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Efficient Supervisor Synthesis for Feature Models

Abstract

Supervisory control theory is a model-based approach that is used to compute a controller that
guarantees a desired behavior of a system. Unfortunately, the synthesis of such a controller can need
a lot of computing effort and time. In order to reduce this, a couple of nonmonolithic synthesis
methods have been proposed in existing literature. These methods are described and compared in
the first part of this thesis This results in a clear overview of the methods and the properties that
belong to controlled systems using these methods. The second and main part of the thesis focuses
on supervisory control models that use feature models to describe valid configurations in the system.
A modular method is used to reduce the required effort in supervisor synthesis for these systems. In
this method, synthesis is performed for every requirement and the corresponding parts of the plant.
Next, a new proposition is introduced in which the feature model is (partly) omitted during the
synthesis of a supervisor. The resulting supervisor is then used on the plant from before omitting
the feature model. This results in a significant decrease of the effort required for synthesis. The new
method is proposed for both static and dynamic configurations of a feature model and validated on
two existing models. Also, the consequences of the proposition on the safety, controllability, maximal
permissiveness and nonblockingness of the resulting supervisor are discussed.
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Efficient Supervisor Synthesis for Feature Models Introduction

1 Introduction

A wide range of cyber-physical systems are used in industrial and non-industrial applications. In
order to control these systems which consist of a physical system that is monitored and controlled
by algorithms, supervisory control theory can be used [1]. This is a model-based approach in which
a model is created from the physical system in which all possible behavior is included, called the
plant. Another model is made in which requirements are defined to specify the desired behavior of
the system. The requirements and plant models are used to synthesize a supervisor. The synthesis
algorithms usually guarantee a safe, nonblocking, maximal permissive and controllable controlled
system.

Systems can consist of many interacting subsystems which create a complex cyber-physical system
which results in a complex supervisory control model. For large systems, the state space explodes
during the supervisor synthesis process, which can cause supervisor synthesis to be infeasable due
to a lack of memory or time. Using Binary Decision Diagrams [2, 3], further referred to as BDDs,
moderates the large computational effort caused by the explosion and [4] introduces two deterministic
and platform independent metrics to quantify the effort of a supervisor synthesis, namely the peak
used BDD nodes and the BDD operation count. They represent the space and time effort respectively.

In order to reduce the effort for synthesis, a couple of nonmonolithic synthesis methods have been
introduced in the existing literature which include modular [5–7], decentralized [8–12], hierarchi-
cal [13–16] and multilevel [17–20] supervisor synthesis. In these methods, the control task of super-
vising the system does not depend on one supervisor, monolithic supervision, but rather is divided
over multiple supervisors. In the first part of this thesis, a brief summary of the existing methods is
provided which results in an overview of the methods and their properties.

The second and main part of the thesis focuses on the reduction of effort required for the synthesis of
a supervisor that is used to control feature models. These models do not only consist of requirements
and component plants, but also of a feature model which defines a range of valid configurations for
the system. These feature models can either be static or dynamic. In static feature models, there is
only one configuration that is used throughout the use of the system. For dynamic feature models,
the configuration can be reconfigured during the execution of the system. Using a modular method
for synthesis of a supervisor reduces the effort. In order to reduce the effort even more, a new propo-
sition is introduced in which the feature model is (partly) removed from the plant that is used in the
synthesis process.

In Chapter 2, the existing knowledge that has been used during the thesis is given. How feature mod-
els are modelled in the modeling language and tool CIF is described in Chapter 3. The nonmonolithic
synthesis methods are described and compared in Chapter 4. Then, in Chapter 5, modular synthesis
is performed on two existing feature models. In Chapter 6, the new proposition is explained and
applied to the two models. In this chapter, also the consequences of the proposition on the safety,
controllability, maximal permissiveness and nonblockingness are discussed. Finally a conclusion is
made.
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2 Preliminaries

In this chapter, the existing knowledge that is used in this research is briefly explained. Supervisory
control theory, monolithic supervisor synthesis is explained in the first section. In the second section
feature models and their constraints are explained. CIF, supervisor process effort metrics and the
application of models in CIF are explained in the last section of this chapter.

2.1 Supervisory Control Theory

In order to control cyber-physical systems, supervisory control theory can be used [1]. This is a model-
based approach that is used to find a controller that guarantees the desired behavior of a system. It
requires a model of the uncontrolled system in which every physically possible behavior is allowed,
which is called the plant often denoted by G. It also requires requirements which dictate the desired
behavior of the controlled system. These requirements model how a system or part of a system should
behave according to the user requirements. Undesirable states that should not be reached according
to the requirements are called bad states. The supervisor synthesis process uses both the plant and
the requirements to synthesize a supervisor which disables or enables certain events in the system for
certain conditions, and restricting the system’s behavior by doing that, in order to guarantee that the
system only performs the desired behavior satisfying the requirements. This is called a safe supervisor.

The model consists of a number of Extended Finite Automata, further referred to as EFA, which are
finite state automata that have been extended with variables, guards and updates. In Figure 2.1, an
example of an EFA is shown.

Figure 2.1: An example of a simple EFA A.

This automaton A can be defined as a 7-tuple A [21, 22].

A = (L, V,Σ,−→, L0, V0, Lm)

In A, L is the finite set of locations, V is the finite set of discrete variables, Σ is the alphabet, the
finite set of events, −→ is the finite set of edges, L0 ⊆ L and V0 ⊆ V are the sets of initial locations
and initial variable values respectively and Lm ⊆ L is the set of marked locations. The active location
and variable values is called the system state. In case of the example in Figure 2.1, there are three
locations which are represented by circles of which L0 and L2 are marked, represented by double
circles. The initial state, represented by the location with a dangling incoming arrow, is L0 with
initial value for variable x is x0 = 0.

An edge −→k for an Extended Finite Automaton can be defined as a 5-tuple −→k.

−→k= (l0,k, lt,k, σk, gk, uk)
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An edge is the transition from one state to the next state. l0,k ∈ L and lt,k ∈ L are the origin and
target location before and after the edge. σk ∈ Σ is an event corresponding to the edge. In Figure
2.1, edges are represented by arrows with the corresponding events written close to the arrow. gk is
a guard predicate. This means that the edge is only enabled when the evaluation of the predicate
is true. uk is the update expression which gives a new value to variables after the edge has been
executed. In Figure 2.1, the guard is written at the beginning of the corresponding edge and the
update is written at the end of the edge.

In order for a supervisor to be able to restrict the behavior of an automaton, it has to be able
to enforce or disable certain edges. However, the alphabet is partitioned into two disjunct sets of
events, a controllable event set Σc and an uncontrollable event set Σu. Whenever an edge −→k has
an uncontrollable event σk ∈ Σu, the edge itself is uncontrollable as well, which is indicated with
a dashed arrow in the example. The same can be said about controllable edges corresponding to
controllable events. These are indicated with solid arrows. When an edge is uncontrollable, the
supervisor can not disable this edge.

Example 2.1. In the example, there is a controllable edge with event c from location L0 to L2 with
a guard expression x = 1, meaning that the edge can only take place when x has value 1. For the
controllable edge with event a, the edge can only happen when x < 1. The update increases the value
of x by 1 every time the edge is executed. The edge with event b is uncontrollable.

Eventually, the supervisor is synthesized using the plant and requirements. The supervisor makes
the controlled system safe, controllable, non-blocking and maximal permissive. A safe controlled
system is a system that satisfies all requirements, meaning that it can not reach any bad states. A
nonblocking supervisor is a supervisor for which the system can always reach a marked state. A
controllable supervisor only disables controllable events and a maximally permissive supervisor poses
the minimum amount of restrictions in order to enforce the three previous properties.

2.2 Supervisor synthesis

Algorithm 1 SS (Supervisor Synthesis)

Input: Plant SEFA AS = (X,Σ, E,X0, Xm), mutual state exclusion requirements MS, state-edge
exclusion requirements SE

Output: Supervisor SEFA S
1: (N,ES) = applyRequirements(MS,SE,E)
2: repeat
3: N ′ = N
4: N = (N,ES , Xm)
5: B = (true, {(σ, g, u) ∈ E|σ ∈ Σu},¬N)
6: N = N ∧ ¬B
7: until N = N ′

8: for all (σ, g, u) ∈ ES with σ ∈ Σc

9: g(X) = g(X) ∧ ∃X+ [N(X+) ∧ u(X,X+)]
10: end
11: S = (X,Σ, ES , X0 ∧N,Xm ∧N)

The synthesis process that is used to make a supervisor is described in the algorithm in Algorithm
1 from [23] and is based on [22]. This algorithm uses Symbolic Extended Finite Automata, SEFA,
instead of the EFA that have been described in Section 2.1. The symbolic representation uses pred-
icates that are efficiently represented by BDDs. A SEFA AS is a 5-tuple. X is a set of symbols
that represent automata and variables and the valuation of these symbols defines the state. Σ is
the alphabet and X0 and Xm are predicates on the symbols X that represent initial and marked
states. e ∈ E is an edge and is a triple with event σ, guard expression g and update predicate u. X+

represents the new valuation after the edge has been taken.
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AS = (X,Σ, E,X0(X), Xm(X))

e = (σ, g(X), u(X,X+))

Example 2.2. As an example [23], take a traffic light with two automata LightA and LightB
with locations Red and Green and edges greenA, redA, greenB , redB turning LightA and LightB
green and red respectively. Initially both lights are red. The symbols would be {LightA, LightB},
the initial state predicate is LightA.Red ∧ LightB.Red and the edge that turns LightA green is
(greenA,LightA.Red, LightA+.Green ∧ LightB+ = LightB).

1. The first step during supervisor synthesis is applying the requirements. In this step, safe state
predicates N and a set of safe edges ES are defined for which the requirements hold.

2. Next, the algorithm computes a set of nonblocking state predicates N , starting from the safe
predicate and a set of blocking predicates B. The further calculation is done by means of a
backward reachability search. The predicates of the blocking states are then removed from N
and this process is repeated until N does not change anymore.

3. In the next step, the guards of the controllable edges are strengthened such that they are true
when the nonblocking predicate in the target state of the edge is true.

4. Finally, the supervisor S is constructed. In this supervisor, the initial state predicates are the
conjunction of the safe and nonblocking state predicates N and the initial states from the model
in order to initialize the system in a safe, nonblocking state.

2.3 CIF

CIF is a Compositional Interchange Format for writing models of physical systems among other things
and is part of the Eclipse Supervisory Control Engineering Toolkit (Eclipse ESCETTM)1 [24]. This
gives the ability to implement extended finite automata and also allows specifications which can be
used to synthesize a supervisor in CIF [22]. The supervisor synthesis algorithm is based on BDDs.
With the implementation of the work in [4], two metrics that use these BDDs can be used to measure
the effort required for the synthesis of a supervisor.

2.3.1 Binary decision diagrams

An EFA can be described as a Binary Decision Diagram, BDD, [2,3]. They show whether a predicate
using locations and variables is true or false. This is a diagram that consists of decision nodes, edges
and terminal nodes. At a decision node, the value of on of the variables in the predicate is evaluated
true of false. Locations are treated the same way as variables by checking whether the location
is true or false. From the parent node, two edges representing true and false for the evaluated
variable lead to two corresponding child nodes where a different variable is checked. At the end of
the diagram all variables and locations in the predicate are evaluated and the trees end in terminal
nodes True and False.

Example 2.3. In Figure 2.2, the expression x1 ∧ x2 is evaluated. The solid arrow is an evaluation
true and a dashed arrow means that the node evaluates to false. The expression is True, 1, in the
terminal node when both nodes are true and False, 0, when one of the nodes is false.

In this research, a BDD refers to a reduced ordered binary decision diagram [25]. These diagrams are
canonical for a certain order of variables and use a minimal required number of decision nodes. This is
important, since the number of decision nodes is the size of a BDD. The size consequently has an influ-
ence on the memory of a computer that is required and the computation time of a synthesis procedure.

1The ESCET toolset and documentation is open source and freely available at https://www.eclipse.org/escet/.
‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.
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Figure 2.2: Example of a BDD [26].

2.3.2 Peak used BDD nodes and BDD operation count

To assess the efficiency of an algorithm, multiple metrics have been proposed in literature to measure
the effort that is required for supervisor synthesis. Wall clock time and peak random access memory
usage are popular metrics, but in [4] two other metrics were proposed, namely peak used BDD nodes
and BDD operation count. These are preferred over the other metrics since they are deterministic.
This means that with the same input, the output is the same for every execution. Also, the computing
platform has no influence on the output, meaning that the output will be the same on a regular com-
puter and on a supercomputer. The number of decision nodes during a synthesis influences required
effort. During the synthesis the number of nodes that are used to describe the system is not constant.
The maximal number of the nodes that are used is also the minimal number of nodes for the given
variable order that are necessary to represent the predicates to solve the synthesis. The peak used
BDD nodes is therefore a good representation of the required effort in terms of space according to the
authors of [4]. Whereas the peak used BDD nodes is a metric that looks at the space of the supervisor
synthesis, the required effort in terms of time can be described by the BDD operation count. The
synthesis consists of performing operations on BDDs, which influences the computational time of the
synthesis process. [4] also concludes that the BDD operation count therefore makes the counting of
these operations a good representation of the time effort of the synthesis .

2.3.3 Plant and requirements in CIF

All possible behavior of the components is modelled in the plant consisting of plant automata. In
Figure 2.3, an example of two plant automata are shown. In CIF, every automaton has at least one
location which could be initial or marked or both. Init, S0last and S1last are the locations for au-
tomaton BinarySensor in the example and Init, V 0last and V 1last are the locations for automaton
Movement. From each location, edges can be declared, which are denoted as an edge. They might
have a guard defined after when, an update after do and a target location after goto. The events that
are used in the edges can be defined locally in the automaton or globally outside an automaton. In the
example, the events are defined globally. The events are also defined as controllable or uncontrollable.

Apart from the plant components, requirements are usually added to define the desired behavior.
There are three ways in which requirements can be denoted in CIF. First of all an automaton can
be used to define a requirement as is done in Figure 2.4. When an event is shared, meaning that
it is used in multiple automata, an edge corresponding with that event can only be executed when
the event is enabled in all of those automata. In this way, the requirement automaton dictates the
desired behavior of the plant.

5
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Figure 2.3: Example of two plant automata [27].

Example 2.4. The requirement automaton in Figure 2.4 is based on a section of the swarm formation
model from [27]. The requirement automaton dictates that initially, V 0 is not enabled. Only after S0
has been executed, V 0 is enabled, since then the location has changed toNoRobotPerceived.V 0allowed.
When V 0 or S1 is executed, V 0 is again disabled by going to NoRobotperceived.V 0Nallowed.

Figure 2.4: Example of a requirement automaton [27].

The second kind of requirement definition is a state invariant. The invariant consists of a predicate,
which uses the variables and locations of the plant model. When a plant state violates the predicate,
then the supervisor will prevent the controlled system from reaching this plant state. The invariant
thus defines a condition that must always hold in the controlled system. The invariant should hold in
the initial state and all states that can be reached by edges from that state. This is thus also a way
to dictate desired behavior. An advantage of this kind of requirement is that the invariant is applied
for all edges. It also states an explicit condition for states in relation to variables. The predicates
can use logical operators like negation ¬, conjunction ∧, disjunction ∨ and implication =⇒ [28].

Example 2.5. A state based invariant is shown in Figure 2.5. This requirement is also based on
the swarm aggregation model of [27]. The requirement states that when BinarySensor is in Init,
Movement must be in location Init. This means that the supervisor will disable V 0 and V 1 when
the system is in BinarySensor.Init.

Figure 2.5: Example of a state based invariant requirement.

A third way to define a requirement is using state-event exclusion invariants. This requirement
dictates a condition that needs to hold in order to execute or not execute an event using a predicate.

6
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The requirement is now of the form → σ =⇒ predicate. With this kind of requirement it is easy to
define conditions for the execution of events.

Example 2.6. In Figure 2.6 an example is displayed. This is also based on the swarm aggregation
model from [27]. The requirement restrict the event V 0 directly by enabling the event only when the
system satisfies the predicates. This requirement could also have been written as requirement not

BinarySensor.S0last disables V0;. In that case, V 0 is disabled when the predicate is satisfied.

Figure 2.6: An example of a state-event exclusion invariant requirement.

7
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3 Application of feature models

In this chapter, feature models are introduced and explained. The way that feature models are ap-
plied in CIF is also explained and exemplified with a model of a wiper system. This system is one of
two cases on which experiments are done, which are shown later on in the thesis. The other case is
the system of a body comfort system. This system is also briefly explained in this chapter.

Nowadays in the development of systems, ways are sought to reduce development and production
costs and shorten the time of development and production. This can be done by reusing software and
hardware components of a system. To facilitate the reuse of these components, software product line
engineering can be used. In order to find valid product configurations of these components, feature
models are made [29–31]. Feature models represent the information of all possible products of a
product line in terms of hierarchically arranged features and different relations among the features.
The features in these models are aspects of a system which are specified by requirements or charac-
teristics. For example, a feature of a wiper system could be the the low quality wiper FwL, as is the
case in the feature model in Figure 3.1 [31].

Figure 3.1: Example of a feature model [31].

In the hierarchical set of features direct relations between features are included. These feature con-
straints represent parent-child relations and cross-tree constraints. In Figure 3.2, different feature
constraints are presented [32].

Figure 3.2: A list of feature constraints [32].

8
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In short, a root feature is present in every valid configuration of the system. A mandatory constraint
means that when the parent feature is present in the configuration, the child feature has to be present
as well. The optional constraint means that when a parent feature is present, the child feature may be
present and that when a child feature is present, the parent must be present as well. An alternative
constraint means that when the parent feature is present, only one of the child features is present
and an or constraint means that at least one child feature is present. The constraints thus far are
parent-child relations. For the cross-tree constraints, there is a requires constraint, which means that
a certain feature can only be present when another feature is also present. There is also a cross-tree
excludes constraint which means that certain features exclude each other from being present in the
same configuration.

In [30], multiplicity, called cardinality, of features is considered as relation as well. A feature cardinal-
ity is denoted as [n..m], which means that a particular feature can be present in a product multiple
times with n as a lower bound and m an upper bound on the instances. Note that a mandatory
relationship is the same as a feature cardinality [1..1] and an optional relationship is the same as a
feature cardinality [0..1]. A group cardinality 〈n..m〉 limits the the number of child features that are
allowed to be present in a product when the parent is present. 〈1..1〉 is the same as an alternative
relationship and 〈1..N〉 is the same as an or relationship with N child features. Feature models can
also be extended or attributed, which means that it includes more information about a feature, called
a feature attribute [29]. An attribute usually has a name, domain and a value. These attributed can
also be used in constraints.

Systems with feature models can have a static or dynamic configuration. When the model has a static
configuration, the configuration of the system does not change during the execution of the system.
This means that when certain features are initially present or absent, they stay that way. When a
model has a dynamic configuration, the presence of the features can change during the behavior of
the system, meaning that there is a reconfiguration. It can happen that in such case a violation of
the feature constraints occurs. When making the model, it has to be decided whether that is allowed
or not. By disabling events during reconfiguration or by adding additional requirements, the desired
behavior during reconfiguration can be dictated.

3.1 Applying feature models in CIF

CIF can also be used to synthesize a single supervisor for the model of a product line [32, 33]. The
models of these systems consist of the regular specifications, but the plant is not just the set of
component automata as in Subsection 2.3.3. The feature model itself is also part of the plant and
consists of a couple of components.

In order to include a feature model in the CIF model, a feature plant automaton is made for every
feature as in Figure 3.3. To define the presence or absence of features, a boolean variable present
is introduced. In the static version in Figure 3.3a a dummy location is present since CIF requires
a location in any automata. In the dynamic version in Figure 3.3b, come and go events are added
which represent the entering and leaving of the feature in the configuration. These events can be
controllable or uncontrollable. In the example, they are uncontrollable. The static version of a model
could be seen as a special case of a dynamic model in which the come and go events blocked.

(a) Static feature automaton. (b) Dynamic feature automaton.

Figure 3.3: Feature automata.
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In order to model the in-tree and cross-tree constraints, boolean algebraic variables can be intro-
duced using the formulas from Figure 3.2, see Figure 3.4 for an example. sys valid, which is used
in automaton V alidity, combines all these variables. This automaton demands that sys valid, and
therefore all in- and cross-tree constraints, is initially true. In static configurations, features can not
come or go, meaning that sys valid does not change and stays true. For dynamic configurations,
sys valid could be violated during reconfiguration. The model maker should therefore decide which
behavior should be allowed during reconfiguration as was mentioned in the previous section of this
chapter.

To couple the plant component automata with the corresponding feature automata, a presence check
plant automaton is made in which it is stated that a certain feature needs to be present in order to
enable the events of components corresponding to that feature. An example is presented in Figure
3.5. In the example, all events are uncontrollable, but the a presence check automaton can also be
used for controllable events.

Figure 3.4: Definition of feature constraints belonging to the wiper system in Section 3.2.

Figure 3.5: A presence check plant automaton belonging to the wiper system in Section 3.2.

3.2 The Wiper System

The examples of the previous section all come from a model for the product line of a windscreen
wiper of a vehicle that has been used in multiple sources [31, 33, 34]. This model serves as one of
the two cases that are used in the experiments that are addressed later in this thesis and its feature
model is presented in Figure 3.1. In this section, the wiper system will serve as an example in order
to highlight the division of components in a model.

The component plant consists of a sensor of either high or low quality and a wiper of either high or
low quality. In Figure 3.6, the automata of the components are shown. The low quality sensor in
Figure 3.6a can detect whether it is raining or not, while the high quality sensor in Figure 3.6c can
also detect whether it is raining heavily or only a little. The high quality wiper in Figure 3.6d can
wipe at two speeds, LittleRain or HeavyRain, while the low quality wiper in Figure 3.6b can only wipe
at a single speed, Rain. When a permanent wiper state is chosen in the button automaton in Figure
3.6e, the wiper can wipe permanently. The component plant automaton for the low quality sensor
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is coupled with FsL in the feature model. The high quality sensor is coupled with FsH, the low
quality wiper with FwL, the high quality wiper with FwH and the wipers and button are coupled
with Fp.

The entire model with static feature configuration, hereafter named static wiper model, is listed in
the Appendix. In this divided code, the different parts of the system are clearly identifiable. The
component automata from Figure 3.6 are listed in Listing 2. The feature model consists of the combi-
nation of Listing 1 in which the feature plant automata, algebraic booleans and V alidity automaton
are defined and Listing 3 in which the presence check automata are defined. The plant is thus the
combination of Listing 1, 2 and 3. Finally, in Listing 4, the requirements are defined.

The wiper system with a dynamic feature configuration, hereafter mentioned as the dynamic wiper
system, is also used later in the thesis. This model can be found in Listing 5 in the Appendix. During
the reconfiguration, the two different wipers could be present at the same time. In order to prevent
the unsafe situation that they are wiping at the same time, an extra requirement is made that states
that when both wipers are present, at least one of them is not wiping. Also, re-initialization has been
added to the component automata for both wipers. This means that when a wiper leaves the system,
the wiper returns to the NoRain location. These adaptations come from [33].

(a) Low quality sensor automaton. (b) Low quality wiper automaton. (c) High quality sensor automaton.

(d) High quality wiper automaton. (e) Button automaton.

Figure 3.6: Component automata for the wiper system [33].

3.3 Body Comfort System

The wiper system was only a small system, meaning that to validate the methods even further, a
larger system is modelled. The Body Comfort System, BCS, is a model of a product line of a vehicle
in which features can be chosen by customers [35]. In Figure 3.7, the feature model of the BCS is
shown. The BCS is a system in which components work together to be a final product. In order to
clarify the system a bit, the functionalities are described below [34].

• The Power Window is an electronic window that can detect a clamped finger, called Finger
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Protection.

• The Adjustable and Heatable Exterior Mirror is an exterior mirror that can be adjusted and
that is possibly heated for visibility improvement.

• The Human Machine Interface is a series of optional LEDs that indicate whether certain systems
are active.

• The Central Locking System could lock all doors simultaneously. The Automatic Locking, locks
the doors during driving.

• With the Remote Control Key option, the vehicle can be locked remotely. The Safety Function
locks the car again after a certain time interval. The Control Automatic Power Window enables
the control of the window with the Remote Control Key. There is also an option to control the
mirrors by the Key.

Also for the BCS models exist with a static and dynamic feature configuration which are hereafter
mentioned as the static and dynamic BCS and listed in Listing 6 and Listing 7 in the Appendix
respectively.
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Figure 3.7: The feature model of the BCS [35].
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4 Nonmonolithic synthesis methods

During monolithic supervisor synthesis, one supervisor is synthesized to control the entire system.
However, for large systems a state space explosion occurs during the synthesis process. This means
that for larger systems the computation of a supervisor is infeasible due to memory or time con-
straints. In order to prevent or reduce the required effort during the synthesis of a supervisor, several
methods have been introduced in which the control task has been divided over multiple supervisors
to control the system, which is called modular supervisor synthesis. However, the term modular
supervisor synthesis is also used as a particular subcollection of nonmonolithic synthesis methods. To
clearly distinguish the two different meanings for modular syntheses, the term nonmonolithic synthe-
sis is used for the collection of all methods in this chapter, whereas modular synthesis is used for the
subcollection of methods from Section 4.1.

In order to find a method to reduce the effort for feature models, several nonmonolithic methods
are briefly described in this chapter. These methods already exist in literature. The contribution of
this chapter is Table 4.1. This table is a clear overview of the methods that are discussed and the
properties that belong to the methods and their resulting controlled systems. In Chapter 5, one of
the methods is chosen and used on feature models.

4.1 Modular supervisor synthesis

In [5] a method for modular supervisor synthesis is proposed. Instead of synthesizing a supervisor
from the global plant and one global specification, the authors use multiple specifications. A super-
visor is made for each requirement using that requirement and the global plant. This means that
multiple supervisors are computed. Events are only enabled when it is enabled by all supervisors. The
authors strive to synthesize nonblocking supervisors. However, nonblockingness is not guaranteed in
this method and can only be checked with a nonconflicting check, meaning that the synchronous
product of the supervisors is nonblocking [5]. The authors also provide conditions for a maximally
permissive supervisor for when a nonblocking supervisor can be computed.

Modular supervisor synthesis is also used in [6, 36]. Here, the authors consider a plant G that is
composed of asynchronous subplants, meaning that the subplants do not share events. Local require-
ments are used, meaning that the requirements only refer to a specific part of the system. Instead of
using the local requirement and the global plant to synthesize a supervisor, a local plant is used which
is the parallel composition of all subplants that share events with the local requirement. Then the
supremal controllable languages can be computed, which is the largest controllable sublanguage of a
specification. The synthesis results in local supervisors which are nonblocking. Under the condition
that the local supervisors are locally nonconflicting, the supervisors are nonblocking and maximally
permissive.

In [7], a modular supervisor synthesis method is presented for extended finite state machines. It
starts by checking whether the specification is controllable. When this is the case, the specification
can serve as a supervisor directly. When this is not the case, the algorithm seeks suitable subsets
of plants to use during synthesis. Changing variables are abstracted in a so called chaos Extended
Finite State Machines, EFSMs, which includes all possible variable changes. The plants that are not
included during the synthesis are replaced by chaos EFSMs. When the supervisor is controllable with
respect to the abstraction of the plant and all uncontrollable events, then the algorithm is finished
which results in a maximal permissive supervisor. The supervisors are not guaranteed nonblocking.

4.2 Decentralized supervisor synthesis

Decentralized supervisory control is first proposed in [8] and used in [9–12].
In [8] the authors use local requirements for which the conjunction makes the global specification.
However, instead of using the corresponding parts of the plant as in modular synthesis, the authors
now use a projection of the plant on the alphabet of the local requirement, resulting in local super-
visors. These supervisors are then used to control the plant. Using the decentralized supervisors
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result in the optimal supremal controllable language of the safe behavior. The structure is given in
Figure 4.1 where the projections Q and P of plant G lead to local models G0 and G1 for with which
supervisors f and g are computed.

Figure 4.1: Structure of a decentralized system.

In [9], two situations are considered. In the first situation, the specifications are local in order to
control the system locally. Meaning that, given a plant and specifications with local event sets, local
supervisors can be constructed that only observe the observable local events and that only control the
controllable local events. In the second situation, global specifications are considered, meaning that
there is only one specification with which local supervisors can be constructed. In order to solve this,
the global specification is reduced to local specifications as in the first situation by decomposing the
specification. The global specification is decomposable with respect to the plant and the projections
if the local versions of the specification, permit the global specification to be reconstructed. The
solution is always nonblocking for the second situation, since the authors state that the conjunction
of supervisors must be a proper supervisor. The solution does not guarantee maximally permissive-
ness, since the authors strive to find a supervisor results in at least a predefined minimally adequate
behavior within the safe behavior.

[10] comes with a new approach. In previous approaches, the conditions that guarantee that the
behavior is the same for a centralized and decentralized control are dependent on the specification.
When a specification is changed, the conditions have to be verified again. In the new approach, the
conditions are verified only once for a structure of the system after which decentralized control can
be made for a set of specifications. This approach is called structural decentralized control and is
shown in Figure 4.2. In the figure, the alphabets for which the supervisors are computed, are the
alphabets of the corresponding requirements. The authors introduce two conditions for which, when
satisfied, local syntheses do not lose optimality compared to global synthesis and subsystems do not
incur blocking on the other subsystems.

Figure 4.2: A structural decentralized control system [15].

4.3 Hierarchical supervisor synthesis

Hierarchical supervisory control is another method that is used to reduce the effort required to
synthesize a supervisor [13–16].
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Figure 4.3: Hierarchical control structure from [14].

In [14], the setup is a two level hierarchy using a low level plant Glo which can be perceived as the
actual real world plant. This plant is controlled by the low level controller Clo. Ghi is an abstracted
simplified model of Glo, L(Ghi) = θ(L(Glo)) that is used to base the decisions on that the high level
controller Chi makes and it gets its information from Infhi. Inflohi gives the information from the
low level plant to the high level plant like state changes in Glo and Inflo gives low level feedback
from Glo to Clo. In the low level, the controller provides conventional control Conlo to the plant.
However the control that Chi provides to Ghi, Conhi, is only virtual, since the behavior of Ghi is
determined by the behavior of Glo. Comhilo conveys the commands from the high level controller to
the low level controller which translates the control in a corresponding low level control Conlo. An
important condition, hierarchical consistency is also introduced. This condition ensures that the task
that is specified in the high level controller is actually achieved through the low level. In [13], extra
conditions are made in order to preserve the nonblockingness between the levels.

Figure 4.4: Combination of hierarchical and decentralized structure [15].

In [15], the authors are combining the decentralized structure from [10] where the system is modelled
by the synchronous product of individual subsystems and hierarchical supervisor synthesis by making
the abstraction based on the shared events. The structure is shown in Figure 4.4. This method results
in a system that is hierarchically consistent, nonblocking and maximally permissive.

Another paper in which the authors combine two existing methods is [37]. In this paper, they seek to
combine hierarchical control with modular supervisory control. First, all unnecessary local events are
abstracted away. Next, a certain specification is picked for which all plant submodules with which
it shares events are grouped. These submodules are asynchronous. For every group the synchronous
product is made from all submodules, meaning that for a specification, there is a group that has one
plant. For these new modules, again an abstraction is made after which a supervisor is constructed
for each module and its specification. To lift the supervisors to the global level, the previously re-
moved events are now added again. Now, the procedure moves up to the next level in which the
automata representing the closed loop behavior of the modules from the previous level are used as
subplants on the new level. These steps are repeated until no specifications are left. The procedure
thus generates a set of nonmonolithic supervisors that are nonconflicting by construction. The result
is a nonblocking system that satisfies the specifications. Maximal permissiveness is not guaranteed.
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4.4 Multilevel supervisor synthesis

Another method of nonmonolithic synthesis is multilevel supervisory control. A control architecture
of multilevel form is a system that consists of a network of subsystems which are divided over multiple
levels of the system. Each subsystem has a parent in the higher level and has to satisfy the restrictions
that are imposed from the parent. A subsystem may have children at a lower level of which it has to
control the interaction. In [17], a top-down control synthesis approach is proposed. This approach is
also used in [20] with three levels, but it can be extended to more levels. In Figure 4.5, the structure
is shown. The plant and requirements are divided over the levels and form subsystems. The overall
plant is the synchronous product of all plants. Next, a coordinated multilevel system is defined by
adding the shared events of all tuples of the children to the alphabet of a parent.

In order to control the system, a set of supervisors is made with supervisors for every subsystem at
each level. The synchronous product of these supervisors forms the supervisor satisfying the overall
specification. The authors propose several conditions for the specification for which, when satisfied,
the supervisors can be constructed, beginning at the top level and working its way down until all
supervisors are constructed. In the papers, maximal permissiveness and nonblockingness are not
guaranteed.

In [18], a bottom-up method is proposed. The same organisation technique is used as in [17]. How-
ever, this new method constructs supervisors for the low level groups first and uses the restricted
plants from the low levels in the high level plants. The advantage of this is that the conditions of the
specifications proposed in [17] are loosened. The procedure first finds low level coordinator alpha-
bets and then computes the low level group coordinators and computes the supremal conditionally
controllable sublanguage. If this is blocking, a low level coordinator is made to solve that. Next, it
is repeated for higher levels. Coordinators are constructed separately to make the system not only
safe, but also nonblocking. The same is repeated for the higher levels until all levels are processed.
The supervisor can be imposed in a maximal permissive way if the specification satisfies an imposed
condition.

Figure 4.5: Structure of a multilevel system [38]

In [19], the top-down and bottom-up approaches are combined by first computing the coordinators
with a top-down approach after which a posteriori supervisors and nonblocking coordinators are
computed in a bottom-up manner. The combination’s main advantage is the low complexity from
the possibility to compute local supervisors for individual subsystems at only the lowest level from
the top-down approach and the generality from the bottom-up approach that provides a safe and
nonblocking solution.
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4.5 Comparison

In Table 4.1, the previously discussed nonmonolithic methods and their properties are collected in
an overview. In the Type column, the type of nonmonolithic synthesis belonging to the source in the
first column is denoted. Next, it is denoted whether the method uses a division of the plant G and
a division of the specifications K. Then, it is noted whether the resulting controlled system is safe,
controllable, nonblocking and maximal permissive. Finally, in the last column, it is denoted whether
the nonmonolithic method uses more than one level in its structure. This overview is the result of the
literature research and gives a clear idea of what one can expect from using different nonmonolithic
synthesis methods.

When properties are guaranteed by using a certain method, the element in the table contains a Y.
Certain properties are in some papers not guaranteed for all systems, but only for systems that satisfy
certain conditions. When this is the case, the corresponding element in the table is still filled in with
a Y, since the paper does guarantee the property for certain systems. Only when the properties are
not mentioned or when they are clearly not guaranteed an N is filled in.

While there are more papers and other sources that deal with nonmonolithic supervisor synthesis a
selection has been made based on what methods could perhaps be used on the case models that are
used later in the thesis. This means that for example papers for nonmonolithic synthesis on systems
with particularly partial observability or uncertainties in the information channels are deliberately
not added to the table, since the case models have full observability and no uncertainties.
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Source Type Divide G Divide K Safe Controllable Nonblocking Max. Permissive More levels
[1] Monolithic N N Y Y Y Y N
[5] Modular Y Y Y Y Y Y N
[6, 36] Modular Y Y Y Y Y Y N
[7] Modular Y Y Y Y N Y N
[8] Decentralized Y Y Y Y N Y N
[9] Decentralized Y Y Y Y Y N N
[10] Decentralized Y Y Y Y Y Y N
[14] Hierarchical N N Y Y N N Y
[13] Hierarchical N N Y Y Y N Y

[15]
Hierarchical+
Decentralized

Y Y Y Y Y Y Y

[37]
Hierarchical+
Modular

Y Y Y Y Y N Y

[17, 20] Multilevel Y Y Y Y N N Y
[18] Multilevel Y Y Y Y Y Y Y
[19] Multilevel Y Y Y Y Y Y Y

Table 4.1: Comparison of different nonmonolithic supervisory control methods.
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5 Modular supervisor synthesis in feature models

In this chapter, modular supervisor synthesis is used on feature models to reduce the required effort
during supervisor synthesis. This is an already existing way to reduce effort. In order to measure
and compare the effort that is required for supervisor synthesis, the monolithic as well as modular
synthesis is used on both the static and dynamic model of the wiper system and the static and dy-
namic model of the BCS that were introduced in Section 3.2 and Section 3.3 respectively.

In the previous chapter, multiple nonmonolithic synthesis methods were listed and can be used on the
wiper system and BCS. Multilevel synthesis is not a good candidate, since when a large part of the
system is interconnected, a lot of the model would still be in the root node of the tree, meaning that
synthesis would still need to be performed over a large part of the model. Hierarchical synthesis is also
not used, because for large systems, a lot of effort would need to go to the abstraction phase for the
high level before synthesis can be performed. In decentralized supervisor synthesis, the specification
can be decomposed according to the plant structure. In modular synthesis, the specification does not
need to be decomposable and is therefore used rather than decentralized synthesis. Modular synthesis
is therefore used as a nonmonolithic method for the feature models in this thesis.

5.1 Applying modular synthesis

In this section, the procedure of applying modular synthesis on the models is explained using the
static wiper system as an example. The application is however used on the dynamic model of the
wiper system and both static and dynamic BCS models as well.

In CIF, supervisor synthesis can be done. However, the efficiency of the synthesis does not only de-
pend on the method of synthesis. Event order and variable order influence the efficiency as well [39].
The event order is therefore fixed by adding a monitor automaton to every model with a self loop
containing all events in the same order for every experiment. Since the event order also influences
the required effort, every synthesis is done 25 times with random variable orders. Performing more
experiments results in a more accurate result. However, due to the running time, the number of
syntheses are limited to 25.

Since for modular synthesis, multiple supervisors are synthesized, there are multiple peak used BDD
nodes and BDD operation counts. In order to compare the monolithic and modular synthesis process
efforts, it is preferred to have only one peak used BDD nodes and one BDD operation count per
total process. Since the peak used BDD nodes is the maximal number of nodes that is used during
synthesis, the value of the modular synthesis with the highest peak used BDD nodes is also used
as the peak used BDD nodes for the entire modular synthesis process. The BDD operation count,
counts the amount of operations for one modular synthesis process. The BDD operation count for
the entire modular synthesis process is the sum of the BDD operation counts of the individual mod-
ular processes, since it is the intention to count all BDD operations in the entire process to give a
measure of time. If it was possible to run all modular synthesis processes simultaneously, then also
the maximum BDD operation count could be used. However, this is practically not realistic for larger
systems because of the large number of modular syntheses.

The modular synthesis method that was applied on the cases comes from [6,36] which was mentioned
in Section 4.1. In this method, the supervisor synthesis is performed with a divided requirement
model, meaning that there is one supervisor and synthesis process per requirement and that the
plant during synthesis only consists of the parts of the plant model that are used in the requirement
and all automata that share events with those parts. In order to see which automata should be used
in the synthesis a dependency table is made. Next will follow an explanation of the dependency table
for the static wiper system, but the same principle has been used for the dynamic wiper system and
static and dynamic BCS as well.

In Figure 5.2 a dependency table is created for the static wiper system that serves as an example. The
components of the wiper system are explained in Section 3.1 and Section 3.2. The model components
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that are used in the table are:

• the feature plant automata Fr-FwH

• the algebraic booleans which represent the feature constraints r1-r5

• the algebraic boolean sys valid and the plant automaton Validity

• the component automata button-wiperHQ

• the requirements R1-R19

• the presence check automaton presence check

The dependency table was made using the Pseudo-Algorithm 2.

Algorithm 2 Pseudo-algorithm Dependency Table

Input: Empty Dependency Table with rows x, with x=Fr,· · · ,R19 and columns y, with
y=Fr,· · · ,presence check.

Output: Complete Dependency Table.
1: for all rows x do
2: When a component from a row x shares events with a component on the column y, mark the

element xy corresponding to that row x and column y.
3: When a component from row x has a component of column y in a guard or predicate, mark

the element xy.
4: Mark element xy with x = y.
5: end for
6: repeat
7: for all rows x with at least one marked element do
8: for all marked elements xy in row x do
9: Find the column y corresponding to the marked element.

10: Find the row x2 for which x2 = y.
11: for all marked elements x2y2 in row x2 do
12: Mark element xy2.
13: end for
14: end for
15: end for
16: until all rows are processed without adding a new marked element.

Example 5.1. For example, V alidity refers to sys valid, thus in step 1 in the row V alidity, the
elements corresponding to columns sys valid and V alidity are marked. However, when repeating
step 2-4, also the elements corresponding to the columns of the feature automata Fr-FwH and the
algebraic booleans r1-r5 are marked, since sys valid refers to all algebraic booleans and they in turn
refer to all feature automata.

As was previously mentioned, the modular synthesis is done by synthesizing a supervisor per require-
ment and the corresponding plant components as described in [36]. To find the plant components that
should be used during synthesis first find the row that belongs to the requirement for which synthesis
will be done. In that row, find the components on the columns corresponding to the marked elements.
These components together is the asynchronous system that corresponds to the requirement and is
used as the plant during synthesis.

In the way the presence check automata are defined in the original model, all events and their
corresponding feature automata are present in the presence check automata. This means that almost
all components are linked through the presence check automaton and that all those components
should be part of the plant during modular synthesis. Fortunately, the presence check automata can
also be defined where there is one presence check automaton for every component automaton. In
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Figure 5.1, an example of the division of one presence check automaton into three presence check
automata is shown. This solves the problem that every component is linked through the presence
check automaton.

(a) Original presence check automaton. (b) Divided presence check automata.

Figure 5.1: The division of a presence check automaton.

Since there are no cross references from and to requirements in this case, the requirements are not
placed in the columns of the dependency table for readability. Also, the presence check automaton
has been left out of the row components, since it would have an entirely marked row and eventually
it has been divided as was mentioned above. However, it is still used in the dependency table in the
column components as a reminder that the presence check automata of the corresponding components
have been added to the plant during synthesis. The divided presence check automata could have been
added separately, but due to readability problems, this has been omitted.
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Figure 5.2: Dependency table of the wiper system.

5.2 Results

The effort that is required for the syntheses for the models are displayed in Figure 5.3 for the wiper
models and Figure 5.4 for the BCS. Compared to the monolithic synthesis method there is a large
reduction in peak used BDD nodes when modular synthesis is used. The decrease in BDD operation
count is relatively not as large as the decrease in peak used BDD nodes. For the static and dynamic
wiper model, the BDD operation count has even increased using modular synthesis compared to the
monolithic results. This is due to the multiple syntheses per model since the BDD operation count
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is summed to compute the BDD operation count for the synthesis process of the entire model. The
BDD operation count that is added because of performing more than one synthesis can counter the
BDD operation count won by using a modular method.

Using a modular supervisor synthesis can thus reduce the effort that is required for synthesis. Es-
pecially the peak used BDD nodes can decrease significantly. Though it seems that the peak used
BDD nodes always decreases, the BDD operation count might increase for some systems. It would
therefore be interesting to find a way in which a decrease of peak used BDD nodes could be created
in combination with a significant BDD operation count decrease.

Figure 5.3: Monolithic versus modular effort plot of the wiper system.

Figure 5.4: Monolithic versus modular effort plot of the BCS.

24



Efficient Supervisor Synthesis for Feature Models Removing feature model from synthesis

6 Removing feature model from synthesis

In the previous chapter while using modular supervisor synthesis, the effort was greatly reduced by
only using the parts of the plant that had shared events with the components that were used in
the requirement or that were referred to in the components from the requirement. By doing so, the
feature model itself was deconstructed. All feature constraints were removed from the plant and only
a selection of features was used. In this chapter, it is explained that this is allowed and a new method
is created.

The feature model influences the supervisor synthesis process described in Section 2.2 and therefore
the system by setting initial states and blocking events with the presence check automata. The initial
states that are partly set by the feature model are only used in the last step of the algorithm in the
definition of the initial states of the supervisor. Now assume that the initial states coming from the
feature model are not used in the conjunction that constructs the initial states for the supervisor
by for example leaving out the feature model in the plant during synthesis. This means that the
initial states for the supervisor are the conjunction of the initial states set by the component plant
automata and the safe nonblocking states. However, when this supervisor is applied in the model
with the original plant, meaning that the feature model is included, the initial states of the controlled
plant are the conjunction of the safe and nonblocking states, initial states of the component automata
and the initial states set by the feature model, which is the same as it was when using the feature
model in the synthesis.

When the features and presence check automata are removed, the disablement of certain events by
the presence check is also removed. However, when the supervisor is used on the original plant
again, these edges are again blocked within the safe state space of the system. Leaving out features
during the synthesis process thus does not effect the safety of the system and does not create an
unsafe controlled system when the supervisor is used on the original system. The consequences that
removing features and presence check automata have on nonblocking, controllability and maximal
permissiveness are discussed later in the thesis.

6.1 Removing the entire feature model

For now assuming that there are no references to the feature model in the requirements and keep-
ing the previous section in mind, the entire feature model has thus no essential contribution to the
supervisor synthesis. This is discussed in the next section. The feature model can thus be removed
entirely from the plant that is used for synthesis, this means removing feature automata as well as
presence check automata, feature constraints and the V alidity automaton.

When a feature is referred to in a requirement, then only that particular feature is kept in the plant.
Even though a feature is used and present in the model, the presence check automata using that
feature can still be removed, for the same reasons as described above.

This means that a new method, Feature Model Removal (FMR), for reducing the effort for supervisor
synthesis for feature models has been created for both monolithic and modular synthesis which is as
follows:

1. First remove the feature model from the model. This means that feature plant automata, the
algebraic booleans representing the feature constraints, the Validity automaton and the presence
check automata are removed. When a certain feature is referred to in for example a predicate
of a requirement or a guard of a plant component, that particular feature plant automaton is
not removed.

2. Next, perform synthesis using the requirements and the plant resulting from the previous step.

3. Finally, for the controlled system, use the original plant including the feature model and the
supervisor resulting from step 2.
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In Figure 6.1, the original synthesis process is shown. The plant and specifications are used to make
a supervisor which controls the plant. In the FMR method, the red arrow is (partly) removed from
the process, so the supervisor is synthesized with only a part of the plant and the specifications, but
controls the entire plant.

Figure 6.1: Original and FMR synthesis process.

6.2 Consequences of removing the feature model

Using the FMR, the plant that is combined with the supervisor in the controlled system is not the
same plant that was used to make the supervisor with. This means that the controlled system does
not necessarily adopt the controllable, nonblocking and maximal permissive properties of the con-
trolled system that was made using regular supervisor synthesis. In this section, the consequences of
the FMR on these properties are discussed as well as an extra discussion about safety for static fea-
ture configurations, controllable dynamic feature configurations and uncontrollable dynamic feature
configurations.

6.2.1 Consequences for static configurations

When for models with static configurations the feature model is removed from the plant that is used
to compute the supervisor, the supervisor is made for a plant in which all behavior of the component
automata is possible. The result of the synthesis is a safe state space for all component automata.
This is the same as the situation in which all features are present. When the supervisor is used in
combination with the original plant including the feature model, this safe state space is used in a
conjunction with every initial state introduced by the feature model. The presence check automata
from the original plant can disable edges within this safe state space, but since the resulting state
space is still a part of the safe state space, the controlled system is always safe.

The controlled system is also controllable since the algorithm in CIF makes sure that synthesized
supervisors in CIF do not disable uncontrollable events. The feature model or its absence thus does
not influence the controllability of the system.

In the next example, it is shown that using the FMR does not guarantee nonblockingness.

Example 6.1. Take the system from Figure 6.2. The presence check automaton states that b is
only allowed when feature F is present and a requirement states that a needs location B.2. When
synthesis is performed on the plant including the feature model, the supervisor demands the initial
state F.present. However, when synthesis is performed without the feature model, this initial state
is not required in the supervisor. That means that when the supervisor is used in combination with
the original plant, that F can also not be present in which case b can not be executed, B.2 can not
be reached and a can not be executed and automaton A stays in the blocking location A.1.
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Figure 6.2: Example 6.1.

Condition 1. All automata have marked initial locations and that they do not share events.

Condition 1 means that when a feature corresponding with a certain component automaton is not
present, all events in that automaton are disabled and the automaton stays in its marked initial
location. This is however not enough to make the controlled system nonblocking as is shown in the
following example.

Example 6.2. In the system in Figure 6.3, the initial locations are marked and there are no shared
events. The requirement states that b needs B.2 and the presence check states that c and d are only
enabled when feature F is present. The original supervisor states that F.present is an initial state
and that d is enabled when A.3. However, the supervisor when leaving the feature model out of the
synthesis does not command this initial condition F.present. This means that when the supervisor
is used on the original plant, when F is not present, c and d are not enabled, meaning that b is not
enabled and that A.2 is a blocking state.

Figure 6.3: Example 6.2.

Condition 2. The availability of an edge from an unmarked to a marked state can not depend on a
non-initial state in an automaton that corresponds to a feature that can be absent.

Condition 2 means that the availability of the edge only depends on component automata and not
on the feature model. For a system plant satisfying the Conditions 1 and 2, the controlled system
can not become blocking due to the feature model when the original controlled system is nonblocking.

The supervisor made with FMR applied to the original plant does not guarantee maximal permis-
siveness. This is shown in the following example.

Example 6.3. Imagine a system with two automata A and B as in Figure 6.4. In this system there
is also a feature F. Event c is only enabled when F is present. There is one requirement invariant
not (A.3 and B.2). b and c are uncontrollable.

Figure 6.4: Example 6.3.

When synthesis is performed on this system including the feature model, the supervisor enables a
when B.1 and not F.present. However, when the feature model is removed from the system as is
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done in the FMR, the supervisor never enables a at all, since c can always be executed and after a,
b can always be executed. This leads to A.3 and B.2 which was forbidden by the requirement. a
is now always disabled instead contrary to the supervisor computed without FMR. This shows that
using the method does not guarantee a maximal permissive controlled system.

Condition 3. All events are controllable in the automata that are used in the requirements and the
automata that share events with those automata. Also, all events that lead to an unmarked state are
controllable.

The events from the automata used in requirements and the automata that share events with them
could be controlled by the supervisor to make the system safe. The events that lead to an unmarked
state could be controlled by the supervisor to make the system nonblocking. If Condition 3 holds,
the supervisor can control every edge that is relevant for the supervisor to make the system safe and
nonblocking, based on the component automata regardless of the feature model. The supervisor syn-
thesized by including and excluding the feature model in the plant during synthesis will thus restrict
the same events. The only thing that the feature model does when the supervisor is used on the
original plant is making the states corresponding to those edges reachable or not. That means that
the controlled system is guaranteed maximally permissive with Condition 3 for models for which the
controlled system is safe, controllable and nonblocking.

6.2.2 Consequences for uncontrollable dynamic configuration

For systems in which the configuration is dynamic with uncontrollable come and go events in the
feature automata that were introduced in Section 3.1, the consequences of using the FMR are differ-
ent compared to the static systems. The first difference between static and dynamic configurations
is the possibility of a reset edge, which for example brings an automaton to its initial state when the
corresponding feature leaves the system, when a come or go event is used in a component automaton.
This can also happen in a controllable dynamic configuration. The features corresponding to those
events are not removed from the plant that is used during synthesis. The resets are thus incorporated
in the safe state space resulting from the synthesis. Further, as was the case in the static configuration
systems, when the feature model is removed, the plant that is used during synthesis results in the
same behavior as in the case that all features are present. The addition of the feature model after
synthesis then again only results in the removal of edges in the safe state space when certain events
are disabled due to the absence of a feature. Since the come and go events are uncontrollable, features
can come and go at random. Therefore corresponding edges can be enabled and disabled at random
as well, meaning that the absence of a feature only results in a hold up in the current locations in
its corresponding component automata. Since it can resume its execution of edges when the feature
is made present again, the state space of the component automata does not change. The controlled
safe state space of the component automata therefore is the same when using original synthesis and
using the FMR. This also means that the controlled system is safe.

Since the controlled state space for the component automata is the same for original synthesis and
using the FMR, when the original controlled system is nonblocking, the new controlled system is also
nonblocking and maximal permissiveness and controllability is guaranteed.

6.2.3 Consequences for controllable dynamic configuration

Systems can also have a dynamic configuration in which the come and go events are controllable.
For such systems, using FMR does not necessarily result in a nonempty supervisor when the original
synthesis does result in a nonempty supervisor. This is shown in the following example.

Example 6.4. Consider the example in Figure 6.5. The presence check automaton states that b
can only happen when F is present and there is a requirement requirement not A.3. When the
supervisor is made including the feature model in the plant, the supervisor states that come and go
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are disabled and that the initial state is F.present. However, when the feature model is omitted from
the synthesis, the synthesis results in an empty supervisor which means that the supervisor has to
disable so much of the behavior that no initial condition remains in the state space. The controlled
system is therefore empty.

Figure 6.5: Example of a potentially unsafe system.

The problem is that the situation might be that only an uncontrollable string of events can lead to
a bad state, in the example state 3, from the initial state of a component automaton in a system
without a feature model. Since the supervisor can not control uncontrollable events, there is no
valid initial state, which means that the controlled system is empty. The feature model however
can disable certain uncontrollable events through the presence check automata with the absence
of features, meaning that certain features should be included in the plant during synthesis. The
FMR should therefore be adjusted for systems with controllable dynamic configurations. When a
component automaton only has controllable events, then the supervisor can control all edges of that
automaton by enabling or disabling the events from the component automaton without necessarily
having to use the corresponding presence check and thus the come and go events. The feature and
presence check can thus be removed. The following adaptation of the FMR can be used.

1. When a component plant automaton only has controllable events, then the corresponding pres-
ence check automaton is removed from the plant. When all plant automata corresponding to a
certain feature only have controllable events, then also the feature plant automaton is removed
from the plant.
When a certain feature is referred to in for example a predicate of a requirement, a guard of
a plant component or it shares an event with a component automaton, that particular feature
plant automaton is not removed.

2. Next, perform synthesis using the requirements and the plant resulting from the previous step.

3. Finally, for the controlled system, use the original plant including the feature model and the
supervisor resulting from step 2.

Now, there is only a feature model removal in the plant parts belonging to component automata of
which is certain that the supervisor can control the behavior only by using component automaton
events. For those parts, the addition of the feature model after synthesis will again act as a “pause”
in the behavior of the automaton as in the uncontrollable dynamic configuration systems. Since
the changed part of the system acts like the uncontrollable dynamic configuration system and the
rest is unchanged, the controlled system is again safe, controllable and maximal permissive and it is
nonblocking when the system after regular synthesis is nonblocking as well.

In Table 6.1 a summary is given for each type of configuration and which properties of the system
after original synthesis without FMR is adopted by the system after synthesis with FMR.

Safe Controllable Nonblocking Maximally Permissive
Static Y Y N N

Y, for cond. 1&2 Y, for cond. 3
Uncontr. Dyn. Y Y Y Y
Contr. Dyn. N Y N N

Y, for adapted FMR Y, for adapted FMR Y, for adapted FMR

Table 6.1: Summary of the three configurations and whether they adopt the properties of the original synthesis
when using FMR.
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6.3 Effect on the effort

In order to measure the effects on the required effort, the method has been applied on the static and
dynamic models of the wiper system and the BCS. The effect on monolithic supervisor synthesis is
used as a measure of how the FMR reduces the required effort on its own. The FMR and modular
supervisor synthesis are also combined to see whether the FMR can reduce the required effort even
though the effort has already been reduced by using modular synthesis.

In Figure 6.6 the required effort for the different synthesis methods are shown for the static wiper
system. The average value of the peak used BDD nodes and the BDD operation count have decreased
31% and 47% respectively when applying the FMR on the monolithic supervisor synthesis. Comparing
that to the modular method, the reduction of the peak used BDD nodes is far greater with using
the modular method. However, the BDD operation count for the modular synthesis has significantly
increased compared to the monolithic synthesis. Using the FMR together with the modular synthesis
method results in the significant peak used BDD nodes decrease thanks to the modular synthesis
and the BDD operation count increase has been compensated thanks to the FMR, which shows the
relevant contribution of the FMR.

Figure 6.6: Effort plot for supervisor synthesis on the static wiper system.

In Figure 6.7 the effort plot is shown for the uncontrollable dynamic wiper system. Using the FMR
during monolithic supervisor synthesis results in a decrease of 32% and 41% of the average values
of the peak used BDD nodes and BDD operation count respectively. When using only modular su-
pervisor synthesis, the peak used BDD nodes are decreased significantly again. The effort decrease
thanks to the modular synthesis in BDD operation count does not outway the effort increase due to
the increase of the number of syntheses, resulting in a net increase of effort. For modular synthesis,
there is a trade-off between space and time effort. The modular synthesis in combination with FMR
results in a smaller peak used BDD nodes than the monolithic synthesis in combination with FMR,
while the BDD operation count is better for the monolithic version with FMR instead of the modular
synthesis with FMR. The trade-off is thus apparent in the results. Adding the FMR to the modular
synthesis reduces the BDD operation count while profiting from the decrease of peak used BDD nodes
thanks to the modular synthesis.
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Figure 6.7: Effort plot for supervisor synthesis on the dynamic wiper system.

The results for the experiments using the static BCS system are plotted in Figure 6.8. This model
is bigger than the wiper system and also has a larger feature model. Removing this from the model
results in a decrease of the average value of both effort metrics with a decrease of the BDD operation
count of no less than 79%. While modular synthesis also results in a large reduction of required
effort, the addition of the FMR halves the BDD operation count further and decreases the peak used
BDD nodes with a third. Comparing the original monolithic supervisor synthesis effort to the effort
required by the modular supervisor synthesis with the FMR, there is a decrease of 96% and 96% of
the average values of the peak used BDD nodes and BDD operation count respectively.

Figure 6.8: Effort plot for supervisor synthesis on the static BCS.
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Figure 6.9: Effort plot for supervisor synthesis on the dynamic BCS.

The same conclusions can be read from the effort plot of the uncontrollable dynamic BCS in Figure
6.9. In this particular model the 54 modular syntheses using the FMR for the requirements that are
also in the static model are good for just a small part of the total BDD operation count of the entire
modular synthesis. Some of the added requirements to make the model dynamic refer to sys valid
which means that all algebraic booleans representing the feature constraints and therefore all feature
plant automata can not be removed from the model. The last five syntheses, corresponding to the last
five requirements are thus good for 90% of the BDD operation count for the entire modular synthesis
using FMR. In models where references to the entire feature model can be avoided, both metrics can
be reduced even more.

The results show that the FMR does reduce the effort significantly for both monolithic and modular
supervisor synthesis. Though using modular supervisor synthesis can reduce the effort more than the
FMR during the monolithic supervisor synthesis, adding the FMR to the modular supervisor synthe-
sis does decrease the effort even more. In the case of modular synthesis of the dynamic wiper system,
the BDD operation count was still more than the BDD operation count of the monolithic synthesis.
In modular synthesis, there can be a trade-off between space and time effort. Still, applying FMR
reduces the effort in all cases. The FMR thus proves to be a useful tool to reduce the effort on its
own and in combination with modular synthesis.

Since the FMR is a useful tool in combination with modular synthesis, it is interesting to see whether
the efficiency increase is also reached in combination with other nonmonolithic synthesis methods like
multilevel or hierarchical methods. Since the FMR is now only tested on two cases, it might be useful
to develop more cases for feature models of different sizes or configurations. There is for example
not yet a case in which the dynamic configuration is controllable or where there is perhaps a mix of
features with controllable and uncontrollable features.
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7 Conclusions and recommendations

During monolithic supervisor synthesis, one supervisor is made to control the entire system. For large
systems, this requires a lot of effort and the computation of a supervisor might become infeasible. In
order to reduce the required effort, several methods can be used in which control is divided over mul-
tiple supervisors. Modular and decentralized supervisor synthesis divide the plant in modules that
share events with the specifications. Hierarchical supervisor synthesis creates a higher level of the
model which is abstracted for which high level supervisors are made that translates in the low level
command. Multilevel supervisor synthesis divides the plant into a tree-structure for which supervisors
are made per level or groups. The properties of the different methods are compared in a clear overview.

In order to reduce the required effort to synthesize a supervisor for feature models, first an existing
method for modular supervisor synthesis was used on a small wiper system model and a large body
comfort system model. Both static and dynamic configurations were used. In this method, the plant
and requirements were divided into subsystems and synthesis was performed on those systems. In
order to see more clearly which plant components should be used in the plant during synthesis for a
specific requirement, dependency tables were created. The results showed that using modular syn-
thesis greatly reduces the peak used BDD nodes compared to monolithic synthesis, but is not always
effective for the BDD operation count due to the increased number of syntheses.

A new method to reduce the required effort for supervisor synthesis in feature models was introduced
as Feature Model Removal, in which certain parts of the feature model in the plant are removed
from the plant that is used during synthesis. The original plant is then used in combination with the
synthesized supervisor which results in the controlled system.

This FMR method has some consequences. For feature models with a static configuration, the con-
trolled system is safe and controllable, but only for systems with certain conditions can maximal
permissiveness and nonblockingness be guaranteed.

For systems with uncontrollable dynamic configurations, the controlled state space of the component
automata is the same for the original controlled system and the system using FMR. The safe, con-
trollable, maximal permissive and nonblocking properties of the original system are therefore kept
when using FMR.

For models with controllable dynamic configurations, FMR does not always work, which means that
the method is altered such that the controlled system keeps the safe, controllable, maximal permissive
and nonblocking properties of the original system.

Comparing the required effort for synthesis for both static and dynamic models of the wiper system
and the BCS using monolithic and modular synthesis, both with and without FMR, shows that FMR
reduces the effort significantly. Both on its own and in combination with modular synthesis, the FMR
method is a useful tool to reduce synthesis effort for feature models.

For further research, it is interesting to find out whether the efficiency win of the FMR in combination
with modular synthesis can also be won in combination with other nonmonolithic synthesis methods.
Also, more cases should be developed, since there is a limited number of cases at the time of writing.
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[22] L. Ouedraogo, R. Kumar, R. Malik, and K. Åkesson, “Nonblocking and safe control of discrete-
event systems modeled as extended finite automata,” IEEE Transactions on Automation Science
and Engineering, vol. 8, no. 3, pp. 560–569, 2011.

[23] S. Thuijsman, M. Reniers, and D. Hendriks, “Efficiently enforcing mutual state exclusion re-
quirements in symbolic supervisor synthesis,” 2021 IEEE 17th International Conference on Au-
tomation Science and Engineering, pp. 777–783, In press-August 2021.

[24] D. van Beek, W. Fokkink, D. Hendriks, A. Hofkamp, J. Markovski, J. van de Mortel-Fronczak,
and M. Reniers, “CIF 3: Model-Based Engineering of Supervisory Controllers,” Tools and algo-
rithms for the construction and analysis of systems : 20th International Conference, vol. 8413,
pp. 575–580, 2014.

[25] E. Randal, “Symbolic Boolean Manipulation with Ordered Binary-Decision Diagrams,” ACM
Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

[26] T. van Dijk and J. van de Pol, “Sylvan: multi-core framework for decision diagrams,” Interna-
tional Journal on Software Tools for Technology Transfer, vol. 19, no. 6, pp. 675–696, 2017.

[27] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd, and R. Groß, “Supervisory control
theory applied to swarm robotics,” Swarm Intelligence, vol. 10, no. 1, pp. 65–97, 2016.

[28] M. Reniers and J. Van de Mortel-Fronczak, Supervisory Control. Lecture notes 4CM30 Super-
visory Control Theory, Eindhoven University of Technology, February 4, 2019.

[29] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated reasoning on feature models,”
Lecture Notes in Computer Science, vol. 3520, no. January, pp. 491–503, 2005.

[30] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Automated analysis of feature models 20 years
later: A literature review,” Information Systems, vol. 35, no. 6, pp. 615–636, 2010.

[31] J. Dervaux, P. Cormier, P. Moskovkin, O. Douheret, S. Konstantinidis, R. Lazzaroni, S. Lu-
cas, and R. Snyders, “Modelling with FTS: A Collection of Illustrative Examples,” tech. rep.,
University of Namur, 2010.

[32] M. H. ter Beek, M. A. Reniers, and E. P. de Vink, “Supervisory controller synthesis for product
lines using CIF 3,” Leveraging Applications of Formal Methods, Verification and Validation:
Foundational Techniques, vol. 9952 LNCS, pp. 856–873, 2016.

[33] M. Reniers and S. Thuijsman, “Supervisory control for dynamic feature configuration in product
lines,” in 2020 Forum for Specification and Design Languages (FDL), pp. 1–8, 2020.

[34] M. Tuitert, “Supervisory controller synthesis for Dynamic Software Product Lines,” Master’s
thesis, Eindhoven University of Technology, 2017.

[35] S. Lity, R. Lachmann, M. Lochau, and I. Schaefer, “Delta-oriented Software Product Line Test
Models - The Body Comfort System Case Study,” Tech. Rep. 2012-07, Technische Universität
Braunschweig, 2017.

[36] M. H. De Queiroz and J. E. Cury, “Modular Supervisory Control of Large Scale Discrete Event
Systems,” Discrete Event Systems: Analysis and Control, pp. 103–110, 2000.

[37] R. C. Hill and P. M. Tilbury, “Modular supervisory control of discrete-event systems with ab-
straction and incremental hierarchical construction,” Proceedings - Eighth International Work-
shop on Discrete Event Systems 2006, pp. 399–406, 2006.

35



Efficient Supervisor Synthesis for Feature Models REFERENCES

[38] M. Goorden, J. v. d. Mortel-Fronczak, M. Reniers, W. Fokkink, and J. Rooda, “Structuring
multilevel discrete-event systems with dependence structure matrices,” IEEE Transactions on
Automatic Control, vol. 65, no. 4, pp. 1625–1639, 2020.

[39] S. Thuijsman, D. Hendriks, R. Theunissen, M. Reniers, and R. Schiffelers, “Computational effort
of BDD-based supervisor synthesis of extended finite automata,” IEEE International Conference
on Automation Science and Engineering, pp. 486–493, 2019.

36



Efficient Supervisor Synthesis for Feature Models APPENDIX

Appendix

Static Wiper System

Listing 1: First part of the feature model

plant def FEATURE () :

disc bool present in any;

location : initial ; marked ;

end

Fr : FEATURE () ;

Fw : FEATURE () ; Fs : FEATURE () ; Fp : FEATURE () ;

FsL : FEATURE () ; FsH : FEATURE () ; FwL : FEATURE () ; FwH : FEATURE () ;

alg bool r1 = Fr.present ;

alg bool r2 = Fp.present => Fr.present ;

alg bool r3 = Fr.present <=> ( Fs.present and Fw.present ) ;

alg bool r4 = (FsL.present <=> ( not FsH.present and Fs.present ))

and (FsH.present <=> ( not FsL.present and Fs.present ));

alg bool r5 = (FwL.present <=> ( not FwH.present and Fw.present ))

and (FwH.present <=> ( not FwL.present and Fw.present ));

alg bool sys_valid = r1 and r2 and r3 and r4 and r5;

plant automaton Validity:

location:

initial sys_valid ; marked ;

end

Listing 2: Component automata

plant automaton button :

uncontrollable u_off , u_on , u_permOn ;

location Off :

initial ; marked ;

edge u_permOn goto PermOn ;

edge u_on goto On ;

location On :

edge u_permOn goto PermOn ;

edge u_off goto Off ;

location PermOn :

edge u_off goto Off ;

edge u_on goto On ;

end

plant automaton sensorLQ :

uncontrollable u_noRain , u_rain ;

location NoRain :

initial;marked ;

edge u_rain goto Rain ;

location Rain :

edge u_noRain goto NoRain ;

end

plant automaton sensorHQ :

uncontrollable u_noRain , u_littleRain , u_heavyRain ;

location NoRain :

initial ;marked ;

edge u_littleRain goto LittleRain ;

edge u_heavyRain goto HeavyRain ;

location LittleRain :

edge u_noRain goto NoRain ;

edge u_heavyRain goto HeavyRain ;
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location HeavyRain :

edge u_noRain goto NoRain ;

edge u_littleRain goto LittleRain ;

end

plant wiperLQ :

controllable c_off , c_noRain , c_rain , c_permWipe ;

location NoRain :

initial ; marked ;

edge c_rain goto Rain ;

edge c_permWipe goto PermWipe ;

location PermWipe :

edge c_off goto NoRain ;

edge c_rain goto Rain ;

location Rain :

edge c_noRain goto NoRain ;

edge c_off goto NoRain ;

edge c_permWipe goto PermWipe ;

end

plant wiperHQ :

controllable c_off , c_noRain , c_littleRain , c_heavyRain , c_permWipe ;

location NoRain :

marked ; initial ;

edge c_permWipe goto PermWipe ;

edge c_littleRain goto LittleRain ;

edge c_heavyRain goto HeavyRain ;

location PermWipe :

edge c_off goto NoRain ;

edge c_littleRain goto LittleRain ;

edge c_heavyRain goto HeavyRain ;

location LittleRain :

edge c_noRain goto NoRain ;

edge c_heavyRain goto HeavyRain ;

edge c_off goto NoRain ;

edge c_permWipe goto PermWipe ;

location HeavyRain :

edge c_noRain goto NoRain ;

edge c_littleRain goto LittleRain ;

edge c_off goto NoRain ;

edge c_permWipe goto PermWipe ;

end

Listing 3: Second part of the feature model

plant automaton PRESENCE_CONTROLLED :

location :

initial ; marked ;

edge wiperLQ.c_off when FwL.present ;

edge wiperLQ.c_noRain when FwL.present ;

edge wiperLQ.c_rain when FwL.present ;

edge wiperLQ.c_permWipe when Fp.present and FwL.present ;

edge wiperHQ.c_off when FwH.present ;

edge wiperHQ.c_noRain when FwH.present ;

edge wiperHQ.c_littleRain when FwH.present ;

edge wiperHQ.c_heavyRain when FwH.present ;

edge wiperHQ.c_permWipe when Fp.present and FwH.present ;

end

plant automaton PRESENCE_UNCONTROLLED :

location :

initial ; marked ;

edge button.u_permOn when Fp.present ;

edge sensorLQ.u_noRain when FsL.present ;

edge sensorLQ.u_rain when FsL.present ;
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edge sensorHQ.u_noRain when FsH.present ;

edge sensorHQ.u_littleRain when FsH.present ;

edge sensorHQ.u_heavyRain when FsH.present ;

end

Listing 4: Requirements

requirement wiperLQ.c_off needs button.Off ;//R1

requirement wiperLQ.c_noRain needs button.On ;//R2

requirement wiperLQ.c_noRain needs ( FsL.present => sensorLQ.NoRain ) ;//R3

requirement wiperLQ.c_noRain needs ( FsH.present => sensorHQ.NoRain ) ;//R4

requirement wiperLQ.c_rain needs button.On ;//R5

requirement wiperLQ.c_rain needs ( FsH.present =>

( sensorHQ.LittleRain or sensorHQ.HeavyRain ) ) ;//R6

requirement wiperLQ.c_rain needs ( FsL.present => sensorLQ.Rain ) ;//R7

requirement wiperLQ.c_permWipe needs button.PermOn ;//R8

requirement wiperHQ.c_off needs button.Off ;//R9

requirement wiperHQ.c_noRain needs button.On ;// R10

requirement wiperHQ.c_noRain needs ( FsL.present => sensorLQ.NoRain ) ;//R11

requirement wiperHQ.c_noRain needs ( FsH.present => sensorHQ.NoRain ) ;//R12

requirement wiperHQ.c_littleRain needs button.On ;// R13

requirement wiperHQ.c_littleRain needs ( FsL.present => sensorLQ.Rain ) ;// R14

requirement wiperHQ.c_littleRain needs ( FsH.present => sensorHQ.LittleRain) ;// R15

requirement wiperHQ.c_heavyRain needs button.On ;//R16

requirement wiperHQ.c_heavyRain needs ( FsH.present => sensorHQ.HeavyRain ) ;// R17

requirement wiperHQ.c_heavyRain needs ( FsL.present => false ) ;//R18

requirement wiperHQ.c_permWipe needs button.PermOn ;//R19
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Dynamic Wiper System

Listing 5: Dynamic Wiper System model

plant def FEATURE () :

uncontrollable come , go;

disc bool present in any;

location: initial; marked;

edge come when not present do present :=true;

edge go when present do present :=false;

end

Fr : FEATURE () ;

Fw : FEATURE () ; Fs : FEATURE () ; Fp : FEATURE () ;

FsL : FEATURE () ; FsH : FEATURE () ; FwL : FEATURE () ; FwH : FEATURE () ;

alg bool r1 = Fr.present ;

alg bool r2 = Fp.present => Fr.present ;

alg bool r3 = Fr.present <=> ( Fs.present and Fw.present ) ;

alg bool r4 = (FsL.present <=> ( not FsH.present and Fs.present ))

and (FsH.present <=> ( not FsL.present and Fs.present ));

alg bool r5 = (FwL.present <=> ( not FwH.present and Fw.present ))

and (FwH.present <=> ( not FwL.present and Fw.present ));

alg bool sys_valid = r1 and r2 and r3 and r4 and r5;

plant automaton Validity:

location:

initial sys_valid ; marked ;

end

plant automaton button :

uncontrollable u_off , u_on , u_permOn ;

location Off :

initial ; marked ;

edge u_permOn goto PermOn ;

edge u_on goto On ;

location On :

edge u_permOn goto PermOn ;

edge u_off goto Off ;

location PermOn :

edge u_off goto Off ;

edge u_on goto On ;

end

plant automaton sensorLQ :

uncontrollable u_noRain , u_rain ;

location NoRain :

initial;marked ;

edge u_rain goto Rain ;

location Rain :

edge u_noRain goto NoRain ;

end

plant automaton sensorHQ :

uncontrollable u_noRain , u_littleRain , u_heavyRain ;

location NoRain :

initial ;marked ;

edge u_littleRain goto LittleRain ;

edge u_heavyRain goto HeavyRain ;

location LittleRain :

edge u_noRain goto NoRain ;

edge u_heavyRain goto HeavyRain ;

location HeavyRain :

edge u_noRain goto NoRain ;

edge u_littleRain goto LittleRain ;

end

40



Efficient Supervisor Synthesis for Feature Models APPENDIX

plant wiperLQ:

controllable c_off , c_noRain , c_rain , c_permWipe ;

location NoRain :

initial ; marked ;

edge c_rain goto Rain ;

edge c_permWipe goto PermWipe ;

location PermWipe :

edge c_off goto NoRain ;

edge c_rain goto Rain ;

edge FwL.go goto NoRain;

location Rain :

edge c_noRain goto NoRain ;

edge c_off goto NoRain ;

edge c_permWipe goto PermWipe ;

edge FwL.go goto NoRain;

end

plant wiperHQ:

controllable c_off , c_noRain , c_littleRain , c_heavyRain , c_permWipe ;

location NoRain :

marked ; initial ;

edge c_permWipe goto PermWipe ;

edge c_littleRain goto LittleRain ;

edge c_heavyRain goto HeavyRain ;

location PermWipe :

edge c_off goto NoRain ;

edge c_littleRain goto LittleRain ;

edge c_heavyRain goto HeavyRain ;

edge FwH.go goto NoRain;

location LittleRain :

edge c_noRain goto NoRain ;

edge c_heavyRain goto HeavyRain ;

edge c_off goto NoRain ;

edge c_permWipe goto PermWipe ;

edge FwH.go goto NoRain;

location HeavyRain :

edge c_noRain goto NoRain ;

edge c_littleRain goto LittleRain ;

edge c_off goto NoRain ;

edge c_permWipe goto PermWipe ;

edge FwH.go goto NoRain;

end

plant automaton PRESENCE_CONTROLLED :

location :

initial ; marked ;

edge wiperLQ.c_off when FwL.present ;

edge wiperLQ.c_noRain when FwL.present ;

edge wiperLQ.c_rain when FwL.present ;

edge wiperLQ.c_permWipe when Fp.present and FwL.present ;

edge wiperHQ.c_off when FwH.present ;

edge wiperHQ.c_noRain when FwH.present ;

edge wiperHQ.c_littleRain when FwH.present ;

edge wiperHQ.c_heavyRain when FwH.present ;

edge wiperHQ.c_permWipe when Fp.present and FwH.present ;

end

plant automaton PRESENCE_UNCONTROLLED :

location :

initial ; marked ;

edge button.u_permOn when Fp.present ;

edge sensorLQ.u_noRain when FsL.present ;

edge sensorLQ.u_rain when FsL.present ;

edge sensorHQ.u_noRain when FsH.present ;

edge sensorHQ.u_littleRain when FsH.present ;

edge sensorHQ.u_heavyRain when FsH.present ;

end
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requirement wiperLQ.c_off needs button.Off ;//R1

requirement wiperLQ.c_noRain needs button.On ;//R2

requirement wiperLQ.c_noRain needs ( FsL.present => sensorLQ.NoRain ) ;//R3

requirement wiperLQ.c_noRain needs ( FsH.present => sensorHQ.NoRain ) ;//R4

requirement wiperLQ.c_rain needs button.On ;//R5

requirement wiperLQ.c_rain needs ( FsH.present =>

( sensorHQ.LittleRain or sensorHQ.HeavyRain ) ) ;//R6

requirement wiperLQ.c_rain needs ( FsL.present => sensorLQ.Rain ) ;//R7

requirement wiperLQ.c_permWipe needs button.PermOn ;//R8

requirement wiperHQ.c_off needs button.Off ;//R9

requirement wiperHQ.c_noRain needs button.On ;// R10

requirement wiperHQ.c_noRain needs ( FsL.present => sensorLQ.NoRain ) ;//R11

requirement wiperHQ.c_noRain needs ( FsH.present => sensorHQ.NoRain ) ;//R12

requirement wiperHQ.c_littleRain needs button.On ;// R13

requirement wiperHQ.c_littleRain needs ( FsL.present => sensorLQ.Rain ) ;// R14

requirement wiperHQ.c_littleRain needs ( FsH.present => sensorHQ.LittleRain) ;// R15

requirement wiperHQ.c_heavyRain needs button.On ;//R16

requirement wiperHQ.c_heavyRain needs ( FsH.present => sensorHQ.HeavyRain ) ;// R17

requirement wiperHQ.c_heavyRain needs ( FsL.present => false ) ;//R18

requirement wiperHQ.c_permWipe needs button.PermOn ;//R19

requirement invariant (FwL.present and FwH.present) =>

(wiperLQ.NoRain or wiperHQ.NoRain );// R20
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Static BCS

Listing 6: Static BCS model

plant def FEATURE ():

disc bool present in any;

location : initial; marked;

end

FBCS:FEATURE ();

FHMI:FEATURE (); FDoor:FEATURE (); FSecu:FEATURE ();

FPowerW:FEATURE (); FMir:FEATURE (); FAlarm:FEATURE (); FCLS:FEATURE (); FRCKey:FEATURE ();

FLED:FEATURE (); FManPW:FEATURE (); FAutoPW:FEATURE (); FFingerP:FEATURE ();

FMirE:FEATURE (); FMirHeat:FEATURE ();

FInterMon:FEATURE (); FAutoL:FEATURE (); FCtrAlarm:FEATURE (); FSafe:FEATURE ();

FCtrAutoPW:FEATURE (); FAdjMir:FEATURE ();

FLEDAlarm:FEATURE (); FLEDFP:FEATURE (); FLEDCLS:FEATURE (); FLEDPW:FEATURE ();

FLEDMir:FEATURE (); FLEDHeat:FEATURE ();

alg bool r1=FBCS.present; // Root feature present

alg bool r2=FBCS.present <=> FHMI.present; // HMI mandatory

alg bool r3=FBCS.present <=> FDoor.present; // Door mandatory

alg bool r4=FSecu.present => FBCS.present; // Security optional

alg bool r5=FDoor.present <=> (FPowerW.present and FMir.present ); // PW,EM mandatory

alg bool r6=FAlarm.present => FSecu.present; // AS optional

alg bool r7=FCLS.present => FSecu.present; // CLS optional

alg bool r8=FRCKey.present => FSecu.present; // RCK optional

alg bool r9=FLED.present => FHMI.present; // LED optional

alg bool r10=FPowerW.present <=> (FManPW.present <=> not FAutoPW.present );

// Manual or automatic PW

alg bool r11=FPowerW.present <=> (FFingerP.present ); // Finger Protection mandatory

alg bool r12=FMir.present <=> (FMirE.present ); // Electric exterior mirror mandatory

alg bool r13=FMirHeat.present => FMir.present; // Mirror heating optional

alg bool r14=FInterMon.present => FAlarm.present; // Interior monitoring optional

alg bool r15=FAutoL.present => FCLS.present; // Automatic locking optional

alg bool r16=FCtrAlarm.present => FRCKey.present; // Control alarm optional

alg bool r17=FSafe.present => FRCKey.present; // Safety optional

alg bool r18=FCtrAutoPW.present => FRCKey.present;

// Control automatic power window optional

alg bool r19=FAdjMir.present => FRCKey.present; // Safety optional

alg bool r20=( FLEDAlarm.present or FLEDFP.present or FLEDCLS.present or

FLEDPW.present or FLEDMir.present or FLEDHeat.present)<=> FLED.present;

alg bool r21=FLEDAlarm.present => FAlarm.present; //LED alarm requires Alarm

alg bool r22=FLEDCLS.present => FCLS.present; //LED central requires central locking

alg bool r23=FLEDHeat.present => FMirHeat.present;

//LED heat mirror requires heated mirror

alg bool r24=not(FManPW.present and FCtrAutoPW.present );

// Manual power windows excludes control autoPW

alg bool r25=FCtrAlarm.present => FAlarm.present;

// Control alarm requires Alarm system

alg bool r26=FRCKey.present => FCLS.present;

// Remote control key requires central locking system

alg bool sys_valid=r1 and r2 and r3 and r4 and r5 and r6 and r7 and r8 and r9 and

r10 and r11 and r12 and r13 and r14 and r15 and r16 and r17 and r18 and r19

and r20 and r21 and r22 and r23 and r24 and r25 and r26;

plant automaton Validity:

location:

initial sys_valid ; marked ;

end

plant automaton LED_EM_top:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;
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location On:

edge c_off goto Off;

end

plant automaton LED_EM_left:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_EM_bottom:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_EM_right:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CHECK_HMI_LED_EM:

location : initial; marked;

edge LED_EM_top.c_off when FLEDMir.present;

edge LED_EM_top.c_on when FLEDMir.present;

edge LED_EM_left.c_off when FLEDMir.present;

edge LED_EM_left.c_on when FLEDMir.present;

edge LED_EM_bottom.c_off when FLEDMir.present;

edge LED_EM_bottom.c_on when FLEDMir.present;

edge LED_EM_right.c_off when FLEDMir.present;

edge LED_EM_right.c_on when FLEDMir.present;

end

requirement LED_EM_top.c_on needs positionEM.EM_top or positionEM.EM_top_left or

positionEM.EM_top_right ;//R1

requirement LED_EM_top.c_off needs positionEM.EM_hor_pending or

positionEM.EM_hor_left or positionEM.EM_hor_right ;//R2

requirement LED_EM_left.c_on needs positionEM.EM_hor_left or positionEM.EM_top_left

or positionEM.EM_bottom_left ;//R3

requirement LED_EM_left.c_off needs positionEM.EM_hor_pending or

positionEM.EM_bottom or positionEM.EM_top ;//R4

requirement LED_EM_bottom.c_on needs positionEM.EM_bottom or

positionEM.EM_bottom_left or positionEM.EM_bottom_right ;//R5

requirement LED_EM_bottom.c_off needs positionEM.EM_hor_pending or

positionEM.EM_hor_left or positionEM.EM_hor_right ;//R6

requirement LED_EM_right.c_on needs positionEM.EM_hor_right or

positionEM.EM_top_right or positionEM.EM_bottom_right ;//R7

requirement LED_EM_right.c_off needs positionEM.EM_hor_pending or

positionEM.EM_bottom or positionEM.EM_top ;//R8

plant automaton LED_PW_FP:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end
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plant automaton PRESENCE_CONTROLLED_LED_FP:

location : initial; marked;

edge LED_PW_FP.c_on when FLEDFP.present;

edge LED_PW_FP.c_off when FLEDFP.present;

end

requirement LED_PW_up.c_on needs fingerPW.On;//R9

requirement LED_PW_up.c_off needs fingerPW.Off;// R10

plant automaton LED_PW_up:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_PW_dn:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CONTROLLED_PW_DN_UP:

location : initial; marked;

edge LED_PW_up.c_on when FLEDPW.present;

edge LED_PW_up.c_off when FLEDPW.present;

edge LED_PW_dn.c_on when FLEDPW.present;

edge LED_PW_dn.c_off when FLEDPW.present;

end

requirement LED_PW_up.c_on needs motorPW.Up;//R11

requirement LED_PW_up.c_off needs motorPW.Idle ;// R12

requirement LED_PW_dn.c_on needs motorPW.Down ;// R13

requirement LED_PW_dn.c_off needs motorPW.Idle ;// R14

plant automaton LED_EM_heating:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CONTROLLED_EM_HEAT:

location : initial; marked;

edge LED_EM_heating.c_on when FLEDHeat.present;

edge LED_EM_heating.c_off when FLEDHeat.present;

end

requirement LED_EM_heating.c_on needs EM_heating.On;// R15

requirement LED_EM_heating.c_off needs EM_heating.Off ;//R16

plant automaton LED_CLS:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end
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plant automaton PRESENCE_CONTROLLED_LED_CLS:

location : initial; marked;

edge LED_CLS.c_on when FLEDCLS.present;

edge LED_CLS.c_off when FLEDCLS.present;

end

requirement LED_CLS.c_on needs CLS.Locked ;// R17

requirement LED_CLS.c_off needs CLS.Unlocked ;//R18

plant automaton LED_AS_active:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_AS_alarm:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_AS_alarm_det:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_AS_IM:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CONTROLLED_LED_AS:

location : initial; marked;

edge LED_AS_active.c_on when FLEDAlarm.present;

edge LED_AS_active.c_off when FLEDAlarm.present;

edge LED_AS_alarm.c_on when FLEDAlarm.present;

edge LED_AS_alarm.c_off when FLEDAlarm.present;

edge LED_AS_alarm_det.c_on when FLEDAlarm.present;

edge LED_AS_alarm_det.c_off when FLEDAlarm.present;

edge LED_AS_IM.c_on when FLEDAlarm.present;

edge LED_AS_IM.c_off when FLEDAlarm.present;

end

requirement LED_AS_active.c_on needs AlarmSystem.Activated ;//R19

requirement LED_AS_active.c_off needs AlarmSystem.Deactivated ;//R20

requirement LED_AS_alarm.c_on needs AlarmSystem.On;// R21

requirement LED_AS_alarm.c_off needs AlarmSystem.Activated ;//R22

requirement LED_AS_alarm_det.c_on needs AlarmSystem.Alarm_detected ;//R23

requirement LED_AS_alarm_det.c_off needs AlarmSystem.On;// R24

requirement LED_AS_IM.c_on needs InteriorMonitoring.On;//R25

requirement LED_AS_IM.c_off needs InteriorMonitoring.Off;//R26

plant automaton buttonPW:

uncontrollable u_up , u_down , u_released;
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location Idle:

initial; marked;

edge u_up goto Up;

edge u_down goto Down;

location Down:

edge u_released goto Idle;

edge u_up goto Up;

location Up:

edge u_released goto Idle;

edge u_down goto Down;

end

plant automaton sensorPW:

uncontrollable u_up , u_down , u_inBetween;

location InBetween:

edge u_up goto Up;

edge u_down goto Down;

location Up:

initial; marked;

edge u_inBetween goto InBetween;

location Down:

edge u_inBetween goto InBetween;

end

plant automaton fingerPW:

uncontrollable u_fingerDetected;

controllable c_fingerReleased;

location Off:

initial;marked;

edge u_fingerDetected goto On;

location On:

edge c_fingerReleased goto Off;

end

plant automaton motorPW:

controllable c_up , c_down , c_off_dn , c_off_up;

location Idle:

initial;marked;

edge c_up goto Up;

edge c_down goto Down;

location Up:

edge c_up;

edge c_off_up goto Idle;

edge CLS.c_lock goto Up_CLS;

location Up_CLS:

edge CLS.c_unlock goto Up;

location Down:

edge c_off_dn goto Idle;

edge c_down;

edge CLS.c_lock goto Down_CLS;

location Down_CLS:

edge CLS.c_unlock goto Down;

end

plant automaton PRESENCE_UNCONTROLLED_PW:

location : initial; marked;

edge buttonPW.u_up when FPowerW.present;

edge buttonPW.u_down when FPowerW.present;

edge buttonPW.u_released when FPowerW.present;

edge sensorPW.u_up when FPowerW.present;

edge sensorPW.u_down when FPowerW.present;

edge sensorPW.u_inBetween when FPowerW.present;

edge fingerPW.u_fingerDetected when FFingerP.present;

end

plant automaton PRESENCE_CONTROLLED_PW:

location : initial; marked;

edge fingerPW.c_fingerReleased when FFingerP.present;
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edge motorPW.c_up when FPowerW.present;

edge motorPW.c_down when FPowerW.present;

edge motorPW.c_off_dn when FPowerW.present;

edge motorPW.c_off_up when FPowerW.present;

end

requirement motorPW.c_up needs buttonPW.Up or RCK_PW.Up;//R27

requirement motorPW.c_up needs fingerPW.Off;//R28

requirement motorPW.c_up needs not sensorPW.Up;//R29

requirement motorPW.c_down needs buttonPW.Down or RCK_PW.Down ;//R30

requirement motorPW.c_down needs fingerPW.Off;// R31

requirement motorPW.c_down needs not sensorPW.Down ;//R32

requirement motorPW.c_off_dn needs fingerPW.On or (FManPW.present => buttonPW.Idle)

or sensorPW.Down or (FAutoPW.present => (buttonPW.Up or RCK_PW.Up ));// R33

requirement motorPW.c_off_up needs fingerPW.On or (FManPW.present => buttonPW.Idle)

or sensorPW.Up or (FAutoPW.present => (buttonPW.Down or RCK_PW.Down ));// R34

requirement fingerPW.c_fingerReleased needs buttonPW.Down ;//R35

plant automaton buttonEM:

uncontrollable u_up , u_down , u_left , u_right , u_released;

location Idle:marked;initial;

edge u_up goto Up;

edge u_down goto Down;

edge u_left goto Left;

edge u_right goto Right;

location Up:

edge u_released goto Idle;

location Down:

edge u_released goto Idle;

location Left:

edge u_released goto Idle;

location Right:

edge u_released goto Idle;

end

plant automaton positionEM:

uncontrollable u_pos_top , u_pos_down , u_pos_left , u_pos_right;

uncontrollable u_rel_top , u_rel_down , u_rel_left , u_rel_right;

location EM_hor_pending:

initial;marked;

edge u_pos_top goto EM_top;

edge u_pos_down goto EM_bottom;

edge u_pos_left goto EM_hor_left;

edge u_pos_right goto EM_hor_right;

location EM_top:

edge u_pos_left goto EM_top_left;

edge u_pos_right goto EM_top_right;

edge u_rel_top goto EM_hor_pending;

location EM_top_left:

edge u_rel_top goto EM_hor_left;

edge u_rel_left goto EM_top;

location EM_top_right:

edge u_rel_top goto EM_hor_right;

edge u_rel_right goto EM_top;

location EM_bottom:

edge u_rel_down goto EM_hor_pending;

edge u_pos_left goto EM_bottom_left;

edge u_pos_right goto EM_bottom_right;

location EM_bottom_left:

edge u_rel_down goto EM_hor_left;

edge u_rel_left goto EM_bottom;

location EM_bottom_right:

edge u_rel_down goto EM_hor_right;

edge u_rel_right goto EM_bottom;

location EM_hor_left:

edge u_rel_left goto EM_hor_pending;

location EM_hor_right:

edge u_rel_right goto EM_hor_pending;
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end

plant automaton motorEM:

controllable c_left , c_right , c_up , c_down , c_off;

location Idle:initial; marked;

edge c_left goto Left;

edge c_right goto Right;

edge c_up goto Up;

edge c_down goto Down;

location Left:

edge c_off goto Idle;

location Right:

edge c_off goto Idle;

location Up:

edge c_off goto Idle;

location Down:

edge c_off goto Idle;

end

plant automaton PRESENCE_UNCONTROLLED_EM:

location : initial; marked;

edge buttonEM.u_up when FMir.present;

edge buttonEM.u_down when FMir.present;

edge buttonEM.u_left when FMir.present;

edge buttonEM.u_right when FMir.present;

edge positionEM.u_pos_top when FMir.present;

edge positionEM.u_pos_down when FMir.present;

edge positionEM.u_pos_left when FMir.present;

edge positionEM.u_pos_right when FMir.present;

edge positionEM.u_rel_top when FMir.present;

edge positionEM.u_rel_down when FMir.present;

edge positionEM.u_rel_left when FMir.present;

edge positionEM.u_rel_right when FMir.present;

end

plant automaton PRESENCE_CONTROLLED_EM:

location : initial; marked;

edge motorEM.c_up when FMir.present;

edge motorEM.c_down when FMir.present;

edge motorEM.c_left when FMir.present;

edge motorEM.c_right when FMir.present;

edge motorEM.c_off when FMir.present;

end

requirement motorEM.c_left needs not(positionEM.EM_hor_left or

positionEM.EM_top_left or positionEM.EM_bottom_left );// R36

requirement motorEM.c_right needs not(positionEM.EM_hor_right or

positionEM.EM_top_right or positionEM.EM_bottom_right );// R37

requirement motorEM.c_up needs not(positionEM.EM_top or positionEM.EM_top_right

or positionEM.EM_top_left );// R38

requirement motorEM.c_down needs not(positionEM.EM_bottom or

positionEM.EM_bottom_right or positionEM.EM_bottom_left );// R39

requirement motorEM.c_left needs buttonEM.Left or RCK_EM.Left ;// R40

requirement motorEM.c_right needs buttonEM.Right or RCK_EM.Right ;//R41

requirement motorEM.c_up needs buttonEM.Up or RCK_EM.Up;//R42

requirement motorEM.c_down needs buttonEM.Down or RCK_EM.Down ;// R43

requirement motorEM.c_off needs buttonEM.Idle or RCK_EM.Idle ;//R44

plant automaton EM_temp_time:

uncontrollable u_lowtemp , u_done;

location Heating_off:initial;marked;

edge u_lowtemp goto Heating_on;

location Heating_on:

edge u_done goto Heating_off;

end

plant automaton EM_heating:

controllable c_on , c_off;

49



Efficient Supervisor Synthesis for Feature Models APPENDIX

location Off:initial;marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_UNCONTROLLED_MIRHEAT:

location : initial; marked;

edge EM_temp_time.u_lowtemp when FMirHeat.present;

edge EM_temp_time.u_done when FMirHeat.present;

end

plant automaton PRESENCE_CONTROLLED_MIRHEAT:

location : initial; marked;

edge EM_heating.c_on when FMirHeat.present;

edge EM_heating.c_off when FMirHeat.present;

end

requirement EM_heating.c_on needs EM_temp_time.Heating_on ;//R45

requirement EM_heating.c_on needs EM_temp_time.Heating_off ;//R46

plant automaton AlarmSystem:

controllable c_on , c_off ,c_deactivated , c_activated , c_IM_detected;

uncontrollable u_detected , u_time_elapsed;

location Deactivated:

edge c_activated goto Activated;

location Activated:

initial;marked;

edge c_on goto On;

edge c_deactivated goto Deactivated;

location On:

edge c_off goto Activated;

edge u_detected goto Alarm_detected;

edge c_IM_detected goto Alarm_detected;

location Alarm_detected:

edge c_off goto Activated;

edge u_time_elapsed goto On;

end

plant automaton InteriorMonitoring:

uncontrollable u_detected , u_clear;

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

edge u_detected goto Detected;

location Detected:

edge u_clear goto On;

edge c_off goto Off;

end

plant automaton PRESENCE_UNCONTROLLED_AS:

location : initial; marked;

edge AlarmSystem.u_detected when FAlarm.present;

edge AlarmSystem.u_time_elapsed when FAlarm.present;

edge InteriorMonitoring.u_detected when FInterMon.present;

edge InteriorMonitoring.u_clear when FInterMon.present;

end

plant automaton PRESENCE_CONTROLLED_AS:

location : initial; marked;

edge AlarmSystem.c_on when FAlarm.present;

edge AlarmSystem.c_off when FAlarm.present;

edge AlarmSystem.c_deactivated when FAlarm.present;

edge AlarmSystem.c_IM_detected when FInterMon.present;

edge InteriorMonitoring.c_on when FInterMon.present;
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edge InteriorMonitoring.c_off when FInterMon.present;

end

requirement AlarmSystem.c_on needs Key_lock.Locked or RCK_CLS.Locked ;//R47

requirement AlarmSystem.c_off needs Key_lock.Unlocked or RCK_CLS.Unlocked ;//R48

requirement AlarmSystem.c_deactivated needs Key_lock.Unlocked or

RCK_CLS.Unlocked ;// R49

requirement AlarmSystem.c_IM_detected needs InteriorMonitoring.Detected ;//R50

requirement InteriorMonitoring.c_off needs Key_lock.Unlocked or

RCK_CLS.Unlocked ;// R51

plant automaton Key_lock:

uncontrollable u_lock , u_unlock;

location Unlocked:

initial;marked;

edge u_lock goto Locked;

location Locked:

edge u_unlock goto Unlocked;

end

plant automaton CLS:

controllable c_lock , c_unlock;

location Unlocked:

initial;marked;

edge c_lock goto Locked;

location Locked:

initial;marked;

edge c_unlock goto Unlocked;

end

plant automaton Auto_lock:

uncontrollable u_drive_lock , u_door_open_unlock;

location Unlocked:

initial;marked;

edge u_drive_lock goto Locked;

location Locked:

initial;marked;

edge u_door_open_unlock goto Unlocked;

end

plant automaton PRESENCE_UNCONTROLLED_CLS:

location : initial; marked;

edge Key_lock.u_lock when FCLS.present;

edge Key_lock.u_unlock when FCLS.present;

edge Auto_lock.u_drive_lock when FAutoL.present;

edge Auto_lock.u_door_open_unlock when FAutoL.present;

end

plant automaton PRESENCE_CONTROLLED_CLS:

location : initial; marked;

edge CLS.c_lock when FCLS.present;

edge CLS.c_unlock when FCLS.present;

end

requirement CLS.c_lock needs Key_lock.Locked or RCK_CLS.Locked

or Auto_lock.Locked ;// R52

requirement CLS.c_unlock needs Key_lock.Unlocked or RCK_CLS.Unlocked ;//R53

plant automaton RCK_CLS:

uncontrollable u_lock , u_unlock;

location Unlocked:

initial;marked;

edge u_lock goto Locked;

location Locked:

initial;marked;

edge u_unlock goto Unlocked;

end
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plant automaton Safety_fcn:

uncontrollable u_time_elapsed_lock , u_door_open;

controllable c_locked , c_unlock;

location Idle:

initial;marked;

edge c_unlock goto Unlocked_RCK;

location Unlocked_RCK:

marked;

edge u_time_elapsed_lock goto AutoLocking;

edge u_door_open goto Idle;

location AutoLocking:

edge CLS.c_lock goto Idle;

end

plant automaton RCK_PW:

uncontrollable u_up , u_down , u_released;

location Idle:

initial;marked;

edge u_up goto Up;

edge u_down goto Down;

location Up:

edge u_released goto Idle;

location Down:

edge u_released goto Idle;

end

plant automaton RCK_EM:

uncontrollable u_up , u_down , u_left , u_right , u_released;

location Idle:marked;initial;

edge u_up goto Up;

edge u_down goto Down;

edge u_left goto Left;

edge u_right goto Right;

location Up:

edge u_released goto Idle;

location Down:

edge u_released goto Idle;

location Left:

edge u_released goto Idle;

location Right:

edge u_released goto Idle;

end

plant automaton PRESENCE_UNCONTROLLED_SAFETY_RCK:

location : initial; marked;

edge Safety_fcn.u_time_elapsed_lock when FSafe.present;

edge Safety_fcn.u_door_open when FSafe.present;

edge RCK_CLS.u_lock when FCLS.present;

edge RCK_CLS.u_unlock when FCLS.present;

edge RCK_PW.u_up when FCtrAutoPW.present;

edge RCK_PW.u_down when FCtrAutoPW.present;

edge RCK_PW.u_released when FCtrAutoPW.present;

edge RCK_EM.u_up when FAdjMir.present;

edge RCK_EM.u_down when FAdjMir.present;

edge RCK_EM.u_left when FAdjMir.present;

edge RCK_EM.u_right when FAdjMir.present;

edge RCK_EM.u_released when FAdjMir.present;

end

plant automaton PRESENCE_CONTROLLED_SAFETY_RCK:

location : initial; marked;

edge Safety_fcn.c_unlock when FSafe.present;

edge Safety_fcn.c_locked when FSafe.present;

end

requirement Safety_fcn.c_unlock needs RCK_CLS.Unlocked ;//R54
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Dynamic BCS

Listing 7: Dynamic BCS model

plant def FEATURE ():

disc bool present in any;

location : initial; marked;

end

FBCS:FEATURE ();

FHMI:FEATURE (); FDoor:FEATURE (); FSecu:FEATURE ();

FPowerW:FEATURE (); FMir:FEATURE (); FAlarm:FEATURE (); FCLS:FEATURE (); FRCKey:FEATURE ();

FLED:FEATURE (); FManPW:FEATURE (); FAutoPW:FEATURE (); FFingerP:FEATURE ();

FMirE:FEATURE (); FMirHeat:FEATURE ();

FInterMon:FEATURE (); FAutoL:FEATURE (); FCtrAlarm:FEATURE (); FSafe:FEATURE ();

FCtrAutoPW:FEATURE (); FAdjMir:FEATURE ();

FLEDAlarm:FEATURE (); FLEDFP:FEATURE (); FLEDCLS:FEATURE (); FLEDPW:FEATURE ();

FLEDMir:FEATURE (); FLEDHeat:FEATURE ();

alg bool r1=FBCS.present; // Root feature present

alg bool r2=FBCS.present <=> FHMI.present; // HMI mandatory

alg bool r3=FBCS.present <=> FDoor.present; // Door mandatory

alg bool r4=FSecu.present => FBCS.present; // Security optional

alg bool r5=FDoor.present <=> (FPowerW.present and FMir.present ); // PW,EM mandatory

alg bool r6=FAlarm.present => FSecu.present; // AS optional

alg bool r7=FCLS.present => FSecu.present; // CLS optional

alg bool r8=FRCKey.present => FSecu.present; // RCK optional

alg bool r9=FLED.present => FHMI.present; // LED optional

alg bool r10=FPowerW.present <=> (FManPW.present <=> not FAutoPW.present );

// Manual or automatic PW

alg bool r11=FPowerW.present <=> (FFingerP.present ); // Finger Protection mandatory

alg bool r12=FMir.present <=> (FMirE.present ); // Electric exterior mirror mandatory

alg bool r13=FMirHeat.present => FMir.present; // Mirror heating optional

alg bool r14=FInterMon.present => FAlarm.present; // Interior monitoring optional

alg bool r15=FAutoL.present => FCLS.present; // Automatic locking optional

alg bool r16=FCtrAlarm.present => FRCKey.present; // Control alarm optional

alg bool r17=FSafe.present => FRCKey.present; // Safety optional

alg bool r18=FCtrAutoPW.present => FRCKey.present;

// Control automatic power window optional

alg bool r19=FAdjMir.present => FRCKey.present; // Safety optional

alg bool r20=( FLEDAlarm.present or FLEDFP.present or FLEDCLS.present or

FLEDPW.present or FLEDMir.present or FLEDHeat.present)<=> FLED.present;

alg bool r21=FLEDAlarm.present => FAlarm.present; //LED alarm requires Alarm

alg bool r22=FLEDCLS.present => FCLS.present; //LED central requires central locking

alg bool r23=FLEDHeat.present => FMirHeat.present;

//LED heat mirror requires heated mirror

alg bool r24=not(FManPW.present and FCtrAutoPW.present );

// Manual power windows excludes control autoPW

alg bool r25=FCtrAlarm.present => FAlarm.present;

// Control alarm requires Alarm system

alg bool r26=FRCKey.present => FCLS.present;

// Remote control key requires central locking system

alg bool sys_valid=r1 and r2 and r3 and r4 and r5 and r6 and r7 and r8 and r9 and

r10 and r11 and r12 and r13 and r14 and r15 and r16 and r17 and r18 and r19

and r20 and r21 and r22 and r23 and r24 and r25 and r26;

plant automaton Validity:

location:

initial sys_valid ; marked ;

end

plant automaton LED_EM_top:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;
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location On:

edge c_off goto Off;

end

plant automaton LED_EM_left:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_EM_bottom:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_EM_right:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CHECK_HMI_LED_EM:

location : initial; marked;

edge LED_EM_top.c_off when FLEDMir.present;

edge LED_EM_top.c_on when FLEDMir.present;

edge LED_EM_left.c_off when FLEDMir.present;

edge LED_EM_left.c_on when FLEDMir.present;

edge LED_EM_bottom.c_off when FLEDMir.present;

edge LED_EM_bottom.c_on when FLEDMir.present;

edge LED_EM_right.c_off when FLEDMir.present;

edge LED_EM_right.c_on when FLEDMir.present;

end

requirement LED_EM_top.c_on needs positionEM.EM_top or positionEM.EM_top_left or

positionEM.EM_top_right ;//R1

requirement LED_EM_top.c_off needs positionEM.EM_hor_pending or

positionEM.EM_hor_left or positionEM.EM_hor_right ;//R2

requirement LED_EM_left.c_on needs positionEM.EM_hor_left or positionEM.EM_top_left

or positionEM.EM_bottom_left ;//R3

requirement LED_EM_left.c_off needs positionEM.EM_hor_pending or

positionEM.EM_bottom or positionEM.EM_top ;//R4

requirement LED_EM_bottom.c_on needs positionEM.EM_bottom or

positionEM.EM_bottom_left or positionEM.EM_bottom_right ;//R5

requirement LED_EM_bottom.c_off needs positionEM.EM_hor_pending or

positionEM.EM_hor_left or positionEM.EM_hor_right ;//R6

requirement LED_EM_right.c_on needs positionEM.EM_hor_right or

positionEM.EM_top_right or positionEM.EM_bottom_right ;//R7

requirement LED_EM_right.c_off needs positionEM.EM_hor_pending or

positionEM.EM_bottom or positionEM.EM_top ;//R8

plant automaton LED_PW_FP:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end
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plant automaton PRESENCE_CONTROLLED_LED_FP:

location : initial; marked;

edge LED_PW_FP.c_on when FLEDFP.present;

edge LED_PW_FP.c_off when FLEDFP.present;

end

requirement LED_PW_up.c_on needs fingerPW.On;//R9

requirement LED_PW_up.c_off needs fingerPW.Off;// R10

plant automaton LED_PW_up:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_PW_dn:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CONTROLLED_PW_DN_UP:

location : initial; marked;

edge LED_PW_up.c_on when FLEDPW.present;

edge LED_PW_up.c_off when FLEDPW.present;

edge LED_PW_dn.c_on when FLEDPW.present;

edge LED_PW_dn.c_off when FLEDPW.present;

end

requirement LED_PW_up.c_on needs motorPW.Up;//R11

requirement LED_PW_up.c_off needs motorPW.Idle ;// R12

requirement LED_PW_dn.c_on needs motorPW.Down ;// R13

requirement LED_PW_dn.c_off needs motorPW.Idle ;// R14

plant automaton LED_EM_heating:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CONTROLLED_EM_HEAT:

location : initial; marked;

edge LED_EM_heating.c_on when FLEDHeat.present;

edge LED_EM_heating.c_off when FLEDHeat.present;

end

requirement LED_EM_heating.c_on needs EM_heating.On;// R15

requirement LED_EM_heating.c_off needs EM_heating.Off ;//R16

plant automaton LED_CLS:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end
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plant automaton PRESENCE_CONTROLLED_LED_CLS:

location : initial; marked;

edge LED_CLS.c_on when FLEDCLS.present;

edge LED_CLS.c_off when FLEDCLS.present;

end

requirement LED_CLS.c_on needs CLS.Locked ;// R17

requirement LED_CLS.c_off needs CLS.Unlocked ;//R18

plant automaton LED_AS_active:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_AS_alarm:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_AS_alarm_det:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton LED_AS_IM:

controllable c_on , c_off;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_CONTROLLED_LED_AS:

location : initial; marked;

edge LED_AS_active.c_on when FLEDAlarm.present;

edge LED_AS_active.c_off when FLEDAlarm.present;

edge LED_AS_alarm.c_on when FLEDAlarm.present;

edge LED_AS_alarm.c_off when FLEDAlarm.present;

edge LED_AS_alarm_det.c_on when FLEDAlarm.present;

edge LED_AS_alarm_det.c_off when FLEDAlarm.present;

edge LED_AS_IM.c_on when FLEDAlarm.present;

edge LED_AS_IM.c_off when FLEDAlarm.present;

end

requirement LED_AS_active.c_on needs AlarmSystem.Activated ;//R19

requirement LED_AS_active.c_off needs AlarmSystem.Deactivated ;//R20

requirement LED_AS_alarm.c_on needs AlarmSystem.On;// R21

requirement LED_AS_alarm.c_off needs AlarmSystem.Activated ;//R22

requirement LED_AS_alarm_det.c_on needs AlarmSystem.Alarm_detected ;//R23

requirement LED_AS_alarm_det.c_off needs AlarmSystem.On;// R24

requirement LED_AS_IM.c_on needs InteriorMonitoring.On;//R25

requirement LED_AS_IM.c_off needs InteriorMonitoring.Off;//R26

plant automaton buttonPW:

uncontrollable u_up , u_down , u_released;
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location Idle:

initial; marked;

edge u_up goto Up;

edge u_down goto Down;

location Down:

edge u_released goto Idle;

edge u_up goto Up;

location Up:

edge u_released goto Idle;

edge u_down goto Down;

end

plant automaton sensorPW:

uncontrollable u_up , u_down , u_inBetween;

location InBetween:

edge u_up goto Up;

edge u_down goto Down;

location Up:

initial; marked;

edge u_inBetween goto InBetween;

location Down:

edge u_inBetween goto InBetween;

end

plant automaton fingerPW:

uncontrollable u_fingerDetected;

controllable c_fingerReleased;

location Off:

initial;marked;

edge u_fingerDetected goto On;

location On:

edge c_fingerReleased goto Off;

end

plant automaton motorPW:

controllable c_up , c_down , c_off_dn , c_off_up , c_off_reconf;

location Idle:

initial;marked;

edge c_up goto Up;

edge c_down goto Down;

location Up:

edge c_off_reconf goto Idle;

edge c_up;

edge c_off_up goto Idle;

edge CLS.c_lock goto Up_CLS;

location Up_CLS:

edge c_off_reconf goto Idle;

edge CLS.c_unlock goto Up;

location Down:

edge c_off_dn goto Idle;

edge c_down;

edge CLS.c_lock goto Down_CLS;

location Down_CLS:

edge CLS.c_unlock goto Down;

end

plant automaton PRESENCE_UNCONTROLLED_PW:

location : initial; marked;

edge buttonPW.u_up when FPowerW.present;

edge buttonPW.u_down when FPowerW.present;

edge buttonPW.u_released when FPowerW.present;

edge sensorPW.u_up when FPowerW.present;

edge sensorPW.u_down when FPowerW.present;

edge sensorPW.u_inBetween when FPowerW.present;

edge fingerPW.u_fingerDetected when FFingerP.present;

end

plant automaton PRESENCE_CONTROLLED_PW:
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location : initial; marked;

edge fingerPW.c_fingerReleased when FFingerP.present;

edge motorPW.c_up when FPowerW.present;

edge motorPW.c_down when FPowerW.present;

edge motorPW.c_off_dn when FPowerW.present;

edge motorPW.c_off_up when FPowerW.present;

end

requirement motorPW.c_up needs buttonPW.Up or RCK_PW.Up;//R27

requirement motorPW.c_up needs fingerPW.Off;//R28

requirement motorPW.c_up needs not sensorPW.Up;//R29

requirement motorPW.c_down needs buttonPW.Down or RCK_PW.Down ;//R30

requirement motorPW.c_down needs fingerPW.Off;// R31

requirement motorPW.c_down needs not sensorPW.Down ;//R32

requirement motorPW.c_off_dn needs fingerPW.On or (FManPW.present => buttonPW.Idle)

or sensorPW.Down or (FAutoPW.present => (buttonPW.Up or RCK_PW.Up));// R33

requirement motorPW.c_off_up needs fingerPW.On or (FManPW.present => buttonPW.Idle)

or sensorPW.Up or (FAutoPW.present => (buttonPW.Down or RCK_PW.Down ));// R34

requirement fingerPW.c_fingerReleased needs buttonPW.Down ;//R35

requirement not (not sys_valid and motorPW.Up ) ; //R55

requirement not (not sys_valid and motorPW.Up_CLS ) ;//R56

requirement motorPW.c_off_reconf needs not sys_valid ;// R57

plant automaton buttonEM:

uncontrollable u_up , u_down , u_left , u_right , u_released;

location Idle:marked;initial;

edge u_up goto Up;

edge u_down goto Down;

edge u_left goto Left;

edge u_right goto Right;

location Up:

edge u_released goto Idle;

location Down:

edge u_released goto Idle;

location Left:

edge u_released goto Idle;

location Right:

edge u_released goto Idle;

end

plant automaton positionEM:

uncontrollable u_pos_top , u_pos_down , u_pos_left , u_pos_right;

uncontrollable u_rel_top , u_rel_down , u_rel_left , u_rel_right;

location EM_hor_pending:

initial;marked;

edge u_pos_top goto EM_top;

edge u_pos_down goto EM_bottom;

edge u_pos_left goto EM_hor_left;

edge u_pos_right goto EM_hor_right;

location EM_top:

edge u_pos_left goto EM_top_left;

edge u_pos_right goto EM_top_right;

edge u_rel_top goto EM_hor_pending;

location EM_top_left:

edge u_rel_top goto EM_hor_left;

edge u_rel_left goto EM_top;

location EM_top_right:

edge u_rel_top goto EM_hor_right;

edge u_rel_right goto EM_top;

location EM_bottom:

edge u_rel_down goto EM_hor_pending;

edge u_pos_left goto EM_bottom_left;

edge u_pos_right goto EM_bottom_right;

location EM_bottom_left:

edge u_rel_down goto EM_hor_left;

edge u_rel_left goto EM_bottom;

location EM_bottom_right:

edge u_rel_down goto EM_hor_right;
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edge u_rel_right goto EM_bottom;

location EM_hor_left:

edge u_rel_left goto EM_hor_pending;

location EM_hor_right:

edge u_rel_right goto EM_hor_pending;

end

plant automaton motorEM:

controllable c_left , c_right , c_up , c_down , c_off;

location Idle:initial; marked;

edge c_left goto Left;

edge c_right goto Right;

edge c_up goto Up;

edge c_down goto Down;

location Left:

edge c_off goto Idle;

location Right:

edge c_off goto Idle;

location Up:

edge c_off goto Idle;

location Down:

edge c_off goto Idle;

end

plant automaton PRESENCE_UNCONTROLLED_EM:

location : initial; marked;

edge buttonEM.u_up when FMir.present;

edge buttonEM.u_down when FMir.present;

edge buttonEM.u_left when FMir.present;

edge buttonEM.u_right when FMir.present;

edge positionEM.u_pos_top when FMir.present;

edge positionEM.u_pos_down when FMir.present;

edge positionEM.u_pos_left when FMir.present;

edge positionEM.u_pos_right when FMir.present;

edge positionEM.u_rel_top when FMir.present;

edge positionEM.u_rel_down when FMir.present;

edge positionEM.u_rel_left when FMir.present;

edge positionEM.u_rel_right when FMir.present;

end

plant automaton PRESENCE_CONTROLLED_EM:

location : initial; marked;

edge motorEM.c_up when FMir.present;

edge motorEM.c_down when FMir.present;

edge motorEM.c_left when FMir.present;

edge motorEM.c_right when FMir.present;

edge motorEM.c_off when FMir.present;

end

requirement motorEM.c_left needs not(positionEM.EM_hor_left or

positionEM.EM_top_left or positionEM.EM_bottom_left );// R36

requirement motorEM.c_right needs not(positionEM.EM_hor_right or

positionEM.EM_top_right or positionEM.EM_bottom_right );// R37

requirement motorEM.c_up needs not(positionEM.EM_top or

positionEM.EM_top_right or

positionEM.EM_top_left );// R38

requirement motorEM.c_down needs not(positionEM.EM_bottom or

positionEM.EM_bottom_right or positionEM.EM_bottom_left );// R39

requirement motorEM.c_left needs buttonEM.Left or RCK_EM.Left ;// R40

requirement motorEM.c_right needs buttonEM.Right or RCK_EM.Right ;//R41

requirement motorEM.c_up needs buttonEM.Up or RCK_EM.Up;//R42

requirement motorEM.c_down needs buttonEM.Down or RCK_EM.Down ;// R43

requirement motorEM.c_off needs buttonEM.Idle or RCK_EM.Idle ;//R44

plant automaton EM_temp_time:

uncontrollable u_lowtemp , u_done;

location Heating_off:initial;marked;

edge u_lowtemp goto Heating_on;
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location Heating_on:

edge u_done goto Heating_off;

end

plant automaton EM_heating:

controllable c_on , c_off;

location Off:initial;marked;

edge c_on goto On;

location On:

edge c_off goto Off;

end

plant automaton PRESENCE_UNCONTROLLED_MIRHEAT:

location : initial; marked;

edge EM_temp_time.u_lowtemp when FMirHeat.present;

edge EM_temp_time.u_done when FMirHeat.present;

end

plant automaton PRESENCE_CONTROLLED_MIRHEAT:

location : initial; marked;

edge EM_heating.c_on when FMirHeat.present;

edge EM_heating.c_off when FMirHeat.present;

end

requirement EM_heating.c_on needs EM_temp_time.Heating_on ;//R45

requirement EM_heating.c_on needs EM_temp_time.Heating_off ;//R46

plant automaton AlarmSystem:

controllable c_on , c_off ,c_off_reconf ,c_deactivated , c_activated , c_IM_detected;

uncontrollable u_detected , u_time_elapsed;

location Deactivated:

edge c_activated goto Activated;

location Activated:

initial;marked;

edge c_on goto On;

edge c_deactivated goto Deactivated;

edge c_off_reconf goto Deactivated;

location On:

edge c_off_reconf goto Deactivated;

edge c_off goto Activated;

edge u_detected goto Alarm_detected;

edge c_IM_detected goto Alarm_detected;

location Alarm_detected:

edge c_off_reconf goto Deactivated;

edge c_off goto Activated;

edge u_time_elapsed goto On;

end

plant automaton InteriorMonitoring:

uncontrollable u_detected , u_clear;

controllable c_on , c_off , c_off_reconf;

location Off:

initial; marked;

edge c_on goto On;

location On:

edge c_off goto Off;

edge u_detected goto Detected;

edge c_off_reconf goto Off;

location Detected:

edge u_clear goto On;

edge c_off goto Off;

edge c_off_reconf goto Off;

end

plant automaton PRESENCE_UNCONTROLLED_AS:

location : initial; marked;

edge AlarmSystem.u_detected when FAlarm.present;

edge AlarmSystem.u_time_elapsed when FAlarm.present;
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edge InteriorMonitoring.u_detected when FInterMon.present;

edge InteriorMonitoring.u_clear when FInterMon.present;

end

plant automaton PRESENCE_CONTROLLED_AS:

location : initial; marked;

edge AlarmSystem.c_on when FAlarm.present;

edge AlarmSystem.c_off when FAlarm.present;

edge AlarmSystem.c_deactivated when FAlarm.present;

edge AlarmSystem.c_IM_detected when FInterMon.present;

edge InteriorMonitoring.c_on when FInterMon.present;

edge InteriorMonitoring.c_off when FInterMon.present;

end

requirement AlarmSystem.c_on needs Key_lock.Locked or RCK_CLS.Locked ;//R47

requirement AlarmSystem.c_off needs Key_lock.Unlocked or RCK_CLS.Unlocked ;//R48

requirement AlarmSystem.c_deactivated needs Key_lock.Unlocked or

RCK_CLS.Unlocked ;// R49

requirement AlarmSystem.c_IM_detected needs InteriorMonitoring.Detected ;//R50

requirement InteriorMonitoring.c_off needs Key_lock.Unlocked or

RCK_CLS.Unlocked ;// R51

requirement AlarmSystem.c_off_reconf needs not sys_valid ;//R58

requirement InteriorMonitoring.c_off_reconf needs not sys_valid; //R59

plant automaton VALIDITY_UNCONTROLLED_AS :

location : initial ; marked ;

edge AlarmSystem.u_detected when sys_valid ;

edge AlarmSystem.u_time_elapsed when sys_valid ;

edge InteriorMonitoring.u_detected when sys_valid ;

edge InteriorMonitoring.u_clear when sys_valid ;

end

plant automaton VALIDITY_CONTROLLED_AS :

location : initial ; marked ;

edge AlarmSystem.c_on when sys_valid ;

edge AlarmSystem.c_off when sys_valid ;

edge AlarmSystem.c_deactivated when sys_valid ;

edge AlarmSystem.c_IM_detected when sys_valid ;

edge InteriorMonitoring.c_on when sys_valid ;

edge InteriorMonitoring.c_off when sys_valid ;

end

plant automaton Key_lock:

uncontrollable u_lock , u_unlock;

location Unlocked:

initial;marked;

edge u_lock goto Locked;

location Locked:

edge u_unlock goto Unlocked;

end

plant automaton CLS:

controllable c_lock , c_unlock , c_unlock_reconf;

location Unlocked:

initial;marked;

edge c_lock goto Locked;

location Locked:

initial;marked;

edge c_unlock_reconf goto Unlocked;

edge c_unlock goto Unlocked;

end

plant automaton VALIDITY_CONTROLLED_reconf :

location : initial ; marked ;

edge CLS.c_lock when sys_valid ;

edge CLS.c_unlock when sys_valid ;

end
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plant automaton Auto_lock:

uncontrollable u_drive_lock , u_door_open_unlock;

location Unlocked:

initial;marked;

edge u_drive_lock goto Locked;

location Locked:

initial;marked;

edge u_door_open_unlock goto Unlocked;

end

plant automaton PRESENCE_UNCONTROLLED_CLS:

location : initial; marked;

edge Key_lock.u_lock when FCLS.present;

edge Key_lock.u_unlock when FCLS.present;

edge Auto_lock.u_drive_lock when FAutoL.present;

edge Auto_lock.u_door_open_unlock when FAutoL.present;

end

plant automaton PRESENCE_CONTROLLED_CLS:

location : initial; marked;

edge CLS.c_lock when FCLS.present;

edge CLS.c_unlock when FCLS.present;

end

requirement CLS.c_lock needs Key_lock.Locked or RCK_CLS.Locked

or Auto_lock.Locked ;// R52

requirement CLS.c_unlock needs Key_lock.Unlocked or RCK_CLS.Unlocked ;//R53

plant automaton RCK_CLS:

uncontrollable u_lock , u_unlock;

location Unlocked:

initial;marked;

edge u_lock goto Locked;

location Locked:

initial;marked;

edge u_unlock goto Unlocked;

end

plant automaton Safety_fcn:

uncontrollable u_time_elapsed_lock , u_door_open;

controllable c_locked , c_unlock;

location Idle:

initial;marked;

edge c_unlock goto Unlocked_RCK;

location Unlocked_RCK:

marked;

edge u_time_elapsed_lock goto AutoLocking;

edge u_door_open goto Idle;

location AutoLocking:

edge CLS.c_lock goto Idle;

end

plant automaton RCK_PW:

uncontrollable u_up , u_down , u_released;

location Idle:

initial;marked;

edge u_up goto Up;

edge u_down goto Down;

location Up:

edge u_released goto Idle;

location Down:

edge u_released goto Idle;

end

plant automaton RCK_EM:

uncontrollable u_up , u_down , u_left , u_right , u_released;

location Idle:marked;initial;

edge u_up goto Up;
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edge u_down goto Down;

edge u_left goto Left;

edge u_right goto Right;

location Up:

edge u_released goto Idle;

location Down:

edge u_released goto Idle;

location Left:

edge u_released goto Idle;

location Right:

edge u_released goto Idle;

end

plant automaton PRESENCE_UNCONTROLLED_SAFETY_RCK:

location : initial; marked;

edge Safety_fcn.u_time_elapsed_lock when FSafe.present;

edge Safety_fcn.u_door_open when FSafe.present;

edge RCK_CLS.u_lock when FCLS.present;

edge RCK_CLS.u_unlock when FCLS.present;

edge RCK_PW.u_up when FCtrAutoPW.present;

edge RCK_PW.u_down when FCtrAutoPW.present;

edge RCK_PW.u_released when FCtrAutoPW.present;

edge RCK_EM.u_up when FAdjMir.present;

edge RCK_EM.u_down when FAdjMir.present;

edge RCK_EM.u_left when FAdjMir.present;

edge RCK_EM.u_right when FAdjMir.present;

edge RCK_EM.u_released when FAdjMir.present;

end

plant automaton PRESENCE_CONTROLLED_SAFETY_RCK:

location : initial; marked;

edge Safety_fcn.c_unlock when FSafe.present;

edge Safety_fcn.c_locked when FSafe.present;

end

requirement Safety_fcn.c_unlock needs RCK_CLS.Unlocked ;//R54
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