ∀ D ∈ W, i ∈ I, p ∈ P,
Qi,j,c,p(Di,c) ∈ Z+ ∀ D ∈ W, i ∈ I, j ∈ J ,

c ∈ C, p ∈ P,

W =
{
D ∈ R|I|∗|C|:Di,c ≤ µi,c + γ ∗ σi,c,

Di,c ≥ µi,c − γ ∗ σi,c,

Di,c ≥ 0,∑
i∈I

Di,c ≤ Γ ∗ Σc,

∑
i∈I

∑
c∈C

Di,c ≤ ∆ ∗Ψ ∀ i ∈ I, c ∈ C
}

5.21

5.4 Approximation affine decision rules

Modelling challenges
The model formulated in model 5.7 is now an adaptive robust optimization. These models
can be hard to solve directly for large instances. Therefore, these models can be approxi-
mated by affine decision rules as stated in equation 5.7. By approximating this with affine
decision rules, it becomes a static robust optimization that is computationally easier to
solve. Model 5.21 can thus be changed into the model presented in Appendix A.1 to speed
up computations.



Chapter 6

Results

In this chapter the results for conceptual research question and the models are shown.
Section 6.1 provides the explanation of the current state of planning at DH based on
interviews with the responsible planners. Section 6.2 analyzes the demand behavior and
its performance in the different forecasting models. Section 6.3 discusses the performance
of the robust models.

6.1 Result planning procedures

The general planning process
The planning process of an order starts with the arrival of the order. The arrival of an
order differs in the number of days before departing. Typically, orders arrive around three
days before loading, and as mentioned, the number of days between an order’s loading
date and its arrival is called decision days. Challenging trips tend to arrive earlier, and
there are customers who prefer ordering as late as possible. This causes differences in the
amount of decision days for each order. After an account manager has agreed upon a
price, the order goes to the MMP department. The MMP department determines which
tank container gets assigned to the order and a suggested routing for the tank container.
The software system PlannIT proposes an initial schedule for tank container planning,
taking all the current orders into account. However, the system is outdated, and the
MMP department has to change manually the proposed schedule. After determination of
its tank container and route, the order goes to TCP. The TCP department determines
the assignment of internal or external trucks to orders. During delivery, transport may
become delayed, and management of this process is the responsibility of the MMP and
TCP departments.

Time horizon
Each MMP planner has the freedom of its sub-region, and thus each planner does deviate
in its planning process to an extent. A general rule for MMP planners to start planning
2 days ahead of its loading date for assigning tank containers. The number of days a
planner looks a head, is called the planning horizon. Generally, regions with a high order
density usually use a smaller planning horizon because the network changes a lot, and
the planners can adapt faster. The opposite is also true, regions with a low order density
general use a larger time window .

Verification of planning horizon
Extension of the planning horizon is linked with the corresponding decision days. A
MMP planner can not start planning, if the orders of customers are not present. From

30
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analysis. it is deducible by summing the probabilities after 6 decision days, that 89%
of the total demand is known when the MMP planners start planning under the current
planning horizon policy. The reason for planning six days ahead is to reduce re-planning.
Expanding the planning horizon significantly boost the unknown demand and thus its
re-planning.

Tank allocation procedure
Although, it is previously stated that a planning horizon of six days is being used by
the MMP planners. There are some exceptions for possible difficult to plan orders. Un-
fortunately, it is not possible to display the table with tank planning procedures due to
confidentiality.

Strategic initiatives
For better management of the flow of tank containers strategic initiatives can enhance
performance in the supply chain (Nahmias & Olson, 2015). On the problem dimensions
demand uncertainty, network, multi-commodity and timing dimension, it is possible to
use strategic initiatives. This section discusses how some possible strategic initiatives
with cooperation in the supply chain can improve stock level management.

For reducing the amount of multi-commodity, the number of categories must be reduced. If
there are fewer demand types, it is possible to do the same number of orders with a smaller
inventory. One method is standardization in the industry. For example, standardizing
walkways and handrails make it possible to reduce fleet combinations and thus make it
easier for tank container operators. Another option is to make tank container types more
flexible. For example, portable handrails exist, and such solutions make it possible to
use more tank containers of the fleet for required handrail demand. In the future, other
innovative methods for other demand characteristics could also be explored by DH to
decrease the amount of multi-commodity. The last option is to invest in tank containers
capable of as many demand types as possible. Unfortunately, this is also more expensive
and whether this is beneficial depends on the pricing parameters.

Methods for tackling the demand uncertainty are related with cooperation of customers.
Understanding the production schedule of the most influential customers can help to timely
position tank containers for your large customers. Recall, that this is currently already
happening for a few customers, but this could be extended. This inclusion helps to re-
duce the variability in the number of tank containers, which is not known. Furthermore,
investing in advanced forecasting methods can help reduce the forecast error and thus
the standard deviation in the demand process, resulting in a reduction in safety stock
level.

For the time dimension, it is valuable to gain more response time by having more decision
days. If there are more decision days, it is possible to use a longer time horizon without
additional re-planning. Having a large planning horizon would enlarge the possibilities
of on time transshipments and thus reduce safety stock. DH could also introduce some
methods on pricing and reward customers communicating their orders timely to shift the
planning horizon further ahead.

For strategic initiatives on the network, it can help to identify strong and weak lanes for
DH. Identifying vulnerable lanes can support decision-making in rejecting orders in that
lane and ensure profitability. If this is not possible, it can be possible to resell the order or
search for cooperation with other tank container operators to potentially pool inventory
on weak lanes.

SLM issues
During interviews with MMP department employees, it became apparent that the current
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version of the SLM needs improvement on several issues:

• There is a difference in the actual stock level and the stock level in the SLM. For
example, some tank containers which are present at a hub are not shown and vice
versa.

• Tank containers that are soon becoming available after maintenance and re-entering
the system are not considered in the SLM.

• Discrepancies in the depicted stock level and the actual stock level may cause
decision-making based on wrong information and thus less optimal decision mak-
ing by MMP planners.

• The SLM is showing inventory levels instead of the inventory position. For example,
if many departures of tank containers are already scheduled at a hub, the inventory
level can be misleading. The inventory level would indicate that there is more stock
than it is available for usage, which may cause less optimal decision-making. The
opposite is true that having more arrivals would result in more inventory than the
inventory level.

• It is not possible in the SLM to vary the timing towards possible future inventory
positions. If this were implemented, future shortages and surpluses could be foreseen,
and earlier decision-making in repositioning would increase options.

• Predictions of demand for the upcoming days are not given. Most planners are
familiar with a region, observe the patterns in demand, and can thus forecast them-
selves. However, a forecast could provide extra guidance for planners to verify if
their decision-making is indeed valid.

• Moreover, most of the missing parts indicated in the SLM are present in the system
plannIT of DH. For example, in PlannIT, it is possible to view each tank container’s
movement individually and verify inflow, outflow, and hubs. However, it can be time-
consuming to manually check this information. Therefore, fully integrating it in the
SLM could enhance decision-making and reduce the time for the MMP planners.

6.2 Result forecast

The results have been obtained by programming in R with the use of the package FPP2,
which is a R package provided by Hyndman (2018) and effectively tracks forecasting
performances.

6.2.1 General time series

First, the monthly total demand in the network of Europe of all the hubs of DH is analyzed
and shown in Figure 6.1. For the full time span that is available at DH from 2017 March till
2021 April. The aggregated total demand is visualized since the aim is to discover general
patterns in the time series of the demand. The aggregation level of the timing of the time
series is monthly to more easily distinguish the effects of trends and seasonality.

Figure 6.1 consist of three parts. The top part is the general time series over time. The left
bottom part is the autocorrelation function (ACF). The right bottom part is the partial
autocorrelation function (PACF). The ACF represents its correlation of the actual value
with previous values (Hyndman, 2018). The lag states the difference in the number of
time periods between the actual value and the considered lagged value. However, only
looking at the ACF is insufficient. Since the correlation effect of lag 2 is also present at lag
1 and so on. Therefore, the partial autocorrelation function exists, which only measures
the correlation of a lag due to that particular lag Hyndman (2018).
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Figure 6.1: Time series of total demand

From the upper part containing the time series, a few observations can be made. Firstly it
becomes apparent that the time series does have a sample mean of approximately 23.559
trips a month with a standard deviation of 2.271 trips. Furthermore, the time series seem
to behave fairly stationary. There seem to be visually no explicit trend patterns and no
explicit seasonality patterns. Regarding possible outliers in the time series, the corona
crisis is visible by the drop at the end of 2019. Again this drop seems to be not very
substantial and therefore these possible outliers are not deleted.

From the ACF in Figure 6.1 it is apparent that the first lag is above the blue line, which
is the 95% significance level. After the first lag, it is slightly decreasing. A decreasing or
increasing pattern in the ACF, indicates the presence of a trend (Hyndman, 2018). Thus
the ACF may indicate that there is indeed a trend present. For the PACF a significant
lag is found for the 1st, 10th, 12th and 13th lag. The first lag significance of the PACF
supports again the presence of a trend. The 12th and 13th significance support the presence
of seasonality (Hyndman, 2018). The 10th lag significance is not directly explainable.

Figure 6.2: Seasonality plot total demand
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Because of the found significance in the PACF of seasonality, a seasonality plot is made
in Figure 6.2. This Figure plots on the x-axis the months and the value over the years
on the y axis with the blue line representing its mean. From the plot, it is visible that,
March and October seem to be high volume months, whereas December appears to be a
low volume month. However, if looked closely at the y axis, the corresponding jumps are
fairly low in respect of its total value. This supports the thoughts of having significant
seasonality, but its impact on the demand is fairly low.

Overall, it can be concluded that visually the time series seems to behave fairly stationary.
The ACF and PACF hint towards significant effects of a trend and seasonality and thus is
present in the time series. These effects are thus significant, but its impact on the demand
itself is relatively small.

6.2.2 Flow of demand on hub level

The mean inflow and outflow of hubs
The mean inflow, outflow, and the difference in the flow of the total amount of tank
containers is in Appendix B.1 and provides more detailled information regarding the mean
and standard deviation of each hub. The three largest hubs, hub 1, hub 12, and hub 39,
together have an outflow of 49% and an inflow of 34% of the entire network. The medium
to large-sized hubs are hub 22, hub 23, hub 28, hub 11, hub 40, hub 33, hub 24, hub 44,
hub 48, which account for 31 % outflow, 32% inflow. So a large part of the demand is
covered by only a few hubs. Furthermore, the coefficient of variation in these large hubs
is much lower than the smaller ones, implying that the larger hubs have a more stable
demand.

The mean difference flow
The inflow and outflow of hubs can differ highly and therefore cause an unbalanced net-
work. From Appendix B.1, it is possible to analyze the mean difference flow and its
impact on the network. Unfortunately, it is not possible to discuss the differences and
connectability with all the hubs, because of confidentiality reasons.

6.2.3 Testing distribution of forecast error

The results of the complete ETS forecast on Hub level and per demand characteristic
are in Appendix D. In this paragraph, the forecast error is used for testing for possible
demand distributions. Why are the corresponding error terms used and not the actual
demand values? This is done, because the forecast on an individual hub level and per de-
mand characteristic may contain remaining effects of seasonality or trending patterns and
thus making the series non-stationary over time Hyndman (2018). For fitting a demand
distribution, the corresponding time series must be stationary. Additionally, the forecast
errors are checked if the hubs do correlate with each other. There again the forecast is
used, to remove patterns of trend and seasonality. In case the demand values would be
compared a correlation would be found, what is actually caused by the general trend or
seasonality. After the removal of these effects, it is the aim to have an error term series
that can be considered as white noise. If it is white noise, the forecast is perfect and
no additional information that could potentially improve the forecast is present in the
residuals Hyndman (2018).

Normality error term
The Shapiro-Wilk test is used to verify normality Shapiro & Wilk (1963) for the forecast
errors. The Shapiro-Wilk test has the H0 hypothesis of the residuals being normally
distributed. Of the 48 Hubs, 18 could be immediately rejected under 5% significance of
having normal error terms. Note that the other 30 hubs are not automatically normally
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distributed, but the test is not powerful enough to reject it, and further analysis would be
required to verify normality.

Figure 6.3: Left QQ Plot antwerp, Right QQ plot Mediterranean

The QQ plot, Figure 6.3, demonstrates the difference in the normality of error terms in
Hubs. Hub 1 nearly follows the normal distribution, and only its tails may be slightly
off. Whereas the hub Mediterranean is not able to fit on the quantile line and is far
off. The large hubs generally follow the QQ line for normal error terms more closely,
whereas the smaller hubs do not. The inability of the small hubs to follow the normal
distribution is due to the lumpy demand behavior of the small hubs, resulting in only a
few contracts that are possible to generate demand. The larger hubs have more contracts,
and thus, convolutions of these non-identical individual demand distributions will more
likely converge to a normal distribution as the number of contracts increases. Nonetheless,
it is concluded that assuming normality for all hubs is not representative. Therefore, the
use of stochastic optimization becomes obsolete. As mentioned, robust optimization can
relax this and only work with the corresponding standard deviations for hedging against
uncertainty.

Correlation error term between hubs
The residuals of the forecast are tested for autocorrelation between the hubs. This is
tested to verify if hubs correlate in demand behavior and thus if the uncertainty sets
should consider this interactive behavior. From Table 6.1 it is deducible that 72 % of
the correlation between hubs is within a reasonable range of −0.2 till 0.2. Indicating
that most hubs do not correlate that much. Another interesting observation is that most
hubs correlate in a positive direction. This correlation is possible because the trend and
seasonality patterns are not grasped completely by the forecast, and these cause positive
correlation coefficients. For example, suppose the forecast model does not completely
grasp the seasonality. In that case, it is more likely that if demand in Paris rises due
to seasonality, the demand also rises in Prague. In that particular case, the interaction
of demand is not influencing its correlation, but the overall seasonality is. However, the
correlation coefficients seem reasonable to not assume multivariate behavior of the forecast
error.
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Correlation Percentage

-0,99 till -0,3 1%
-0,3 till 0,2 3%
-0,2 till -0,1 9%
-0,1 till 0 20%
0 till 0,10 24%
0,1 till 0,2 19%
0,2 till 0,3 11%
0,3 till 0,4 5%
0,4 till 0,5 5%
0,5 till 0,99 3%

Table 6.1: Correlation coefficients

Benchmark SLM and forecast
It is possible to construct a safety stock level estimate per hub and per tank type only
using the forecast mean and γ times its forecast error. This safety stock level estimate
is very conservative since it is on individual level and uses no cooperation in the form
sharing inventory. The Robust model will always produce a smaller stock level under the
same values for the standard deviation, mean, and planning horizon, since it is able to
cooperate between hubs and use multi-commodity. By using the forecast mean and γ times
its forecast error as a upper limit, it quantifies the gain of using robust optimization.

6.3 Result robust optimization

The results have been obtained by the use of the Gurobi package in the programming
language Python with an additional package RSOME available at Zhi et al. (2019). The
package RSOME is specially designed for robust optimization problems.

6.3.1 The different robust optimization models

In Table 6.2 the corresponding model variants of robust optimization are listed. All mod-
els use an approximation method to solve the adaptive optimization model. The hybrid
method is mentioned in Bertsimas & De Ruiter (2016) and explained in Section 5.2. The
other method is by only using the affine decision rules, making the problem static again.
Since integrality is costly in computation time and unobtainable for the hybrid method for
the second stage variables, it is decided to use continuous relaxation. Continuous relax-
ation is approximating an integrality constraint by the allowance of continuous variables.
By creating the different model variants the effect of hybrid method and integrality in the
first and second stage can be observed.

Name Approximation
method

First stage:
Continuous relaxation

Second stage
Continious relaxation

Model 1 Hybrid method yes yes
Model 2 Hybrid method no yes
Model 3 Affine decision rules yes yes
Model 4 Affine decision rules no yes
Model 5 Affine decision rules no no

Table 6.2: Different robust optimization models
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6.3.2 Computation time

Augmented problem size
Recall the full problem size; there are 48 hubs (for each index i and each index j), ten
demand characteristics (with index c), seven tank types (with index p). Resulting in a first
stage safety stock level matrix of Si,p = 48∗7 = 336 variables, and a second stage decision
transportation of matrix Dimension Qi,j,c,p = 48∗48∗10∗7 = 161.280 variables, which have
to be calculated. Ideally, there would also be an incorporation of the timing components,
but this would logically increase the number of variables again massively.

Set up model
A simulation with pseudo data is used to test which problem size is executable. The
computation time is measured on a laptop with a 3.6 GHz processor and 8 GB of ram. This
test is run first on all the five model variants. Furthermore, for each optimization run, three
separate tests will be used, and the average time of these three will be the computation
time for each setting. Since all the values are randomly sampled, each instance will differ
in computation time, and it will be more representative by taking the average.

Computation time of models with no multi-commodity
In this paragraph, it is studied to what extent the problem size must be limited to have still
computationally tractable optimization problems. Since many instances have to be run,
the model gets timed out after 6 minutes to avoid excessive running times. The starting
point is the model with one tank type and one demand characteristic and thus without
multi-commodity. In Figure 6.4 the computation time is plotted. It is deducible for model
1, that it is possible to evaluate the full network in time without using multi-commodity.
With model 2, around half of the network is analyzable. Including integers in the first
stage in the hybrid method is thus already much more restrictive. With model 5, it is
possible to evaluate the full network and even faster in comparison to model 1. Model 3
and Model 4 are not considered since Model 5, which is more restrictive already is able to
reach the full network at ease.

Figure 6.4: Computation time no multi-commodity against amount of hubs

Overall it can be concluded, that the full network is analyzable with ease for all model
except model 2. Therefore, it is decided to try to incorporate also the multi-commodity
structure.

Computation time models with multi-commodity
By including the multi-commodity which means considering ten of the demand character-
istics and seven tank types, the number of hubs where the model can be solved reduces
significantly, as shown in Figure 6.5. For better graphical representation, the hybrid ap-
proximation models and the affine approximation models are split.
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In Figure 6.5 model 1 and model 2 are shown. Model 1 is able to deal with 6 hubs and
model 2 is able to deal with 4 hubs within the time limit of 6 minutes. The same pattern
is again visible; forcing first-stage variables to be integers is costly in computation time.
Unfortunately, both models are only able to do a small part of the full network by including
multi-commodity. It is visible that at the end of the graphic a steep jump is present and
proceeding with more hubs results in massive increases in computation time.

Figure 6.5: Computation time with multi-commodity against amount of hubs

Interestingly, the amount of decision variables for model 1 in no multi-commodity for the
full network is 50 ∗ 50 = 2500. For model 1 with multi-commodity and six hubs, the
amount of element is 6 ∗ 6 ∗ 10 ∗ 7 = 2520. Both situations with more or less the same size
of decision variables result in more or less the same amount of computation time. Adding
the number of variables is what boosts computation time and not necessarily the number
of dimensions.

In Figure 6.6 the problem with multi-commodity is shown for models 3, 4, and 5. Model
3 can handle almost double the number of hubs in respect of model 1.

Figure 6.6: Computation time with multi-commodity against amount of hubs

Since both contain full continuous relaxation, the affine decision rule approximation is
significantly faster in respect of the hybrid method. Interestingly, including integrality on
the first or the second stage does not significantly impact the computation time. This
insignificant effect is due since most of the time is devoted to RSOME reformulating the
robust counterpart and dealing with the corresponding for loops for the formulation of
the problem. This formulation and reformulation is not necessarily taking longer with
having integrality restriction. The robust counterpart gets solved by Gurobi, and their
integrality does impact the computation time. However, since the time for Gurobi to solve
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that particular MILP is negligible, this method seems not to differ in computation time
for this problem by using static robust optimization.

Conclusions computation time
Model 1 is able to handle the full network and with multi-commodity 6 hubs. Model 2 is
able to handle half of the network without multi-commodity and only 4 hubs with multi-
commodity. For models 3,4,5 all are able to do the full network without multi-commodity
and all models are able to do around 12 hubs for the multi-commodity case. Overall, it can
be concluded that computation time is currently limiting analysis of the full network of
DH. Since all model show at least polynomial increase in time, it is unlikely solvable since
it contains around 161.280 variables whereas models with 2500 variables already seem to
have difficulties to be solvable within 6 minutes.

Solutions reducing computation time
Scientific literature provides general reformulation tricks using duality, problem-specific
reformulations, or advanced construction methods for reducing the uncertainty set to
reduce computation time. Both seem to be out of the scope of this master thesis. Ad-
ditionally, the gap between augmented problem size and the current problem size is so
large, that these techniques are also not able to deal with the full network. Therefore, it is
decided to cut the network into parts and solve these parts individually. This will result
in sub-optimality.

In Figure 6.7 the division of regions is shown. From Figure 6.5, it was illustrated that
under ten demand characteristics, seven tank types it is possible to solve the network for
six hubs for model 1 within the limit of 360 seconds. Therefore, each region may at its
maximum contain six hubs. Since this division is already containing 11 regions, the total
computation of full network analysis is already extensive. Furthermore, the borders of
each region are preferred to have geographical borders. Since water is difficult to cross
due to more frequent ISO requirements on ferries, slow traveling speed, and generally less
frequent operating container lanes, the regional divisions have been done as follows in
Figure 6.7.

Figure 6.7: Cuts in the network of Europe

Region 10 represents all the global demand. Its exact location is thus not representative in
the map; any bundling with other hubs would also make no sense since it has to pool with
additional hubs in the network of Global. Region 11 is a leftover of region 1; however, this
hub is unreachable within the suggested planning horizon of 2 days for region 1.

For most regions, the cuts in the network will not or slightly impact the solution. By the
use of the matrix F T R

i,j , which states if transportation is feasible between hub i and hub j,
it is checked if each hub is reachable on time in the planning horizon a. If considering the
full network, many hubs will not be feasible to supply each other on time and therefore
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should also not be considered. By cutting the network, naturally, a lot of possibilities that
are not feasible are already removed from computation. Therefore, cutting the network
is justified to some extent. However, there is also a downside, hub 25 could easily reach
hub 28 on time, but they are separated from each other by their region definition. So
the hubs at the border of a region may, in reality, be able to reposition more than is now
possible and thus be able to operate with less safety stock. This problem mainly occurs
at the intersection of region 7, region 8, region 6, and region 4. However, it is expected
that approximating the safety stock levels by cutting the network in parts will, for most
hubs, not have too much impact.

6.3.3 Performance results different robust models

Input parameters
In this section, the full network is analyzed for all model variants. The input parameters
are in Table 6.3. The β is set at 0.95 since DH aims to have at least a fill rate of 95 %.
The corresponding γ and Γ are set at 2. Since it seems realistic that most demand will lie
within a span of two standard deviations by the company. The Chebyshev inequality states
that at least 75 % of the demand will be covered (Papoulis & Pillai, 1991). Although,
it is believed within DH that it behaves around a percentage much closer to the normal
distribution of 95 % percent and thus within two standard deviations.

Model parameter Parameter values

Group hubs {13,17,22,23,44,48}
a 6
β 0,95
γ 2
Γ 2
∆ 2

Table 6.3: Region 1: model parameters

Additionally, other parameters are set to: full transport feasibility within the sub-region
for F T R

i,j , penalty costs Cp corrected for day, and a planning horizon a of 6 days. All the
corresponding safety stock levels for the different models are in Appendix E.

Regional model performance
In Table 6.4 the performance of the different models is displayed for each region for model
1, model 3, and model 5 and Table 6.5 for model 4 and model 5.

It is immediately visible that using the hybrid method in model 1 in comparison to using
only affine decision rules for approximating the adaptive optimization in model 3 has
a price. The safety stock levels rise by 37 %, and the cost rise by 42 %. Using the
hybrid method, despite its increase in computation time seems a valuable choice and has
a significant safety stock reduction.

Forcing towards first stage integrality results in an increase of 5% in costs and 9% in
stock for the hybrid method. For the affine decision rule approximation, it results in an
increase of 4 % in cost and 9 % in stock. Therefore, it seems that integrality in the first
stage is not very restrictive and continuous relaxation is valuable. However, since model
2 and model 4 are both only considering four regions these results are uncertain. Please
note that, comparing a model with integrality restrictions against a model without these
restriction always results in an higher stock level and higher costs. However, the model
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with integrality is more representative for reality and therefore preferred. Unfortunately,
these integrality restrictions are costly in computation time and the impact of continuous
relaxation seems marginal on the first stage.

Model 5 containing second stage integrality and first stage integrality with only affine
decision rules in the approximation results in an increase of 21% in objective value and
5% in stock in respect of only having a first stage integrality constraint (model 4). This
seems to impact the solution slightly more than the first stage integrality.

Model 1 Model 3 Model 5

Model OBJ Stock Cost OBJ Stock Cost OBJ Stock
Group 1 8202 443,91 11403 620,97 11901 648
Group 2 3165 185,31 5436 316,53 5766 333
Group 3 2475 122,61 3834 190,38 4044 201
Group 4 3201 194,61 6105 372,15 6330 387
Group 5 1050 81,12 1413 108,48 1488 114
Group 6 3873 230,79 5628 333,78 6036 357
Group 7 18717 1114,68 25035 1358,7 25371 1377
Group 8 5184 313,83 17802 407,55 24345 459
Group 9 2847 182,46 4599 296,4 4932 318
Group 10 2880 241,32 2880 241,32 2979 249
Group 11 267 17,10 732 39,9 768 42
Total 51861 3127,73 84867 4286,16 93960 4485

Table 6.4: Model performance per network group part I

Restrictions in computation time
Unfortunately, the problem size is too large for most of the network groups for model 2
and model 4. The groups consisting of five or more hubs are too large to solve the model
within a reasonable amount for both models. Therefore, the effects on the smaller groups
is studied and extrapolated towards the larger groups. The fact that Model 2 is only able
to solve small groups was in the line of expectations. Figure 6.5 already indicated that
after four hubs the computation time exploded for model 2. However, the fact that Model
4 is not able to solve all groups is remarkable, since Figure 6.6 indicates it should be able
to do so. A possible explanation could be that the instance of DH is different than the
randomized samples and the instance of DH is much harder to solve.

Model 2 Model 4

Cost OBJ Stock Cost OBJ Stock
Group 3 2649 129 3978 195
Group 5 1128 114 1488 114
Group 10 2901 243 2901 243
Group 11 768 42 768 42
Total 7446 528 9135 594

Table 6.5: Model performance per network group part II

Conclusions
Overall it is remarkable that model 2 is limited in analyzing and there is a need for more
cuts in the network to use model 2 for all groups in the network. However, since this
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severely will lead to sub-optimality, it is opted not to do so. Additionally, the gap in opti-
mality by using the hybrid method or only the affine linear decision rule is large. Therefore,
if possible, it is preferred to use the hybrid method. However, using the hybrid method
makes it not possible to incorporate integrality in the first stage with the corresponding
size of the current cuts in the network. Integrality in the second stage is regardless its
computation time not possible in the second stage. However, after studying the impact
of integrality in the first stage and second stage, the impact seems to be not very sub-
stantial for this particular problem. Especially, if we consider the loss that is obtained in
respect of only using the affine decision rules. Therefore, model 1 is assumed to be the
best performing model for DH despite its inability to treat integrality. Please note, that
in reality thus some additional amount of safety stock is necessary for correcting for the
continuous relaxation of the decision variables on the first and second stage. Therefore,
the safety stock levels will be rounded up to their nearest integer for comparison with the
SLM.

6.3.4 Benchmarking robust optimization with SLM total tanks

This section uses the results and elaborates more on the total stock levels present at a hub.
For benchmarking, the results in Appendix E are used since the previous section argued
its the most suitable for DH. The values of model 1 are rounded and rounded up in Table
6.6 and benchmarked against the SLM which are currently operational at DH.

For the SLM, there do not exist input parameters since it is entirely based on expert
opinions and is adjusted over time, based on the experience of performance in the network.
The lower limit is just the expected demand and thus the cycle stock at each hub, which
is at least expected according to the forecast and concerns no additional stock for covering
uncertainty. As elaborated in section 6.2.3 an upper limit can be constructed for the
robust model. Although, a hub can have more tanks than the upper limit due to super
stocking in that particular hub due to low transport towards other hubs or low holding
costs. However, this upper limit indicates how much DH can reduce the stock level instead
of only looking at each location and tank type individually. If there is no cooperation
between the hubs, the robust model will be the same as an individual forecast model for
each hub. Furthermore, it would never make sense to have more total tank containers in
the network than the full value of the forecast. The corresponding benchmark of the SLM
and the robust optimization model is in Table 6.6. The yellow marked cells indicate a
relatively high difference between the SLM and the robust model and if marked a possible
explanation for this difference is given in the paragraph of individual results.

Hub Mu SLM Model 1
(Round)

Model 1
(Round up) Forecast

1 294 360 363 369 444
2 51 48 42 42 105
3 33 39 15 21 75
4 6 0 0 0 18
5 27 3 42 54 81
6 15 9 30 33 51
7 12 0 18 18 42
8 36 66 105 117 84
9 24 30 39 42 54
10 30 12 39 45 78
11 48 117 90 102 249
12 N#A N#A N#A N#A N#A
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Table 6.6 continued from previous page

Hub Mu SLM Model 1
(Round)

Model 1
(Round up) Forecast

13 6 0 15 18 30
14 33 108 57 60 87
15 33 24 21 33 87
16 6 24 12 15 24
17 66 72 87 93 120
18 24 24 39 42 60
19 45 45 3 3 105
20 54 24 78 84 114
21 21 24 33 36 63
22 63 54 93 99 141
23 36 66 51 57 72
24 72 177 0 3 138
25 42 30 165 174 96
26 21 27 30 39 57
27 6 0 15 18 24
28 105 198 153 162 183
29 27 9 42 45 69
30 15 3 3 6 45
31 18 24 30 33 54
32 15 0 27 30 45
33 48 42 42 51 102
34 12 24 27 27 36
35 15 3 9 12 45
36 21 3 33 36 63
37 21 3 30 36 63
38 24 9 45 48 72
39 378 354 453 456 552
40 96 174 132 138 174
41 21 186 27 33 51
42 12 24 24 27 48
43 12 9 21 24 42
44 78 111 102 111 144
45 6 9 63 69 18
46 12 0 24 27 42
47 15 9 24 30 51
48 69 63 96 105 141

2295 2640 2889 3123 4539

Table 6.6: Benchmarking robust model against SLM

Overall results
On average, the results of the SLM and the Robust model are pretty close but the robust
models favors in general more tank containers. The Robust model is slightly more conser-
vative with, with over 90 more tanks in total for the rounding model and thus resulting in
a 9% difference in the total amount of tanks in the network. For the model with rounding
up for each tank type and thus accounting for continuous relaxation used in model 1, a
difference of 161 tanks resulting in a 18% difference respectively.
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These numbers are corrected for the tanks in the Global hub since this hub is not in the
SLM. This also explains why the hub 12 in Table 6.6 has no value. Furthermore, the
upper limit of only using a forecast of 4539 tanks, is quite far of the suggested stock level
of robust optimization of 2889 and 3123. This indicates that using robust optimization is
valuable instead of only looking at each hub and demand characteristic individually. Since
it is unknown at DH which percentage of demand under the current operations is lost, it
is tough to estimate the fill rate of both safety stock levels and to argue if SLM or the
robust optimization model is better. However, we know that under the assumption that
the individual demand and the total demand stay between two standard deviations, the
robust model can achieve a fill rate of 95 %. Overall, the results imply that for achieving
a fill rate of 95 % DH needs to invest in slightly more tank containers. Furthermore, it
can be concluded that the results of robust optimization are quite far from its upper limit
of treating each hub and tank type individually.

Individual results
From Table 6.6 some interesting deviations in the stock levels of model 1 and the SLM on
hub level can be found:

• A frequently observed pattern in the difference between the SLM and the robust
model is that the low-demand hubs have a structural shortage in the SLM. An
example of these low-demand hubs experiencing these problems are hubs: 5, 7, 27,
36, 37, 38. After verifying with MMP planners why these hubs have such low stock
levels, the following three reasons are given. Demand in these hubs generally has
a more extended amount of decision days. So the number of decision days in low-
demand hubs at the border of the network are usually in the right tail of Figure ??.
This extended time gives planners more time and, therefore, there is no need for
additional safety stock over there. Customers in these regions are aware of the low
amount of tank containers in that area and plan further ahead to account for this.
Another reason is that demand to the borders is frequently in both directions, and
thus there is a diminishing need for having stock. Lastly, in most cases, the actual
stock level at each hub is relatively high because of the demand flow. Therefore,
it can be that the SLM has some low limits, but the actual stock levels can solve
these problems, and consequently, it may be hard to detect if these levels are indeed
insufficient.

• It is visible that in hub 24, the model indicates 0 tank containers, whereas the SLM
shows much more. This difference is because hub 25 has lower holding costs, and the
transportation cost between 24 and 25 is set at 0. Therefore, hub 25 will store all
these tank containers. However, in reality, the transportation costs are not exactly 0,
and consequently, it makes no sense to super stock everything in hub 25. The same
thing is happening with hub 3 and hub 45. Therefore, the SLM is probably right
there, and if the input data would also contain trucking costs, it would be corrected
for these hubs. Additionally, hub 24 is now only linked to the French regions, but
in reality it is more connected to the German hubs. On top of that, there are also
large customers in hub 24 with high variability, making it beneficial to have some
additional stock there.

• It is visible that there must be more tank containers in hub 28, according to the
SLM. Apparently, in hub 28, there are customers with extensive blacklists. The
blacklist contains previous loadings, which are not allowed to congest with the cur-
rent product. Due to these comprehensive lists, it is necessary to have more tank
containers at these hubs to increase the probability of having a tank container, not
on a blacklist of products. On top of that, there is a large customer in hub 28, which
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is very volatile and also causing the additional need for safety stock.

• Interestingly, it is observed that the robust model favors more stock in hub 39. After
verifying with MMP planners, Rotterdam is indeed in some cases low in stock caused
by a relatively high variance.

• In Hub 41, there is a lot of stock in the SLM, which may be too conservative according
to the model. An explanation is linked to the construction of hub 41. Hub 41 consists
of a bundle of cities quite far from each other, receiving low demand. These distances
may be a cause of the significant difference. However, this difference is way too large
to be that high. So maybe the adjustment of the safety stock in hub 41 should be
better.

6.3.5 Benchmarking tank types of robust optimization with SLM

There are seven tank types considered in this thesis, as shown in Table 1.1. To abbreviate
notation, these tank types have been number T1 till T7 in the same order as present in
Table 1.1. However, the SLM consist of only four tank types. This project created on
purpose with three additional tank types, since further expansion was required for some
orders and DH was curious about its impact. By merging T2 T3 and T4 in the ISO
category and T5 and T6 in the Swap category, it is possible to compare the tank types of
the SLM again. In Figure 6.8 the comparison is shown.

Total distribution of tank types
Overall, the distribution of tank types seems quite close. Impressive since tank containers
do have an lifespan of around 10-15 years, and the corresponding demand patterns in
demand characteristics can differ significantly over time. However, there are also some
minor differences in the distribution of different tank types.

Preferably there would be a smaller percentage of swap special tank containers and in-
stead of these tank containers a higher percentage of 20 Feet special tank containers. A
swap special tank container has the same advanced heating system as a 20 Feet Special,
but is larger in size. Having a Swap Special generally is more flexible, but is also more ex-
pensive. The favoring of the 20 Feet Special is driven by not having enough demand which
is only treatable by the Swap Special and therefore it is better to have a less expensive
tank container for these orders.

Figure 6.8: Tank type comparison SLM and model 1

Furthermore, a higher rate in ISO tank containers seems preferred which is compensated
with a lower percentage in Swap tanks. However, since ISO requirements are frequently
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wrongly stated in the SPO or OT data, this conclusion must be taken with caution. Again
the ISO tank is much cheaper in comparison with the Swap tank, but also their capabilities
do differ.

Individual hub differences per tank types
In Table 6.7 the differences per tank types per hub are shown. The NA values represent
the Glob hub and this hub is in reality non existent, since it bundles all demand outside
Europe in one hub. The SLM has obviously no value for that hub and therefore these
values are not present.

The blue color indicates a difference, which is likely due to changing Swap Special to
20 Feet Special. Red indicates that the robust model advises significantly fewer tank
containers, and green indicates the robust model recommends a higher stock level.

For the 20 Feet category, it can be seen that the SLM means to super stock in hub 1
the 20 Feet Special. In comparison, the model prefers to have them divided over some
smaller hubs, experiencing that type of demand. Super stocking in Antwerp makes sense
if planning is going multi-period. For example, if a 20 Feet Special order is known far in
advance, it is possible to load first a normal order in this more advanced tank-container
already going towards the loading destination of the 20 Feet Special order. Therefore, it is
explainable that in a multi-period model with relaxation of the arrival of 2 decision days,
it can be more beneficial to super stock in hub 1.

For the ISO tanks, it is observed that generally, the small hubs at the border need more
stock level, as already was found on the total stock level analysis. Although the explanation
of having more decision days in that part of the network may solve this. Interestingly, it
is found that hub 39 of the large hubs needs much more ISO tank containers.

There are shortages found in hub 3 and hub 24 for the Swap tanks, which are caused by
the holding costs and the low transport costs in in the model, which in reality may differ
a bit more than suggested in the model.

Lastly, for the Swap Special tanks, it is visible that the SLM prefers to stock them all in
hub 39 or hub 1, whereas the robust model prefers to divide them more over the hubs
experiencing this type of demand. Again the previous argument of going multi-period is
a possible explanation for this favoring of super stocking the SLM.

Hub Model
20 Feet

SLM
20 Feet

Model
ISO

SLM
ISO

Model
Swap

SLM
Swap

Model
Swap
Spec

SLM
Swap
Spec

1 12 45 231 180 120 105 6 30
2 0 0 33 24 9 24 0 0
3 0 0 12 9 9 30 0 0
4 0 0 0 0 0 0 0 0
5 12 0 33 0 6 3 3 0
6 6 6 21 0 6 3 0 0
7 0 0 15 0 3 0 0 0
8 0 0 78 30 39 36 0 0
9 0 0 42 30 0 0 0 0
10 6 0 30 6 9 6 0 0
11 6 0 75 81 21 21 0 15
12 N#A N#A N#A N#A N#A N#A N#A N#A
13 0 0 12 0 6 0 0 0
14 6 0 42 105 6 3 6 0
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Table 6.7 continued from previous page

Hub Model
20 Feet

SLM
20 Feet

Model
ISO

SLM
ISO

Model
Swap

SLM
Swap

Model
Swap
Spec

SLM
Swap
Special

15 6 0 15 9 12 12 0 3
16 0 0 3 9 6 15 6 0
17 0 3 39 30 54 30 0 9
18 6 0 15 9 15 15 6 0
19 0 0 3 21 0 15 0 9
20 12 0 54 15 12 9 6 0
21 0 0 30 9 6 15 0 0
22 12 3 63 30 18 15 6 6
23 0 3 42 42 15 15 0 6
24 0 3 3 150 0 24 0 0
25 27 0 114 21 15 9 18 0
26 0 0 30 12 9 15 0 0
27 0 0 18 0 0 0 0 0
28 12 3 90 120 54 45 6 30
29 0 0 36 0 9 9 0 0
30 0 0 6 3 0 0 0 0
31 0 3 21 12 6 9 6 0
32 0 0 24 0 6 0 0 0
33 6 0 39 30 6 6 0 6
34 0 0 27 24 0 0 0 0
35 0 0 12 0 0 3 0 0
36 6 0 24 0 6 3 0 0
37 0 0 24 0 6 3 6 0
38 12 0 24 3 6 6 6 0
39 12 9 276 105 162 180 6 60
40 9 0 93 105 30 60 6 9
41 3 0 30 180 0 6 0 0
42 0 0 21 0 6 24 0 0
43 0 0 15 3 3 6 6 0
44 6 6 57 30 48 60 0 15
45 6 0 54 9 9 0 0 0
46 0 0 21 0 6 0 0 0
47 3 0 18 3 9 6 0 0
48 6 3 63 30 30 30 6 0
Total 192 87 2028 1479 798 876 105 198

Table 6.7: Per tank type difference model 1 and SLM

Type differences robust models
In Figure 6.9 the tank types are depicted for the different model solutions. Model 2 and
Model 4 are ommited, since these models where not able to analyze the full network. It
is visible model 3 and model 5 are relatively close. Furthermore, the adaptive model uses
more T4 and T6, which are the more flexible tank containers. The use of only affine
decision rule for approximating results in having a fleet consisting of a smaller percentage
in flexible tank containers, but generally in more stock. Intuitive this is logical, since being
able to better incorporate adaptability makes it more valuable to incorporate flexible tank
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container in respect of its more expensive price. Again these differences are not that
substantial and only seem to be marginal.

Figure 6.9: Percentage tank types per robust model

6.3.6 Sensitivity to uncertainty set

For the sensitivity analysis only Region 1 of model 1 is used since the sensitivity analysis
shows the relationship in the parameters, and alternating all the parameters in the entire
network would be too computationally extensive and likely repetitive in analysis. The
uncertainty set, shown in Model 5.21 consists of three parameters. The γ controls the
individual standard deviation of each hub and demand characteristic. The Γ controls the
total standard deviation of the sum of all demand of a demand characteristic and the
∆ total demand. Furthermore, the general fill rate constraint β also states how much
uncertainty must be covered. There are thus four parameters in which the sensitivity is
investigated towards the safety stock levels and the corresponding cost values.

Sensitivity to β
The sensitivity to β is in Figure 6.10. It is visible that only after the value of 0, 96 the
fill rate constraint starts to constrain the problem. So setting the constraint lower than
96% fill rate will still result in a fill rate of 96 %. This is important for DH to consider,
since they aim to have a fill rate of 95 %. Remarkably optimizing for DH its profit is
the around the same value of fill rate and thus achieving this fill rate of 95 % is also
from a cost perspective view the most optimal to do. After surpassing the level of a
96 % fill rate, it behaves linearly in respect of the costs and also in respect of its stock
level. However, since the demand is restricted in the size of the uncertainty set at γ
its individual standard deviation for each hub and each standard deviation, and Γ for the
total standard deviation for each demand characteristic and ∆ its total standard deviation,
the corresponding structure becomes linear again of fulfillment of a certain amount of fill
rate.
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Figure 6.10: Sensitivity β

Sensitivity to γ and σi,c

The sensitivity to the parameter γ is in Figure 6.11. It is deducible that the cost and
the number of tank containers are relatively linear with a dampening upwards trend.
This trend is due to the Γ restriction on the total demand, which hinders the problem
from growing further and becoming more significant. Furthermore, the model has been
tested with a β constraint of 0, 95 and its relaxation. Interestingly, the models are equal
till γ = 5, after that level the fill rate constraints seem to hinder the problem, and the
problem starts to converge to doing no business at all and just pay all the penalty costs.
This drop of starting to avoid bussiness due to its large variance and is clearly visible in
the righthand side of Figure 6.10. The σi,c is in the same procedure-related and shows
the same sensitivity behavior since the γ is a multiple of the σi,c. Lastly, since the slope
of γ or σ is very high in respect of the stock and costs, it indicates that a good forecast
is valuable since a slight decrease of variance results in large reductions. Therefore, for
future research it could be opted to use an more advanced forecast. With the knowledge
that became apparent during the sensitivity analysis, it would have been a better decision
to try to reduce the forecast error even more and use a LOESS model or even a more
advanced forecasting model and take the difficulties in understanding for granted.

Figure 6.11: Sensitivity γ and σi,c

Sensitivity Γ and ∆
The parameter Γ is much less sensitive to an increase in safety stock level and total costs.
Especially if it gets compared to the γ variation, it is interesting that the fill rate constraint
in this particular example is not constraining the problem. Additionally, after reaching a
Γ value of 2, the solution stays the same. The γ is curbing the problem, and therefore,
it does not matter how much the Γ increases. After checking the ∆, this variable seem
to constrain the problem to an even lesser extent than the Γ and therefore is thus not
included in this analysis.
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Figure 6.12: Sensitivity Γ

Limit distribution
Constraint violation could be tested if a probability distribution is known. Since the
probability distribution is not known, it is not easy to do so. It is possible to assume that
the size of the empirical distribution of the forecast error is large enough to represent its
probability distribution. Only then, it would be possible in the continuous case to test for
constraint violation. However, if the forecast method produces non-stationary error term
due to left over effecs of seasonality or trends this method would not be valid. Since the
use of testing constraint violation is using thus two large assumptions, it is opted not to do
so. The Chebychev inequality remains on estimation the max probability of exceeding a
certain amount of standard deviations. Generally, this is way too conservative. However,
to give an indication, the Chebychev limit probability is used and plotted against the
corresponding cost in Figure 6.13. Although the exact number may not be representative,
the figure’s corresponding exponential shape is.

Figure 6.13: Sensitivity limiting CDF



Chapter 7

Conclusion and discussion

This chapter starts in section 7.1 with the recommendations for DH found in this project.
The limitations of this project are shown in section 7.2. Section 7.3 describes future
academic research directions deducible from this project. Section 7.4 provides a general
conclusion and reflects on the main research question.

7.1 Recommendations DH

The following recommendations found in this project are applicable for implementation at
DH:

• Update some safety stock levels in the SLM based on the values found in the robust
model. Some of the small hubs with no current existing safety stock can be updated
and also the very large hubs such as Rotterdam and Antwerpen seem to need some
additional stock. A more detailed analysis on hub and tank level is in section 6.3.4.
Although it is must be noted, that this must be done with caution and needs review
by MMP planners.

• Favor investing in more 20 Feet Special tank containers over Swap Special tank con-
tainers. The current tank type distribution at DH is in line with what is found with
the robust model. A slight deviation is found favoring more the 20 Feet Special
tank containers instead of the Swap Special tank containers. The large volume or-
ders requiring the Swap Special tank containers do occur to a lesser extent and the
associated costs of being more flexible with these larger tank containers are too high.

• Consider investing in more tank containers overall. It is found that in general there
need to be slightly more tank containers, which is around 18%, overall in the network
to sustain a fill rate of 95 %. In the sensitivity analysis it is found by relaxation of the
fill rate constraint that around a 95 % fill rate, DH is the most cost-efficient. There-
fore, investing in slightly more tank containers seems valid. Nonetheless, a critical
review is needed since the robust model does incorporate some strong assumptions
on the planning horizon.

• In the sensitivity analysis it becomes apparent that the forecast error on hub and
tank level is the most influential in the associated cost structure of DH. Therefore,
it is valuable to invest in a more advanced forecast than proposed in this project.

• Start registering missed demand. By starting to register missed demand, it becomes
known how much demand is missed. This would make it possible to more fairly
evaluate the performance of certain safety stock levels.

• Enrich MMP planners with as much support as possible in making planning deci-
sions. Since planners make most decisions and the requirement of many assumptions
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in modelling will require to do so in the future. Decision support tools for MMP
planners such as an accurate daily forecast, accurate inventory levels in the SLM,
working with inventory positions, and the ability to integrate all features in one tool.

• If possible apply strategic initiatives to reduce the presence of the problems aspects
such as demand uncertainty, multi-commodity, timing issues, and network issues.

7.2 Limitations

The first limitation is the data quality used in the corresponding robust optimization and
forecast models and thus its validity. For example, the demand characteristics are filled
in the SPO in TF1 and OT in TF2, and its definitions differ in both systems. Therefore,
when comparing the demand characteristics, the demand characteristic distribution starts
to deviate after the introduction of TF2, which is in reality not valid. On top of that,
some customers check multiple checkboxes on the SPO or OT to be sure. However,
planners know what product the customer wants to transport and find a suitable fitting
tank container but this is not corrected in the SPO or OT. This results in difficulty
distinguishing the actual demand types. Additionally, multiple lanes are not present on
the transport data, and not all trucking costs are available. Therefore, it results in many
unknown data points which are considered as unfeasible which may actually be feasible.
The lack of data quality can dampen the effect of inventory pooling resulting in too
conservative safety stock levels.

The second limitation is its inability to test all four problems dimensions at once. First of
all, the network is cut in parts, which results in hubs on the border not being able to pool
inventory with a nearby hub, which may be possible. Even with cuts in the network, the
models dealing with integrality had difficulties in keeping it computationally tractable.
Secondly, the timing dimension is fixed. It became apparent that complicated orders or
orders at the network border may use earlier planning in the planning process. This
aspect is thus not incorporated in the model, causing a bit conservative stock levels at
low demand hubs. Thirdly, not going multi-period does not integrate the redistribution of
tank container and its safety stock levels. If these had been optimized together, it could
have resulted in even better safety stock levels.

7.3 Future research

The nature of the problem at DH is very challenging and making it an excellent motivator
for further academic research. Especially since there is much potential business value with
substantial cost reductions. Methods on faster computation or approximation of robust
optimization would enlarge the practicability of the solution. Some exciting problem
extensions are listed below:

• Including integrality on the second stage decision variables for the hybrid approxi-
mation method. This method was able to outperform the approximation with only
affine decision rules, but with the loss of second stage integrality.

• Extension of the corresponding demand types and tank container types would be
possible.

• The ability to analyze the full network without making cuts in the network using
multi-commodity with a constant planning horizon.

• The ability to go multi-period and to differ thus decision making on different planning
horizons for different types of orders.

• The ability to go multi-period and to incorporate repositioning decision making.
Currently, these models run sequentially. A downside in running these models se-
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quentially is not incorporating the pooling effect of making it more attractive to
reposition tank containers from nearby hubs, which already have to go in that di-
rection due to repositioning.

• The incorporation of the pricing effect could be injected into the model. For example,
additional inventory could be sold for lower rates, and incorporating these parameters
could result in interesting stock level management solutions.

7.4 Conclusion

This project started with the aim of improving the stock level management process of DH
and its safety stock levels. The stock level management process is mapped and strategic
initiatives to improve the supply chain are given.

For the determination of safety stock levels, an adaptive robust optimization problem is
formulated. By creating cuts in the network on geographical borders, it is possible to
analyze the large network of DH and thus use robust optimization in practice. The hybrid
approximation of adaptive robust optimization resulted in 40 % lower costs and stock in
full continuous relaxation in respect to the use of approximation by only affine decision
rules. Unfortunately, the hybrid approximation model is not able to include integrality on
the second stage and the first stage is computationally too extensive. After analysis of the
effects of integrality by the use of affine decision rules, these effects seem not too restrictive.
Therefore, it is decided to use the hybrid approximation with continuous relaxation and
round up the number of tank containers to account for the relaxation.

Overall the results are promising and in line with current safety stock levels in the SLM
resulting in nice recommendations in section 7.1. However, it must be mentoined that
the data quality needs improvement and thus the validity of the solution. Especially,
errors in the transportation costs can results in local deviations of safety stock. The
provided forecasting models, robust optimization models, and redistribution models can
provide support in doing planning operations. DH has thus a valuable scientific method
on how to construct safety stock levels in its network. However, due to the challenging
environment of DH, it is not possible to incorporate all problem features and thus fully
automate the planning process by relying on mathematical models even when the data
quality is improved. Therefore, human adjustment of the safety stock levels must remain
necessary. Lastly, some exciting model extensions are possible with much business value
for DH, which is mentioned in section 7.3, if the literature on adaptive robust optimization
is extended.
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Appendix A

Affine decision rule model

The affine decision rule model is in A.1. Please note, the constraints do not have a
definition for the set used due to spacing issues. These have However, these definitions
should be added to model A.1 and are exactly the same as in model 5.25.

minimize
Si,p, Qi,j,c,p

max
W

∑
i∈I

(∑
p∈P

(
Si,p −

∑
j∈J
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A.1
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Appendix B

Mean demand analaysis

Hub From From From To To To Diff Diff Diff

µ σ cv µ σ cv µ σ cv
1 4293 498 0,36 2181 207 0,27 -2112 489 0,69
2 519 90 0,51 705 117 0,48 183 90 1,47
3 174 45 0,75 240 60 0,75 66 72 3,36
4 3 9 9,54 33 15 1,26 30 18 1,74
5 57 18 0,96 348 96 0,84 291 99 1,02
6 27 24 2,61 150 84 1,71 123 72 1,77
7 153 87 1,74 306 69 0,69 153 69 1,35
8 363 78 0,63 327 75 0,69 -36 87 7,08
9 135 63 1,44 543 144 0,81 408 168 1,23
10 126 42 0,96 225 48 0,63 99 48 1,50
11 2424 426 0,54 2508 384 0,45 84 498 18,06
12 687 174 0,75 285 93 0,96 -402 219 1,65
13 30 39 3,90 186 75 1,23 153 60 1,14
14 252 78 0,93 348 81 0,69 93 117 3,78
15 171 60 1,08 258 45 0,54 90 69 2,34
16 0 3 10,59 66 12 0,54 66 12 0,54
17 564 312 1,65 555 144 0,78 -9 276 98,43
18 201 48 0,72 201 93 1,38 3 105 188,91
19 414 87 0,63 297 54 0,54 -117 87 2,25
20 192 114 1,77 174 93 1,62 -18 66 11,19
21 33 33 2,97 216 66 0,90 183 69 1,17
22 651 159 0,72 1620 396 0,75 969 345 1,08
23 558 150 0,81 750 189 0,75 192 213 3,33
24 708 114 0,48 870 339 1,17 162 351 6,48
25 282 66 0,72 276 66 0,72 -6 84 51,06
26 60 24 1,14 162 30 0,57 102 33 0,96
27 9 12 4,44 27 24 2,49 18 27 4,50
28 894 225 0,75 1113 177 0,48 219 156 2,13
29 138 45 0,96 279 63 0,66 141 69 1,47
30 21 30 4,20 18 18 2,88 -6 30 19,86
31 66 24 1,05 192 45 0,72 126 54 1,26
32 6 9 3,99 12 6 1,26 6 9 5,40
33 504 78 0,45 513 87 0,51 6 87 39,78
34 21 21 3,24 72 18 0,75 51 30 1,80
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Table B.1 continued from previous page
Hub From From From To To To Diff Diff Diff

35 15 9 1,56 69 21 0,96 54 21 1,17
36 24 12 1,59 108 30 0,84 84 36 1,26
37 45 33 2,34 213 42 0,60 171 60 1,05
38 93 39 1,29 78 27 1,08 -15 45 9,54
39 4764 657 0,42 3339 552 0,51 -1422 573 1,20
40 1332 165 0,36 1212 180 0,45 -120 216 5,43
41 255 75 0,87 648 135 0,63 393 135 1,02
42 108 48 1,32 57 21 1,11 -51 60 3,60
43 54 27 1,38 183 57 0,93 129 54 1,26
44 1071 267 0,75 765 150 0,60 -306 309 3,03
45 3 9 5,97 42 18 1,23 39 18 1,32
46 9 12 4,02 123 42 1,02 114 45 1,23
47 63 21 1,05 102 33 1,02 39 45 3,42
48 987 222 0,66 567 141 0,75 -420 246 1,74
Total 23559 2271 0,30 23559 2271 0,30 0 0 0,00

Table B.1: Mean, STD and CV of flows of demand in hubs



Appendix C

Forecasting Methods

C.1 Model description forecasting

SARIMA model
The SARIMA models use a different approach and utilize auto-regressive terms on previous
values to determine the current forecast value. It uses the previous demand value yt and
the forecast error ε for the current forecast (Hyndman, 2018). The SARIMA models
combine these two regression series, which are depicted in Equation C.1

Φ(B)yi = (1− Φ1B
1 − Φ2B

2 − · · · − ΦpB
p)yt

Θ(B)εi = (1 + Θ1B
1 + Θ2B

2 + · · ·+ ΘqB
Q)εt

C.1

The B is the backshift operator and indicates how many periods a value is lagged. For
example, B2 means that a value is lagging two periods. The φ is the regression coefficient
for the previous demand values yt, and the θ represents the regression coefficient for the
error terms εt. For example, the term φ2 ∗B2 ∗ yt can be rewritten into φ2 ∗ yt−2. Please
note that Equation C.1 is a series containing multiple regression terms combined with
multiple lagged values.

After the model design of both auto-regressive time series, the SARIMA model combines
both regression series by the use of Equation C.2. The Φ(BM ) and Θ(BM ) denotes the
auto-regressive terms for the seasonal part, whereas φ(B) and θ(B) represent the regression
terms for the other part. (1 − B)d represents a general lag for removing the trend, with
the d representing the amount of finite differencing. (1−BM )D is a lag for the seasonality
part. In case there is no trend or seasonality present, it can be decided to drop these
terms.

φ(B)Φ(Bm)(1−B)d(1−Bm)Dyi = θ(B)Θ(Bm)εi C.2

For model usage in forecasting, it needs to be decided which lagged values should be
included and which can be omitted. This class of models can also be optimized on the
AIC; immediately finding the number of parameters and which lags should be included.
For determining a specific h steps ahead time interval, fill as time index t+h in for yt and
εt. Since the backshift operator is used, it will convert to already known previous values,
and so a forecast value can be obtained.
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Since there exist many possible combinations of SARIMA models, there are abbreviated
notations. A SARIMA model is notated in (p, d, q)(P,D,Q)m. The capital letters are
the seasonality parameters, and the non-capital letters the other parameters of the fore-
cast. With the p the amount of auto-regressive terms on the yt, the q the amount of
auto-regressive terms on the error term, and the d general lags to correct for a trend or
seasonality.

LOESS model
LOESS starts with a weighted linear least squares regression on a moving time window
(Hyndman, 2018). A moving time window states it only uses the last n observations for
determination of its parameters and the data used for determination of the forecast shift
thus over time. By omitting the values further in the past, it is more reactive to change. A
good value for the determination of its time window depends on the dataset structure and
is an important model design decision. Additionally, a weight function is used to value
information even more. Having a weight function and combining it with a moving time
window makes it thus even more reactive to sudden change.

The tricube weight function, which is in Equation C.3 is used in LOESS on each observa-
tion i considered in the moving time window of size n:

wi(xi) = (1− |di|3)3 C.3

With the w being the weight factor of the observation and the d being the absolute
distance between the fitted value of observation i minus the true demand of observation
i in Equation C.3. Please note that this is a moving time windows regression and each
time all the weight factors for each of the observations are re-updated and the indices do
shift.

After formulating the residual sum of squares and minimizing this function, the minimum
is attained having the following estimator in matrix notation in Equation 5.1. The Y is
a vector containing the true demand values, the X̂ is a vector with at that time point
known demand values, and the W (X) is the weight function assigning weights towards
each observation.

A(x) = YW (x)X̂T (X̂W (x)X̂T )−1 C.4

However, LOESS is an advanced decomposition method and uses an algorithmic proce-
dure by using this moving time window weighted OLS for decomposition of the normal
time series into a seasonality series, a trend series, and error term series. With an inner
and outer algorithmic procedure, LOESS decomposes iteratively the three series which is
described in Cleveland et al. (1990). By using these series it is possible to construct a
forecast.

C.2 Model performance

Coefficients ETS
The ETS model finds the most optimal model based on minimization of the AIC, the
(A,N,N). Resulting in additive error terms, not a trend, and not a seasonality factor. The
corresponding coefficients are α = 0.25 and level = 24.444.

Coefficients SARIMA
The auto SARIMA models find a trend a regression coefficient for moving average θ =
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−0.58 on the normal time series, and a φ = 0.40 on the finite difference time series for
seasonality.

Coefficients LOESS
The LOESS algorithm decomposes the time series in the components depicted in C.1. It is
visible that the LOESS algorithm identifies the corona crisis correctly and can alternate the
trend pattern accordingly. The other algorithms did not grasp the trend pattern accurately
due to its alternating behavior, whereas LOESS can do that. The found seasonality factor
demonstrates similar results as the earlier found seasonality—the high volume months in
March and October and a low volume month in December.

C.3 Conclusion forecast

The corresponding performances of the forecasting models are in Table C.1. The ME indi-
cates for all models not too much bias to worry about structural bias. The corresponding
RMSE, MAE, MAPE, MPE all favor the LOESS model. Only looking at the accuracy
results favors the LOESS model, as second the SARIMA model gets preferred, and lastly,
the ETS model gets preferred. However, recall the discussion regarding presenting the
seasonality and trending pattern. These effects are significant, but the impact is very low.
Using sophisticated forecasting algorithms to reveal additional information on the decom-
position of the seasonality and trend patterns will have a relatively small positive impact
on reducing the forecast error. DH wants besides a good performing forecasting method,
also a forecasting method that is explainable to their MMP planners and management.
Since the gains in the SARIMA and LOESS model are small and the comprehensibil-
ity of an ETS model is much higher, it is decided to use ETS in forecasting. The ETS
model will thus be used to forecast the demand for each hub and demand characteristic
individually.

Forecast Method ME RMSE MAE MPE MAPE

ETS model -19,44 2147,7 1636,5 -0,87 % 7,24 %
SARIMA model 113,52 661,1 1983,3 -0,12 % 6,93 %
LOESS model -43,2 1270,2 1095,3 -0,54 % 4,79 %

Table C.1: Benchmark forecasting methods total demand series

Figure C.1: Decomposition using Loess
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Results ETS forecast

D.1 µ values

Hub D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total

1 111 3 18 3 102 3 6 12 36 9 303
2 18 3 6 0 15 0 3 3 3 3 54
3 12 0 3 0 6 0 3 3 3 3 33
4 3 0 0 0 3 0 0 0 0 0 6
5 3 3 3 3 3 0 3 3 3 3 27
6 3 3 0 0 3 0 0 0 3 3 15
7 6 0 0 0 3 0 0 3 0 0 12
8 12 0 3 0 9 0 3 3 3 3 36
9 0 0 0 0 0 0 3 3 15 3 24
10 6 3 3 0 6 0 3 3 3 3 30
11 0 0 0 0 0 0 6 54 102 12 174
12 12 0 3 0 15 0 3 15 3 3 54
13 0 0 3 0 3 0 0 0 0 0 6
14 9 3 3 0 3 3 3 6 3 0 33
15 9 3 3 3 6 0 0 3 3 3 33
16 0 0 0 0 3 3 0 0 0 0 6
17 18 0 3 0 45 0 0 0 3 3 72
18 6 3 0 0 12 3 0 0 3 0 27
19 15 6 3 3 3 3 3 3 3 3 45
20 18 3 3 3 9 3 3 9 3 3 57
21 3 0 3 0 3 0 3 3 3 3 21
22 27 3 3 3 12 3 3 3 3 3 63
23 15 0 3 0 9 0 3 3 3 0 36
24 18 3 6 3 12 3 6 6 12 3 72
25 12 3 3 0 6 3 3 3 9 3 45
26 3 0 3 0 6 0 0 3 3 3 21
27 0 0 0 0 0 0 0 3 3 0 6
28 27 3 12 3 42 3 3 3 9 3 108
29 6 0 3 0 6 0 3 3 3 3 27
30 3 0 3 0 3 0 0 3 3 0 15
31 3 0 3 0 3 3 0 3 3 0 18
32 3 0 0 0 3 0 0 3 3 3 15
33 15 3 3 0 9 3 3 3 6 3 48

64
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Table D.1 continued from previous page
Hub D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Total

34 3 0 3 0 0 0 0 0 3 3 12
35 3 0 3 3 3 0 0 0 3 0 15
36 3 3 3 0 3 0 0 3 3 3 21
37 6 0 3 0 3 3 3 3 0 0 21
38 3 3 3 3 3 3 0 3 3 0 24
39 183 3 33 3 138 3 3 6 9 6 387
40 51 3 3 0 21 3 3 6 6 3 99
41 0 0 0 0 0 0 3 3 12 3 21
42 3 0 0 0 3 0 0 0 3 3 12
43 3 0 3 0 0 3 0 0 3 0 12
44 30 3 3 0 39 0 3 0 3 0 81
45 3 0 0 0 0 0 0 0 0 3 6
46 3 0 3 0 3 0 0 0 0 3 12
47 3 0 3 0 6 0 0 3 0 0 15
48 27 3 3 0 24 3 3 3 3 3 72

Table D.1: µ per hub and demand type

D.2 σ values

Hub D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

1 12 3 3 3 21 3 6 9 12 3
2 6 3 3 0 6 0 3 3 3 3
3 3 0 3 0 3 0 3 3 3 3
4 3 0 0 0 3 0 0 0 0 0
5 3 3 3 3 3 0 3 3 3 3
6 3 3 3 0 3 0 0 0 3 3
7 3 0 3 0 6 0 0 3 0 0
8 3 0 3 0 6 0 3 3 3 3
9 0 0 0 0 0 0 3 3 6 3
10 3 3 3 0 3 0 3 3 3 3
11 0 0 0 0 0 0 3 15 15 6
12 3 0 3 0 6 0 3 6 3 3
13 3 0 3 0 3 0 0 0 3 0
14 3 3 3 0 3 3 3 3 3 3
15 3 3 3 3 6 0 0 3 3 3
16 3 0 0 0 3 3 0 0 0 0
17 6 0 3 0 15 0 0 0 3 3
18 3 3 0 0 6 3 0 0 3 0
19 3 3 3 3 3 3 3 3 3 3
20 3 3 3 3 3 3 3 3 3 3
21 3 0 3 0 3 0 3 3 3 3
22 9 3 3 3 6 3 3 3 3 3
23 6 0 3 0 3 0 3 3 3 0
24 3 3 3 3 3 3 3 6 3 3
25 3 3 3 0 3 3 3 3 3 3
26 3 0 3 0 3 0 0 3 3 3
27 0 0 0 0 0 0 3 3 3 0
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Table D.2 continued from previous page
Hub D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

28 6 3 3 3 9 3 3 3 3 3
29 3 0 3 0 3 0 3 3 3 3
30 3 0 3 0 3 0 0 3 3 0
31 3 0 3 0 3 3 0 3 3 0
32 3 0 0 0 3 0 0 3 3 3
33 3 3 3 0 3 3 3 3 3 3
34 3 0 3 0 0 0 0 0 3 3
35 3 0 3 3 3 0 0 0 3 0
36 3 3 3 0 3 0 0 3 3 3
37 3 0 3 0 3 3 3 3 3 0
38 3 3 3 3 3 3 0 3 3 0
39 21 3 9 3 30 3 3 6 6 3
40 6 3 3 3 9 3 3 6 3 3
41 0 0 0 0 0 0 3 3 6 3
42 3 0 3 0 3 0 0 3 3 3
43 3 0 3 0 3 3 0 0 3 0
44 9 3 3 0 12 0 3 0 3 0
45 3 0 0 0 0 0 0 0 0 3
46 3 0 3 0 3 0 0 0 3 3
47 3 3 3 0 3 0 0 3 3 0
48 9 3 3 0 6 3 3 3 3 3

Table D.2: σ per hub and demand type



Appendix E

Result robust optimization Si,p

E.1 Model 1

City Index T1 T2 T3 T4 T5 T6 T7

1 11,61 0,00 0,00 228,07 0,00 118,63 5,80
2 0,00 0,00 2,40 29,84 9,00 0,00 0,00
3 0,00 5,83 1,31 0,22 0,00 6,85 0,00
4 0,00 0,00 0,00 0,00 0,00 0,00 0,00
5 9,14 0,00 0,00 27,46 0,00 4,57 0,01
6 5,63 0,00 0,00 19,60 0,00 5,63 0,00
7 0,00 14,26 0,00 0,00 0,00 2,85 0,00
8 0,00 13,17 18,51 39,31 33,61 0,26 0,00
9 0,00 0,00 3,00 36,42 0,00 0,00 0,00
10 4,34 0,00 0,00 28,90 0,00 7,19 0,00
11 4,92 10,94 0,31 57,61 15,09 0,00 0,00
12 0,00 1,18 125,46 114,69 0,00 0,00 0,00
13 0,00 2,49 2,49 5,34 0,00 5,34 0,00
14 5,80 0,00 0,00 40,83 0,00 5,80 5,80
15 4,68 7,46 0,05 0,27 9,37 0,00 0,00
16 0,00 2,59 0,00 0,00 0,00 5,45 5,45
17 0,00 0,15 0,00 35,27 49,89 0,89 0,00
18 5,44 0,00 0,00 13,73 0,00 13,73 5,44
19 0,00 2,29 0,00 0,00 0,00 0,00 0,00
20 11,04 25,79 5,52 19,51 3,00 8,37 5,52
21 0,00 0,00 0,00 28,20 0,00 4,69 0,00
22 10,68 0,00 0,00 60,29 0,00 16,39 5,34
23 0,00 0,00 17,30 21,65 1,63 9,68 0,00
24 0,00 0,00 0,05 0,00 0,00 0,00 0,00
25 24,73 9,62 21,91 76,80 7,58 6,00 17,15
26 0,00 0,00 0,00 23,46 0,00 7,55 0,00
27 0,00 0,00 0,00 15,69 0,00 0,00 0,00
28 9,93 40,58 13,93 30,84 23,12 28,97 4,97
29 0,00 0,00 7,85 25,30 0,00 7,71 0,00
30 0,00 4,25 0,00 0,00 0,00 0,00 0,00
31 0,00 0,00 0,00 20,64 0,00 4,81 4,81
32 0,00 0,00 0,00 21,78 0,00 5,45 0,00
33 4,72 0,78 24,40 8,22 0,00 4,72 0,00
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Table E.1 continued from previous page
City Index T1 T2 T3 T4 T5 T6 T7

34 0,00 0,00 0,00 26,00 0,00 0,00 0,00
35 0,00 0,00 0,00 10,33 0,00 0,00 0,00
36 4,57 0,00 0,00 22,86 0,00 4,57 0,00
37 0,00 0,00 0,00 21,70 0,00 4,34 4,33
38 10,89 0,00 0,00 21,78 0,00 5,45 5,45
39 11,25 0,00 0,00 274,93 158,06 2,29 5,63
40 8,42 64,59 8,61 17,04 25,48 0,74 5,68
41 0,00 0,00 0,00 27,41 0,00 0,00 0,00
42 0,00 1,96 0,00 16,38 0,00 4,81 0,00
43 0,00 0,00 0,00 14,43 0,00 1,96 4,81
44 5,34 0,59 35,99 16,03 44,19 0,59 0,00
45 4,66 0,00 14,82 36,12 7,49 0,00 0,00
46 0,00 0,00 2,30 15,52 0,00 5,17 0,00
47 1,49 0,00 1,49 13,03 7,19 0,00 0,00
48 5,34 0,30 30,29 26,71 28,39 0,00 5,34
Totaal 164,65 208,81 338,02 1590,19 423,10 311,44 91,52

Table E.1: Stock levels model 1

E.2 Model 2

Hub T1 T2 T3 T4 T5 T6 T7 Total

7 0 12 0 15 15 0 0 42
9 0 6 18 18 0 0 0 42
12 0 81 123 39 0 0 0 243
16 0 0 3 0 0 6 6 15
18 6 6 0 6 0 15 6 39
27 0 0 12 6 0 0 0 18
32 0 6 12 6 0 6 0 30
34 0 0 12 15 0 0 0 27
38 12 9 3 9 6 0 6 45

Table E.2: Stock levels model 2

E.3 Model 3

Hub T1 T2 T3 T4 T5 T6 T7 Total

1 18,00 132,00 57,00 87,00 0,00 141,00 0,00 435,00
2 8,49 8,49 25,65 36,81 19,83 0,00 0,00 99,27
3 0,00 0,00 23,31 31,92 10,35 0,00 0,00 65,58
4 0,00 8,73 0,00 0,00 8,73 0,00 0,00 17,46
5 18,00 0,00 27,00 27,00 0,00 9,00 0,00 81,00
6 8,73 8,73 8,73 14,55 0,00 8,73 0,00 49,47
7 0,00 0,00 11,40 14,25 14,25 0,00 0,00 39,90
8 0,00 25,11 8,22 25,47 19,32 0,00 0,00 78,12
9 0,00 0,00 0,27 49,41 0,00 0,00 0,00 49,68
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Table E.3 continued from previous page
Hub T1 T2 T3 T4 T5 T6 T7 Total

10 8,46 8,46 11,28 33,87 11,28 0,00 0,00 73,35
11 0,00 0,15 17,10 57,30 22,35 0,00 0,00 96,90
12 0,00 1,17 0,00 240,15 0,00 0,00 0,00 241,32
13 0,00 5,70 5,70 8,55 0,00 8,55 0,00 28,50
14 9,00 0,00 15,00 45,00 9,00 0,00 0,00 78,00
15 17,11 22,82 0,00 25,67 0,00 17,11 0,00 82,72
16 0,00 0,00 0,00 5,70 0,00 8,55 8,55 22,80
17 0,00 0,00 34,38 17,10 63,63 0,00 0,00 115,11
18 8,46 0,00 19,74 0,00 0,00 19,74 8,46 56,40
19 20,61 0,00 38,28 26,49 8,82 0,00 3,72 97,92
20 17,10 20,40 0,00 53,22 0,15 16,56 0,00 107,43
21 0,00 0,00 8,55 42,78 0,00 8,55 0,00 59,88
22 17,10 0,00 60,33 25,68 22,83 0,00 8,55 134,49
23 0,00 0,00 17,67 37,59 0,12 14,46 0,00 69,84
24 0,00 0,00 0,00 11,40 0,00 0,00 0,00 11,40
25 8,58 25,71 23,43 31,71 17,43 0,00 3,60 110,46
26 0,00 0,00 8,55 34,23 0,00 11,40 0,00 54,18
27 0,00 0,00 17,10 5,70 0,00 0,00 0,00 22,80
28 16,44 36,93 8,22 44,37 56,88 0,00 8,22 171,06
29 0,00 0,00 27,42 24,66 0,00 10,95 0,00 63,03
30 0,00 0,00 0,00 34,23 0,00 8,55 0,00 42,78
31 0,00 8,56 17,11 8,56 0,00 8,56 8,56 51,34
32 0,00 0,00 25,68 8,55 8,55 0,00 0,00 42,78
33 8,55 0,00 11,58 54,21 0,00 14,25 3,60 92,19
34 0,00 9,00 9,00 18,00 0,00 0,00 0,00 36,00
35 0,00 0,00 8,49 8,49 0,00 0,00 0,00 16,98
36 9,00 0,00 9,00 36,00 0,00 9,00 0,00 63,00
37 0,00 0,00 0,00 42,33 8,46 0,00 8,46 59,25
38 17,10 0,00 17,10 17,10 0,00 8,55 8,55 68,40
39 17,46 212,31 20,37 87,24 189,03 0,00 0,00 526,41
40 14,67 0,00 77,10 38,16 0,18 32,28 0,00 162,39
41 0,00 8,40 0,00 39,18 0,00 0,00 0,00 47,58
42 0,00 0,00 14,26 22,82 8,56 0,00 0,00 45,64
43 0,00 0,00 0,00 25,67 5,70 0,00 8,56 39,93
44 8,55 0,00 8,55 63,33 57,06 0,60 0,00 138,09
45 0,00 0,00 0,00 16,98 0,00 0,51 0,00 17,49
46 0,00 8,55 0,00 22,83 0,00 8,55 0,00 39,93
47 5,64 8,46 0,00 22,59 0,00 11,28 0,00 47,97
48 8,55 0,00 39,93 43,08 34,23 0,60 8,55 134,94
Total 265,60 559,67 732,51 1666,93 596,74 377,33 87,37 4286,16

Table E.3: Stock levels model 3

E.4 Model 4

Hub T1 T2 T3 T4 T5 T6 T7 Total

7 0 21 0 6 0 15 0 42
9 0 9 27 18 0 0 0 54
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Table E.4 continued from previous page
Hub T1 T2 T3 T4 T5 T6 T7 Total

12 0 81 123 39 0 0 0 243
16 0 0 0 6 0 9 9 24
18 9 9 9 0 21 0 9 57
27 0 0 9 15 0 0 0 24
32 0 0 18 18 0 9 0 45
34 0 0 18 18 0 0 0 36
38 18 0 6 27 3 6 9 69

Table E.4: Stock levels model 4

E.5 Model 5

hub T1 T2 T3 T4 T5 T6 T7 Total

1 18 0 30 246 141 0 0 435
2 9 9 36 30 21 0 0 105
3 0 9 27 27 12 0 0 75
4 0 0 9 0 0 9 0 18
5 18 18 9 27 9 0 0 81
6 9 9 9 15 9 0 0 51
7 0 9 12 6 15 0 0 42
8 0 0 0 63 21 0 0 84
9 0 0 27 27 0 0 0 54
10 9 0 30 27 12 0 0 78
11 0 0 9 69 24 0 0 102
12 0 0 129 120 0 0 0 249
13 0 6 6 9 9 0 0 30
14 9 0 12 48 9 0 0 78
15 18 24 9 18 18 0 0 87
16 0 0 0 6 9 0 9 24
17 0 27 9 18 66 0 0 120
18 9 0 0 21 21 0 9 60
19 21 0 9 57 9 0 9 105
20 18 15 30 27 15 0 0 105
21 0 9 18 27 0 9 0 63
22 18 9 9 72 24 0 9 141
23 0 9 30 18 15 0 0 72
24 0 0 18 12 0 0 0 30
25 9 9 18 57 0 18 9 120
26 0 18 9 18 12 0 0 57
27 0 0 18 6 0 0 0 24
28 18 0 51 45 0 60 9 183
29 0 0 0 57 0 12 0 69
30 0 9 0 27 9 0 0 45
31 0 18 9 9 9 0 9 54
32 0 9 0 27 0 9 0 45
33 9 0 21 48 0 15 9 102
34 0 0 9 27 0 0 0 36
35 0 9 0 9 0 0 0 18
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Table E.5 continued from previous page
hub T1 T2 T3 T4 T5 T6 T7 Total

36 9 9 9 27 9 0 0 63
37 0 21 6 18 0 9 9 63
38 18 18 0 18 9 0 9 72
39 18 219 39 72 195 0 0 543
40 15 18 0 99 0 33 0 165
41 0 0 33 18 0 0 0 51
42 0 15 9 15 9 0 0 48
43 0 0 18 9 6 0 9 42
44 9 0 57 18 60 0 0 144
45 0 0 9 9 0 0 0 18
46 0 9 0 24 0 9 0 42
47 6 9 15 9 12 0 0 51
48 9 9 9 69 36 0 9 141
Total 276 552 816 1725 825 183 108 4485

Table E.5: Stock levels model 5



Appendix F

Redistribution MILP

F.1 Redistribution tank containers MILP formulation

Problem description
After the occurrence of the demand, the safety stock levels need to be replenished again
and tank containers need possibly to be rerouted back again. The model in equation F.1
minimizes the costs of repositioning these tank containers. For doing so, only one new
variable needs to be introduced the IPi,p. The IPi,p represent the inventory position at
hub i of tank type p. Since only one period is considered, the solution does not represent
any uncertainty anymore and the problem can be solved with an MILP. The Si,p is already
solved in the safety stock determination and the IPi,p account for the previous incoming
transshipments. For the cost in the problem, only the transportation costs are important,
since it is only determining over which lanes repositioning is necessary.

Mathematical problem formulation
The redistribution assignment of tank containers is in model F.1.

minimize
∑
i∈I

∑
j∈J

∑
c∈C

∑
p∈P

(
Qi,j,c,p ∗ FTi,j ∗ CT R

i,j

)

subject to IPi,p +
∑
c∈C

(∑
i∈I

(Qi,j,c,p ∗ F T R
i,j )−

∑
j∈J

(Qj,i,c,p ∗ F T R
i,j )

)
≥ Si,p ∀i ∈ I, p ∈ P ,

∑
i∈I

∑
j∈J

∑
c∈C

∑
p∈P

Qi,j,c,p ≤
1
2 ∗

∑
i∈I

∑
p∈P
|Si,p − IPi,p|,

Qi,j,p ∈ Z+

F.1

The first constraint the leftover inventory of hub i of tank type p, plus the corresponding
repositioning of tank containers towards i of type p, minus everything that hub i sends
away of type p, should be at least equal to its safety stock level Si,p.

The second constraint ensures that every tank container only gets repositioned once. This
is to avoid, sending tank container from hub A towards B and then from hub B to hub C,
instead of sending it directly from hub A to hub C. Unfortunately, this is sometimes more
attractive due to inaccuracies in the provided cost input data. However, in reality, this is
not the case for DH. Therefore, the last constraint restricts the amount of movements of
tank containers to only what is necessary.
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F.2 Results tables redistribution MILP

Hub 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 9 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0
5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 3 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0
7 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0
16 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table F.1: First part redistribution of safety stock levels
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Hub 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0 0 21 0 0 0 27
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 0 0
42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0
48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table F.2: Second part redistribution of safety stock levels

F.3 Interpretation results redistribution MILP

The redistribution model presented in Equation F.1 solves the instance after the occur-
rence of demand. This model provides assistance in decision making such that the the
corresponding safety stock levels have been replenished to their initial level Si,p while
minimizing transportation costs.

The model is augmented to function with the future inventory position, which is modelled
with the inventory variable IPi,p and tracks which repositioning actions are on time with
the feasibility FTi,j variable.

However, since we do not run a complete simulation there is no known instance after
demand occurrence. Since there are many scenarios possible in the uncertainty set, an
illustrative example is used. It is decided to use the difference of the mean import and
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mean export balance of all tank container types for all hubs. This difference between mean
import and mean export is called mean difference, which is shown in Appendix B. In that
Appendix, the corresponding standard deviation is also shown to indicate how uncertain
the difference between import and export of a hub behaves.

The results of the transportation matrix are in Appendix F. Again, it is supported that
almost all hubs with a surplus has to reposition tank containers towards hub 1 or hub 39.
This pattern was also visible in the mean difference analysis of flow of demand. However
the transshipment matrix in Appendix F, also indicates which hubs have to transfer back
to hub 1 and hub 39.

For this MILP, it is necessary to have the complete network available since tank containers
also need to float between the mentioned sub-regions. But since this network is not
uncertain anymore, it reduces the complexity massively, and the whole network is easily
analyzed even with integrality.
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