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Nomenclature

Abbreviations

RVE Representative volume element

CIM Composite inclusion model

EGP Eindhoven Glassy Polymer

FEM Finite element model

FE2 Finite element squared

FP Fold plane

iPP Isotactic polypropylene

PBC Periodic boundary conditions

PE Polyethylene

PET Polyethylene terephthalate

Superscripts

a Amorphous

Ba Back

Bo Bottom

c Crystalline

F Front

i Inclusion

L Left

R Right

T Top

Operations

(•)(•) Dyadic product

(•) · (•) Dot product

(•) : (•) Double dot product

(•
˜
) Column assembly of a quantity

(•) Matrix assembly of a quantity

(•)−1 Inverse of a matrix or tensor

(•)T Transpose of a matrix, vector or tensor

(•)RT Right transpose of a 4th-order tensor

(•)S Symmetrization of a tensor defined as 1
2 [(•) + (•)T ]

Symbols

A Surface [mm2]

4C Stiffness tensor [MPa]
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Ccrystal 6×6 Stiffness matrix for the crystalline phase [MPa]

Cmat 6×6 Stiffness matrix [MPa]

C
˜

Column containing stiffness components [MPa]

c Corner node [-]

E Green-Lagrange strain tensor [-]

E Young’s modulus [MPa]

F Deformation gradient tensor [-]

F Force [N]

~f Reaction force vector [N]

f0 Initial volume fraction [-]

f Volume fraction [-]

G Shear modulus [MPa]

Gij Components of matrix that contains derivatives of eigenvalues of U [-]

H Hardening factor [-]

4I Fourth order identity tensor [-]

4IRT Fourth order right transposed identity tensor [-]

4IS Fourth order symmetrical identity tensor [-]

I Identity tensor [-]

I Identity matrix [-]

~i Displacement direction [-]

J Determinant of the deformation gradient tensor [-]

4K Material tangent stiffness [MPa]

K Jacobian matrix [-]

K Bulk modulus [MPa]

k Node number [-]

Lp Plastic velocity gradient tensor [ 1s ]

Mo Matrix of orientations [°]

M Number of simple eigenvalues [-]

m Fitting parameter [-]

NS Number of distinct slip systems [-]

~n Normal vector [-]

P0 Schmid tensor in reference configuration [-]

P̄ µRVE Volume averaged first Piola-Kirchhoff stress tensor [MPa]

P Schmid factor [-]

p Pressure [MPa]
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q Equivalent plastic strain [-]

R Universal gas constant [ J
K mol ]

r Residual [-]

4S Compliance tensor [ 1
MPa ]

S Second Piola-Kirchhoff stress tensor [MPa]

S
′

Thermodynamic state [-]

Smat 6×6 Compliance matrix [ 1
MPa ]

s Slip resistance (including hardening effects) [MPa]

se Number of unique eigenvalues [-]

T Temperature [K]

Tr Reference temperature [K]

U Right stretch tensor [-]

U Activation energy [J]

~u Displacement vector [mm]

V0 Initial volume [mm3]

~x0 Initial coordinates vector of a material point [mm]

~x0 Vector that lays in the interface [-]

α Slip system identifier [-]

β Angle between loading direction and slip direction [°]

γ̇ Slip rate [ 1s ]

γ̇0 Initial slip rate [ 1s ]

∆t Time step [s]

∆γ Slip increment [-]

δ Symbol to imply the variational form [-]

δ1M Dirac delta [-]

ε
˜

Matrix containing Green-Lagrange strain components [-]

ε̄11 Global applied engineering strain in the spherulite model [-]

εeng Engineering strain [-]

εGLi Green-Lagrange strain tensor component [-]

εan Interlamellar separation [-]

εash Interlamellar shear [-]

εcvm Intralamellar deformation (equivalent von Mises strain) [-]

η Viscosity [MPa s]

Λ Logarithmic strain tensor [-]

λ Eigenvalue [-]
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µ Pressure coefficient [MPa]

ν Poisson ratio [-]

σ Cauchy stress tensor [MPa]

σ Cauchy stress component [MPa]

τ Resolved shear stress [MPa]

τ0 Slip resistance (constant value) [MPa]

τback Resolved back stress [MPa]

τeff Effective resolved shear stress [MPa]

τk Equivalent deviatoric stress in process k [MPa]
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Abstract

Semi-crystalline polymers are used in various applications. The mechanical response of a semi-crystalline
polymer is strongly influenced by its microstructure. This emphasises the need of a model that can predict
the mechanical response of a semi-crystalline polymer based on its microstructure. For this purpose a
composite inclusion model is being developed for alpha isotactic polypropylene, which has been successfully
developed for polyethylene in the past. An important difference between polyethylene and polypropylene
is the chain tilt angle. The chain tilt angle has an important but not well-understood influence on the
macroscopic mechanical material properties.

The aim of this project is to unravel the role of the chain tilt angle for the macroscopic mechanical
material properties of alpha isotactic polypropylene using a multiscale finite element model and to validate
the modelling framework of the composite inclusion model. First, the influence of the chain tilt angle
on macroscopic mechanical material properties is investigated using the multiscale finite element model.
After that, the obtained results are used to validate the modelling framework of the composite inclusion
model.

It can be concluded that the chain tilt angle has a small influence on the Young’s modulus and microscopic
elastic deformation. It is shown that the microscopic elastic deformation observed in the multiscale FEM is
in reasonably good agreement with the composite inclusion model, following similar trends, but presenting
differences related to the used geometries. The Young’s moduli predicted by the multiscale FEM and
composite inclusion model are in good agreement. It is also shown that the chain tilt angle has a noticeable
effect on the activation of slip systems.
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1 Introduction

Semi-crystalline polymers are used in various high-tech applications. Because of this it is important to
understand their mechanical behavior. The macroscopic material properties of a semi-crystalline polymer
are strongly influenced by its microstructure. The microstructure consists of several structural features
such as crystal type, size, orientation and crystallinity. These structural features influence both the
mechanical properties and texture evolution of the microstructure. This emphasises the need for a model
that is able to describe micro-structural development (i.e. texture evolution) and to describe macroscopic
material behavior based on the microstructure. To create such a model, it is important to understand the
characteristics of a semi-crystalline polymer at different scales.

1.1 Microstructure of semi-crystalline polymers

Important structures of a semi-crystalline polymer can be distinguished at a mesoscopic scale and a mi-
croscopic scale. The mesoscopic scale lays in between the microscopic and macroscopic scales.

1.1.1 Structure at mesoscopic scale

After cooling from a melt, at certain points, which are called nuclei, crystallization starts. From these
nuclei, crystalline lamellae start growing. Lamellae in a solidified melt can be arranged into three different
structures depending on the flow. With (almost) no flow, lamellae will be arranged in the radial direction,
forming spherulites. With flow they would become aligned resulting in a row structure. As flow keeps
increasing, at a certain point, they will be arranged in a so called shish-kebab structure. The spherulitic
structure is generally found in e.g. polyethylene terephthalate (PET) and isotactic polypropylene (iPP)
[1].

When the crystallization process starts, there is unconstrained amorphous material between all spherulites.
At this moment, spherulites do not touch each other and therefore have a spherical shape. As they
keep growing, the unconstrained amorphous material between them vanishes and the boundaries of the
spherulites start touching each other. Because of this, they become polyhedron shaped which can be
observed at the mesoscopic scale, as shown in Figure 1.1, where the thick white lines are interfaces between
the spherulites [2].

Figure 1.1: Spherulitic structure as observed on the mesoscopic scale, where interfaces between spherulites
are identified by the thick white lines [2].

1.1.2 Structure at microscopic scale

By zooming in on the spherulite, the microstructure is observed, which consists of crystalline lamellae
and amorphous material, as schematically shown in Figure 1.2a. Amorphous molecular chains have a
random orientation, as schematically shown in Figure 1.2b. Therefore, the amorphous material behavior
is isotropic. Crystalline molecular chains are strongly oriented, as schematically shown in Figure 1.2c.
Therefore, the crystalline material behavior is strongly anisotropic. There is an interface (also called the
fold plane) in between the two materials through which the two materials interact with each other. The
molecular chains in the crystalline material are tilted at a certain angle with respect to the fold plane
normal, which is called the chain tilt angle. In α-iPP this angle is approximately 0°, whereas in PET this
angle is approximately 25° and in PE it is 35°.
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(a) (b) (c)

Figure 1.2: (a) A spherulite in which amorphous material and crystalline lamellae are shown [3]. A
schematic analog of the molecular chain orientation in (b) the amorphous material and (c) the crystalline
lamellae.

The macroscopic behavior of a semi-crystalline polymer strongly depends on the microstructure, i.e. the
material behavior of the crystalline lamellae, amorphous material and the interactions between them,
where the chain tilt angle possibly plays an important role on the interactions. Also, texture evolution of
the microstructure strongly influences the macroscopic behavior of a semi-crystalline polymer.

1.2 Models to predict macroscopic behavior based on microstructure

Many models have been developed to predict texture evolution of semi-crystalline polymers. To do this,
Parks et al. [4] and Lee et al.[5] developed Taylor-type models to predict the viscoplastic behavior. Dahoun
et al. [6] used a self-consistent viscoplastic approach to predict texture evolution. In these studies, the
amorphous phase was neglected, which physically has an important role.

1.2.1 Composite inclusion model

To take the amorphous material into account, Lee et al. [7, 8] introduced the composite inclusion model
in 1993. This model only described viscoplastic material behavior. To describe the elasto-viscoplastic
material behavior, van Dommelen et al. [9] extended the composite inclusion model of Lee et al. Here, the
behavior of a material point was described by a composite inclusion as shown in Figure 1.3a. An aggregate
of composite inclusions (Figure 1.3b) was used to describe the material behavior of the microstructure.

(a) (b)

Figure 1.3: (a) Composite inclusion and (b) an aggregate of composite inclusions [10].

The crystalline lamellae were modelled as anisotropic elastic with plastic deformation occurring through
crystallographic slip. The amorphous material was isotropic elasto-viscoplastic where strain hardening was
taken into account as well.

To describe macroscopic material behavior based on the aggregate of composite inclusions (which represents
the microstructure), local-global interaction laws were created. In these interaction laws, each composite
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inclusion is represented as a spring. A popular interaction law is the Taylor interaction model [11, 12, 13].
In a Taylor interaction model, all springs are placed parallel to each other, as schematically shown in Figure
1.4a. The behavior of all springs (composite inclusions) together is then considered to be the macroscopic
material behavior. So, the local strain equals the global strain. Because of this, these models may lead to
unreasonably high stresses due to the anisotropy of the crystalline lamellae. So, a Taylor model satisfies
the inter-inclusion compatibility, but not the traction equilibrium.

To solve this issue, another interaction law was developed, the Sachs interaction model [14, 7]. In a Sachs
model, springs are placed in series as schematically shown in Figure 1.4b. In this case, the local stress
equals the global stress. However, in this model, the inter-inclusion compatibility is not satisfied. The
Taylor model predicts an upper bound of the stress, where the Sachs models predicts a lower bound of the
stress. Due to the strong anisotropy of crystalline lamellae, the difference between the prediction of the
Taylor and Sachs models is large. Therefore, both these models will predict results quite far from reality.

(a) (b)

Figure 1.4: Schematic representation of the local-global (a) Taylor and (b) Sachs interaction laws [15].

Van Dommelen et al. [9] proved that the use of a Taylor/Sachs hybrid interaction law results in physically
more realistic predictions as with a Taylor or Sachs interaction law, and therefore used such an interaction
law in their model. Van Dommelen et al. [9] showed that with increasing crystallinity, both the initial
stiffness and yield stress increase, whereas the post-yield hardening on the other hand is approximately
independent of crystallinity. They also observed that when low crystallinities were used, a more Sachs-like
interaction law should be used. This is because at low crystallinities the amorphous material, with the
lowest stiffness, starts to contribute the most to the material response.

1.2.2 Finite element model

Over time the computing power has increased significantly. Therefore finite element models (FEM) are
getting more and more popular. The advantage of FEM with respect to the mean-field method, is that
the microstructure can be described in detail.

Van Dommelen et al. [16] created a full-field finite element model of the spherulitic structure, of which
the material behavior was described by the mean-field composite inclusion model. Based on this concept,
Poluektov et al. [17] developed a two-scale finite-element model. Here, the material behavior of a material
point in the spherulite model was represented by another FEM, in the form of a representative volume
element (RVE) of the microstructure, using periodic boundary conditions (PBC). The micro RVE was cre-
ated such that the global material behavior was transversely isotropic. In the spherulite model, Poluektov
only used cubic and bcc stacking as shown in Figure 1.5, because it was proven that the irregularity of the
stacking is not important [16].
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Figure 1.5: Two-level finite element modelling scheme [17].

Poluektov et al. created a link between the two scales by gathering the effective elastic material properties
from the micro RVE and used these in each material point of the spherulite model, considering their
orientation with respect to their spherulitic center. The obtained effective elastic material properties in
the spherulite model were then directly used to solve the macroscopic problem.

Poluektov et al. used the multi-scale finite element model to investigate the behavior of isotropic PET
and then validated the modelling framework of the composite inclusion model of van Dommelen et al. [9]
for PET with it. It was shown that the prediction on microstructural deformation was similar for both
models. It was also shown that changing the aspect ratio of the crystalline lamellae at high crystallinity,
almost has no effect on the macroscopic behavior.

1.3 Material models

The multi-scale finite element model created by Poluektov et al. uses elastic material models implemented
in MSC Marc 2008. To get more accurate results and enable plasticity simulations, more complex material
models are required.

Material model for crystalline phase: To describe the material behavior of the crystalline phase,
a crystal plasticity model (CPM) was numerically implemented in the nonlinear finite elements analysis
software MSC Marc 2014 by van Nuland and Oude Vrielink [18]. In this model, the elastic material
behavior was described by Hooke’s law. The plastic material behavior was described by crystallographic
slip, taking all physically distinct slip systems into account.

Material model for amorphous phase: Govaert et al. developed a model to describe the behavior of
glassy polymers, which is called the Eindhoven Glassy Polymer (EGP) model [19], which is implemented
in MSC Marc 2013. This model can be used to accurately describe the material behavior of a polymeric
amorphous phase. Their model has a long history of extensions and improvements such as: implementa-
tion of relaxation times, strain softening, strain hardening, pressure dependent viscosity and dependence
of viscosity on the thermomechanical state. Over time, the modelling of thermo-rheologically complex
materials, thermomechanical history and loading-unloading were enabled.

In the EGP-model, deformation behavior is described by inter-molecular interactions and the molecular
network in parallel. The inter-molecular interactions are described by a Maxwell element. The molecular
network is described by a single spring as shown in Figure 1.6.
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Figure 1.6: The deformation behavior description in the EGP-model schematically shown [20].

1.4 Problem definition

The composite inclusion model is more user-friendly and less time consuming in simulations compared
to the multi-scale finite element model. Therefore, it is desired to develop a composite inclusion model
that can predict macroscopic material properties based on the microstructure, rather than the multi-scale
finite element model. In the past, the composite inclusion model has been successfully developed for
PET. Currently it is being developed for α-iPP. A key difference between α-iPP and other semi-crystalline
polymers (e.g. PET) is the chain tilt angle, which is approximately 0° for α-iPP. The chain tilt angle
has an important but not well understood effect on the macroscopic mechanical material properties of a
semi-crystalline polymer such as Young’s modulus, Poisson ratio and yield stress (i.e. activation of slip
systems), and on the crystalline-amorphous interactions.

The main goal in this thesis is to investigate the influence of the chain tilt angle on macroscopic mechanical
material properties of α-iPP using a multi-scale finite element model and use it to validate the modelling
framework of the composite inclusion model.

1.5 This thesis

In this thesis, the influence of the chain tilt angle on macroscopic mechanical material properties of α-iPP is
studied. In Chapter 2, the composite inclusion model is explained briefly and the multi-scale finite element
model [17], which is used to investigate the influence of the chain tilt angle is explained more elaborate.
Next, in Chapter 3, the simulation results for elastic macroscopic mechanical material properties of α-iPP
are discussed. In Chapter 4 the adjustments made to the multi-scale finite element model to enable elasto-
viscoplastic simulations are discussed. Also, the elasto-viscoplastic simulations to obtain the macroscopic
mechanical material properties of α-iPP and the results are discussed in this chapter. In Chapter 5, the
conclusions and recommendations can be found.
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2 Micromechanical simulation models

In this chapter, first, the composite inclusion model is explained. Next, the multi-scale finite element
model used to unravel the role of the chain tilt angle on macroscopic mechanical material properties and
to validate the composite inclusion model is explained. Also, the used simulations parameters are given in
this chapter.

2.1 Introduction

The model that is used in this project is a full-field numerical model [17]. This model was used to describe
the material behavior of PET in a previous project. It models microscopic material behavior of a bundle
of crystalline lamellae with a representative volume element (RVE) of the microstructure. Effective elastic
material properties are then extracted from this micro RVE and used to model the material behavior
of a spherulite model (which represents the mesoscopic material behavior). Next, the effective elastic
properties of the spherulite model are obtained which equal the macroscopic effective elastic properties.
Finally, deformations are applied to the micro RVE based on the microstructural deformation as observed in
the spherulite model. Based on these deformations, pole figures are used to investigate the microstructural
deformation. The multi-scale finite element model is only suitable for elastic simulations, i.e. all used
material models are purely elastic. During this project, results obtained with the multi-scale finite element
model are compared to results obtained with the composite inclusion model, which is explained briefly
first.

2.2 Composite inclusion model

In this section, the composite inclusion model [21], to which results obtained with the multi-scale finite
element model will be compared, is explained briefly. In this project, the composite inclusion model is
not used to perform simulations. Figure 2.1a shows a single composite inclusion, which is used to model
microstructural material behavior. Figure 2.1b shows an aggregate of composite inclusions, which is used
to model macroscopic material behavior.

(a) (b)

Figure 2.1: (a) Single composite inclusion with, crystalline and amorphous material, an interface, ~n a vector
normal to the interface and ~c the crystalline chain direction. (b) An aggregate of composite inclusions to
represent the macroscopic material behavior [21].

2.2.1 Single composite inclusion

A single composite inclusion consists of both an crystalline and amorphous volume fraction:

1 = fa0 + f c0 , (2.1)

where fa0 and f c0 are the amorphous and crystalline initial volume fractions respectively. Taking (initial)
volume fractions into account, the deformation gradient tensor and Cauchy stresses in each inclusion i are
calculated:

F i = fa0F
a + f c0F

c, (2.2)
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σi = faσa + f cσc, (2.3)

where fa and f c are the amorphous and crystalline volume fractions respectively, F the deformation
gradient tensor and σ the Cauchy stress tensor. The two materials are mechanically coupled by two
conditions. The first condition is:

F i · ~xi0 = F a · ~xi0 + F c · ~xi0, (2.4)

where ~xi0 is a vector that lays in the interface shown in Figure 2.1a. The second condition is:

σi · ~n = σa · ~n+ σc · ~n, (2.5)

where ~n is the vector normal to the interface as shown in Figure 2.1a.

2.2.2 Amorphous phase

To capture the isotropic elasto-viscoplastic behavior of the amorphous phase, the so-called Eindhoven
Glassy Polymer (EGP) model is used. Throughout this report, if the EGP-model is discussed for the
multi-scale finite element model, a version of the EGP-model, implemented in MSC Marc is meant. The
composite inclusion model makes use of a different EGP-model, one that is not implemented in MSC Marc,
but which is fully operational in Matlab 2020.

In the EGP-model, implemented in the composite inclusion model, the amorphous phase is described
as schematically shown in Figure 2.2. The stress-strain behavior is captured by strain hardening (Gr), j
modes, indicated in green and k processes, indicated in red. A mode is a Maxwell element, which compared
to other modes, that belong to the same process, has a different shear modulus and/or relaxation time,
but has the same dependence on stress, temperature, pressure and thermal history. A process is a group
of modes, where the stress, temperature, pressure and thermal history dependencies differ compared to
other processes.

Figure 2.2: Schematic representation of the multi-process, multi-mode EGP-model analog [21].

In each mode j of process k, the viscosity is described by a non-linear relation, depending on the equivalent
deviatoric stress τk, temperature T , pressure p and thermodynamic state S

′

k:

ηkj = η0k,j
τk/τ0k

sinh (τk/τ0k)
exp

(
∆Uk
R

(
1

T
− 1

Tr

))
exp

(
µkp

τ0k

)
exp

(
S

′

k

)
, (2.6)

where η0k,j is the viscosity in the rejuvenated reference state, ∆Uk the activation energy, R the universal
gas constant, Tr the reference temperature and µk a pressure coefficient. For more information on the
non-linear viscosity, see [21].
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2.2.3 Crystalline phase

The crystalline structure in semi-crystalline polymers is a stacking of chains with a certain order and
repetition. Therefore, the crystalline phase is strongly anisotropic. To capture this material behavior, an
anisotropic elasto-viscoplastic material model is used. The elastic part is described by the elastic Cauchy
stress tensor, obtained as:

σe = J−1e
(
Fe · Se · F Te

)
, with Se = 4C : Ee, (2.7)

where Fe is the elastic deformation gradient tensor, Je the determinant of Fe, Se the second Piola-Kirchhoff
stress tensor, 4C the stiffness tensor and Ee the elastic Green-Lagrange strain tensor. For more details,
see [21]. The plastic deformation is captured by a viscoplastic rate-dependent model. It can capture fine
slip, which is predominant at the initial stages of deformation [22] and is defined as:

Lp = Ḟp · F−1p =

Ns∑
π=1

γ̇πP π
0 , with P π

0 = ~sπ0~n
π
0 , (2.8)

where Lp is the plastic velocity gradient tensor, Fp the plastic velocity gradient tensor, γ̇π the slip rate on
slip system π, P π

0 the Schmid tensor, ~sπ0 the slip direction and ~nπ0 the vector normal to the slip system.
For more details see [21].

2.2.4 Hybrid interaction law

At this point, one inclusion and its material behavior is defined. To represent the macroscopic material
behavior, an aggregate of inclusions, of which an example is shown in Figure 2.1b, is required. A hybrid
interaction law, called the Û -inclusion model [9] is used, which is a combination of the Taylor [11, 12, 13] and
Sachs [14, 7] interaction laws. This interaction law is basically a set of equations, which guarantees local-

global compatibility. In the Û -inclusion model, six auxiliary deformation-like unknowns are introduced.
Then, a Sachs-like interaction law is used. Finally, also the inclusion-averaged rotations are prescribed.
For more details see [9].

2.3 RVE of the microstructure

In this section, everything related to the micro RVE, which is used in the multi-scale finite element model
is discussed.

2.3.1 Hexagonal domains

The micro RVE is built with hexagonal domains consisting of amorphous material and crystalline lamellae,
for example as shown in Figure 2.3a. During this project, crystallinities of 50%, 60% and 70% are used. The
hexagonal domains constructed for each crystallinity are shown in Figure 2.3a, 2.3b and 2.3c respectively.
Furmanski et al. [23] proved that the yield kinetics of PE do not depend on crystal thickness. Eight-node
isoparametric arbitrary hexahedral elements are predominantly used and six-node isoparametric arbitrary
pentahedral elements are used only on some non-horizontal boundaries of the hexagonal domains. Both
element types use full integration. Along each boundary, 20 mesh elements are present. The width and
height of the hexagonal domains are set to 0.2 mm and 0.1732 mm respectively. The thickness of a
hexagonal domain is set to 0.01 mm, which is equal to the thickness of two elements.
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(a) (b) (c) (d)

Figure 2.3: Hexagonal domains used for a crystallinity of (a) 50%, (b) 60%, (c) 70% and (d) a schematic
representation of a lamellae stack [24].

In these hexagonal domains, a perfect bond between the crystalline and amorphous material is assumed.
This is not physically relevant as shown in Figure 2.3d. Here, the amorphous material is indicated by the
blue arrow, crystalline material by the green arrow and the fold plane with the red arrow. It can be seen
that at the fold plane, the crystalline chains fold back into the crystalline material. Amorphous molecular
chains can go through these folds, making both phases interact with each other. For now, this is too
complex to take into account in the mesh. Therefore, a perfect bond between the two phases is assumed
in this project.

2.3.2 Material behavior

The amorphous material behavior is described by an elastic isotropic material model available in MSC
Marc 2018. The used material properties for the amorphous phase are the same as the material parameters
that are used in the composite inclusion model. A Poisson’s ratio (ν) of 0.49 and Young’s modulus of 575
MPa are used.

The crystalline material behavior is described by an elastic anisotropic material model available in MSC
Marc 2018. Tashiro et al. [25] calculated the stiffness for the crystalline phase. They assumed the crystal
phase to consist of ideal molecular chains only. In reality the crystalline phase always interacts with the
amorphous phase, therefore the stiffness predicted in their work was an over prediction w.r.t. what is
required in this project. Kamezawa et al. [26] used a composite model to describe interactions between
the amorphous and crystalline phases. In this work, chain folds were not considered. Laschet et al. [2] took
folded chains and packing density of the molecular chains into account. This led to the stiffness matrix at
room temperature which is used in this project:

Ccrystal =


4340 1290 1320 0 −120 0
1290 2810 1230 0 300 0
1320 1230 16460 0 −190 0

0 0 0 1410 0 −40
−120 300 −190 0 1460 0

0 0 0 −40 0 1650

MPa. (2.9)

2.3.3 Crystal lattice

As can be seen, the crystalline phase is strongly anisotropic. Therefore, the orientation of the crystalline
phase is important. The stiffness components are defined in a Cartesian coordinate system {~ec1,~ec2,~ec3} as
shown in Figure 2.4a, in which an example of a monoclinic lattice is shown. It is shown, that in the
monoclinic lattice, ~ec2 is parallel to b, ~ec3 parallel to c and ~ec1 is not parallel to a due to the angle β, which
6= 90°.
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(a) (b)

Figure 2.4: (a) A schematic representation of a monoclinic lattice in a Cartesian coordinate system
{~ec1,~ec2,~ec3} [15] and (b) the monoclinic lattice for α-iPP [21].

The monoclinic lattice parameters used during this project for α-iPP are: a = 6.65 nm, b = 20.96 nm,
c = 6.50 nm, β = 99.2°, which are determined by Natta et al. [27], leading to the monoclinic lattice for
α-iPP as shown in Figure 2.4b [21]. The chain direction, of the crystalline phase is parallel to c as shown
in Figure 2.4b, so, the crystalline phase has the highest stiffness in the chain direction (see location (3,3)
in Equation 2.9).

The fold planes investigated during this project are: (106̄), (010), (001) and (1 1̄1 6̄). The (106̄) and (001)
fold planes are close to each other and the (106̄) fold plane seems to be more physically relevant [28]. The
(010) fold plane was observed by [29] based on experimental findings. The (1 1̄1 6̄) fold plane is physically
not relevant for alpha-iPP, but it is chosen purely for the investigation of the influence of the chain tilt
angle. The fold planes are shown in the monoclinic lattice of α-iPP as shown in Figures 2.5a - 2.5d.

(a) (b)

(c) (d)

Figure 2.5: The monoclinic lattice for α-iPP, with the fold plane in blue. With (a) the (106̄) fold plane,
(b) the (001) fold plane, (c) the (010) fold plane and (d) the (1 1̄1 6̄) fold plane.
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2.3.4 Chain tilt angle

Figure 2.6 schematically shows what a chain tilt angle is. Here, amorphous material is indicated in blue,
crystalline material in red, the chain direction in yellow, the normal to the fold plane in grey, the fold
plane in orange and alpha is the chain tilt angle.

Figure 2.6: Schematic representation of the chain tilt angle in a 2D example. With amorphous material
in blue, crystalline material in red, chain direction in yellow, the normal to the fold plane in grey, the fold
plane in orange and alpha being the chain tilt angle.

By only defining the fold plane, there is no unique solution for the chain tilt angle. Therefore, the growth
direction of the crystalline phase must be defined as well. For the (106̄) fold plane, the growth direction is
the intersection between the fold plane and the monoclinic ac-plane [30]. The growth direction in other fold
planes was not found in literature, therefore, it is assumed that in other fold planes, the growth direction
also is the intersection between the fold plane and the monoclinic ac-plane. For example, for the (001) fold
plane which is shown in Figure 2.5b, the growth direction is parallel to the monoclinic a-axis, since the fold
plane lays in the monoclinic ab-plane. In the (010) fold plane, the growth direction can not be determined
this way, because the ac-plane is the fold plane. Therefore, it is assumed that the growth direction is the
same as for the (106̄) fold plane. Furthermore, the growth direction is parallel to the z-direction as shown
in Figure 2.3a.

The chain tilt angles, investigated in this project, are shown in Table 1. This table also shows the fold
plane, normal to the fold plane and crystal growth direction. The directions of the normal vector and
crystal growth are defined in the Cartesian coordinate system {~ec1,~ec2,~ec3} as shown in Figure 2.4a.

Table 1: Chain tilt angle, its corresponding fold plane, vector normal to the fold plane and crystal growth
direction.

Chain tilt angle [°] Fold plane Normal vector {~ec1,~ec2,~ec3} Growth direction {~ec1,~ec2,~ec3}
≈ 0 (106̄) [-0.0031 0 1] [1 0 0.0031]
9.2 (001) [0.162 0 1] [1 0 -0.162]
90 (010) [0 1 0] [1 0 0.0031]
≈ 30 (1 1̄1 6̄) [-0.0031 0.577 1] [1 0 0.0031]

To get a better understanding of these tilt angles, they are schematically shown in Figure 2.7. Here,
crystalline material is shown in red, amorphous material in blue and the chain direction in yellow. The zy
plane is the fold plane, thus, the chain tilt angle is the angle between the yellow lines and the x-axis (which
is parallel to the normal of the fold plane). Every yellow line is in the xy-plane except for the (001) fold
plane. Here the molecular chain direction is tilted 9.2° around the y-axis towards the z-axis. The growth
direction is parallel to the z-axis.

Figure 2.7: Schematic representation of the chain tilt angle, where crystalline material is shown in red,
amorphous material in blue and the chain direction in yellow.
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2.3.5 Micro RVE

The micro RVE consists of a n× n stacking of hexagonal domains. The top hexagonal domain is used for
rotations of 0°, 60°, 120°, 180°, 240° and 300°, the bottom hexagonal domain is used for rotations of 30°,
90°, 150°, 210°, 270° and 330°. Poluektov et al. proved by a convergence study that a 6 × 6 stacking, of
which an example is shown in Figure 2.8a, is sufficient to obtain transversely isotropic material behavior
in the out-of-plane direction if the following three restrictions were applied:

1. Number of hexagonal domains with same orientations is uniform.

2. A hexagonal domain can not border another hexagonal domain with the same orientation.

3. The average position of hexagonal domains with the same orientation must be close to the center of
the micro RVE.

(a) (b)

Figure 2.8: Micro RVE with crystalline material in red and amorphous material in blue. (a) The front
view and (b) the side view. The z-direction is parallel to the crystalline growth direction.

The mesh as for example shown in Figure 2.8a is made based on a matrix of orientations Mo. Such a
matrix describes the rotation of each hexagonal domain within the micro RVE. The matrix of orientations
that belongs to the micro RVE shown in Figure 2.8a is:

Mo =


150 0 330 90 300 240
180 210 180 30 60 120
270 300 240 90 270 0
120 60 30 150 240 30
330 150 90 270 300 210
0 120 60 210 330 180

 [°]. (2.10)

The orientations shown in the matrix at locations (1,1), (1,6), (6,1) and (6,6) are also indicated in Figure
2.8a. An orientation of 0° belongs to a hexagonal domain with crystal lamellae in the vertical direction, as
shown in the top hexagonal domain in Figure 2.3a. The rotations shown in the matrix of orientations are
defined counter clockwise. For each crystallinity (50%, 60% and 70%), five different matrices of orientations
are used. So, in total 15 matrices are used, which are shown in Appendix A.

2.3.6 Periodic boundary conditions

The micro RVE is defined in a local coordinate system with the unit vectors ~x, ~y, ~z. PBC are applied to the
micro RVE to represent a larger microstructure. The PBC are explained according to Figure 2.9, where
the geometry is described by four corner points cj with j = 1, 4. The following PBC are applied:
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~uR − ~uL = ~uc2 − ~uc1 , (2.11)

~uT − ~uBo = ~uc3 − ~uc1 , (2.12)

~uF − ~uBa = ~uc4 − ~uc1 , (2.13)

where ~u is the displacement vector.

Figure 2.9: Schematic representation of corners (cj for j = 1, 4) that can move freely in a cubic volume
when PBC are applied [17].

2.4 Obtaining material properties of the micro RVE

The effective elastic properties are obtained by deforming the micro RVE in six different ways using the
nonlinear finite element analysis software MSC Marc 2018. Table 2 in combination with Figure 2.9 explains
how the micro RVE is deformed, where corner node # denotes the corner number as shown in Figure 2.9.

Table 2: Applied micro RVE deformations where εeng is the engineering strain.

Deformation # corner node # displacement direction Displacement [mm]
1 2 ~x (c2 − c1)εeng
2 3 ~x (c3 − c1)εeng
3 4 ~x (c4 − c1)εeng
4 3 ~y (c3 − c1)εeng
5 4 ~y (c4 − c1)εeng
6 4 ~z (c4 − c1)εeng

In every deformation, εeng is set to 0.01 [-]. Additionally, the nodes cj that are not displaced are fixed
in all three directions. The node that is displaced is fixed in the two remaining directions. So, the shear
deformations are simple shear as shown in Figure 2.10a and the extension deformations are uni-axial strain
as shown in Figure 2.10b.

(a) (b)

Figure 2.10: Schematic 2D representation of (a) simple shear and (b) uni-axial strain. In each figure, the
undeformed state is shown in purple and the deformed state in black.
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Next, the second Piola-Kirchhoff stress tensor S is calculated:

S = F−1 · P̄ µRVE, (2.14)

where F is the deformation gradient tensor and P̄ µRVE the volume averaged first Piola-Kirchhoff stress
tensor. The average first Piola-Kirchhoff stress tensor is calculated following Kouznetsova et al. [31]:

P̄ µRVE =
1

V0

∑
j=2,4

~f(cj)~x
0(cj), (2.15)

where V0 is the initial volume of the micro RVE, ~f(cj) the reaction forces in corner node cj and ~x0 the
initial position of corner node cj .

The stiffness components are determined by writing Hooke’s law in matrix notation:S1

...
S6

 =

C11 . . . C16

...
. . .

...
C61 . . . C66


ε

GL
1
...

εGL6

 , (2.16)

where Si are second Piola-Kirchhoff stress tensor components, Cij stiffness components and εGLi Green-
Lagrange strain tensor components. This is rewritten as follows:S1

...
S6

 =

C11ε
GL
1 . . . C16ε

GL
6

...
. . .

...
C61ε

GL
1 . . . C66ε

GL
6

 . (2.17)

By splitting the stiffness and strain components and rewriting the stiffness in column form, one ends up
with the following equation:

S
˜

= εC
˜
, (2.18)

where S
˜

is a 6× 1 column, ε a 6× 21 matrix and C
˜

a 21× 1 column. Note that with one deformation of
the micro RVE, there will be many zero columns in ε. Therefore, six deformations are applied, resulting
in S

˜
being a 36× 1 column and ε a 36× 21 matrix. First, both sides of the equation are pre-multiplied by

εT . Next, (εT ε) is inversed to isolate C
˜

:

C
˜

= (εT ε)−1εTS
˜
. (2.19)

From these stiffness components, the 6× 6 stiffness matrix Cmat is obtained. Next, the 6× 6 compliance
matrix Smat is calculated:

Smat = C−1mat. (2.20)

Finally, the effective elastic properties of the micro RVE are obtained:

Smat =



1
Ex

−νyx

Ey
−νzxEz

0 0 0

−νxy

Ex

1
Ey

−νzyEz

−νxz

Ex
−νyz

Ey

1
Ez

0 0 0

0 0 0 1
2Gyz

0 0

0 0 0 0 1
2Gzx

0

0 0 0 0 0 1
2Gxy


. (2.21)

2.5 Spherulite model

To model the spherulitic structure, which is observed at the mesoscopic scale, a spherulite model is created
in a global spherical coordinate {~e1,~e2,~e3}. It is assumed that the spherulite fills up the whole volume, i.e.
there is no unconstrained amorphous material in between spherulites [17]. A bcc spherulitic stacking is
assumed as shown in Figure 2.11. It was proven that the irregularity of the stacking is not important [16].
Due to symmetry, only one eighth of the periodic cubic volume is modelled.
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Figure 2.11: Spherulite stacking with the spherulite model, where ~z represents the growth direction of a
material point (e.g. the blue dot) and the red dots represent spherulitic centers [17].

The model contains two spherulitic centers, indicated with red dots. From these corners, crystalline
lamellae grow in radial direction, indicated by the z-direction. An example of this is given for the material
point indicated by the blue dot, of which the growth direction is shown with the red vector ~z. So, the
orientation of the microstructure depends on the location in the spherulite model.

The obtained effective material properties in the micro RVE are used to describe the material behavior in
the spherulite model, considering the orientation of the microstructure in the spherulite model as previously
explained. An elastic orthotropic material model, available in MSC Marc 2018 is used for this.

The mesh used for the spherulite model is a cube with length = width = height = 1 mm. Linear isopara-
metric three-dimensional full integration tetrahedron elements are used. The mesh is shown in Figure
2.12.

Figure 2.12: Mesh for spherulite model.

2.6 Obtaining material properties of the spherulite model

The spherulite model is globally deformed according to the deformation gradient tensor:

F =

1.01 0 0
0 0.995 0
0 0 0.995

 . (2.22)

So, the global applied engineering strain ε̄11, of which its purpose becomes clear in Chapter 2.7, equals
0.01 [-]. The components of the Cauchy stress tensor σ are then calculated by dividing force Fii by the
surface area Aij : σxxσyy

σzz

 =


Fxx
Ayz
Fyy
Axz
Fzz
Axy

 . (2.23)

Then, the second Piola-Kirchhoff stress tensor S and Green-Lagrange strain tensor E are calculated as
shown in Equation 2.24 and Equation 2.25 respectively:

S = JF−1 · σ · F−T , (2.24)
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E =
1

2
(F T · F − I), (2.25)

where F is the deformation gradient tensor. Next, the following relation is used:
εGL1

εGL2

εGL3

εGL4

εGL5

εGL6

 =
1

E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2 + 2ν 0 0
0 0 0 0 2 + 2ν 0
0 0 0 0 0 2 + 2ν




S1

S2

S3

S4

S5

S6

 , (2.26)

where εGL4 = εGL5 = εGL6 = S4 = S5 = S6 = 0 because of the deformation gradient tensor shown in
Equation 2.22. From this, the Young’s modulus and Poisson ratio are determined on the mesoscopic scale
and equal those of the macroscopic scale, therefore, also the macroscopic problem is solved.

2.7 Procedure to investigate microstructural deformation

In this section, it is first explained how to interpret pole figures (which are used to investigate the defor-
mation behavior of the microstructure). Next, the procedure to obtain pole figures is explained.

A pole figure tells something about the orientation of a vector in a 3D space. For example, consider the
vector in Figure 2.13a. The orientation of this vector is plotted on a 2D plane perpendicular to the view
direction using equal area projection. This is shown in Figure 2.13b where the 3-direction is the view
direction, thus, the direction is plotted on the 1-2 plane. The resulting pole figure is shown in Figure
2.13c.

(a) (b) (c)

Figure 2.13: Explanation on how to interpret pole figures. (a) A pole figure is used to indicate the direction
of a vector in a 3D space. (b) That direction is then plotted on a 2D plane depending on the view direction.
This results in (c) the actual pole figure [15].

An example of pole figures that are used in this project is shown in Figure 2.14. The pole figures used
during this project have an ~e1 view direction which is the spherulitic loading direction.
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Figure 2.14: Pole figure examples, with on the left intralamellar deformation, in the middle interlamellar
separation and on the right interlamellar shear. In this project, all deformation values in the pole figures
are normalized to the globally applied strain ε̄11 in the spherulite model.

The vector orientations that are plotted in the pole figures represent the orientation of a vector, normal to
a fold plane of the micro RVE in the spherulite model (in Chapter 2.5 the orientation of the micro RVE
in the spherulite model is explained and in Chapter 2.3.3, fold planes are explained). The procedure to
obtain these vectors is explained next. After that, the three deformation types shown in Figure 2.14 are
defined.

To obtain these pole figures, first, the spherulite model must be deformed. Next, 25 nodes are randomly
selected in the spherulite model, where each node represents a micro RVE with a certain orientation.
Each micro RVE consists of 12 differently oriented vectors normal to the fold plane, because of differently
oriented hexagonal domains (0°, 30°, ... , 330°). This leads to a total of 25× 12 = 300 differently oriented
vectors normal to the fold plane, which are observed in the global spherulitic coordinate system {~e1,~e2,~e3}.
An example of these 300 different oriented normal vectors is shown in Figure 2.14.

In the 25 randomly selected nodes, it is determined how the microstructure is deformed, by determining
the Green-Lagrange strain tensor. Next, 25 micro RVEs are deformed according to the observed Green-
Lagrange strain tensors, i.e. the microstructural deformation as observed in the spherulite model is repro-
duced. In these micro RVEs, intralamellar deformation εcvm, interlamellar separation εan and interlamellar
shear εash, as shown in Figure 2.14, are investigated:

εcvm =

√
2

3
(ε2c11 + ε2c22 + ε2c33 +

γ2c23
2

+
γ2c13

2
+
γ2c12

2
), (2.27)

εan = εa11, (2.28)

εash =
√
ε2a12 + ε2a13, (2.29)

where εcvm is the von Mises strain in the crystalline phase, εamn the average strain components in the
amorphous phase and εcmn and γcmn are both average strain components in the crystalline phase. These
deformations are calculated in a new defined coordinate system, the fold plane coordinate system {~i1,~i2,~i3},
where ~i1 is normal to the fold plane and ~i3 parallel to the crystalline growth direction, which for example
is shown in Figure 2.15a. Figures 2.15a and 2.15b show the movement (indicated with the yellow arrows)
between two crystals as described by Equations 2.28 and 2.29 respectively.
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(a) (b)

Figure 2.15: Schematic representation of (a) interlamellar separation and (b) interlamellar shear in the fold
plane coordinate system {~i1,~i2,~i3}, where ~i1 is normal to the fold plane and ~i3 parallel to the crystalline
growth direction. The movement of crystalline phases w.r.t. each other is represented by the yellow
vectors.
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3 Elastic macroscopic mechanical material properties of α-iPP

In this chapter, results obtained with the composite inclusion model and multi-scale finite element model
are discussed. First, the influence of the chain tilt angle on the Young’s modulus is shown. After that,
the influence of the chain tilt angle on microstructural deformation is shown. Finally, the results of the
multi-scale finite element model and composite inclusion model are compared.

3.1 Introduction

The main goal of this project is to investigate the influence of the chain tilt angle on macroscopic mechanical
material properties of α-iPP and to validate the modelling framework of the composite inclusion model.
The influence of the chain tilt angle on the macroscopic elastic mechanical material properties of α-iPP is
investigated first by using the multi-scale finite element model [17]. The obtained results are also compared
to the obtained results with the composite inclusion model.

3.2 Simulation results

In this section, the simulation results obtained with the multi-scale finite element model are discussed. As
mentioned before, three different crystallinities are simulated, with for each five different micro RVEs (as
shown in Appendix A), with for each four different fold planes.

3.2.1 Young’s moduli

In this section, the obtained macroscopic Young’s moduli are discussed, which are shown in Figure 3.1 for
each fold plane and different crystallinities.

Figure 3.1: Macroscopic Young’s modulus for 50%, 60% and 70% crystallinity and for each fold plane. The
error bars and curves are the results obtained with the multi-scale finite element model and the composite
inclusion model respectively.

First, the multi-scale finite element model results are discussed. After that, the results are compared to
the results of the composite inclusion model.

Figure 3.1 shows that the Young’s moduli increase with increasing crystallinity. It can be seen that the
result for the (001), (1 1̄1 6̄) and (106̄) fold planes are almost identical. The (010) fold plane has a higher
Young’s modulus. The reason why the material with the (010) fold plane has a higher Young’s modulus is
explained according to Figure 3.2. In this figure, it can be seen that when crystals of bordering hexagonal
domains touch each other under an angle of 0 or 30°, a crystal path occurs. A few crystal paths are
indicated by black lines. Assume that the micro RVE shown in Figure 3.2 is loaded in the y-direction,
then the crystal paths with a (010) fold plane can interact more efficiently with each other compared to
the (106̄) fold plane, because the crystalline chain direction (indicated by the yellow lines) is the stiffest
direction of the crystal material.
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Figure 3.2: Micro RVE with crystal paths indicated by black lines and molecular chain directions in yellow
for the (010) and (106̄) fold planes.

This effect of crystal paths is also observed in stress fields and is shown in Figures 3.3a and 3.3b. The
stress fields (σyy) for the micro RVE shown in Figure 3.2 after it is loaded in the y-direction are shown.
The Figures 3.3a and 3.3b belong to the (106̄) and (010) fold planes respectively. The crystal paths can
be seen more clearly in the right figure. This means that there is a larger stress gradient between the
amorphous and crystalline material, i.e. the crystalline material is loaded more efficiently, leading to a
higher Young’s modulus.

(a) (b)

Figure 3.3: σyy field observed in the micro RVE after a vertical load is applied with (a) the (106̄) fold
plane and (b) (010) fold plane. The color bar represents the stress in the y-direction.

So, the capability of a crystal to carry load on to another crystal, the “crystal-crystal interaction efficiency”,
plays an important role on the macroscopic Young’s modulus. Therefore, the higher E2 of the crystalline
phase in the fold plane coordinate system as shown in Figure 3.4, the higher the crystal-crystal interaction
efficiency. The E2 component is shown in Table 3 for all fold planes. The capability of a crystal to carry
load onto the amorphous phase, the “crystal-amorphous interaction efficiency” is determined by E1 as
shown in Table 3 and the Young’s modulus of the amorphous phase.
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Table 3: Young’s and shear moduli of the crystalline phase for each fold plane in the fold plane coordinate
system {~i1,~i2,~i3}.

Fold plane E1 [GPa] E2 [GPa] E3 [GPa] G23 [GPa] G31 [GPa] G12 [GPa]
(106̄) 15.717 2.302 3.671 1.409 1.649 1.406
(001) 13.316 2.302 3.660 1.409 1.718 1.406
(010) 2.302 15.717 3.671 1.649 1.409 1.406

(1 1̄1 6̄) 5.775 2.2289 3.671 1.495 1.545 2.051

Figure 3.4: Fold plane coordinate system {~i1,~i2,~i3}, where ~i1 is normal to the fold plane and ~i3 is parallel
to the crystalline growth direction. With crystalline lamellae in red and amorphous material in blue.

The reason why the other fold planes lead to the same macroscopic Young’s modulus is that the crystal-
crystal interaction efficiency is approximately the same as shown in Table 3. It can be seen that the
crystal-amorphous interaction efficiency differs for each fold plane. However, because the amorphous
material has a much lower Young’s modulus, the crystal can not interact efficiently with the amorphous
material. Therefore, this does not have a large effect on the macroscopic Young’s modulus. The Young’s
modulus in the crystallographic growth direction and shear moduli are approximately the same for each
fold plane as shown in Table 3.

In Figure 3.1, it can be seen that with the composite inclusion model, the (010) fold plane does not have
a higher Young’s modulus compared to the other fold planes. This can be explained due to the fact that
the composite inclusion model does not take crystal paths into account. Overall, the Young’s modulus for
each fold plane observed in the multi-scale finite element model is in good agreement with the composite
inclusion model.

Conclusion: The crystal-crystal interaction efficiency is more important than the crystal-amorphous
interaction efficiency for the macroscopic Young’s modulus when comparing different fold planes. Loads
can be carried more efficiently from one crystal to another with increasing crystal-crystal interaction
efficiency. This leads to a higher Young’s modulus. A high crystal-amorphous interaction efficiency is
less important due to the significantly lower stiffness of the amorphous material. Overall, the Young’s
modulus for each fold plane observed in the multi-scale finite element model is in good agreement with the
composite inclusion model.

3.2.2 Micro-structural deformation of α-iPP

In this section, the deformation behavior of the microstructure of α-iPP is discussed. First, Figures 3.5a
- 3.5c are discussed, in which intralamellar deformation, interlamellar separation and interlamellar shear
are shown respectively as a function of crystallinity. All values are normalised by the strain applied to the
spherulite model ε̄11.
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(a) (b)

(c)

Figure 3.5: Standard deviation plots for (a) intralamellar deformation, (b) interlamellar separation and (c)
interlamellar shear, where all values are normalised to the applied strain ε̄11 on the spherulite model. In
some plots it seems as if the (106̄) fold plane is missing, however, the results of this fold plane are almost
identical to those of the (001) fold plane, therefore, they are hard to distinguish.

Intralamellar deformation: It can be seen that the results for all fold planes are almost identical for
a certain crystallinity. With increasing crystallinity, the intralamellar deformation slightly increases. This
can be easily explained due to the fact that with higher crystallinity, the micro structure gets stiffer. This
results in higher stresses to obtain the same deformation which results in more intralamellar deformation.

Interlamellar separation: The first thing that is clearly visible is that the average separation is ap-
proximately 0, regardless of the fold plane and crystallinity. This is explained due to the fact that the
spherulite model represents isotropic material behavior. It also shows that with increasing crystallinity the
magnitudes of separation (with a + sign) do not change. This is counter intuitive because with increasing
crystallinity, the stresses to get the same deformation will increase and increasing stresses result in larger
strain. It remains unclear why exactly this happens. However, with a test it is shown that with increasing
crystallinity the interlamellar separation does not increase. The two micro RVEs that are used are shown
in Figures 3.6a and 3.6b. They both have the same orientations. An elongation of 1.1 in the x-direction is
applied and both have the (106̄) fold plane.
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(a) (b)

Figure 3.6: Used meshes to test interlamellar separation as a function of crystallinity. With (a) a micro
RVE with 50% crystallinity and (b) the same micro RVE but with 60% crystallinity.

The results are shown in Figure 3.7a and 3.7b. Here it can be seen that the εxx component between vertical
crystals is the same for both micro RVEs. So, it is observed here as well that for increasing crystallinity
the interlamellar separation does not increase.

(a) (b)

Figure 3.7: εxx field observed in the micro RVE after an elongation of 1.1 has been applied in x-direction.
With a micro RVE of (a) 50% crystallinity and (b) 60% crystallinity.

It remains uncertain why the magnitude of the positive interlamellar separation does not increase with
increasing crystallinity. It most likely has to do something with its surrounding. However, in Figure 3.5b,
it is visible that negative separation does increase with increasing crystallinity as one would expect.

Interlamellar shear: From Figure 3.5c it can be concluded that the interlamellar shear is only slightly
dependent on the fold plane. Only the (010) fold plane yields larger shear values. It also shows that
the interlamellar shear increases with increasing crystallinity. As explained before, increasing crystallinity
leads to higher stresses, leading to an increase in interlamellar shear.

3.2.3 Detailed micro-structural deformation of α-iPP

In this section, the deformation of the microstructure is discussed in detail. To do this, four pole figures
are shown, which are obtained with the multi-scale finite element model (Figures 3.10 - 3.13) and four
that are obtained with the composite inclusion model (Figures 3.14 - 3.17). The center of the pole figures

30



(~e1-direction) is parallel to the loading direction in the spherulite model. All values in the pole figures are
normalised to the globally applied strain ε̄11 in the spherulite model. First, the ones obtained with the
multi-scale finite element model will be discussed. After that, they will be compared to those obtained
with the composite inclusion model.

The pole figures obtained with the multi-scale finite element model are all obtained through a 50% crys-
tallinity micro RVE with matrix of orientations one (see Appendix A). The multi-scale finite element model
pole figures shown here give a good representation of the trend observed in multi-scale finite element model
pole figures for 60% and 70% crystallinity (which are shown in Appendix B). Changes in magnitudes due
to higher crystallinities are already discussed in Chapter 3.2.2.

Intralamellar deformation: It can be seen, that the trend for the (106̄) and (001) fold planes are
similar. Their values are lowest in the center of the pole figure (i.e. with fold plane normals parallel to
the globally applied deformation in the spherulite model) and increase towards the outside of the pole
figure. This can be explained due to the fact that with normals to the global ~e1-direction, the crystals
are mainly interacting with amorphous material. The more the normals are pointed perpendicular w.r.t.
the global ~e1-direction, the more the crystals are exposed to shear, resulting in easier deformation of
the crystal. When the normals are approximately perpendicular to the globally applied deformation, the
crystal-crystal interaction efficiency starts having a large effect resulting in larger crystal deformation.

The pole figures for the (010) and (1 1̄1 6̄) fold planes show a different trend compared to the other fold
planes. The magnitude in the center is higher as its surrounding due to the fact that the (010) and (1 1̄1 6̄)
fold planes have a significantly lower crystal-amorphous interaction efficiency. This is most easily observed
for the (010) fold plane because that fold plane has the lowest crystal-amorphous interaction efficiency.
The magnitude on the edges for the (010) fold plane is lower compared to the other fold planes due to a
significantly higher crystal-crystal interaction efficiency.

Interlamellar separation: For the interlamellar separation it can be observed that the trend is the
same for all fold planes. The separation has highest positive values for normals parallel to the spherulite
loading direction. It has the highest negative values for normals perpendicular to the loading direction
and values are around 0 in between. This is explained according to Figures 3.8a and 3.8b. Here one can
immediately see that with normals (yellow vector), parallel to the loading direction (red vectors) maximum
positive separation occurs and with normals perpendicular to the loading direction, maximum negative
separation occurs.

(a) (b)

Figure 3.8: Schematic representation of two load-cases with red arrows indicating the load and the yellow
arrow indicating the normal to the fold plane, where (a) has a normal perpendicular to the loading
direction, leading to negative separation and (b) a normal parallel to the loading direction, leading to
positive separation.

For the (010) fold plane, the magnitudes at the edge of the pole figure have a lower magnitude compared
to the other fold planes. This happens due to the fact that in the (010) fold plane, the crystal-crystal
interaction efficiency is significantly higher. Therefore, the crystals and thus the amorphous material in
between two crystals stretch less when they are loaded as shown on the left side in Figure 3.8a. Therefore,
the amorphous material contracts less. The center of the pole figure for the (010) fold plane, has lower
interlamellar separation as one would expect due to the lower stiffness in that direction compared to other
fold planes. This is the case, however, the difference in magnitude compared to the other fold planes is
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too small to be visible due to the color bar of the pole figure. This effect is easier observed for the pole
figures for higher crystallinities as shown in Appendix 3.2.3.

Interlamellar shear: The trend observed in the interlamellar shear is the same in all pole figures.
When the normal of the fold plane is perpendicular or parallel to the loading direction, there is almost
no interlamellar shear. Normals oriented differently do have interlamellar shear. If one looks carefully it
can be seen that the magnitudes are slightly higher in the (010) fold plane compared to other fold planes.
Since the pole figure for interlamellar shear are all similar, it can be concluded that the chain tilt angle
has almost no effect on the interlamellar shear.

Finally, it can be clearly seen that microstructural deformation is dominated by interlamellar shear. This
is because the multi-scale finite element model uses a spherulite model which has strongly anisotropic
material behavior (of the microstructure). This imposes large shear deformation on the microstructure.
This is explained according to Figures 3.9a and 3.9b. In Figure 3.9a a spherulitic structure is exposed to a
deformation indicated by the red vectors. On the left side of Figure 3.9b, amorphous material in between
crystal lamellae before the deformation is shown. On the right side of Figure 3.9b, the amorphous material
in between the crystal lamellae after deformation is shown.

(a) (b)

Figure 3.9: Schematic representation of large interlamellar shear obtained with the multi-scale finite ele-
ment model. (a) With crystal lamellae in black and an applied deformation (red vectors). (b) Schematic
representation of crystal lamellae (red) and amorphous material in between (blue) before deformation on
the left side and after deformation on the right side.

Conclusion: From this, it can be concluded that there are no major differences in microstructural
deformation for different fold planes. Intralamellar deformation is influenced the most by the chain tilt
angle. When comparing fold planes, most differences are observed for the (010) fold plane compared to
the other fold planes. This makes sense because the (010) fold plane tilt angle differs the most compared
to the other chain tilt angles. With increasing crystallinity, the trends observed in the pole figures for each
fold plane do not change but the deformation magnitudes do change.
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Figure 3.10: Pole figure obtained with multi-scale finite element model, matrix of orientations 1, 50%
crystallinity and fold plane (106̄).

Figure 3.11: Pole figure obtained with multi-scale finite element model, matrix of orientations 1, 50%
crystallinity and fold plane (001).

Figure 3.12: Pole figure obtained with multi-scale finite element model, matrix of orientations 1, 50%
crystallinity and fold plane (010).

Figure 3.13: Pole figure obtained with multi-scale finite element model, matrix of orientations 1, 50%
crystallinity and fold plane (1 1̄1 6̄).
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Figure 3.14: Pole figure obtained with composite inclusion model, 50% crystallinity and fold plane (106̄).

Figure 3.15: Pole figure obtained with composite inclusion model, 50% crystallinity and fold plane (001).

Figure 3.16: Pole figure obtained with composite inclusion model, 50% crystallinity and fold plane (010).

Figure 3.17: Pole figure obtained with composite inclusion model, 50% crystallinity and fold plane (1 1̄1
6̄).
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Comparison between composite inclusion model and multi-scale finite element model: Next,
the pole figures shown in Figures 3.10 - 3.13 are compared to the ones in Figures 3.14 - 3.17. First the
comparison in trends is discussed. After that the comparison in magnitudes is discussed.

In general, the observed trends for microstructural deformation in each fold plane, for both simulations
models, are in good agreement. An important reason for this is the nature of interactions between the
crystalline and amorphous phase. The nature of interactions between the crystalline and amorphous phases
is explained according to Figure 3.18 and defined by four conditions:

εc2 = εa2 and σc1 = σa1 , (3.1)

εc1 6= εa1 and σc2 6= σa2 . (3.2)

Figure 3.18: Fold plane coordinate system, with amorphous phase in blue, crystal phase in red and the
fold plane in orange.

These conditions are satisfied in a natural way in the multi-scale finite element model, where the composite
inclusion model numerically enforces them. Note that for the multi-scale finite element model, these
conditions only hold on the fold plane. The four conditions given in Equations 3.1 and 3.2, interact with
the anisotropy of the crystalline phase, which depends on the fold plane.

It is shown that the trends for interlamellar separation and shear are the same for the multi-scale finite
element model and composite inclusion model. In interlamellar deformation, the composite inclusion model
has a different prediction on the edges of the pole figure for all fold planes compared to the multi-scale
finite element model. However, this is not due to the nature of interactions between the crystalline and
amorphous phase, but due to the fact that the composite inclusion model does not take crystal paths into
account, where in the multi-scale finite element model crystal paths are the reason for higher values at the
edges of the pole figures. The center of the pole figure for the (1 1̄1 6̄) fold plane in the multi-scale finite
element model is higher compared to its surroundings. This is not the case in the composite inclusion
model.

There are quite large differences in magnitudes between both models. Especially for interlamellar shear and
separation. This is explained due to the fact that the composite inclusion model does not use a spherulite
model which imposes a large amount of shear to the microstructure. This results in less interlamellar
shear, which on its turn leads to higher intralamellar deformation and interlamellar separation.

Conclusion: It can be concluded that both models predict the trends of microstructural deformation
in a similar way. An important reason for this, is the nature of interactions between the crystalline and
amorphous phases, which in the multi-scale finite element model are satisfied in a natural way, where in the
composite inclusion model, these are numerically enforced. Most differences are observed in intralamellar
deformation which can be explained due to the fact that the composite inclusion model does not take
crystal paths into account. Magnitude wise, there are larger differences, because the composite inclusion
model does not take into account a spherulitic structure which imposes large shear deformation on the
microstructure.
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4 Elasto-viscoplastic macroscopic mechanical material proper-
ties of α-iPP

In this section, the α-iPP elasto-viscoplastic simulations will be discussed. First, the new material models
that are used are discussed. Next, the used material parameters are discussed. Finally, the results of
the new multi-scale finite element model will be discussed and compared to the results of the composite
inclusion model.

4.1 Introduction

To enable elasto-viscoplastic simulations of α-iPP, new material models are implemented in the multi-scale
finite element model. The new material model used to describe the crystalline phase is a crystal plasticity
model [18]. With this model it is enabled to capture crystallographic slip of the crystalline phase. For the
amorphous phase an elastic-plastic isotropic material model available in MSC Marc is used. The spherulite
material is described by an elastic-plastic orthotropic material model available in MSC Marc.

4.2 New material models

In this section, the new material models are discussed which are used to model the crystalline phase,
amorphous phase and the material of the spherulite model.

4.2.1 Crystalline phase

The crystal plasticity model [18] is used to model the crystalline phase. This model communicates with
MSC Marc 2014 via user sub-routine Hypela2 [32]. The crystal plasticity model works in combination
with the Total Lagrange procedure in Marc [33]. In the crystal plasticity model, the elastic behavior of
the crystalline phase was described by the following linear relation:

Se = 4C : Ee, (4.1)

where Se is the symmetric elastic second Piola-Kirchhoff stress tensor, 4C the fourth-order stiffness tensor
and Ee the symmetric elastic Green-Lagrange strain tensor which is defined as follows:

Ee =
1

2
(F Te · Fe − I), (4.2)

where I is the identity tensor and Fe the elastic deformation gradient tensor. The plastic behavior of the
crystalline phase was described by crystallographic slip, taking all physically distinct slip systems (Ns)
into account:

Lp =

Ns∑
α=1

γ̇αP α
0 , (4.3)

where Lp is the plastic velocity gradient tensor, γ̇α the slip rate and P α
0 the Schmid tensor in the reference

configuration of slip system α. More theoretical details on the crystal plasticity model can be found in
[34].

4.2.2 Amorphous phase

It is chosen to implement an elastic-plastic isotropic material model, available in MSC Marc 2014 [35].
However, to accurately describe the amorphous phase, the EGP-model should be used. To combine the
crystal plasticity model and EGP-model, the crystal plasticity model must be modified such that it works
with the updated Lagrange procedure. In this project, due to time issues, this was not possible. However,
during this project, it became clear that the crystal plasticity model also must be modified to the updated
Lagrange procedure (due to convergence issues, discussed later on in this chapter), to simulate large strain
plasticity. Because the crystal plasticity model must be modified to the updated Lagrange procedure,
combining the EGP-model and the crystal plasticity model will be straight forward, therefore, investing
time in more complex material models available in MSC Marc is not worth the time.
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4.2.3 Spherulite model

The new material model for the spherulite model is the elastic-plastic orthotropic material model which is
available in MSC Marc 2014 [35]. It is chosen not to use hardening because of several reasons. First, with
the applied strains in this project, hardening will not have a large effect. Second, it is difficult to extract
hardening from the micro RVE. Third, later in this chapter it will become clear that the modelling scheme
used in this project is not sufficient to obtain physically relevant results, but a FE2 modelling scheme
should be used instead. Therefore, implementing hardening in the spherulite model is not worth the time.

4.3 Simulation parameters

All the material parameters that were used for the simulations in Chapter 3, are used here as well to model
the elastic regime. Only additional and adjusted parameters will be discussed here.

4.3.1 Crystalline phase

There are eight physically distinct slip systems Ns in α-iPP [21] as shown in Figure 4.1. These are the
most active slip systems for α-iPP [36] and implemented in the crystal plasticity model during this project.

Figure 4.1: Most active slip systems in α-iPP [21].

To accurately capture the slip kinetics, the powerlaw implemented in the crystal plasticity model is replaced
by the Eyring slip law:

γ̇α = γ̇α0 sinh

(
τα

τα0

)
, (4.4)

where γ̇α is the slip rate, γ̇α0 the initial slip rate, τα the resolved shear stress, τα0 the slip resistance and α
the slip system. The derivations leading to the Eyring slip law implementation can be found in Appendix
D. During this project, no hardening law is used, i.e. τα0 is a constant. The parameters used in this project
to represent the slip kinetics for α-iPP are shown in Table 4.

Table 4: Used parameters for the most active slip systems in α-iPP [21].

Slip plane Slip direction Initial slip rate [1/s] Slip resistance [MPa]
(010) [100] 2× 10−10 1.35
(010) [001] 9× 10−8 1.35
(100) [010] 1× 10−8 1.35
(100) [001] 1× 10−8 1.35
(110) [001] 4× 10−11 1.35
(110) [11̄0] 4× 10−12 1.35
(11̄0) [001] 4× 10−11 1.35
(11̄0) [110] 4× 10−12 1.35

In combination with the Eyring slip law, as shown in Equation 4.4, these parameters represent the slip
kinetics for α-iPP [21]. The slip kinetics are shown in Figure 4.2. Here, the thick and thin curves represent
the slip kinetics that are used in the composite inclusion model and multi-scale finite element model
respectively. They only differ at very small strain rates which is no problem.
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Figure 4.2: Slip kinetics for α-iPP [21]. The thick curves represent the slip kinetics used in the composite
inclusion model and the thin curves represent the slip kinetics used in the multi-scale finite element model.

4.3.2 Amorphous phase

For the amorphous material, the yield stress is set to 9 MPa. The strain hardening is described as follows:

H =
√
q + 8
√
q

3

2
+ 12
√
q

1

2
+ 1, (4.5)

where H is the strain hardening and q the equivalent plastic strain. For more information on the strain
hardening see page 334 of [35]. These material parameters are not physically relevant, but they are purely
chosen to obtain a good representation of the stress-strain curve of the amorphous material, as observed
in the EGP model, which is implemented in the composite inclusion model. This is shown in Figure 4.3.

Figure 4.3: Stress-strain curves for pure amorphous material, obtained by an elastic-plastic isotropic
material model available in MSC Marc [35], and the EGP model, which is implemented in the composite
inclusion model.

4.3.3 Spherulite model

Since the anisotropic Hill yield criterion is used in the elasto-plastic spherulite material model, the σxx,
σyy, σzz, σzy, σzx and σyx yield stresses are required. To determine the yield stresses, the micro RVE is
deformed accordingly, e.g. to determine these σxx yield stress, a εxx strain is applied to the micro RVE,
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using new boundary conditions as discussed in Chapter 4.3.4. To extract these yield stresses, first, the
second Piola-Kirchhoff yield stress is determined by determining the intersection between the elastic and
plastic tangents, as shown in Figure 4.4. Next, it is checked if the stress-strain curve has a slope of 0
somewhere. If this is the case, then the stress at that part of the curve will be considered the second
Piola-Kirchhoff yield stress, as shown in the bottom right sub-figure of Figure 4.4. The spherulite model
works with the updated Lagrange procedure, therefore, MSC Marc considers stresses as Cauchy stresses
[33]. Therefore, the second Piola-Kirchhoff yield stress is rewritten to a Cauchy yield stress.

Figure 4.4: Procedure to obtain all six yield stresses required for the anisotropic Hill yield criterion.

4.3.4 New boundary conditions

As mentioned before, the original multi-scale finite element model deforms the micro RVE with uni-axial
strain and simple shear. To determine the yield stresses, this is not sufficient. Therefore, the boundary
conditions have been adjusted. Simple shear is changed to shear and uni-axial strain is changed to uni-axial
stress. These are schematically shown in Figures 4.5a and 4.5b.
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(a) (b)

Figure 4.5: Schematic 2D representation of (a) shear and (b) uni-axial stress, where in each figure the
undeformed state is shown in purple and the deformed state in black.

Additionally, the engineering strain εeng as shown in Table 2 is set to 0.1[-]. Also, the spherulite model is
now exposed to uni-axial stress, as shown in Figure 4.5b, where the engineering strain is set to -0.1[-]. So,
the spherulite model is now deformed by applying compression. The globally applied strain rate in both
the micro RVE and spherulite model is set to 0.02[s−1].

4.4 Simulation results

In this section, the simulation results are discussed. In Appendix C, the obtained yield stresses, in the
micro RVE, for all fold planes with a crystallinity of 50% can be found. These yield stresses are used for
the anisotropic Hill yield criterion in the elasto-plastic spherulite material model. Due to the convergence
problems in the micro RVE, it was not possible to obtain results for 60% and 70% crystallinity. An
investigation on the convergence problems is given in Appendix E. The macroscopic stress-strain curves of
all fold planes, with a crystallinity of 50%, obtained in both models are shown in Figure 4.6.

First, the multi-scale finite element model results are discussed. After that, they are compared to those
of the composite inclusion model. The obtained yield stresses and Young’s moduli for each fold plane are
shown in Table 5. It can be seen that the Young’s modulus is only visibly larger for the (010) fold plane
as expected due to the larger crystal-crystal interaction efficiency as explained in Chapter 3.2.1. The yield
stresses are obtained in a similar way as the yield stresses in the micro RVE as explained in Chapter 4.3.3.
The only difference is that here, the intersection between the elastic and plastic tangent immediately yields
the Cauchy yield stress, since the spherulite model runs on the updated Lagrange procedure.
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Figure 4.6: Macroscopic stress-strain curves for all fold planes, where the dashed lines are results obtained
with the composite inclusion model and the normal lines results obtained with the multi-scale finite element
model.

Table 5: Cauchy yield stresses and Young’s moduli observed in spherulite model for each fold plane.

Fold plane Yield stress [MPa] Young’s modulus [GPa]
(106̄) 26 1.64
(010) 28 1.93
(001) 25 1.63

(1 1̄1 6̄) 23 1.62

It can be seen that for the yield stresses, the following holds: (010) > (106̄) > (001) > (1 1̄1 6̄). This means
that the slip systems are most easily activated for each fold plane in the following order: (1 1̄1 6̄) > (001)
> (106̄) > (010).

The reason why this might happen is explained according to Figure 4.7.

Figure 4.7: A slip system where ~s is the slip direction, ~n the slip plane normal, φ angle between the normal
and loading direction (y-direction) and β the angle between slip direction and loading direction [37].

Here, the resolved shear stress is calculated as follows:

τ = σP, (4.6)

where τ is the resolved shear stress, σ the uni-axial stress and P the Schmid factor:
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p = cosφcosβ, (4.7)

where φ is the angle between the normal to the slip plane and the loading direction and β the angle between
the slip direction and loading direction as shown in Figure 4.7. Slip occurs if τ reaches a critical value. If
the slip direction is either parallel or perpendicular to the loading direction, the Schmid factor equals 0,
because, if φ = 90°, then β = 0° and if φ = 0°, then β = 90°. This results in a resolved shear stress that
equals 0, i.e. no slip will occur regardless of the stress (σ).

So, the Schmid factor plays an important role for the activation of a slip system. Also, as explained in the
previous chapter, most of the stress is carried from one crystal to the other via crystal paths. The direction
of crystal-crystal loading with respect to the chain direction is schematically shown in Figure 4.8. Here,
the loading direction is indicated by the red vectors, the yellow lines represent the chain direction, the
material in red and blue represent the crystalline and amorphous phase respectively. The crystal-crystal
loading direction is perpendicular to the chain direction in the (106̄) and (001) fold planes, parallel to the
(010) fold plane chain direction and has an angle of ≈ 60° with respect to the chain direction in the (1 1̄1
6̄) fold plane.

Figure 4.8: Schematic representation of perfect crystal-crystal interaction for each fold plane, where the
red vectors are the loading direction, yellow lines the molecular chain direction, crystal material in red and
amorphous material in blue.

The angles between the crystal-crystal loading direction and chain direction are known. Also, the angles
between the chain direction and slip direction can be determined using Figure 4.1 in combination with the
used monoclinic lattice parameters given in Chapter 2.3. Knowing these angles, the Schmid factors for
each slip system in all fold planes can be determined. The results for each slip system in each fold plane
are shown in Table 6.

Table 6: Schmid factor for each slip system in each fold plane, considering crystal-crystal loading.

Slip system (106̄) (001) (010) (11̄16̄)
(010)[100] 0.16 0.16 0.16 0.49
(010)[001] 0 0 0 0.43
(100)[010] 0 0 0 0.43
(100)[001] 0 0 0 0.43
(110)[001] 0 0 0 0.43
(110)[11̄0] ≈0.26 ≈0.26 ≈0.05 ≈0.23
(11̄0)[001] 0 0 0 0.43
(11̄0)[110] ≈0.26 ≈0.26 ≈0.05 ≈0.23

The lower the Schmid factor, the harder it is to activate a slip system as shown in Equation 4.6. When
the Schmid factor equals 0, the slip system can not be activated. In Table 6, it is shown that the Schmid
factors for each fold plane are ordered as follows:

(010) < (106̄) = (001) < (11̄16̄), (4.8)

where (010) has the lowest values. This is probably one of the reasons why (010) has the highest yield
stress and (1 1̄1 6̄) the lowest yield stress as shown in Table 5. To be sure that this is one of the reasons,
the activation of slip systems has to be investigated more extensively, using pole figures. Unfortunately
that was not possible during this project due to convergence problems as explained in Appendix E.
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Conclusion: The chain tilt angle has a noticeable effect on the activation of slip systems. One of the
reasons is probably the Schmid factors resulting from crystal-crystal loading. However, to be sure a more
elaborate investigation using pole figures has to be done.

Comparison to composite inclusion model: It can be immediately seen that the stress-strain curves
for all fold planes in the composite inclusion model are significantly different compared to those of the
multi-scale finite element model. The following reasons might contribute to this:

1. The fact that in the multi-scale finite element model, the microstructural deformation is interlamellar
shear dominated (as shown in Chapter 3), which also has the lowest yield stress. In the composite
inclusion model, interlamellar shear is less dominant.

2. An artefact because the yield stresses in the multi-scale finite element model are obtained in the total
Lagrange procedure, using Green-Lagrange strain and second Piola Kirchhoff stress. The composite
inclusion model works with Cauchy stress and logarithmic strains, which Marc uses with the updated
Lagrange procedure. The updated Lagrange and total Lagrange procedures in Marc yield different
results as shown in Appendix E.

3. A material model that can not accurately capture the complex material behavior of the micro RVE
is used for the spherulite model. Complex material model(s) are used just to determine the Young’s
moduli and yield stresses, where the composite inclusion model uses complex material models to get
the complete macroscopic stress-strain curve.

4. An inaccurate material model is used for the amorphous phase.

Due to these facts it is not possible to draw hard conclusions for the comparison between the composite
inclusion model and multi-scale finite element model. To make a good comparison between both models,
first, the crystal plasticity model has to be rewritten to the updated Lagrange procedure. This will
compensate for reason two that is previously mentioned. Also, this will enable the combination of the
EGP-model and crystal plasticity model, compensating reason four that is previously mentioned. The
status on modifying the crystal plasticity model to the updated Lagrange procedure is given in Appendix
F. After that, the micro RVE and spherulite model should be directly linked, i.e. create an FE2-model.
This will enable the spherulite model to constantly accurately capture complex material behavior of the
microstructure, i.e. compensating point three previously mentioned. After that, the activation of slip
systems based on different fold planes, can be investigated more elaborately and accurately, using pole
figures, in which the slip rate γ̇ in each slip system is plotted. Unfortunately this was not possible during
this project due to convergence problems as explained in Appendix E. If this is all done, the modelling
framework of the composite inclusion model can be validated.
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5 Conclusion and recommendations

The main objective in this thesis is to investigate the influence of the chain tilt angle on macroscopic me-
chanical material properties for α-iPP and to validate the modelling framework of the composite inclusion
model. To achieve this, an existing multi-scale finite element model is used to investigate the influence of
the chain tilt angle in the elastic regime. To investigate the influence of the tilt angle in the plastic regime,
the material models in the multi-scale finite element model, are replaced by other material models.

5.1 Conclusions

1. The Young’s modulus depends more on crystal-crystal interaction efficiency than on crystal-amorphous
interaction efficiency. If the stiffest direction of the crystal interacts with amorphous material, the
crystal can not carry as much load on to its surroundings. When the stiffest direction interacts with
other crystals, the crystal can carry on the load more efficiently to its surroundings, resulting in a
higher Young’s modulus.

2. Deformation of the microstructure of α-iPP is dominated by interlamellar shear. This happens
because the microstructure in the spherulite model is strongly anisotropic in radial direction. This
exposes the microstructure to large shear deformation.

3. The chain tilt angle has almost no effect on interlamellar separation and interlamellar shear. The
chain tilt angle has a larger effect on intralamellar deformation, where the trend for the (010) and (1
1̄1 6̄) fold planes is different compared to the (106̄) and (001) fold planes due to a different crystal-
amorphous interaction efficiency. Most differences are explained due to the different crystal-crystal
interaction efficiency in each fold plane.

4. Simulating large strain plasticity with the Total Lagrange procedure gives convergence issues. It is
shown by a convergence study that convergence of the simulations will improve when the multiscale
finite element model runs on the Updated Lagrange procedure.

5. The chain tilt angle influences the Schmid factors, and therefore, the chain tilt angle has a noticeable
effect on the activation of slip systems. To draw further conclusions on why this happens, a more
elaborate investigation must be performed.

6. The multi-scale finite element model and composite inclusion model have similar results for the
Young’s moduli. They also have similar results for the trends in microstructural deformation in the
elastic regime. An important reason for this is the nature of interactions between the crystalline and
amorphous phases, which in the multi-scale finite element model are satisfied in a natural way, where
in the composite inclusion model, these are numerically enforced. Only the results at the edges of
the pole figures for intralamellar deformation is different for both models. This is due to the fact
that the composite inclusion model does not take crystal paths into account. Also, the magnitudes
of microstructural deformations differ for both models. This is due to the fact that the composite
inclusion model works with an aggregate of randomly oriented composite inclusions instead of a
spherulitic structure which is used in the multi-scale finite element model.

5.2 Recommendations

1. Modify the crystal plasticity model such that it can work with the Updated Lagrange procedure in
MSC Marc. This will make sure simulations either do not crash or crash at a later stage in the
loadcase. This will also enable the combination of the crystal plasticity model and EGP-model,
giving more accurate results in the micro RVE. Also, this will enable improving elements used in the
spherulite model (see recommendation 5).

2. Combine the EGP-model and the crystal plasticity model. If the crystal plasticity model is rewritten
such that it works with the Updated Lagrange procedure, it is straightforward to combine these two
material models. This will result in more accurate simulations of the microstructure.

3. The crystalline stiffness tensor used in this work is obtained making many assumptions. It is beneficial
to use one obtained in a more thorough way in future work. For example, Chávez Thielemann is
currently working on such a stiffness tensor.
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4. Right now, the spherulite model is based on a elasto-plastic material model available in MSC Marc.
Only the yield stresses and Young’s moduli are determined by complex material model(s). Because
of this, the spherulite model is not able to yield physically relevant results. Change the multi-scale
finite element model to an FE2 model where each material point is directly connected to the micro
RVE. This should enable the spherulite model to get more accurately physically relevant results.

5. The eight-node, isoparametric, arbitrary hexahedral elements, used in the micro RVE, can suffer
from locking. To prevent this in the future, replace these elements by 20-node, isoparametric, arbi-
trary hexahedral elements, using reduced integration. If the crystal plasticity model is modified to
the updated Lagrange method, replace the linear isoparametric, tetrahedron elements, used in the
spherulite model, by isoparametric five-node, low-order tetrahedron elements to get more accurate
results.

6. After the previously mentioned improvements are implemented in the multi-scale finite element
model, use it to investigate the microstructural deformation in the plastic regime. This will give a
better insight on the activation of slip systems based on the chain tilt angle. To do this, create pole
figures where the strain rate in each slip system is plotted. Also, the multi-scale finite element model
can then be used to validate the modelling framework of the composite inclusion model in the plastic
regime.
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A Matrix of orientations

In this appendix, the matrices of orientations which are used during the project are shown. These matrices
describe the orientation of a hexagonal domain in the micro RVE. First, the five matrices for a crystallinity
of 50% are shown, next for 60%, and finally for 70%.

50% crystallinity:

[1]


150 0 330 90 300 240
180 210 180 30 60 120
270 300 240 90 270 0
120 60 30 150 240 30
330 150 90 270 300 210
0 120 60 210 330 180

 [°], [2]


210 150 300 90 330 60
180 30 180 120 240 150
240 60 210 270 0 60
0 270 90 330 150 240

300 120 0 210 30 120
330 270 90 30 300 180

 [°],

[3]


120 270 60 210 300 330
180 240 150 120 270 0
30 180 60 330 30 90
0 30 90 300 240 150
90 300 210 60 210 180
330 0 150 120 240 270

 [°], [4]


240 0 300 270 90 60
150 180 30 120 240 120
210 60 330 150 300 0
330 240 0 330 180 210
120 300 150 30 90 30
90 270 210 60 180 270

 [°],

[5]


330 240 210 120 30 300
180 90 330 270 180 210
240 30 120 0 150 60
150 60 300 210 90 0
270 30 240 120 150 330
300 90 0 60 270 180

 [°].

60% crystallinity:

[6]


300 0 90 180 300 90
210 330 210 330 30 240
150 120 30 270 150 60
240 270 60 150 120 300
0 120 30 270 180 90
60 180 330 210 240 0

 [°], [7]


150 0 330 90 300 240
180 210 180 30 60 120
270 300 240 90 270 0
120 60 30 150 240 30
330 150 90 270 300 210
0 120 60 210 330 180

 [°],

[8]


270 60 150 180 270 150
0 300 120 210 90 330
30 240 90 120 300 0
330 300 210 60 240 30
240 30 180 90 180 270
150 330 120 60 210 0

 [°], [9]


270 330 240 180 330 60
90 300 90 300 0 210
150 270 240 210 120 30
120 180 30 150 270 150
30 210 330 240 120 180
60 0 60 0 300 90

 [°],

[10]


300 90 240 210 60 270
180 150 180 0 30 120
330 60 240 30 60 90
120 30 0 300 150 330
270 0 270 240 210 120
330 150 210 90 300 180

 [°].

70% crystallinity:

[11]


60 180 150 90 60 330
210 0 30 270 300 0
150 120 240 300 30 270
300 210 150 240 90 120
270 120 0 30 210 240
330 90 60 180 330 180

 [°], [12]


270 180 120 0 300 210
0 210 60 90 150 330

300 240 120 270 240 30
330 30 90 120 180 270
150 240 60 90 60 300
330 30 210 180 150 0

 [°],
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[13]


270 90 300 120 30 60
0 210 330 240 150 180
30 120 90 270 300 330
0 300 240 210 30 210

180 240 150 330 270 0
60 150 60 90 120 180

 [°], [14]


30 120 330 240 300 330
270 0 60 270 150 0
180 150 210 120 90 30
90 300 240 180 210 180
330 210 120 60 90 60
240 300 30 150 0 270

 [°],

[15]


330 90 210 120 330 0
180 30 180 270 300 60
120 90 300 240 150 0
150 240 270 210 60 90
60 270 300 30 240 120
0 30 330 150 210 180

 [°].
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B Obtained pole figures in elastic regime

In this appendix, the pole figure results are shown which are obtained with purely elastic simulations.
Figures B.1 - B.4 are obtained with the multi-scale finite element model, with a crystallinity of 60% and
matrix of orientations seven (see Appendix A). Figures B.5 - B.8 are obtained with the composite inclusion
model for 60% crystallinity. Figures B.9 - B.12 are obtained with the multi-scale finite element model, with
a crystallinity of 70% and matrix of orientations 11. Figures B.13 - B.16 are obtained with the composite
inclusion model for 70% crystallinity.
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Figure B.1: Pole figure obtained with multi-scale finite element model, matrix of orientations 6, 60%
crystallinity and fold plane (106̄).

Figure B.2: Pole figure obtained with multi-scale finite element model, matrix of orientations 6, 60%
crystallinity and fold plane (001).

Figure B.3: Pole figure obtained with multi-scale finite element model, matrix of orientations 6, 60%
crystallinity and fold plane (010).

Figure B.4: Pole figure obtained with multi-scale finite element model, matrix of orientations 6, 60%
crystallinity and fold plane (1 1̄1 6̄).
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Figure B.5: Pole figure obtained with composite inclusion model, 60% crystallinity and fold plane (106̄).

Figure B.6: Pole figure obtained with composite inclusion model, 60% crystallinity and fold plane (001).

Figure B.7: Pole figure obtained with composite inclusion model, 60% crystallinity and fold plane (010).

Figure B.8: Pole figure obtained with composite inclusion model, 60% crystallinity and fold plane (1 1̄1 6̄).

52



Figure B.9: Pole figure obtained with multi-scale finite element model, matrix of orientations 11, 70%
crystallinity and fold plane (106̄).

Figure B.10: Pole figure obtained with multi-scale finite element model, matrix of orientations 11, 70%
crystallinity and fold plane (001).

Figure B.11: Pole figure obtained with multi-scale finite element model, matrix of orientations 11, 70%
crystallinity and fold plane (010).

Figure B.12: Pole figure obtained with multi-scale finite element model, matrix of orientations 11, 70%
crystallinity and fold plane (1 1̄1 6̄).
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Figure B.13: Pole figure obtained with composite inclusion model, 70% crystallinity and fold plane (106̄).

Figure B.14: Pole figure obtained with composite inclusion model, 70% crystallinity and fold plane (001).

Figure B.15: Pole figure obtained with composite inclusion model, 70% crystallinity and fold plane (010).

Figure B.16: Pole figure obtained with composite inclusion model, 70% crystallinity and fold plane (1 1̄1
6̄).
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C Elasto-viscoplastic results

In this appendix, obtained elasto-viscoplastic results during the project are shown.

Table 7 shows the obtained yield stresses for a micro RVE with matrix of orientations one, 50% crystallinity
and for all fold planes. These are the yield stresses that are used in the spherulite model for the Hill yield
criterion. They are determined as shown in Figures C.1 - C.4.

Table 7: Obtained yield stresses for each fold plane.

Fold plane σxx [MPa] σyy [MPa] σzz [MPa] σyz [MPa] σxz [MPa] σxy [MPa]
(106̄) 46.07 45.08 71.44 14.6 14.74 17.95
(001) 44.43 45.13 68.35 14.69 14.84 16.2
(010) 50.33 60.34 76.08 14.6 14.74 17.71

(1 1̄1 6̄) 34.58 34.91 68.8 14.94 15.03 15.28

For the (106̄) fold plane in Figure C.1, the load cases with xx, yx and yy deformation crashed. However,
the simulations proceeded far enough to determine the yield stresses. The same holds for the (001) fold
plane as shown in Figure C.2. The (010) fold plane, as shown in Figure C.3 crashed for the xx, yx, yy and
zz load cases, where the xx, yy and zz load cases proceeded far enough to determine the yield stresses.
The determined σyx yield stress is questionable. However, it is assumed that in the worst case scenario
there is no large error in this calculated yield stress. The (1 1̄1 6̄) fold plane, as shown in Figure C.4 did
not have any load cases that crashed.

Figure C.1: Obtained yield stresses for the (106̄) fold plane.
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Figure C.2: Obtained yield stresses for the (001) fold plane.

Figure C.3: Obtained yield stresses for the (010) fold plane.
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Figure C.4: Obtained yield stresses for the (1 1̄1 6̄) fold plane.
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D Eyring slip law

In this appendix, the derivations to replace the power law, which describes the slip kinetics, by an Eyring
slip law are discussed. For additional information have a look at [18]. The power-law implemented in the
crystal plasticity model [18] by default is:

γ̇α = γ̇0


∣∣∣ταeff ∣∣∣
sα


1
m

sign(ταeff ), (D.1)

where γ̇α is the slip rate, γ̇0 the initial slip rate, ταeff the effective resolved shear stress, sα the slip resistance
(including hardening), α the slip system and m a fitting parameter. The effective resolver shear stress is
defined as follows:

ταeff = τα − ταback, (D.2)

where τα is the resolved shear stress and ταback the resolved back stress. In this project the resolved back
stress is zero due to the chosen crystal plasticity model simulation settings (no strain gradient crystal
plasticity), i.e. ταeff = τα.

In this project, the power-law shown in Equation D.1 is replaced by the Eyring slip law:

γ̇α = γ̇α0 sinh

(
τα

τα0

)
, (D.3)

where τα0 is the slip resistance excluding hardening, i.e. no hardening is taken into account.

To calculate the residual, the power-law as shown in Equation D.1 is used as shown in red:

rα = ∆γα − ∆t

2

γ̇α(tn) + γ̇0


∣∣∣ταeff ∣∣∣
sα


1
m

sign(ταeff )

 , (D.4)

where ∆γα is the slip increment and ∆t the timestep. In here, the power-law could be directly replaced
by the Eyring slip law shown in Equation D.3.

To calculate the variational form of the residual, the derivative of the power-law with respect to γ is used,
with the power-law derivative shown in red:

δrα = δ∆γα − ∆t

2

 1

(sα)2
γ̇0
m


∣∣∣ταeff ∣∣∣
sα


1
m−1

(sαδταeff − ταeffδsα). (D.5)

The red part of Equation D.5 is replaced by the derivative of the Eyring slip law with respect to γ, leading
to the following, where the part in red is the derivative of Eyring slip law as shown in Equation D.3:

δrα = δ∆γα − ∆t

2

(
γ̇0

(sα)2
cosh

(
τα

τα0

))(
sαδταeff − ταeffδsα

)
. (D.6)

Finally, the derivative of the power-law is used in the calculation of the Jacobian matrix K, as shown in
red:

K =
∂r

∂∆γ
= I +

∆t

2

 1

(sa)
2

γ̇0
m


∣∣∣ταeff ∣∣∣
sα


1
m−1

(ταeff ∂sα∂∆γ
− sα

∂ταeff
∂∆γ

)
, (D.7)

where I is the identity matrix. The red part in Equation D.7 is replaced by the red part of Equation D.6,
which is the derivative of the Eyring slip law.
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E Investigation on convergence problems

In this appendix, the investigation on the convergence problems in the elasto-viscoplastic simulations is
discussed. First, a convergence study is discussed, which is used to isolate the problem. Next, the Total
& Updated Lagrange solution procedures are compared to get a better idea on why there are convergence
problems.

When the crystal plasticity model was implemented in the multi-scale finite element model, the final
simulations were performed. It turned out that only the (1 1̄1 6̄) fold plane was able to perform 100% of
the loadcase for all six deformations. In certain simulations of the other fold planes, at a certain progress of
the loadcase, Marc can no longer find a converged solution. Therefore, Marc keeps decreasing the timestep,
until the timestep becomes too small and then stops the simulation. It was observed that the convergence
behavior was different in test cases with less elements. Therefore, test cases are used with the same mesh
that is used in simulations to obtain final results. These test cases are discussed next.

E.1 Convergence study

First, the convergence study is discussed. Here it is discussed which test cases are used to determine the
convergence problem. First, the convergence of these test cases is shown in Figures E.1a - E.1c and after
that they are discussed.
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(a)

(b)

(c)

Figure E.1: Convergence study of a micro RVE, with 50% crystallinity and the (106̄) fold plane, where
deformation in x-direction is applied. With (a) test cases 1-11, (b) test cases 12-23 and (c) test case 24.
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It is difficult to see, but the Physically relevant simulation, from which final results should have been
obtained, crashes at approximately 48% of the loadcase as shown in Figure E.1a. So, test cases are
performed to see what causes the simulations to crash at higher/lower % of the loadcase. First, each
loadcase is explained more elaborate.

1. (1): This is the simulation with which the final results should have been obtained with Mesh 1 as
shown in Figure E.2. All other test cases also make use of this mesh, unless mentioned otherwise.

2. (2): Mesh 3 as shown in Figure E.2 is used.

3. (3): The crystalline phase is purely elastic.

4. (4): Only amorphous material is used.

5. (5): Certain parameters in the job.dat file are set identical to a file of the Beaver creator(s).

6. (6): Four instead of two elements are used in thickness direction.

7. (7): Mesh 2 as shown in Figure E.2 is used.

8. (8): Compression in x-direction instead of tension.

9. (9): The node at the bottom left corner in the mid plane is also fixed in x and y-direction.

10. (10): The originally implemented slip law of Beaver is used.

11. (11): The element at the bottom left front corner is changed to a crystal element.

12. (12): 30% crystallinity instead of 50%.

13. (13): Amorphous material behavior is based on the Prony series (i.e. a different material model).

14. (14): A finer mesh (four times more elements) is used.

15. (15): Amorphous material is purely elastic.

16. (16): Crystal stiffness is reduced by a factor of 10.

17. (17): Crystal stiffness is reduced by a factor of 10, γ̇0 increased by factor of 10.000 to increase amount
of slip.

18. (18): Poisson ratio of 0.4 instead of 0.486.

19. (19): Poisson ratio of 0.46 instead of 0.486.

20. (20): Poisson ratio of 0.48 instead of 0.486.

21. (21): Poisson ratio of 0.495 instead of 0.486.

22. (22): Young’s modulus of 170 MPa.

23. (23): Young’s modulus of 1.56 GPa.

24. (24): Only crystalline material.

Figure E.2: Three different meshes which are used for the convergence study. Mesh one is used in all test
cases, unless mentioned otherwise.
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Not all test cases will be discussed. Only a couple will be discussed to explain what is causing the
convergence problems.

Test cases 1 (physically relevant), 4 (only amorphous material) and 24 (only crystal material) together
show that there is an issue due to the combination of the amorphous and crystalline material models. Test
case one crashes at 48%, test case 4 does not crash and test case 24 crashes at 94%. However, the reason
test case 24 crashes is due to the convergence of the slip systems in the crystal plasticity model, instead
of Marc reducing the timestep. This will be no problem for α-iPP simulations because the crystal phase
will be loaded less due to the presence of the amorphous phase which is less stiff.

So, there is an issue when the two different material models are combined. Next, Figure E.1b holds the
most important conclusions on what most likely is the problem. The most obvious one is that the lower
the Poisson ratio, the later the simulations crashes (see test case 18, 19, 20 and 21). Test cases 22 and
23 show that that increasing the Young’s Modulus for the amorphous phase is also favorable. Increasing
the Young’s modulus leads to less contractions due to the Poisson ratio. Reducing the stiffness of the
crystalline material (test cases 16 and 17) is also favorable. As the crystal material deforms more, the
amorphous material deforms less i.e. there is again less traction due to the Poisson ratio. So, there is a
strong indication that material contractions are the problem. This will be explained more elaborate in the
next section.

E.2 Total Lagrange procedure vs Updated Lagrange procedure

Marc mentions that one should use the Updated Lagrange procedure for large strain plasticity (which is
the case in this project), but not that one must use it. Also, it mentions that both the updated Lagrange
& Total Lagrange procedures should yield the exact same results if implemented correctly.

However, Marc uses Cauchy stress and Logarithmic strains when the updated Lagrange procedure is
used. When the total Lagrange procedure is used, Marc uses Second Piola-Kirchhoff stress and Green-
Lagrange strain. This means that when one uses the total Lagrange procedure, there is a lot of volumetric
strain, depending on the Poisson ratio. When the updated Lagrange procedure is used, there is almost no
volumetric strain. This is shown in Figure E.3, for a Poisson ratio of 0.486 [-].

Figure E.3: Volumetric strain as a function of elongation, with a Poisson ratio of 0.486. With in green, the
total Lagrange procedure, i.e. Green-Lagrange strain and in black, the updated Lagrange, i.e. Logarithmic
strain.

So, with the total Lagrange and updated Lagrange procedures in Marc, different results are obtained.
This has been confirmed in a simple test case with a single element, where with large strain, the volume
of the element in the total Lagrange procedure became 0, as shown in Figure E.4a, which did not happen
with the updated Lagrange procedure, as shown in Figure E.4b. Also, it is not possible to rewrite Cauchy
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stress to second Piola-Kirchhoff stress, or the other way around. Earlier, it is shown that the problems
most likely occur due to material contractions. As shown in Figures E.4a and E.4b, the updated Lagrange
procedure leads to less contraction. This implies the need of the updated Lagrange procedure instead of
total Lagrange procedure, on which the crystal plasticity model works, to simulate large strain plasticity.

(a) (b)

Figure E.4: Two identical test cases with a single element. The only difference is that in (a) the total La-
grange procedure is used and in (b) the updated Lagrange procedure. In purple and black the undeformed
the deformed states are shown respectively.

This means that the crystal plasticity model must be modified such that it also works on the updated
Lagrange procedure. However, this is complicated and the status on this is shown in Appendix F.
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F Combining the crystal plasticity model and EGP-model

In this appendix, the status of changing the crystal plasticity model (CPM) from the total Lagrange
procedure to the Updated Lagrange procedure is discussed. It was tried to change the crystal plasticity
model to the updated Lagrange procedure to enable the combination of the crystal plasticity model and
EGP-model in Marc. Later in the project, it became clear that the multi-scale finite element model suf-
fered from convergence problems on the total Lagrange procedure, when simulating large strain plasticity.
Therefore, the crystal plasticity model has to be modified such that it works with the updated Lagrange
procedure. Due to time issues it was not possible to finish this during this project.

Both models work on the Hypela2 user-subroutine. To combine the models, a modified version of Hypela2,
named MD Hypela2 can be used. In this modified version, additional input parameters are used [32].
However, these extra parameters can be ignored, such that the exact same results as with the Hypela2
user-subroutine are obtained. The only catch here is that the extra parameter called ”nstats” must be
given a different name because the crystal plasticity model uses that parameter name as well, making them
clash. By using both these user-subroutines, both the crystal plasticity model and EGPM can be used
together in an easy way.

For the updated Lagrange method, Marc works with the Cauchy stress and Logarithmic strain. For the
total Lagrange method Marc works with the second Piola-Kirchhoff stress and Green-Lagrange strain.
This has to be taken into account with the input and output of (MD )Hypela2.

Rewriting input parameters

Hypela2 gets a different deformation gradient tensor F as input depending on the solution procedure
(updated Lagrange or total Lagrange). However, this is because the results between both procedures differ
because Marc uses different stresses and strains in both solution procedures. So, F should not be adjusted.

Rewriting output parameters

The required output from the user-subroutines are:

1. Stress-strain law to be formed

2. Change in stress due to temperature effects

3. Stress

Where the change in stress due to temperature effects can be ignored, because during this project this is
not taken into account.

Rewriting stress output

Rewriting the stress from second Piola-Kirchhoff stress to Cauchy stress is straight forward:

σ =
FSF T

J
, (F.1)

where σ is the Cauchy stress, F the deformation gradient tensor, S the second Piola-Kirchhoff stress tensor
and J the determinant of F . The new stress calculation is validated in a single element test case. By fixing
all degrees of freedom, this element is once deformed by simple shear and once by uni-axial strain. The
stress results are then compared to the same test cases, but with a Marc material model, which described
the material behavior in the same way. Since both models have the same stress output, it is known that
the stress calculation is correctly adjusted.

Rewriting stress-strain law output

The most difficult part is to rewrite the stress-strain law. Here, Marc requires the material tangent stiffness
tensor (Marc automatically takes into account the geometrical tangent stiffness). In the crystal plasticity
model [18] the material tangent stiffness is defined as follows:
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4K =
∂S

∂E
, (F.2)

where 4K is the material tangent stiffness tensor, S the second Piola-Kirchhoff stress tensor and E the
Green-Lagrange strain tensor. When the solution procedure is changed to the updated Lagrange procedure,
the material tangent stiffness changes [33]:

4K =
∂σ

∂Λ
, (F.3)

where σ is the Cauchy stress tensor and Λ is the logarithmic strain tensor which is defined as Λ = ln(U),
where U is the right stretch tensor. To simplify the derivation Equation F.3 is split:

4K =
∂σ

∂F T
:

∂F

∂ln(U)
. (F.4)

First, the first intermediate term ( ∂σ
∂FT ) will be discussed. After that, the second intermediate term ( ∂F

∂ln(U) )

will be discussed. But first, for a better understanding of the derivations, Equations F.5 - F.7 are defined
first.

4I : Z = Z : 4I = Z, (F.5)

4IRT : Z = ZT , (F.6)

4IS : Z =
1

2

(
4I + 4IRT

)
: Z =

1

2

(
Z +ZT

)
= ZS , (F.7)

where 4I is the fourth order identity tensor, 4IRT the fourth order right transposed identity tensor and
4IS the fourth order symmetrical identity tensor.

Cauchy stress derived w.r.t. deformation gradient tensor

The derivative of the Cauchy stress σ w.r.t. the deformation gradient tensor F is given as:

dσ

dF T
=

∂σ

∂ST
:
∂S

∂F T
+
∂σ

∂J

∂J

∂F T
+

∂σ

∂F T
:
∂F

∂F T
. (F.8)

Which consists of three terms due to the product rule because both the second Piola-Kirchhoff stress tensor
(S) and determinant of the deformation gradient tensor (J) also depend on the deformation gradient tensor.
Next, all six intermediate terms of Equation F.8 are derived from left to right.

Derivative of Cauchy stress w.r.t. the Second Piola-Kirchhoff stress

In this section, the ∂σ
∂ST term is derived:

δσ =
F · δS · F T

J

=
F · 4IRT :

(
F · δST

)
J

=
F · 4IRT · F : δST

J
.

(F.9)

Which leads to the following result:

∂σ

∂ST
=
F · 4IRT · F

J
. (F.10)

Derivative of second Piola-Kirchhoff stress w.r.t. the deformation gradient tensor

The derivation of ∂S
∂FT can be found in Chapter 5.2 of [18]. Since this was initially implemented in the

crystal plasticity model, this term could be used directly.
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Derivative of Cauchy stress w.r.t. the determinant of the deformation gradient tensor

In this section, the ∂σ
∂J term is derived. Since J is a scalar, the derivative of the Cauchy stress to J is

straight forward:

∂σ

∂J
=
F · S · F T

−J2
. (F.11)

Derivative of determinant of the deformation gradient tensor w.r.t. the deformation gradient
tensor

The derivation of ∂J
∂FT can be found in the lecture notes of the course 4MM10 (Advanced Computational

Continuum Mechanics) [38], with the resulting variational form:

δJ = JF−T : δF T . (F.12)

Resulting in:

J

∂F T
= JF−T . (F.13)

Derivative of Cauchy stress w.r.t. the deformation gradient tensor

In this section, the ∂σ
∂FT term is derived:

δσ =
δF · S · F T + F · S · δF T

J

=
4IRT :

(
F · ST · δF T

)
+ 4I :

(
F · S · δF T

)
J

=
4IRT · F · ST : δF T + 4I · F · S : δF T

J

=

(
4IRT · F · ST + 4I · F · S

)
: δF T

J
.

(F.14)

Resulting in:

∂σ

∂F T
=

4IRT · F · ST + 4I · F · S
J

. (F.15)

Derivative the deformation gradient tensor w.r.t. the deformation gradient tensor

In this section, the ∂F
∂FT term is derived:

δF = δF

= 4IRT : δF T .
(F.16)

Resulting in:

∂F

∂F T
= 4IRT . (F.17)

Deformation gradient tensor derived w.r.t. the logarithmic strain tensor

In this section, the ∂F
∂ln(U) term is derived which is split:

∂F

∂ln(U)
=
∂F

∂U
:

∂U

∂ln(U)
, (F.18)

where U = UT is used. ∂F
∂U is derived in the crystal plasticity model documentation (page 9-10) leading

to the following result:

66



∂F

∂U
= R · 4IS , (F.19)

where the rotation tensor R is considered a constant and the fourth order symmetric identity tensor 4IS

is used because U is a symmetric tensor [39]. Next, following [39], the derivation of the final term ∂U
∂ln(U)

is shown:

∂U

∂ln(U)
=

se∑
i,j=1

GijPi ⊗ Pj , (F.20)

where se is the number of unique eigenvalues, P the eigenprojection tensor of U and G a matrix containing
the derivatives of the eigenvalues of U . More specifically, G and P are shown next:

Gij =

{
g′(λi) if i = j
g(λi)−g(λj)
λi−λj

if i 6= j
, (F.21)

Pi = δ1MI

M∏
j=1,j 6=i

U − λjI
λi − λj

, i = 1, 2, ...,M, (F.22)

where λ is the eigenvalue of U , δ1M the Dirac delta which equals one if M equals one and M is the number
of simple eigenvalues.
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