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Abstract. 
 

In order to understand if a drone can measure turbulence an effort is made to 

modify the flight controller of an existing drone to experiment with. In this report 

a section is dedicated to control theory and the implementation on the drone, 

though this is not the main focus of the work. A part of the paper is dedicated to 

the 3d localization of the drone using a Kinect sensor to compensate for drifting, 

though due to technical limitations the drone has been suspended and has been 

used as a large particle to measure turbulence. Using this method we could 

correlate the signal from the accelerometer with the statistical properties of the 

turbulent flow profile. This may possible allow relating accelerometer data to its 

turbulent fluctuations.  
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1 Introduction 
Flying drones has been a pastime expenditure rising in popularity. In recent years 

the manufacturing costs of drones have been decreasing and therefore these could 

become a low cost measuring solution. A field of research that could use such 

application is turbulence. Can we use a drone to research turbulence? What are 

the minimum required specifications on a drone to obtain a required level of 

precision? Turbulence has been studied for larger aircraft, but for drones, 

turbulence may be even more important due to the size of the drones and its 

propellers behavior. Even so drones in turbulence have not been extensively 

studied. With regard to measuring turbulence, drones add the proposition of being 

able to measure on different size scales and are also applicable in otherwise 

difficult to reach places such as turbulent air layers. Furthermore using a drone in 

a turbulence environment using AI might be used in order to increase the 

performance of its flight controller and increase its efficiency. Therefore using a 

drone to measure turbulence has multiple application and thus great promise. 

1.1 Outline of this thesis 
This thesis is meant to show what steps are used in order to make a drone do 

measurements on turbulence. What steps are taken and why. The reader is also 

provided, in each chapter, with some basic theory to support the discussion on the 

methods and findings. 

Chapter 2 discusses the basics of turbulence required for this work. Some 

understanding of fluid dynamics is required, but an attempt is made to make this 

chapter readable for a broader audience. The fundamentals of this chapter will 

assist in understanding the complete thesis. In chapter 3 the drone will be 

discussed in all its assets as it is a crucial part of this thesis. Making a drone fly is 

not a trivial task, flying it in turbulence even les. Therefore understanding its 

fundamentals is very important. The technical details, its control system and its 

shortcomings such as its sensors will be discussed in this section. Which leads to 

chapter 4: the image acquisition. This chapter is all about the secondary system to 

validate and to assist the drone in its measurement. In a preferred scenario the 

drone is fully independent but this goal has not been achieved yet in this project. 

The image acquisition itself is made from scratch and its design and function will 

be discussed here. Which leads to actual testing in chapter 5, here light will be 

shed on the probability distribution functions of the sub-systems and thereafter on 

turbulence itself. This is the chapter containing main results of the thesis. 

Conclusions follow in chapter 6.  
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2 Turbulence 

2.1 Introduction/history 
The first known attempt of modeling turbulence dates back to drawings from 

Leonardo da Vinci, relating it to the unpredictable ways of movement in nature 

[1]. Turbulence holds a special place in physics for this reason, it could be stated 

that it is the first example challenging the thoughts on determinacy and 

introducing chaos.  

Turbulence is chaotic, to a level where even short term solutions are not possible 

to be predicted. Due to the closure problem, solving for the evolution of statistical 

moments of the velocity fields leads to more unknowns than equations, making 

the solution of turbulence equation impossible for a long period of time. In 

modern days, direct numerical simulations (DNS) can be used to solve turbulence 

in a quantitive manner. Although these numerical methods are very useful they do 

not help towards a more fundamental solution for turbulence [2]. Due to its 

limited scope of this thesis it shall focus only on the basics needed to explain the 

works results. 

 

2.2 Fundamentals 
Looking at turbulence, its fluctuations and its behavior look chaotic that it may 

appear to be random, even if, being turbulence a solution of the Navier-Stokes 

equation, it is therefore deterministic [3]. Accepting chaotic the nature of 

turbulence scientists have tried to understand it using statistical tools. 

Turbulence occurs as a result of instability in a stable flow profile. When the 

shear within a flow becomes too high, instabilities occur as shown in [figure 2.1].  

 

.  

 

This results in the formation of unstable eddies are considered the fundamental 

entities in turbulent flow, big eddies cascade to form smaller eddies, until a scale 

is reached where energy is dissipated due to viscosity, turning kinetic energy into 

heat. 

FIGURE 2.1: IMPRESSION OF HOW TURBULENCE DEVELOPS IN A TUBE DUE TO AN OBSTACLE IN 

THE TUBE 
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Based on the fundamentals of this phenomenological theory, Kolmogorov 

postulated that for high enough Reynolds number the smallest eddies are 

independent of the geometry and therefore statistically isotropic (Kolmogorov’s 

hypothesis of local isotropy). On the smallest scale all energy should be 

dissipated, based on the energy dissipation ε and on the kinematic viscosity ν.  

The Kolmogorov scales for length, time and speed (2.1, 2.2, 2.3) given by: 

𝜂 = (
𝜈3

𝜀
)

1/4

 , 𝜏 = (
𝜈

𝜀
)

1/2

, 𝑢 = (𝜈𝜀)1/2.   (2.1,2.2,3.3) 

     

The Kolmogorov scales characterize the minimum dimensions of eddies in 

turbulence. At larger length scales viscous terms are negligible. An expression for 

kinetic energy over different eddy sizes is given by denoted as the -5/3rd equation 

(2.4), is a good approximation to experimental observed behavior. The constant C 

by experimentation found to be close to 1.5 [3]: 

𝐸(𝑘) = 𝐶
𝜀2/3

𝑘5/2 .     (2.4) 

 

2.3 Acceleration in turbulence 
The primary tool of measurement is the accelerometer, therefore the statistical 

behavior of acceleration in turbulence is of upmost interest. A unique feature of 

drones is that they are capable of measurements in the Lagrangian frame of 

reference. Acceleration and velocities can be related to the flow Reynolds number 

and therefore to its level of turbulence. Using the typical length scales of the flow 

its velocity and the dimensions of the drone its level of turbulence can be 

estimated.  

 

2.4 Stirring turbulence 
In nature turbulence is ubiquitous for examples behind rocks in a flowing river. 

While this is a very basic example of turbulence, this simple principle inspires the 

passive grid method for generating turbulence as used in wind tunnels. By adding 

a grid to a laminar flow allows developing an almost isotropic and homogeneous 

turbulent flow. This type of turbulence is limited by the dimensions of the grid 

and of the wind tunnel to low Reynold numbers. A more interesting way of 

creating turbulence is using an active grid, it uses stepping motors and vanes 

attached on bars performing a random motion as driven by an algorithm. This 

allows to create a stronger level of turbulence than a passive grid would allow. 

This methods gives in slightly on isotropy compared to the passive grid [5].  
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3 Quadcopter Drone 
 

3.1 Quadcopter - Drone physics 
In recent year’s quadcopter are in such demand that laws have been made to 

restrict usage in certain areas showing its popularity among consumers.  But the 

research on drones is still ongoing and in the last few years, a multitude of papers 

were published on flying and optimization of drones [7]. Is of great importance to 

know how a drone functions. Following the work of the Control Systems 

Technology Group at the Technical University Eindhoven (TU/e). 

3.1.1 Physical Model 
In this model the quadcopter is modeled as a rigid body with [figure 3.1] 

depicting its free body diagram. Where the frame of reference is Eulerian with its 

z axis corresponding to gravity. Each rotor is able to give its unique thrust to its 

rotation speed [7], also each propeller gives a unique torque which is the reason 

for its orientation. A complete mathematical model is noted in [10] which we are 

not going to reproduce since it is falls out of the focus of this chapter. One should 

understand how the thrust on each individual rotor can influence its orientation, or 

rather how its relative speed of rotors governs its attitude. This relationship, 

looking at [figure 3.1], is rather simple: when rotors 1 and 4 increase their speed 

compared to rotors 2 and 3, the drone will roll in its positive direction. This holds 

true for each angle giving the model a way to change orientation. A bit less 

intuitive is its rotation about its z axis which requires use of torque increasing the 

relative speed of 1 and 3 to 2 and 4. 

   

 

 

  

FIGURE 3.1 FREE BODY DIAGRAM OF QUADCOPTER THE DRONE. WITH INVERTED ITS 

PRINCIPAL AXIS AND ITS ROTATIONAL AXIS. 
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3.2 Drone Specification 
When looking for a drone there are a multitude of choices. Research drones have 

to qualify for specific criteria, they needs to be fully programmable. Also size is a 

requirement, for the dimensions of the wind tunnel and therefore the area of 

flight. Also turbulence has a different effect on different length scales and 

therefore the size matters. Lastly the quality of its sensors play a critical role in 

how well it is able to fly and measure. Based on these criteria the Parrot mambo 

mini [11] was chosen. For its relative size but mostly for the multitude of ways to 

interact with the drone, specifications in table 3.1. The Parrot mambo uses a 

Bluetooth protocol, and therefore can be used by any computer using the right 

Bluetooth adapter. Sequentially Matlab/Simulink are supported which can be a 

downside but an upside as well due to personal preference. Using Simulink’s add 

on for the Parrot mambo making an integral part of building a flight controller 

easier, but leaving some full control. The Simulink program compiles the flight 

controller to C code and uploads it to the drone, so the drone essentially flights on 

C-code. Alternatively the drone can also be programmed from a SDK method. 

 

Width: 180 mm 

Length: 180 mm 

Weight: 63 gram 

Ultrasound 

Barometer 

3 axis accelerometer 

3 axis gyroscope 
TABLE 3.1 MECHANICAL PROPERTIES OF THE DRONE. 

3.3 Flight Controller 
A drone is inherently unstable because it has only 4 actuators and 6 degrees of 

freedom. Therefore a differential control system is needed to compensate for this 

instability. Many solutions to flight controllers for quadcopters have been made 

but applying one to a new system is not trivial. The drone is made to fly by itself 

using a closed loop PID controller using cascade control [7]. The system is reliant 

on 2 separate state estimations both individually for its attitude and altitude.  
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3.3.1 Control theory 
Control theory allows to operate continuously dynamic systems, with different 

goals; for this thesis we focus on reaching a certain state. This is done by using a 

closed loop system according to [figure 3.2]. The system has an input about its 

environment and its current situation, based on these values the system takes 

action in order to reach another state, hopefully reaching the reference state. For 

example: when the drone would be tilted in with respect to the reference state, it 

would take action in order to reduce the difference. This can be done using 3 

separate techniques, its proportional controller, the differential controller or its 

integral controller therefore it is called a PID controller, for reference and further 

reading [7]. 

 

 

 

 

Proportional 

Proportional is the simplest and most intuitive method of control. When there is a 

difference between its reference value and its current value it acts based on its 

difference. For some systems using only this controller is sufficient, usually this 

applies to systems that are stable and slow (an example would be a thermostat) 

but the drone is an unstable system and therefore the Proportional controller is not 

sufficient on its own. 

 

Differential 

The differential controller uses more than just his current state, it uses previous 

information to make a prediction not only on its change but also on its rate of 

FIGURE 3.2 SIMPLIFIED INFORMATIVE GRAPH DEPICTING THE PID CLOSED LOOP SYSTEM 
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change. This is to mitigate the effect of overshooting its reference value, using the 

derivative of the error term to take action. 

 

Integral 

The integral controller is the less used controller, its effect is best seen on the long 

term behavior reducing its steady state error, which is the error between the long 

term desired state and the state the system stabilizes at. The deviation from the 

desired stat is not preferred and the integral term helps reducing/removing the 

steady state error. 

 

These terms are expressing in the form of a function according to formula (8) 

where each term has its own balancing term to balance each effect. This is the 

formula in the state space where it is not governed by time anymore but work in 

the state domain sufficing to both continuous and discrete systems.  

 

𝑢(𝑠) = 𝐾𝑃𝑒(𝑠) + 𝐾𝐼
1

𝑠
𝑒(𝑠) + 𝐾𝐷𝑠𝑒(𝑠).          (8) 

 

 

3.4 State estimation 
The drone itself has limited sensors, which means that not all state information is 

known, but with use of the sensors its position can be estimated. Here the quality 

and method of such estimate is discussed. 

 

3.4.1 Attitude 
The individual axis are all using their own PID controller, pitch yaw and roll. 

Therefore for each of these axis the state has to be calculated. The pitch and roll 

can be determined using gravity, but the yaw is best measured using a 

magnetometer using earth’s magnetic field to orient.  

Pitch and yaw are essentially the same but on tangent directions. Using the 

accelerometer combined with some geometry an estimate can be made on its 

attitude using formulas (9, 10); 

 

𝜑 = 𝐴𝑟𝑐𝑇𝑎𝑛 (
𝑎𝑦

𝑎𝑧
) , 𝜃 = 𝐴𝑟𝑐𝑇𝑎𝑛 (

√𝑎𝑥
2+𝑎𝑧

2

𝑎𝑦
) .  (9, 10) 
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This estimate is not perfect on itself, external forces will create errors in this 

estimation, therefore the gyroscope information is used to compensate this effect. 

Integrating the angular acceleration gives a speed and therefore a rate of change 

of its angles. This signal has drift due to the integration, creating an estimator 

losing precision over time. Using a complementary filter these estimates can be 

combined to balance out the fundamental issues of these estimators. The 

complementary filter adds the findings of both estimates and levels them out 

using the previous angle for the gyroscope estimation. 

 

3.4.2 Altitude 
Determining the altitude can be done in multiple ways, an ultrasonic sensor has its 

advantages but it is mostly used for landing due to its short range. Therefore the 

pressure sensor was used in earlier stages, something not very feasible in 

turbulence. The accelerometer is used in the same sense the gyroscope is used in 

attitude estimation. Its integration finds a speed in a certain direction which can be 

used for its altitude. This works but suffers from drift. Due to the pressure 

differences a visual sensor is needed. The camera on the drone requires too much 

processing power on the drone and it is not supported at the time of this work, 

therefore external localization will be used to determine the drones altitude. 

Combining both the acceleration and the image acquisition in a Kalman filter to 

optimize its estimation. 

 

3.5 Communication 
Signals are sent using the UDP protocol over Bluetooth 4.0 using a CSR 4.0 

adapter. The drone has the ability to fly manually or automatic. The controller is 

running on the chip of the drone. While flying, the drone is able to send the data 

from its sensor for analytics and receiving data from the Kinect regarding its 

position. The sampling of sending and receiving has to be limited to prevent an 

overflow of data on the drone, this limit is ~10 times lower than its processing 

speed. 
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4 Image Acquisition 
In order to receive extra information about the drone a Kinect system is used as a 

reference measurement. It is a Kinect v2 used on a Windows computer, using the 

Matlab© support package for image acquisition. This enables for both a reference 

measurement and additional input for the drones flight system. 

 

 

4.1 Kinect v2 
The Kinect v2 uses time of flight technology to 

determine depth. The time of flight principle sends 

out infrared, using his camera, all 3d information can 

be found without modifying the drone and can 

therefore be used on any type of drone.  

 

4.2 Applying the data 
The Kinect output shows a 2d picture using pixel 

color as depth information a typical image looking 

like Fig. 4.1 using a static position without the drone 

in place its background can be filtered out and, therefore, only the foreground will 

remain seen. When no drone is present this would result in a fully black image. 

The filter is made using a background measurement of ~60 seconds. The video 

data can be represented by figure 4.2. Treating each pixel position as a row over 

time its values follow a normal distribution as seen in Fig. 4.3. Using an inverse 

cumulative distribution function (4.1) containing both the mean and standard 

deviation of the pixel row but also an intended precision in P and its inverse error 

function: 

𝜇 + √2 𝜎 𝑒𝑟𝑓−1(2𝑃 − 1).        (4.1) 

 

 

One can calculate a pixel value corresponding to a 

precision. Using an arbitrary precision of p=0,05 would 

mean 5% of the background would always be filtered. This 

value would also leave 5% of the background still visible 

after filtering. Using a 424x526 resolution this result in 

11151 pixels still visible in the picture. Therefore when the 

drone is of size 300 pixels, this background would 

dominate all effects instead of the drone. 

 

FIGURE 4.1 AN ENHANCED BACKGROUND 

IMAGE OF THE WINDTUNNEL MADE WITH 

THE KINECT DEPTH SENSOR.  

FIGURE 4.2 A GRAPHIC REPRESENTATION 

OF THE DATA. EACH LARGE SQUARE IS A 

FRAME CONTAINING 526X424 PIXELS OF 

DEPTH INFORMATION. EACH PIXEL HAS 

ITS OWN VARIANCE AND THEREFORE IN A 

STATIC VIDEO ONE CAN DETERMINE ITS 

STATISTICAL BEHAVIOR. 
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One might wonder why not make it approach zero? That 

would mean that nearly all pixels will always be filtered 

out and, therefore, also the foreground. Using a higher 

filter value means that close to the walls the filter could 

cut off the foreground which is undesirable. So finding 

the right value is important. Using information about the 

dimensions of the tunnel the reference camera area can 

be reduced to 300x270. Using an error margin of 1% on 

300 pixels resulting in a filter value of p = 0,00005. 

When taking a closer look some pixels behave different 

ending up with a negative filter values. This would mean 

these points become blind spots, they never show the 

foreground. The reason for these 0 values is a pixel 

position alternating between two clearly different means. 

These blind spots could pose a problem, a short analysis 

shows they make up 1% of all pixels and are randomly 

distributed and are therefore negligible. Using the 

determined filter indeed results in high precision 

foreground images. Thereafter the filter can be used on real 

time image acquisition with around 15 fps giving full 

position information. The position is determined by some 

tedious Goniometrics on the pixel information. Using its 

relative angle and its field of view its position can be 

determined based on its average pixel depth and its average 

pixel position using formulas (4.2, 4.3, 4.4), with 𝜌𝛼𝑦 

being the deviation in the pixel value from its center in y 

direction. And 𝜌𝑦 being the pixel length of b. Where β and 

φ are its field of view in y and x direction respectively, and 

𝜌𝛼𝑥 being its deviation from the middle for the x direction 

and 𝜌𝑥 being the length of the x screen. 

𝑧𝑝𝑜𝑠 =  ∑ 𝑝𝑖𝑥𝑒𝑙_𝑣𝑎𝑙𝑢𝑒𝑛
𝑖      (4.2) 

𝑦𝑝𝑜𝑠 = ℎ′′ + 𝑑 ∗ tan (𝛾+
𝜌𝛼𝑦

𝜌𝑦
tan (

𝛽

2
))  (4.3) 

𝑥𝑝𝑜𝑠 =  
𝜌𝛼𝑥 

𝜌𝑥
tan(

𝜑

2
) ∗ √𝑧𝑝𝑜𝑠2 + 𝑦𝑝𝑜𝑠2  (4.3) 

FIGURE 4.3 A HISTOGRAM OF AN ARBITRARY PIXEL 

ROW OF A BACKGROUND MEASUREMENT. IT IS 

CONVERTED FROM GREYSCALE TO SINGLE FOR 

STATISTICAL ANALYSIS. 

FIGURE 4.4 AN ENHANCED ENLARGED 

VERSION OF OF THE DRONE USING A 

FILTERED FRAME P=0,00005. THE DRONE 

CONSISTS OF AT LEAST 99% OF THE 

NONZERO PIXELS IN THE FILTERED FRAME 

CALLED THE FOREGROUND IMAGE. 
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4.3 Kinect and sunlight 

During experimentation lines appeared on surfaces within the view of the camera. 

This is rather troublesome for the quality of the image acquisition. The origin for 

this phenomena is found to be sunlight, due to a change of background sunlight 

the reflective surfaces in the experimental setup reflected more or less light of the 

same wavelength of the Kinect tampering with the final image. This could also be 

the cause for some of the 2 peak behavior in the system mentioned before. 

Therefore use of the Kinect is best done indoor without observed exposure to 

sunlight. 

 

4.4 Kinect precision 
In order to investigate the quality of the Kinect a calibration measurement is done. 

The Kinect is suspended with relatively small wires such that these wires are 

invisible to the Kinect. The drones is positioned in a coordinate in the wind tunnel 

measured with a maximum standard error of about 2 centimeters shown in figure 

4.6. Thereafter the drone is moved in the z direction changing its x-y coordinate 

FIGURE 4.5 A SKETCH OF THE GEOMETRY OF THE KINECT IN 2D. SHOWING ALL ANGLES AND 

INFORMATION NEEDED TO CALCULATE THE Z AND Y POSITION OF THE DRONE. FOR X AN ADDITIONAL 

SKETCH IS REQUIRED. 
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as well as its total depth value. For each of this steps 

a multitude of filter values is used to show the 

impact of this value on its precision and bias. The 

Kinect has a position estimate that works best at 

close range due the size of the object being larger. 

In contrast to this statement the depth estimate has a 

small bias at short range but a better standard 

deviation.  

Therefore its effectiveness is best on short distances 

and a representative pdf at 140cm is shown in figure 

4.6. The standard deviation is per frame, and therefore 

averaging frames gives a group pdf according to basic 

summation of standard deviations, giving the option to 

improve on precision but losing refresh rate. Its 

statistical behavior is characterized in graph 4.6. Which concludes that the drone 

is able to locate the drone with a precision of about 2 centimeters when 

accounting for the current bias. And going beyond that when averaging over 

multiple frames. 

FIGURE 4.6 GRAPHS SHOWING THE PERFORMANCE OF THE KINECT SENSOR. WITH THE SYSTEMATIC 

ERROR BEING THE ERROR BETWEEN THE ACTUAL VALUE AND ITS MEASURED VALUE. ITS STANDARD 

DEVIATION IS  DETERMINED AFTER TAKING A MULTITUDE OF MEASUREMENTS N=100. 

FIGURE 4.7 A HISTOGRAM OF THE MEASURED 

POSITION BY THE KINECT FOR A FILTER VALUE 

OF 5 E-6 AT A DISTANCE OF 140 CM. IT HAS A 

MEAN OF 0.212 WHICH IS CLOSE TO ITS REAL 

POSITION OF 0.208 (N=100). 
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5. Probability Density Functions 
In order to measure the level of turbulence the principle of probability density 

functions is used. The drones PDF in different conditions are investigated in order 

to determine the accuracy of the acceleration sensor. Thereafter the pdf behavior 

of the suspended drone in turbulence is investigated. 

5.1 Drone sensors 
To explore the propellers influence on the sensor readings, a still and a high 

power measurement are made in figure 5.1a and 5.1b, respectively. When 

preforming the still measurement the limits of the sensor become apparent having 

a resolution size of magnitude 0.005 𝑚/𝑠2. As expected, the standard deviation 

increases as the propellers start creating thrust. An unexpected behavior shows in 

the double peak behavior of figure 5.1a. 
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FIGURE 5.1 THE PROBABILITY DENSITY FUNCTIONS OF THE ACCELERATION IN THE Z, X AND Y DIRECTIONS 

WHEN THE DRONE IS HELD ON A FLAT SURFACE (ON THE LEFT SIDE,  5.1(A)) A DRONE USING HIGH THRUST 

N=12000 AND (ON THE RIGHT SIDE, 5.1(B)) USING NO THRUST N=18000.   

This behavior was initially believed to be caused by the flight controller, but 

investigating further showed that this was not the case. The current and final 

assumption is that it is caused by the drone being fixed to the ground creating an 

oscillatory behavior. Having both the high powered measurement with and 

without the flight controller on a fixed drone the following standard deviation in x 

and y are roughly equal as suspected around 0.8 𝑚/𝑠2 and due to vertical 

confinement the standard deviation in the z direction is better at 0.3 𝑚/𝑠2. The 

double peak effect is clearly not helping its deviation. For the suspended 

measurements this is not an expected behavior. To confirm that this behavior is 

related to the way it is held down, suspended still and suspended thrust 

measurements are performed. These do not show the double peak but only a 

normal Gaussian which will be discussed in the next section. 
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5.2 Drone without Turbulence 
In order to fully understand the drones behavior a multitude of measurements are 

performed. To finish the reference measurements of this work suspended 

measurements are performed, both still and using thrust, in order to determine the 

drones characteristics while suspended. Thereafter the drones’ statistical 

properties are measured in different levels and types of flow, both turbulence and 

shear.  

For these measurement the drone is suspended on top in the wind turbine 

according to figure 5.2. This method constraints its movement removing some 

information. The freedom in the x-y plane could contain enough information to 

answer our research question.  

 

 

 

  

5.2.1 Reference measurements. 
 

The reference measurements are reported here as a reference for following data. 

Using the statistics and graphs from this measurement it is possible to give 

meaning to the measurements in turbulence. 

FIGURE 5.2 A SCHEMATIC DRAWING OF THE SUSPENSION OF THE 

DRONE. IT IS SUSPENDED ON TOP AND THEREFORE ITS Z DIRECTION IS 

CONSTRAINED INDEPENDENTLY FROM ITS ORIENTATION. 
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Firstly one of the important graphs 

is the unaltered raw data, for the still 

measurement it is not the most 

enticing graph, figure 5.3. It shows 

all the principal acceleration 

components and its absolute sum 

which should be equal to the 

acceleration due to gravity.  

Our measurement approaches but 

are still off with a total of 9.0 𝑚/𝑠2. 

In order to remove the effect of 

gravity each signal will be reduced 

by its own average or running 

average (We shall discuss the 

calculation of its running average 

later on). This makes each 

acceleration signal is now fluctuate around an average signal of approximately 

zero. Figure 5.4, reports the most essential information. The pdf of the absolute 

acceleration are reported in figure 5.4a, additionally their Fourier spectra are 

going to be discussed shown in figure 5.4b. These two figures hold most of the 

valuable information of the measurements because the pdf shows the statistical 

information and the Fourier transforms tells us about the frequency behavior. 

 

Adding the mean and standard deviation in the form of an error bar to the pdf of 

the absolute acceleration the to show all important information at once, which 

now gives a baseline for all future data. The absolute acceleration is not Gaussian 

FIGURE 5.3 THE UNALTERED ACCELERATION SIGNAL OVER TIME OF A 

STILL  SUSPENDED DRONE WITHOUT FLOW.  

FIGURE 5.4 USING A STILL SUSPENDED DRONE WITHOUT FLOW. ON THE LEFT SIDE (A) THE 

ABSOLUTE ACCELERATION OF THE SIGNAL, CONTAINING INFORMATION FOR ALL ACCELERATION 

DIRECTIONS, ON THE RIGHT SIDE (B) THE FOURIER SPECTRUM OF A SIGNAL SHOWING NO 

FREQUENCIES ONLY NOISE. 
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even though each individual direction is normally distributed. The resulting 

distribution more resembles a Weibull distribution, this confirmation can be found 

in appendix A, assuming either Normal or Weibull distribution give the same 

mean and standard deviation. The amplitude spectrum shows that the sensor is 

finding noise of all frequencies with an average amplitude of roughly 

0.0004 𝑚/𝑠2.  

 

We now report on acceleration measurements done by starting the drone and 

making the propellers turn at a speed approaching the lift-off thrust. This amount 

of thrust resembles the thrust it needs to levitate on its own. Having the drone 

suspended the following characteristics are shown in figure 5.5; the signal has 

significantly more noise and it also is now in motions as one can see in figure 

5.5b. Using a low pass filter with a frequency of 0.01 Hz and a steepness(level of 

suppression) of 0.99 the low frequency movement of the drone is only visible. 

The relevance of these numbers will became apparent later on. For now it is 

important to see how it is indeed able to identify fluctuations with an amplitude of 

~0.5 𝑚/𝑠2 from the original signal. This enables us to do only analysis on for 

example, low frequency signals or high frequency signals. The amplitude of the 

amplitude spectrum has increased significantly to about 0.03 𝑚/𝑠2 on average 

and the mean of the absolute acceleration has become 1.7 𝑚/𝑠2 with a standart 

deviation of 0.74 𝑚/𝑠2. Both are around a magnitude of ~60 higher than its still 

counterpart. 
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5.2.2 Wind tunnel using laminar flow 
In order to determine if the drone is influenced by turbulence another reference 

frame is needed. How does the drone behave when in laminar flow? Due to 

laminar flow having a constant velocity and the drone being suspended one of the 

possibilities is that it would find a point of equilibrium between gravitational and 

drag forces. Another possibility is finding a certain frequency on which the drone 

moves around an equilibrium being accelerated by the flow. In order to confirm or 

confute any of these hypothesis about the drone behavior, experimentally 

measurements are done. 

FIGURE 5.5 FOUR GRAPHS CHARACTERIZING THE BEHAVIOUR OF A SUSPENDED DRONE USING A CONTROLLER TO APPLY 

THRUST. ON THE TOP LEFT (A) THE RAW SIGNAL OF ITS ACCELEROMETER IS SHOWN. TOP RIGHT (B) THE LOW PASS FILTER 

IS SHOWN SHOWING THE SLOW ACCELERATION BEHAVIOR OF THE DRONE. BOTTOM LEFT (C) SHOWING THE 

ACCELERATION PDF AND ITS STATISTICS OF THE DRONE. BOTTOM RIGHT (D) SHOWS THE FOURIER SPECTRUM STILL NOT 

SHOWING AN CHARACTERISTIC FREQUENCIES. 
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FIGURE 5.6 USING A SUSPENDED DRONE IN A LAMINAIR FLOW AT 10.8 AND 11.5 M/S. FOUR GRAPHS SHOWING THE EFFECT 

OF 2 DIFFERENT LOW PASS FILTERS ON ITS FREQUENCY SPECTRUM AND ITS ABSOLUTE ACCELERATION STATISTICS. (A) 

TOP LEFT, THE FILTERED AMPLITUDE SPECTRUM OF THE SAME MEASUREMENT AS ON THE TOP RIGHT ONLY USING A LOW 

PASS FREQUENCY OF 2HZ. (B) TOP RIGHT, A SIGNAL FILTERED USING A LOW PASS FREQUENCY VALUE OF 0.01 HZ, BOTTOM 

LEFT AND RIGH (C) AND (D) ARE THE ABSOLUTE ACCELERATION OF A DIFFERENT MEASUREMENT DEPICTING THE SAME 

BEHAVIOUR BUT ON ITS STATISTICS. 
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All the following measurements are done with the drone propellers removed as 

they would interfere with the measurement. The drone is suspended as before and 

the tunnel is creating a laminar flow. Using varying speeds the behavior of the 

wind tunnel and of the drone are characterized. Each flow speed has roughly the 

same pattern and behavior. To improve on its quality an important question arises, 

what frequencies are important? Varying flow speeds, the frequency region 

between 0 and 1 Hz shows periodic movement of the drone due to its suspension, 

this behavior does not scale proportional with flow speed, but rather if drone is 

able to stay in equilibrium. Therefore filtering this behavior from the data gives a 

stronger speed dependency. A filtered graph is shown in figure 5.6(a) the low 

frequency behavior is removed. A reduction in the absolute acceleration can be 

seen, which should reduce the noise in the calculation of the pdf. A frequency 

occurs at the 8 Hz domain in the z axis. But due to it only being in the z direction 

it does not impact on the absolute acceleration in a significant way. The 

corresponding PDF’s are shown in in figure 5.6(c,d) showing the statistical 

properties and how the filter affects the PDF.  

 

 

 

 

 

When relating flow speed and average absolute acceleration, the relation seems 

linear.  

 

FIGURE 5.7 USING INCREASING FLOW SPEEDS IN LAMINAR FLOW, WHILE 

HAVING THE DRONE SUSPENDED, N=6500 PER DATAPOINT. SHOWING THE 

RELATIONSHIP BETWEEN THE AVERAGE ABSOLUTE ACCELERATION AND THE 

FLOW VELOCITY OF THE TUNNEL. WITH THE ERROR BARS BEING THE STANDART 

DEVIATION. 
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A different way of interpreting the data is by using the acceleration matrix 

formula (5.1), in table 5.1 it shows the flow is isotropic for the x and y directions. 

The z direction has a higher value since that direction is constrained and could be 

oscillating in its separate direction.  

Matrix formula: 

 

∑ 𝑎𝑖 ∙ 𝑎𝑗
3
𝑖,𝑗=1 = [

𝑎𝑖𝑗 ⋯ 𝑎𝑧𝑥

⋮ ⋱ ⋮
𝑎𝑥𝑧 ⋯ 𝑎𝑧𝑧

]      (5.1) 

 

0.00054   

0.00055 0.00055  

0.00106 0.00107 0.00208 

 

5.3 Drone in turbulence 
 

Now having characterized the drone and the tunnel’s characteristics, 

measurements in turbulence will be presented. 

First the still drone will be measure at increasing flow speed, thereafter a second 

position further away from the passive grid, here the turbulence can be better 

developed. Lastly measurements using thrust are done in order to complete the 

data. For these measurements the drone is suspended in the same manner as used 

throughout the experiment, the grid used is one with a mesh size of 1 cm. 

 

  

TABLE 5.1 SHOWING THE A MATRIC FOR THE LAMINAR FLOW AT 12.2 M/S N=6500, IN ITS AXIAL 

DIRECTION IT SHOWS THAT X AND Y ARE ISOTROPIC AND THAT Z IS NOT. THE MATRIX IS SYMMETRIC. 
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5.3.1 Initial location 
 

The initial measurement location was 2 meters away 

from the grid. According to [5] this means a not yet 

fully developed turbulent flow. This position was 

used due to convenience and lack knowledge at the 

time of these measurements. Now with the 

introduction of turbulence the amplitude spectrum 

gets more interesting. Each spectrum showing the 

same behavior a peak around 6 Hz for all the 

directions shown in figure 5.8, it is found that the 

frequency of this peak changes based on the level of 

turbulence. The frequency behavior and the turbulence 

behavior for all measurements displayed in figure 5.9 by 

this it is clear the drone does measure some level of 

turbulence and is able to characterize its properties. 

 

5.3.2 Second location 
 
To confirm the initial data another position in the tunnel is used, this position is 

4.5 meters away from the grid which should mean the turbulence is more 

developed. This should result in higher absolute values but the same scaling. With 

3 measurements frequency remains roughly the same on the higher frequencies in 

FIGURE 5.8 SHOWING THE FREQUENCY 

SPECTRUM OF THE DRONE IN TURBULENCE 

WHEN IT IS STILL, AT A SPEED OF 12.2 M/S 

TUNNEL.  

FIGURE 5.9 SUMMARIZING TURBULENCE STATISTICS AS A FUNCTION OF LOCATION. ON ITS RIGHT SIDE (B) THE 

ABSOLUTE ACCELERATION AS A FUNCTION OF FLOW SPEED AND ON ITS RIGHT Y AXIS ITS CHARACTERISTIC 

FREQUENCY AS A FUNCTION OF SPEED. N=6500 FOR ALL DATA POINTS.  



25 

 

contrast to the absolute acceleration which indeed increased in value. Its 

acceleration shows a more linear behavior which can be due to the small range of 

speed variation compared to the earlier measurement or the effects of propellers. 

 

 

 

 

 

5.3.3 Propellers 
 
During still experimentation it occurred that when the flow reaches a critical 

speed the drone orientates so that its propellers start rotating. This rotation causes 

vibrations in the drone and therefore reduce its measuring properties. The Fourier 

analysis remains the same but its acceleration PDF clearly changes, shown in 

figure 5.11, therefore both measurements with propellers and without propellers 

will be done show how this effect is dominating other statistical properties. 

 

 

 

FIGURE 5.10 SHOWING THE TURBULENT BEHAVIORS AT A DISTANCE OF 4.5 M 

INSTEAD OF 2 M SHOWING HIGHER VALUES FOR THE ACCELERATION BUT THE 

SAME FREQUENCY BEHAVIOR. (N=6500) 

FIGURE 5.11 USING THE HANGING DRONE IN TURBULENT FLOW AT 12.2 M/S 

N=6500. TWO FIGURES SHOWING THE BEHAVIOR WITH THE LEFT SIDE 

WITHOUT PROPELLERS AND ON THE RIGHT SIDE WITH PROPELLERS. 



26 

 

 

5.3.4 Turbulence and thrust 
A conclusive measurement is the drone actually interfering with turbulence by 

creating thrust. Earlier the background noise due to thrust has been characterized. 

3 different set of measurements are done using thrust. Firstly on the 2 meter 

position data is acquired but showing no clear indication of any turbulence. 

 

 

This is due to the fact that the actual flying of the drone has the same 

characteristics of the level of turbulence we are measuring, therefore when 

looking at PDFs no turbulence can be observed. To elaborate on the statistical 

properties table 5.2 relates the statistic for different types of measurements at a 

flow speed of 12.2 m/s. The average acceleration in laminar flow using the 

controller being higher than the average acceleration of the controller in 

turbulence is not entirely unexpected but still unwanted. Flying without any flow 

speed using manual controls, simulating a real flight scenario, results in an 

average of acceleration of 0.9 𝑚/𝑠2 with a standard deviation of 0.4 𝑚/𝑠2 

assuming that flying higher flow speeds would result in more accelerations. 

 

  Controller Still 

Turbulence Average 0.9 𝑚/𝑠2 0.8 𝑚/𝑠2 

 Std 0.4 𝑚/𝑠2 0.4 𝑚/𝑠2 

Laminair Average 1.3 𝑚/𝑠2 0.05 𝑚/𝑠2 

 Std 0.4 𝑚/𝑠2 0.03 𝑚/𝑠2 

FIGURE 5.12 HAVING THE DRONE SUSPENDED IN INCREASING FLOW SPEED USING THE 

TURBULENCE GRID. SHOWING THE ABSOLUTE ACCELERATION PLOTTED AGAINST THE FLOW 

VELOCITY OF THE TUNNEL WHEN THE DRONE IS TRYING TO MAINTAIN CONSTANT THRUST 

WHILE USING THE CONTROLLER.  

TABLE 5.2 SUMMARIZING THE STATISTICAL INFORMATION FOR THE FLOW SPEED OF 12.2 M/S FOR 

DIFFERENT SITUATIONS ALTERING BETWEEN USING A CONTROLLER OR HAVE NO THRUST (STILL) AND 

USING LAMINAR OR TURBULENT FLOW. 
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Therefore only the amplitude spectrum remains an option to investigate 

turbulence while flying. Investigating this data for an extra measurement in the 

developed turbulent flow at 4.5m in a speed of 12.2 m/s the following spectrum is 

found figure 5.13. This data is rather strange due to its average amplitude being 

relatively low, its spectrum should look like the reference measurement figure 

5.5(d) where the amplitude is relatively high all over the spectrum. The usual 

spectrum of a measurement in laminar flow using the controller have an 

amplitude of 0.2 𝑚/𝑠2 around 6 Hz frequency which suggests in turbulence this 

peak could be measured which is supported by figure 5.13(a). 

 

 

 

 

 

  

FIGURE 5.13 RELATING THE AMPLITUDE SPECTRUM OF TWO MEASUREMENTS 

DONE AT THE SAME SPEED OF 12.2 M/S AT 4.5. ON THE LEFT THE CONTROLLER IS 

RUNNING. ON THE RIGHT A STILL MEASUREMENT.  
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6. Conclusion  
 

In order to answer the question of if a drone is able to measure turbulence, the 

drone’s characteristics have been identified. Its accuracy in measuring 

gravitational acceleration at rest with a bias of ~0.8 m/s2, but more importantly 

its standard deviation of 0.012m/s2. Expectedly this accuracy increases when the 

drone comes in action, when its standard deviation with respect to acceleration 

increase to 0.4m/s2. The drone’s ability to measure is clearly limited by this 

error, therefore first a series of still measurements are done to quantify the effect 

of turbulence on a still drone. A clear linear relationship is found between 

frequency and flow speed. A non-linear relationship is found between flow speed 

and the absolute acceleration as seen in 5.9 and 5.10. These numbers have not 

been quantified towards any Reynolds numbers due to a lack of reference 

measurements on the turbulence. The absolute acceleration and a peak frequency 

varying from respectively 0,1𝑚/𝑠2 to 0.9m/s2 and 4,4 to 6,0 Hz. The origin of 

the absolute acceleration can be clearly defined as caused by turbulence. The 

frequency behavior could be a property of the suspended wire but this does not 

hold true due to it occurring in all 3 directions, also we cannot due to gravity. 

When the drone is flying and a low pass filter compensates for gravity and other 

low frequency fluctuations its absolute acceleration also becomes 0,9 m/s2 with 

an standard deviation of 0,4 m/s2. This means that the statistical information on 

flying are the same magnitude of the highest turbulence the wind tunnel could 

produce. Knowing that the absolute maximum flow speed the drone can take is 10 

m/s compared to the turbulence measurement of 12.2 m/s it would never be able 

to measure that level of turbulence. Therefore it is impossible to do so with this 

drone. Another drone might be able to but it requires the absolute acceleration due 

to the propellers be lower than the acceleration of the turbulence.  
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Appendix A 

 

Coding to verify distribution by looking at the plots and the residuals. The 3 

suggested distributions are based on its original graph. The residual analysis is 

done on two separate magnitudes of binning. The binning is necessary because 

only unique values for its absolute accelerations are found. First a plot is made  

 

%using matlabs fitting function for the 3 distributions. 

dalpnorm = fitdist(ddalp,'Normal'); 

dalpgam = fitdist(double(ddalp),'Gamma'); 

dalpwei = fitdist(double(ddalp),'Weibull'); 

  

%the binning by rounding towards the nearest number 

r3ddalp = round(ddalp,3); 

r4ddalp = round(ddalp,4); 

 

%using frequency table statistics to plot the graphs and later on calculating is 

residuals. 

freqinfo3=tabulate(r3ddalp); 

freqinfo4=tabulate(r4ddalp); 

 

%calculation of the pdf’s based on the different distributions using the same 

binning as the data. 

 

y13= pdf(dalpnorm,freqinfo3(:,1,:)); 

y23= pdf(dalpgam,freqinfo3(:,1,:)); 

y33= pdf(dalpwei,freqinfo3(:,1,:)); 

  

y14= pdf(dalpnorm,freqinfo4(:,1,:)); 

y24= pdf(dalpgam,freqinfo4(:,1,:)); 

y34= pdf(dalpwei,freqinfo4(:,1,:)); 
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%in the plot a normilazation based on the data is done the numbers are added 

manually based on total sample number and its binning value. 

  

figure 

hold on 

plot(freqinfo3(:,1,:),freqinfo3(:,2,:)/(4773*0.001)) 

plot(freqinfo3(:,1,:),y13) 

plot(freqinfo3(:,1,:),y23) 

plot(freqinfo3(:,1,:),y33) 

legend('data','norm','gamma','weibull') 

hold off 

  

figure 

hold on 

plot(freqinfo4(:,1,:),freqinfo4(:,2,:)/(4773*0.0001)) 

plot(freqinfo4(:,1,:),y14) 

plot(freqinfo4(:,1,:),y24) 

plot(freqinfo4(:,1,:),y34) 

legend('data','norm','gamma','weibull') 

hold off 

 

%finally calculation of the residuals based on its y coordinate. 

 

resy13=sum(freqinfo3(:,2,:)/(4773*0.001)-y13) 

resy23=sum(freqinfo3(:,2,:)/(4773*0.001)-y23) 

resy33=sum(freqinfo3(:,2,:)/(4773*0.001)-y33) 

  

  

resy14=sum(freqinfo4(:,2,:)/(4773*0.0001)-y14) 

resy24=sum(freqinfo4(:,2,:)/(4773*0.0001)-y24) 
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resy34=sum(freqinfo4(:,2,:)/(4773*0.0001)-y34) 

 

Resulting in the following graphs and data fig AppX. Based on the sum of 

residuals I conclude that the Weibull distribution is the right fit for the data.  

 

 

Sum of Residuals 0.001 binning 0.0001 binning 

Normal 13.6 295.2 

Gamma 4.5 227.1 

Weibull 1.2 165.7 

 

 


