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Abstract
Disturbances are present in all dynamical control systems. These disturbances can originate from out-
side the system (exogenous) or inside the system (endogenous). A method to mitigate the effect of these
disturbances (in feedback linearizable systems) is Active Disturbance Rejection Control (ADRC). In this
method, the effects of the endogenous (unmodeled dynamics) and exogenous disturbances (for example
vibrations) on the input-output relation(s) to be controlled is lumped into one term, named the lumped
disturbance. Subsequently, this disturbance is estimated in real-time using an extended state observer.
The estimated lumped disturbance is subtracted from the input-output equation(s) which practically
cancels it out. Since the lumped disturbance contains nonlinear and time-dependent terms the system
is practically turned into a linear time-invariant (LTI) system. Moreover, the observer estimates all the
states of the system, enabling the use of state feedback.

The observer and feedback controller need to be tuned to ensure desirable performance. In the liter-
ature, this tuning is predominantly performed empirically. This tuning method can be difficult and
time-consuming for MIMO systems with many inputs and outputs. The main goal of this work is to
develop a framework based on Linear Matrix Inequalities (LMIs) to tune the ADRC scheme in an auto-
mated manner (synthesis) that ensures optimal performance.

For three performance specifications (H∞, H2, and ISS), LMI-based conditions are developed to tune
the observer and controller. A method to synthesize (H∞ only) (sub)optimal observers and controllers
for practical output tracking is developed. In simulations, it is verified that the developed method can
be used for practical tuning. Furthermore, it is tested what the effects of adding or omitting model
information to the synthesis process and observer is on the tracking performance. Moreover, the effect
of adding more dynamic extensions to the observer is investigated. These tests are all done first under
ideal conditions (no measurement noise and sampling) and then under more realistic conditions (with
noise and sampling) to study the effects of unavoidable practical limitations on the tracking performance.
Furthermore, the control signal is analyzed to determine how measurement noise enters the signal. Un-
der the ideal conditions, it is tested whether it is possible to reconstruct an external disturbance signal
while tracking, and which model information is needed to do this accurately. Next, the scheme is verified
on a real electromechanical system named the Generalized Huygens Setup (GHS). It is tested how the
tracking performance of the synthesized system compares to the empirical tuning methods. Furthermore,
a comparison between the simulation and practical results is made.

A practical synthesis method for the ADRC scheme using the H∞ specification is developed and demon-
strated in simulation and on a real world system. It is shown that known model information can be
incorporated into the synthesis framework, and that adding information is useful. The effect is that the
observer convergence time decreases, as well as the rise time and the steady-state error. The effect of
adding more dynamic extensions in the observer using the synthesis method is positive when full model
information is used. When no model information is used the effect is negative. Additional weighting
matrices are proposed to overcome this negative effect. Furthermore, it is demonstrated that the ADRC
scheme is sensitive to measurement noise. The need for frequency-dependent weighting matrices in the
tuning process to account for these noise and actuator dynamics is identified. The ability to reconstruct
external disturbances while tracking a reference signal is demonstrated. To separate the exogenous from
the endogenous disturbance all system parameters of the concerned input-output relation should be
known. The measured tracking performance in the realistic simulations and the practical results are
comparable up to a certain bandwidth, but then start to deviate, probably due to actuator dynamics
and delays. Finally, it is shown that the synthesis method is able to outperform the empirical tuning
method (on a real system) in the sense of tracking performance and the time it takes to tune the scheme.
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Chapter 1

Introduction

1.1 Motivation

Unknown perturbations, unmodeled dynamics and sensor/actuator noise cause unavoidable problems in
the operation of engineering systems. These disturbances affect the system dynamics in an unpredictable
and disadvantageous manner if they are not accounted for in the system design. Disturbances originated
from outside or inside the system are called exogenous and endogenous disturbances, respectively. Exam-
ples of exogenous (mechanical) disturbances are geological disturbances, acoustic disturbances, vibrations
of nearby machinery, etc. Examples of endogenous disturbances are unmodeled and unknown dynamics
in the system. Problems that might arise in mechanical systems due to disturbances include but are not
limited to structural instabilities, unpredictable behavior, loss of comfort, undesired acoustic effects, and
loss of performance.

Many methods to mitigate or reject these disturbances are known in the literature. Firstly, the frequency
response of the system is often engineered (by control or mechanical design) so that unpredictable dis-
turbances in a given frequency range do not negatively affect the system dynamics. However, frequency
response methods are known to be only locally applicable for systems with complex nonlinear behavior.
Another well-known method is the use of passive vibration absorbers, e.g., dampers and elastomers.
However, when unknown disturbances enter the system and high attenuation is desired, the mentioned
methods alone are often not sufficient. Therefore, an active approach that can handle unknown dynamics
and disturbances/uncertainties is needed to increase performance. A distinction can be made between
active disturbance decoupling and active disturbance control [1]. In active disturbance decoupling, the
system performance outputs are decoupled from exogenous disturbances. On the other hand, active
disturbance control mitigates the effects of disturbances by counteracting their effect using control and
the system actuators.

This project focuses on a particular class of active disturbance control, namely, Active Disturbance Re-
jection Control (ADRC). The main idea behind ADRC is to treat external disturbances and unknown
internal dynamics as a lumped vector of disturbances [2]. The effect of disturbances on the system dy-
namics is estimated in real-time (using an observer) and then canceled using a feedback control action.
This cancellation forces the plant to behave as a simplified linear system (ultra) locally. Subsequently,
this simplified plant is regulated using an output feedback controller. The key benefit of this methodology
is that perturbed complex nonlinear systems with (partially) unknown dynamics can be controlled using
a linear controller. The ADRC method has been extensively studied to address academic and industrial
problems in motion control [3], power electronics [4], teleoperation [5], process control [6], and underac-
tuated systems [7]. These results show that the ADRC methodology is not limited to disturbances that
are from a mechanical origin, but the method is valid for all additive, bounded, and sufficiently smooth
disturbances. A more elaborate description of ADRC is given in Section 1.2.
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Chapter 1. Introduction

Even though the method has proven itself to work in many systems, the tuning of the required con-
troller/observer is, in general, done empirically on a case-by-case basis. Furthermore, the observer and
controller are designed separately assuming that a separation principle holds. However, given the complex
nonlinear behavior of many mechanical systems, even though nonlinearities are approximately rejected
by the scheme, a separation principle does not hold in general. Hence, methods and techniques that
enforce boundedness of solutions of the closed loop dynamics and tuning tools that provide performance
guarantees are needed. Although the empirical tuning leads to workable solutions, these solutions do
not guarantee the best possible performance, and they heavily rely on the experience of the person that
tunes the scheme. Although ADRC is inherently robust against parameter variations [8], a systematic
method to tune the scheme can help to quantify and increase robustness. It is therefore highly desired for
system designers to have a general tuning methodology that allows designing the scheme in an optimal
and robust manner. Optimal tuning enables the identification of the performance limits of the scheme,
and hence can lead to performance increases, and allows for a fair comparison between different ADRC
implementations. Having a framework that enables optimal and robust tuning in an automated manner
(synthesis) could make a significant difference in the ease of implementation and the performance of the
scheme. Developing a general framework that enables optimal synthesis for ADRC schemes is the main
goal of this thesis.

1.2 State of the art

1.2.1 Working mechanism of ADRC

The key component of ADRC is the use of an observer to estimate the unmeasured internal states and
lumped disturbances. Typically, the observer is a linear Luenberger-type state observer that is extended
with a sufficient number of auxiliary states. The specific observer used in this thesis is called Generalized
Proportional Integral Observer (GPIO) [9]. The most simple version of the GPIO contains a highly
simplified system model equivalent to a chain of pure integrators, using only the system dimension, an
approximation of the terms accompanying the control input variables, and a state extension. The GPIO
can be augmented with additional information of the plant when available. Furthermore, it can be ex-
tended with more than one auxiliary state. The first extension estimates the lumped disturbance, the
second its first derivative and so on. This enables us to generate a model of the lumped disturbance terms
in terms of a self-updating polynomial in time. In [10], the effect of adding more states to the GPIO
is described. Adding more states leads to higher accuracy of the disturbance estimation but makes the
estimation more sensitive to the effects of high-frequency measurement noise. In Figure 1.1, a block dia-
gram of a typical ADRC scheme with a tracking controller is depicted. It can be seen that the estimated
lumped disturbance term ξ̂0 is subtracted from the plant input, thereby compensating the disturbance,
forcing the plant to behave as the dynamics used to model the GPIO. This means that the effects of the
external disturbance and the internal disturbance are strongly attenuated. These disturbances are not
fully rejected since there will always be a residual error between the real plant and the ultra-local model
in the GPIO. Simultaneously, the (tracking) controller uses the observed states to stabilize the plant and
track a reference signal.
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1.2. State of the art

Figure 1.1: ADRC scheme with u, y, x∗, w, ν, x̂, and ξ̂0 the control, output, reference, external distur-
bance, measurement noise, estimated internal states, and the estimated lumped disturbance, respectively.
Furthermore, R is a known nonsingular matrix.

1.2.2 Tuning

The tuning of the GPIO and the controller can be done using linear design tools. By the separation
principle (assuming it holds), it is known that the observer and controller can be designed separately
without compromising stability. For stability of the observer/controller (error) dynamics, the roots of
its closed loop characteristic polynomial are placed in the complex open left half-plane (Hurwitz stabil-
ity) or in the open unit disc for discrete-time systems (Schur stability). However, the tradeoff between
performance and robustness must be considered. Namely, selecting the gains too high might lead to
amplification of measurement noise in closed loop, which can degrade performance or even destabilize
the dynamics. On the other hand, using too low gains will make the observer too slow to follow the
system dynamics and can therefore not accurately estimate the disturbance and internal states. Hence,
it loses its ability to force the plant to behave as the dynamics in the observer. On the controller side,
except for guaranteeing stability, the gains should be selected in such a way that the desired controller
(tracking) performance is achieved. Furthermore, in practical situations, digital implementation and
measurement noises should be taken into account. The necessary discretization and measurement noises
can lead to stability and performance issues. Hence, the effects of discretization and measurement noises
should be checked before implementation on the actual system. The work in [11] shows various discrete
implementations of ADRC schemes.

In the ADRC literature, the selection of the observer/controller gains is done on a case-by-case basis.
The first attempt to select these gains in a more general manner can be found in [12]; in this paper, the
observer and controller are parametrized in terms of their bandwidth. This parametrization enables the
tuning of the closed loop with just two free parameters, namely the observer bandwidth and the con-
troller bandwidth. Even though only having two design parameters simplifies the tuning process and links
it to the well-known bandwidth, the tuning itself still has to be done on an empirical case-by-case manner.

Many more sophisticated tuning methods are reported in the literature, of which a limited selection is
mentioned here. The main point is that these results demonstrate the tuning of a specific system and not
a general class of systems. A Genetic Algorithm (GA) parameter tuning method for ADRC controllers
for aerial remote sensing application is given in [13]. The authors in [14] provide an ADRC build around
evolutionary game theoretic optimization applied on a mobile robot. The most general tuning method
is probably given in [15] which describes a Linear Quadratic Regulator (LQR) approach in an ADRC
setting for the decoupling of MIMO systems. In the paper, two separate LQR problems are solved for
the observer and controller. Resulting in two separate loops that can affect each other performance-wise
in unpredictable manners. This method could be improved when a co-design of observer and controller
is considered.

3



Chapter 1. Introduction

Albeit many specific tuning methods are demonstrated on specific problems, no references were found
on how to select the gains in an optimal/robust manner for a general class of systems. Hence, it is worth
seeking methods for selecting these gains in an optimal and robust manner using well-known methods
in modern control theory, e.g., LQG, H∞, or µ-synthesis.

1.2.3 Signal reconstruction

A different application of ADRC is found in [16], where, a signal (internal state) produced by a Chaotic
Oscillator (CO) is added to another signal (hidden message). The message is now hidden (encoded)
in the chaotic signal. When the original CO shares a certain output with a GPIO that contains the
dynamics of the CO, the GPIO can reconstruct the internal states of the CO. Subtracting the estimated
state from the encoded signal decodes the message. What this shows is that with a certain knowledge of
the system controlled by an ADRC scheme, it is possible to reconstruct an external disturbance (in the
example, the hidden message). Because in ADRC, the plant is forced to behave locally as a simplified
plant which is known, and the control signal is known. It should be possible to reconstruct the effect of
the external disturbance on the plant without knowing the dynamics of the plant. Moreover, when the
dynamics of the plant are known, the original disturbance is computable. The ability to reconstruct the
external disturbance or at least its effects on the simplified plant might be useful in, for example, for
fault detection as described in, e.g. [17].

1.2.4 Open challenges

The following challenges related to the tuning of ADRC schemes are identified:

- A syntheses framework for the optimal tuning of ADRC schemes for a general class of mechanical
systems is needed.

- Since there is no framework for optimal tuning, it is not known what the performance limits of the
method are.

- The effect of applying more dynamic extensions to the GPIO is described in [10] using empirically
tuned ADRC schemes. It is not clear whether these effects can be ascribed to tuning or to adding more
auxiliary states.

- The ADRC scheme is known to be robust against parameter variation in the system/input matrix. It
is however not known how robust the scheme is under optimal tuning.

The following challenges using ADRC schemes for disturbance reconstruction are identified:

- The authors of [18] describe the reconstruction of a exogenous disturbance added to an open loop
system and reconstruct the disturbance using the known system dynamics. What is still open, is the
possibility to (partially) reconstruct an exogenous disturbance in closed loop knowing the dynamics only
partially.

- It is known that the lumped disturbance can be estimated using a GPIO. It is however not described
in the literature if it is possible, and how to distinguish between the exogenous disturbance and the
endogenous disturbance (system dynamics).

4



1.3. Research objectives

1.3 Research objectives

1.3.1 Optimal tuning

The optimal tuning of the ADRC scheme as stated in Section 1.2.4 is the main goal of this thesis. To
reach this goal, the following steps are identified. We aim to develop and test a synthesis framework
that enables the optimal and robust tuning of ADRC control schemes, for general mechanical system
with (partially) unknown dynamics. The control goal is to minimize a certain norm/gain of the transfer
function (matrix) between a given performance output, and the lumped disturbance while guaranteeing
practical tracking and internal stability. The framework must be such that the gain matrices for the
observer L and controller K, are determined explicitly. Furthermore, it should be possible to add more
than one dynamic extension to the observer.

The following research questions will be addressed:

- How to optimally tune an ADRC scheme by explicitly determining gain matrices K and L by the means
of synthesis?

- How to use the developed tools for practical output tracking?

- What are the effects of including model information in the synthesis process and the observer?

- What is the effect of the number of state extensions of the GPIO on the tracking performance of an
optimally tuned ADRC scheme?

- How do measurement noises and sampling affect the optimally tuned ADRC scheme?

- How does the tracking performance of the optimally tuned ADRC scheme compare to empirically tuned
schemes?

Disturbance reconstruction

To address the challenge regarding disturbance reconstruction posed in Section 1.2.4 the
question that needs to be answered is:

- What information of the plant do we need for exogenous disturbance signal reconstruction?

-How to reconstruct an exogenous disturbance signal from the (regulated) output signal using the syn-
thesized ADRC scheme?

1.4 Research approach

1.4.1 Optimal tuning

The tools selected for the optimal tuning of the ADRC scheme are the H∞ and H2 system norms and
the notion of Input-to-State Stability (ISS). These performance criteria are used in the form of their
corresponding linear matrix inequality (LMI) conditions. The idea is to develop an algorithm that
takes the known information of the system to be controlled and determines the corresponding ultra-local
model. Subsequently, the control/optimization problem is formulated and translated to an LMI and
solved∗ for the controller/observer gains (explicitly) with the objective to minimize a certain parameter
γ. The value of γ sets an upper bound to the the H∞/H2-norm or ISS-gain of the transfer function
(matrix) between the lumped disturbance and the performance output (for ISS the performance output
is the state vector). To use these LMIs to tune the ADRC scheme for practical tracking, (frequency-
dependent) weighting matrices are needed. How to select these matrices and how to incorporate them
into the relevant LMIs is explicitly out of scope of this work. For the H∞ case, however, a tuning

∗Using a semidefinite programming solver.
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Chapter 1. Introduction

parameter is used to demonstrate a use case. For conciseness and to prevent a repetitive nature of the
work, it is decided to only demonstrate the usage of the H∞ case. However, similar ideas can be followed
to use the other two performance specifications.

1.4.2 Disturbance reconstruction

Here, we investigate if it is possible to reconstruct the exogenous disturbance signal(s) from the measured
signal(s) and the outputs of the GPIO while tracking a certain reference. Starting from the assumption
the plant and the disturbance are fully known, the effects of omitting all information of the plant in the
GPIO on the ability to reconstruct the disturbances are analyzed.

1.4.3 Simulations

Multiple simulations of ADRC schemes tuned using one of the derived synthesis methods (H∞) are
performed. The first goal of these simulations is to verify that the developed syntheses method works in
simulation. The system chosen to verify the theoretical results is the Generalized Huygens Setup (GHS),
a model of this system is described in Section 4.1. In Chapter 5, this setup will be used for practical
experiments. The setup is a relatively simple electromechanical linear MIMO system. The availability
of a model, and predictable behavior make it easy to troubleshoot possible issues. Since it is explicitly
not the goal to control a specific (complicated) system, but to test the usability of the derived syntheses
method, the GHS is a suitable choice.

A specific reference trajectory is designed and a method to quantify tracking performance is selected.
Next, a model of the GHS is implemented in MATLAB Simulink. Several controllers are synthesized
using no model information (only system order), and another set controllers with full model information.
For both cases, multiple numbers of dynamic extensions are used r = 1, 2, 3 in the observer.

The first set of simulations is done under ideal circumstances, i.e., no measurement noise and sampling.
The ability to track the reference trajectory using no model and full model information with r = 1, 2, 3
will be simulated and quantified.

Next, simulations are performed under more realistic conditions (noise and sampling are included now).
Note that other practical effects e.g., actuator/sensor dynamics and delays, are omitted. The same exper-
iment as in the former paragraph is repeated under these more difficult conditions. Finally, the control
signal will be analyzed (qualitatively) to determine if the generated control signals are realistic/safe to
implement on the real setup.

1.4.4 Experiments

The main goal of the experimental phase is to test if the developed H∞ synthesis method works on a
real world system. Furthermore, it is tested how the synthesis method performs (tracking) compared to
the well-known empirical tuning methods. Moreover, it is tested how well the simulations agree with the
practical experiment.

First, the GHS is prepared for control purposes. Sensor outputs and actuator inputs are translated
from Volts into meters and Newtons, respectively. Subsequently, an empirically tuned PID or ADRC
controller is used to test the the second-order SISO systems that the system consists of. These tests are
to determine whether further input/output filtering is necessary. Furthermore, safety features are (input
saturation) implemented to ensure the setup does not get damaged.

The experiment consists of the implementation of empirically tuned ADRC schemes that are often used
in the literature. For the empirically tuned ADRC scheme (without model parameters), the tracking
performance is quantified for the same trajectory as used in the simulations. The experiment is repeated
for different number of dynamic extensions in the observer (r = 1, 2, 3). Next, the experiment is repeated,
now with the ADRC scheme tuned using the H∞ synthesized controller, also for r = 1, 2, 3. Finally, the
results of the (realistic) simulations are compared to the practical findings.
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1.5 Report outline

This thesis is organized as follows. In Chapter 2, the theoretical framework is given starting with a
mathematical description of the used ADRC framework. This description is followed by an illustrative
example to get acquainted with the notation and the ADRC scheme. Next, the used metrics for perfor-
mance and their LMI representations are introduced.

Chapter 3 contains the theoretical results. Starting with a closed loop representation for ADRC that is
suitable for the intended synthesis. In the next section, the need for a two step synthesis approached is
explained. In the following part, LMIs are derived that can be used to tune the observer and controller
using several performance criteria.

Chapter 4 gives the results of the performed simulations. In the first part, a practical method to use two
of the derived LMIs to tune the ADRC scheme is explained. In the next part, a description of the model
used for the simulations is given, followed by the design of the experiment. Subsequently, the results of
the simulations are described.

In Chapter 5, the experimental results are given. The chapter starts with the practical difficulties en-
countered. Subsequently, the results for the experiments using empirically and synthesis based tuning
methods are presented.

In Chapter 6, the final conclusions, discussion and a summary of the possible future research directions
are presented.
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Chapter 2

ADRC and Performance

In this chapter, the mathematical machinery and notation used in this thesis are introduced. In Sec-
tion 2.1.1, ADRC and its working mechanism is explained. Next, an illustrative example is given in
Section 2.1.2. Finally, the synthesis performance indicators (H∞, H2 and ISS) and their semidefinite
programming formulation are treated in Section 2.2.

2.1 ADRC

2.1.1 ADRC formulation

Consider the system

ż = f(z) + g(z)(u+ w),

y = h(z),
(2.1)

with state z ∈ Rn, input u ∈ Rm, output y ∈ Rm, external actuator disturbance w ∈ Rm, and suffi-
ciently smooth vector fields f : Rn → Rn, g : Rm → Rn, and h : Rn → Rm, where u = col(u1, . . . , um),
w = col(w1, . . . , wm), y = col(y1, . . . , ym), g(z) = (g1(z), . . . , gm(z)), and h(z) = col(h1(z), . . . , hm(z)).
Each yi has a well-defined relative degree ki, i = 1, . . . ,m. Moreover,

∑m
i=1 ki = n; hence, system

(2.1) is completely linearizable by state feedback [19]. It is assumed that each element in the vec-
tor of external actuator disturbances, w, is uniformly bounded [20]. Using the notion of Lie deriva-

tives [21], we can write ẏ = dy
dt = ∂h(z)

∂z ż = ∂h(z)
∂z + ∂h(z)

∂z (u + w) := Lfh(z) + Lgh(z)(u + w), and

ÿ =
∂(Lfh(z))

∂z ż = Lf (Lfh(z)) +Lg(Lfh(z))(u+w) := L2
fh(z) +LgLfh(z)(u+w). Hence, in general, we

can write y(k) = Lkfh(z) + LgL
k−1
f h(z)(u + w). It follows that system (2.1) can be written in terms of

inputs and outputs as follows:


y

(k1)
1
...

y
(km)
m


︸ ︷︷ ︸

ȳ

=

 Lk1f h1(z)
...

Lkmf hm(z)

+

 Lg1L
k1−1
f h1(z) · · · LgmL

k1−1
f h1(z)

...
. . .

...

Lg1L
km−1
f hm(z) · · · LgmL

km−1
f hm(z)


︸ ︷︷ ︸

E(z)


 u1

...
um

+

 w1

...
wm


 ,

(2.2)
with E(z) being nonsingular and containing no zero values on its main diagonal. Each input-output

relation in (2.2), y
(kj)
j , j = 1, . . . ,m, is then given by

y
(kj)
j = L

kj
f hj(z) + LgjL

kj−1
f hj(z)uj +

m∑
i=1,i6=j

LgiL
kj−1
f hi(z)ui +

m∑
i=1

LgiL
ki−1
f hi(z)wi, (2.3)
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Chapter 2. ADRC and Performance

which can be compactly written as

y
(kj)
j = LgjL

kj−1
f hj(z)uj + ξ̃j , (2.4)

with ξ̃j := Lk1f hj(z) +
∑m
i=1,i6=j LgiL

kj−1
f hi(z)ui +

∑m
i=1 LgiL

ki−1
f hi(z)wi.

Hence, (2.2) can be expressed as

ȳ := R̃(z)u+ ξ̃ = (R+ R̄(z))u+ ξ̃ = Ru+ ξ, (2.5)

with ξ := ξ̃ + R̄(z)u, R̃(z) := diag
(
Lg1L

k1−1
f h1(z), . . . , LgmL

km−1
f hm(z)

)
, and R a nonsingular matrix

denoting an educated guess of R̃(z). Vector ξ = col(ξ1, . . . , ξm) ∈ Rm is referred to as the system lumped
disturbance. Note that all coupling terms, dynamics, and external disturbances are now contained in ξ.

We choose new coordinates as follows:

x := col

h1(z), . . . , hm(z)︸ ︷︷ ︸
x1

, Lfh1(z), . . . , Lfhm(z)︸ ︷︷ ︸
x2

, . . . , Lk1−1
f h1(z), . . . , Lkm−1

f hm(z)︸ ︷︷ ︸
xn

 . (2.6)

In the new coordinates, system (2.1) can be written as

ẋ = Ax+Buu+Bξξ,

y = Cx,
(2.7)

for some known matrices A ∈ Rn×n, Bu ∈ Rn×m, Bξ ∈ Rn×m, C ∈ Rm×n, and

Bu =

[
0
R

]
, Bξ =

[
0
Im

]
, C =

[
Im 0 . . . 0

]
. (2.8)

Matrix R ∈ Rm×m is nonsingular by construction.

Remark 1 Note that the choice of coordinates (2.6) together with (2.8) make ξ a matching disturbance
that can be canceled by the controller when known.

Using this new notation, we introduce the following class of (practical) linearizing and tracking controllers:

u = −R−1(K(x̂− x∗) + ξ̂), (2.9)

where x̂ and ξ̂ denote the estimates of states and lumped disturbance, respectively, and x∗ is the desired
reference. Matrix K ∈ Rm×n is the controller gain matrix.

Substitution of control (2.9) in system (2.7) yields

ẋ = Ax+Bξ(ξ − ξ̂ −K(x̂− x∗)). (2.10)

Equation (2.10) indicates that the system is “practically” linearized when the estimation error of the

lumped disturbance eξ := ξ − ξ̂ is sufficiently small. Furthermore, the closed loop eigenvalues of the
remaining linear system can be placed arbitrarily for small enough state estimations errors ex := x− x̂.

10



2.1. ADRC

So the question is how to estimate ξ̂ and x̂? The first step in the ADRC formulation, is to extend the
plant state x with r new states (per input-output relation) given by the disturbance and its first (r− 1)
derivatives, i.e., η := col(x, ξ, ξ̇ . . . ξ(r−1)). We introduce new notation to write these time derivatives in
state-space form: η := col(x, ξ0, ξ1 . . . ξr−1). Hence, the extended system is given by

η̇ = Aeη +Bueu+Bξeξ
(r),

yη = Ceη,
(2.11)

with Ae ∈ R(n+rm)×(n+rm), Bue ∈ R(n+rm)×m, Bξe ∈ R(n+rm)×m, and Ce ∈ Rm×(n+rm) given by

Ae =

[
A [Bξ 0]
0 Φ

]
, Bue =

[
Bu
0

]
, Bξe =


0
0
...
I

 , Ce =
[
I 0 . . . 0

]
, Φ =


0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
...

0 0 0 . . . I
0 0 0 . . . 0

 ,
(2.12)

and Φ ∈ Rrm×rm.

A Luenberger observer is used to estimate η (estimating thus ξ and x simultaneously). In the observer,
the effects of ξ(r) (and higher-order derivatives) on the estimation is assumed to be small (≈ 0). This
implies that we are effectively modeling the disturbance as a Taylor polynomial in time of order r − 1.
The observer is defined as

˙̂η = Aeη̂ +Bueu+ L(y − Ceη̂),

ŷη = Ceη̂,
(2.13)

with observer gain matrix L ∈ R(n+rm)×m to be designed to maximize the estimation performance. The
estimation error is given by eη = η − η̂ and thus ėη = η̇ − ˙̂η. Note that ėη is perturbed by ξ(r) which is
assumed to be bounded. The effect of ξ(r) can be decreased by selecting L and K properly.

2.1.2 Illustrative example

In this section, the control of a nonlinear MIMO system with external disturbances acting on it is demon-
strated. The aim of this section is to make the reader familiar with the notation and to demonstrate the
possibilities of the ADRC scheme.

Consider the system depicted in Figure 2.1

Figure 2.1: Two-DOF robotic manipulator. Adapted from [2, p. 88].
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governed by the following equations of motion:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ + w −Dq̇, (2.14)

with

M(q) :=

[
m1l

2
c1 +m2l

2
1 +m2l

2
c2 + 2m2l1lc2 cos(φ) + I1 + I2 m2l

2
c2 +m2l1lc2 cos(φ) + I2

m2l
2
c2 +m2l1lc2 cos(φ) + I2 m2l

2
c2 + I2

]
,

D :=

[
d1 0
0 d2

]
,

C(q, q̇) :=

[
−2m2l1lc2 sin(φ)φ̇ −m2l1lc2 sin(φ)φ̇

m2l1lc2 sin(φ)θ̇ 0

]
,

G(q) :=

[
(m1lc1 +m2l1) g sin(θ) +m2lc2g sin(θ + φ)

m2lc2g sin(θ + φ)

]
,

(2.15)

q := [θ φ]>, τ := [τθ τφ]>, and w := [wθ wφ]> are the control torques and external disturbance torques,
respectively.

It is well known that system (2.14) is state feedback linearizable with the output q; therefore, ADRC
can be applied without additional assumptions on remaining dynamics.

Following the machinery introduced above, the system can be written as two decoupled second-order
input-output relations

q̈ = τ + ξ0 =

[
θ̈

φ̈

]
=

[
τθ
τφ

]
+

[
ξθ
ξφ

]
. (2.16)

Equation (2.16) implies that M(q) is unknown and R is set equal to the identity matrix I. Furthermore,
ξ0 := M−1(q) (−C(q, q̇)−G(q) + τ(I −M(q)) + w −Dq̇)).

The system is next written in state-space representation, with
[
x1 x2 x3 x4

]>
:=
[
θ φ θ̇ φ̇

]>
,

ẋ =

[
0 I
0 0

]
︸ ︷︷ ︸

A

x+

[
0
I

]
︸︷︷︸
Bu

τ +

[
0
I

]
︸︷︷︸
Bξ

ξ, (2.17)

and extended with 2 states per input-output relation (i.e., r = 2) with
[
η1 η2 η3 η4 η5 η6 η7 η8

]>
:=[

θ φ θ̇ φ̇ ξθ ξφ ξ̇θ ξ̇φ
]>

. The extended dynamics is then given by

η̇ =


0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0


︸ ︷︷ ︸

Ae

η +


0
I
0
0


︸︷︷︸
Bue

τ +


0
0
0
I


︸︷︷︸
Bξe

ξ̈0,

yη =
[
I 0 0 0

]︸ ︷︷ ︸
Ce

η.

(2.18)
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2.1. ADRC

Then, the observer in (2.13) takes the form:

˙̂η =


−l1 I 0 0
−l2 0 I 0
−l3 0 0 I
−l4 0 0 0


︸ ︷︷ ︸

Al

η̂ +


l1
l2
l3
l4


︸︷︷ ︸
L

Ceη +


0
I
0
0

 τ,

ŷη = Ceη̂,

(2.19)

with matrix L to be selected to minimize the effect of ξ0 on the closed loop dynamics.

The tracking controller (2.9) is then given by,

τ = −K(x̂− x∗)− ξ̂0, (2.20)

with matrix K to be used to minimize the effect of ξ0 on the closed loop dynamics.

The reference trajectory is designed as follows. Initial conditions θ(0) = φ(0) = 0. Then, move to a
reference point to start circular motion (upswing): t ≤ 20, θ = π

4 , φ = π
2 . Next, keep the second link at

φ = π
2 and sweep out a full rotation with θ. This is denoted as: t > 20, θ = π

4 +0.0075 ·2π(t−20), φ = π
2 .

We take the disturbance vector w =
[
5 sin t+ π

4 3 sin 3t
]>

.

The ADRC scheme is tuned empirically using simple pole placement techniques. The simulation re-
sults of the reference trajectory and the actual motion in term of the Cartesian end effector coordinates
are given in Figure 2.2a. Observe that perfect tracking is almost reached, meaning that we are indeed
controlling a nonlinear system using linear tools using only a chain of pure integrators as model. Fur-
thermore, Figure 2.2b depicts the two estimated lumped disturbances ξ̂θ and ξ̂φ and the control inputs
u1 and u2. It can be seen that the control inputs and the estimated lumped disturbances are near mirror
images of each other. Indicating that the disturbances are indeed estimated and rejected.
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Figure 2.2: Results simulation. (a) Tracking circular reference. (b) Estimated lumped disturbances and
control signals.
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2.2 Performance Criteria

In this section, the metrics used for the synthesis and their LMI formulations are explained. Starting
with the H∞ and H2-norms, in Section 2.2.1 and 2.2.2, respectively, followed by ISS in Section 2.2.3.

The following notation and definitions are used in this section. P � 0 stands for P being positive definite,
when P is negative definite we use ≺. Similarly, � and � stand for positive semi-definite and negative
semi-definite, respectively. Note that for the H∞ and H2-norms only strict inequalities are used in this
work. A continuous function ψ : [0, a) −→ [0,∞) belongs to class K if it is strictly increasing and ψ(0) = 0.
A continuous function υ : [0, a) × [0,∞) −→ [0,∞) belongs to class KL, if for each fixed s, the mapping
υ(r,s) belongs to class K with respect to r and for each fixed r the mapping υ(r, s) is decreasing with

respect to s and υ(r, s) −→ 0 as s −→ 0, [22]. Furthermore, ‖u‖2 =
√∫∞
−∞ u>u dt, and ‖u‖ =

√
u>u.

2.2.1 H∞ Performance Specification

Consider the strictly proper system [23]

ẋ = Ax+ Bww,
z = Czx,

(2.21)

with state x, disturbance w, and output z. Matrices A, Cz, Bw are referred to as the system matrix, the
performance output matrix, and the disturbance input matrix, respectively. Furthermore, matrix, A is
assumed to be Hurwitz.

The L2-gain of system (2.21) from disturbance w to output z is defined as:

sup
‖w‖6=0

‖z‖2
‖w‖2

. (2.22)

In [24, p. 54], it is proved that if the exists γ ∈ R+ and positive definite matrix P satisfying the following
LMI: A>P + PA PBw C>z

∗ −γ2I 0
∗ ∗ −I

 ≺ 0, (2.23)

then the L2-norm of system (2.21) is upper bounded by γ (the so-called bounded real lemma).

For system (2.21), the L2-gain equals the H∞-norm of the transfer function matrix of (2.21) [23, p. 91]:

G(s) = Cz(sI −A)−1Bw. (2.24)

Hence, ‖G(s)‖∞ ≤ γ.

The H∞-norm is often denoted as

‖G(s)‖∞ = sup
ω
σ̄(G(jω)), (2.25)

with σ̄ the maximum singular value of G(s). Hence, an interpretation for the H∞-norm is: the worst-
case frequency in the worst-case direction. LMI (2.23) is referred to as the “H∞ LMI” for the remainder
of this thesis. For the ADRC scheme, the H∞-norm is a good candidate when we want to focus on
disturbances in the worst-case frequency in the worst-case direction.
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2.2.2 H2 Performance Specification

Consider system (2.21) with transfer function matrix (2.24). For this system, the H2-norm is defined as:

‖G(s)‖2 =
1

2π
tr

∫ ∞
−∞

GH(jω)G(jω)dω. (2.26)

In [24, p. 57], it is proved that inequality ‖G(s)‖2 < γ is equivalent to the following set of LMIs:[
A>P + PA PBw

∗ −γI

]
≺ 0,[

P C>z
∗ Z

]
� 0,

tr(Z) < γ,

(2.27)

for some P = P> � 0, Z = Z> � 0, and γ ∈ R+. Thus, if (2.27) holds; then, the H2-norm (2.26) is
upper bounded by γ. The set of LMIs (2.27) is referred to as the “H2 LMI” for the remainder of this thesis.

The H2-norm can be written as

‖G(s)‖2 =

√
1

2π

∫ ∞
−∞

∑
i

σ2
iG(jω)dω, (2.28)

with σi the ith singular value of G(jω). Hence, we can interpret minimizing the H2-norm as minimizing
the gain of the average frequency in the average direction. So, to tune the ADRC scheme the H2-norm
is interesting when we want to consider the average performance over all frequencies.

The H2-norm can also be interpreted in the time-domain in a stochastic and deterministic manner. The
H2-norm can be found by applying a unit impulse to the ith input and waiting for the output to settle
to zero before applying a unit impulse to the next input. The H2-norm is the maximum 2-norm of the
output using this method. This deterministic interpretation can be written as:

‖G(s)‖2 = max
w=unit impulses

‖z‖2. (2.29)

For the stochastic interpretation, we can say that minimizing the H2-norm minimizes the output power
(steady-state covariance) of the system while driven by a unit intensity white noise input. In other words,
we are minimizing the RMS value of z. This interpretation indicates that the H2-norm can be used to
tune the ADRC scheme such that the (average) effects of measurement noises on a certain performance
output are minimized.

2.2.3 ISS Performance Specification

For the ISS criterion, the definitions in [25] are adapted. Consider system (2.21), if there exist functions
β ∈ KL and γ ∈ K satisfying

‖x(t)‖ ≤ β(‖x(0)‖, t) + γ( sup
0≤τ≤t

‖w(τ)‖), (2.30)

for all u, x(0), and t ≥ 0, along the trajectories of (2.21); then, system (2.21) is said to be Input-to-State
Stable (ISS) with ISS-gain γ(·).

A quadratic ISS Lyapunov-function [26] for system (2.21) is defined as V = x>Px satisfying:

‖x‖2 ≤ x>Px ≤ γ‖x‖2,
ẋ>Px+ x>Pẋ ≤ −‖x‖2 + γ‖w‖2,

(2.31)

with P a positive definite matrix and γ ∈ R≥1. If there exists P and γ satisfying (2.31), along the
trajectories of (2.21), system (2.21) is ISS.
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Condition (2.31) is equivalent to the LMI:[
A>P + PA+ I B>wP

∗ −γI

]
� 0, (2.32)

with 0 � P � (γ− 1)I. For a derivation of LMI (2.32), the reader is referred to Section 2.2.3. The scalar
γ in (2.32) equals the ISS-gain γ of (2.21), see [27] for details. The choice to select the bounds as in
(2.31) is made to ease the analysis (at cost of conservatism). When we do not use twice the same scalar
γ in the upper bounds in (2.31), the definition for the ISS-gain in (2.30) changes and an extra decision
variable is introduced. Furthermore, a (nonlinear) cost function has to be evaluated in order to minimize
the resulting ISS-gain.

The ISS performance specification can be used for the tuning of ADRC schemes when we want to upper
bound the worst-case disturbance amplification in the time-domain.
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Chapter 3

LMIs for ADRC

In order to tune the ADRC scheme in the observer/controller form using an LMI-based synthesis ap-
proach, multiple steps are necessary. These steps are described in this chapter. The first step is to
write a general closed loop form for ADRC. Since matrices K and L are the variables to be determined,
they should be explicitly expressed in the LMI formulation. The derivation of this closed loop form is
described in Section 3.1. Next, a two-step synthesis approach is introduced in Section 3.2. Subsequently,
LMIs for various performance specifications are derived. In particular, we consider the H∞ and H2-
norms, and ISS (see Section 2.2). The characterizations of these specifications in terms of LMIs is given
in in Sections 3.3, 3.4, and 3.5, respectively. Furthermore, LMIs are derived in Section 3.6 to limit the
sensitivity to measurement noises on the observer for both the H∞ and H2-norms.

3.1 Closed loop ADRC

In this section, a closed loop representation for ADRC suitable for the envisioned synthesis is derived.
Note that in this derivation the measurement noise ν is included.

Consider the extended dynamics in (2.11)-(2.12) (with y = Cx+ ν), and the Luenberger observer (2.13).
Let the estimation error be given by eη = col(ex, eξ0 , . . . , eξr−1

) = η − η̂. We can write the estimation
error dynamics

ėη = η̇ − ˙̂η = Aeη +Bueu+Bξeξ
(r) − ((Ae − LCe)η̂ + Lν + LCeη +Bueu). (3.1)

Using the fact η̂ = η − eη yields

ėη = Aeη +Bueu+Bξeξ
(r) − ((Ae − LCe)(η − eη) + Lν + LCeη +Bueu)

= (Ae − LCe)eη − Lν +Bξeξ
(r).

(3.2)

Consider the feedback

u = −R−1(K(x̂− x∗) + ξ̂0). (3.3)

Using x̂ = x− ex, and ξ̂0 = ξ0 − eξ0 , we can write

u = −R−1(K(x− ex − x∗) + ξ0 − eξ0). (3.4)

Substitution in system (2.7) yields

ẋ = Ax+Buu+Bξξ = (A−BξK)x+Bξ(K(ex + x∗) + eξ). (3.5)

Combining the plant dynamics (3.5) with the estimation error dynamics (3.2), we can write the closed
loop dynamics in terms of estimation errors:
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Chapter 3. LMIs for ADRC

[
ẋ
ėη

]
=

[
A−BξK BK

0 Ae − LCe

]
︸ ︷︷ ︸

Acl

[
x
eη

]
+

[
0
Bξ

]
ξ(r) −

[
0
L

]
ν +

[
BξK

0

]
x∗,

(3.6)

where

BK := [BξK,Bξ, 0], Bξ :=


0
...
0
I

 . (3.7)

A detailed example for a second-order SISO system is given in Appendix A.

3.2 Two-step synthesis

In this section, a two-step synthesis approach is introduced. The H∞ LMIs as described in Section 2.2.1
are used as an example; however, all results in this section are also valid for the H2 and ISS specifications
described in Sections 3.4 and 3.5, respectively. As introduced in Section 2.2, the H∞ LMI (2.23) is given
by A>P + PA PBw C>z

∗ −γ2I 0
∗ ∗ −I

 ≺ 0, (3.8)

for some positive definite P and positive constant γ.

In the ADRC case, A equals Acl in (3.6), and Bw =

[
0 0 BξK
Bξ −L 0

]
. Substituting Acl in (3.8) leads

to the following nonlinear problem
[
A−BξK BK

0 Ae − LCe

]> [
P11 P12

P12 P22

]
+

[
P11 P12

P12 P22

] [
A−BξK BK

0 Ae − LCe

] [
P11 P12

P12 P22

]
Bw C>z

∗ −γ2I 0
∗ ∗ −I

≺ 0,

where Bw can depend on L and/or K depending on which inputs are considered. In order to make
the synthesis problem tractable, it is necessary to convexify it, meaning transforming the matrix back
into an LMI, as products PK and PL are nonlinear in the decision variables P11, P12, P22,K, and L. A
similar problem is recognized in the general dynamic output feedback framework, where controllers in
state-space form with general matrices Ak, Bk, Ck, Dk are designed [28]. However, when a specific struc-
ture in Ak, Bk, Ck, Dk is required (as is the case here), and the matrices K and L need to be determined
explicitly, the problem becomes intractable (as pointed out in [29], [30]).

To overcome this obstacle, we perform a two-step synthesis approach, where first the estimation error
dynamics are considered to determine L and subsequently, the system dynamics to determine K.

Consider again the closed loop system (3.6)-(3.7) and let ν = x∗ = 0, i.e., without considering noise and
references: [

ẋ
ėη

]
=

[
A−BξK BK

0 Ae − LCe

]
︸ ︷︷ ︸

Acl

[
x
eη

]
+

[
0
Bξ

]
ξ(r).

(3.9)

Note that only the disturbance ξ(r) is considered here. The measurement noise ν will be treated in
Section 3.6. Moreover, the reference signal x∗ enters the dynamics in the same manner as the part of the
estimation error eη that contains the estimation errors in x, referred to as ex. Since no tuning/weighting
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3.2. Two-step synthesis

matrices will be used for ex or x∗, the transfer function matrices that relate disturbances ex and x∗ to
the performance output are equal. Hence, minimizing the influence of disturbance ex on the performance
output will also minimize the effect of the reference signal on this output.

The closed loop system (3.6) can be written as a series interconnection of

ėη = (Ae − LCe)eη +Bξξ
(r) = Aleη +Bξξ

(r),

ye = Czeeη,
(3.10)

and

ẋ = (A−BξK)x+BKeη = Akx+ [BξK Bξ]ye,

yx = Cx,
(3.11)

with Cze =
[
I(n+m) 0

]
.∗ Which are referred to as the estimation error dynamics (3.10) and plant

dynamics (3.11), respectively. For tuning purposes, two performance outputs, ze and zx, are defined.
These performance outputs are in general not equal to the measured outputs ye and yx. In Figure 3.1,
a schematic representation of the interconnection is depicted.

What are the implications of separately tuning the series interconnection of (3.10) and (3.11) using
system norms H∞ and H2? The H∞-norm is an induced norm and thus a matrix norm. Therefore, it
satisfies the multiplicative property [31, p. 159-160]:

‖G(s)H(s)‖∞ ≤ ‖G(s)‖∞‖H(s)‖∞ (3.12)

with G(s) and H(s) transfer function matrices, which in this case represent the estimation error and
the plant dynamics, respectively. Hence, when we separately tune the estimation error and the plant
dynamics and we find upper bounds γl and γk on the H∞ gains for the two subsystems. Then we can
conclude that γ ≤ γlγk, with γ, γl, and γk upper bounds on the H∞-norm of the total interconnection,
the estimation error and the plant dynamics, respectively.

The H2-norm however is not an induced norm and does in general not satisfy the multiplicative property
[31, p. 159-160]. Therefore, when the two subsystems are tuned separately, the H2-norm of the total
interconnection must be considered.

∗Matrix Cze selects only the estimated states x̂ and the estimated lumped disturbance ξ̂0 and not the higher derivatives.

Figure 3.1: Series representation closed loop
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3.3 H∞ LMIs

3.3.1 H∞ observer

In this section an LMI is derived that can be used to determine matrix L of the observer such that the
H∞-norm between ξ(r) and ze is minimized.

The estimation error dynamics forced by the rth derivative of the lumped disturbance including distur-
bance output ze is given by

ėη = Aleη +Bξξ
(r),

ye = Czeeη,

ze = WeCzeeη = Weye,

(3.13)

and We ∈ R(n+m)×(n+m) a diagonal weighting matrix used for tuning purposes. Matrix We has the
following structure

We =

[
In 0
0 1

wξ
I

]
, (3.14)

for some tuning parameter wξ ∈ R+.

Since only the estimation errors in ye are injected into the plant dynamics only these errors are essential
for the tracking problem. The errors in the derivative(s) of the lumped disturbance are less relevant in
this case. If for a specific application the estimation error of the derivative(s) of the lumped disturbance
is important then the definition of Cze can be changed to account for it.

Substituting (3.13) in the H∞ LMI (3.8) givesA>l P + PAl PBξ (WeCze)
>

∗ −γl2I 0
∗ ∗ −I

 ≺ 0, (3.15)

with P = P> � 0 ∈ R(n+mr)×(n+mr), and γl ∈ R+.

Consider, the change of variables
L = P−1L̂, γl =

√
γ̂l, (3.16)

which makes the system of inequalities convex in L̂ and γ̂l,A>e P + PAe − Ce>L̂> − L̂Ce PBξ (WeCze)
>

∗ −γ̂lI 0
∗ ∗ −I

 ≺ 0. (3.17)

This is an LMI that can be solved for L̂ and P , minimizing γ̂l, and the optimal L and γl can be recovered
using (3.16).

3.3.2 H∞ controller

In this section, an LMI is derived that can be used to determine matrix K such that the H∞-norm
between ye and zx is minimized.

For the plant dynamics part, the relevant part of the estimation error is treated as an external disturbance
amplified by gain BK:

ẋ = Akx+ [BξK Bξ]ye = Akx+ [BξK Bξ]W
−1
e ze = Akx+ [BξK Bξwξ]ze,

yx = Cx,

zx = Czxx,

(3.18)
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3.3. H∞ LMIs

and constant wξ defined in (3.14). For convenience Bξwξ := Bwξ is defined.

Substitution of (3.18) in LMI (3.8) yieldsA>k Q+QAk Q[BξK Bwξ] C>zx
∗ −γ2

kI 0
∗ ∗ −I

 ≺ 0, (3.19)

with Q = Q> � 0 ∈ Rn×n , γk ∈ R+.

Expanding Ak givesA>Q+QA−K>Bξ>Q−QBξK Q
[
BξK Bwξ

]
C>zx

∗ −γ2
kI 0

∗ ∗ −I

 ≺ 0. (3.20)

Next, the matrix is expanded by splitting the term Q
[
BξK Bwξ

]
:


A>Q+QA−K>Bξ>Q−QBξK QBξK QBwξ C>zx

∗ −γ2
kI 0 0

∗ ∗ −γ2
kI 0

∗ ∗ ∗ −I

 ≺ 0. (3.21)

Introducing S = Q−1 and performing a congruence transformation by pre- and post -multiplying by
diag(S, S, I, I) gives

SA> +AS − SK>Bξ> −BξKS BξKS Bwξ SC>zx
∗ −γ2

kS
2 0 0

∗ ∗ −γ2
kI 0

∗ ∗ ∗ −I

 ≺ 0. (3.22)

Observe that the S2 term in (3.22) is not easily removed using the Schur complement or a variable
substitution. Using a special case of Young’s relation H>F−1H � H +H> − F [24, p. 24] gives

SIS � 2S − I ⇒ −S2 � −2S + I. (3.23)

Substitution of −S2 in (3.22) by −2S + I gives γ2
k(−2S + I) which is still bi-linear. Let γ2

k := µ.

Substitution of µ(I − 2S) for the −γ2
kS

2 term in (3.22) gives
SA> +AS − SK>Bξ> −BξKS BξKS Bwξ SC>zx

∗ µ(I − 2S) 0 0
∗ ∗ −µI 0
∗ ∗ ∗ −I

 ≺ 0. (3.24)

This new matrix (3.24) is an upper bound on matrix (3.22). Hence we have (3.22) ≺ (3.24) ≺ 0, there-
fore, by enforcing (3.24) ≺ 0, we guarantee (3.22) ≺ 0 (by transitivity).

Setting K = K̂S−1 in (3.24) yields the following LMI for fixed values of µ
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SA> +AS − K̂>Bξ> −BξK̂ BξK̂ Bξwξ SC>zx

∗ µ(I − 2S) 0 0
∗ ∗ −µI 0
∗ ∗ ∗ −I

 ≺ 0. (3.25)

A line search can be performed to determine which value of µ results in the smallest value for γk. After
S and K̂ are determined, using the optimal value of µ, K can be recovered using K = K̂S−1.

3.4 H2 LMIs

In this section, the LMI for the H2-norm as defined in Section 2.2.2 is used to determine an LMI to tune
the observer and controller of the ADRC scheme. Note that the steps taken are similar to those to derive
the LMIs for the H∞-norm. However, the tuning parameter wξ is in this case not considered (required).

3.4.1 H2 observer

Recall the H2 LMIs in (2.27): [
A>P + PA PBw

∗ −γlI

]
≺ 0,[

P C>z
∗ Zl

]
� 0,

tr(Zl) < γl,

(3.26)

with P = P> � 0, Zl = Z>l � 0, and γl > 0.

The closed loop dynamics for the estimation error is given by

ėη = Aleη +Bξξ
(r),

ye = Czeeη,

ze = Czeeη.
(3.27)

So no weighting here. Letting A, Bw and Cz in (3.26) equal Al, Bξ, and Cze, respectively, and applying

the change of variable L̂ = PL gives[
A>e P + PAe − C>zeL̂> − L̂Cze PBξ

∗ −γlI

]
≺ 0,[

P C>ze
∗ Zl

]
� 0,

tr(Zl) < γl,

(3.28)

with P = P> � 0 ∈ R(n+mr)×(n+mr), Zl ∈ Rm×m, and γl ∈ R+, which are LMIs that can be solved for
P,Zl, and L̂ while minimizing γl. Finally, L is recovered using L̂P−1 = L.

3.4.2 H2 controller

Starting with substitution of the closed loop dynamics

ẋ = (A−BξK)x+BKeη = Akx+ [BξK Bξ]ze,

y = Cx,

z = Czxx,

(3.29)
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3.4. H2 LMIs

in (3.26) yields [
A>k Q+QAk Q[BξK Bξ]

∗ −γkI

]
≺ 0,[

Q C>zx
∗ Zk

]
� 0,

tr(Zk) < γk,

(3.30)

with Q = Q> � 0 ∈ Rn×n, Zk = Z>k � 0 ∈ Rm×m, and γk ∈ R+. Let’s start with the first of the three
inequalities. Expanding Ak, and splitting [BξK Bξ] gives(A−BξK)>Q+Q(A−BξK) QBξK QBξ

∗ −γkI 0
∗ ∗ −γkI

 ≺ 0. (3.31)

Introducing S = Q−1, and pre- and post -multipling with diag(S, S, I) yieldsSA> +AS − SK>B>ξ −BξKS BξKS Bξ
∗ −γkS2 0
∗ ∗ −γkI

 ≺ 0. (3.32)

Setting K = S−1K̂, S2 = I − 2S and γk = µ yields the following LMI for fixed values of µ ∈ R+

SA> +AS − K̂>B>ξ −BξK̂ BξK̂ Bξ
∗ µ(I − 2S) 0
∗ ∗ −µI

 ≺ 0. (3.33)

We next consider, [
Q C>zx
∗ Zk

]
� 0 (3.34)

which is still in Q variables. A congruence transformation transforms it into S variables. Defining
S = Q−1, and pre- and post -multiplying with diag(S, I) gives

[
S SC>zx
∗ Zk

]
� 0. (3.35)

So, the total set of LMIs for the the controller part is:SA> +AS − K̂>B>ξ −BξK̂ BξK̂ Bξ
∗ µ(I − 2S) 0
∗ ∗ −µI

 ≺ 0,

[
S SC>zx
∗ Zk

]
� 0,

tr(Zk) < µ,

(3.36)

with S = S> � 0, Zk = Z>k � 0, µ = γk > 0, and K = S−1K̂.
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3.5 ISS LMIs

3.5.1 ISS observer

The goal of this section is to determine an LMI for the estimation error dynamics using an ISS Lyapunov
function.

Recall the estimation error dynamics

ėη = Aleη +Bξξ
(r). (3.37)

For convenience the following notations are adopted eη = e, and Bξξ
(r) = Bv, giving

ė = Ale+Bv. (3.38)

The following quadratic Lyapunov candidate function is selected

Ve(e) = e>Pe. (3.39)

Hence,

V̇e(e, v) = ė>Pe+ e>P ė = (Ale+Bv)>Pe+ e>P (Ale+Bv). (3.40)

Next, Ve is lower and upper bounded as follows for a certain γl ∈ R≥1 and P = P> � 0 ∈ R(n+mr)×(n+mr)

‖e‖2 ≤ e>Pe ≤ γl‖e‖2,
V̇e(e, v) ≤ −‖e‖2 + γl‖v‖2.

(3.41)

These conditions (ISS-Lyapunov) are cast into an LMI. Using ‖e‖2 =
√
e>e

2
= e>e we can write

V̇e(e, v) =
[
e> v>

] [A>l P + PAl PB
∗ 0

] [
e
v

]
≤ −e>e+ γlv

>v. (3.42)

Placing the right hand terms into the matrix gives

[
e> v>

] [A>l P + PAl + I PB
∗ −γlI

] [
e
v

]
≤ 0. (3.43)

Hence, [
A>l P + PAl + I PB

∗ −γlI

]
� 0. (3.44)

Expanding Al and setting L = P−1L̂ gives[
Ae
>P + PAe − C>e L̂> − L̂Ce + I PB

∗ −γlI

]
� 0. (3.45)

Which is an LMI that can be solved for P and L̂ while minimizing γl.
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3.5.2 ISS controller

Recall, the closed loop dynamics

ẋ = (A−BK)x+BKeη. (3.46)

Which is for convenience denoted as

ẋ = Akx+BKe. (3.47)

The following Lyapunov candidate is proposed

Vx(x) = x>Qx. (3.48)

Hence,

V̇x(x, e) = ẋ>Qx+ x>Qẋ = (Akx+BKe)>Qx+ x>Q(Akx+BKe). (3.49)

Which is bounded as follows

‖x‖2 ≤ x>Qx ≤ γk‖x‖2,
V̇x(x, e) ≤ −‖x‖2 + γk‖e‖2.

(3.50)

Substitution of V̇x(x, e) and recasting into a matrix gives

V̇x(x, e) =
[
x> e>

] [A>k Q+QAk QBK
∗ 0

] [
x
e

]
≤ −x>x+ γke

>e. (3.51)

Therefore, we require [
A>k Q+QAk + I QBK

∗ −γkI

]
� 0. (3.52)

As seen in Section 3.3.2, BK can be split, resulting inA>k Q+QAk + I QBξK QBξ
∗ −γkI 0
∗ ∗ −γkI

 � 0. (3.53)

Let’s convexify this matrix inequality by introducing S = Q−1 and pre- and post -multiplying with
diag(S, S, I) which gives SA>k +AkS + S2 BξKS Bξ

∗ −γkS2 0
∗ ∗ −γkI

 � 0. (3.54)

Note, that two terms with a S2 term are obtained. One with a positive sign and the other with a negative
sign which need to be upper and lower bounded respectively. Let’s start with the lower bound.

Using HF−1H � H +H> − F yields

SIS � 2S − I ⇒ −S2 � −2S + I. (3.55)
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Substitution gives SA>k +AkS + S2 BξKS Bξ
∗ γk(I − 2S) 0
∗ ∗ −γkI

 � 0. (3.56)

Now the remaining S2 term has to be considered.

To impose an upper bound the following LMI is added

S � µI (3.57)

hence,

S2 � µ2I. (3.58)

Substitution gives SA>k +AkS + µ2I BξKS Bξ
∗ γk(I − 2S) 0
∗ ∗ −γkI

 � 0. (3.59)

Now that the two S2 terms are tackled, the variable substitution K = K̂S−1 is performed. Resulting inSA> +AS − K̂>B>ξ −BξK̂ + µ2I BξK̂ Bξ
∗ γk(I − 2S) 0
∗ ∗ −γkI

 � 0 (3.60)

which is an LMI for fixed µ ∈ R+ and γk ∈ R≥1 that can be solved for K̂ and S ∈ Rn×n. A grid search
can be performed over the variables µ and γk to find the smallest feasible value for γk.

3.6 High-frequency output disturbances

The used observer is a high-gain observer. In an ideal world, the gain can be set arbitrarily high, so
the estimation error can be made arbitrarily small (in a specific frequency range). Minimizing gain γl
(between ξ(r) and ze) typically leads to high observer gains L. However, in reality, measurement noise
will enter the system and is amplified by L. So, there exists a tradeoff between the effect of the measure-
ment noise and ξ(r) on ze. Therefore, an additional performance criterion is added to the observer design.

In Section 3.4.1, the goal is minimizing the H2/H∞-norm between ξ(r) and ze. Here the focus is on min-
imizing the H2/H∞-norm between input ν and performance output zn. LMIs are derived to determine
L such that the H2/H∞-norm (between ν and zn) upper bounded by a certain scalar γn ∈ R+.

The choice to upper bound the effect of the measurement noise on the performance output is made to
make it possible to mix the H2 and H∞ specifications, e.g., H∞ for the disturbance ξ(r) and H2 for the
measurement noise ν. It is however difficult to select such an upper bound in an intuitive manner.

An alternative approach to consider the measurement noises is using Bw =
[
Bξ −L

]
in the H∞ or H2

LMIs for the observer design. Using this approach, the tradeoff between disturbance attenuation of the
effect of ξ(r) and that of measurement noise on the performance output is considered in the optimization
problem without the need to manually select an upper bound on γn, however mixing the H2 and H∞
LMIs is not possible using this approach.
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3.6.1 H2 LMI with noise input

Consider the following estimation error dynamics omitting disturbance Bξξ
(r)

ėη = Aleη − Lν, (3.61)

and the H2 LMI [
A>l P + PAl PBw

∗ −γnI

]
≺ 0,[

P C>z
∗ Zl

]
� 0,

tr(Zl) < γn

(3.62)

with P = P> � 0 ∈ R(n+mr)×(n+mr), Zl ∈ Rm×m, and γn ∈ R+. Expanding Al and substituting Bw,
Cz with −L, Cn respectively gives[

(Ae − LCe)>P + P (Ae − LCe) + C>n −PL
∗ −γnI

]
≺ 0. (3.63)

Setting L = P−1L̂ gives [
A>e P + PAe − C>e L̂> − L̂Ce −L̂

∗ −γnI

]
≺ 0,[

P C>n
∗ Zn

]
� 0,

tr(Zn) < γn,

(3.64)

which is an LMI that can be solved for L̂ and P . This LMI can be used as extra constraint when solving
LMIs (3.17) or (3.28) in the observer synthesis. It is obviously necessary to use the same L̂ and P in all
the used LMIs.

3.6.2 H∞ LMI with noise input

In a similar fashion as in the last section the H∞ criterion is used to derive an LMI that can be used to
set a bound on the H∞-norm between measurement noise and a certain performance output zn.

Consider, Al>P + PAl PBw C>z
∗ −γ2

nI 0
∗ ∗ −I

 ≺ 0, (3.65)

with P = P> � 0 ∈ R(n+mr)×(n+mr), and γn ∈ R+. Expanding Al and substituting Bw, Cz with −L,
Cn, and performing the following change of variables,

L = P−1L̂, γn =
√
γ̂n, (3.66)

yields, A>e P + PAe − Ce>L̂> − L̂Ce −L̂ C>n
∗ −γ̂nI 0
∗ ∗ −I

 ≺ 0. (3.67)

This LMI could be used in the same manner as the one derived in Section 3.6.1.
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3.7 Discussion

A closed loop matrix formulation for ADRC with r (for each input-output relation) dynamic extensions
in the GPIO is derived. This closed loop is characterized by the observer gain L and control feedback
K.

For the co-design of matrices L and K in terms of LMIs no convex algorithms are available in the lit-
erature. Hence, the need for a two-step approach is identified and subsequently such an approach is
developed.

Using the H∞, H2 and ISS specifications, we derived LMIs to tune matrices K and L in an optimal
manner. For the estimation error dynamics, LMIs are derived that can tune matrix L such that the
specific (H∞, H2, ISS) gain from the lumped disturbance to the interconnection output is minimized
for all three the specifications. For the plant dynamics LMIs are derived that can tune K such the gain
from the interconnection input toward a performance output is minimized. The LMIs to determine K
are sub-optimal. To make the optimization problems convex for the H∞/H2 and ISS LMIs the problem
had to be simplified one and two times, respectively. Furthermore, the two H∞ LMIs are equipped with
parameter wξ that is used for tuning purposes in Chapter 4.

For both the H∞ and the H2 specifications LMIs are derived that enable to upper bound the H∞ or
the H2-norms (in the observer) between measurement noise and a performance output zn by scalar γn.
These LMIs are never used solely but are used as additional constraints in the observer design.
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Chapter 4

Simulation results

In this chapter, simulations are performed to demonstrate and verify the usefulness of the H∞ LMIs
derived in the previous Chapter. First, a benchmark system is introduced in Section 4.1, which is used
in this chapter for simulations and in Chapter 5 for practical experiments. Next, a methodology to use
the two H∞ LMIs, (3.17), (3.25), derived in Section 3.3 is described in Section 4.2. Subsequently, a
standard reference trajectory and a measure for performance are introduced in Section 4.3.1, followed
by the results of the ideal world simulations in Section 4.3.2. In Section 4.4.1, results for more realistic
simulations are given, and in Section 4.4.2 the resulting control signals are analyzed. The ability to
reconstruct disturbances is described in Section 4.4.3. In Section 4.5, the conclusions for Chapter 4 are
given.

4.1 Generalized Huygens Setup Model

The chosen system for the simulations and practical experiments is the GHS of which a schematic
representation is given in Figure 4.1. The simplified equations of motion (taken from [32]) are

ẍ1 =− ω2
1 (x1 − x3)− 2ζ1ω1 (ẋ1 − ẋ3) + u1

ẍ2 =− ω2
2 (x2 − x3)− 2ζ2ω2 (ẋ2 − ẋ3) + u2

ẍ3 =

2∑
i=1

µi
[
ω2
i (xi − x3) + 2ζiωi (ẋi − ẋ3)− ui

]
− ω2

3x3 − 2ζ3ω3ẋ3 + u3

(4.1)

with wi =
√

ki
mi

the undamped natural frequencies [rad/s], ζi = bi
2ωimi

[−] the dimensionless damping

coefficients, and ui [m/s2] the actuator input, i = 1, 2, 3. Constants µi = mi
m3

are the coupling coefficients,
i = 1, 2. For more information about the GHS, the interested reader is referred to [32], [33],[34].

Introducing the states x := [x1 x2 x3 x4 x5 x6]> := [x1 x2 x3 ẋ1 ẋ2 ẋ3]>.

The following first-order representation can be written

ẋ = Ax+Buu,

y = Cx
(4.2)

with
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Chapter 4. Simulation results

Figure 4.1: Schematic representation generalized Huygens setup. Adapted from [34].

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−ω2

1 0 ω2
1 −2ζ1ω1 0 2ζ1ω1

0 −ω2
2 ω2

2 0 −2ζ2ω2 2ζ2ω2

µ1ω
2
1 µ2ω

2
2 −µ1ω

2
1 − µ2ω

2
2 − ω2

3 2µ1ζ1ω1 2µ2ζ2ω2 −2µ1ζ1ω1 − 2µ2ζ2ω2 − 2ζ3ω3

 ,

Bu =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
−µ1 −µ2 1

 , C =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , u =

u1

u3

u3

 .
(4.3)

In the simulations, the following parameters are used:
[
ω1 ω2 ω3

]
=
[
12.5521 14.0337 9.7369

]
,[

ζ1 ζ2 ζ3
]

=
[
0.3362 0.4296 0.0409

]
, and

[
µ1 µ2

]
=
[
0.0411 0.0578

]
. These parameters were

identified in [34].

Two different cases are considered. The first case is referred to as the GHS with full model information

ẋ = Ax+Buu+Bξξ0,

y = Cx,
(4.4)

with

Bξ =

[
0
I

]
, (4.5)

and A, Bu, and C as defined in (4.3). Furthermore, lumped disturbance ξ0 equals zero when no addi-
tional disturbances (e.g., external forces and measurement noise) enter the system.

The second case is referred to as the GHS without model information

ẋ = Ax+Buu+Bξξ0,

y = Cx,
(4.6)

with

A =

[
0 I
0 0

]
, Bu = Bξ =

[
0
I

]
, C =

[
I 0

]
. (4.7)

In this case lumped disturbance ξ0 contains the unmodeled dynamics.
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4.2 Practical use of the H∞ LMI

A practical method to tune the observer and the controller that together form the ADRC scheme is
explained in this section. The method makes use of the two H∞ LMIs (3.17), (3.25) derived in Section
3.3 to perform a synthesis based tuning. It is assumed that a (simplified) linear model of the exact feed-
back linearizable system we want to control is available. This model is in the normal form with matrices
A, Bu, and C as given in (2.7). The model should at least contain the right number of integrators for
each input-output relation. Furthermore, the input matrix is assumed to be sufficiently accurate (sign
definiteness and order of magnitude right). Note, that any extra linear information about the system
dynamics can be added in A and Bu. These A, Bu, and C matrices together with the choice for the
number of dynamic extensions r and tuning parameter wξ are then loaded into the MATLAB code found
in Appendix B. This code generates matrices Ak, Al and total closed loop matrix Acl in (3.9) for any
r ∈ N+ and wξ ∈ R+. Subsequently, LMI (3.17) is solved minimizing γl, and matrix L is recovered
using (3.16). Then, LMI (3.25) is solved iterative performing a line search over µ. Using bisection, it
is possible to locate the smallest feasible µ quickly. All obtained matrices K (near the smallest feasible
µ) are saved. When it is clear in which region the smallest feasible µ can be found, a more precise line
search is performed (smaller steps). This time the obtained L, and all K found near the smallest feasible
µ are consecutively substituted in the total closed loop dynamics (3.6) of which the actual H∞-norm
(between ξ(r) and zx) is determined and stored in a vector. Finally, the K that results in the smallest
H∞-norm is selected. This process can be repeated for different values of wξ in a for-loop. So, effectively
a grid search is performed over µ and wξ. However, a grid search can (depending on the grid density
and search area) use much computation time. A faster approach is to manually select a value for wξ and
perform a line search over µ. In practice, it takes less then a minute to pinpoint the optimal value for µ.
This process can be repeated for different values of wξ until an acceptable performance is reached.

For the GHS described in Section 4.1, a grid search over µ and wξ is performed. For the case r = 1, two
plots are made using no model and full model information in Figure 4.2a and Figure 4.2b, respectively.
With variable wξ on the horizontal axis and, on the vertical axis, the value of the H∞-norm (between ξ(r)

and zx) that is found after selecting (line search) the µ that yields the smallest H∞-norm for the specific
wξ. These figures are slices out of the three dimensional space that wξ, µ and ‖H∞‖ span. Note that
to obtain these figures with sufficient resolution, LMI (3.25) has to be solved ten-thousands of times.∗

These figures show that there are well defined minima. The K and L found at these minima ensure that
the effects of ξ(r) on zx in the worst-case direction and worst-case frequency are mitigated in an optimal
manner using the regarded type of control scheme. Furthermore, the results for r = 1, 2, 3 are given in
Table 4.1, the minimizers are all found near wξ = 2.62 × 107. For the case where model information is
used, the case r = 1 scores best followed by r = 2 and r = 3. In the case where no model information is
used, the case r = 2 scores best followed by r = 3 and r = 1. All numbers are however relatively close to
each other (within 1e-6), hence it is not clear if the differences are due to numerical errors, gaps in the
search grid, or that there is an actual link with the value of r.

∗The time involved was ± 6 hours using MATLAB 9.10.0.1710957 (R2021a) Update 4, MOSEK version 9.3.1, and
YALMIP version 20210331. At a desktop with an Intel 8700K CPU @ 6× 5GHz and 16 GB RAM @ 3000MHz.
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Figure 4.2: wξ plotted against ‖H∞‖ (ξ(r) to zx) for optimal µ (a) No model. (b) Full model.

‖H∞‖ Model No model
r = 1 1.0082e-06 1.0110e-06
r = 2 1.9450e-06 8.8366e-07
r = 3 2.0155e-06 1.2449e-06

Table 4.1: Smallest values for the H∞-norm found performing a grid search over µ, and wξ for, r = 1, 2, 3
using full model- and no model -information.

Performing a grid search over a vast amount of values for µ and wξ might not always be possible, or
necessary. When we look at the graphs of µ plotted against ‖H‖∞ for different values of wξ, three cases
can be differentiated. These cases are depicted in Figure 4.3. In all cases, the line starts at a certain
value for µ, all µ smaller than this specific value yield no feasible controller. For most wξ, the plot
looks similar to Figure 4.3b, where the smallest feasible µ corresponds to the smallest found ‖H‖∞.
For the cases depicted in Figure 4.3a and Figure 4.3c the minimizers are found relatively close to the
smallest feasible µ. Furthermore, the smallest ‖H‖∞ for the smallest feasible µ and that for the true
minimizer are relatively close to each other. Hence, for practical purposes where it is not necessary to
find the optimum but a value near the optimum is sufficient, finding the minimum feasible µ will yield
the desired controller. This approach significantly decreases the search space, and thus computation time.
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Figure 4.3: Three cases of µ vs ‖H∞‖. (a) wξ = 1000. (b) wξ = 1e6. (c) wξ = 1e7.
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4.2. Practical use of the H∞ LMI

In (4.8) below we show K and L when no model is used, with wξ = 1e7 and r = 3. Since, we modeled
the system as three equal chains of integrators the tuning for all three the subsystems is the same.
Furthermore, no cross-terms are present.

K =

1983601 0 0 2216 0 0
0 1983601 0 0 2216 0
0 0 1983601 0 0 2216

 , L =



148 0 0
0 148 0
0 0 148

3090 0 0
0 3090 0
0 0 3090

36283 0 0
0 36283 0
0 0 36283

264322 0 0
0 264322 0
0 0 264322

952387 0 0
0 952387 0
0 0 952387



. (4.8)

For the case where full model information is used the following K and L are obtained (4.9). It can be
seen that every input-output relation is tuned individually and that there are several cross-terms, even
in the higher-order extensions in the GPIO.

K =

1846377 0 7113 2585 27 0
0 1807753 0 27 2601 0

84268 91930 1774508 95 131 2579

 , L =



117 0 0
31 104 0
27 39 107

1936 117 290
678 1664 359
877 1036 1800

29937 0 0
6286 26719 0
12093 13614 22794
189205 0 0
33699 161846 0
94258 103478 155584
593617 0 0
91137 491014 0
338130 368805 536934



. (4.9)
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4.3 Ideal simulations

4.3.1 Performance

To make a fair comparison between different controllers, a standard reference trajectory is designed.
Since not only the model of the GHS but also an experimental setup of the GHS is studied in Section 5;
the reference trajectory should be designed such that it is feasible on the real GHS. The maximum strokes
of x1, x2, x3 are approximately 5 mm. To avoid damage on the real setup due to overshoot and unstable
closed loops, the references are set to have a maximum stroke of 1 mm. Furthermore, the simulation
time of all the simulations/experiments is fixed at 20 seconds. The designed reference trajectory is given
by

x∗1 = 10−3, x∗2 = −10−3, x∗3 = 7.5 ∗ 10−4 sin t,

x∗4 = 0, x∗5 = 0, x∗6 = 7.5 ∗ 10−4 cos t.
(4.10)

The reference trajectory (4.10) is depicted in Figure 4.4. The trajectory is designed such that x3 (the
coupling bar) tracks a relative slow (1 rad/s) sinusoidal trajectory. The forces that result from the sinu-
soidal movement act on masses m1 and m2 as a disturbance. Therefore, it is interesting to regulate x1

and x2 toward a constant reference to observe the disturbance rejection.

Even though the performance criteria used to tune the ADRC scheme are frequency-domain based tech-
niques, the choice is made to measure performance based on the tracking error in the time-domain. The
reason is that it allows to compare the simulations and practical result in a simple but insightful manner.

The selected performance indicator is the integral square error (ISE) defined as

ISE =

3∑
i=1

∫ t

0

(xi(τ)− x∗i (τ))2dτ. (4.11)

Note that a lower ISE score means a better performance.
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Figure 4.4: Standard reference trajectory GHS.
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4.3.2 Simulations

The simulations in this section are made using ADRC schemes tuned using the H∞ method described
in Section 4.2, where in all cases the optimal µ is used.

The first simulation is performed using one dynamic extension, r = 1, and no tuning parameter, i.e.,
wξ = 1. In Figure 4.5a, the reference trajectory and the simulated positions are depicted. Clearly,
the tracking performance is not as desired. A brief analysis reveals that the poles of Al are placed far
into the Left Half-Plane (LHP) and the estimation error is very small. The poles of Ak, however, are
marginally in the LHP which explains the relatively slow dynamics with large tracking error. This lack
of performance is the reason why tuning parameter wξ is necessary. The tuning parameter enables the
possibility to place the poles of Ak further into the LHP.

The result of using wξ = 10, 000 is depicted in Figure 4.5b which is clearly superior with respect to the
case wξ = 1. It does not take much effort to discover that increasing wξ results in an improvement of the
performance criterion ISE up to a certain level, after which the performance worsens again. Figure 4.6a
and Figure 4.6b depict the the effect of increasing wξ (sampled from simulations) for r = 1, 2, 3, using no
model and full model information, respectively. The optimizer can be clearly identified near wξ = 5×107

in both cases. Note that this value is in the same order of magnitude as the wξ = 2.62×107 that yielded
the smallest ‖H∞‖. The smallest ISE scores are 1.5932e − 09, and 1.7863e − 09 for the case without
(r = 1), and with (r = 3) model, respectively. In the case where full model information is used for all
three values of r, the ISE scores obtained for all wξ are very close to each other. In the model-free case,
an increasing r leads to a higher ISE score. The reason is that the bandwidth of the observer is tuned
less high when the value of r is increased. Probably, this problem can be addressed using an additional
weighting matrix for the input matrix of the LMI to design the observer.
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Figure 4.5: Simulation results for different values of wξ. (a) r = 1, wξ = 1, ISE = 3.2231e − 06. (b)
r = 1, wξ = 10, 000, ISE = 3.9163e− 08.
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Figure 4.6: Relation between ISE and wξ. (a) no model information is used. (b) The full model is used.

The tracking error as a function of time for the third state is depicted in Figure 4.7. The figures show
the errors for r = 1, 2, 3, in Figure 4.7a no model information is used and in Figure 4.7b, the complete
model is used. Observe that in Figure 4.7a the steady-state errors are close to each other, but that it is
the transient behavior that impairs the ISE score for r = 3. The reason for this is that when r increases
the observer dynamics are tuned ’slower’ using the synthesis approach. Hence, the observer needs longer
to converge. In Figure 4.7b the difference between the three lines is extremely small. Furthermore, the
settling time is ts < 0.01s, which is the reason that the transient behavior is not visible on the figure.
Using model information has the advantage that the convergence time of the observer can be reduced.
It is clear that also the steady-state error is smaller when the model is used. The model-free approach
however manages to stay within the same order of magnitude.
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Figure 4.7: Tracking error e3 = x3 − x∗3. (a) no model information. (b) full model information.

4.4 Realistic simulations

In order to use the synthesized controllers in a practical setup, the controllers should be tested first in a
more realistic simulation. This means adding measurement noise to the outputs, and sampling to input
and output. Furthermore, the expected overshoot should be in an acceptable range, and the actuator
should not saturate. Finally, the control signal should be (visually inspected) to see if its (frequency)
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content is acceptable. For the discretization, a zero-order hold sampling at 1000 Hz is used, which is
the same sampling rate as used in the real setup. For the noise, a bandwidth limited white-noise with a
power of 10−13W (similar to measured noise in setup) that is uncorrelated for all three channels is used.

4.4.1 Performance

Figure 4.8 shows the relation between tuning parameter wξ and the ISE score, for the GHS following the
standard trajectory when subject to sensor-noises and sampling. Note that the ISE score is determined
using the simulated positions Cx and not the noisy output Cx+ ν. The latter case will be discussed in
Chapter 5.

Comparing Figure 4.8a with Figure 4.6a the first observation is that the blue line (r = 1) starts to inflect
more quickly in Figure 4.8a. Furthermore, this line is truncated at 2e7, the reason is that after this point
the system starts to oscillate due to amplified noises resulting in ISE scores that are out of the range of
the graph. For the model-free case, the r = 1 line has the lowest ISE score for wξ < 4e5 after which it
inflects upwards and is overtaken by r = 3. The reason for this inflection is that the observer reconstructs
measurement noises, which subsequently are amplified by the controller gains. The case where r = 2
can be tuned with higher values of wξ before the inflection happens. The reason for this is that the
observer in the r = 2 case is tuned less aggressively and is hence less capable in reconstructing these
high frequency measurement noises. This is positive since the estimated noises are smoothed versions of
the original noises.

For the case with model, up to wξ ≈ 1e5, the three lines r = 1, 2, 3 stay near each other similar to what
is observed in Figure 4.6b. After wξ ≈ 1e5, the line r = 1 starts to inflect again due to measurement
noises that are reconstructed and then amplified.

The lowest ISE score is measured for r = 3 with wξ = 3e7 yielding, ISE = 5.0043e − 09. Figure 4.8b
follows a similar trajectory as Figure 4.6b up to wξ ≈ 1e5 after which it start to deviate due to the
effects of noise. The minimum ISE score found for the case with model is 3.6935e − 09, which is found
at wξ = 2e7.
The smallest obtained ISE scores for r = 1, 2, 3 are given for the four test-cases in Table 4.2. Note that
all scores are in the same order of magnitude. clearly, the ideal case performs better than the non ideal
case in all instances. Remarkable is that the model-free case slightly outperforms the case with model in
the ideal world simulations, except for r = 3. However, in the more realistic simulations the case with
model performs better for all r.
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Figure 4.8: Relation wξ and ISE when subject to noise and sampling. (a) no model. (b) Full model.
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4.4.2 Control signals

In this section, the control signals and their components are analyzed. Figure 4.9a and Figure 4.9b depict
the control signals for a synthesized ADRC using wξ = 1e4 and wξ = 1e5 respectively and r = 2 in both
cases. The control signals follow from simulations of the GHS tracking the standard trajectory while
subject to measurement noise and sampling. It is clear that measurement noise is present excessively in
the control signal. In Figure 4.9b the effect is more severe than in Figure 4.9a. For both cases the same
observer is used. Hence, what is observed is the amplification of measurement noise reconstructed by
the GPIO that is amplified by the elements in K.

Let’s analyze the components of the control signal, u = −R−1(K(x̂ − x∗) + ξ̂0), that bring measure-
ment noise into the signal. The first component is x̂, this estimated state can be divided in estimated
positions x̂1,2,3 and velocities x̂4,5,6. Figure 4.10a and Figure 4.10b depict the (estimated) positions
and the (estimated) velocities respectively. It can be seen that in the estimates of the position some
measurement noise is reconstructed, the amplitude however is relatively low. On the other hand in the
velocity plot it can be seen that the (differentiated) measurement noise is present excessively in the
estimate. Furthermore the actual velocity also shows rapid changes in velocity that are induced by the
noisy control signal. This observation identifies the need for well conditioned measurement signals, and
(frequency-dependent) weighting matrices in the tuning process. These weighting matrices should assure
that the observer does not reconstruct or at least filters the noise in the first place. Furthermore, the
magnitude of the elements in K should be limited to not amplify the noises that are reconstructed any
further. Especially the elements multiplied with the estimated velocities.

The final part of the control signal is the estimate (the actual ξ0 is also depicted) of the lumped dis-

turbance ξ̂0 which is depicted in Figure 4.11a, for completeness also its derivative ξ̂1 is depicted in
Figure 4.11b. It is seen that again the noise is reconstructed by the observer. It is however important
to realize that the ξ̂0 term is not amplified by a (high-)gain in the control.

A practical method to reduce the negative effects of noises in the output of the observer is placing a
low-pass filter between the observer and controller. Placing such a filter, does change the definition used
for ADRC in this thesis and is therefore not considered.

ISE ideal, no model ideal, model not ideal, no model not ideal, model
r1 1.5932e-09 1.7865e-09 7.8057e-09 7.6425e-09
r2 1.7032e-09 1.8021e-09 5.0043e-09 4.1187e-09
r3 3.4674e-09 1.7863e-09 5.6946e-09 3.6935e-09

Table 4.2: Smallest ISE scores for r = 1, 2, 3 in ideal world and more realistic simulations using no model
and full model information.
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Figure 4.9: Control signals. (a) wξ = 1e4. (b) wξ = 1e5.
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(a) (b)

Figure 4.10: (a) Positions and its estimates. (b) Velocities and its estimates.
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Figure 4.11: (a) Estimated and actual lumped disturbances. (b) First derivative estimated lumped
disturbances.

4.4.3 Disturbance estimation

In this section, the ability to reconstruct an external disturbance using the synthesized ADRC scheme
is verified.

Consider, the forced Van der Pol oscillator

f(t) = z̈ − µ(1− z2)ż + z − a sin(ωt), (4.12)

with µ = 8.53, a = 1.2, ω = 2π/10 and initial conditions z(0) = ż(0) = 0.

This (chaotic) oscillator is added as w = [f(t) 0 0]> to the model of the GHS as matching disturbance.
The simulation (with the standard trajectory) is run for 100 seconds, in the first 50 seconds the con-
troller is disabled, in the next 50 seconds the controller is active. The simulation results are shown in
Figure 4.12, in both cases a synthesized controller with wξ = 5e7. However, Figure 4.12a is tuned using
r = 1 and Figure 4.12b with r = 3. It can be seen that in both cases as soon as the controller is started
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the desired reference trajectory is tracked. However in the r = 3 case the disturbance rejection is clearly
less, the reason for this is that the observer is tuned less fast in the r = 3 case. Note that in both
cases full model information is used. The cases without model information look almost exactly the same,
therefore these case are not shown.

Now, let us investigate what the effects on the disturbance reconstruction are using the full model and no
model. In Figure 4.13, the actual external disturbance signal w and the estimated lumped disturbance
ξ̂0 are depicted. In Figure 4.13a, no model information is used and in Figure 4.13b the full model is
used. In the case where no model is used, we see that before the controller is started the disturbance
signal w is not estimated correctly. When the controller is started, we can recognize the forced Van der
Pol oscillator w1, however, the effects of the unmodeled dynamics are added to the signal. Furthermore,
ξ̂02,03 show the effects of unmodeled internal dynamics and external disturbance w1 on ẍ2,3. For the case
where the model is used, the disturbance w1 is estimated near to perfect, and, as expected, the estimates
of w1,2 are near zero.

The estimated disturbance for the case r = 3 is depicted in Figure 4.14, where Figure 4.14a, and
Figure 4.14b show the case without and with model, respectively. In both cases, it can be seen that
when the disturbance w1 undergoes a fast change, the observer needs to converge again. This goes paired
with relatively large overshoot and does take time. This overshoot and convergence time are the main
reasons for the tracking errors visible in Figure 4.12b.
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Figure 4.12: Tracking with forced Van der Pol oscillator as disturbance on ẍ1. (a) Full model r = 1,
wξ = 5e7. (b) Full model r = 3, wξ = 5e7.

40



4.4. Realistic simulations
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Figure 4.13: Estimation forced Van der Pol oscillator as disturbance on ẍ1. (a) no model r = 1, wξ = 5e7.
(b) Full model r = 1, wξ = 5e7.
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Figure 4.14: Estimation forced Van der Pol oscillator as disturbance on ẍ1. (a) no model r = 3, wξ = 5e7.
(b) Full model r = 3, wξ = 5e7.
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Chapter 4. Simulation results

4.5 Discussion

A practical method to synthesize a GPIO (L) with r extensions in an optimal manner is described and
demonstrated. Next, a method to synthesize a feedback controller (K) is developed and demonstrated.
Furthermore, a method to find the (optimal) combination of the obtained matrix L and matrices K re-
sulting in the lowest H∞ gain between ξ(r) and a performance output zx is developed and demonstrated.

A MATLAB program is developed that has as input any (MIMO) exact feedback linearizable system in
the normal form, and the desired number of dynamic extensions (per input-output relation) r. And as
output the (sub)optimal matrices K, L and the observer and controller that together form the ADRC
in state-space format.

It has been demonstrated that it is possible to add known model information to the GPIO, the LMI to
determine K, and the LMI to determine L. Adding model information is concluded to be beneficial for
the ISE score. The rise time is decreased vastly and the steady state error decreased moderately when
compared with the model-free method.

The effect of adding more dynamic extensions r to the GPIO, shows to be negative in the synthesis
approach using no model information and under ideal simulation conditions (no noise, no sampling).
The higher the number of dynamic extensions the slower the observer is tuned. This slower tuning
leads to longer convergence time which results in a longer rise time. However in the case where the full
model information is used there is only a marginal difference between the different values for r. In the
more realistic simulations where measurement noise and sampling are applied the results are different.
Compared to the ideal world simulations the overall ISE scores have decreased. In the model-free case
the best ISE score is obtained using two extensions and in the full model case three extension give the
best score. Adding a weighting matrix to the disturbance input of the observer is proposed to allow more
aggressive tuning in the model- free case with higher-order extensions.

It is shown that the (synthesized) ADRC scheme is sensitive to measurement noises. The measurement
noise is (partially) reconstructed by the observer and subsequently amplified by the feedback controller.
In the tuning of both observer and controller the effects of measurement noises should be taken into
account. Therefore the usage of frequency-dependent weighting matrices is proposed.

For the disturbance reconstruction the following conclusions can be drawn. We have demonstrated that
in both cases with, and without model similar tracking performance can be achieved when a matching
external disturbance is applied to the system. The effects of higher-order extensions are in this case
negative for disturbance estimation and therefore for tracking performance when the synthesis approach
is used. Furthermore, it is shown that for reconstruction of external disturbances the model parameters
of the system (in normal form) need to be known.
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Chapter 5

Experimental results

In this chapter, the results of the practical experiments as described in Section 1.4.4 are reported. First,
the encountered practical difficulties and the proposed solutions for them are described in Section 5.2.
Next, an empirical and semi-empirical method to tune ADRC schemes is explained and tested in Section
5.3 and 5.4 respectively. Subsequently, the synthesis approach as described in Section 4.2 is tested in
Section 5.5. Finally, the conclusions are presented in Section 5.6.

5.1 Generalized Huygens Setup

A picture of the GHS is shown in Figure 5.1, the blue (m1) and the red (m2) parts in the picture are
the two oscillators where position x1, x2 are measured. These oscillators are connected by a coupling bar
(m3) in the middle. State x3 is the position of this bar. The positions are measured using three linear
variable differential transformers as sensors. The sensors are calibrated such that 1 V corresponds to
a displacement of 5 mm. All three masses are actuated by voice coil actuators. For the actuators, we
have motor constants 20.9218, 23.2465 and 1.2589 ms−2V−1 for actuator 1,2 and 3, respectively. Note
that these (actuator) gains are not required to be known in the ADRC scheme, they are used however
in the experiments. More information about the mechanical design of the GHS can be found in [33].
Additional information about the sensors, actuators and data acquisition system is given in [34] which
is also the source of the sensor and actuator gains.

Figure 5.1: Photograph of the Generalized Huygens Setup at the DCT lab at the Eindhoven University
of Technology.
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Chapter 5. Experimental results

5.2 Practical difficulties

The first attempt to control the GHS is done using an empirical tuning method. Without any extra input
or output filters. Conservative ADRC and PID controllers are used to test the three second-order SISO
systems one by one. Attempting to control towards a constant reference leads to (heavy) vibrations in
the leaf springs which are directly connected to the coupling bar (x3) (it can take seconds to minutes
before this happens). Probably, these vibrations are caused by (partially) uncontrollable higher-order
dynamics (which are not included in the model).

To analyze the problem, a Frequency Response Function (FRF) is made u3 −→ y3 (since this is the sub-
system connected to the leaf springs). The magnitude plot of the FRF is depicted in Figure 5.2. We can
clearly recognize the second order dynamics with one fairly damped resonance peak followed by a −4
slope. Then there is a small peak, of unknown origin. Probably it is due to actuator/sensor dynamics
or coupling effects. Then there is the area between 36 and 38 Hz. Note the very sharp un-damped
peaks. The FRF was made, exiting all 3 actuators with uncorrelated bandwidth limited white noise with
relatively low power. Exciting at higher powers will make these peaks grow quickly and possibly damage
the setup. Then, there is the peak at 50 Hz which is a benign measurement noise.

To solve the mentioned difficulties, a second-order band-stop filter is placed between 36 and 38 Hz at the
input side (for all three actuators), so the controller cannot excite these frequencies. This filter solves
the problem with the resonances. Furthermore, a second-order notch filter is placed between 49 − 51
Hz to attenuate the 50 Hz noise, and a second-order low-pass filter at 25 Hz is placed at all outputs
to attenuate high-frequency measurement noises. Experimentation shows that a low-pass filter at the
input side reduces audible sound in the actuators, but for some controllers leads to drastic performance
degradation. Therefore, such filter is not used during experimentation.
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5.3. Empirical tuning

5.3 Empirical tuning

First the ADRC scheme is tuned using an empirical method.
For the observer L, is selected such that the eigenvalues of Al equal the roots of characteristic polynomial

(s2 + 2ζoωos+ ω2
o)(s+ p)r, (5.1)

with ωo the natural frequency of the observer [rad/s], ζo a damping constant [−], p a constant, all in
∈ R+, and s is the Laplace operator. Using this method, for each second-order input-output relation
three parameters have to be determined.
For the controller side the following characteristic polynomial is matched:

(s2 + 2ζcωcs+ ω2
c ), (5.2)

resulting in another 2 parameters to select per input-output relation.

This means that in total 15 design parameters have to be selected to tune the ADRC scheme for the
GHS. To reduce the number of parameters to a tractable amount, the decision is made to tune all the
input-output relations equally and set p = ω0 and ζo = ζc. Resulting in only 3 free parameters to
determine.

For r = 1, 2, 3, first ωo is selected such that the reconstructed states are not dominated by noise. Then in
a systematic manner a selection of combinations of ζo = ζc and ωc are tested. Controllers that result in a
relatively short rise time, good tracking, and are not dominated by noise are selected. These controllers
are indeed the ones that score the lowest ISE values. The best obtained observer/controller parameters
and the resulting ISE scores are given in Table 5.1. Observe that only the ωo differs. For higher values
of r, the observer becomes more sensitive to measurement noise and has to be tuned ‘slower’ ,i.e., the
observer bandwidth ωo has to be reduced. This slower observer results in the (slightly) higher ISE score
for increasing values of r.

The results of the experiments with the three ADRC implementations with parameters as in Table 5.1
are depicted in Figure 5.3 and Figure 5.4 (tracking error). In these figures, it can be seen that all three
controllers give a reasonable tracking performance, the difference is that the transient behavior changes
in a negative manner for a higher-order extension.

ωo ωc ζ ISE
r = 1 200 20 1√

2
1.1810e-07

r = 2 150 20 1√
2

1.2147e-07

r = 3 100 20 1√
2

1.3446e-07

Table 5.1: Tuning parameters empirical observer, controller, and resulting ISE scores.

(a) (b) (c)

Figure 5.3: Results experiment empirical controller. (a) r = 1. (b) r = 2. (c) r = 3.
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Figure 5.4: Tracking errors experiment empirical controller. (a) r = 1. (b) r = 2. (c) r = 3.

5.4 Semi-empirical tuning

A well-known tuning method for ADRC is the bandwidth parametrization method described in [12], [35]
using only one tuning parameter t∗s which stands for the desired settling time. The following procedure
is followed to tune a second-order system with one dynamic extension.

1. choose desired settling time t∗s

2. let ωc = 10/t∗s

3. kp = ω2
c , kd = 2ωc

4. ωo = 4ωc

5. l1 = 3ωo, l2 = 3ω2
o , l3 = 4l2

Where, ωc, ωo denote the controller and observer bandwidth respectively. Again all input-output relations
are tuned equally. The best ISE score observed was 6.6108e − 08 for t∗s = 0.02 ∗. The resulting graph
is depicted in Figure 5.5. Note that the result for this tuning method is better in the sense of ISE than
the empirical method tested in Section 5.3. Since the design space of the semi-empirical method is a
subspace of the design space of the empirical method, a similar or even better performance can be found
using the empirical method. The fact that no equal or better performing controllers were found confirm
the difficulty in tuning controllers in these empirical methods, especially for inexperienced practitioners.
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Figure 5.5: Result semi-empirically tuning. (a) positions and references. (b) tracking errors.

∗Other ratios than ωo
ωk

= 4 and l3
l2

= 4 are evaluated but do in this case not yield better results.
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5.5 Synthesis

In this section, a selection of controllers tuned using the synthesis approach is tested on the real GHS.

The test results of the controllers that resulted in the lowest ISE score for r = 1, 2, 3, respectively are
depicted in Figure 5.6 and Figure 5.7 (tracking error). It can be seen that both cases r = 1, 2 have a
good tracking performance and quick rise time, with a little bit more overshoot for the case r = 1. For
r = 3, however, no synthesized controller is found that tracks the reference in an acceptable manner.
The reason for this is unknown; in the simulations, this problem is not present. The conjecture is that
the problem arises due to actuator dynamics and input delays.

(a) (b) (c)

Figure 5.6: Results experiment synthesized controller for: (a) r = 1. (b) r = 2. (c) r = 3.
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Figure 5.7: Tracking error experiment synthesized controller for: (a) r = 1. (b) r = 2. (c) r = 3.

In Figure 5.8, the ISE score versus the tuning parameter wξ is depicted for the simulation using y =
Cex+ ν (dashed line) and the practical results (solid line). Note that the solid yellow line r = 1 stops at
wξ = 104. The reason for this is that the system becomes unstable beyond this point. It can be seen that
the theoretical and real values match reasonably until wx ≈ 1000 after which the real system starts to
drop performance. The reason for this performance decrease can most probably be ascribed to actuator
dynamics and input delays.
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Figure 5.8: Relation between wξ and ISE score, theoretical (r1,2) and and real (r̃1,2).

In Table 5.2, an overview of the ISE scores for the different controllers tested in practice is given. Clearly
it can be seen that the H∞ synthesis using only tuning parameter wξ is able to outperform the (semi-
)empirical method.

To give the reader a more physical interpretation of the performance, the error signal e3 = x3 − x∗3 for
r = 2 and wξ = 1e5 is depicted in Figure 5.9. The RMS value of this error is just below 2µm.

Practical results ISE

Empirical r = 1 1.1810e-07
Empirical r = 2 1.2147e-07
Empirical r = 3 1.3446e-07

Semi-empirical r = 1 6.6108e-08

Synthesis r = 1, wξ= 100 3.4710e-07
Synthesis r = 1, wξ= 500 1.5925e-07
Synthesis r = 1, wξ= 1,000 1.2165e-07
Synthesis r = 1, wξ= 5,000 7.2177e-08
Synthesis r = 1, wξ= 10,000 5.9245e-08

Synthesis r = 2, wξ= 100 3.8042e-07
Synthesis r = 2, wξ= 500 1.9613e-07
Synthesis r = 2, wξ= 1,000 1.4758e-07
Synthesis r = 2, wξ= 5,000 7.7621e-08
Synthesis r = 2, wξ= 10,000 5.8378e-08
Synthesis r = 2, wξ= 50,000 4.1015e-08
Synthesis r = 2, wξ= 100,000 3.9435e-08

Table 5.2: Overview test results.
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Figure 5.9: Error signal e3.

5.6 Discussion

The empirical tuning method is tested on the GHS for r = 1, 2, 3. For all three cases reasonable perfor-
mance is achieved. For higher-order extensions, i.e., r = 2, 3, the bandwidth of the observer has to be
reduced to avoid issues due to measurement noise. This reduction in bandwidth results in increased rise
times. Using the empirical tuning method it is relatively easy to find stabilizing controllers that give
reasonable performance, however, it is difficult to fine-tune the controllers to reach optimal closed loop
behavior.

The semi-empirical approach is relatively easy to use since it requires only one tuning parameter. The
reported ISE score is in the tested case better than the scores found using the empirical method. The
method gives however not much freedom in controller design.

The synthesis method is tested for r = 1, 2, 3, it stands out that the case r = 3 does not yield tracking
controllers with acceptable tracking performance. Comparing the ISE scores of the synthesized con-
trollers for the performed simulations and real world experiments it becomes clear that the best scoring
controllers in the simulations do not work in practice. The reasons for this are most likely actuator/sensor
dynamics and input/output delays. However, up to a value of wξ ≈ 1000 the simulations and practical
results are comparable.

Tuning the observer and controller that form the ADRC scheme using the derived H∞ synthesis method
is relatively easy compared to the other methods. In practical situations the only parameter that has to
be selected is wξ (for a given r). In practice, the wξ that yields the lowest ISE score is the maximum wξ
that results in a stabilizing controller.

In practice, the H∞ syntheses method using no model information outperforms the empirical and semi-
empirical tuning methods in the sense of ISE. Furthermore, tuning the synthesis method is more time
efficient once it is implemented compared to the other mentioned methods.
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Chapter 6

Conclusions, discussion, and future
work

6.1 Conclusions

The main goal of this thesis is to develop a framework to tune the ADRC scheme for a general class of
feedback linearizable (mechanical) systems. With the ADRC scheme in a observer/controller representa-
tion with gain matrices L and K to be determined explicitly. The focus is on tracking performance and
disturbance rejection. The method must be “practically” model-free but allow for using known (linear)
model information. Multiple tools to reach this goal are developed. The used performance specifications
are the H∞ and H2-norms and the ISS gain. These specifications are represented in their LMI formula-
tions. For these LMI based specifications, it has become clear that a co-design of gain matrices K and L
is intractable. Therefore, a two-step approach is developed. For all the performance specifications, LMIs
have been developed to tune a Luenberger type of observer with r dynamic extensions in an optimal
manner. For the controller part, LMIs have been developed for the three performance criteria to tune
gain matrix K. However, for the controller part the tuning is sub-optimal since the optimization problem
had to be relaxed to make it tractable. Furthermore, two LMIs have been derived that can be added as
constraints in the optimization problem to minimize the effects of measurement noise on the observer,
using the H2 and H∞-norms.

The usability for practical output tracking of the LMIs has been investigated for the two H∞ LMIs
(observer and controller). The developed method depends on tuning parameter wξ that is present in
the performance output of the LMI for the observer and in the disturbance input of the LMI for the
controller. It is explained how to optimally determine gain L and find a set of sub-optimal gains K.
Subsequently, it is described how to select the gain matrix K that results in the best closed loop per-
formance in combination with the given L. Moreover, a MATLAB script is developed to perform the
tuning in a fully automated manner when provided with a (MIMO) system in the normal form.

The effects of using model information in the tuning process and in the observer is compared to the
case where no model information is used. This comparison has been made in simulations only. It has
been demonstrated that the developed H∞ syntheses method allows to include model information. It is
observed that using model information results in significantly shorter convergence times in the observer,
and shorter rise times in the system dynamics. Furthermore, the steady-state tracking error is decreased.
However, the steady-state tracking errors for the model-free approach are in the same order of magnitude
as those in the case where full model information is used.

The effect of using more state extensions r in the ADRC scheme, when tuned using the H∞ synthesis
method, is investigated for four cases. When full model information is used the effect of adding higher-
order extensions is positive (better ISE score) with, and without measurement noise and sampling. When
no model information is used the effect of more dynamic extensions is negative when no measurement
noise and sampling are present. In the case where noise and sampling are included but no model, the

51



Chapter 6. Conclusions, discussion, and future work

results depend on the used value of wξ. In the model-free case, the usage for a weighting matrix at the
input of the observer is proposed to allow the tuning for more/less aggressive observers when needed.

The effect of measurement noises and discretization on the synthesized ADRC scheme are analyzed in
simulations. The effect of noises and sampling on the ISE score for different values of r is already de-
scribed in the last paragraph. Here the observed effects on the control signal are described. It has become
clear that the synthesized ADRC scheme is sensitive to measurement noises (as it is nature a high-gain
scheme). In the first place because the observer reconstructs these noises in the estimated system states
and estimated disturbance. Subsequently, these reconstructed noises are amplified by gain matrix K (for
the estimated system states) and together with the estimated disturbance (which also contains noises)
combined in the control signal. These (amplified) noises in the control signal are not desired. Therefore,
L should be designed such that high-frequency measurement noises are not reconstructed but filtered.
Furthermore, K should be tuned such that the reconstructed noises are not amplified too much. The
proposed solution are frequency-dependent weighting matrices.

It is investigated how to reconstruct an external disturbance signal while the system is in closed loop
with an ADRC scheme. This is done in simulations (no noise, no sampling). For an ADRC scheme with-
out model information used, it is demonstrated that in open loop no acceptable reconstruction of the
external disturbance is achieved, and in closed loop the external disturbance with the effects of unknown
dynamics added to it are reconstructed. In the case with full model information the external disturbance
is reconstructed with high precision in open and closed loop.

The tracking performance of the synthesized ADRC scheme and the empirical tuning methods is com-
pared in real world experiments on the GHS. The performance is quantified using the ISE score. For
both the empirical and the synthesis tuning methods additional input and output filters are necessary
to control the plant. It is shown that the synthesis method works on a real world setup. Furthermore, it
has become clear that the synthesis method can outperform the empirical tuning methods, in the sense
of the ISE score and in the sense of the time needed to tune the scheme.

6.2 Discussion

In this section, the conclusions are interpreted and the limitations are pointed out.

The given H∞ synthesis method only makes use of the tuning parameter wξ that scales/weights the
elements related to ξ0 in the performance output and disturbance input of the observer and controller, re-
spectively. The option to scale/weight elements regarding state x is not regarded for these inputs/outputs.
Furthermore, no weighting is applied to the disturbance input on the observer side, and to the perfor-
mance output on the controller side. Hence, the result are only optimal in the sense of the demonstrated
tuning method.

For the determined H2 and ISS LMIs, and the H2/H∞ LMIs to protect against measurement noise no
practical method to use them is developed. For the H2-norm, the multiplicative property does not hold;
however, it can be used in a similar method as described for the H∞ method (with proper weighting
matrices) as described in Section 4.2. This should be possible since this method does not need the mul-
tiplicative property because the full closed loop Acl is considered. The ISS LMIs are probably limited
suitable for practical use in their current form since they only tune towards states and not to performance
outputs. The H2/H∞ LMIs to protect against measurement noise were not used for the tuning of the
GHS. For practical use of these LMIs most likely frequency-dependent matrices are necessary.

The effect of adding more dynamic extensions to the observer is concluded to be negative for tracking
performance. This result is however not true in general but only for the tested tuning methods and with
a noisy measurement signal.

The conclusion for the practical experiments is that the H∞ synthesis method outperforms the empirical
tuning method when no model info is used. However, it is possible that an experienced practitioner can
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empirically determine controllers that perform better then the ones found in this thesis. But, for the
case of large MIMO systems and especially when model information is included, the synthesis method
will always be more time efficient than the empirical methods.

6.3 Future work

In this section future research directions that follow from this thesis are pointed out.

The co-design of matrices K and L for an ADRC scheme using an LMI based approach is still an open
problem. The question that needs to be addressed is how to convexify the matrix that is obtained after
substituting the closed loop ADRC representation in the concerned LMI.

The need for frequency-dependent weighting matrices is identified. Using these matrices high-frequency
measurement noises and actuator dynamics can be taken into account during the synthesis. Further-
more, these matrices allow to ‘shape’ the disturbance rejection or tracking properties in certain frequency
ranges. The first challenge is how to add these weighting filters to the closed loop and make the LMIs
convex again? The second challenge is: how to select these weighting matrices?

The practical use for the derived H2 and ISS LMIs still have to be validated. Furthermore, the combi-
nation of the different metrics, e.g., H∞ for the observer and H2 for the controller can be explored.

In Section 4.4.2, it is pointed out that the (synthesized) ADRC scheme is sensitive to the amplification
of measurement noises. It is worth investigating the possibility to use low-pass filtered versions of the
estimated states x̂ and lumped disturbance ξ̂0 in the control.

In this thesis the ability to add known system parameters to the closed loop description used in the
synthesis (and to the observer used in the control) is demonstrated. This can be extended to the usage
of uncertain parameters that are known to be into a certain range.

In (2.1), control input u and disturbance input w share the same vector field g(z). The ADRC formula-
tion in Section 2.1.1 can be extended to the case where u, and w are multiplied with distinct vector fields.

For fault detection, it is interesting to find out whether it is possible to separate estimated lumped
disturbance ξ̂ (and its derivatives) in ξ̂0 = ξ̂0,endo + ξ̂0,exo, where subscripts “endo” and “exo” stand for

endogenous and exogenous respectively. When (unexpected) changes in ξ̂endo are observed this might be
an indication of system failure.

It is possible to optimally tune a GPIO using the LMIs in this thesis. This optimally tuned GPIO can be
used to decouple, and linearize (feedback linearizable) MIMO systems. Next, this linear system (with the
estimation error as part of the disturbance input) can be tuned using tools like H∞, H2, and µ-synthesis
in the general dynamic output feedback control framework, for which many (LMI based) tools exist that
allow for frequency-dependent tuning matrices.
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Appendix A

Example second-order SISO system
with 2 extensions

Consider the following system in normal form

ẋ = Ax+Buu+Bξξ,

y = Cx+Du+ ν,
(A.1)

with

A =

[
0 1
−a0 −a1

]
, Bu =

[
0
b

]
, Bξ =

[
0
1

]
, C =

[
1 0

]
, D =

[
0
]
. (A.2)

When we choose to add 2 states (r=2) we can write the extended system as


ẋ1

ẋ2

ξ̇ = ξ̇0
ξ̈ = ξ̇1


︸ ︷︷ ︸

η̇

=


0 1 0 0
−a0 −a1 1 0

0 0 0 1
0 0 0 0


︸ ︷︷ ︸

Ae


x1
x2
ξ0
ξ1


︸ ︷︷ ︸
η

+


0
b
0
0


︸︷︷︸
Bue

u+


0
0
0
1


︸︷︷︸
Bξe

ξ̈,

yη = Ceη + ν,

(A.3)

with

Ce =
[
1 0 0 0

]
. (A.4)

A Luenberger type of observer is defined as

˙̂η = Aeη̂ +Bueu+ L(y − ŷ) = (Ae − LCe)η̂ + Lν + LCeη +Bueu,

ŷ = Ceη̂.
(A.5)

Introducing the estimation error coordinates eη = η − η̂ we can write the estimation error dynamics

ėη = η̇ − ˙̂η = Aeη +Bueu+Bξeξ
(r) − ((Ae − LCe)η̂ + Lν + LCeη +Bueu). (A.6)

Using the fact η̂ = η − eη yields
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ėη = Aeη +Bueu+Bξeξ
(r) − ((Ae − LCe)(η − eη) + Lν + LCeη +Bueu),

= (Ae − LCe)eη − Lν +Bξeξ
(r).

(A.7)

The next step is the substitution of the tracking controller in the x dynamics.

u = −b−1(k1(x̂1 − x∗1) + k2(x̂2 − x∗2) + ξ̂0) = −b−1(K(x̂− x∗) + ξ̂0) (A.8)

Using x̂ = x− ex, and ξ̂0 = ξ0 − eξ can write

u = −b−1(K(x− ex − x∗) + ξ0 − eξ0). (A.9)

Substitution of u in the x dynamics (A.1) and using Bub
−1 =

[
0
1

]
= Bξ gives

ẋ = Ax+Buu+Bξξ = (A−BξK)x+Bξ(K(ex + x∗) + eξ). (A.10)

After expansion the x dynamics interconnected with the e dynamics look like


ẋ1

ẋ2

ėx1

ėx2

ėξ0

ėξ1

 =


0 1 0 0 0 0

−(a0 + k1) −(a1 + k2) k1 k2 1 0
0 0 −l1 1 0 0
0 0 −(a0 + l2) −a1 1 0
0 0 −l3 0 0 1
0 0 −l4 0 0 0


︸ ︷︷ ︸

Acl


x1

x2

x1 − x̂1

x2 − x̂2

ξ0 − ξ̂0
0

+


0
0
0
0
0
1

 ξ̈ +


0
0
l1
l2
l3
l4

 ν +


0 0
k1 k2

0 0
0 0
0 0

x∗,

(A.11)

which has the form,[
ẋ
ėη

]
=

[
A−BξK BK
0(n+m)×n Ae − LCe

] [
x
eη

]
+

[
0
Bξ

]
ξ(r) +

[
0
L

]
ν +

[
BξK

0

]
x∗, (A.12)

with

BK := [BξK,Bξ, 0], Bξ :=


0
...
0
I

 . (A.13)
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Appendix B

Code

clc; clear all; close all;

% ADRC Synthesis HINF Tom Leunissen 2021

% To run this code, Yalmip should be installed. The tested SDP solvers are Sedumi and Mosek.

[A,B,C,D] = Huygens_model; %Load model, this model is used for the syntheses.

%% extended system

m = 1; % number of dynamic extensions (per mass/diff eq) !!

n = size(A,1); % dimension original system (total) = ni*p (with p 2 for fully actuated system)

ni = size(B,2); % number of inputs

no = size(C,1); % number of outputs

B_ = [zeros(n/2,ni);eye(n/2,ni)]; % Normalized B matrix B tilde (for fully actuated system)

Z = zeros(no,ni); % Zero matrix

phi = [zeros((m-1)*ni,ni), eye((m-1)*ni);

Z,zeros(ni,((m-1)*ni))];

A_e = [A,B_,zeros(n,ni*m-ni); % Extended state matrix (\eta)

zeros(m*ni,n),phi];

B_e = [B;zeros(m*ni,ni)]; % Extended input matrix

C_e = [C zeros(no,m*ni)]; % Extended output matrix

D_e = zeros(no,ni); % Extended feed through matrix

b = B(ni+1:n,1:ni); % Inverse used in control (R^-1)

%% make struct with sys vars

%These values go to the observer in SIMULINK

ext.A_e = A_e;

ext.B_e = B_e;

ext.C_e = C_e;

ext.D_e = D_e;
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%% LMI Observer H_inf (estimation error)

W2=logspace(0,9,250); % search space for w2--> w_\xi in report!

for jj= 1:length(W2)

w2 = 1/W2(jj);

WW=[eye(n),zeros(n,3); % Weighting matrix W_e

zeros(3,n),eye(3)*w2];

Cz=WW*[eye(n+no),zeros(n+no,size(A_e,1)-n-no)]; % Performance output estimation error

Bw=[zeros(size(A_e,1)-size(B_,1),size(B_,2));B_]; % Performance input estimation error

%% Setting up LMI for observer

I1 = eye(no);

% define variables

P = sdpvar(size(A_e,1));

lh = sdpvar(size(A_e,1),no); %L^

Z = sdpvar(size(Cz,1));

g = sdpvar(1); %gamma_l

eta = 0.00; %

I2=eye(size(Cz,1));

m11 = A_e.’*P+P*A_e-lh*C_e-C_e.’*lh.’;

m12 = P*Bw;

m13 = Cz.’;

m22 = -g*I1;

m23 = zeros(size(m22,1),size(Cz,1));

m33 = -I2;

LMI = [m11 m12 m13;

m12.’ m22 m23

m13.’ m23.’ m33];

% Define Constraints

F = [];

F = [F,LMI<=eta];

F = [F,P>=eta];

F = [F,g>=eta];

opt = sdpsettings; % Standard should work

% Solution observer

sol= optimize(F,g,opt)

gamma = (sqrt(value(g))) % remember square root

lh = value(lh);

P = value(P);

L = inv(P)*lh; % compute L

gamobs=gamma;

% Interpret results
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Appendix B. Code

p_o = eig(A_e-L*C_e) % Eigenvalues unforced observer

%% Check if no constraints were violated

check1 = eig(P)>0;

check2 = eig(value(LMI))<0;

if min(check2)==0

’error 1’

pause

end

if min(check1)==0

’error 2’

end

%% Controller part HINF

MU=logspace(0,9,1000); %Define search range \mu

GAMC=[];

HINF=[];

REP=[];

KK=[];

count=[0]; %initialize count

for i=1:length(MU)

Bxi = B_;

B=Bxi; check which B you want to use!! (un)comment

Cz = [eye(no),zeros(size(A,1)-no)]; %Performance output controller part (e.g. tracking error)

S = sdpvar(size(A,1));

kh = sdpvar(ni,n);

Z = sdpvar(size(Cz,1));

I = eye(1);

DD = zeros(1);

mu=MU(i);

m11 = S*A.’+A*S-kh.’*B.’-B*kh; %

m12 = B*kh;

m13 = Bxi*(1/w2); % w_\xi

m14 = S*Cz.’;

m22 = (-2*S+eye(size(S,1)))*mu;

m23 = zeros(size(m22,1),size(m13,2));

m24 = zeros(size(S,1),size(m14,2));

m33 = -mu*eye(size(m13,2));

m34 = zeros(size(Bxi,2),size(m14,2));

m44 = -eye(size(Cz,1));

LMI = [m11 m12 m13 m14;

m12.’ m22 m23 m24;

m13.’ m23.’ m33 m34;

m14.’ m24.’ m34.’ m44];

eta =0.000;
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%% Define Constraints

F = [];

F = [F, LMI<=eta*eye(size(LMI,1))];

F = [F, S>=0];

%% settings

opt = sdpsettings(’verbose’,0); %do not print results

%% sol

sol= optimize(F,[],opt); % Find feasible sol for each mu

kh = value(kh);

S = value(S);

gamcont=((sqrt(mu))); %

K = kh*inv(S); % compute K

p_k = eig(A-B*K);

%% Check if constraints are not violated

c1=min(eig(S)>0);

c2= min(eig(value(LMI))<0);

ch = c1.*c2;

if ch==1;

count= count+1 % only safe valid solutions

fmu(count) = mu; % feasible \mu

% % total closed loop

A_cl = [A-B*K [B*K Bxi zeros(n,ni*(m-1))]; check whether B=B_xi is (un)commented

zeros(ni*m+n,n) A_e-L*C_e];

B_cl = [zeros(size(A,1),size(B_,2)) ;zeros(size(A_e,1)-size(B_,1),size(B_,2));B_];

C_cl = [eye(no), zeros(no,size(A_cl,1)-no) ];

D_cl=[];

sys = ss(A_cl,B_cl,C_cl,D_cl);

clhinfgain=norm(sys,inf); % real closed loop gain

HINFtot(count) = clhinfgain; % safe Hinf gains in vector

gamtot(count) = gamcont;

KK{count} = K; % Cell array with gains

end

end

[min_hinf,I] = min(HINFtot); % find index of smallest Hinf tot

K = KK{I} % select K that gives minimum Hinf

min_hinf = min_hinf % print minimum Hinf

p_k = eig(A-B*K)

p_o

HHH(Cb)=min_hinf % hinf norm min
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Appendix B. Code

Cb=Cb+1 % count large loop

end

% load ADRC.mat into comp setup

$f = 300; % input filter [Hz] (experimental)

ADRC.A = A;

ADRC.A_e = A_e;

ADRC.b = b;

ADRC.B_e = B_e;

ADRC.C_e = C_e;

ADRC.A_e = A_e;

ADRC.ext = ext;

ADRC.K = K;

ADRC.L = L;

ADRC.m = m;

ADRC.n =n;

ADRC.ni = ni;

ADRC.no = no;

ADRC.min_hinf=min_hinf;

ADRC.f=f;
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