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Management Summary
Introduction
This research considers the stock allocation problem, defined as the decision on how to allocate inventory
of products over the different warehouses such that capacity is optimally utilized, and costs are mini-
mized (Marklund & Rosling, 2012). The effects of decreasing the aggregation level of a multi-warehouse
stock allocation model from supplier-level to product-level in a large-scale, multi-product e-commerce
environment are analyzed (Figure 1). To do so, the use-case of Company X is considered, one of the
largest e-commerce providers in The Netherlands.

(a) Supplier-level allocation (b) Product-level allocation

Figure 1: Difference in decreasing the aggregation level of the stock allocation.

While there is literature available looking at the effect of changing the aggregation level of optimization
on scalability, it is mentioned that in the domain of e-commerce stock allocation such research is scarce.
Furthermore, X. Li, Zheng, Zhou, and Zheng (2019) stated that "the optimal allocation of multiple prod-
ucts at multiple warehouses, though important, is not fully studied in the literature".

Methods
The allocation models both solve a MILP, which has the objective of total cost minimization, subjected
to four sets of constraints:

1. Outbound line capacity constraints

2. Full demand assignment constraints

3. Warehouse-exclusivity constraints

4. Unique constraints imposing a minimum ratio of distribution of allocated demand over the available
warehouses (pand-split).

Using the input data from Company X, computational experiments are conducted and results are gath-
ered. The models and methods used are presented in Table 1.

Table 1: Overview of models used in this research.

Model Description
SAM The supplier-level allocation model SAM. It uses the open-source CBC

(CoinOR Branch and Cut) solver. Since PLS is not using certain details of
the model environment, SAM is also simplified to mirror the PLS model com-
plexity to be able to fairly compare the models.

PLS-GUR The product-level allocation model PLS using the commercial Gurobi solver.
PLS-CBC The product-level allocation model PLS using the open-source CBC solver.

Models are evaluated on scalability and optimality. Besides, a use-case analysis is conducted to re-
trieve operational insights on the new aggregation level, focusing on capacity utilization, supplier splits,
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the pand-split constraints and warehouse characteristics. Different configurations and thus different
model scales are evaluated. The parameters used for this are H and T . H is defined as the amount
of historical data included in the computation of the product-level forecast, influencing the amount of
products to be allocated in the model. T is the optimization period.

Results
Scalability:

Table 2: Results scalability and optimality runs.

H = 2, T = 2 H = 7, T = 7 H = 14, T = 14 H = 31, T = 31 H = 60, T = 60

Model SAM PLS-
GUR

PLS-
CBC SAM PLS-

GUR
PLS-
CBC SAM PLS-

GUR
PLS-
CBC SAM PLS-

GUR
PLS-
CBC SAM PLS-

GUR
PLS-
CBC

Variables 3353 119704 119704 3778 223760 223760 4373 314492 314492 5818 439200 439200 8283 588082 588082
Constraints 1803 59878 59878 2283 111961 111961 2955 157404 157404 4587 219945 219945 7371 294705 294705
Run-time 0.22 1.08 9.54 0.75 9.47 92.75 0.93 30.25 422.93 2.62 144.40 1722.12 25.16 658.21 6067.32

Optimality:

Table 3: Cost reduction PLS over SAM different configurations.

Configuration H = 2, T = 2 H = 7, T = 7 H = 14, T = 14 H = 31, T = 31 H = 60, T = 60
Total cost reduction e4582.72058 e14220.3336 e28043.2427 e57281.4922 e86739.8213

Cost reduction in % of SAM objective 1.48903% 1.42645% 1.37520% 1.23252% 0.86600%
Cost reduction per day e2291.36029 e2031.47623 e2003.08877 e1847.79007 e1445.6637

Supplier splits 92,44% 93,83% 94,74% 95,34% 93,56%

Capacity Utilization:

(a) SAM (b) PLS

Figure 2: Capacity utilization results for a single outbound line (1).

(a) SAM (b) PLS

Figure 3: Capacity utilization results for a single outbound line (2).
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Supplier splits:

(a) Products (b) Forecasted demand

Figure 4: Supplier split results for amount of products and forecasted demand level of a supplier’s assortment.

Conclusion & Discussion
Multiple conclusions are formulated from this research:

• Despite the large scale increase, it is feasible to solve the product-level allocation model using
mathematical optimization software.

• A cost reduction of ±1% is realized decreasing the aggregation level from supplier-level to product-
level, caused by better capacity utilization.

• Supplier splits are present for a substantial part of the suppliers, but it might be operationally
favourable to not split suppliers where the majority of the assortment is allocated to a single
warehouse. Therefore, a hybrid allocation level using multiple aggregation levels is recommended.

• Product-level allocation is a solid solution for the as-is situation, and will become even better in
the future given the expansion plans of Company X.

While this research has contributed to the domain of multi-product, multi-warehouse stock allocation in
an e-commerce environment, future research is possible. The model can be extended by e.g. introducing
the complexity of split shipments, demand stochasticity, including other aggregation levels, or adding
more warehouses.
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1 INTRODUCTION

Abstract

This research considers the stock allocation problem, defined as the decision on how to allocate
stock of products over the different warehouses such that capacity is optimally utilized and costs
are minimized. The effects of decreasing the aggregation level of a multi-warehouse stock allocation
model from supplier-level to product-level in a large-scale, multi-product e-commerce environment
are analyzed with respect to scalability and optimality. To do so, the use-case of Company X is con-
sidered, one of the largest e-commerce providers in The Netherlands. The stock allocation problems
we consider are modelled as mixed-integer linear programming problems (MILP) considering capacity
constraints, demand assignment constraints, warehouse exclusivity constraints and the unique con-
straints imposing a ratio of distribution of total forecasted demand over the available warehouses.
These models are solved using the Gurobi and CBC mathematical optimization software. Com-
putational experiments indicate that the decrease of the aggregation level is feasible from both an
operational and technical perspective.

Keywords: Stock allocation, e-commerce, inventory management, combinatorial optimization,
large-scale, multi-warehouse, multi-product

1 Introduction
E-commerce has thrived on the technical developments of the internet since the 1990’s and has evolved
into an on-demand retail service that can be accessed at every moment of the day (Santos, Sabino,
Macedo Morais, & Gonçalves, 2017). These innovations in online retailing or e-tailing generated op-
portunities of developments in the associated logistical processes. Physical stores became less necessary
and the shipment process of sold goods increased in importance (de Koster, 2002). It became evident
that e-commerce created opportunities to operate on larger scales compared to offline retailing, which
induced a focus on quantitative modeling and analyses of the ongoing processes (Agatz, Fleischmann, &
van Nunen, 2008). According to de Koster (2002), one of the biggest challenges these developments bring
is the organisation of the e-fulfillment process. Inventory management is a domain in the e-fulfillment
process that has been researched thoroughly over the years. Complex models have been developed to
determine optimal inventory levels, replenishment strategies, stock allocation over warehouses and inside
warehouses, facility locations, etc. (Jolayemi & Olorunniwo, 2004). As the years passed, developing
technologies increased the availability and accessibility of processing data (Bertsimas, Kallus, & Hus-
sain, 2016). This created opportunities for further optimization of inventory management, for example
through stock allocation, which is the domain we focus on.

Stock allocation is defined as the decision on how to allocate stock of products over storage locations
such that demand is fulfilled, capacity is optimally utilized and an objective is optimized (Marklund &
Rosling, 2012). Different industries have to deal with the decision of stock allocation, of which the retail-
ing industry is one. As scales are increasing, offline retailers have to deal with the allocation of product
assortment of a central warehouse to the retail stores (J. Li, Toriello, Wang, Borin, & Gallarno, 2021).
E-commerce providers, however, have to make the decision what to stock at the available warehouses,
as retail stores are eliminated from the supply chain. There is a significant difference in scale between
those two allocation decisions, as the storage capacities of warehouses are substantially larger (Agatz et
al., 2008). The goal of stock allocation for an e-commerce provider is to manage inventory such that all
online orders can be fulfilled optimally from the available warehouses.

The stock allocation decision can be made at multiple aggregation levels of products, influencing the
scalability. While there is literature available looking at the effect of changing the aggregation level of
optimization on scalability (Hane et al., 1995; Jélvez, Morales, Nancel-Penard, Peypouquet, & Reyes,
2016; Maltese, Ombuki-Berman, & Engelbrecht, 2018), it is mentioned that in the domain of e-commerce
stock allocation such research is scarce. Furthermore, X. Li et al. (2019) stated in their research that
"the optimal allocation of multiple products at multiple warehouses, though important, is not fully studied
in the literature". Therefore, we focus on analyzing the scalability of the stock allocation decision in a
large-scale, multi-warehouse, multi-product e-commerce environment.
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1 INTRODUCTION

To be able to analyze this, a real-world example is considered. This research is conducted using the pro-
cesses, data, and cooperation of one of the largest e-commerce providers in The Netherlands, hereafter
referred to as ‘Company X’. Numbers presented have been anonymized and are therefore fictional. Com-
pany X provides a very broad assortment, ranging from USB-sticks and fridges to (e-)books, clothing,
and travel gear. This is a strategic choice, as the goal is to fulfill as much customer demand as possible
in different domains, instead of focusing on a niche market. This ‘long-tail’ assortment indicates some
products stored are only sold occasionally, creating a more complex stock allocation problem. A stock
allocation model is used to distribute the assortment over multiple warehouses with the objective of costs
minimization and optimal capacity utilization. This current optimization model is referred to as SAM,
short for Stock Allocation Model. SAM solves a Mixed-Integer Linear Programming problem (MILP)
and allocates assortment over two warehouses: WH-A and WH-B.

SAM allocates on supplier-level, indicating that the full assortment delivered by a supplier is allocated
altogether to a single warehouse. This allocation decision is aimed to be exclusive, meaning that a sup-
plier can either be fully allocated to WH-A or to WH-B. SAM allocates all suppliers to the warehouses
such that outbound capacities are not exceeded, minimum distributions of processed products over the
warehouses are present, there is exclusivity of allocation and all forecasted demand is processed. The
resulting allocation decision minimizes the total costs associated. Despite the fact that SAM works
properly, it is expected that decreasing the aggregation level of the allocation to product-level is oper-
ationally advantageous and increases capacity utilization, which leads to cost reduction. Product-level
allocation is the concept of not grouping the products together based on the assortment of a supplier,
but to allocate stock of individual products to the warehouses. The difference between those aggregation
levels is presented in Figure 5.

(a) Supplier-level allocation (b) Product-level allocation

Figure 5: Difference in decreasing the aggregation level of the stock allocation.

From a technical point of view, the main challenge is the scalability of the allocation problem that needs
to be solved. As Company X is a market leader in e-commerce, the scale at which it operates is large.
SAM allocates thousands of suppliers, which are responsible for the delivery of hundreds of thousands of
products to the warehouses. This increases the problem scale exponentially. If no constraints would be
present, allocating 1000 suppliers to two warehouses induces 21000 possible solutions. Allocating 100, 000
products already increases the solution space to 2100,000 possible solutions. However, the constraints
in the allocation problem reduce the size of the solution space as many solutions become infeasible.
The feasibility of solving this large-scale allocation problem is not known. The open-source CBC solver
is used to tackle the optimization problem of SAM. We are interested whether the new problem scale
at product-level would become too large for this solution method. Besides, scales are increasing from
multiple sides: the assortment of products is expanding, new warehouses are being added and other
processing capacities are being added to the model environment. On the other hand, product-level
allocation allows the assortment of a supplier to be split over multiple warehouses, referred to as a
‘supplier split’, which might be unfavorable. We test multiple problem scales to evaluate problem scale
and the effects. Before introducing the allocation problem considered in detail, the theoretical background
and academic contribution are elaborated on.
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1 INTRODUCTION

1.1 Literature review
Analyzing literature, it is found that different streams of research focus on different objectives in stock
allocation, and use different solution methods to solve such problems. The allocation problem is an
instance of the more general assignment problem or matching problem, a combinatorial optimization
problem studied in the field of operations research (Krokhmal & Pardalos, 2009). The assignment prob-
lem is used to define storage assignment problems which consist of finding the correct location to store
a product in a warehouse layout, minimizing costs associated with in-warehouse transportation times
(Tabatabaei, Valilai, Abedian, & Khalilzadeh, 2021). We consider a capacitated resource, as warehouses
have maximum production capacities. The stock allocation problem under capacitated supply chain
restrictions is recurring in literature (Gupta & Selvaraju, 2006; de Véricourt, Karaesmen, & Dallery,
2002). In the domain of e-commerce, multi-product allocation is repeatedly researched, as e-tailers offer
broad assortments (X. Li et al., 2019; Lim & Liu, 2018; Sathyanarayana & Patro, 2020; Liu, Zhou, &
Zhang, 2010). The formulation of the stock allocation problem however differs per situation.

Sathyanarayana and Patro (2020) optimize the allocation decision of a fashion e-tailer’s assortment to
warehouses by minimizing delivery costs and delivery times, leading to maximum regional utilization.
X. Li et al. (2019) optimally allocate the assortment of a large Chinese e-commerce provider by mini-
mizing total shipping costs given allocation density. Lim and Liu (2018) allocate assortment of a major
online Asian fashion e-tailer subjected to capacity constraints while also optimizing order sourcing finan-
cially. In some cases of stock allocation, it is possible to let the model determine the optimal inventory
levels (e.g. base-stock levels) (de Véricourt et al., 2002; Rappold & Muckstadt, 2000; Akçay, 2002).
Rappold and Muckstadt (2000) and de Véricourt et al. (2002) minimize total costs, including holding
and backorder costs, by determining optimal stock levels in make-to-stock production environments.

Another stream of research analyzes stock allocation with regards to split shipments, indicating products
in a single customer order are sourced from multiple warehouses. Catalán and Fisher (2012) studied the
assortment allocation problem in a multi-product, multi-warehouse e-commerce environment to mini-
mize costs associated with splitting shipments. This integer programming problem includes capacity
constraints and allows for double-stocking of a product. Ardjmand, Young, Weckman, and Sanei Ba-
jgiran (2018), Acimovic and Graves (2015) consider the problem of order allocation minimizing split
shipments in e-commerce environments, connected to the transportation problem. While order alloca-
tion is a different perspective than stock allocation, the assignment problem is similar as exclusivity,
capacity and demand assignment constraints are present and costs are minimized.

The stock allocation problem considered can be identified in other problem definitions, for example the
knapsack problem (KP) formulation (Yang, Chen, Wang, Chang, & Sun, 2010; Akçay, 2002). Yang
et al. (2010) described the similarities of a KP to a multi-warehouse, multi-product order allocation
problem considering capacity constraints, minimizing total costs. Akçay (2002) determine the optimal
base-stock levels and optimal component allocation maximizing revenue for a multi-component, multi-
product assemble-to-order problem using the MKP formulation. Moreover, the Capacitated Facility
Location Problem (CFLP) is connected to the stock allocation problem, as demand allocation to ca-
pacitated facilities is included. Liu et al. (2010) defined the assignment problem of online demand to
capacitated regional warehouses as a CFLP, which resulted in a non-linear integer linear programming
problem where total associated costs are minimized. Capacity constraints and exclusivity constraints are
present, the latter assuring exclusive allocation of demand to a warehouse. Silva and de la Figuera (2007)
consider a CFLP with demand assignment. The solved allocation problem is an MILP including capacity
constraints and demand assignment constraints. Demand is stochastic and backlogging is possible.

To solve such large-scale stock allocation problems, multiple solution methods have been implemented.
Problem-specific algorithms have been designed, providing exact solutions (Tabatabaei et al., 2021; de
Véricourt et al., 2002; X. Li et al., 2019). Next to this, problem-specific approximation heuristics have
proved to be able to solve the problems (Lim & Liu, 2018; Rappold & Muckstadt, 2000; Catalán &
Fisher, 2012; Acimovic & Graves, 2015; Liu et al., 2010; Silva & de la Figuera, 2007). Another popular
method is to implement mathematical solvers that utilize branch-and-cut methods to solve an MILP
(Yang et al., 2010; Sathyanarayana & Patro, 2020; Akçay, 2002). Solvers are easy to implement and
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2 PROBLEM DESCRIPTION AND MODEL DEFINITION

can be a good candidate for solving the allocation problem if model scales allow. However, there is a
possibility that solvers are not able or less favorable to tackle the allocation problem given the increased
scale at product-level (Yang et al., 2010; Mohammadi & Musa, 2020).

Additionally, literature has shown that meta-heuristics provide close-to-optimal solutions to a variety of
operational problems in a reasonable amount of time (Griffis, Bell, & Closs, 2012). Different instances of
meta-heuristics have been implemented to comparable problems. In the category of local search meta-
heuristics, tabu search seems to be suitable (Sun, 2005; McKendall, 2008; Wu, Yeh, & Syau, 2004),
followed by simulated annealing (Griffis et al., 2012; McKendall, 2008; Malikia, Souierb, Dahanec, &
Sarib, 2017). In the category of population search methods, genetic algorithms are used frequently to
tackle comparable problems (Yang et al., 2010; Ardjmand et al., 2018; Mohammadi & Musa, 2020; Ma-
likia et al., 2017; Griffis et al., 2012), followed by particle swarm optimization (Soni, Jain, Chan, Niu,
& Prakash, 2019; Mohammadi & Musa, 2020; Mousavi, Bahreininejad, Musa, & Yusof, 2017). While
these methods seem promising, the starting point in this research are mathematical solvers due to flexibil-
ity in implementation. If scalability becomes problematic, extensions to other methods can be considered.

It can be concluded that there are multiple directions in literature that tackle comparable problems to
the considered stock allocation problem. Developments of e-commerce and the growing scales at which
these organisations operate bring light to new problems that can be optimized to gain an operational
advantage. To our knowledge, the literature is not complete in the region of stock allocation in e-
commerce that analyzes the effect of decreasing the aggregation level in terms of scalability, along with
the operational insights this brings. This research takes a step in filling this research gap by analyzing the
scalability of the stock allocation decision in a large-scale, multi-warehouse, multi-product e-commerce
setting.

1.2 Contribution
The considered stock allocation problem is different from existing literature. The constraints assuring a
minimum distribution of total demand being allocated over the available warehouses were not identified
in connected literature. Furthermore, the allocation decision is constrained by rather simple structures,
but the large scale makes the decision complex. Demand is deterministic and should be fully and ex-
clusively allocated to a single warehouse, inventory levels per product can not be determined by the
model and double-stocking is not allowed. Distribution of demand over the capacitated resources at the
warehouses is realized using a unique higher-level aggregation, referred to as ‘segments’, reducing model
scale significantly.

We focus on decreasing aggregation in stock allocation from the supplier side, which is a point of view
not well known in literature. Besides, multiple scales are tested to evaluate problem scale and the effects
on the model scalability. This contributes to the literature of finding the optimal allocation of multiple
products at multiple warehouses at different aggregation levels (X. Li et al., 2019). As mentioned, it
is a challenge to find which solution method is required to solve the problem resulting from the new
aggregation level, which is investigated. Next to this, interesting operational insights are gathered. We
provide a basis for future research, as the model environment is able to be extended in various ways. For
example, the complexity of minimizing split shipments, double-stocking, stochastic demand levels, other
aggregation levels of allocation, or the addition of more warehouses could be introduced.

To realize those contributions, the remainder of this paper is organized as follows. Section 2 describes
the tackled allocation problem in detail and formulates the MILP models at supplier-level and product-
level. Section 3 elaborates on the input data used for implementation. The results to the conducted
computational experiments are presented in Section 4. In Section 5, those results are discussed. Finally,
Section 6 concludes the paper.

2 Problem description and model definition
The allocation problem considered has the goal to distribute the forecasted demand of products over
the warehouses such that capacity is utilized optimally while minimizing costs. The allocation models
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2 PROBLEM DESCRIPTION AND MODEL DEFINITION

implemented are slightly simplified compared to reality. These simplifications still allow for a thorough
analysis of scalability. Before elaborating in detail on the allocation problem and the models, those
simplifications are briefly discussed.

Company X uses a platform strategy, it allows other e-tailers or ‘platform partners’ to sell and store
their products using their channels. Next to this, a considerable part of the sold goods is Company X’s
own assortment. The parties delivering the own assortment are referred to as ‘suppliers’. The delivering
parties of assortment of platform partners are referred to as ‘retailers’. For simplicity, we only allocate
the assortment of suppliers.

Products being sold on the webshop are categorized in multiple ways. Every product is categorized in
a size-group based on its characteristics such as dimensions and weight. Size-groups being processed
at WH-A and WH-B are 3XS, XXS, XS, S, M, and L. Furthermore, every product is categorized in a
product-group, which is an aggregation to be able to refer to similar products. Examples of product-
groups being processed at WH-A and WH-B are ‘Electronics’, ‘Sports’, and ‘Travel’. An overview of
all product-groups is presented in Appendix H. In the current SAM, constraints assuring a minimum
distribution of size-groups to be processed over the different warehouses are present, such that both
warehouses process a partition of all size-groups. However, we do not consider these constraints, as this
complexity is not required for the scalability analysis.

Products to process can be subjected to restrictions, indicating that a product has to be processed by a
specific warehouse. This can either be related to product characteristics such as high-value or fragility,
or induced by other limitations such as the fact that new-product releases can only be handled by one of
the two warehouses. Examples of restricted products in the assortment are presented in Appendix A.2.
For simplicity, we do not take into account product restrictions in the allocation decision.

2.1 Problem description
Taking those simplifications into account, the problem complexity included in the stock allocation models
is elaborated on. The allocation of products on different aggregation levels to WH-A and WH-B is being
optimized, restricted to four main sets of constraints. Process information is introduced to explain those
constraints, after which the existing and proposed model formulations are presented.

The allocation decision is considering outbound processing capacities, indicating that e.g. stocking and
inbound capacities are not in the model environment. Outbound processing regards the processing of a
product i on a capacitated outbound line j. An outbound line is defined as a station to pack orders after
products have been retrieved from their stocking location. Processing a product on such an outbound
line incurs costs cj . A distinction is made between the order types ‘mono-orders’ and ‘multi-orders’.
Mono-orders are orders of individual products, while multi-orders are orders containing multiple prod-
ucts. Outbound lines are order type and warehouse specific. Different products can be processed by
different outbound lines. Therefore the concept of ‘segments’ is introduced, which are defined as sets of
outbound lines. A segment S is also order type and warehouse specific, as only outbound lines of the
same order type at the same warehouse are grouped in a segment. All segments S available at warehouse
w are grouped in the set Gw.

Every product is assigned to segments at both warehouses, indicating that this product can be processed
only by the outbound lines in those segments. A product i can at most be assigned to one segment per
order type at a warehouse, so one mono-order segment and one multi-order segment. A product is always
assigned to the most general possible segment S of an order type, which is the segment that contains all
the outbound lines j at which product i can be processed. The assignment of a product to a segment is
based on product characteristics. Since there are different outbound lines j for mono- and multi-orders,
a product can only be assigned to mutually exclusive segments S at a warehouse w. It is possible that a
product is fully processed on either mono- or multi-order outbound lines. This structure indicates that
a product i is at least assigned to two segments S (one in both warehouses, 100% allocated to a single
segment) and at most assigned to four segments S (two in both warehouses, spread out over a mono-
and multi-order segment).
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2 PROBLEM DESCRIPTION AND MODEL DEFINITION

The relationship between segments S, outbound lines j and products i is used to distribute daily fore-
casted demand per product di,t over the outbound lines. The main parameter facilitating the relation-
ship is fi,S , the fraction of forecasted demand di,t of product i that should be processed by outbound
lines j in segment S. Given a warehouse w, the segment fractions of a product always sum up to 1:∑
S∈Gw

fi,S = 1,∀i ∈ I, ∀w ∈ W . It is known beforehand which fraction of a product’s forecasted de-
mand needs to be allocated to what segment at a warehouse. This is a deterministic input parameter
and is based on historic data. To be able to distribute the forecasted demand of products over outbound
lines through segments, continuous variables xS,j,t are introduced. These variables represent the abso-
lute forecasted demand processed in segment S by outbound line j at day t, where line j is in the set S
(j ∈ S). xS,j,t is used to sum up all the allocated forecasted demand levels in different ways to make it
comply with the constraints in the model environment.

Line capacity constraints assure that the allocated demand to the outbound lines remains within daily
capacity. A constraint is added for every day t the model is optimizing over and for every outbound line
j. The left-hand-side of the constraint is summing up the allocated demand to outbound line j on day t,
indicating to sum xS,j,t over all segments S that contain line j: S|j ∈ S. This sum should be less than
or equal to daily line capacity in products nj .

Demand assignment constraints, also referred to as segment constraints, assure that all forecasted
demand on a daily basis is allocated to be processed by the outbound lines. It does so by constraining
that the sum of allocated demand to outbound lines j in segment S, thus summing xS,j,t for j ∈ S, is
equal to the total demand allocated to that segment S on day t. The calculation of the latter is depen-
dent on the allocation decision and aggregation level. Constraints are added for all days t to optimize
over, for all warehouses w and for all segments in that warehouse S ∈ Gw.

Both warehouses WH-A and WH-B can process similar kind of products in the e-fulfillment process. The
geographical location of the warehouse is irrelevant, as both warehouses are located close to each other
and can provide every product to the same locations in The Netherlands. The stock allocation therefore
does not incorporate any distance or delivery-time based constraints. It is the case that WH-B is more
automated. Therefore, it is generally favorable to allocate products to WH-B, due to lower processing
costs per product. To balance this, pand-split constraints assure that the ratio of distribution of total
allocated demand D over the available warehouses in the optimization period is within a predetermined
range. The total demand D in the optimization period T can be calculated using D =

∑
i,t di,t. This

range, referred to as the ‘pand-split range’, is a combination of the target ratio of allocation at that
warehouse pw and the flexibility given to the model δ. To enforce this in the allocation decision, all allo-
cated demand xS,j,t is summed up over all days t for segments exclusive to the warehouse the constraint
is calculated over, thus summing over S ∈ Gw and over the lines in inside the segments j ∈ S. The
resulting total processed demand at a warehouse should be within the pand-split range.

Warehouse-exclusivity constraints assure that an allocated element, in our case a supplier k or prod-
uct i, only gets allocated to a single warehouse. The allocation decision variables are binaries, indicating
that an element is either fully allocated (1) or not at all allocated (0) to warehouse w. The constraints
enforce that the sum of all binary variables associated should sum up to 1.

Using these constraints, the forecasted demand levels being processed on outbound lines on a daily basis
are calculated. This is multiplied with the costs per processed product cj . This multiplication is summed
over every day t over every outbound line j, which can be translated to summing xS,j,t over all available
segments S at the available warehouses w (

∑
w∈W

∑
S∈Gw

), and all outbound lines in these segments
j ∈ S. This sum is the total cost of the allocation problem being minimized. This capacitated allocation
problem is a typical MILP and is an instance of combinatorial optimization.
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2 PROBLEM DESCRIPTION AND MODEL DEFINITION

2.2 Existing model: supplier-level allocation (SAM)
As introduced in Section 1, SAM is the current model solving the allocation problem at supplier-level. To
realize supplier-level allocation, binary decision variables zk,w are considered accounting for the allocation
of the assortment of supplier k to a single warehouse w. The assortment of supplier k is a set of products
i, defined as the set Ak. Since the demand forecast di,t is on product-level, a parameter ri,k is defined as
the fraction of forecasted demand of a product i that needs to be fulfilled by supplier k. For product i,
historic data is gathered which suppliers k have delivered what fraction of product i. This is used to cal-
culate ri,k, which are summing up to 1 summing over all suppliers:

∑
k ri,k = 1,∀i. This historic fraction

is assumed to be present in future demand and therefore it is used as an deterministic input to the model.

To utilize the relationship between segments, outbound lines and products, the total allocated demand
to a segment S on day t needs to be calculated. The total demand induced on a segment S by a single
supplier k on day t for a single product i can be calculated using fi,S · di,t · ri,k. These results are
summed up over all products i in the assortment of supplier Ak to calculate total demand induced by
this supplier k. Since fi,S is non-zero at segments at both warehouses and the forecasted demand only
needs to be distributed over outbound lines in the warehouse the products are being allocated to, the sum
is multiplied with binary variables zk,w. This results in zk,w ·

∑
i∈Ak

fi,S · di,t · ri,k. This indicates that
the allocated forecasted demand of all products i delivered by supplier k is only non-zero for segments S
at the warehouse w that supplier is being allocated to. To calculate total daily demand levels processed
on segment S, the results are summed up over all available suppliers k ∈ K. This relation is used in
the demand assignment constraints of SAM (Equation 3, right-hand-side). This complexity enforces
the entire assortment Ak of a supplier to be exclusively allocated to a single warehouse, generating
the supplier-level aggregation level in the allocation decision. Together with line capacity constraints
(Equation 2), pand-split constraints (Equation 4) and warehouse-exclusivity constraints (Equation 5),
the optimal allocation can be computed which minimizes total costs (Equation 1). The resulting MILP
of SAM is formulated as follows.

min
x,z

∑
t∈T

∑
w∈W

∑
S∈Gw

∑
j∈S

xS,j,t · cj (1)

s.t.: ∑
S|j∈S

xS,j,t ≤ nj , ∀t ∈ T, ∀j ∈ J, (Line capacity) (2)

∑
j∈S

xS,j,t =
∑
k∈K

zk,w ·
∑
i∈Ak

fi,S · di,t · ri,k, ∀t ∈ T, ∀w ∈W, ∀S ∈ Gw (Demand assignment) (3)

∑
t∈T

∑
S∈Gw

∑
j∈S

xS,j,t − pw ·D ∈ [−δ ·D,+δ ·D], ∀w ∈W (Pand-split) (4)

∑
w∈W

zk,w = 1, ∀k ∈ K (Warehouse-exclusivity) (5)

xS,j,t ∈ [0,∞] (6)

zk,w ∈ {0, 1} (7)

Variables:
xS,j,t: A continuous variable representing the absolute forecasted demand processed from segment

S by outbound line j at day t, where line j is in the set S or j ∈ S.
zk,w: Binary variable used to force that the assortment of products i of supplier k (i ∈ Ak) can

only be allocated to one of the warehouses w.
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Parameters and indices:
i: A product of which the model needs to determine the allocation.
j: An outbound line in the warehouse that can produce products i. There are specific outbound

lines j that can process respectively mono- and multi-orders.
w: A warehouse to which products i can be allocated. In this case only two options are available:

WH-A and WH-B.
k: A supplier delivering the products i to the warehouses w.
t: A day over which the model has to optimize.
di,t: Forecasted demand of product i on day t.
D: The total demand produced in the optimization period:

∑
i,t di,t

cj : Costs of processing a product on outbound line j.
nj : Daily production capacity in number of products of outbound line j.
fi,S : The fraction of demand of product i that needs to be assigned to segment S.
ri,k The fraction of demand of product i that needs to be fulfilled by supplier k.
pw: The target percentage of warehouse w of total forecasted demand division over the ware-

houses.
δ: The delta that provides flexibility in the pand-split constraints.

Sets:
I: The set of all products i the model needs to allocate.
J : The set of all lines j the model can allocate products to.
W : The set of available warehouses w.
K: The set of suppliers k to allocate.
Ak A set of products i delivered to the warehouses w by supplier k, referred to as the supplier’s

assortment.
T : A set of all days t the model has to optimize over.
S: A segment S is defined as a set of outbound lines j.
Gw: A group of segments S available at warehouse w.

The aggregation of products on supplier-level in the allocation decision however has operational disad-
vantages:

• Allocating stock on supplier-level induces sub-optimal decisions on product-level, as the optimal
decision for the aggregated group induces sub-optimal allocations of single products. Suppliers
can have a divergent assortment, containing products that have very different characteristics (Ap-
pendix A.1). This reduces the flexibility of the allocation substantially. The level of sub-optimality
supplier-level allocation induces is not known.

• Company X is experiencing growth and considers to open new warehouses. The sub-optimality
experienced due to the supplier-level decision will increase when extra warehouses are added to the
model environment. Next to this, there is an idea to open a special warehouse. A lot of demand is
experienced during the holiday season, referred to as the ‘peak-period’. It is considered to open a
warehouse specifically during this peak-period to store products with specific characteristics such
as high demand. SAM is not able to allocate such products individually, as those products will not
be delivered by a single supplier.

• Restrictions on products require it to be processed on a specific warehouse (Appendix A.2). In the
case of supplier-level allocation, this induces the allocation of the entire assortment of a supplier
can be influenced by a single restricted product. An exception can be made for this individual
product, meaning that the stock of this single product is stored at another warehouse than the rest
of the assortment. Both situations are unfavorable.

• Company X is implementing double-stocking. Double-stocking allows a product to be stocked
at multiple warehouses. Supplier-level allocation complicates this process as it is not possible to
allocate individual products to be double-stocked.

To overcome these disadvantages and analyze the scalability of the allocation decision, the product-level
allocation model is proposed.
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2.3 Proposed model: product-level steering (PLS)
To be able to realize product-level allocation, the PLS model is formulated. The binary decision variables
zk,w are replaced by binary decision variables per product zi,w. This greatly increases the number of
integer variables in the model environment, which has an evident influence on the computation time and
scalability to solve the optimization problem (Cao & Sun, 2016).

Another important difference in formulation is the calculation of the total allocated demand on a segment
S on day t. At supplier-level, the grouping of products in Ak is realized in this calculation. Since this
is not required anymore at product-level, the computation is slightly less complex. The demand a single
product i induces on a segment S on day t can be calculated using fi,S · di,t. Including the binary
allocation variable zi,w in the calculation assures that the forecasted demand to process is only non-zero
for the warehouse to which the product is being allocated to, similarly to including zk,w as described in
Section 2.2. Summing over all products, the total allocated demand levels to segment S on day t are
calculated, resulting in the right-hand-side of the demand assignment constraints in Equation 10. These
constraints assure all forecasted demand is being allocated, complying with line capacity constraints
(Equation 9), pand-split constraints (Equation 11) and warehouse-exclusivity constraints (Equation 12).
Again, the objective is total cost minimization (Equation 8). The resulting MILP of PLS is formulated
as follows.

min
x,z

∑
t∈T

∑
w∈W

∑
S∈Gw

∑
j∈S

xS,j,t · cj (8)

s.t.: ∑
S|j∈S

xS,j,t ≤ nj , ∀t ∈ T, ∀j ∈ J (Line capacity) (9)

∑
j∈S

xS,j,t =
∑
i∈I

fi,S · di,t · zi,w, ∀t ∈ T, ∀w ∈W, ∀S ∈ Gw (Demand assignment) (10)

∑
t∈T

∑
S∈Gw

∑
j∈S

xS,j,t − pw ·D ∈ [−δ ·D,+δ ·D], ∀w ∈W (Pand-split) (11)

∑
w∈W

zi,w = 1, ∀i ∈ I (Warehouse-exclusivity) (12)

xS,j,t ∈ [0,∞] (13)

zi,w ∈ {0, 1} (14)

Variables:
xS,j,t: A continuous variable representing the absolute forecasted demand processed in segment S

by outbound line j at day t, where line j is in the set S or j ∈ S.
zi,w: Binary variable used to force that a product i can only be allocated to one of the warehouses

w.

It is possible to create a model that spreads out the fraction of a product’s demand over the outbound
lines, not using the relation between products, segments and outbound lines. However, this increases
the model size significantly by introducing a lot of constraints and continuous variables. Furthermore,
outbound line sourcing information per product is not required for this research. Such a model has been
defined in Appendix B and was implemented, but ran into memory issues for larger problem scales and
therefore is not elaborated on any further. Using the relationship between segments, outbound lines and
products, the amount of continuous variables required in the model environment is reduced significantly.

Since PLS allows product-level allocation, the sketched disadvantages of supplier-level allocation in Sec-
tion 2.2 are reduced. Sub-optimality is reduced, allowing for better capacity utilization. Besides, it
allows for the implementation of considered developments. Despite the fact exclusivity in allocation is
enforced, product-level allocation allows the model complexity required to implement double-stocking.
However, PLS also generates challenges:
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• The main technical challenge is the scalability of PLS given the new, larger problem scale. It is a
challenge to find which method is required to tackle this problem effectively and efficiently.

• The effect of PLS on supplier splits is unknown. This can be unfavorable for both the supplier and
Company X, as this complicates the inbound process.

• It is possible that products with common characteristics are mainly allocated to a single warehouse.
From operational point of view this might be unfavorable. Company X therefore aims to distribute
its assortment over the warehouses using e.g. size-group constraints. There is an interest in the
effect of product-level allocation on this the robustness of the allocation decision of PLS.

It can be concluded that the considered stock allocation problem is unique and complex. We are interested
in to what extent the sketched challenges are problematic for the implementation of the proposed model
using the new aggregation level, and to what extent it can be used to overcome the disadvantages of the
existing model. To be able to evaluate this, the models are implemented and computational experiments
are conducted.

3 Input data description
Data is gathered for the implementation of the MILP models. This section elaborates on the data
structures used as input, such that all formulated parameters are present.

3.1 Product-level sales forecast
To realize the product-level forecast di,t, a product-group forecast is transformed to product-level using
historic order data. Historic order data provides information on which product in a product-group ac-
counted for what fraction of previous sales in that product-group. It is assumed that this ratio will be
present in the future sales. Using fi,S , a forecast per segment can be calculated. This transformation is
illustrated in Appendix C.

The assortment that will be present in the product-level forecast, and therefore the assortment I to be
allocated, is dependent on the used historic data. The larger the time-frame of historic data included,
the more products sold and thus the more products to be allocated. This is connected to the long-tailed
assortment of Company X. The effect is illustrated in Figure 6. The amount of historical order data
H used to calculate the forecast is controllable, creating the possibility to allocate a different sized as-
sortment of products to check the effects on scalability of the solutions. For a realistic run, 60 days of
historic data are included.

As seen in Figure 6, the increase of assortment to allocate decreases as H increases, which can be de-
scribed as logarithmic behavior. The scale is also influenced by the time of the year of included historic
data, as the number of products sold during the peak-period is larger (Section 1). Despite the relatively
small differences in number of products to allocate, demand levels are larger in the peak-period. For
example, the average daily demand forecast in the peak-period [2021/11/01, 2021/12/31] is ±380, 000
products, while for a ‘normal’ period [2021/06/01, 2021/07/31], this is ±200, 000 products.

On the other hand, the number of days to optimize the allocation over T is controllable. The more days
included in the forecast, the larger the scale of the optimization problem. This relation is used to analyze
the scalability of the solutions. The scale of the product-level allocation model can be computed using
Equations 15 and 16, where H influences the number of products to allocate |I|.

Number of variables = |T | ·
∑
w

|Gw| ·
∑
S |S|
|J |

+ |W | · |I| (15)

Number of constraints = |T | · |J |+ |T | · |W | ·
∑
w |Gw|
|W |

+ 2 · |W |+ |I| (16)
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Figure 6: Increase of products included in product-level
demand forecast as the historic data taken into account

increases.

Figure 7: Total demand forecast over time in period
[2021/06/01, 2021/07/31].

The number of variables and number of constraints, and thus the model scale, increase linearly as H
and T increase. As the number of products being allocated is large, scales are increasing quickly. If a
larger optimization period is used, it makes sense to include more historic data and therefore a larger
assortment to allocate, indicating H and T are connected. For a realistic run, an optimization period
T of 60 days is used. This is connected to the fact that approximately six stock allocation runs are
performed each year, therefore making sense to run the model every 365/6 ≈ 60 days. The assortment
forecasted to be sold during this optimization period is believed to be related to the assortment sold in
the past 60 days (H = 60).

To illustrate demand behavior, the total demand forecast over time for this configuration is presented
in Figure 7. A weekly demand pattern is recognized, with negative peaks on Saturdays and a mid-week
dip on Tuesdays. In the case of this configuration, an increase in demand in the second half of the
optimization period is present.

As an input to the allocation models, the forecast is retrieved per product di,t, which is summed up to
find the total demand forecast D. This provides information on products i ∈ I to allocate, as the forecast
is only provided for products in historic data H. The forecast is not constrained to be integer, as it is
based on the historic fractions and those are not rounded. In reality, an integer number of products will
be processed at the warehouses. However, the model needs to output the optimal allocation decision,
which is possible using non-integer forecasts.

3.2 Available resources at the warehouses
The available outbound lines j ∈ J that can process products i are presented in Table 4. The total
costs of processing a product on an outbound line cj includes the costs of other steps performed at
the warehouse (inbound, etc.). The costs cj are equal for all products i, such that different products
incur the same costs on outbound line j. For both mono- and multi-orders, the cheapest lines are at
WH-B. However, it is not the case that all lines for an order type (mono/multi) are strictly cheaper at
WH-B than at WH-A. For example, for mono-orders the sequence from lowest costs to highest costs
per product is: CMC1 (WH-B), SMARTMAILER_WH-B (WH-B), SMARTMAILER_WH-A (WH-A),
POS-MONO (WH-A), NEOPOST (WH-A), MONO-MANUAL (WH-B), BIG-ITEMS-MONO (WH-A).
For multi-orders a similar alternating behavior is present. Daily line capacities nj are also presented.
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Table 4: Outbound lines j available and their characteristics.

Name outbound line j Total cost per
item cj

Daily capacity
nj in products Warehouse w Order type

SMARTMAILER_WH-A 0.84019156 16500 WH-A Mono
POS-MONO 0.94317373 73920 WH-A Mono
NEOPOST 0.98413690 5775 WH-A Mono
BIG-ITEMS-MONO 1.14735151 36960 WH-A Mono
POS-MULTI 1.05164317 79200 WH-A Multi
BIG-ITEMS-MULTI 1.33238762 57750 WH-A Multi
SMARTMAILER_WH-B 0.82245362 19800 WH-B Mono
CMC1 0.80331195 33000 WH-B Mono
MONO-MANUAL1 1.10638834 166650 WH-B Mono
SORTER1 1.02025084 90750 WH-B Multi
MULTI-MANUAL1 1.26271195 66000 WH-B Multi

The available segments S are presented in Table 5. The name of a segment is a simple combination
of outbound lines j, therefore providing the information of j ∈ S. Segments S are created in terms of
generality. For example, if a product is ordered as mono-order at WH-A, it gets assigned to the segment
that contains all the mono-order outbound lines it can be processed on at WH-A. This can be a single
line, all mono-order lines, or a segment in between. The most general segment for an order type at a
warehouse is the segment containing a single outbound line.

Table 5: Segments S available and their characteristics, including an example of fi,S .

Name segment S Warehouse w Order type Fraction fi,S
BIG-ITEMS-MONO WH-A Mono 0.7
BIG-ITEMS-MONO|POS-MONO WH-A Mono 0
BIG-ITEMS-MONO|NEOPOST|POS-MONO WH-A Mono 0
BIG-ITEMS-MONO|NEOPOST|POS-MONO|SMARTMAILER_WH-A WH-A Mono 0
BIG-ITEMS-MULTI WH-A Multi 0.3
BIG-ITEMS-MULTI|POS-MULTI WH-A Multi 0
MONO-MANUAL1 WH-B Mono 0.7
CMC1|MONO-MANUAL1 WH-B Mono 0
CMC1|MONO-MANUAL1|SMARTMAILER_WH-B WH-B Mono 0
MULTI-MANUAL1 WH-B Multi 0.3
SORTER1|MULTI-MANUAL1 WH-B Multi 0

3.3 Other parameters
To facilitate the relation between outbound lines, products and segments, the parameter fi,S is required.
An example of fi,S for a random product i is presented in the last column of Table 5. fi,S facilitates the
distinction between mono-orders and multi-orders in the model environment. It is a rather simplistic
implementation, as the definition of a multi-order indicates a product is ordered together with another
product. This relation between products i is not captured in this research. However, it is assumed that
the current method is sufficient to check capacity utilization and make the allocation decision. These
fractions fi,S are available for all products i ∈ I.

The available suppliers k ∈ K, the assortment of a supplier Ak, and the fraction of a product delivered by
a supplier ri,k are extracted from historic purchase order data, which is different from order history H.
The number of suppliers to allocate is lower than the amount of total suppliers delivering to Company
X, as it is based on this historical purchase order data. This data is also used to determine if a supplier
is split in the product-level allocation.

The parameters pw and δ are treated as deterministic, external input as they are determined by another
department. Therefore these parameters are constant over all runs. Values are presented in Table 6.

Table 6: Values pw and δ.

Warehouse w pw δ Lower bound Upper bound
WH-A 0.42 0.10 0.32 0.52
WH-B 0.58 0.10 0.48 0.68
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4 Results
Using the input data, computational experiments are conducted and results are gathered. The models
and methods used are presented in Table 7.

Table 7: Overview of models used in Section 4.

Model Description
SAM The supplier-level allocation model SAM. It uses the open-source CBC

(CoinOR Branch and Cut) solver. Since PLS is not using certain details of
the model environment such as product restrictions and size-group constraints
(Section 2), SAM is also simplified to mirror the PLS model complexity to be
able to fairly compare the models.

PLS-GUR The product-level allocation model PLS using the commercial Gurobi solver.
PLS-CBC The product-level allocation model PLS using the open-source CBC solver.

Python is used as the programming language and the package PuLP is used for the implementation of
the optimization model1. The optimization models are ran on a local machine (2.6 GHz 6-Core Intel
Core i7, 16 GB RAM, AMD Radeaon Pro). In this section, the key performance indicators (KPI’s) are
defined to evaluate the implemented models, a comparison is presented between the implemented models
based on these KPI’s, and detailed use-case analysis of supplier-level allocation (SAM) and product-level
allocation (PLS) is presented.

4.1 KPI’s
The main goal is to investigate whether the increase in problem scale of product-level allocation is feasible
from both a technical and operational perspective. The two KPI’s used for evaluation are scalability
and optimality (Brouer, Karsten, & Pisinger, 2016). The implementation of solvers rather than other
methods such as meta-heuristics proved to be feasible given the problem definition. The CBC solver
is more basic and open-source, whereas the GUR solver is a high-quality and competitive commercial
solver (Anand, Aggarwal, & Kumar, 2017). The results presented in this section validate this.

Scalability
Scalability is defined as the influence of an increase in scale on the performance of a solution to a problem.
Scalability evaluation has the goal to get information which scales of problem sizes yield what results.
Different combinations of H and T are used to gather results on scalability. To quantify and evaluate
scalability, the following model output is extracted:

• The number of variables and number of constraints included in the model;
• The number of suppliers and products being allocated by the model;
• The computation time in seconds per run of the optimization, excluding pre- and post-processing

of information. This is the main performance indicator for scalability.

Optimality
Apart from the scale the model is operating on, there is an interest in the optimality of the provided
solution by the model. On one hand, it can be evaluated how the solution to the allocation problem
is performing operationally, for example to what extent warehouse capacities are being utilized. This
provides information on how optimal the allocation is from a business perspective and it is expected
that product-level allocation is favorable in this case. To quantify and evaluate optimality, the following
model output is extracted:

• The resulting objective value of the optimization;
• The average costs induced per processed product;
• The number of suppliers that are split in resulting allocation;
• More operational output is stored for the use-case analysis in Section 4.3.

1https://coin-or.github.io/pulp/
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On the other hand, it can be evaluated to what extent the optimization problem is solved to optimality.
As discussed by Yu, Wang, Hua, and Lau (2013), there are multiple methods for solving an optimization
problem exactly. This indicates that the guaranteed best solution in the solution space is retrieved.
However, finding the exact optimal solution in integer programming is very time consuming and may
therefore be infeasible as scale increases (Yu et al., 2013). Approximation methods can be a solution in
this case.

The implemented solvers are used as an approximation method, thus providing a close-to-optimal solu-
tion to the integer problem. We measure optimality using the optimality gap, defined as the difference
between the best-found integer solution by the optimization method and the best-bound solution (Cao
& Sun, 2016; Bayraksan & Morton, 2006). Best-bound solutions are found solving the linearly relaxed
optimization problem and are part of the branch-and-cut algorithms used by CBC and GUR (Mitchell,
2002). The resulting integer solution satisfies all constraints and minimizes the objective. The objective
value of the solution to the relaxed problem can be used as the aimed optimal solution. Setting a smaller
optimality gap can possibly result in a better solution to the allocation problem. This increases the
computation time required, and thus decreases the scalability (Glover & Kochenberher, 2003). It is also
possible to set a time-limit to the optimization problem, which simply yields the best-found solution in
the given amount of time.

No time-limits are set as the solvers proved to find high quality solutions in reasonable times. A relative
optimality gap of 10−7 is used in this research. An analysis on the influence of decreasing this optimality
gap and on the linear relaxation of the integer optimization problem is now presented.

4.1.1 Analysis linear relaxation

Both allocation models are solving an MILP. The implemented solvers use a branch-and-cut algorithm
as the optimization method. Therefore, the problem is relaxed after which the resulting non-integer
variables are forced to become integer by cutting and branching (Mitchell, 2002). Solving a linear pro-
gramming problem is less computationally intensive than solving a (mixed-)integer linear programming
problem (Wolsey & Nemhauser, 1999; Vielma, 2015).

Using the logging of the GUR solver, it was discovered that for smaller scales of implementation of the
PLS model, only a single node was explored after the initial linear relaxation of the MILP is solved to come
to the final solution. This could indicate that there exists an integer solution to the allocation problem
that is equal to the relaxed solution. If the model holds the property of total unimodularity, the optimal
solution to the relaxed linear problem obtained using a simplex algorithm yields a solution consisting of
integer variables only and therefore is a solution to the integer problem (Wolsey & Nemhauser, 1999;
Jünger et al., 2009). Relaxation can therefore provide information of the underlying problem structure.
To get a better understanding what is happening when relaxing the allocation problem, LP-relaxation
is implemented manually for the PLS model. In terms of the model formulation, this means that the
binary allocation variables are relaxed to become continuous between 0 and 1 (Equation 17).

zi,w ∈ {0, 1} −→ zi,w ∈ [0, 1] (17)

It is found that the best-bound of the integer solution to the problem becomes close-to-equal to the
solution of the relaxed problem (Appendix J.1). It is possible that the value of the relative optimality
gap of 10−7 is such that the solution to the integer model can be found by only exploring 1 node.
Therefore as a sensitivity analysis this gap is decreased to 10−13. This resulted in a higher best-bound in
the solution of the integer problem, which is unequal to the solution to the relaxed problem (Appendix
J.1). This also resulted in a slightly lower objective value, indicating a better solution has been found
to the allocation problem. Next to this, more nodes are explored when solving the integer model. As
multiple nodes are explored, and a new best-bound and better solution are found, the solution to the
relaxed main problem is not a solution to the integer problem (Jünger et al., 2009). This indicates total
unimodularity is not the case. The difference in objective value by decreasing the relative optimality gap
is only marginal, therefore it did not increase the quality of the solution significantly. Since decreasing
the gap increases computational times significantly while the solution quality increases only marginally,
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for the remainder of the research the gap of 10−7 is used. More details on the analysis on manually
relaxing the optimization problem are presented in Appendix J.

4.2 Results scalability and optimality
Results are presented on scalability and optimality for different combinations of H and T . As mentioned
in Section 3.1, H = 60, T = 60 is a realistic configuration on which SAM operates. SAM, PLS-GUR and
PLS-CBC are compared using the configurations presented in Table 8.

Table 8: Configurations used for scalability analyses.

Days of historic
data H

Days to optimize
over T

Number of
products I to

allocate

Number of
suppliers K to

allocate
2 2 59830 714
7 7 111803 746
14 14 157092 741
31 31 219259 730
60 60 293381 761

These configurations all use the same start date, 01/06/2021. The period of historic data on which the
forecast is based therefore ranges between [31/05/2021−H, 31/05/2021]. The latter influences the number
of suppliers included in the model, thus the differences between configurations. The period to optimize
over ranges between [01/06/2021, 01/06/2021 + T ]. This is an off-peak period, chosen deliberately since
this is the case the most of the time in the year and the peak-period could induce capacity shortages,
which cannot be tackled by the current model. The obtained results are presented in Table 9.

Table 9: Results scalability and optimality runs.

Configuration Model Objective
Average
costs per
item

Number of
variables

Number of
constraints

Run-time
(seconds)

Supplier
splits

H = 2, T = 2
SAM 307766.01 1.048985 3353 1803 0.22 0

PLS-GUR 303183.29 1.033365 119704 59878 1.08 660
PLS-CBC 303183.28 1.033365 119704 59878 9.54 660

H = 7, T = 7
SAM 996901.22 1.071811 3778 2283 0.75 0

PLS-GUR 982680.89 1.056522 223760 111961 9.47 700
PLS-CBC 982680.83 1.056522 223760 111961 92.75 700

H = 14, T = 14
SAM 2039208.84 1.077164 4373 2955 0.93 0

PLS-GUR 2011165.59 1.062350 314492 157404 30.25 702
PLS-CBC 2011165.44 1.062350 314492 157404 422.93 702

H = 31, T = 31
SAM 4647499.14 1.078248 5818 4587 2.62 0

PLS-GUR 4590217.64 1.064959 439200 219945 144.40 696
PLS-CBC 4590217.34 1.064959 439200 219945 1722.12 696

H = 60, T = 60
SAM 10016159.58 1.083758 8283 7371 25.16 0

PLS-GUR 9929419.76 1.074373 588082 294705 658.21 712
PLS-CBC 9929419.82 1.074373 588082 294705 6067.32 712

The PLS models outperform SAM for every configuration in terms of objective and costs per processed
product. SAM has a higher average processing costs per product for all configurations. This originates
from the more efficient use of cheaper outbound lines. Details on the cost reduction are presented in
Table 10.

Table 10: Cost reduction PLS over SAM different configurations.

Configuration H = 2, T = 2 H = 7, T = 7 H = 14, T = 14 H = 31, T = 31 H = 60, T = 60
Total cost reduction e4582.72058 e14220.3336 e28043.2427 e57281.4922 e86739.8213

Cost reduction in % of SAM objective 1.48903% 1.42645% 1.37520% 1.23252% 0.86600%
Cost reduction per day e2291.36029 e2031.47623 e2003.08877 e1847.79007 e1445.6637
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Absolute cost reductions are increasing, while cost reductions per day are decreasing. Table 9 shows
that the computation time increases exponentially for all different models, but the model scale and ab-
solute computation time increase is larger for PLS. As expected, the model scale is significantly larger
at product-level due to the large influence of the number of products (Equations 15 and 16). Comparing
PLS-GUR to PLS-CBC, the absolute increase in computation time is larger for PLS-CBC. Supplier splits
are only present at PLS and do not show a specific trend.

Since both models provide high quality solutions given the optimality gap of 10−7, the comparison of the
optimality is indifferent between product-level and supplier-level. In terms of optimal warehouse utiliza-
tion, PLS performs better. For realistic scales, computation time for the open-source solver becomes a
few hours.

Results are also presented using a constant H = 60 and variable period to optimize over T (Table
11). All of these configurations are allocating the same amount of products (293381) and suppliers
(761), as the historic data is constant. Model size increases as T increases (Equations 15 and 16). A
larger optimization period and the associated increased model scale affect the computation time required
significantly.

Table 11: Results scalability and optimality H = 60, T variable.

Configuration Model Objective
Average
costs per
item

Number of
variables

Number of
constraints

Run-time
(seconds)

Supplier
splits

SAM 10016159.58 1.083758 8283 7371 25.16 0
PLS-GUR 9929419.76 1.074373 588082 294705 658.21 712T=60
PLS-CBC 9929419.82 1.074373 588082 294705 6067.32 712

SAM 15142696.80 1.083543 10835 10252 70.59 0
PLS-GUR 15012811.30 1.074247 588890 295439 1480.18 712T=90
PLS-CBC 15012812.14 1.074247 588890 295439 8572.70 712

SAM 20344768.17 1.086084 13383 13131 131.46 0
PLS-GUR 20172695.64 1.076898 589434 296041 974.39 714T=120
PLS-CBC - - - - - -

PLS is still dominant over SAM in terms of objective value and associated costs per processed item.
Cost reductions are presented in Table 12. The cost reduction per day decreases slightly as T increases.
The results for PLS-CBC for the configuration H = 60, T = 120 are not present. The scale at this
configuration becomes too large for the CBC solver to tackle and thus results in errors.

Table 12: Cost reduction PLS over SAM H = 60, T variable.

Configuration T = 60 T = 90 T = 120
Total cost reduction e86739.8213 e129885.504 e172072.531

Cost reduction in % of SAM objective 0.86600% 0.85774% 0.84578%
Cost reduction per day e1445.66369 e1443.17227 e1433.93775

4.3 Use-case analysis
In this section, the results using configuration of H = 60, T = 60 are analyzed in more detail. PLS-CBC
and PLS-GUR provide similar results, thus product-level allocation results in this section are referred to
as ‘PLS’.

4.3.1 Line capacity utilization

In Section 2 it was stated that only demand forecasts for suppliers are being allocated, not for retailers.
Therefore, in reality the total allocated demand and the capacity utilization of the outbound lines are
higher. This influences results, but still allows for the analysis of capacity utilization and the comparison
between supplier-level and product-level allocation. The utilization results of the SMARTMAILER_WH-
B and CMC1 mono-order outbound lines at WH-B are presented in Figures 8 and 9. The results of the
other outbound lines are presented in Appendix D.
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(a) SAM (b) PLS

Figure 8: SMARTMAILER WH-B outbound line utilization SAM vs PLS

(a) CMC1 WH-B SAM (b) CMC1 WH-B PLS

Figure 9: CMC1 WH-B outbound line utilization SAM vs PLS

4.3.2 Supplier split details

Several results are presented to provide more insights in how the product assortment is allocated using
PLS and the connected effect on supplier splits. Table 13 presents the number of suppliers of which the
assortment is being split when allocating on product-level. The assortment of 93.6% of the suppliers is
split over the two available warehouses. Only a small amount is either fully allocated to WH-A (1.7%) or
WH-B (4.7%). Supplier-level allocation is also subjected to exclusivity constraints, indicating a supplier
cannot be split and SAM results in 0 supplier splits.

Table 13: Details on allocation assortment of suppliers.

Split 100% WH-A 100% WH-B Total
Suppliers 712 13 36 761

Figure 10a presents information on the fraction of products of a supplier’s assortment being allocated to
WH-B in the form of a cumulative histogram. These fractions are calculated using Equation 18.

fractionk,w =
count(i ∈ Ak|zi,w = 1)

count(i ∈ Ak)
(18)

Apart from what fraction of products is allocated to a warehouse, results are gathered on what fraction
of a supplier’s total forecasted demand is allocated to a warehouse. These fractions are calculated
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using Equation 19 and results are presented in a cumulative histogram in Figure 10b. The fractions of
WH-A can be simply calculated using 1− fractionk,WH−B . Figures on WH-A are presented in Appendix
F.

fractionk,w =

∑
t

∑
i∈Ak

di,t · zi,w∑
t

∑
i∈Ak

di,t
(19)

If the resulting fractions (x-axis) are close to 0 or 1, the majority of products or forecasted demand of
the assortment Ak of supplier k is allocated to a single warehouse, while only a minority is allocated to
the other warehouse.

(a) Products (b) Forecasted demand

Figure 10: Cumulative histograms fraction of products and forecasted demand of a supplier’s assortment at
a warehouse for PLS at WH-B, H = 60, T = 60

4.3.3 Pand-split analyses

To provide more details on the functionality of the pand-split constraints, the development of the ratio
over time is presented for SAM and PLS (Figure 11). The resulting global pand-split ratio is at its
upper bound of 68% in both models. In the development of the ratio of both SAM and PLS, a drop is
present around 2021-07-01. This is due to the fact that the demand over the optimization period in the
use-case is increasing over time, with a significant increase around 2021-07-01 as presented in Figure 7
(Section 3). To reduce the effect the demand forecast variation has on the ratio over time, results for
the optimization period [01/06/2021, 31/06/2021] (H = 31, T = 31) are presented in Figure 12.

(a) SAM (b) PLS

Figure 11: Pand-split ratio over time of optimization period from WH-B perspective for H = 60, T = 60.
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(a) SAM (b) PLS

Figure 12: Pand-split ratio over time of optimization period from WH-B perspective for H = 31, T = 31.

Again, the constraint is at its upper bound of 68%. However, the pattern is more constant as expected.
The influence of the weekly demand pattern is still present, indicating the model is allocating the products
such that the upper bound of the pand-split is exceeded on days with higher demands, balanced by days
with lower demand. If demand would be fully constant, the average pand-split ratio would be a straight
line at 68%. The PLS ratio over time is also presented removing all pand-split constraints in Figure
13. The fraction of total capacity at WH-B is ±58% (Table 4, Section 3.2), which is also the target
percentage set for WH-B in the allocation models. Therefore the pand-split ratio would be 58% if the
outbound lines would operate at full capacity.

(a) H = 60, T = 60. (b) H = 31, T = 31.

Figure 13: PLS pand-split ratio over time without any pand-split constraints in the model environment.

4.3.4 Utilizing warehouse characteristics

To provide more insights in how product-level allocation is utilizing the capacity at WH-A and WH-B,
several results are gathered. As elaborated on in Section 1, every product i is assigned to a size-group and
product-group. Given the allocation decision, forecasted demand levels can be aggregated on these levels
to get information which size-group or product-group is produced most at what warehouse over time.
The demand levels over time aggregated on size-group level are presented in Figure 14. The demand
levels over time aggregated on product-group level are presented in Figure 15. Note that only the five
product-groups that are processed the most at a warehouse are presented. Total processed demand of
all product-groups per warehouse are presented in Appendix H.
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(a) WH-A (b) WH-B

Figure 14: Sizegroups handled over the time-span of the optimization period for PLS

(a) WH-A (b) WH-B

Figure 15: Product-groups handled over the time-span of the optimization period for PLS

5 Discussion
The obtained results through the modeling and computational experiments of the allocation problem
generate multiple insights. The scalability and optimality of product-level allocation is discussed in
Section 5.1. Furthermore, insights on the comparison of supplier-level and product-level allocation are
discussed in Section 5.2, focusing on cost reduction, capacity utilization, supplier splits, the pand-split
constraints and allocation flexibility. Using those insights, recommendations are formulated and discussed
in Section 5.3.

5.1 Scalability and optimality product-level allocation
Results have proven solvers are able to solve the product-level allocation problem in acceptable time.
The structure of the allocation model utilizes the relationship between products, segments and outbound
lines such that the number of variables in the model environment can be restricted. As the model is
currently ran in operation every ±2 months, computation times of several hours are not limiting. The
largest run-time of 8572.70 seconds or ±2.36 hours is obtained for PLS-CBC using H = 60, T = 90,
which is feasible given the running interval in operation. There is an evident difference in scalability per-
formance between the CBC and GUR solver. CBC requires significantly more computation time to get
to the same results as the GUR. Next to this, CBC fails when the optimization period and the connected
model size become too large. The reason for the difference between the two solvers originates mainly
from their internal functionality of tackling the problem. Pre-solving seemed to be eliminating more
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solutions using GUR and GUR is also made capable of running on multiple processing cores, while CBC
is not. Besides, the heuristics, branching and cutting methods used by the solvers influence computation
times.

Company X is considering to decrease the interval between allocation runs, which decreases the model
scale required as the days to optimize over T can decrease. Results in Table 11 have shown that
computation times can be decreased significantly when decreasing T , while model size only decreases
slightly. For example, for PLS-GUR the difference in model size increasing T from 60 to 120 is
589434−588082

588082 ∗ 100% = 0.2299%. The difference in computation time is 974.39−658.21
658.21 ∗ 100% = 48.0463%,

significantly higher. The computation time of solving an integer optimization problem is not only in-
fluenced by the model scale, the model structure may also influence the speed of finding high quality
solutions, e.g. an outlier in computation time is recognized for PLS-GUR at H = 60, T = 90 in Table 11.
The assortment to allocate related to H can also be decreased. If the period to optimize over becomes
smaller, the assortment that needs to be available in the warehouses can be reduced. Table 8 shows that
the computation time increases exponentially as the problem scale increases, influenced by H. Therefore
it might also be wishful from a scalability perspective to decrease the interval of running. However,
this could lead to disadvantages business-wise. More frequent and different allocations influences other
processes such as the splitting supplier assortments, inventory layout inside the warehouses, inbound
planning, etc. The current situation also has to deal with these problems, but less frequently.

The model simplifications (Section 2) both increased and decreased the scale of the optimization prob-
lem to be tackled. On one hand, scale increased. If product restrictions would be taken into account,
products and suppliers would have predetermined allocations leading to a decrease in decision variables,
decreasing model scale. In the non-simplified SAM, a constraint setting a maximum number of suppliers
to switch is imposed. This decreases the possible combinations of solutions significantly and therefore
the scale of the problem. On the other hand, the simplifications decreased the scale. Only the allocation
of suppliers is considered, while also the assortment of retailers needs to be allocated in reality, increasing
the scale. In the near future the amount of warehouses to allocate assortment to increases, increasing
model scale significantly. Adding a warehouse would create |I| new binary variables and |T | ·

∑
w |Gw|+2

new constraints (Equations 15 and 16). Next to this, there are plans to include capacities of other process
steps to the model environment, influencing scalability.

Scalability is connected to the optimality of the solutions to the allocation problem. Decreasing this gap
from 10−7 to 10−13 led to minimal improvements of the solution quality, while decreasing the scalability
of the model. However, the allowed gap could also be increased. This allows the model to settle for a
‘worse’ solution, but could increase the scalability of the implementation.

Taking all this into account, it is expected that the implementation of product-level allocation is feasible
to be implemented in operation from a scalability perspective. The use of mathematical solvers was
expected to be infeasible, but this research proved otherwise. It can be favorable to use such solvers,
as they are flexible in implementation and more model complexity can easily be added, contrary to
problem-tailored methods. Model scale does increase significantly compared to supplier-level allocation,
which leads to higher computation times. Nevertheless, this increase is not blocking in the operational
implementation. The change in aggregation level of allocation also led to other insights, which are now
discussed by comparing supplier-level allocation and product-level allocation in detail.

5.2 Product-level allocation versus supplier-level allocation
Cost reduction
Results have shown that there exists a cost reduction of ±1% in favor of product-level allocation (Ta-
bles 9, 10, 11 and 12). For H = 60, T = 60, a daily cost reduction of e1445.66 was found. Naively
extrapolating this results in a yearly cost reduction of e1445.66 · 365 = e527665.90. This is a rough
estimation as the cost reduction is related to the demand levels in a period. Including the allocation of
retailers assortment or other demand patterns such as in the peak-period lead will lead to different results.

Table 10 shows that the cost reduction per day decreases as H and T increase. A smaller H indicates
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that the assortment of products to allocate is smaller (Section 3.1), which indicates that the number of
products aggregated on the supplier-level is also smaller. As the product-group forecast is spread out
over the products to allocate, the absolute forecast per product is higher when H is smaller. Lower
absolute demand forecasts per product allow for more efficient capacity utilization. This means a larger
H increases the flexibility of the allocation, decreasing total costs. The effect of the higher absolute
forecasts per product for a smaller H on this flexibility is more evident for SAM, as it is less flexible
due to the grouping of products. Using PLS, it is possible to change the allocation of a single product
that can efficiently utilize a small portion of capacity. However, the cost reduction per day of PLS over
SAM decreases as H increases, indicating that SAM benefits more from the increase in flexibility. The
demand forecast calculation structure therefore has a notable influence on the outcomes, meaning that
the quality of the allocation decision is dependant on the quality of the forecast. Next to increasing H,
T is increased. The models allow just one allocation decision per element over the total optimization
period. Daily trade-offs are made to find the best overall solution over T . The more days included, the
larger the effect of this trade-off, decreasing daily cost reduction. This effect is shown in Table 12, as H
is kept constant. The effect is not large, as cost reduction decreases only slightly as T increases.

The cost reduction of product-level allocation comes at the price of scalability. The computation times
of SAM are only a fraction of PLS. A similar exponential increase in computation time is present at
both supplier-level and product-level, but the absolute computation time is significantly higher due to
the larger model scale. This trade-off between cost reduction and scalability has to be taken into account
when implementing product-level allocation.

Capacity utilization
The cost reductions originate from better capacity utilization of the outbound lines. PLS is utilizing
more capacity of the cheaper outbound lines compared to SAM (Section 4.3.1). The CMC1 line at WH-B
is the cheapest line in the model environment (Table 4). It makes sense that the model tries to utilize
this capacity as much as possible, which is confirmed by Figures 9a and 9b. CMC1 processes products
close to capacity in both cases, but it is shown that PLS processes closer to line capacity. Similar results
are present for SMARTMAILER_WH-B, the second cheapest outbound line 8a and 8b. Comparable
conclusions can be drawn for the outbound lines presented in Appendix D, where expensive lines are
utilized less and cheaper lines are utilized more. Some outbound lines are not being utilized in these
results, which is due to the fact that the total forecasted demand is below total capacity. The differences
of utilization between PLS and SAM are not large, as the relative cost reduction is small.

Supplier splits
Results in Section 4.2 show that the majority of suppliers is split to deliver both at WH-A and WH-B.
Section 4.3.2 provided more details on how these suppliers are split. There are suppliers where the
majority of the assortment is allocated to WH-B and the minority to WH-A (Figure 10). 30% of all
suppliers should deliver 0− 20% of their products to WH-A and the remainder to WH-B (Figure 10a).
On the other hand, 65% of the suppliers should deliver between 20−80% of their products to WH-A and
the remainder to WH-B, which is a more balanced distribution. In the case of forecasted demand, the
skewness of the fraction towards WH-B is more evidently present (Figure 10b). For 19% of all suppliers,
95 − 100% of the total forecasted demand is allocated to WH-B, while only 0 − 5% at WH-A. Next to
this, 40% of the suppliers deliver between 80− 100% of its forecasted demand to WH-B. The forecasted
demand levels of the considerable amount of 50% of suppliers is not in the extremes (fraction between
20 − 80%). The assortment of the remaining 10% of the suppliers is mainly allocated to WH-A. These
results show that splitting the assortment of a supplier over multiple warehouses contributes to obtaining
lower objectives and better capacity utilization. While supplier splits may be unfavorable from a business
perspective, it is possible to think of alternatives. Transshipments could be allowed to stock products on
a different location than delivered. Besides, given the fact that WH-A and WH-B and possibly future
warehouses are located close to each other, an inbound warehouse could be considered. All incoming
goods can be received at this warehouse, after which products can be distributed as preferred.

Results indicate it might be considerable to force the model to not split a supplier if the majority of the
assortment is allocated to a single warehouse. This can be realized by including a minimum fraction of
distribution over multiple warehouses before splitting of the assortment of a supplier. The cost of this is
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accepting the sub-optimality in allocation. Including such a threshold would generate a hybrid version
of product-level and supplier-level allocation, as it imposes product-level allocation is only used for sup-
pliers meeting the threshold. As adding such restrictions decreases flexibility, the resulting objective is
believed to be between full supplier-level allocation and full product-level allocation.

Pand-split analyses
Pand-split results are comparable for SAM and PLS, but generate other insights. Results in Section
4.3.3 validate that in the use-case it is favorable to process more at WH-B, as the resulting average
pand-split ratio is at the upper bound. The reason for this is the alternating processing cost structure
of the outbound lines (Section 3.2), making a different warehouse favorable to process at for different
demand levels. If the daily forecasted demand levels can be fulfilled using the capacity of low-cost WH-B
outbound lines, the ratio tends towards WH-B. If daily demand levels exceed the capacity of those lines,
WH-A outbound lines become financially favorable and therefore the ratio tends towards WH-A. If these
capacities are met, WH-B is in favor again to eventually end up filling the most expensive lines at WH-A.
In Section 4.3.3, the daily demand forecast levels are such that WH-B is in favor. This is closely related
to fi,S and the hierarchical structure of the segments, as these fractions contain the information at which
outbound line a product can be processed.

Removing pand-spit constraints (Figure 13), the optimal ratio at H = 31, T = 31 (Figure 13b) would
be to allocate ±80% of the total forecasted demand at WH-B. Demand levels increase as T is increased
for the used dataset (Figure 7). Therefore the optimal ratio without constraints decreases using H = 60,
T = 60 (Figure 13a), resulting in the average of 69.5% at WH-B. Including the constraints, it makes
sense that the optimal average ratio is at its upper bound of 68% in both cases.

The pand-split analyses show that the development of demand levels over time has an effect on the
development of the pand-split ratio over time. Constant demand levels indicate less fluctuations above
and below the resulting average ratio for both SAM and PLS, in our case the upper bound (Figures 11
and 12). Upper and lower bounds can be exceeded due to the fact that the ratio is computed globally
over the optimization period. To avoid the pand-split ratio to exceed the bounds, a daily constraint
could be imposed, analyzed in Appendix E.

Flexibility
The flexibility product-level allocation brings allows warehouse characteristics to be utilized better, of
which examples are presented in Section 4.3.4. Figure 14 shows that in the results, both warehouses
are processing a lot of products in the size-groups M and S. However, WH-A is relatively processing a
lot of size-group L, while WH-B is processing more 3XS and XS. This indicates that a warehouse has
favorable size-groups to process, connected to the processing capabilities of the outbound lines at those
warehouses. This is the case for multiple configurations (Appendix G). Since a supplier’s assortment
often contains a variety of size-groups (Appendix A.1), product-level allocation is advantageous. Similar
implications can be derived from analyzing product-groups being processed at a warehouse (Figure 15).
PLS allocates such that e.g. the product-group ‘General Toys’ is mainly being processed at WH-A,
while ‘Recreational and Outdoor Toys’ is favorable at WH-B. At supplier-level, the grouping of products
decreases the ability to make use of the warehouse characteristics this way. Note that again absolute
levels of processed products are higher at WH-B than WH-A in both cases.

Company X does not prefer to allocate the entire assortment of similar products to a single warehouse
(Section 1), as this influences day-to-day flexibility. Unexpected demand levels, malfunctions or other
problems could also influence the processing capabilities of a warehouse. If a product-group or size-group
is only represented at one warehouse and this warehouse is restricted in processing capabilities, demand
satisfaction could be harmed. This creates a trade-off between optimal utilization through stock alloca-
tion and day-to-day processing flexibility. Company X tries to limit this by using size-group constraints,
assuring for a balanced distribution of a size-group over the warehouses. However, it is possible that
using another characteristic as a constraint to create this balance is favorable.

The flexibility gain from product-level allocation is operationally wishful from multiple perspectives.
Product restrictions are a lot easier to incorporate using product-level allocation, it is possible to handle
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exceptional cases. This will also be convenient for the implementation of double-stocking, increasing
day-to-day flexibility. Double-stocking also allows better processing of multi-orders, which influences
processing costs significantly. This requires the model to be able to incorporate inter-product relations,
which it does not at the moment. The plans to open a warehouse in the peak-period stocking the high
demand level products also benefits from the possibility of allocating individual products.

The advantages of product-level allocation over supplier-level allocation are expected to increase in the
future given the planned developments. Adding more warehouses to the model environment does not
just increase the problem scale, it also influences the optimal allocation of products. If more warehouses
are available, the negative effect of restricting all products of a supplier to be allocated at a single
warehouse will become larger. It is expected that the cost reduction of product-level allocation increases
as the number of warehouses increases. Also the incorporation of other warehousing process steps in the
allocation decision such as stocking capacities and inbound capacities will benefit from the flexibility of
product-level allocation, as also for these steps sub-optimal decisions are taken when grouping products.
Product-level allocation is a solid solution for the as-is situation, and will become even better in the
future.

5.3 Recommendations
The research has proven that both from a scalability and operational perspective, product-level allocation
is feasible for implementation. It is recommended to start implementation using open-source optimiza-
tion software (CBC), as it is proven to be able to tackle the problem at large scales. If the resulting
scalability of CBC is insufficient given the development of the model, commercial solvers (GUR) can be
evaluated, as results have proven the dominance of this method. Besides, more computation power could
be a solution. Solvers are easy to implement and extensions can be plugged in rather easy. Another
option is the implementation of another solution method. However, this would require a translation of
the problem into the format of this solution method. Given the pace at which the model is being devel-
oped, this might be less favorable due to this tailoring process. If decided to implement such methods,
it is recommended to start using a GA, as literature proved them to be effective, flexible and rather easy
to implement. Besides, it is possible to reduce the optimality of the allocation model. Increasing the
optimality gap will lead to a lower quality solution, but increases scalability.

It is recommended to analyze the possibilities of suppliers to be split, as the research has shown that
the assortment of a considerable number of suppliers gets split using product-level allocation. Are there
any costs connected to splitting suppliers for Company X? These costs could be integrated in the opti-
mization model. Are there cases where suppliers simply deny to be split? What about retailers? Using
this analysis, the implementation of product-level allocation can be tailored best to the needs of the
organisation.

Another recommendation is to explore the implementation of hybrid stock allocation model in terms of
aggregation, which could be a solution for unfavorable supplier splits. Allocating every product individ-
ually is not required to realize the sketched operational advantages. However, this requires a definition
of which products to allocate individually, for which an analysis is required. Using this, products can
still be aggregated in the allocation decision when meeting certain requirements, having a positive effect
on scalability. This higher aggregation level can be supplier-level, but also other levels such as product-
groups or multi-ordered products could be explored. However, using such a hybrid model is less flexible
than using full product-level allocation. As model complexity is increasing, it is recommended to run a
full product-level model occasionally to assess the optimality of the used aggregation of products in the
hybrid model. The aggregation levels can then be evaluated and changed accordingly.

The last recommendation is to re-evaluate the input data processing steps used in the allocation models.
The historic data included H, the associated assortment to allocate I and the optimization period T have
a significant influence on the model scale and outcomes. The influence of H is larger on product-level.
At supplier-level, products not included in the model are still being allocated if that product is in the
assortment of an allocated supplier, which is not the case at product-level. The correct H should be
used to allocate the correct assortment. Next to this, a solution needs to be formulated that is able to
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allocate products not included in the model (e.g. new products), which requires research. Moreover,
there might be better alternatives to the naive method of translating the product-group forecast to
product-level using historic sales. A similar naive method is used in calculating the fraction of a product
ordered as respectively a mono- or multi-order. The current model does not incorporate any inter-product
relationships, while this is a very important characteristic of a multi-order. These relations should be
introduced to some extent. Finally, it is recommended to take a look at the cost structure used in the
model environment. Different products incur the same costs on an outbound lines, while in reality it is
probable that this is variable due to different product characteristics (size, shape, etc.). This can also be
extended to the processing costs of other steps in the warehousing process.

6 Conclusion
This research analyzed the scalability of the decrease of the aggregation level of the stock allocation
model at Company X from supplier-level to product-level. Despite the substantial increase in scale of
the new problem formulation, product-level allocation is feasible in terms of scalability and optimality.
An use-case analysis provided more insights in the operational effects of product-level allocation. Abso-
lute cost reductions proved to be small, but the dominance over supplier-allocation is evident. Results
have shown that it is feasible to tackle the new problem using solvers. The advantages of product-level
allocation are believed to increase given the developments Company X is working on. The research
provides a good base for future research and interesting recommendations for Company X have been
formulated. Operational advantages can be realized and the solution has great potential for the future.

Apart from this, the research has contributed to the domain of analyzing the scalability of the stock
allocation decision that has to be made in a large-scale, multi-warehouse, multi-product e-commerce
environment. The world of e-commerce introduced new logistical challenges to be tackled, of which
large-scale stock allocation is one. It is validated that choosing the correct aggregation level for the allo-
cation together with the correct formulation of the model, such that all required information is present
and unnecessary information is not, is not a simple decision and can be used to gain a competitive
advantage. While a contribution to the analysis of optimal allocation of multiple products to multiple
warehouses is realized, the research domain can still be extended.

This research had its limitations. Model simplifications influenced the scalability of the allocation mod-
els. The exclusion of retailers in the allocation lead to under-utilization of capacity due to not allocating
all forecasted demand levels. Another limitation is the fact that the model has been tested in off-peak
optimization periods. To analyze the robustness of the scalability of product-level allocation, the analy-
ses could be extended by looking at performance using different demand structures, e.g. the peak-period.
Furthermore, all models were ran on a local machine. Having more computation power could lead to
lower computation times, therefore increasing scalability. It is not known to what extent this would be
advantageous. Lastly, the quality of the used demand forecast influences the quality of the allocation
solution. The solution can be of high quality using a very low optimality gap, but if in reality demand
levels are different, the resulting allocations are likely to be sub-optimal.

This research also allows for future research. Results in a non-simplified model environment could be
analyzed to validate the dominance of product-level allocation. Besides, additional complexity could
be added to the model environment. Adding other process steps, adding more warehouses, allowing
double-stocking and other sketched developments will influence the model outcomes and performance.
Adding more complexity to the calculation of the product-level forecast or adding stochasticity to the
model environment will increase the overall model complexity, but might increase the quality of the
decision taken with respect to real demand levels. Complexity could also be added in terms of the
allocation decision, e.g. the model could be allowed to switch an allocation for an X number of times
in the optimization period. It might also be possible to increase or decrease the aggregation level in
the allocation, to be able to compare multiple levels of aggregation on scalability and optimality. For
example, clusters can be allocated using a clustering analysis or supplier-product combinations can be
allocated. Connected to this, the proposed hybrid version of supplier-level and product-level allocation
allows for future research. Such a hybrid can be realized by imposing a minimum number of products
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(Minimum Order Quantity), forecasted demand (Minimum Order Value) or gain (Minimum Splitting
Gain) to be present before splitting a supplier. Another option is to introduce a penalty on the objective
function in case of splitting a supplier. Furthermore, the effect of constraint relaxation can be analyzed,
thus allowing to exceed e.g. outbound line capacity while inducing penalty costs.

It can be concluded that there are a lot of possibilities of extending the model. Next to this, future
research on solution methods is possible. A Genetic Algorithm Linear Programming approach (GA-LP,
Appendix I) was implemented to solve the problem, but resulted to be computationally disadvantageous
due to the Python programming structure used. While solvers are able to tackle the problem, it might
be interesting to evaluate other solution methods. Meta-heuristics such as GA’s, PSO, tabu search or
simulated annealing might be able to tackle the stock allocation problem (Section 1.1). To conclude,
another direction of future research is the analysis of the effect of extra computation power on the
scalability of product-level allocation.

Acknowledgements
The author thanks Shaunak Dabadghao and Ahmadreza Marandi from TU/e for their supervision and
support from the academic perspective, providing useful input and feedback during the process. Further-
more, Christianne Wisse and Peter van de Ven from Company X are thanked for their time, guidance in
the organisation and operational input.

29



References

References
Acimovic, J., & Graves, S. (2015, 02). Making better fulfillment decisions on the fly in an online retail

environment. Manufacturing & Service Operations Management , 17 , 34-51.

Agatz, N. A., Fleischmann, M., & van Nunen, J. A. (2008). E-fulfillment and multi-channel distribution
– a review. European Journal of Operational Research, 187 (2), 339-356.

Akçay, Y. (2002). Three essays on resource allocation problems: Inventory management in assemble-to-
order systems and online assignment of flexible resources..

Anand, R., Aggarwal, D., & Kumar, V. (2017). A comparative analysis of optimization solvers. Journal
of Statistics and Management Systems, 20 (4), 623-635.

Ardjmand, E., Young, W., Weckman, G., & Sanei Bajgiran, O. (2018, 05). A multi-objective model for
order cartonization and fulfillment center assignment in the e-tail/retail industry. Transportation
Research Part E: Logistics and Transportation Review , 115 .

Bayraksan, G., & Morton, D. P. (2006, 09). Assessing solution quality in stochastic programs. Mathe-
matical Programming , 108 (2-3), 495.

Bertsimas, D., Kallus, N., & Hussain, A. (2016). Inventory management in the era of big data. Production
and Operations Management , 25 (12), 2006-2009.

Brouer, B. D., Karsten, C. V., & Pisinger, D. (2016). Big data optimization in maritime logistics. In
A. Emrouznejad (Ed.), Big data optimization: Recent developments and challenges (pp. 319–344).
Springer International Publishing.

Cao, Y., & Sun, D. (2016). Large-scale and big optimization based on hadoop. In A. Emrouznejad (Ed.),
Big data optimization: Recent developments and challenges (pp. 375–389). Springer International
Publishing.

Catalán, A., & Fisher, M. (2012, 10). Assortment allocation to distribution centers to minimize split
customer orders.

de Koster, R. B. (2002). The logistics behind the enter click. In A. Klose, M. G. Speranza, &
L. N. Van Wassenhove (Eds.), Quantitative approaches to distribution logistics and supply chain
management (pp. 131–148). Springer Berlin Heidelberg.

de Véricourt, F., Karaesmen, F., & Dallery, Y. (2002). Optimal stock allocation for a capacitated supply
system. Management Science, 48 (11), 1486-1501.

Glover, F., & Kochenberher, G. (2003). Handbook of meta-heuristics.

Griffis, S. E., Bell, J. E., & Closs, D. J. (2012). Metaheuristics in logistics and supply chain management.
Journal of Business Logistics, 33 (2), 90-106.

Gupta, D., & Selvaraju, N. (2006). Performance evaluation and stock allocation in capacitated serial
supply systems. Manufacturing & Service Operations Management , 8 (2), 169-191.

Hane, C. A., Barnhart, C., Johnson, E. L., Marsten, R. E., Nemhauser, G. L., & Sigismondi, G. (1995).
The fleet assignment problem: Solving a large-scale integer program. Mathematical Programming ,
70 (1-3), 211–232.

Jolayemi, J. K., & Olorunniwo, F. O. (2004). A deterministic model for planning production quantities
in a multi-plant, multi-warehouse environment with extensible capacities. International Journal of
Production Economics, 87 (2), 99-113.

Jünger, M., Liebling, T. M., Naddef, D., Nemhauser, G. L., Pulleyblank, W. R., Reinelt, G., . . . Wolsey,
L. A. (2009). 50 years of integer programming 1958-2008: From the early years to the state-of-the-
art. Springer Science & Business Media.

Jélvez, E., Morales, N., Nancel-Penard, P., Peypouquet, J., & Reyes, P. (2016). Aggregation heuristic
for the open-pit block scheduling problem. European Journal of Operational Research, 249 (3),
1169-1177.

30



References

Krokhmal, P. A., & Pardalos, P. M. (2009). Random assignment problems. European Journal of
Operational Research, 194 (1), 1-17.

Li, J., Toriello, A., Wang, H., Borin, S., & Gallarno, C. (2021). Dynamic inventory allocation for seasonal
merchandise at dillard’s. INFORMS Journal on Applied Analytics.

Li, X., Zheng, Y., Zhou, Z., & Zheng, Z. (2019). Demand prediction, predictive shipping, and product
allocation for large-scale e-commerce.

Lim, Y. F., & Liu, F. (2018, 01). Optimal policies and heuristics to match supply with demand for
online seasonal sales. SSRN Electronic Journal .

Liu, K., Zhou, Y., & Zhang, Z. (2010, 11). Capacitated location model with online demand pooling in
a multi-channel supply chain. European Journal of Operational Research, 207 , 218-231.

Malikia, F., Souierb, M., Dahanec, M., & Sarib, Z. (2017, Summer). The use of metaheuristics as the
resolution for stochastic supply chain design problem: A comparison study. International Journal
of Supply and Operations Management , 4 (3), 193-201.

Maltese, J., Ombuki-Berman, B. M., & Engelbrecht, A. P. (2018). A scalability study of many-objective
optimization algorithms. IEEE Transactions on Evolutionary Computation, 22 (1), 79-96.

Marklund, J., & Rosling, K. (2012). Lower bounds and heuristics for supply chain stock allocation.
Operations Research, 60 (1), 92–105.

McKendall, J., Alan R. (2008, 10). Improved tabu search heuristics for the dynamic space allocation
problem. Computers & Operations Research, 35 (10), 3347.

Mitchell, J. E. (2002). Branch-and-cut algorithms for combinatorial optimization problems. Handbook
of applied optimization, 1 , 65–77.

Mohammadi, M., & Musa, N. (2020, 05). Optimization of multi-plant capacitated lot-sizing problems
in an integrated supply chain network using calibrated metaheuristic algorithms. International
Journal of Operational Research, 39 , 325-363.

Mousavi, S. M., Bahreininejad, A., Musa, S. N., & Yusof, F. (2017, 01). A modified particle swarm
optimization for solving the integrated location and inventory control problems in a two-echelon
supply chain network. Journal of Intelligent Manufacturing , 28 (1), 191-206.

Raidl, G. R., & Puchinger, J. (2008). Combining (integer) linear programming techniques and meta-
heuristics for combinatorial optimization. In C. Blum, M. J. B. Aguilera, A. Roli, & M. Sampels
(Eds.), Hybrid metaheuristics: An emerging approach to optimization (pp. 31–62). Berlin, Heidel-
berg: Springer Berlin Heidelberg.

Rappold, J. A., & Muckstadt, J. A. (2000). A computationally efficient approach for determining
inventory levels in a capacitated multiechelon production-distribution system. Naval Research
Logistics (NRL), 47 (5), 377-398.

Santos, V., Sabino, L., Macedo Morais, G., & Gonçalves, C. (2017, 10). E-commerce: A short history
follow-up on possible trends. International Journal of Business Administration, 8 , 130.

Sathyanarayana, G., & Patro, A. (2020). Intelligent warehouse allocator for optimal regional utilization.
CoRR, abs/2007.05081 .

Silva, F., & de la Figuera, D. (2007). A capacitated facility location problem with constrained backlogging
probabilities. International Journal of Production Research, 45 (21), 5117-5134.

Soni, G., Jain, V., Chan, F. T. S., Niu, B., & Prakash, S. (2019). Swarm intelligence approaches in
supply chain management: potentials, challenges and future research directions. Supply Chain
Management , 24 (1), 107-123.

Sun, M. (2005, 01). A tabu search heuristic for the uncapacitated facility location problem. In (Vol. 30,
p. 191-211).

Tabatabaei, S.-K., Valilai, O. F., Abedian, A., & Khalilzadeh, M. (2021, Feb 16). A novel framework

31



References

for storage assignment optimization inspired by finite element method. PeerJ Computer Science.

Vielma, J. (2015, 02). Mixed integer linear programming formulation techniques. SIAM Review , 57 .

Wolsey, L. A., & Nemhauser, G. L. (1999). Integer and combinatorial optimization (Vol. 55). John
Wiley & Sons.

Wu, T.-H., Yeh, J.-Y., & Syau, Y.-R. (2004, 05). A tabu search approach to the generalized assignment
problem. Journal of the Chinese Institute of Industrial Engineers, 21 , 301-311.

Yang, F.-C., Chen, K., Wang, M.-T., Chang, P., & Sun, K.-C. (2010, 12). Mathematical modeling of
multi-plant order allocation problem and solving by genetic algorithm with matrix representation.
The International Journal of Advanced Manufacturing Technology , 51 , 1251-1259.

Yu, D., Wang, A., Hua, Q.-S., & Lau, F. (2013, 01). Faster and space efficient exact exponential
algorithms: Combinatorial and algebraic approaches..

32



A DETAILED INFORMATION PRODUCTS TO ALLOCATE

Appendices
A Detailed information products to allocate

A.1 Size-groups
In Table 14 an example is given of the assortment of suppliers, including the distribution of size-groups
of this assortment. A single supplier can deliver thousands of products, therefore the model scale in-
creases significantly when decreasing the aggregation level of the allocation decision. It can also be
mentioned that a single supplier delivers different size-groups, which might demand different warehouse
characteristics to be processed efficiently.

Table 14: Assortment size (total and distribution of size-groups) of top 50 suppliers that delivered the most
distinct products in [01/04/2021, 31/05/2021]

SupplierID Size assortment 3XS XXS XS S M L XL XXL 3XL Unknown
1 47166 12349 7710 5258 1045 16973 2790 1 1 4 1035
2 36640 9550 5623 2527 776 13360 3297 11 1 2 1493
3 13776 5568 2718 2661 456 1959 341 - - - 73
4 11893 5152 4311 2026 347 45 7 - - - 5
5 10472 2619 1632 1445 308 3834 426 - - 1 207
6 9517 1677 1614 997 267 3739 512 1 - - 710
7 6098 7 344 1035 2526 1656 412 1 - - 117
8 6029 4697 23 55 25 1211 8 - - - 10
9 4622 965 1814 578 147 528 122 - - - 468
10 3761 1591 1206 782 112 32 8 - - - 30
11 3137 2374 14 78 47 203 - - - - 421
12 2613 1286 328 228 33 66 5 - - - 667
13 2443 830 23 13 8 268 3 - - - 1298
14 2115 1634 10 24 2 441 - - - - 4
15 1734 369 376 267 354 277 84 3 - - 4
16 1693 988 5 342 191 159 2 - - - 6
17 1663 394 554 236 80 319 46 - - - 34
18 1553 70 136 634 504 172 7 - - - 30
19 1517 327 277 419 371 96 3 - - - 24
20 1455 114 14 176 385 456 275 2 - - 33
21 1396 950 18 3 3 180 - - - - 242
22 1338 149 6 594 442 136 4 - - - 7
23 1198 1014 7 75 54 39 - - - - 9
24 1173 690 2 10 6 330 1 - - - 134
25 1118 240 393 340 55 83 7 - - -
26 1074 28 26 111 371 428 103 5 - - 2
27 1074 820 5 13 1 233 - - - - 2
28 979 1 26 97 159 667 5 - - - 24
29 973 17 31 579 254 62 22 - - - 8
30 967 - - 212 511 235 7 - - - 2
31 918 - - 1 371 544 2 - - -
32 917 6 56 256 292 234 2 - - - 71
33 864 345 2 7 2 62 - - - - 446
34 852 788 4 26 20 5 - - - - 9
35 848 285 117 114 124 158 33 1 - - 16
36 848 1 - 17 42 756 18 1 - - 13
37 823 - - - 4 815 2 - - - 2
38 822 7 18 356 303 113 18 - 1 - 6
39 800 36 134 265 249 84 32 - - -
40 771 412 256 33 16 12 2 - - - 40
41 750 363 19 145 124 93 3 - - - 3
42 747 547 8 4 1 106 - - - - 81
43 736 559 21 155 1 - - - - -
44 730 32 14 46 94 249 185 57 35 2 16
45 716 118 1 353 200 40 1 - - - 3
46 712 674 6 15 7 10 - - - -
47 698 2 - 22 60 399 214 1 - -
48 672 2 - 47 134 451 37 - - - 1
49 670 24 19 106 222 181 115 - - - 3
50 648 130 60 132 160 118 37 - - 1 10
... ... ... ... ... ... ... ... ... ... ...
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B ALTERNATIVE MODEL DEFINITION: FRACTION OF A PRODUCT ASSIGNED TO
OUTBOUND LINE

A.2 Restrictions
In Table 15, an example is given on the restricted assortment sold at WH-A and WH-B. There are
different categories of restrictions, which have different stocking demands. There are relatively not a lot
of restricted products, but since a single restricted product in the assortment of a supplier can influence
the allocation decision of all products in the assortment, the effect is significant as the assortment of a
supplier can be large (Appendix A.1).

Table 15: Snapshot total numbers of distinct products ordered and the amount of restricted products in
[01/04/2021, 31/05/2021]. Note: model simplifications are not taken into account.

Total number of products PGS15 XL LP Medicine High-theft
460411 2289 1659 5286 185 2433
100% 0.4972% 0.3603% 1.1481% 0.0402% 0.5284%

B Alternative model definition: fraction of a product assigned
to outbound line

Note: This model spreads out the demand of a single product over the different outbound lines. This
information is not necessarily required for Company X, since another department focuses specifically on
the order sourcing from the outbound lines. The allocation model just needs to be able to tell whether
the allocated forecasted demand can be fulfilled.

Objective:

min
x,z

∑
t∈T

∑
w∈W

∑
j∈Jw

∑
i∈I

xi,j,t · di,t · cj (20)

s.t.: ∑
i∈I

xi,j,t · di,t ≤ nj ∀t ∈ T, ∀w ∈W∀j ∈ Jw (Line capacity) (21)

∑
j∈S

xi,j,t − fi,S · zi,σ(S) = 0 ∀t ∈ T, ∀i ∈ I,∀S ∈ Si (Demand assignment) (22)

∑
t∈T

∑
j∈Jw

∑
i∈I

xi,j,t · di,t − pw ·D ∈ [−δ ·D,+δ ·D] ∀w ∈W (Pand-split) (23)

∑
w∈W

zi,w = 1 ∀i ∈ I (Warehouse-exclusivity set 1) (24)

∑
t∈T

∑
j∈Jw

xi,j,t − T · zi,w = 0 ∀w ∈W, ∀i ∈ I (Warehouse-exclusivity set 2) (25)

xi,j,t ∈ [0, 1] (26)

zi,w ∈ {0, 1} (27)

Definition variables and parameters:
Variables:
xi,j,t: Fraction of forecasted demand of product i to be processed by outbound line j on day t,

ranging between 0 and 1.
zi,w: Binary variable used to force that a product i can only be assigned to one of the warehouses

w.
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C PRODUCT-GROUP FORECAST TO PRODUCT-LEVEL FORECAST

Parameters:
i: A product of which the model needs to determine the allocation.
j: An outbound line in the warehouse that can produce products i.
w: A warehouse to which products i can be allocated. In this case only two options are available:

WH-B and WH-A.
W : The set of available warehouses w.
Jw: A set of available outbound lines j at warehouse w.
t: A day over which the model has to optimize.
T : A set of all days t the model has to optimize over.
di,t: Forecasted demand of product i on day t.
D: The total demand produced in the optimization period:

∑
i,t di,t

cj : Costs of processing a product on outbound line j.
nj : Daily production capacity of outbound line j.
S: A segment S is defined as a set of outbound lines j, where a segment is a subset of all the

available outbound lines at a warehouse Jw.
Si: A set of segments S assigned to product i.
fi,S : The fraction of demand of product i that needs to be assigned to segment S.
σ(S): = {w : S ⊆ Jw}, returns the unique warehouse w, where segment S is a subset of Jw
pw: The target percentage of warehouse w of total demand division over the warehouses.
δ: The delta that provides flexibility in the pand-split constraints.

C Product-group forecast to product-level forecast

Figure 16: Overview translation product-group forecast to product-level forecast.
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D FIGURES LINE CAPACITY UTILIZATION

D Figures line capacity utilization

D.1 Mono-lines WH-B

(a) MONO-MANUAL WH-B SAM (b) MONO-MANUAL WH-B PLS

Figure 17: MONO-MANUAL WH-B outbound line utilization SAM vs PLS

D.2 Mono-lines WH-A

(a) Smartmailer WH-A SAM (b) Smartmailer WH-A PLS

Figure 18: SMARTMAILER WH-A outbound line utilization SAM vs PLS

36



D FIGURES LINE CAPACITY UTILIZATION

(a) POS-MONO WH-A SAM (b) POS-MONO WH-A PLS

Figure 19: POS-MONO WH-A outbound line utilization SAM vs PLS

(a) Neopost WH-A SAM (b) Neopost WH-A PLS

Figure 20: NEOPOST WH-A outbound line utilization SAM vs PLS

(a) BIG-ITEMS MONO WH-A SAM (b) BIG-ITEMS MONO WH-A PLS

Figure 21: BIG-ITEMS MONO WH-A outbound line utilization SAM vs PLS
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D FIGURES LINE CAPACITY UTILIZATION

D.3 Multi-lines WH-B

(a) SORTER1 WH-B SAM (b) SORTER1 WH-B PLS

Figure 22: SORTER1 WH-B outbound line utilization SAM vs PLS

(a) MULTI-MANUAL WH-B SAM (b) MULTI-MANUAL WH-B PLS

Figure 23: MULTI-MANUAL WH-B outbound line utilization SAM vs PLS
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E ANALYSIS DAILY PAND-SPLIT CONSTRAINTS

D.4 Multi-lines WH-A

(a) POS-MULTI WH-A SAM (b) POS-MULTI WH-A PLS

Figure 24: POS-MULTI WH-A outbound line utilization SAM vs PLS

(a) BIG-ITEMS MULTI WH-A SAM (b) BIG-ITEMS MULTI WH-A PLS

Figure 25: BIG-ITEMS MULTI WH-A outbound line utilization SAM vs PLS

E Analysis daily pand-split constraints
The models as defined in Section 2 allow to exceed the upper bound of the constraint on a daily ba-
sis and balance it out on other days to still comply with the global constraint. If this is undesirable
on a daily basis, it is possible to add a pand-split constraint on a daily level. The pand-split con-
straint in PLS (Equation 11, Section 2) then becomes Equation 28, while the rest of the model remains.
The effects of using daily pand-split constraints on the ratio over time are presented for PLS in Figure 26.

Daily pand-split constraint:∑
S∈Gw

∑
j∈S

xS,j,t − pw ·Dt ∈ [−δ ·Dt,+δ ·Dt] ∀w ∈W, ∀t ∈ T (28)

39



F HISTOGRAMS FRACTION OF PRODUCTS AND FORECASTED DEMAND AT WH-A

(a) H = 60, T = 60. (b) H = 31, T = 31.

Figure 26: PLS pand-split ratio over time with daily pand-split constraints.

For both configurations the influence of the demand behavior is still present to some extent, but never
exceeds the upper bound. Because of the demand patterns, the resulting average pand-split ratio over
the total optimization period is below the upper bound. The larger the influence of the demand pattern,
the lower the average pand-split ratio using daily pand-split constraints. In Figure 26b, it is shown that
because of the low variation in demand over time, the resulting average ratio still is very close to the
upper bound of 68%. However, adding daily pand-split constraints also influences the scalability of the
model, resulting in a higher computation time. For H = 31, T = 31 the model using daily constraints
took 278.80 seconds to solve, while the model with the global constraint only took 144.40 seconds (Table
9), thus decreasing scalability. Next to this, daily constraints decrease flexibility. Spikes in demand due
to discount promotions should be within daily pand-split, while in reality such spikes can be tackled by
e.g. postponing orders. Other solutions as constraining a rolling average to be under an upper bound or
imposing a weekly constraint could be an alternative if wishful.

F Histograms fraction of products and forecasted demand at
WH-A

(a) Products (b) Forecasted demand

Figure 27: Cumulative histograms fraction of products and forecasted demand of a supplier’s assortment at
a warehouse for PLS at WH-A, H = 60, T = 60
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G UTILIZATION WAREHOUSE CHARACTERISTICS OTHER CONFIGURATIONS

G Utilization warehouse characteristics other configurations

G.1 Configuration H = 14, T = 14

(a) WH-A (b) WH-B

Figure 28: Size-groups handled over the time-span of the optimization period for PLS.

(a) WH-A (b) WH-B

Figure 29: Product-groups handled over the time-span of the optimization period for PLS
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G UTILIZATION WAREHOUSE CHARACTERISTICS OTHER CONFIGURATIONS

G.2 Configuration H = 31, T = 31

(a) WH-A (b) WH-B

Figure 30: Sizegroups handled over the time-span of the optimization period for PLS.

(a) WH-A (b) WH-B

Figure 31: Product-groups handled over the time-span of the optimization period for PLS
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H TOTAL PROCESSED DEMAND DEMAND ALL PRODUCT-GROUPS H = 60, T = 60

H Total processed demand demand all product-groups H = 60,
T = 60

Table 16: Processed demand all product-groups WH-A.

Product-group Total demand over
optimization period

General Toys 538471
Baby PG 331524.4

Daily Care PG 282253.5
Supermarket PG 191438.5

Camping and Outdoor 139695.2
Household 133797.3
Kitchen 113485.8

Kitchen Machines 104295.6
Games Software Physical 94468.52

Health PG 90211.64
Perfumery PG 87768.94

Sound and Vision Accessories 73449.95
Plumbing and Safety 64236.84

Telephones and Tablets 58266.18
Baby and Kids Fashion 54468.25

Recreational and Outdoor Toys 50239.85
Pet PG 48683.99
Cycling 46287.18

Travel Bags and Accessories 37106.41
Mens and Womens Fashion 30239.54

Household Appliances 29103.85
Sporting Equipment 27129.11

Bodyfashion and Beachwear 26561.5
Tools and Paint 25803.47

Lighting 23302.71
Heating and Air 23033.54

Garden 21043.02
International Books PG 18151.27

Sportswear 17924.65
Educational International 15816.9

Camera 15305.97
PC Accessories 13928.44
Dutch Books PG 13699.38
Personal Audio 12451.61

Home Entertainment 11579.92
Car and Motorcycle 11252.13

Major Domestic Appliances PG 10567.98
Laptop Computers 9089.077

Personal Care 8543.792
Home Decoration 7073.937

Music 6632.744
Educational Dutch 5407.932
Games Consoles 4574.565
Printing and Ink 4558.093

Textiles 4521.459
Telephone and Tablet Accessories 4211.356

Movies 3646.066
Games Accessories 3622.487

Desktop Monitor and Beamer 2670.489
Storage and Network 1853.362
Jewelry and Watches 1483.437

Footwear 1433.506
Wearables 954.0858
Furniture 424.3677

Ereaders and Accessories 83.18525
Gift Cards Physical 0

Ebooks and Audiobooks 0

Table 17: Processed demand all product-groups WH-B.

Product-group Total demand over
optimization period

Recreational and Outdoor Toys 736789.9
Supermarket PG 563259.9
Daily Care PG 486656.3
Perfumery PG 461261.9

International Books PG 422649.8
Health PG 409105.7

Dutch Books PG 241762.1
Baby PG 193258.5

Personal Care 188108.7
Kitchen 139238.6

Gift Cards Physical 134861.6
Educational International 124903.7
Camping and Outdoor 122145.8

Personal Audio 120302.6
Movies 112104.7
Lighting 109584.2

Storage and Network 108288.1
Music 104553.8

PC Accessories 100476.6
Cycling 86874.58

Kitchen Machines 86760.68
Sound and Vision Accessories 76421.68

Pet PG 73783.57
Telephone and Tablet Accessories 72631.45

Sportswear 70466.23
Games Accessories 70114.96

Bodyfashion and Beachwear 68763.59
Sporting Equipment 66152.41

Footwear 63386.47
Educational Dutch 55584.45

Household Appliances 52133.27
Plumbing and Safety 50028.24

Wearables 49406.82
Travel Bags and Accessories 47078.39

General Toys 40760.23
Jewelry and Watches 34382.27

Mens and Womens Fashion 33682.06
Baby and Kids Fashion 28700.31
Telephones and Tablets 27449.04
Ereaders and Accessories 27109.48

Garden 24486.86
Games Software Physical 23277.47

Household 22248.4
Textiles 20470.07

Laptop Computers 18563.21
Printing and Ink 17795.38

Desktop Monitor and Beamer 15925.78
Home Entertainment 15193.46

Games Consoles 14891.14
Car and Motorcycle 14525.96
Tools and Paint 9837.309
Heating and Air 9211.759
Home Decoration 8875.481

Major Domestic Appliances PG 5682.271
Camera 1414.452
Furniture 853.1907

Ebooks and Audiobooks 0
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I GA-LP COMBINATION

I GA-LP combination
A hybrid form of a meta-heuristic and a LP optimization was implemented. As mentioned in literature
recurringly, supply chain oriented problems such as the allocation problem in this research could be
solved efficiently by using a combination of meta-heuristics and Linear Programming solutions (Raidl &
Puchinger, 2008). In the PLS model definition in Section 2.3, a decomposition of two separate components
in the optimization could be recognized:

1. The allocation decision to be made for the products. This is the main goal of the optimization,
finding the correct (warehouse exclusive) allocation of products.

2. Given this allocation, optimal capacity utilization in terms of outbound lines needs to be calculated
within the line capacity constraints and pand-split constraints while conforming with the segment
constraints.

This decomposition allows for the combination of a meta-heuristic, in this case a Genetic Algorithm (GA)
seemed to fit the problem the best, and a Linear Programming solution. The GA smartly explores the
allocation decisions, while the evaluation step inside the GA is performed by calculating optimal capacity
utilization for that allocation, which is a LP problem since the integer variables have been eliminated from
the problem. The GA is presented in Appendix I.1. The LP problem in the evaluation step is presented
in Appendix I.2. The implementation of this GA-LP combination led to computational challenges apart
from the optimization which were too time intensive to solve in the scope of this research. This led to a
computational disadvantage compared to the solver implementations. Therefore this GA-LP method is
not elaborated on further.

I.1 Genetic Algorithm

Algorithm 1: Pseudo-code Genetic Algorithm in GA-LP combination.
Data: Population size N , Number of generations to perform G, Crossover probability C,

Mutation probability M .
Result: Best-found solution and objective to allocation problem using GA-LP combination.

1 Initialization
2 Initialize population of N chromosomes, where a chromosome consists of |I| binaries.
3 Initialize optimization model for random chromosome in population (Appendix I.2).
4 Initialize best solution found and best objective using random chromosome in population.
5 End initialization
6

7 for generations G do
8 Perform evaluation by computing fitness of all chromosomes in population using LP model in

Appendix I.2 → here the GA is combined with the LP.
9 if new best solution found then

10 Update best solution.
11 Update best objective.
12 end
13 Perform tournament selection to retrieve selected chromosomes for evolution.
14 while new population size < N do
15 Select two parents from pool of selected chromosomes.
16 Perform uniform crossover using C on parents to create two children.
17 for resulting children do
18 Perform random mutation using M .
19 Add child to new population.
20 end
21 end
22 Update current population = new population.
23 end
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I.2 LP model in case f(i,S) is already based on an allocation, which is used
in the GA-LP implementation.

Note: This model assumes a given product-warehouse allocation, which it can use to determine which
fraction of product demand has to be fulfilled by which segment on which warehouse. This is used to
generate fi,S(A), the fractions to distribute based on allocation A. The segment fractions of a product
are multiplied by 1 if that product is allocated to the warehouse to which that segment belongs. The
segment fractions are multiplied by 0 if this is not the case (thus setting the fractions at the warehouse
the product is not allocated to, to 0). This removes the binary variables zi,w, making it a LP problem,
which is defined as follows.

min
x

∑
t∈T

∑
w∈W

∑
S∈Gw

∑
j∈S

xS,j,t · cj (29)

s.t.: ∑
S|j∈S

xS,j,t ≤ nj , ∀t ∈ T, ∀j ∈ J, (Line capacity) (30)

∑
j∈S

xS,j,t =
∑
i∈I

fi,S(A) · di,t ∀t ∈ T, ∀w ∈W, ∀S ∈ Gw (Demand assignment) (31)

∑
t∈T

∑
S∈Gw

∑
j∈S

xS,j,t − pw ·D ∈ [−δ ·D,+δ ·D], ∀w ∈W (Pand-split) (32)

xS,j,t ∈ [0,∞] (33)

Variables:
xS,j,t: A continuous variable representing the absolute forecasted demand processed from segment

S by outbound line j at day t, where line j is in the set S or j ∈ S.

45



J RELAXATION ANALYSIS PLS

J Relaxation analysis PLS
To provide more insights on the comparison of the solution to the relaxed problem and the integer prob-
lem, results are presented for 60 days of historical data (H = 60) and 60 days to optimize over (T = 60)
using the GUR solver and a relative optimality gap of 10−7. Logging for both is presented in Appendix
J.1. In both of the logs, pre-solving is present. Here, the solver tries to find solutions in the solution
space that are not feasible or are certainly not optimal. These solutions are omitted from the solution
space to decrease the scale and make the problem easier to solve. For example, the pand-split constraints
force the allocated demand levels to be within a certain ratio. A lot of combinations of variables are not
complying with this constraint and therefore these solutions do not need to be evaluated in the opti-
mization. The specific methods used for pre-solving are solver-specific and not elaborated on any further.

After pre-solving, the solver starts exploring the solution space. In the case of the integer problem,
relaxation is implemented after which branching and cutting is performed to find an integer solution.
As a result, the best objective and the best-bound are presented. In the case of the relaxed problem,
relaxation by the solver is not required as it already is a non-integer problem. The solver analyzes the
problem structure and executes one of the available methods to solve non-integer problems, such as the
simplex method. The results of the models are presented in Table 18.

Table 18: Results PLS integer and manual relaxation for H = 60, T = 60.

Model Objective
Costs per

item
(Total)

Costs per
item

(WH-A)

Costs per
item

(WH-B)

Nr vari-
ables

Nr con-
straints

Run-
time
(sec-
onds)

Supplier
splits

Integer 9929419.756 1.074373 1.100543 1.06206 588082 294705 2148.10 712
Relaxed 9929419.718 1.074373 1.100534 1.06206 588082 294705 159.05 712

Results are very close to each other, but the relaxed problem is solved a lot quicker. However, there is
an important difference in the two solutions. The relaxed problem is not constrained to integers and
therefore results in non-integer product allocations, as presented in Table 19.

Table 19: Resulting non-integer variables zi,w from solution to relaxed problem.

Product Variable zi,w Value
1 z1,WH-A 0.138188701
1 z1,WH-B 0.861811299
2 z2,WH-A 0.953065113
2 z2,WH-B 0.046934887
3 z3,WH-A 0.824216896
3 z3,WH-B 0.175783104

Only three products are resulting in non-integer variables, while all other variables are integer. The fact
that there are non-integer variables indicates that the found solution by the relaxation is not feasible
for the integer problem. Product demand is split to fill up capacity gaps, resulting in minimized total
costs. The solvers tackle this by adding new constraints to the problem such that an integer solution is
eventually found. These new constraints are found using branching and cutting, which are designed to
force the model to find integer variables as a solution to the problem. This is not simple, as setting a
variable to a specific value can influence a lot of other variables, which increases the computation time
significantly as presented in Table 18.
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J.1 Logging

Figure 32: Logging integer PLS problem optimality gap 10−7. Note: omitted logging to decrease size.
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Figure 33: Logging relaxed PLS problem optimality gap 10−7.
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Figure 34: Logging integer PLS problem optimality gap 10−13. Note: omitted logging to decrease size.

49


	Introduction
	Literature review
	Contribution

	Problem description and model definition
	Problem description
	Existing model: supplier-level allocation (SAM)
	Proposed model: product-level steering (PLS)

	Input data description
	Product-level sales forecast
	Available resources at the warehouses
	Other parameters

	Results
	KPI's
	Analysis linear relaxation

	Results scalability and optimality
	Use-case analysis
	Line capacity utilization
	Supplier split details
	Pand-split analyses
	Utilizing warehouse characteristics


	Discussion
	Scalability and optimality product-level allocation
	Product-level allocation versus supplier-level allocation
	Recommendations

	Conclusion
	References
	Appendices
	Detailed information products to allocate
	Size-groups
	Restrictions

	Alternative model definition: fraction of a product assigned to outbound line
	Product-group forecast to product-level forecast
	Figures line capacity utilization
	Mono-lines WH-B
	Mono-lines WH-A
	Multi-lines WH-B
	Multi-lines WH-A

	Analysis daily pand-split constraints
	Histograms fraction of products and forecasted demand at WH-A
	Utilization warehouse characteristics other configurations
	Configuration H=14, T=14
	Configuration H=31, T=31

	Total processed demand demand all product-groups H=60, T=60
	GA-LP combination
	Genetic Algorithm
	LP model in case f(i,S) is already based on an allocation, which is used in the GA-LP implementation.

	Relaxation analysis PLS
	Logging


