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ABSTRACT

This study analyzes GPS data from Utrecht’s ikFiets mobile phone application to gain a better
understanding of the relation between the urban environment and route choice behavior. The GPS
data is enriched with open data to capture the characteristics of the routes. Choice sets with
realistic alternative routes are generated using the routeplanner of De Fietsersbond. A Path Size
Logit (PSL) is applied to quantify the preferences of cyclists. Interaction effects are introduced to
account for varying preferences across departure times and trip purposes. Finally, a Latent Class
Analysis is used to study preference heterogeneity. The results of the Latent Class Analysis (LCA)
reveal two segments of cyclists with distinct preferences. The first segment seems to be
particularly concerned with convenience and safety. The second segment has a much higher
intention to cycle, is more likely to own a race bike and has a strong preference for green
surroundings. Further, preferences for traffic lights are found to differ across on and off peak
situations. To add, the attractiveness of green surroundings seems to depend on the trip purpose,
but only for the first segment. A dashboard is developed to help policy developers understand

these dynamics and plan effective interventions for each identified segment.

MANAGEMENT SUMMARY

Background: Active travel is argued to counteract a variety of challenges faced by Western
societies, such as obesity, congestion and pollution. Consequently, planners and policy makers
increasingly insist on the development of urban environments which facilitate and stimulate active
transportation. The growing availability of crowd-generated GPS data presents an interesting
opportunity to develop an understanding of how the urban environment influences cycling
behavior. The current study leverages GPS data from Utrecht’s ikFiets mobile phone application
to answer the question; “How do built environmental and infrastructural characteristics influence
route choices of cyclists in the municipality of Utrecht?”. Further, it studies preference
heterogeneity related to several personal characteristics, trip departure time and trip purpose. The
results are presented in the form of a dashboard which could support Utrecht’s policy makers to

make certain infrastructure more appealing.

Methods: This study applies a Path Size Logit (PSL) model to study the route choices of the
ikFiets sample. The GPS data is enriched with open data to capture the characteristics of the

routes. Further, choice sets with various realistic alternative routes are generated using the



routeplanner of De Fietsersbond. Interaction effects are introduced to account for varying
preferences across departure times and trip purposes. A Latent Class Analysis (LCA) is conducted

to identify two segments of cyclists with distinct preferences.

Results: The results reveal two distinguishable segments of cyclists. The first group is
characterized by their tendency to stick to the shortest route. They have relatively strong
preferences when it comes to intersections, turns, speed limits and traffic lights. As such, it seems
that this group is particularly concerned with convenience and safety. More specifically, they
avoid traffic lights in general, but less so during peak hours, when signals may provide them with
safe and efficient passage through heavy ftraffic. Further, they avoid agricultural surroundings
during commutes, but not during leisure trips. They have a relatively low intention to cycle and are
less likely to report to cycle because they enjoy it. Hence, they appear to consider a bike to be a
mode of transport. The second group is willing to detour substantially more in comparison. These
cyclists are more keen on green surroundings, regardless of their trip purpose. They appear to be
the more advanced cyclists who are more likely to own a race bike and have a relatively high
intention to cycle. To add, they report to cycle because they like being outside, it increases their

physical and mental health and they simply enjoy it.

Conclusions: The results highlight that preferences of cyclists are not homogene. Moreover,
preferences may differ across trip contexts. The developed dashboard helps policy developers

understand these dynamics and plan effective interventions for each identified segment.
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1. Introduction

1.1 Context
Active travel is argued to counteract a variety of challenges faced by Western societies, such as
obesity, congestion and pollution (Donnelly et al., 2009; Handy, Van Wee and Kroesen, 2014). In
this regard, cycling poses a promising alternative to motorized traffic. That is, cycling is relatively
fast and covers a larger radius when compared to walking. Meanwhile, it requires healthy exercise
and produces no air pollution or noise disturbance. Consequently, planners and policy makers
increasingly insist on the development of urban environments which facilitate and stimulate active
transportation (Handy et al., 2014).

However, the development of effective policies to stimulate cycling is a complex process.
As advocated by Handy et al. (2014), the assessment of cycling policies relies on close monitoring
of the developments in cycling behavior. Particularly, it requires a clear understanding of the
stimulants and deterrents of cycling. Handy et al. (2014) point to two types of studies required to
guide policy makers in this process. First, cross-sectional research is necessary to identify
aspects of the environment and infrastructure which influence cycling behavior. As becomes
evident from the literature review and confirmed by Bernardi et al. (2018), this is often done
through sending out stated preference surveys. Second, longitudinal studies are needed to
evaluate the effectiveness of interventions. This requires extensive data collection at multiple
points in time and is therefore inherently expensive and time consuming. Consequently,
monitoring cycling behavior to aid policy development poses a heavy burden on municipalities.

Moreover, municipalities are often forced to conduct these studies themselves instead of
relying on international theory and literature, as a consequence of the heterogeneity in cycling
habits. To illustrate, active travel, including cycling, is much more popular in Europe compared to
the U.S. (Donnelly et al., 2009). Further, Pucher and Buehler (2008) highlight the superiority of the
Dutch, Danish and German cycling infrastructure in comparison to that of the U.K and U.S. To
add, Mertens et al. (2017) shows substantial variation in utilitarian cycling rates across European
countries. Moreover, variation in cycling habits is not only evident across continents and
countries, but even between municipalities (Glaser and te Brommelstroet, 2020). The literature
indicates that these differences in cycling behavior, at least partially, originate from environmental
and infrastructural variation across locations (Mertens et al., 2017). In the light of the above, it is
difficult for municipalities to translate findings on stimulants and deterrents of cycling across

contexts. Thus, they have to invest heavily in local studies.



Local governments could therefore benefit from a more efficient method to study cycling behavior.
The growing availability of crowd-generated GPS data presents an interesting opportunity to
tackle this challenge. That is, GPS data from mobile apps can be used to study which factors
influence route choice behavior of citizens and to what extent they do so. Citizens can record
their cycling movements using their own mobile phone. Hence, no surveys or GPS devices need
to be distributed. Examples include the globally available apps Strava (n.d.) and BikeCitizens
(n.d.), but also smaller local initiatives such as Moves (Pritchard et al., 2019), CycleTracks (Hood,
Sall and Charlton, 2011; Melson, Duthie and Boyles, 2014) and ikFiets (Goedopweg, n.d.). The
developers of these apps attract users by offering them insights in their own activities, the ability
to share their activities on a social media platform and/or eligibility to receive promotions and
prices. In some cases (e.g. Strava), municipalities can buy access to the GPS data. However,
initiatives such as Moves, CycleTracks and ikFiets illustrate that local governments can also
develop these applications themselves to gain direct access. In short, crowd-generated GPS data
is becoming increasingly available to municipalities.

This novel approach, to use GPS data when studying cycling behavior, has successfully
been applied in several studies, particularly in an American context. For example, Melson, Duthie
and Boyles (2014) studied how the layout of bridges influence route choice behavior of cyclists in
Texas, based on GPS data. Broach, Dill and Gliebe (2012) used GPS data to determine which
infrastructural aspects attract and repel Oregon’s cyclists to certain streets. The same has been
done in California (Hood, Sall and Charlton, 2011), Ohio (Park and Akar, 2019) and Washington
(Chen, Shen and Childress, 2018). Although some European studies exist (e.g. Menghini,
Carrasco, Schissler and Axhausen, 2010; Prato, Halldorsdoéttir and Nielsen, 2018;
Skov-Petersen, Barkow, Lundhede and Jacobsen, 2018), these remain exceptions. These studies
indicate that GPS data can indeed supplant stated preference surveys.

Moreover, crowd-generated GPS data provides several benefits over the use of surveys.
First, GPS datasets record the actual behavior of cyclists. It therefore circumvents the
hypothetical bias documented for stated choice experiments (Murphy et al., 2005). That is, in
some cases the hypothetical choices in a survey may sufficiently resemble real life decisions. For
example, simple consumer products showcased together as if they were presented in a webshop
may induce realistic choice strategies. In other situations, the alternatives must be experienced in
reality to truly grasp the implications of their differences. Route choices fall in the latter category.
Descriptions, illustrations, pictures or videos can be expected to fall short of capturing the true
experience of a location and the context of the choice situation. In those cases, a stated
preference survey will not be able to replicate a real decision. Hence, choices made in the survey

can be expected to differ from choices made in real life, as Murphy et al. suggest (2005).



Moreover, GPS data does not rely on recall and is less sensitive to self-censoring (Larsen and
El-Geneidy, 2011). It therefore provides a more accurate and complete view of someone's cycling
habits. Further, availability of crowd-generated data has made GPS data a low cost alternative to
surveys. In sum, the use of crowd-generated GPS data is an efficient way for municipalities to

capture realistic choice behavior of cyclists.

1.2 The Municipality of Utrecht
A municipality that could benefit substantially from this approach is the Dutch city of Utrecht.
According to “Actieplan Utrecht fietst!” (Gemeente Utrecht, 2015), a publication on the ambitions
of the municipality, cycling plays a key role in maintaining a pleasant living environment in the city.
Meanwhile, the city’s population is growing and an increasing number of visitors and tourists find
their way to its historic center. This makes for a growing pressure on the cycling infrastructure,
particularly during rush hours. Hence, the municipality is faced with the difficult task of
maintaining the quality and efficiency of its infrastructure, whilst also striving for a growing user
base. Monitoring the cycling infrastructure is therefore of the utmost importance to Utrecht.
However, the unique historical Dutch cycling culture makes it difficult for the municipality
to leverage on findings of international studies. To illustrate, Pucher and Buehler (2008) rank The
Netherlands among the leading countries when it comes to the quality of its cycling infrastructure.
Further, considering its high density and flat topography, cycling often poses a suitable alternative
to car travel. Indeed, the estimated number of bikes in The Netherlands exceeds the number of
inhabitants (Statista, 2020), underlining the popularity of cycling among the Dutch. In comparison,
less than one out of eight people in the United States cycles on a regular basis (Statista, 2021).
Moreover, the city of Utrecht presents itself as the cycling city of the Netherlands. It sees the bike
as “the symbol” for the city they want to be (Gemeente Utrecht, 2015, p.2). This strong focus on
cycling in local policies makes Utrecht unique and difficult to compare even to other Dutch cities.
The municipality of Utrecht therefore invests heavily in its own research departments and projects.
An example of Utrecht’s efforts to study cycling behavior is its collaboration with other
cities in the region and the provincial government to develop the ikFiets app. This mobile
application allows inhabitants of the province of Utrecht to record their cycling movements in
exchange for rewards, insights and compelling challenges. The GPS data generated by these
users provides Utrecht with a unique insight into the cycling habits of over a thousand of its
citizens. Moreover, existing users keep generating data. Hence, the municipality continuously
receives new data without much additional effort beyond the initial investment, other than some
periodical campaigns to promote the application. Thus, Utrecht has continuous access to

valuable crowd-generated GPS data from its inhabitants.



In short, Utrecht is in the perfect position to leverage upon the possibilities of crowd-generated
GPS data to support the development of policies which stimulate cycling. Their strong focus on
developing an attractive cycling infrastructure underlines the value of the insights that such
analysis could provide to them. Moreover, they have access to a large stream of GPS data from
the ikFiets app. It is therefore an ideal case to demonstrate how crowd-generated GPS data can

be translated into valuable insights.

1.3 Research Design
Considering the above, the goal of the current study is twofold. First, it strives to identify and rank
the aspects of the built environment which encourage and discourage cyclists in Utrecht. To
achieve this, a route choice model is estimated based on GPS data. Specifically, a Path Size Logit
(PSL) model is estimated on a total of 5091 regular trips made by 204 users of the ikFiets app.
This model compares the attributes of each chosen route to a set of alternatives, which are
generated using the routeplanner of the Dutch national cycling association (de Fietsersbond).
Second, the study aims to illustrate how a municipality can leverage crowd-generated GPS data
to support policy makers in their efforts to stimulate cycling. In this regard, a dashboard is
developed based on the PSL estimates. The main performance indicator is a composite
cycleability index, which can be broken down into more specific indices. The weights in this index
are based on the relative importance of each attribute in the PSL model. This dashboard provides
insight into the performance of the network, as well as possible causes of bottlenecks.

The goals introduced above translate into one main research question and two sub

questions to be answered by the current study:

How do built environmental and infrastructural characteristics influence route choices of cyclists in
the municipality of Utrecht?

A. How do these relations differ based on personal characteristics?

B. How do these relations differ based on trip context, in terms of departure time and trip

purpose?

1.4 Academic Relevance

The literature review on indicators of cycleability illustrates the scarcity of Dutch studies on this
topic. Several Dutch studies relate built environment aspects of home locations to the frequency
or duration of cycling, usually in the context of active travel or mode choice (e.g. Gao et al., 2018;
Noordzij et al., 2021; De Vries et al., 2010). However, only a handful of studies focus on route

choice. An example of those studies that comes close to the current one is Bernardi et al. (2018),
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which analyzed 3,500 bike trips across the Netherlands using several extensions of the MNL
model, including a Path Size Logit model. However, this study does not focus on just one city and
therefore does not acknowledge the likelihood of intercity variation reported by Glaser and te
Brommelstroet (2020). Moreover, it does not distinguish between trips in rural and urbanized
areas. Following the conclusions of Mertens et al. (2017), one would expect cycling habits to differ
between those two distinct urbanization patterns. If the findings of the national study by Bernardi
et al. (2018) and those of the current study differ substantially, the need for local studies is
underscored. Thus, a route choice study in the context of the Dutch city of Utrecht poses a
valuable contribution to the current literature.

Furthermore, the current study illustrates how crowd-generated data can be applied in
route choice studies. Although this has been done before, stated preference surveys still remain
the standard (Bernardi et al., 2018). Moreover, studies based on crowd-generated data are often
conducted in the U.S. However, revealed choices from GPS data pose several benefits over
stated preference studies. As discussed earlier, the latter are subject to a hypothetical bias,
self-censoring and/or recall (Murphy et al., 2005; Larsen and EI-Geneidy, 2011). They thus do not
guarantee an accurate and complete impression of cycling habits. GPS data circumvents these
issues. Particularly in the light of the growing availability of GPS data, demonstrating its
usefulness in route choice studies is therefore another interesting contribution of the current

study.

1.5 Practical Relevance

As advocated at the start of this introduction, municipalities have to invest substantially to gain
insights into the stimulants and deterrents of cycling among their citizens. In this light, the
municipality of Utrecht joined forces with other local governments to develop the ikFiets
application. This mobile phone app generates a substantial amount of GPS data. The current
study unlocks the potential of this data to support the development of an attractive cycling
infrastructure in Utrecht. On the one hand, the developed dashboard provides insights into the
performance of the infrastructure, bottlenecks and their potential causes. This formation can help
Utrecht to reach its goal of becoming the cycling city of the world (Gemeente Utrecht, 2015). On
the other hand, the study also demonstrates how the municipality could leverage the incoming
stream of GPS data to monitor its cycling infrastructure in the future. That is, the dashboard can
be considered as a static prototype for future efforts and could be extended to show the evolution
of the cycling infrastructure over time. Moreover, the cycleability index could be used to evaluate
the effects of future interventions. Hence, this first attempt to build a dashboard based on GPS

data from the ikFiets app can be a valuable lesson for the future.
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1.6 Reading Guide

The remainder of this report is structured as follows. First, the literature review (Chapter 2)
summarizes the findings of over forty reviewed articles on bike route choice behavior. The main
goal of this review is to provide an overview of the commonly studied indicators of cycleability in
the literature. That is, it shows which factors are known to influence the route choices of cyclists
and in what manner they do so. To add, indications of preference heterogeneity and the impact of
trip context are discussed. Thereafter follows an overview of the current state of route choice
modelling (Chapter 3). This chapter introduces important concepts related to route choice models
and discusses multiple modelling techniques. Next, the methodology of the current study is
outlined in Chapter 4. This includes the data collection and preparation process, choice set
generation, model specification and the development of a dashboard. Chapter 5 provides a
summary of the descriptive statistics regarding the demographic data of the sample, network and
trip characteristics and the generated route alternatives. Next, Chapter 6 presents the results of
the study. The chapter starts with a discussion of several correlation matrices, which guided the
process of defining the final model. Further, it presents the results of several intermediate models
and the final Path Size Logit model and Latent Class Analysis. As an elaboration on the latter, a
comparison of the two identified classes is included. Finally, Chapter 7 summarizes the findings
and discusses their practical and theoretical implications. To add, the limitations of the study and
recommendations for future research efforts are discussed. Scripts which were used to prepare or

analyse the data are included in the digital repository (see here).
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2. Literature Review on Indicators of Cycleability

To gain insight into the current literature on stimulants and deterrents of cycling, a literature review
is conducted. This chapter starts with briefly describing the review strategy. Next, an overview of
the reviewed articles is provided in terms of research methods and origins. Thereafter, the
conclusions of the reviewed articles regarding eight themes are summarized and contrasted. Each
section on a theme is concluded with a table that summarizes the main take-aways (Tables 2.2 -

2.15).

2.1 Review Strategy
This literature study follows the guidelines on conducting a systematic literature review by Okoli
and Schabram (2010). The complete review process is elaborated upon in Appendix | and

summarized in Figure 2.1.

Planning

Selection

Extraction

Execution

Purpose of review:
e Develop list of

e Summarize variations
among different types

e Define search criteria.
o Define eligibility

Search criteria:

No grey literature.

Q1 or Q2 in transport category.

characteristics and cycling
behavior.

Extraction strategy:
e Extract data on prespecified

demographic clusters / trip
purposes.

e Study sample.
e Route characteristics with

mechanisms behind them.
e Differences among types of
cyclists.

Analysis of finding:
e Review studied

commonly studied o Dates from 1990 onwards. topics. indicators and their
indicators and their e  Only published or in press. e  Cross-reference findings on effects.

effects on e  Only English or Dutch. route characteristics. e Review reported
cycleability. e SCimago Journal Rank Indicator e Study differences among differences among

types of cyclists.
e Study differences &

of cyclists. Eligibility criteria: coherence among
e Study should evaluate Extraction Topics: studies.
Protocol: relationships between route e  Study design.

Writing the review
e Summarize findings.

criteria. e Infrastructural, built environment significant effects on cycling e Provide final list of
e Define extraction and natural characteristics. behavior. indicators and
topics. e Solely objective measures. e Nature of these effects and expected effects.

e Report potential
differences among
types of cyclists.

Figure 2.1 - Summary Literature Review Strategy

The goal of this literature study is twofold. First, it should produce a list of commonly studied
indicators of cycleability, their reported relation to route choices and an indication of the
magnitude of their effects. Second, the review should provide insight into the reported variations
among different types of cyclists when it comes to the effects of the indicators. An understanding
of these differences helps determine which personal characteristics should be considered during

the current study. These goals are summarized in Table 2.1.
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Table 2.1 - The Literature Review Goals

1 Develop a list of commonly studied indicators and their reported effects on
cycleability.
- Review the literature for the most commonly studied indicators.
- Summarize the nature of the relations.

2 Summarize the variations in effects for different types of cyclists.
-> Review the literature for reported variations based on personal characteristics / trip
context.
= |dentify those personal characteristics that commonly capture distinct preferences and
therefore warrant special attention.

2.2 Types of Studies

A tabular overview of the selected literature, including the research methods, type of sample and
categorized findings of each article is included in the digital repository (‘literatureSearch.xlsx’). As
shown in Figure 2.2, most studies were conducted in the US, followed by Canada and Asian
countries. Further, the strategy resulted in only one Dutch paper. Two studies compare two

different countries.

15

10

1

Number of Studies
(&

us Canada Asian Southern Western South Nordic UK Australia
countries Europe Europe America countries

Figure 2.2 - Origin of Samples

As shown in Figure 2.3, Stated preference surveys appear to be most popular, followed by
revealed preference experiments. These two approaches are sometimes combined with interviews
or census data to validate the findings. One study combines stated and revealed preferences
(Fitch and Handy, 2020), although not among the same sample. Most studies end with an
overview of the preferences of the sample. Preference heterogeneity or context dependency are
usually modelled as interactions in the models. Several articles translated the preferences to an
index which scores the local infrastructure. This index is usually visualized on a static map, such
as done by Arellana, Saltarin, Larrafnaga, Gonzalez and Henao (2020). Results are sometimes
used for forecasting or traffic assignment models, as done by Arellana et al. (2020) and

Duc-Nghiem, Hoang-Tung, Kojima and Kubota (2018).
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@ stated
revealed 4

census 5
data

interviews

Figure 2.3 - Research methods

Figure 2.4 provides an overview of the themes that are covered by the selected articles. These
themes correspond to those in the tabular format for data elicitation (see ‘literatureSearch.xIsx’ in
the digital repository), where one can also find a list of subtopics that belong to each theme. Bike
facilities, street layout, travel related concerns (e.g. travel time and distance) and nature and

ambience are clearly recurring topics in many of the articles.

Weather Conditions

Bike lanes / tracks

Pavement

Safety

Contextual

Traffic Street layout

Nature / Ambience

Travel

Figure 2.4 - Themes in Selected Studies

2.3 Cycling Facilities

A large body of literature underscores the appeal of dedicated bike facilities for most cyclists. For
example, Winters, Davidson, Kao and Teschke (2011) ranked bike lanes, both off-street and
on-street, among the top three motivators for cycling in Vancouver (Canada). To add, Manaugh,
Boisjoly and El-Geneidy (2017) concluded that off-street bike paths strongly stimulate students
and university staff members of a Canadian university to cycle to campus. Likewise, Parkin,
Wardman and Page (2008) discovered that a high proportion of off-road bike facilities goes hand
in hand with high levels of bike commuting in England and Wales. Orellana, Guerrero (2019) made
the same discovery among cyclists in Ecuador. Moreover, Standen, Crane, Collins, Greaves and

Rissel (2017) conclude that cyclists in Sydney (Australia) are likely to change their standard route
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to incorporate a new bike track. The same appears to be true for Norwegian cyclists who
responded to the introduction of a new two-way bike lane in Oslo (Pritchard, Bucher and Frayen,
2019). Similarly, research shows that cyclists in Tel Aviv (Israél) (Ghanayim and Bekhor, 2018) and
Columbus (America) (Park and Akar, 2019) are willing to detour substantially to include an existing
bike track in their route. Furthermore, Chen, Shen and Childress (2018) found a strong preference
for bike lanes over cycling in mixed traffic for cyclists in Seattle. The same holds for cycle tracks
among commuting riders in Copenhagen (Denmark), according to Vedel, Jacobsen and
Skov-Petersen (2017). Likewise, Lu, Scott and Dalumpines (2018) conclude that Canadian cyclists
are attracted to safe on-street and off-street bikeways and clearly avoid busy streets without said
facilities. In short, cyclists across the globe appear to favor routes with dedicated bike facilities.

However, as corroborated by the below, substantial preference heterogeneity seems to exist for
the exact layouts of these facilities. Specifically, several socio-demographic clusters seem to have
distinct wants and needs. Moreover, contextual factors, such as traffic volumes and speed limits,
may also affect the preferences of riders. Thus, it is important to consider these nuances when

studying preferences for cycling facilities.

2.3.1 On-Street Versus Off-Street Facilities

Reports in the literature on preferences for on-street versus off-street bike facilities are mixed.
Several studies conclude that cyclists prefer off-street facilities over on-street ones, because the
former evoke a sense of safety (Hopkinson and Wardman,1996; Krizek, El-Geneidy and
Thompson, 2007; Parkin, Wardman and Page, 2008; Hunt and Abraham, 2007). Specifically,
Hopkinson and Wardman (1996) found that U.K. cyclists are willing to trade shorter travel times for
safe, segregated facilities. This preference for off-road facilities also seems to hold for commuters
in both the U.K and Wales, as reported by Parkin, Wardman and Page (2008). Krizek, EI-Geneidy
and Thompson (2007) provide similar results for American riders and also conclude that cyclists
are more tolerant of intersections when a route includes a separate bike path. Indeed, Hunt and
Abraham (2007) drew similar conclusions based on their Canadian study. They argue that
previous research confirms a cyclist’s perceived risk of collision is reduced when cycling on a
seperate bike path. Park and Akar (2019) confirm these findings for cyclists in Columbos and
reason that off-street facilities not just offer safety, but also comfort. Consistent with the above,
Skov-Petersen, Barkow, Lundhede, and Jacobsen (2018) report that separate bike tracks strongly
influence the route choices of cyclists from Copenhagen. Further, Deenihan and Caulfield (2015)
show that the need for off-street facilities is also evident among tourists in Ireland. The above

indicates that the preference for off-street paths is present across a variety of nationalities.
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To add, Melson, Duthie and Boyles (2014) concluded that cyclists in Texas are more strongly
attracted to bridges that have physically separated facilities. The work of Broach, Dill and Gliebe
(2012) also provides indications that Portland’s cyclists are attracted to bridges with segregated
facilities. Further, they report a strong preference for off-street, dedicated bike boulevards. Hence,
it seems that the need for separate facilities extends beyond the default street infrastructure. All in
all, these studies indicate a general preference for off-street facilities over on-street ones among
cyclists.

However, this general consensus is not unanimous. To illustrate, a handful of studies claim
that cyclists actually prefer on-street facilities. For example, Sener, Eluru and Bhat (2009) suggest
that cyclists are more attracted to on-street facilities because these provide them with space to
maneuver and psychological freedom. However, it is important to note that this study solely refers
to commuters. Prato, Halldérsdéttir and Nielsen (2018) also focussed on commuters and found a
strong preference for bike lanes in Copenhagen (Denmark), which surprisingly did not hold for
seperate bike tracks. However, the authors explain that Copenhagen's bike lanes are highly
available and provide sufficient separation from motorized traffic. The city’s separate bike tracks,
on the other hand, are commonly unpaved and therefore less attractive. Rossetti, Saud, and
Hurtubia (2019) also report a general preference for on-street facilities among Santiago’s (Spain)
cyclists. However, they recorded substantial heterogeneity in their results. Hence, the effect might
simply be a sum of the preferences of different types of cyclists. Moreover, some authors argue
for the absence of any noteworthy preference for off-street or on-street facilities altogether
(Buehler, Pucher, 2012; Fitch and Handy, 2020). In this case, the preferences of particular clusters
might cancel eachother out. In short, understanding the preferences for off-street versus on-street
bike facilities requires a closer inspection of specific target groups.

Interestingly, several authors studied the preferences for off-street and on-street in greater
detail to indeed discover that particular target groups have specific needs. Furthermore, these
preferences also appear to be context-dependent to some extent. This may explain the divergent

findings of the aforementioned studies and the reported preference heterogeneity.

Frequent Versus Infrequent Cyclists

For example, frequent and infrequent cyclists display distinct preferences across multiple studies
from various countries. To illustrate, Rossetti, Saud and Hurtubia (2011) discovered that infrequent
cyclists in Santiago (Spain) strongly favor on-street facilities, possibly because their safety
concerns are higher in comparison to experienced riders. In confirmation, Arellana, Saltarin,
Larrafaga, Gonzalez and Henao (2020) derived that infrequent Colombian cyclists seem

particularly fond of a safe, separate bike infrastructure. Moreover, Rossetti et al. (2011) concluded
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that experienced cyclists are less sensitive to the absence of segregated bike facilities and are
also less inclined to use sidewalks if said facilities are not available. They argue that experienced
cyclists are more comfortable cycling near or between motorized traffic. Hunt and Abraham (2007)
provide similar findings for Canadian cyclists. They reason that experienced cyclists might be in a
better physical condition and can therefore more easily adapt to the speed of motorized traffic. In
short, several studies underscore the importance of off-road facilities to inexperienced cyclists in
particular.

Surprisingly, several studies report reverse effects. For example, Hood, Sall and Charlton
(2011) report that frequent cyclists from San Francisco are more strongly attracted to streets with
off-road facilities in comparison to infrequent cyclists. They argue that the stated preference
approach of other studies might have clouded their results due to the overrepresentation of
"vehicular cycling" promoters in their sample. Indeed, Rossetti et al. (2011) themselves highlight
that their sample contains many experienced leisure cyclists, due to their promotion strategy. Due
to their experience, these people are likely more comfortable cycling between traffic. The revealed
preference method applied by Hood et al. (2011) is deemed to be less sensitive to this bias,
because it studies actual route choice behavior instead of stated choices. Interestingly, the
studies cited in the preceding paragraph are indeed based on stated choice experiments.
Moreover, Melson, Duthie and Boyles (2014) drew a coherent conclusion in the context of Texan
bridges, also based on revealed choices derived from GPS data. These authors reason that
infrequent cyclists likely stick to a standard route and therefore do not deliberately go for a bridge
with separate facilities. In sum, stated preference studies generally report a relatively strong
preference for off-road facilities among infrequent versus frequent cyclists, whereas revealed
choice studies conclude the opposite. Thus, there appears to be a lack of consensus regarding
the preferences of (in)frequent cyclists for off-road versus on-road facilities. It seems that this

inconsistency stems from the methodological differences.

Gender Specific Preferences

There are also indications in the literature for gender-specific preferences. For example, Standen,
Crane, Collins, Greaves and Rissel (2017) concluded that Australian females have a stronger
tendency to switch routes upon the introduction of a new off-road bike path. The authors
attribute this finding to the fact that females are more risk averse. Therefore the introduction of a
safe, separated cycleway is a stronger incentive to them in comparison to men (Garrard, Rose and
Lo, 2008). The same seems to hold for Japanese cyclists, as suggested by the findings of
Duc-Nghiem, Hoang-Tung, Kojima and Kubota (2018), who argue that men are less troubled by

having to cycle in mixed traffic conditions. Likewise, Vedel, Jacobsen and Skov-Petersen (2017)
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conclude that female commuters from Denmark have a strong need for separate bike facilities,
more so than the men in their sample. Deenihan and Caulfield (2015) also describe a male versus
female distinction, specifically among tourists in Ireland. They found that female tourists are
strongly discouraged by the absence of dedicated cycling facilities, whereas males were far less
sensitive to this matter. However, female tourists appeared to have no specific preference for
off-road or on-road facilities. In contrast, Rossetti, Saud and Hurtubia (2019) recorded that male
cyclists in their sample have a stronger preference for separate facilities in comparison to females.
However, they note that the women in their sample are mainly experienced cyclists, which is a
likely cause of this divergent observation. All in all, it appears that female cyclists are generally

more sensitive to the absence of a seperate, safe bike infrastructure, in comparison to men.

Impact of Traffic Volumes

Kang and Fricker (2013) identified an interesting nuance to the commonly observed preference for
off-street facilities. Based on their human intercept survey at a university campus, they concluded
that cyclists prefer on-street facilities in low traffic volume situations, whereas off-street paths
become more popular along major arterials. They argue that streets around Purdue University
(Indiana, America) generally feature high quality pavement and therefore allow cyclists to maintain
high speeds and offer them a comfortable ride. Only in extreme cases, where high traffic volumes
pose a serious risk to cyclists, did they move to the safety of a separate facility. This finding does
not stand on its own. Broach, Dill and Gliebe (2012) also conclude that completely separate bike
paths are particularly popular under high traffic volume conditions. More specifically, they report
that the preference for off-road facilities among Portland’s (Oregon, America) cyclists diminishes
when traffic volumes are low. This indicates that separate bike paths simply offer cyclists
protection against motorized traffic, but they are not more appealing than bike lanes in other
aspects. In short, there are indications in the literature that preferences for off-road bike facilities

are reduced under low traffic volume conditions.

Impact of Trip Purpose

Route choices for off-street and on-street bike facilities also seem to be affected by the purpose
of the trip at hand. For example, Deenihan and Caulfield (2015) identified a preference for
off-street cycle paths among tourist leisure cyclists. They discovered that tourists in Ireland are
willing to take a detour of twice the original travel time to include segregated facilities in their
rides. Moreover, tourists are willing to give up comfort in terms of steeper slopes in return for
these facilities. In contrast, Duc-Nghiem, Hoang-Tung, Kojima, Kubota (2018) report that Japanese

mountain bikers and race bike users are more likely to use on-street facilities in comparison to
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other cyclists. These sportive cyclists seemingly belong to a distinct breed of leisure cyclists.
Further, bike commuters appear to be almost insensitive to the presence of separate bike
facilities. As suggested by Arellana, Saltarin, Larrafiaga, Gonzalez, Henao (2020), these riders are
more concerned with other factors such as safety, comfort and efficiency. These authors argue
that commuters might be more inclined to stay on primary roads, because these provide efficient
routing. Moreover, commuters generally face stronger time constraints in comparison to leisure
cyclists. Hence, they can be expected not to deviate substantially from the shortest route to
include an off-road facility in their route. Indeed several studies confirm that minimizing travel
distance or time is very important to bike commuters (Sener, Eluru and Bhat, 2009; Parkin,
Wardman and Page, 2008; Broach, Dill and Gliebe, 2012; Vedel, Jacobsen and Skov-Petersen,
2017; Anowar, Eluru and Hatzopoulou, 2017;) and less so for leisure cyclists (Chen, Shen and
Childress, 2018; Bernardi, Geurs and Puello, 2018; Fitch and Handy 2020). This indicates that
commuters do not necessarily dislike off-road facilities. That is, they simply put more value in time
and efficiency. Hence, if the availability of off-road bike paths is low, they do not pose a suitable
alternative to commuters looking for a direct connection. The logic for commuters seems
transferable to utilitarian cyclists in general, as suggested by the findings of Bernardi, Geurs and
Puello (2018). These authors concluded that main roadway links were more popular among their
mainly utilitarian sample in comparison to separate facilities such as bike boulevards. In short, it
appears that cyclists who are bound by stricter time constraints, such as commuters and
utilitarian cyclists, are less likely to detour for seperate bike facilities in comparison to leisure

cyclists.

2.3.2 Lane Width

Surprisingly, only a handful of studies describe preferences for lane widths in the context of
cycling facilities. For example, Providelo and Da Penha Sanches (2011) concluded that Bazilian
students and staff members consider wide lanes as an important factor in route choice. To add, a
Spanish study among students by Rossetti, Saud and Hurtubia (2019) reports that lane width is
only deemed relevant in an on-street scenario. However, several authors incorporate lane width
indirectly. For example, Kang and Fricker (2013) and Kang and Fricker (2018) applied the bicycle
compatibility index (BCI), originally developed by Harkey, Reinfurt, Knuiman, Stewart and Sorton
(1998). This index measures perceived risk for cyclists and is, among other things, based on lane
width. The wider a bike lane, the more safe it is considered to be. Moreover, lane width can be
expected to covariate with several other factors such as the type of road (local vs. arterial) and
traffic volumes. To add, there might be national regulations or habits in place which dictate a

certain width, thus limiting the variation in width encountered by cyclists. Hence, it could be
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difficult to observe a preference for a particular lane width, particularly in revealed preference
studies. Nevertheless, it can be expected that cyclists prefer wider lanes, because these provide

them with sufficient room to move around when needed.

Table 2.2 - Preferences for Off vs. On-street facilities Reference
General Cyclists across the globe appear to favor routes  Hopkinson and Wardman (1996), Krizek,
with dedicated bike facilities. However, substantial El-Geneidy and Thompson (2007),

preference heterogeneity seems to exist for the Parkin, Wardman and Page (2008), Hunt

exact layouts of these facilities. These preferences and Abraham (2007), Skov-Petersen,

appear to depend on both personal characteristics Barkow, Lundhede, and Jacobsen (2018)
as well as trip context.

Cycling There appears to be a lack of consensus regarding Rossetti, Saud and Hurtubia (2011),
frequency the preferences of (in)frequent cyclists for off-road Larrafaga, Gonzalez and Henao (2020),
versus on-road facilities. It seems that this Hunt and Abraham (2007), Hood, Sall

inconsistency stems from methodological and Charlton (2011), Melson, Duthie and

differences. Boyles (2014)

Gender It appears that female cyclists are generally more Standen, Crane, Collins, Greaves and
sensitive to the absence of a seperate, safe bike Rissel (2017), Garrard, Rose and Lo
infrastructure, in comparison to men. (2008), Duc-Nghiem, Hoang-Tung,

Kojima and Kubota (2018), Vedel,
Jacobsen and Skov-Petersen (2017),
Deenihan and Caulfield (2015)

Traffic There are indications in the literature that Kang and Fricker (2013), Broach, Dill and
volumes preferences for off-road bike facilities are reduced Gliebe (2012)
under low traffic volume conditions.

Trip Tourist leisure cyclists appear to have a strong Deenihan and Caulfield (2015),
purpose preference for off-street facilities.

Sporty cyclists on mountain bikes or race bikes are Duc-Nghiem, Hoang-Tung, Kojima,

less concerned with using on-street facilities. Kubota (2018)

Commuters seem almost insensitive to the Arellana, Saltarin, Larrahaga, Gonzalez,

distinction between off and on-street facilities, Henao (2020), Bernardi, Geurs and Puello

because they are more concerned with efficiency. (2018)

Table 2.3 - Preferences for Lane Width References

General There are indications in the literature that cyclists do Providelo and Da Penha Sanches

consider lane width in their route decisions. (2011),

Preferences for lane width are commonly studied in Kang and Fricker (2013), Kang and

conjunction with other factors that relate to safety. Fricker (2018)

Moreover, it might be difficult to measure distinct
preferences for lane width due to limited variations
and strong covariance with other factors.

Off-street It appears that lane width is considered less Rossetti, Saud and Hurtubia (2019)
versus important when it concerns an off-road facility in
on-street comparison to an on-street one.
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2.3.3 Sharing Facilities with Pedestrians

Several studies that were reviewed pay attention to the inclination of some cyclists to use facilities
that are shared with pedestrians. Generally it appears that cyclists avoid these facilities (Hunt and
Abraham, 2007; Skov-Petersen, Barkow, Lundhede and Jacobsen, 2018; Kang and Fricker, 2013).
Hunt and Abraham (2007) argue that cyclists might be afraid to bump into pedestrians or be
annoyed by having to adapt their speed. Kang and Fricker (2013) reason that the bike facilities
around Purdue University, where they conducted a stated preference experiment, are of such
good quality that walkways are not appealing to cyclists. However, in situations where bike
facilities are lacking it could be possible that cyclists trade the street for a safe sidewalk. For
example, Rossetti, Saud, Hurtubia (2019) report that inexperienced cyclists are particularly likely
to use sidewalks if no dedicated bike facility is provided. Further, Kang and Fricker (2013) argue
that wider sidewalks may encourage cyclists to move from the street. This behavior of cyclists to
take over sidewalks has been studied more often (e.g. Kang, Fricker, 2016), but is out of the
scope of this review. Overall, it seems that cyclists generally dislike cycling between pedestrians,

although inexperienced cyclists may sometimes resort to the sidewalk in search of safety.

Table 2.4 - Preferences for Shared Facilities with Pedestrians References
General Cyclists generally appear to avoid facilities that are Hunt and Abraham (2007),
shared with pedestrians, possibly due to the Skov-Petersen, Barkow, Lundhede

difference in speed which causes dangerous and and Jacobsen (2018), Kang and

annoying situations. Fricker (2013)

Cycling Inexperienced cyclists appear more inclined to use  Rossetti, Saud, Hurtubia (2019), Kang,
experience  sidewalks if no dedicated bike facility is available to Fricker (2016)

them, likely due to safety concerns.

2.4 Street Layout and Pavement

The impact of infrastructure on route choices of cyclists extends beyond the characteristics of
cycling facilities alone. That is, the literature indicates that the general layout of the street network
also shapes the perceptions of cyclists. This includes parking, signing, street lights, bus stops,
intersections and more. The overview provided below illustrates the broad relation between bike
route choice and infrastructural aspects. Overall, the role of intersections and turns is the most
extensively covered topic in the literature. One stream identifies intersections and turns as sources
of irritation, delay and danger. These studies conclude that cyclists generally aim for a continuous
route without interruptions. The other stream argues for connectedness and directedness. These
studies argue that cyclists tend to stick to lower class roads, which form a dense network and
offer a relatively short path to a destination. As a consequence of the road density, cyclists who

stick to these roads will inevitably face a high number of intersections. Likewise, the findings for
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other infrastructural aspects can generally be explained by either a need for safety or for ease and
speed. For example, some studies report a preference for traffic lights, because they offer a safe
right of passage, whereas others argue against traffic lights, because they are a source of delay.
To add, cyclists may avoid routes with on-street parking and bus stops, because these may cause
interruptions. Further, some cyclists seem to avoid one-way streets, because cycling against
traffic may cause dangerous situations, whereas others see them as a quick shortcut. All in all,

speed versus safety seems to be an important trade-off in infrastructural preferences.

2.4.1 Intersections

The literature generally indicates that cyclists are tolerant of intersections. For example, Lu, Scott
and Dalumpines (2018) conclude that chosen cycle routes, on average, contain more intersections
compared to their shortest alternative. This might be explained by the fact that a highly connected
infrastructure implies a larger number of intersections. Interestingly, the density of intersections
along chosen routes is lower. Context may also shape people’s perceptions of intersections. To
illustrate, intersections along separate bike facilities (Krizek, ElI-Geneidy and Thompson, 2007) and
those which feature good visibility (Providelo, da Penha Sanches, 2011) are reported to be
experienced more positively. To add, Prato, Halldérsdoéttir and Nielsen (2018) argue that
experienced cyclists like roundabouts, because in Copenhagen cyclists have a right of way on
them. In contrast, intersections with signs and traffic lights seem to discourage cyclists. This
might be the case because those safety measures are often present at busy crossings, where
motorized traffic poses a threat to cyclists (Kang and Fricker, 2013). The literature does not
provide indications of preference heterogeneity regarding intersections, nor is there clear evidence

against it. This topic therefore warrants further investigation.

Table 2.5 - Preferences for Intersections References

General In general, cyclists appear to be relatively tolerant of Lu, Scott and Dalumpines (2018)
intersections.

Bike Intersections along separate bike facilities are Krizek, EI-Geneidy and Thompson

Facilities experienced less negatively. (2007)

Visibility Intersections with good visibility appear to bother Providelo, da Penha Sanches (2011)
cyclists less.

Signage and Intersections with signage and signals appear to be Kang and Fricker (2013)

Signals less appealing to cyclists, but it might be that these

crossings are simply busier.
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2.4.2 Turns

Turns is a widely studied topic in route preference research. In general, cyclists seem to prefer
simple routes with few turns (Providelo and da Penha Sanches, 2011; Hood, Sall and Charlton,
2011; Zimmermann, Mai and Frejinger, 2017; Ghanayim and Bekhor, 2018). Broach, Dill and
Gliebe (2012) argue that turns delay cyclists and make it difficult for them to remember their
route. The aversion appears to be particularly strong for left turns (Broach et al., 2012; Prato,
Halldorsdottir and Nielsen, 2018; Skov-Petersen, Barkow, Lundhede and Jacobsen, 2018). This
can be explained by the fact that left turns require cyclists to cross oncoming traffic, introducing
the risk of dangerous collisions. It is therefore not surprising that left turns are reported to be
particularly discouraging in heavy traffic, when no bike facilities are available and when safety
measures such as signs and traffic lights are lacking (Zimmermann et al., 2017; Broach et al.,
2012). However cyclists appear more tolerant of turns at the start and end of their route
(Skov-Petersen et al.,, 2018), indicating that wayfinding strategies change throughout a trip.
Further, Sobhani, Aliabadi and Farooq (2019) conclude that cyclists in Toronto (Canada) choose
routes with a relatively high number of turns. They attribute this finding to the city’s dense network
and the high number of one-way streets, which tend to be avoided by cyclists when going against
traffic. Interestingly, Prato et al. (2018) mention that a specific group of cyclists has a particularly
strong aversion towards both left and right turns. Unfortunately they do not specify a profile for
this group. Thus, although there is an indication for preference heterogeneity regarding turns, the

origin of this remains unclear.

Table 2.6 - Preferences for Turns References
General Cyclists seem to prefer simple routes with few Providelo and da Penha Sanches
turns. This finding is robust across a variety of (2011), Hood, Sall and Charlton (2011),

studies. Zimmermann, Mai and Frejinger (2017),

Ghanayim and Bekhor (2018)

Left turns appear to be particularly bothersome to Broach, Dill and Gliebe (2012), Prato,
cyclists, likely because they require them to cross Halld6rsdottir and Nielsen (2018),
oncoming traffic. Skov-Petersen, Barkow, Lundhede and

Jacobsen (2018)

Heavy Traffic Heavy traffic increases the danger of left turns, thus Zimmermann, Mai and Frejinger (2017)
making them even less appealing.

Bike Facilities Dedicated bike facilities increase safety and Broach, Dill and Gliebe (2012)
therefore seem to make cyclists more tolerant of
turns.

Signage and Cyclists seem more tolerant of turns on streets with Zimmermann, Mai and Frejinger (2017)
Signals signage and traffic signals.
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2.4.3 Traffic lights

Findings on preferences of traffic lights along cycling routes are mixed. As touched upon in the
previous paragraph, traffic lights may offer safe passage and can therefore make intersections
more appealing (Park and Akar, 2019). Particularly in situations with high traffic volumes, the
safety benefits of traffic lights seem to outweigh the delay they cause (Broach, Dill and Gliebe,
2012). However, Skov-Petersen, Barkow, Lundhede and Jacobsen (2018) point out that local
governments may simply grant popular cycling routes more traffic lights, thus complicating the
entanglement of real preferences in revealed choice data. Further, another study in Zurich reports
that cyclists actually avoid routes with a high number of traffic lights (Menghini, Carrasco,
Schissler and Axhausen, 2010). It is important to note that the data used in this study did not
allow for modelling an interaction between traffic light preferences and traffic volumes, as Broach
et al. (2012) did. Moreover, they did not test whether this finding might be clouded with a general
aversion towards intersections. Thus, a study that distinguishes between the preference for traffic
signals and intersections and which explores the interplay of those preferences with traffic

volumes could provide clarification.

Table 2.7 - Preferences for Traffic Lights References
General Findings on preferences for traffic lights are mixed.

High traffic Cyclists appear attracted to the safety and efficiency of  Park and Akar, 2019; Broach,
volumes traffic lights when traffic volumes are high. Dill and Gliebe, 2012

2.4.4 Car Parking

Cyclists seem to disfavor car parking across their route, potentially because it hinders sight and
free movement and might cause dangerous situations (Hardinghaus and Papantoniou, 2020;
Sener, Eluru and Bhat, 2009; Winters and Teschke, 2010). This includes on-street, angled and
parallel parking (Sener et al., 2009). According to Sener et al. (2009), Male cyclists appear to be
more bothered by parking compared to females, possibly because the former find it more
important to keep a constant speed. The same seems to hold for long versus short commutes in
their sample. Interestingly, they did not find cycling experience to affect preferences for car
parking. Overall, the preference against parked cars seems to hold across various contexts and

types of cyclists.
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Table 2.8 - Preferences for Car Parking References

General Cyclists seem to disfavor car parking across their Hardinghaus and Papantoniou,
route, most likely because it can cause dangerous 2020; Sener, Eluru and Bhat, 2009;
situations. Winters and Teschke, 2010
Gender & Males & long commuters appear to be more Sener, Eluru and Bhat, 2009
commute bothered by parking, possibly because they find it
length important to keep a constant speed.

2.4.5 Pavement Quality and Debris

In general, the literature provides indications for a strong preference for clean, smooth and high
quality pavement among cyclists. To illustrate, Winters and Teschke (2010) report a general
preference for paved roads over unpaved ones. The maintenance of paved roads also seems
important. To illustrate, Parkin, Wardman and Page (2008) found that commuters are discouraged
by poorly maintained pavement. They argue that poor maintenance not only decreases comfort,
but also increases physical effort. Interestingly, Hardinghaus and Papantoniou (2020) report that
frequent versus infrequent cyclists are more bothered by bad pavement, likely because they are
exposed to it more often. Kang and Fricker (2013), in turn, discovered that cyclists are inclined to
use the sidewalk in those situations, increasing the risk of collisions with pedestrians. This
illustrates how badly cyclists want to avoid poorly maintained pavements. Further, cyclists seem
to find it important that the road is free of glass and debris and does not become slippery when
wet or icy (Winters, Davidson, Kao and Teschke K, 2011). Interestingly, Providelo, da Penha and
Sanches (2011) report that cyclists in medium-sized Brazilian cities do not find pavement quality
important. Their results indicate that in the context of these cities, safety related issues such as
lane width, visibility, intersections and speed limits are considered more important than the
comfort of high quality pavement. It thus appears that pavement quality is important to cyclists,

under the condition that safety is ensured.

Table 2.9 - Preferences for Pavement & Debris References
General Cyclists prefer clean, smooth and high Winters and Teschke, 2010; Winters, Davidson,
quality pavement. Kao and Teschke K, 2011

However, safety seems more important. Providelo, da Penha and Sanches, 2011

Commuters General findings hold for commuters. Parkin, Wardman and Page, 2008
Cycling Frequent cyclists are more bothered by Hardinghaus and Papantoniou, 2020

Frequency bad pavement, likely because they are
exposed to it more often.
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2.4.6 One-Way Streets

Although not extensively covered by the literature, there are indications that cyclists avoid cycling
in the wrong direction down a one-way street (Hood, Sall and Charlton, 2011). Specifically, Prato,
Halldérsdoéttir and Nielsen (2018) conclude that cyclists perceive distances over twice as long
when they cycle against the stream of motorized traffic. Sobhani, Aliabadi and Farooq (2019)
argue that cyclists avoid one-way streets because they restrict their movement. Interestingly,
Prato et al. (2018) do identify a specific group among cyclists which appears to prefer shortcuts

that go against traffic. Thus, preference heterogeneity may exist.

2.4.7 Bridges

The literature indicates that bridges may also influence the behavior of cyclists. As one might
expect, cyclists generally seem to avoid bridges (Zimmermann, Mai and Frejinger, 2017).
However, bridges with separate bike facilities appear to be more appealing (Broach, Dill and
Gliebe, 2012; Zimmermann et al., 2017). In particular, Prato, Halldérsdoéttir and Nielsen (2018)
report that dedicated bridges for cyclists appeal strongly to Copenhagen’s cyclists. However, it
might be that these facilities are simply granted to popular cycling routes or provide efficient
routes across town. It would be interesting to evaluate if other highly bike friendly cities also show

the appeal of bridges among cyclists.

Table 2.10 - Preferences for Bridges References

General Cyclists generally avoid bridges. Zimmermann, Mai and Frejinger, 2017

Bike Facilities Bike facilities make bridges more  Broach, Dill and Gliebe, 2012; Zimmermann, Mai and
appealing. Frejinger, 2017; Prato, Halldérsdoéttir and Nielsen,
2018

2.5 Nature and Topography
The literature indicates that preferences for surroundings come after those related to safety,
comfort and efficiency (Bernardi, Geurs and Puello, 2018). Nevertheless, surroundings still do

influence route choice. As discussed below, leisure cyclists in particular seem to have unique

preferences when it comes to nature and topography.

2.5.1 Scenery and Green

Unique and green surroundings are known to attract cyclists (Hardinghaus, Papantoniou, 2020).
For example, participants of a study in Vancouver (Canada) rated “beautiful scenery” among the
top-3 motivators for cycling (Winters, Davidson, Kaoand Teschke, 2011). Ghanayim and Bekhor

(2018) conclude that not only green, but also seashores can be attractive surroundings for
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cyclists. However, a preference for greenery is more commonly studied. This preference appears
to be particularly strong among leisure cyclists (Chen, Shen and Childress, 2018) and also seems
stronger among females compared to men (Vede, Jacobsen and Skov-Petersen, 2017). Park and
Akar (2019) argue that greenery may also “serve as a buffer from other activities” (p.199).
Following similar reasoning as Garrard, Rose and Lo (2008) provide for the strong preference of
female cyclists for seperate bike facilities, the higher degree of risk aversion among females may
also explain why they prefer a green buffer. Further, in areas with warm summers, such as Brazil
(Providelo and da Penha Sanches, 2011) and parts of China (Liu, Yang, Timmermans, de Vries,
2020), trees may also be valued for the shade they provide. Interestingly, Park and Akar (2019)
conclude that cyclists are only willing to detour for pleasurable surroundings when temperatures
are above 5 degrees celsius. In sum, climate and weather may influence preferences for green
surroundings. It is also important to note that preferences for greenery generally come after those
regarding safety and comfort, especially for cyclists who do not detour substantially (Bernardi,
Geurs and Puello, 2018). This conclusion is supported by Skov-Petersen, Barkow, Lundhede, and
Jacobsen (2018), who report a disutility for green, which they ascribe to the fact that green areas

are generally less safe and lack street lights.

2.5.2 Hilliness

Preferences regarding hilliness appear to differ substantially across different groups of cyclists
and can also be related to trip purpose. In general cyclists are demotivated by steep hills (Chen,
Shen and Childress, 2018; Parkin, Wardman, Page, 2008; Winters, Davidson, Kaoand Teschke,
2011; Sarjala, 2019). Specifically, Prato, Halldorsdéttir and Nielsen (2018) report the disutility of
slopes increases as the gradient does. According to Zimmermann, Mai and Frejinger (2017),
upslopes discourage cyclists starting at an angle of 4%. The preference for flat terrain appears
particularly strong among commuters (Hood, Sall and Charlton, 2011; Anowar, Eluru and
Hatzopoulou, 2017). Sobhani, Aliabadi and Farooq (2019) argue that commuters might not want to
arrive at their meetings sweaty and out of breath. To add, regardless of trip purpose, female
cyclists seem to be more bothered by steep hills compared to men (Sener, Eluru and Bhat, 2009;
Hood, Sall, Charlton; Hood, Sall and Charlton, 2011). In this regard, Anowar et al. (2017) argue
that slopes are hard and uncomfortable to climb, but can also be scary and dangerous to
descend due to the high speed. They refer to other studies which highlight that women are less
inclined to conduct physical exercise and are also more risk averse. The latter may explain why
the effect is stronger for women in comparison to men. Overall, commuters and females seem to

be particularly discouraged by slopes.
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Interestingly, some cyclists appear to be more tolerant of slopes or even prefer slight hilliness. For
example, tourists seem to be more tolerant of minor slopes, particularly if they are cycling on a
segregated bike facility (Deenihan and Caulfield, 2015). To add, Lu, Scott and Dalumpines (2018)
argue that bike-sharers might be more tolerant of minor slopes as the consequence of tradeoffs
with other route characteristics. Further, Sener, Eluru and Bhat (2009) report a preference for some
hilliness, particularly among leisure cyclists. They argue that this group prefers variation in the
landscape and physical challenge. These needs might be tempered among commuters, due to
their need for efficient transport. Further, Sener et al. (2009) also report that male cyclists prefer a
hilly landscape, both during commute and leisure trips. In sum, not all cyclists are strongly
discouraged by slopes and some even prefer them over flat terrain.

Some studies remain inconclusive regarding preferences for gradients. For example,
Ghanayim and Bekhor (2018) did not find a significant effect for slope on route choice. They
explain that in Tel Aviv the variation in gradients is limited, which makes it difficult to measure this
preference based on GPS data. The same argument is used by Park and Akar (2019), who
conducted a revealed preference study in Columbus (Ohio). This may also hold for Prato,
Halldorsdottir and Nielsen (2018), who did not observe the commonly reported differences across
males and females in Copenhagen. To add, Menghini, Carrasco, Schissler and Axhausen (2010)
argue that the effects that they found could have been larger if the hills in the study area could be
more easily avoided. In sum, the topography of a study area may influence the observed

preferences for hilliness in revealed preference studies.

2.6 Traffic Volumes and Speed Limits

The effects of traffic volumes and speed limits on route choice are rarely studied together. That is,
since the two can be expected to correlate strongly, it is difficult to separate these effects,
particularly in revealed choice studies. It is therefore hard to tell what the individual effects of
these route characteristics are. In that regard, Providelo and da Penha Sanches (2011) conducted
a relatively unique research in which they used successive interval analysis with focus groups and
attitude surveys. They conclude that speed limits are considered far more important compared to

traffic volumes. More research is needed to confirm this finding.
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Table 2.11 - Preferences for Nature and Topography

References

General Cyclists are strongly discouraged by steep Chen, Shen and Childress, 2018; Parkin,
hills. Wardman, Page, 2008; Prato, Halldorsdottir

Strong differences in preferences based and Nielsen, 2018; Winters, Davidson,

on personal characteristics and trip Kaoand Teschke, 2011; Sarjala, 2019;

purpose. Zimmermann, Mai and Frejinger, 2017

Cyclists are attracted to unique and green Hardinghaus, Papantoniou, 2020; Winters,

surroundings. Davidson, Kaoand Teschke, 2011,

Ghanayim and Bekhor, 2018

However, preferences for safety are more Bernardi, Geurs and Puello, 2018;

important. Skov-Petersen, Barkow, Lundhede, and

Jacobsen, 2018

Commuters Commuters seem to particularly avoid Anowar, Eluru and Hatzopoulou, 2017;
slopes. Hood, Sall and Charlton, 2011; Sobhani,

Aliabadi and Farooq, 2019

Gender Females have a stronger dislike for slopes. Anowar, Eluru and Hatzopoulou, 2017,

Females appear to have a stronger
preference for green surroundings,
possibly because green can serve as a
buffer.

Sener, Eluru and Bhat, 2009; Hood, Sall,
Charlton; Hood, Sall and Charlton, 2011

Vede, Jacobsen and Skov-Petersen, 2017;
Park and Akar, 2019

Bike-sharers / Appear to be more tolerant of slopes,

Lu, Scott and Dalumpines, 2018; Sener,

Leisure possibly because they like the challenge Eluru and Bhat, 2009

cyclists and changing landscape.

Bike Facilities Tourists are more tolerant of slopes if a Deenihan and Caulfield, 2015

seperate cyclist facility is available.

Topographical ~ Several studies find no significant or weak Ghanayim and Bekhor, 2018; Park and

variation result. Possibly because the variation in Akar, 2019; Menghini, Carrasco, Schussler
the study area is too limited. and Axhausen, 2010

Climate Cyclists from warm climates may like trees Providelo and da Penha Sanches, 2011;

because they provide shade.

2.6.1 Traffic Volumes

Liu, Yang, Timmermans, de Vries, 2020

There are strong indications in the literature that cyclists generally avoid streets with high traffic

volumes (Ghanayim and Bekhor, 2018; Sener, Eluru and Bhat, 2009; Winters, Davidson, Kao and

Teschke, 2011; Zimmermann, Mai and Frejinger, 2017). Anowar, Eluru and Hatzopoulou (2017)

argue that this is related to safety concerns, because high traffic volumes implies a higher risk of

collisions. Cyclists would therefore prefer streets with low traffic volumes, such as residential

ones. To add, Parkin, Wardman and Page (2008) reason that areas with high traffic volumes have

a strong focus on motorized traffic, hence, may not have been designed with cyclists in mind.
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Melson, Duthie and Boyles (2014) show that this preference for low traffic volumes also holds for
bridges. Interestingly, separate bike facilities seem to substantially reduce the negative effect of
traffic volumes (Kang and Fricker, 2013; Broach, Dill and Gliebe, 2012; Park and Akar, 2019).

The findings of several studies also indicate that one should be careful in the definition of
high and low traffic volumes. To illustrate, Parkin, Wardman and Page (2008) found no significant
effect for the proportion of a route which is traffic free. To add, Zimmermann, Mai and Frejinger
(2017) found no significant difference between medium and heavy traffic. Thus, there seems to be
a certain threshold where traffic volumes become disturbing to cyclists. Therefore, a below versus
above medium traffic volume measure might work better than using three categories or a
continuous variable. This may partially explain why Hood, Sall and Charlton(2011), to their own
surprise, did not find a significant result for traffic volumes.

Further, as Sener, Eluru and Bhat (2009) point out, preference heterogeneity regarding this
preference is high. That is, some cyclists appear to be less bothered by traffic volumes. For
example, Anowar, Eluru and Hatzopoulou (2017) report that females seem to be more drawn to
low-traffic residential streets, due to their generally stronger risk aversion. In contrast, Sener, Eluru
and Bhat (2009) conclude that men are more bothered by traffic, because they would find it more
important to keep a constant speed. They also report that commuters are strongly discouraged by
high traffic volumes for the same reason. Broach, Dill and Gliebe (2012) attribute this strong
preference among cyclists to the simple fact that they are more exposed to peak hour traffic.
Following similar reasoning, Arellana, Saltarin, Larrafaga, Gonzalez and Henao (2020) argue that
infrequent cyclists are less bothered by traffic volumes, since their exposure is relatively low. In
short, personal characteristics and trip purpose may influence the strengths of preferences for

traffic volumes.
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Table 2.12 - Preferences for Traffic Volumes References

General Cyclists generally prefer low traffic Anowar, Eluru and Hatzopoulou, 2017;
volumes. Ghanayim and Bekhor 2018; Melson, Duthie

and Boyles, 2014; Sener, Eluru and Bhat,

2009; Parkin, Wardman and Page, 2008;

Winters, Davidson, Kao and Teschke, 2011;

Zimmermann, Mai and Frejinger, 2017

Bike Bike facilities can reduce the negative Kang and Fricker, 2013; Broach, Dill and
Facilities effect of high traffic volumes. Gliebe, 2012; Park and Akar, 2019
Gender Some argue that female cyclists are less Anowar, Eluru and Hatzopoulou, 2017

tolerant of high traffic volumes, possibly
due to their stronger risk aversion.

Others conclude that men are more Sener, Eluru and Bhat, 2009
bothered by traffic, because they want to
keep a constant speed.

Trip Commuters appear to be more sensitive Sener, Eluru and Bhat, 2009; Broach, Dill and
Purpose to high traffic volumes, possibly because Gliebe (2012)
they are exposed to them more often
during peak hours.

Cycling Infrequent cyclists are less bothered by Arellana, Saltarin, Larrafaga, Gonzalez and
Frequency traffic volumes, since their exposure is Henao, 2020
relatively low.

2.6.2 Speed Limits

The literature indicates that all cyclists prefer low speed limits over higher ones (Fitch and Handy,
2020; Chen, Shen and Childress, 2018; Providelo and da Penha Sanches, 2011). In particular,
Winters, Davidson, Kao and Teschke (2011) observe that cyclists become substantially
discouraged by speed limits above 50 km/hr. Interestingly, some cyclists seem more concerned
with speed limits than others. For example, people cycling with children have a stronger
preference for low speed limits (Hardinghaus and Papantoniou, 2020). Females also appear to be
more careful and try to avoid high speed limits more often than their male counterparts (Fitch and
Handy, 2020). The same seems to hold for inexperienced cyclists and short commuters (Handy et
al., 2020; Sener, Eluru and Bhat, 2009). These groups are most likely extra concerned with safety
or are less comfortable when cycling between high speed traffic. Indeed, Chen, Shen and
Childress (2018) report that cyclists who find safety very important avoid roads with high speed
limits. In contrast, leisure cyclists appear to be less bothered by speed limits, possibly due to their
experience and agility. Intriguingly, Hardinghaus and Papantoniou (2020) report a very weak
preference for low speed limits among German and in particular Greek cyclists. The authors argue

that the effect of lower traffic speeds is limited for Greek cyclists because Greek drivers are less
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inclined to stick to traffic rules. Why the preference among German cyclists is weak compared to

other studies remains unclear.

Table 2.13 - Preferences for Speed Limits References

General Cyclists generally prefer low speed limits. Fitch and Handy, 2020; Chen, Shen and
Childress, 2018; Providelo and da Penha

Sanches, 2011; Winters, Davidson, Kao

and Teschke, 2011

With People cycling with children have a stronger Hardinghaus and Papantoniou, 2020

Children preference for low speed limits.

Gender Females have a stronger preference for low Fitch and Handy, 2020
speed limits.

Cycling Inexperienced cyclists have a stronger Handy et al., 2020; Sener, Eluru and

Frequency preference for low speed limits. Bhat, 2009

Safety Cyclists who find safety important have a Chen, Shen and Childress (2018)

stronger preference for low speed limits.

2.7 Safety

The literature clearly shows that a safe environment is essential to get people on their bikes. To
illustrate, Hopkinson and Wardman (1996) and Arellana, Saltarin, Larrafiaga, Gonzalez and Henao
(2020) report that safety is among the top motivators to cycle. To add, Manaugh, Boisjoly and
El-Geneidy (2013) observe that unsafe cycling infrastructure demotivates potential cyclists.
Further, Buehler and Pucher (2012) report that cycling commute rates are higher in safe areas
compared to unsafe ones. Thus, it appears that safety does influence cycling behavior.

It is important to note that safety does not only refer to minimizing the risk of collisions, it
also encompasses a broader feeling of security. For example, darkness (Winters, Davidson, Kao
and Teschke, 2006; Chen, Shen and Childress, 2018; Liu, Yang, Timmermans and De Vries, 2020;
Majumdar and Mitra, 2017) and even scolding and crowded cycleways may unease cyclists
(Vedel, Jacobsen and Skov-Petersen, 2017). Safety measures such as security cameras and traffic
lights (Arellana, Saltarin, Larrafiaga, Gonzalez and Henao, 2020), reflective centerlines (Winters,
Davidson, Kao and Teschke, 2006) and illuminated corridors (Majumdar and Mitra, 2017) can help
cyclists to feel more safe.

Safety concerns may influence route choice among cyclists, although their relevance may
differ across contexts. That is, Majumdar and Mitra (2017) report that Indian cyclists are strongly
influenced by safety levels when it comes to their route choices. Likewise, Arellana, Saltarin,
Larrafiaga, Gonzalez and Henao (2020) conclude that Colombian cyclists put a high emphasis on

safety related issues, such as the presence of traffic control devices, (bike) traffic flows and
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speed, security cameras and street lighting. Further, Parkin, Wardman and Page (2008) argue that
cycling is less common in low-income areas, possibly due to high crime rates. However, there are
no clear indications that cyclists in Western countries have safety, in a broad sense, on top of
their mind when they pick a route. As earlier sections indicate, these cyclists appear to be most
concerned with the risk of collision. In contrast, they do not seem to consider other safety issues
such as crime rates (Hood, Sall and Charlton, 2011). This could be related to the relatively safe
situations in Western countries. Indeed, Kang and Fricker (2018) report that as the risk increases,
safety becomes almost as important as distance in the route choices of commuting cyclists.
Overall, it seems that Western-world cyclists are mostly concerned with traffic safety, whereas
cyclists from other (more dangerous) areas may also consider other safety issues when selecting

their route.

2.7.1 Accidents

Earlier sections already discuss literature which highlights the role of traffic safety concerns when
selecting a route. For example, cyclists seem to prefer off-street facilities over on-street ones,
because the former reduce the perceived risk of collisions (see Table 2.3). The same holds for the
presence of traffic signals and good visibility at intersections (see Table 2.5). In sum, risk of
collision is a returning element in the explanation of other preferences. As confirmed by Winters,
Davidson, Kao and Teschke (2006), people are strongly discouraged to cycle in areas where they
face the risk of injury from accidents with cars. They are therefore attracted to roads with safety
measures such as traffic lights and off-street facilities. However, there are no indications in the
reviewed literature that cyclists specifically avoid streets for the mere reason that they have a high
number of accidents. It could be interesting to learn whether the possible avoidance of these

streets stands separate from preferences for certain safety measures.

2.7.2 Street Lights and Visibility

The literature underpins the importance of street lights and visibility to perceived safety among
cyclists. In general, people seem to prefer to cycle during daylight hours (Winters, Davidson, Kao
and Teschke, 2006). As night falls, they value well lit roads (Winters et al., 2006; Chen, Shen and
Childress, 2018; Liu, Yang, Timmermans and De Vries, 2020; Arellana, Saltarin, Larranaga,
Gonzalez and Henao, 2020). Specifically, Liu et al. (2020) conclude that cyclists prefer street lights
to be placed every fifteen to thirty meters. Female cyclists (Liu et al., 2020) seem particularly
sensitive to badly lit roads. Interestingly, Chen, Shen and Childress (2018) report that cyclists who
aim to minimize their trip length also have a relatively strong preference for a high street light

density. Furthermore, cyclists also seem to like reflective centerlines, because they improve
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visibility (Winters et al., 2006). Overall, street lights and good visibility appear to be valued strongly

by most cyclists.

Table 2.14 - Preferences for Safety References
General A safe environment is essential to get Hopkinson and Wardman, 1996; Arellana,
people on their bikes. Saltarin, Larrafiaga, Gonzalez and Henao,

2020; Manaugh, Boisjoly and El-Geneidy,
2013;Further, Buehler and Pucher, 2012

Accidents There are no indications that cyclists avoid
roads with a high number of accidents.

Visibility Cyclists prefer cycling during daylight Winters, Davidson, Kao and Teschke, 2006
hours.
As night falls, they value well it roads. Winters et al., 2006; Chen, Shen and

Childress, 2018; Liu, Yang, Timmermans and
De Vries, 2020; Arellana, Saltarin, Larrafiaga,
Gonzélez and Henao, 2020

Cyclists like reflective centerlines. Winters, Davidson, Kao and Teschke, 2006

Gender Female cyclists seem particularly sensitive Liu, Yang, Timmermans and De Vries
to badly lit roads

Trip Length ~ Those who aim to minimize their trip length Chen, Shen and Childress, 2018
seem to find visibility particularly
important.
2.8 Amenities

Few studies consider amenities as a potential factor in route choice behavior. It is known that
cyclists are concerned with secure bike parking at the destination (Winters, Davidson, Kao and
Teschke, 2006; Hunt and Abraham, 2007), but this does not influence how they get there. Findings
by Chen and Chen (2013) indicate that amenities along a route might be particularly important to
leisure cyclists. To illustrate, they report that recreational cyclists are generally attracted by routes
that pass along attractions and offer facilities such as toilets, basic bike maintenance equipment
and tourist information centers. Moreover, those who cycle a long distance appear to have a
relatively strong preference for restaurants. Last, frequent leisure cyclists have a particularly
strong preference for variation in amenities along their routes. Overall, there are indications that
leisure cyclists consider amenities when selecting their route, but more research is needed to

confirm this.
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Table 2.15 - Preferences for Amenities References

Trip Purpose Amenities are particularly important to leisure cyclists. Chen and Chen, 2013
Examples include: toilets, basic bike maintenance
equipment and tourist information centers.

Trip Length On longer trips, cyclists prefer to pass restaurants. Chen and Chen, 2013

Cycling Frequency Frequent leisure cyclists like varying amenities. Chen and Chen, 2013

2.9 Impact of Weather Conditions

Weather conditions are known to influence cycling behavior. For example, cyclists are
discouraged by cold and snow, particularly in countries with harsh winters, such as Canada
(Sobhani, Aliabadi and Farooq, 2019). In these countries, slippery and snowy pavements are likely
to be an important deterrent of cycling (Winters, Davidson, Kao and Teschke, 2006). Further,
rainfall and extreme temperatures can discourage commuters to travel by bike (Parkin, Wardman
and Page, 2008). Weather conditions such as annual precipitation and annual hot or cold days
are not reported to influence bike commute habits, according to Buehler and Pucher (2012). It
might be that these annual based measurements are too broad to reveal preferences. Overall, it
appears that weather influences when people decide to cycle.

Interestingly, the role of the interactions between weather conditions and route
characteristics in route choices of cyclists are rarely reported among the reviewed articles.
Deenihan and Caulfield (2015) report the very specific finding that tourists are tolerant of bad
weather conditions if a segregated bike facility is available. To add, Prato, Halldérsdéttir and
Nielsen (2018) conclude that weather conditions may impact the perception of a bike route. For
example, cyclists appeared willing to detour for scenic areas only at temperatures above five
degrees celsius. Hood, Sall and Charlton (2011) could not find significant interactions for hourly
rainfall or daylight hours. However, their study was conducted in San Francisco, where weather
conditions are generally mild and variation throughout the year is limited. Overall, much remains to

be discovered regarding the impact of weather conditions on route choice.

2.10 General Willingness to Detour

There is consensus in the literature that cyclists have a general preference for short routes (Hood,
Sall and Charlton, 2011; Broach, Dill and Gliebe, 2012; Manaugh, Boisjoly, El-Geneidy, 2013;
Zimmermann, Mai and Frejinger, 2017; Ghanayim and Bekhor, 2018; Menghini, Carrasco,
Schissler and Axhausen, 2010). Specifically, most studies report an average degree of detour of

about 11%, as shown in Table 2.16.
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Table 2.16 - Reported Degree of Detour * = smartphone users only

Reference Location Data Elicitation Study Population Degree of Detour
Bernardi, Geurs and smartphone GPS . o
Puello (2018) The Netherlands data (MoveSmarter) current cyclists 15%
GPS app data . o
Park and Akar (2019) Columbus (US) (CycleTracks) current cyclists 13.%
students & faculty 59
Davis (US) online survey members, most °
Fitch and Handy (2020) likely commuters
San Francisco GPS app data . o
US9) (CycleTracks) current cyclists 12%
Lu, Scott and Hamilton GPS-equipped Qo o
Dalumpines (2018) (Canada) shared bikes (SoBi) bike-sharers 10%
i i commuters 11%
Broach, Dill and Gliebe Portland (US) GPS trackers
(2012) non-commuters 12%
Average 11%

However, it appears that willingness to detour varies across contexts and groups of cyclists. For
example, exposure to motorized traffic seems to decrease willingness to detour (Hunt and
Abraham, 2007). Further, commuters appear to detour less (Sener, Eluru and Bhat, 2009),
probably due to time constraints (Broach, Dill and Gliebe, 2012). This also seems to hold for
utilitarian cyclists who, for example, go shopping (Chen, Shen and Childress, 2018). Further,
women (Manaugh, Boisjoly, El-Geneidy, 2013; Anowar, Eluru and Hatzopoulou, 2017) and
recreational cyclists (Melson, Duthie and Boyles, 2014) appear to have a relatively high willingness
to detour, probably because they put more emphasis on comfort (Melson, Duthie and Boyles,
2014). To add, young (25-34 years old) commuters seem to be particularly sensitive to travel
duration, possibly due to their fast lifestyles, as argued by Anowar, Eluru and Hatzopoulou (2017).
In contrast, senior commuters (55+ years old) are less sensitive to travel time, possibly because
they are less constrained than their younger counterparts, according to Anowar et al. (2017).
Interestingly, some studies use detour as a dependent variable, which allows them to
translate preferences into willingness to detour for a particular route characteristic. Examples
include Prato, Halldérsdottir and Nielsen (2018), Vedel, Jacobsen and Skov-Petersen (2017) and

Zimmermann, Mai and Frejinger (2017).

2.11 Conclusion
This chapter provides an overview of the findings of over forty articles on bike route choice from
twenty one different countries. Considering these findings, it seems that preferences for many of

the often studied route characteristics can be related to safety concerns. These include
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intersections, (left) turns, traffic lights, speed limits and on and off-street bicycle facilities. Several
studies indicate that these preferences are relatively strong. To illustrate, pleasurable surroundings
(Bernardi, Geurs and Puello, 2018; Skov-Petersen, Barkow, Lundhede, and Jacobsen, 2018) and
pavement quality (Providelo, da Penha and Sanches, 2011) only seem to be important when
safety is ensured. Moreover, there is consensus in the literature that cyclists have a general
preference for short routes. Specifically, cyclists are unwilling to detour more than about 11%
compared to the shortest route.

Most studies consider preference heterogeneity and relate this to personal characteristics
and trip context. In particular, the distinctions between males and females are often evaluated.
Overall, it seems that females are more risk averse and therefore have stronger preferences for
safety aspects. For example, they are more sensitive to the absence of a separate bike facility and
have a stronger preference for low speed limits. Moreover, they seem less willing to undergo
physical effort, for example to climb a slope or take a detour. Further, studies often report clear
differences between the preferences of commuters and leisure cyclists. The former are more
concerned with efficiency and speed, since they are bound by stricter time constraints. They are
therefore less concerned with the absence of dedicated facilities and particularly sensitive to
steep slopes, which may slow them down. In contrast, leisure cyclists put more value in dedicated
facilities and have a stronger preference for green scenery. Further, they are more tolerant of
slopes, possibly because they prefer a varied landscape or like the physical challenge. Further,
the findings indicate that frequent cyclists are less tolerant to some hindrances such as bad
pavement and high traffic volumes, most likely because they are exposed to them on a regular
basis. Moreover, several studies report interactions among route characteristics. Most importantly,
the safety of separate bike facilities seem to make cyclists more tolerant of negatively experienced
aspects such as (left) turns, bridges and slopes. Likewise, signage and traffic signals seem to
make turns less attractive. Overall, the relations between route characteristics and route choice
behavior turns out to be complex and differ across types of cyclists and context.

Interestingly, there are several topics on which the literature has not reached consensus. In
particular, the preferences for traffic lights seem to vary greatly and it is unclear which cyclists
prefer or avoid them. Further, Prato, Halldérsdéttir and Nielsen (2018) conclude that some cyclists
have a particularly strong aversion towards turns, but they do not specify who these cyclists are.
To add, there are indications that bridges might be appealing when they offer efficient
connections (Prato, Halldérsdéttir and Nielsen, 2018). However, this finding has not been

confirmed by other studies. In sum, some preferences remain not fully understood.

38



3. Route Choice Models

This chapter provides an overview of the current state of discrete choice modelling in the context
of route choices. First the general concept of route choice modelling is outlined. The three
paragraphs which follow introduce Multinomial Logit (MNL) modelling, Path Size Logit (PSL)
modelling and Latent Class modelling techniques. Each of those paragraphs discusses the
structures of the respective models and their pros and cons. Thereafter, stated and revealed

choice modelling are contrasted. Finally, the process of choice set generation is elaborated upon.

3.1 Introduction to Route Choice Models

Route choice models serve to quantify the relations between a set of explanatory variables and
route choice behavior (Schreckenberg & Selten, 2013). As such, they can be applied to evaluate,
for example, which factors influence route choices of cyclists and to what extent they do so. The
process of estimating a route choice model can be subdivided into two main steps
(Schreckenberg & Selten, 2013). First, sets of alternative routes between origin-destination pairs
have to be generated. That is, route choice models generally assume that people consider a finite
set of route alternatives, which is referred to as a choice set. Each route in a choice set has
distinct characteristics, which are recorded in the explanatory variables. The second step
concerns the estimation of the likelihood that a participant choses a given route in each
corresponding choice set. This is commonly done by means of a Multinomial Logit (MNL) model

or its derivatives.

3.2 Multinomial Logit (MNL) Modelling

The Multinomial Logit (MNL) model is the most basic form of discrete choice modelling. It
assumes that a decision maker attaches a certain degree of utility to each option in the choice set
at hand. The alternative with the highest utility is expected to be selected, following the logic of
utility-maximization (Train, 2009). The utility score can be quantified according to a utility function,
which is based on the attributes of an alternative and contextual factors regarding the choice
situation. Considering that choice behavior can never be completely understood, a portion of the
utility remains unknown to the researcher. The total utility of alternative i for observation » is

therefore spilit into the structural utility (7,,) and the random utility (¢,,) (Train, 2009).
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The structural utility function of a MNL model can be defined as follows:
(1) Vin :ZBq 'xinq
q

Where x,,, refers to the value for attribute ¢ for alternative i of observation ». The parameters to
be estimated (Bq) represent the relative contribution of attribute ¢ to the total utility score, much
like a weight. The random utility component ¢, captures the difference between the utility
observed by the decision maker and the utility determined by the researcher according to the
utility function. It is assumed to follow a standard Gumbel distribution.

The probability that observation n choses alternative i from choice set C, is described by the

following probability function:

@  Pr(ilC,) = —&i—
V'n
Jj€Cn ¢’

An important limitation of the MNL model is the independence from irrelevant alternatives (IIA)
property (Train, 2009). This IIA property predicates that the odds of choosing one alternative over
the other remain the same, indepent of the composition of the choice set. This makes a MNL
model inappropriate to estimate choice behavior among similar alternatives (Bernardi et al., 2018),

as discussed in the next paragraph.

3.3 Path Size Logit Models
As argued by Bernardi et al. (2018), the basic MNL model is generally unsuitable to apply to
revealed route choices. That is, routes between the same origin-destination pair, with a
realistically small degree of detour, can be expected to overlap. Moreover, deviations in the urban
context might be minimal, particularly in the case of short routes which stay within a particular
region. Hence, the attributes of routes within one choice set can be very similar. This can cause
issues when estimating a MNL model, because the independence of irrelevant alternatives (I1A)
property may be violated (Bernardi et al., 2018).

A Path Size Logit (PSL) model, as proposed first by Ben-Akiva and Bierlaire (1999), aims to
overcome this issue by introducing a Path Size factor to account for the overlap between route
alternatives. This factor ranges from zero, indicating a complete overlap between routes, to a

maximum of one, meaning no overlap occurs within the choiceset. Several additional extensions
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of this model exist. For example, attempts have been made to account for excessively long routes
(Ben-Akiva and Bierlaire, 1999) and to ensure that completely unique routes are not unnecessarily
penalized (Ramming, 2002).

An extended Path Size Logit (PSL) model can be defined as follows (adapted from
Bernardi, Geurs and Puello, 2018). The probability of choosing route i from the choice set C, for

observation n is defined as:

@  PrilC,) = ———u

5 ot S

j€Cn
where V., is the structural utility for route i, V', is the structural utility for alternative route ; and
PS, and PS;, are the Path Size factors for routes i and j respectively. In turn, the Path Size

factor PS,, can be specified as (Bernardi, Geurs and Puello, 2018):
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where T is the set of links that make up route i, L, is the length of route i, L, is the length of link
a, C,is the set of alternatives relevant to observation ”’L*cn is the length of the shortest route
among these alternatives, L;is the length of route j, 3, is a dummy variable which indicates
whether link ais part of route j (5, =1)ornot (5, =0) and A is a scaling parameter that reduces

the contribution of relatively long routes to the path size factor of shorter routes.
The above specification of the Path Size factor includes two extensions to the original PSL
mode proposed by Ben-Akiva and Bierlaire (1999). First, the weight term L—C“ reduces the

L

contribution of illogically long routes to the Path Size factor. The contribution of route ; is
weighted for the ratio of the length of route L; and the length of the shortest route L*C This
extension was introduced by Ben-Akiva and Bierlaire (1999) themselves. Second, the scaling
parameter L was introduced by Ramming (2002) to ensure that completely unique routes are not
inappropriately penalized. This specification was coined the Generalized Path Size Logit (GPSL)
model.

The literature is indecisive regarding the added value of the Generalized Path Size Logit
(GPSL) model proposed by Ramming (2002) over the original PSL model. There are indications
that the GPSL model shows improved model fit (Duncan et al., 2020) and it has been successfully

applied in earlier studies (e.g. Hoogendoorn-Lanser et al., 2005). Yet, other research suggests this
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specification can result in inapplicable corrections and implausible probabilities (Frejinger and
Bierlaire, 2007). Furthermore, the need for these corrections will strongly depend on the nature of
the data. That is, if excessive detours are uncommon, the estimation of additional parameters to
account for them may be unnecessary (Broach, Dill and Gliebe, 2012). To add, the introduction of
an additional scaling parameter may make the model overly complex and calls for larger datasets.
Furthermore, the presence of illogical routes can, at least partially, be dealt with during the data

cleaning process.

3.4 Latent Class Logit Modelling

Multinomial Logit (MNL) models can reveal the preferences of a sample. However, they do not
take into account preference heterogeneity among participants. The results of these models can
therefore be biased or misleading (Wen and Lai, 2010). A possible solution is to split the sample
based on one or multiple characteristics of the subjects. However, the personal data may not
suffice to capture the differences between segments. In those cases, the true preference
segments may remain unapparent. Latent class models are able to identify segments in a sample
based on preferences, rather than personal information. A latent class model includes a class
membership model which estimates the chance that an individual belongs to a certain class.
Further, it estimates a choice model for each class, with unique parameters or even distinct model
specifications. As such, the probability of choosing an alternative in a latent class model depends
on both the characteristics of the alternative as well as those of the individual. The probability of
membership to class s for individual » can be defined as a logit function (Equation 5), similar to

Equation 3.

6)  Pr(slx,) = <=

e th

tes

An alternative to the latent class model is the Mixed Logit Model (MLM). Reports indicate that
both MLM and latent class models can capture taste heterogeneity and outperform the basic
Multinomial Logit model (Greene and Hensher, 2003; Hess, Ben-Akiva, Gopinath, and Walker,
2008). However, several authors argue that latent class models are more appealing. That is, latent
class models can relate class membership to personal characteristics, which makes the results
very insightful for policy makers (Hess et al., 2008). To do so using a MLM model requires
parameterisation of the heterogeneity of the random distributions, which complicates the
estimation (Greene, Hensher and Rose, 2006). As argued by Greene and Hensher (2003), a latent

class model does not necessitate assumptions regarding distributions. In sum, the
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semiparametric latent class model might not be as flexible as the fully parametric MNL model,

nevertheless it performs equally well and is less complex.

3.5 Stated Versus Revealed Route Choices

Route choice research methods can roughly be divided into stated choice and revealed choice
approaches. Stated choice methods measure the route preferences of subjects based on
hypothetical choice situations (Hensher, 1994). That is, the researcher selects a set of route
attributes and specifies a limited number of levels for them. For example, the levels of the attribute
“speed limit” might be defined as “30 km/h”, “50 km/h”, and so on. Next, scenarios are
constructed based on combinations of these attribute levels. Participants of the study are
presented with a number of scenarios in which they chose, score or rank the alternatives. The
preferences of the participants are then derived based on the aggregate of their choices. Since
different combinations of attribute levels are tested, the trade-offs made between them can be
measured. The procedure described above is commonly applied by means of an on-paper or
online survey, which makes it relatively easy to reach a large audience.

Revealed preference methods are based on real route choice behavior. That is, the
researcher records a route chosen by a subject, for example through a GPS tracker (e.g. Broach,
Dill, Gliebe, 2012) or a mobile phone application (e.g. Melson, Duthie and Boyles, 2014). Next, a
set of alternatives is generated, which represent real life routes between the same origin and
destination. The assumption is made that the alternatives in the set were under consideration at
the moment the choice was made. The researcher then needs to collect data on the
characteristics of these routes. Again, the choices made by the subjects reveal trade-offs made
between route attributes.

Stated preference methods have several benefits over revealed preference ones (Broach,
Dill, Gliebe, 2012). In particular, the data can be collected by means of a relatively simple and
inexpensive survey method. Moreover, there is no need to generate real world alternative routes
and collect data on the route characteristics. To add, the hypothetical scenarios allow researchers
to study preferences for route attributes which are hard to observe or nonexistent in the real
surroundings of the subject. As such, even preferences for futuristic interventions in the cycling
infrastructure could be evaluated. These benefits are summarized in Table 3.1.

However, stated preference methods also have their downsides, as shown in Table 3.1.
Most importantly, they study hypothetical choice situations. Consequently, they rely on the
imagination of the subject, who has to make a choice based on the information provided by the
researcher. Moreover, responses could be biased if subjects expect the results of the study to

influence policy development (Broach, Dill, Gliebe, 2012). Although a revealed preference method
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might be more complex and costly compared to a stated one (Hood, Sall and Charlton, 2011), the
former does deal with the issues discussed above, for it studies real choice behavior instead.
Revealed methods are therefore able to capture more realistic relations between route
characteristics and route choices (Chen, Shen and Childress, 2018). Further, the availability of
GPS data has increased substantially (Hood, Sall and Charlton, 2011). That is, the growing
popularity of activity apps has made large revealed preference datasets available to researchers
at relatively low costs. Examples of these applications include “CycleTracks” (Chen, Shen and
Childress, 2018; Melson, Duthie and Boyles, 2014; Hood, Sall and Charlton, 2011), “CycleLane”
(Zimmermann, Mai and Frejinger, 2017) and “MoveSmarter” (Bernardi, Geurs and Puello, 2018).
As touched upon earlier, a downside to the use of revealed preference data in route choice
modelling is that routes in a choiceset may overlap. This violates the independence from irrelevant
alternatives (IlA) property of the basic MNL model (Train, 2009). However, MNL extensions such as
the Path Size Logit model discussed in §3.3 have been developed to tackle this issue.
Nevertheless, it is still important to acknowledge that alternative routes in the same area may have
similar characteristics. It is therefore important to generate a choice set that is both realistic and

contains enough variety.

Table 3.1 - Stated Versus Revealed Route Choice Methods

Stated Route Choice Revealed Route Choice
Type of Data Online or on-paper survey Travel diary (in past), GPS trackers or mobile phone
applications
Generation of Choice Based on hypothetical alternatives, Based on real world alternatives, assumed to be
Sets generated following an experimental considered by the decision maker.
design.
Advantages e Data can be collected by means of e Large GPS datasets have become increasingly
a relatively simple and cheap survey available to researchers
method e Studies real choice behavior
e Can include nonexistent or futuristic
scenarios
Disadvantages o Relies on the imagination of a e Need to generate realistic route alternatives
subject e Need to collect data on characteristics of routes
e Choice data may be biased o Relies on recall in case of travel diary
e Studies hypothetical choices, which e IIA property of MNL model might be violated due
may not represent true behavior to overlap or similarity between alternatives
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3.6 Choice Set Generation in Revealed Route Preference Studies

As discussed in §3.5, revealed choice methods require researchers to generate alternative routes
between the observed origin-destination pairs. There are several methods to do so. The most
basic option at hand is to generate one alternative which minimizes travel distance. This can be
done using Dijkstra’s shortest-path algorithm (Dijkstra, 1959). Each link in the network is assigned
a cost indicator, based on its length. The algorithm then tries to find the set of links between the
origin and destination with the lowest total costs. Since this method provides only one alternative
to each route, it does not generally result in a realistic choice set. Moreover, the literature review
indicated that cyclists do not detour substantially (see §2.10). Thus, there is a risk that the
generated route in the choice sets largely overlap with the chosen one or that their characteristics
are very similar. The choisets may then not contain enough variation to capture preferences.
Alternatively, a K-shortest path algorithm can be applied to generate multiple routes which
minimize distance. However, the variation among these routes may still be minimal, because they
are generated based on the same requirement. The “link elimination” technique can reduce this
risk by successively eliminating links in the network after the generation of an alternative (Broach,
Gliebe and Dill, 2010; Prato, 2009). Instead of link elimination, the costs of certain links may also
be increased artificially to redirect routes. It is also possible to vary the link cost indicators in
Dijkstra’s algorithm, a technique called “labelling” (Prato, 2009). For example, routes can be
generated which maximize exposure to green or minimize the number of intersections. Moreover,
it is possible to combine different link costs in a weighted cost function. This allows the researcher
to generate specific types of routes and compose a choice set which is both realistic and rich in
variation.

The methods discussed above are referred to as deterministic techniques. That is, they are
fully based on predefined parameters, such as the weights in the cost function. Alternatively, the
generation of alternatives can be randomized. Methods that do so are called stochastic.
Randomizing link attributes or weights removes the risk of bias introduced by predefined
parameters. Moreover, it can increase the number of generated alternatives, as argued by Hood,
Sall and Charlton (2011).

Another option to generate choice sets is the use of empirical data. This is possible when
a sufficient number of repeated trips between the same origin-destination pair are observed
(Bernardi, Geurs and Puello, 2018). The researcher may then assume that the variation among
these trips captures the choice situation of a participant. To reduce the risk that some observed
trips are too similar, one may cluster trips based on their attributes. For example, Bernardi et al.
(2018) group trips into four categories based on the degree of detour from the shortest alternative.

Further, Lu, Scott and Dalumpines (2018) study repeated trips between network hubs across
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different cyclists to ensure a sufficient number of unique alternatives, even if the number of
repeated trips for a participant is low.

The different types of methods, deterministic, stochastic and empirical, may also be
combined. For example, Hood, Sall and Charlton (2011) apply a method coined as the “doubly
stochastic” method by Bovy & Fiorenzo-Catalano (2007). This method combines stochastic
randomization of both the link attributes and cost coefficients with a deterministic labelling
technique. The distribution of the coefficients was predetermined based on the data of the
network to reduce the risk of generating bias routes. A similar method is applied by
Skov-Petersen, Barkow, Lundhede and Jacobsen (2018). Broach, Dill and Gliebe (2012) combine
“multiple distance constraints” (p.1733) with labelling. They found that this approach resulted in
more alternatives compared to the basic labelling technique and more behaviorally realistic results
than K-shortest paths. To add, Bernardi, Geurs and Puello (2018) added the shortest path to their
empirically obtained alternatives to ensure that at least one alternative is available for routes with

none or too few repeated trips.

3.7 Conclusion

The paragraphs above provide a brief overview of the current state of route choice modelling. All
three modelling techniques which are discussed, Multinomial Logit (MNL), Path Size Logit (PSL)
and Latent Class Logit modelling, are applied in the current study. Specifically, each technique is
applied successively to illustrate their added value. Further these techniques are applied to
revealed route choice behavior, retrieved from a GPS database. The choice sets are generated
using an advanced cycle route planner from De Fietsersbond, which applies a method similar to

that of Broach, Dill and Gliebe (2012).
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4. Methodology

This chapter starts with an overview of the methodological approach of this study. Thereafter, the
separate parts of this approach are elaborated upon. First, the different data sources are
discussed. Next, the procedure for generating route alternatives is outlined. Then, the definitions
of the context variables are discussed. After this, the model estimation process is described.

Finally, the dashboard set-up is elaborated upon.

4.1 Overview

Figure 4.1 provides an overview of the methodological approach of the current study. As
explained in §3.6, Multinomial Logit (MNL) route choice models and their derivatives require a set
of alternatives to be generated for each observed route. In this study, this is done using De
Fietsersbond Routeplanner. The chosen and alternative routes are stored as GPX files and then
transferred to a PostGIS database. GIS data is collected and prepared to capture the
characteristics of all routes in the choice sets. Personal characteristics of the participants, needed
to estimate a probability model in the Latent Class Analysis (LCA), come from a supplementary
survey. The Multinomial Logit (MNL) and Path Size Logit (PSL) models will provide insights into the
general preferences of cyclists in Utrecht. A PSL model with interaction terms is estimated to
evaluate the role of context variables (departure time and trip purpose). The LCA is used to

identify segments of cyclists with distinct preferences, to study preference heterogeneity.

| Data Preparation > Model Estimation Theoretical Implications Practical Demonstration
Fietsersbond . General
Alternatives
Routeplanner
)‘ Choice Sets
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Dashboard
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Preferences
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Characteristics
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O

Figure 4.1 - Overview of Methodology

4.2 Data Collection and Preparation

4.2.1 GPS Data
The GPS data for this study has been collected using the ikFiets mobile phone application,

developed on behalf of the Province of Utrecht. This app was launched to stimulate inhabitants of
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the region to cycle more often, both for leisure and transport. Users receive points for every
kilometer that they cycle, which they can then exchange for promotions and prices. It also
features special bonus challenges to gain extra points. The app is targeted at a wide audience,
including e-bike users. Upon installation of the app, users are prompted to create an account.
Their activities are linked to this account. Moreover, they can fill in a survey containing basic
demographics and questions about their intention to cycle and their physical condition. Further,
they are asked to rate the applicability of specific stimulants and deterrents of cycling to them.
This survey is filled in on a voluntary basis. That is, the app can be used without finishing it.
Hence, only a subset of the users supplies a survey.

Interestingly, the app registers all cycled routes automatically. That is, in contrast to some
fitness apps like Strava, all cycle routes are recorded whenever cyclists have their phone on them.
Therefore, data collection does not rely on users remembering to turn on the app. Moreover, self
reporting bias is kept to a minimum, particularly because unrecorded routes do not generate any
points. The modality is determined based on a Baysian network. The probability of each mode
(e.g. bike) is calculated and the trip is assigned to the mode with the highest probability score. In
sum, the data generated by this app provides a rather complete and unbiased image of the
cycling behavior of users.

The trip data used in this study was collected between June 2020 and January 2021 using
the ikFiets mobile phone application. During this period, 1107 users generated GPS data, of
which 214 filled in the additional survey. Given the goal of this study, to understand the
preferences of particular segments of cyclists, only users who filled in the survey are considered.
Further analyses will focus on regular trips. These are fuzzy clusters of common trips with the
same OD pair and therefore provide a good indicator of repeated travel behavior of users. A total
of 205 users have at least one regular trip and filled in the survey. These users generated 5091
regular trips. Two users with unrealistic survey answers were removed from the analysis. In both
cases the reported age surpassed 120 years. Further, all trips located outside the borders of the
generated network, hence outside the province of Utrecht, were removed as well. To add, trips
less than 500 meters long were removed, because generating a rich choice set of alternatives is
not possible for routes that short. After this, 139 users remained who generated a total of 743
regular routes. The remaining users did not report owning an e-bike, thus it is assumed that their

trips were conducted on a normal bike, without support.

4.2.2 Survey Data
A complementary survey is included in the ikFiets app, which focuses on several personal

characteristics and stimulants and deterrents of cycling. This survey is not mandatory for app
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users, which is why only a subset of them supplied it. It contains questions on demographics
including birth year, gender, educational level and household composition. Further, users are
asked to indicate which type of bike they have available. To add, participants are asked to rate
their own physical condition on a 0-100 scale and their intention to bike on a 0-5 scale.
Additionally, users are asked to rate ten motivators and eight deterrents of cycling on a 7-point

Likert scale, according to the degree to which those apply to them.

4.2.3 Spatial Data Sources
Table 4.1 provides an overview of the spatial data sources which are used to determine the route
characteristics. These sources all have national or worldwide coverage. Thus, the methodology of

this study can relatively easily be translated to a different study area in The Netherlands.

Table 4.1 - Overview of GIS Data Sources

Dataset Coverage Type Source
Road Network World Wide Lines
e Road Type
e Cycling Facilities
* Speed Limits Geofabrik (2021)
Traffic Lights World Wide Points
Shops World Wide Points
Air Quality Nationwide (NL) Raster Rivm (2021)
e Pm,
e No,
Accidents Nationwide (NL)  Csv Rijkswaterstaat (2020)
GeoFabrik

GeoFabrik is a community that collects data from OpenStreetMap and generates datasets for
specific locations. Their website offers historic datasets at continental, national and regional
levels. In the case of the province of Utrecht, the oldest dataset dates back to approximately two
years ago. Since the GPX data of the bike routes was collected during the last half of 2020, the
dataset from 2021-01-02 is used in this study.

Coordinate Reference System
Spatial data is unique in the sense that it relates to real locations on the earth. The location and
form of this data can be captured by (a series of) coordinate pair(s). A Coordinate Reference

System (CRS) is used to make the translation from a real world location to coordinates and back.
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Some CRS’s have been developed to cover the whole surface of the earth, whereas others are
particularly accurate for specific regions only. Further, given the curve of the earth’s surface,
visualizing spatial data on a screen or paper requires a translation from the 3D world to a 2D
space. A projected coordinate system, adapted to the region at stake, ensures that the distortions
in this translation are kept to a minimum. In the case of the region of Utrecht, the Amersfoort / RD
New projection (EPSG:28992), using the Bessel 1841 ellipsoid, is most applicable, offering an

accuracy of one meter. This system is applied consistently across all analyses in this study.

4.2 Context Variables

Several context variables are determined for each trip. Although users of the ikFiets app are not
asked to provide information regarding their (regular) trips, some conditions can be derived. For
example, the average departure time for a regular trip is known. These are categorized into
on-peak (07:00-09:00 and 17:00-19:00) and off-peak hours, representing distinct traffic
conditions. Further, the type of trip is derived based on the type of origin and destination location.
Specifically, trips between a home and work location, during peak hours, are considered
commutes. Further, trips to or from a shopping location are considered shopping trips. Last, trips
to or from a leisure location are categorized as leisure trips. Categorization of locations is done

based on data from OpenStreetMap and according to the scheme included in Appendix Il.

4.3 Generating Route Alternatives
As explained before (§3.6), modelling route choice behavior using a Multinomial Logit (MNL), Path
Size Logit (PSL) or Latent Class model requires the generation of choice sets. These are sets of
routes between the same origin and destination pair, including the chosen route and at least one
alternative. The assumption is made that a cyclist considered these candidate routes when
planning the observed trip. It is therefore important that the choice set is a realistic representation
of the routes that a cyclist may have considered. For example, routes should not be overly long or
follow inaccessible roads. Furthermore, the choice set must show sufficient variation in the
attributes under investigation to be able to provide significant results and capture preferences.
Techniques for the generation of alternatives are discussed in §3.6. For example, Dijkstra’s
algorithm can be used to find the shortest route. Alternatively, K-shortest path search can be used
to find a set of alternatives which minimize distance. As discussed in §3.6, both will likely not
provide behaviorally realistic choice sets. In contrast, the approach by Broach, Dill and Gliebe
(2012) combines multiple distance constraints with a labelling technique to generate several types
of routes which each maximize or minimize certain route attributes. They found that this approach

resulted in more alternatives compared to the basic labelling technique and more behaviorally
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realistic results than K-shortest paths. The current study uses a similar approach, based on the
route planner of De Fietsersbond, a Dutch cycling association.

The route planner of De Fietsersbond provides a variety of route alternatives, each
targeted at a specific audience. Together, these alternatives form a realistic choice set for a variety
of cyclists. Table 4.2 describes the route types that were considered in this study. Each route type
prioritizes specific aspects. The generated choice sets contain routes which should appeal to
cyclists who put efficiency, safety and convenience first (route types: 2, 3, 5 and 9), as well as
those who enjoy cycling in green surroundings (route types: 4, 6, 7, and 8). As done by Bernardi,
Geurs and Puello (2018), the shortest path is included as well (route type 1).

A Python script is developed to generate the alternative routes and download them from
the website of De Fietsersbond as GPX files (See digital repository: GenerateAlternatives.py).
Another Python script serves to move the GPX files to a PostGIS database for subsequent

processing (See digital repository: Move2PostGIS.py).
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Route Type

1  Shortest

2 Easy Cycling

3 Conscious

Cycling

4 Cycle
Network

5 Low-Traffic

6 Recreational

7 Nature
8 Racing bike
9 Winter

Table 4.2 - Alternative Route Types
Description

These routes minimize the number of kilometers to travel. It does not account for

any kind of obstacles, inconvenience or delays.

These routes are focussed on convenient cycling. For example, they avoid traffic
lights which may cause delays and require cyclists to get off their bike. As a result,
they are relatively fast. They are also easy to navigate, because they follow

cycleways along main roads.

These routes are somewhat similar to the easy cycling route. However, they prefer
traffic lights over roundabouts. They also try to avoid steep gradients and are more

likely to select asphalt roads over paved ones.

These routes follow the national cycle network consisting of recommended cycling
routes and a network of nodes. The cycling routes get priority over the nodes. If this
does not provide a connected route between origin and destination, the gaps are

covered according to the “easy cycling” route definition.

These routes minimize the exposure to motorized traffic. They select separate
cycling facilities over those along streets. If no separate facility is available, they will

try to follow quiet roads instead of busy ones.

These routes are targeted at recreational cyclists and follow aesthetic roads. This
judgement is based on the presence of nature or other green and unicity of the
surroundings. Due to this focus, they usually also have a low exposure to motorized

traffic and tend to follow the national cycling routes.

These routes specifically avoid urbanized areas and maximize the exposure to

nature.

These routes are targeted at racing bike users. Therefore, they avoid unpaved roads
and preferably select broad cycleways with high quality asphalt. Other than that, the

route selection is similar to that of recreational routes.

In The Netherlands it is common to use salt and sand to keep roads accessible
during the cold season. These routes follow the roads where this is done as much as

possible. Usually, these concern the main roads and popular cycling infrastructure.
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4.4 Model Estimation

This study aims to estimate three types of route choice models, namely, a Multinomial Logit (MNL)
model, a Path Size Logit (PSL) model and a Latent Class Analysis (LCA) model. As discussed in
§3.6, the PSL model is expected to outperform the MNL model. The results of the PLS model
should reveal the general preferences of the sample. Further, interaction effects are used to
evaluate the role of the context variables (subquestion B). In turn, the LCA model is estimated to
study preference heterogeneity, based on the personal characteristics (subquestion A). The
dependent variable in all models is a dummy indicating if a route was selected (1) or not (0). The
regular trips are weighted according to their corresponding number of instances, putting more
emphasis on often repeated choices. The combinations of independent variables to be entered in
the final models are determined on a trial-and-error basis, guided by several correlation matrices
and the changes in model fit.

A bi-variate Pearson correlation coefficient (r) captures the strength of a linear relationship
among two variables (lllowsk, Dean and Holmes, 2017). A positive coefficient indicates that if one
variable rises, the other does too, whereas a negative coefficient is observed for reversed
relations. The closer the coefficient is to 1 or -1, the stronger the relationship. Thus, correlation
matrices provide early indications of bi-variate, linear relationships in the data and can be used as
a guideline for further analysis. With this in mind, several correlation matrices are generated using
IBM SPSS. First, a complete correlation matrix of all route characteristics is used to evaluate
which of them correlate strongly, either positively or negatively. This is important to know because
it might be difficult to enter these variables together in a model, given that they covariate. The
same is done for the personal characteristics. Next, a correlation matrix is generated which relates
the route characteristics to the route choice behavior. This gives an indication of which factors
influence route choices, in what manner, and to what degree. Finally, the sample is split based on
several personal characteristics and separate correlation matrices are generated to explore
potential differences across groups of cyclists when it comes to the effects of the route
characteristics on route choice behavior. This may provide indications of preference
heterogeneity.

The Akaike information criterion (AIC/N) and Mc Fadden’s rho squared statistic are used to
evaluate the goodness of fit. The AIC/N criterion is comparable across different model
specifications and penalizes model complexity and therefore helps reduce the risk of overfitting
(Cavanaugh and Neath, 2019). The lower the AIC/N, the better. Mc Fadden’s rho squared (
pseudo —R2) statistic ranges from zero to one and is based on the Log Likelihood ratio between
the estimated model  (LL) and the null model (LL,). It can be calculated according to Equation

6. Since the range of this measure is static ([0-1]), it is possible to apply general rules of thumb
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from the literature to determine whether the model fit is acceptable. For example, according to
Hensher, Rose and Greene (2015), a pseudo-R2 above 0.3 is acceptable in discrete choice

modelling.

6) pseudo —R* =1 — LL—LLO

A Path Size correction factor is included in the PSL and LCA models to account for overlap
among alternative routes. This factor is calculated according to Equation 4. As argued in §3.3, the
literature is indecisive on the added value of the Generalized Path Size Logit (GPSL) model
proposed by Ramming (2002). Since excessive detours are uncommon among the generated
alternatives, accounting for them is deemed to make the models unnecessarily complex (Broach,
Dill and Gliebe, 2012). In this light, the scaling parameter in the current study is initially set to
A =0, yielding the original PLS model proposed by Ben-Akiva and Bierlaire (1999). The Python
code developed to calculate this correction factor is included in the digital repository as
‘PathSizeCorrection.py’.

The specifications of the final MNL and PSL models are tested for multicollinearity by
entering the selected route attributes and, if applicable, their interactions with trip context into a
linear regression model in IBM SPSS and generating diagnostics. When all VIF scores are below
4, multicollinearity is deemed unproblematic, following the suggestions by Miles and Shevlin
(2001). By comparison, Kang and Fricker (2013) apply a slightly more lenient threshold of 5 in a

stated route choice experiment.

4.5 Dashboard

The results of the The Path Size Logit (PSL) model and Latent Class Analysis (LCA) are translated
to a dashboard as a demonstration of how the results could be used in practice. To do this, the
street network of Utrecht is split up into segments. These segments are based on the street
segments in OpenStreetMap (OSM), such that each segment has a unique OSM ID. The
characteristics of each segment are determined as if they were routes. Based on this data, the
utility of each segment can be calculated according to Equation 1 (see §3.2). The utility values are

then normalized to a scale ranging from -1 to +1, according to Equation 7.

; v, —min(V)) - 2
7) Vi = -1+ max(V) — min(V')
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Where V', is the rescaled utility score for segment i, v, is the utility for segment i, and V is the
collection of utilities for all segments in the network. The values of min(V) and max(V) may
change based on the selected class or context. That is, a score of zero always reflects the
average utility across the network for the selected class under the selected conditions. It is
important to note that the rescaled utility scores cannot be used to calculate the probability of
choosing a road segment. Based on this rescaled utility score, the segments in the network are
colored in red, orange or green, representing low, average and high scores respectively. A
hover-over tooltip contains the values for the variables that are included in the final model, such
that users of the dashboard can evaluate the underlying causes of a low or high score. The

dashboard is developed in Tableau (Tableau Software, n.d.).

4.6 Conclusion
This chapter outlines the methodology of the current study. In short, the GPS data is enriched

with open GIS data to capture the characteristics of the chosen routes. Further, context variables
are derived based on departure times and the types of origins and destinations. To add, a Python
script is applied to automatically scrape choice sets with various types of route alternatives from
the route planner of De Fietsersbond. Thereafter a main effects Multinomial Logit (MNL) model, a
main effects Path Size Logit (PSL) model and a Path Size Logit (PSL) model with interaction
effects are estimated successively. Then, a Latent Class Analysis (LCA) is conducted, including a
model-free comparison of the characteristics of the identified classes. The final results are

presented in an interactive dashboard featuring the cycling infrastructure of the province of
Utrecht.
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5. Data Preparation and Descriptives

This chapter discusses how the collected data is prepared for further analysis and provides an
overview of the descriptive statistics. First, the demographics of the sample are discussed. Next,
the preparation of the GIS data is elaborated upon. This data is used to determine the route and
network link attribute values. Next the characteristics of the cycling infrastructure in Utrecht are
summarized. Thereafter, the descriptive statistics regarding the regular trips are presented. Finally,

the generated alternatives are discussed.

5.1 Demographics
Of the 139 users which are included in further analysis, about 67% are females and 33% are
males. Men have, on average, generated slightly more regular trips (5.8) compared to women (5.1)
during the data collection period.

As shown in Figure 5.1, the sample has a reasonable age distribution between twenty and
seventy years. About half of the sample is aged between thirty and fifty. Further, ages 65 and up
make up about 8% of the sample. Only two participants are less than twenty years old. In sum,

most participants are (young) adults and a small portion has reached retirement age.

Figure 5.1 - Age Groups Figure 5.2 - Education
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As shown in Figure 5.2, The educational level of the sample is relatively high. That is, more than
80% of the sample has at least a Bachelor’s degree, against 40% of the total Dutch population
(CBS, 2021a). This notion has been observed in other studies regarding cycling behavior (e.g.
Anowar, Eluru and Hatzopoulou, 2017 and Winters, Davidson, Kao and Teschke, 2011). It could
be that the higher educated have a stronger will to join these kinds of studies, for they may
understand their usefulness better. However, Anowar et al. (2017) argue that ridership is simply

higher across the higher educated, particularly when it comes to commuting. Nevertheless, it

56



should be acknowledged that the findings of this study might not be transferable to lower
educated cyclists.

Figure 5.3 shows the frequencies for the household compositions. Most of the
participants, about 70%, live in a two person household, of which approximately half has children.
Students and those living in a single person household are also represented by at least 10% of

the sample.

Figure 5.3 - Household Composition

Living with parents / family

Household with children Alone without children

Alone with children

Student housing

Household without children

The survey also includes questions on self-reported physical condition (100-point scale) and
intention to cycle (7-point Likert-scale). The average physical condition score is 75 (o = 19). About
7.2% of the sample rates their condition as insufficient (below 55). According to CBS (2021b),
about 18.5% of the national population describes one's condition as “not good”. Thus, it appears
that the people with a bad physical condition may be underrepresented in the sample. This could
be expected since these people might also be less inclined to cycle in general. Further, the

average intention to cycle score is 3.7 (0 = 1.7).

5.2 Preparation of GIS Data
In preparation for the model estimation process, the characteristics of each route have to be
determined. Likewise, the attribute values for each network segment of the cycling infrastructure
in Utrecht have to be established such that their utility scores can be calculated and displayed on
the dashboard. This is done based on the GIS data from the sources discussed in §4.2.3. The
data is processed using QGIS and PyQGIS. Several important considerations are elaborated upon
below. Thereafter each attribute is discussed individually.

First of all, route characteristics should be comparable across routes of different lengths. It

might therefore not always be applicable to use counts'. For example, the number of shops along

' Counts refer to the total number of occurrences along a route or network segment. For example, “shop count” refers to the total
number of shops.
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a long route might be high in comparison to a shorter one. However, the density of shops along
both routes might be the same. It is important to acknowledge this distinction. Therefore, all
characteristics that can be captured in a count are also translated into densities by dividing the
count by the total length of the route. At a later stage, the best performing measurement is
selected.

Further, special caution is required when dealing with the alternative routes, because these
were generated against the road network of De Fietsersbond. This network deviates slightly from
that of OpenStreetMap, to which the chosen routes have been mapped. Moreover, most data
used to generate the route characteristics is mapped according to OpenStreetMap. Hence, some
degree of tolerance is required when matching network links and other OpenStreetMap objects to
the alternative routes. Upon visual inspection, the deviations between both networks are limited to
about two meters. With this in mind, a tolerance of 2.5 meters is applied when matching
OpenStreetMap data to the alternative routes. However, this tolerance may influence the matching
process. For example, multiple traffic lights might be matched at an intersection. This may
introduce a bias towards a higher number of traffic lights being recorded for alternative routes, in
comparison to chosen routes. Therefore, the 2.5 meter tolerance is applied to both route types.

Although not ideal, applying the correction to both route types helps to balance the errors.

5.2.1 Number of Traffic Signals

The locations of traffic signals are extracted from the Geofabrik OpenStreetMap dataset as points.
These points are then snapped to the closest road network link using QGIS’s “Snap Geometries
to Layer” algorithm, with a tolerance of one meter. This ensures that traffic lights are precisely
positioned on network links. Next, 2.5 meter buffers are drawn around the routes and network
segments. The number of traffic lights within each buffer polygon is determined and the resulting
counts are joined back to the original line features based on the unique IDs. For reasons
discussed earlier, the density of traffic lights along each route is determined by dividing the count

of traffic lights over the total length of the route.

5.2.2 Number of Intersections

An intersection is defined as a crossing of three or more street segments in the network. In order
to determine the number of intersections in each route, a point layer is created containing all
intersections in the network. First, the network links are dissolved based on the OpenStreetMap
identifier, such that the segments from OpenStreetMap become uninterrupted lines. This ensures
that streets which are not at the same level are not considered to be crossing. For example, a

viaduct does not intersect with a street that passes under it. Next, the start and endpoints of each
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line are extracted. These are the candidate intersections. Thereafter, duplicate candidates are
removed with a 0.1 meter tolerance to account for possible small gaps between network links.
Next, a buffer of 0.1 meter is created around each remaining candidate and the number of
network links crossing that buffer is determined using the “Join Attributes by Location (Summary)”
algorithm. Candidates with less than two network links in their buffer are removed. As can be seen
in Figure 5.4, these do not concern intersections, but turns along uninterrupted streets. The
candidates that remain represent actual intersections of two or more streets, such as shown in
Figure 5.5. Similar to the traffic signals, the number and density of intersections are determined for

each route and network segment.

Figure 5.4 - No Intersection Figure 5.5 - Intersection

5.2.3 Number of Shops and Homes
Similar to the traffic signals, the shop and home locations are extracted from the Geofabrik
OpenStreetMap dataset as points. Shops are identified by the OpenStreetMap key “shop=*". Tags
considered as homes are: “building = house”, “building = detached”, “building =
static_caravan”, “building = semidetached_house”, “building = bungalow”, “building
= manor”, “building = villa”, “building = apartments”, “building = residential”.
Again these points are snapped to the closest network link, as was done for the traffic
lights. However, the tolerance has to be increased, given that the shop and home nodes in
OpenStreetMap are positioned near the entrance of the store, which might be a couple of meters
from the centerline of the street. Hence, a tolerance of fifteen meters is applied here. Thereafter,
the routes are again buffered with a 2.5m radius. The number of shops and homes within each
buffer are counted and joined back to the original route line features based on the unique IDs.

Finally, the shop and home densities along each route are determined.

5.2.4 Number of Accidents
The number of accidents on each link is estimated based on data from Rijkswaterstaat. This data

contains all accidents that have been administered by the local police forces. It is therefore limited
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to the more severe kinds of accidents which involve multiple parties, injuries and fatalities. The
data on the accidents are stored in a comma-separated values (CSV) file with references to road
features in a spatial database. Thus, the number of accidents is only available at a road-level. The
total number of accidents in 2019 along each route and network segment is summed and the

density of accidents is determined.

5.2.5 Proportion of Cycleway or Cycle Lane

Given the findings of the literature review, a distinction is made between separate and unseparate
cycling facilities. The existence of an (un)separated facility is recorded in a boolean variable
attached to each link in the network. Separated cycleways can be identified under the “highway”
key in the OpenStreetMap data and have a “cycleway=1ane” tag. The presence of a cycle lane
along other types of links is recorded with the “cycleway=1ane” tag. Based upon an inspection of
the roads in the network, the tag “cycleway=track” is also considered indicative of a cyclelane.
In contrast to the “cycleway=1ane” tag, the “cycleway=track” tag officially refers to a cyclelane
which is separated from a road by a physical barrier such as curbs, parking or vegetation.
However, in reality the links that are marked as tracks in Utrecht turn out to have very minimal
separation, usually in the form of a painted flat line or a small curb. Hence, these tracks are closer
related to the unseparated cycle lanes compared to the fully separated cycleways.

The proportion of a route or network segment that follows a cycling facility is determined
by summing the lengths of all network links covered if these are categorized as cycleway or cycle
lane and dividing this by the total length. This is done by buffering all routes and network
segments at one meter, filtering the network for the relevant cycling facility and then checking
which links are contained by the buffers using the “Join Attributes by Location” algorithm. The
lengths of the network links are then summed grouped by the unique route or network segment
IDs and divided by the route or segment length. The final result is joined back to the line features
based on the unique IDs.

It is important to note that this method ignores the first and last network link in the route.
This happens because these links will not be completely contained by the route buffer. However,
less restrictive predicates such as “cross” or “intersect” will result in intersecting roads to be
included in the route. Several other methods were considered to overcome this issue. However,
they all resulted in a significant increase in runtime. Fortunately, the impact of the exclusion of the
first and last link of the network is minimal, given that these only represent a small section of the
route. Moreover, the first and final link are the same among alternatives, given that the origin and

destination are located along these links. Thus, the method described above is suitable to
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measure the proportion of a route that follows a cycling facility, despite the slight deviation from

reality.

5.2.6 Cycling Facility Interruptions

To determine the number of interruptions in cycling facilities along each route or network
segment, one first needs to determine which links in the network with cycling facilities are
connected. This is done by merging adjacent network links with facilities into a single feature. To
account for small imperfections on the OpenStreetMap network, a tolerance of ten centimeters is
applied by buffering the network links. Next, the buffers are dissolved and split into unconnected
single parts, which are then provided with a new unique id (uuid). Next, the route and segment
features are buffered at 2.5m, again to account for the deviations between the OpenStreetMap
network and that applied by De Fietsersbond. Next, the unconnected network parts with facilities
within each buffer are counted. Finally, the resulting number of interruptions are joined back to the
original line features. Figure 5.6 presents an example of a route and three identified facility

interruptions.

2
2
2,

)

cycling facilities
no facilities
---------------------- route
[ ) interruptions

%
%
%
%
‘umum&,
%2
2

2,
2
2
2
2
%
2
2
2
%
2
%2
2
2
2
2
2
%
2
2
&

\\\\\\lmmm TR\

o
o
Q
o
Q

S
o
o
&

L
S

’v,.’ 2

2
%,
2
2,
2,
2,

Figure 5.6 - Cycling Facility Interruptions

5.2.7 Air Quality

Few other studies have considered air quality as a factor which may influence route choice
behavior of cyclists. Among the reviewed articles, only Anowar, Eluru and Hatzopoulou (2017) did
so in the context of America and Canada. They conclude that some commuters, particularly
experienced cyclists, have a tendency to avoid areas with high rates of pollution. This factor is

therefore included in the current study, to possibly confirm this finding.

61



The air quality is measured in the form of PM,, and NO, levels. These concentrations are
indicative of traffic volumes and have a large impact on health (GGD and RIVM, 2014). It should
be noted that these measurements are only available at a relatively low resolution of one by one
kilometer. The concentration levels are related to the route and network segment features by
creating buffers of one meter around each network link and taking the mean concentration within

those buffers using the “Zonal Statistics” algorithm in QGIS.

5.2.8 Weighted Average Speed Limit

Unfortunately, data on the speed limits of roads in OpenStreetMap is often incomplete. However,
the road type generally is available, based on which the speed limit can be inferred. Indeed, as
can be seen in Figure 5.7, the number of network links without a known speed limit and road type
is limited and generally pertains to links along squares or parking places. Therefore, an inferred
speed limit is determined based on a set of rules (see pseudo code below) to replace null values
in the OpenStreetMap data. The speed limits of cycleways, tracks, service roads and unclassified
streets are set to 0 km/h. These rules are applied to the network link features using PyQGIS,

following the logic shown below.

if osm_maxspeed is not NULL:
speedlimit = osm_maxspeed
elif osm_roadtype is in (“residential”, “living street”):
speedlimit = 30
elif osm_roadtype is in (“secondary”, “tertiary”):
speedlimit = 50
else:
#tcycleways, tracks, service roads, unclassified and other

speedlimit = ©

The contribution of each network link within a route or network segment to the average speed

limit is weighted for the length of the link , according to the following equation:

[Z (speedlimit, - length,)
€L,

8) WA =
> length,
leL;

Where L, refers to the set of links included in route or network segment i
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—— Missing Speed Limit
| Utrecht Outline

Figure 5.7 - Streets Without Speed Limit and Road Type

The weighted average speed limit of a route is determined both including and excluding the
assumed speed limit of 0 km/h for unclassified roads. In the latter case, the denominator in
Equation 8 concerns the sum of the lengths of those links within a route for which the speed limit
is known. Equation 8 is applied to the network data in QGIS in the following manner. First, the
route features are buffered at 2.5m, again to account for the deviations between the
OpenStreetMap network and that applied by De Fietsersbond. A spatial index is created to boost
the performance. Next, the QGIS “Join Attributes by Location” algorithm is used to join the
applicable data of the network links to the route buffers which contain them. This is done on a
one-to-many basis, meaning that the route buffers are duplicated for each matching network link.
In the case of the average determined only for network links with a speed limit based on
OpenStreetMap, a filter is applied to the resulting layer ("NW_SpeedLimit"™ is not NULL AND
"NW_SpeedLimit" != 9999) such that links with an imputed speed limit are excluded. After
filtering, the total length of the known network links in each route is determined using the field
calculator (sum("NW_length", group_by:="newid")). For the calculation concerning all links, no
filter is applied and the total length is determined based on the length of the route using the field
calculator ($1ength). Next, the contribution of each, weighted for its length, is calculated based
on Equation 8. Thereafter, these contributions are summed for each route or network segment
(sum("speed_weighted", group_by:="uuid")), providing the weighted average speed. This result

is then joined back to the original route or network segment features.
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5.2.9 Landuse

To grasp the exposure to specific land use types, a PyQGIS algorithm is developed that takes a
raw OpenStreetMap database file (.pbf format) and a QGIS line layer containing the network link
or route features. This algorithm generates buffers of 25, 50 and 100 meter around each line
feature and then determines the proportion of the area within each buffer categorized as a
particular land use type. The land use categorization of OpenStreetMap is used as a basis,
although some land use types are combined as a simplification, as seen in Table 5.1. Important to
note is that a large number of meadows in the province of Utrecht are tagged as ‘landuse=grass’
without an indication of an agricultural area, also not under other keys. The distinction between
the “green - general” and “green - agriculture” category is therefore minimal. The process of the
algorithm is summarized in Figure 5.8. The code is available in the digital repository

(“landuses.py”).

Table 5.1 - Land Use Categorization

Land Use Category OpenStreetMap Land Use Types

residential residential

green - general allotments, animal_keeping, apiary, farm; grass, farmyard, farmyard;residential,
framland, greenhouse_agricultural, greenhouse_horticulture, meadow, orchard,
plant_nursery, vineyard, yard, grass, forest, forest;grass, garden,

nature_conservation, nature_reserve, park, village_green

green - agriculture allotments, animal_keeping, apiary, farm; grass, farmyard, farmyard;residential,
framland, greenhouse_agricultural, greenhouse_horticulture, meadow, orchard,

plant_nursery, vineyard, yard, grass

commercial commercial
retail retail
industrial industrial, depot, landfill, salvage_yard
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Figure 5.8 - Determining Land Use Proportions

5.3 Network Characteristics

Table 5.2 provides an overview of the descriptive statistics of the network links. As shown in this
table, most links have a speed limit of 30 km/hr, as is standard for living streets in The
Netherlands. It must be noted that streets with a speed limit above 80 km/hr have been excluded,
since these are deemed unsuitable for cyclists. Although uncommon, some streets have a
streetlimit below 30 km/hr. These are service roads, special residential roads or parking lots. The
air quality measures do not deviate substantially. As shown in Figures 5.9 and 5.10, the air quality
in the city centers is somewhat worse compared to the rest of the province. The links in the
network are more or less straight, with only 0.34 turns on average (o = 0.87). Further, they
intersect with three other links (o = 5) and pass 0.04 traffic lights on average. Traffic lights (Figure
5.11) and shops (Figure 5.12) are both mainly concentrated in strongly urbanized areas. Looking at
the land use types, it can be concluded that most links are located in residential areas with some

green. Other land use types are relatively rare.
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Table 5.2 - Descriptives Network Links

Minimum Maximum Mean Std. Median
Deviation

SpeedLimit 5 80 33 10 20
PM10 Level 15 21 17 0.4 17.4
NOx Level 9 44 25 3.9 26.3
Turns Count 0 39 0.34 0.87 0.0
Turns Density (/km) 0 0.51 0.002 0.007 0.0
Traffic Lights Count 0 28 0.04 0.33 0.0
Intersections Count 0 284 3 5 2.0
Homes Count 0 1372 16.17 43.63 0.0
Shops Count 0 96 0.09 1.24 0.0
Bridges Count 0 12 0.01 0.33 0.0
Land Use in 50m Buffer:

- Agricultural Green 0% 100% 1.8% 8.5% 0.0%
- General Green 0% 100% 32.1% 32.6% 19.0%
- Commercial 0% 100% 2.6% 14.0% 0.0%
- Retail 0% 100% 0.7% 6.4% 0.0%
- Industrial 0% 100% 4.5% 19.0% 0.0%
- Residential 0% 100% 95% 19% 100%

-

14 pg/m? 21pug/m? | 0 pg/m3

Figure 5.9 Figure 5.10
PM.,, Concentrations At Network Link Level NO, Concentrations At Network Link Level
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Figure 5.11 - Traffic Lights

Figure 5.12 - Shops

5.4 Trip Characteristics

As can be seen in Figure 5.13, the starting times of the trips are spread out throughout the day. A
small peak is visible around five ‘o clock, possibly due to cyclists returning home from work or
other activities to have dinner. However a clear morning and evening peak are not evident. This is
likely a consequence of the changes in travel behavior due to the Covid-19 pandemic, during

which the data was collected.
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Figure 5.13 - Departure Time
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As can be seen in Figure 5.14, most routes are between one and two kilometers long. The degree
of detour seems to increase slightly for longer routes. The negative average degree of detour for
routes less than one kilometer indicates that the shortest route generated by the Fietsersbond
route planner is sometimes slightly longer compared to the chosen route. This may happen if
someone took a shortcut, which is officially not accessible for cyclists. Further, there are minor
deviations between the network used by the Fietsersbond route planner and the OpenStreetMap
network to which the GPS data was mapped. The average degree of detour (mean = 5.5%, ¢ =
50%) is on the lower side of the values reported by reviewed articles (range 5% - 15%, see Table
2.16). Fitch and Handy (2020) observed a similar willingness to detour (5%) among students and
staff members in Davis. They argue that most of the trips in their sample are likely to be
commutes, which explains why the cyclists pick highly efficient routes. That is, commuters are
known to be less willing to detour compared to others (Broach, Dill and Gliebe, 2012; Sener, Eluru
and Bhat, 2009).

B Percentage of Participants Average Percentage of Detour

18 - I J | | | e .

<1 1-2 2-3 3-4 4-5 5-6 6>
Route Length (km)

Percentage (%)

Figure 5.14 - Travel Distance

As discussed in the methodology, the origins and destinations of each trip are categorized as
work, shopping, leisure or other, according to Appendix Il. Trips between home and work
locations, with a departure time between 07:00-09:00 and 17:00-19:00 hours, are considered
on-peak commutes. As shown in Figure 5.15, a large number of routes are not classified. In those
cases there was no clear origin or destination on which the categorization could be based or the
type of the location was ambiguous. In comparison to other studies, the proportion of commute
trips appears relatively low. In part, this can be attributed to the limitations of the derived
categorization. However, this can also be a consequence of the large number of people working
from home during the Covid-19 pandemic. In later analyses, both on-peak and general commute
are considered, to account for potentially less regular start and end times of workers on account

of the pandemic. The best performing measure is selected.
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Figure 5.15 - Trip Purpose

As seen in the heatmap in Figures 5.16 and 5.17, most trips originate and end in the city center of
Utrecht. It is important to note that this does not necessarily mean that cycling is more popular in
the city compared to the whole province. The ikFiets app may simply be more promoted or

popular among citizens of the city of Utrecht.

48 @ @ o
410 @ 1280
o © 04 o ©

Figure 5.16 - Origins Figure 5.17 - Destinations

5.5 Alternative Routes

For each route in the sample, nine types of alternative routes were generated, according to the
procedures in §4.3. Figure 5.18 provides an example of a chosen route and a corresponding set of
alternatives. In this example, there are several clusters of routes which overlap. Some clusters
follow a main road (e.g. the shortest, and conscious cycling routes), whereas others deviate
further from the shortest route, into the rural areas (e.g. the nature, recreational and low-traffic

routes).
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Figure 5.18 - Example Generated Alternatives

As shown in Table 5.3, the route types differ substantially in their degree of detour. The low-traffic,
recreational, cycling network and nature routes show the highest degree of detour (15%+). These
routes also tend to be more green, conforming to the descriptions provided in Table 4.2 (§4.3).
The chosen routes overlap, on average, for about 46% with their alternatives. Further, five of the
route types have an average degree of detour within the expected acceptable range according to
the literature review (5% - 15%). All in all, the generated choice sets appear to contain several

realistic alternatives in terms of detour and sufficient variation in terms of green versus urbanized

areas.
Table 5.3 - Comparison Generated Alternatives

Route Type Degree of Detour Green (within 50m buffer)
Shortest 0% 16%
Easy Cycling 3% 18%
Conscious Cycling 5% 17%
Winter 7% 17%
Racing bike 9% 19%
Low-Traffic 17% 20%
Recreational 22% 21%
Cycle Network 25% 18%
Nature 33% 20%

5.6 Conclusion
This chapter elaborates on the data that is used to estimate the route choice models. Specifically

it describes how the GPS data was enriched with open GIS data to determine the characteristics

of chosen routes. Moreover it provides an overview of the network and (alternative) trip

70



characteristics as well as the demographics of the sample. As such, it communicates the context
to the findings presented in the next chapter.

Important takeaways include the following. First, the sample is predominantly highly
educated, an issue that is common among similar studies. To add, females are slightly
overrepresented. Further, it appears that the people with a bad physical condition are
underrepresented in the sample. This could be expected since these people might also be less
inclined to cycle in general. In terms of age and household composition, the distributions are
comparable to national figures. The relations between these personal characteristics and route
choice behavior are explored in the Latent Class Analysis (LCA). Regarding the network
characteristics it is noteworthy that most links are located in residential areas with a speed limit of
30 km/h. Further, both shops and traffic lights are concentrated in urbanized areas. The most
evident finding related to the chosen trips is the low degree of detour of no more than 5.5%.
Further, trips are generally no longer than about 3km and both the origins and destinations
concentrate around the city of Utrecht. For about 35% of the trips the purpose could be
categorized according to the predefined rules. Specifically, 7% and 6% of the trips were
categorized as off and on peak commute respectively, 16% as shopping and 5% as leisure. As
discussed in the final paragraph, the choice sets contain routes which differ substantially in their

degree of detour and exposure to green.
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6. Results

This chapter presents the results of the study. First, the correlation matrices are discussed, which
guide the model estimation process. Then, the main effects multinomial logit (MNL) model is
discussed. Thereafter follows the main effects Path Size Logit (PSL) model, which contains a Path
Size correction factor. Next, the PSL model with interaction terms is discussed. Finally, the latent
class analysis (LCA) is elaborated upon, including a model-free comparison of the characteristics

of the identified classes.

6.1 Correlations

The paragraphs below discuss the correlation matrices which were generated to support the
model estimation process, as discussed in the methodology (§4.4). The correlations among route
characteristics and those among personal characteristics suggest which combinations may cause
issues of multicollinearity. The correlations between the route characteristics and route choice
behavior helps identify important determinants of route choice behavior. Finally, the correlation
matrices for specific subsamples indicate which personal characteristics relate to unique

preferences.

6.1.1 Correlations Among Route Characteristics
Appendix V (see also digital repository) features the correlation matrix for the route characteristics.
Several strong correlations in this matrix can be attributed to trivial relations between variables.
For example, accidents are positively related to intersections. This makes sense because
intersections increase the risks of collisions. To add, densities are derived based on counts and
these are therefore always to some degree related. Further, some characteristics commonly
coexist. To illustrate, traffic lights are generally located at intersections. Consequently, the
correlation between the number of traffic lights and intersections is high. The same holds for
bridges and water. Further, several route characteristics measured as occurrences along a route
correlate strongly with the length of a route. This makes sense because the longer a route, the
higher the chances of encountering some aspect. For example, longer routes can be expected to,
on average, pass more traffic lights, bridges, turns and intersections. The same holds for routes
with a longer total distance of cycleway. If one looks at the proportion of cycleway along a route
instead, these correlations diminish.

However, some high correlations deserve extra attention. Specifically, some aspects seem

to correlate strongly, because they concentrate in city centers. For example, the number of shops
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relates positively to the number of accidents and the presence of monuments. This can be
explained by the fact that many of the stores and monuments are located in the busy city center
of Utrecht, where accidents might be more likely to happen. Further, routes in urbanized areas
also seem characterized by relatively high levels of PM10, which can be related to high traffic
volumes and congestion. Among the land uses, the most notable observation in this regard is the
negative correlation between green and residential. This makes sense because there is limited
space for green in strongly urbanized areas. In sum, the distinction between urbanized and not
urbanized areas seems to be an important source of high correlations among route attributes.
Further, several strong correlations may come as a surprise. For example, shops do not
relate positively to retail areas. However, it is important to note that the city center of Utrecht is
defined as a residential area, instead of retail, in OpenStreetMap. Further, the number of turns and
intersections have a strong positive correlation, whereas their densities do not. To add, the
number of turns and intersections appears to be higher among routes that also pass a large
number of homes. This may be related to the high connectivity of residential streets. Furthermore,
the weighted average speed limit does not relate strongly to any other route characteristics.
Possibly, this is the case because most roads that were passed have relatively low speed limits
(see Table 5.2), yielding limited variation. Overall, most of these bivariate relations can be logically
explained. Nevertheless, they must be kept in mind when entering combinations of variables into

the model, to avoid multicollinearity.

6.1.2 Correlations Among Personal Characteristics

Appendix VI (see also digital repository) shows the correlation matrix for the personal
characteristics of the cyclists, the data obtained through the survey. Most noteworthy are the
strong correlations among the motivators as well as the deterrents of cycling. To illustrate, the
average correlation coefficient among the deterrents is 0.44. Among the motivators there seem to
be two clusters of variables with strong correlations. First, a group related to the convenience of
cycling for transportation, including ease, security, speed and traffic costs. The other can be
related to the positive experience of cycling, including benefits for physical and mental health,
enjoyment and pleasure from being outside. Interestingly, the correlation matrix also indicates that
females less often own a race or mountain bike, seem to enjoy cycling less and have a lower
self-reported physical condition compared to their male counterparts. Further, enjoyment of
cycling seems to increase with age (r = 0.40). The fact that these variables covariate can be
expected to complicate the estimation of a model that includes multiple motivators or deterrents

and personal characteristics. To gain a deeper understanding of the composition of the classes in
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the latent class model and what stimulates or discourages them may therefore require further

analysis beyond the output of the latent class model.

6.1.3 Correlations Between Route Characteristics and Route Choice Behavior

Appendix VII provides the correlations between the route characteristics and route choice
behavior, that is, the dummy variable for whether a route was chosen or not. As can be seen in
the correlation matrix, these correlations are somewhat low. This could be an indication of
conflicting preferences across specific segments, which may cancel eachother out. However,
some relations do stand out and indicate differences between chosen routes and the alternatives.
For example, the negative correlation for the degree of detour (r = -0.06) indicates that the chosen
routes are generally shorter than the alternatives. Further, they appear to less commonly go
through green areas, as indicated by the negative correlations for the proportion of green area
within the 25m, 50m and 100m buffers. Moreover, the weighted average speed with imputations
seems lower among chosen routes. The same goes for intersections and turns, both in terms of
counts and densities. Interestingly, the bike facility interruption density appears to be higher
among chosen routes. Overall, the degree of detour, presence of green, speed limits, turns and
intersections and bike facility interruptions seem to have the strongest relations with route choice

behavior.

6.1.4 Differences Based on Personal Characteristics

Appendix VIl (see also digital repository) features the correlations between the route
characteristics and choice behavior for specific subsamples. These statistics were generated to
gain insight into potential segments of cyclists with unique preferences. The subsample of cyclists
with children stands out, showing much stronger correlations compared to the other groups.
However, it must be noted that only four users reported to have children, which makes the results
unreliable for generalization.

Some correlations appear to follow a similar pattern across the subsamples. Specifically,
preference heterogeneity regarding turns and intersections appears to be minimal. However,
interesting differences can be observed for other route characteristics. First, young adults appear
to be particularly sensitive to the degree of detour (r = -0.73). In contrast, people who own a race
bike seem to have a relatively high willingness to detour (r = -0.07). Interestingly, people who
report not to cycle for enjoyment and young adults seem to be particularly discouraged by a high
traffic light density (r = -0.05 and r = -0.10), whereas seniors do not seem to be bothered by traffic
lights at all (r = 0.00). Further, those who do not seem to enjoy cycling appear to cycle in areas

with shops, possibly in the city center. Surprisingly, most cyclists do not seem to choose green
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routes. However, this might be related to a high number of utilitarian trips in the sample. Hence it
would be interesting to evaluate the interaction between a green landscape and trip purpose to
study this relation in more detail. Interestingly, agricultural green appears to be particularly popular
among cyclists who have reached their retirement age (r = 0.13 for 50m buffer) and low among
adults aged 30-50 years (r = -0.07 for 50m buffer). Air quality, measured by PM10 and NOXx levels,
appears to be particularly bad along routes chosen by those who do not enjoy cycling, again
indicating that the trips of those people may be restricted to the city centers. The same reasoning
may apply to the relatively high number of monuments along their routes (r = 0.74). Further,
considering the average imputed speed limit, most subsamples appear to choose routes with
relatively low traffic speeds. However, young adults (r = -0.77) appear to be the most sensitive to
high traffic speeds. In sum, these correlations do indicate that some preference heterogeneity

exists.

6.2 Modelling Results

The set of independent variables to be entered in the final Path Size Logit (PSL) model and Latent
Class Analysis (LCA) were selected on a trial-and-error basis, guided by the findings in §6.1. The
Akaike information criterion (AIC/N) and Mc Fadden’s rho squared were used to evaluate the
goodness of fit. More than fifty model specifications were tested, varying in terms of route
attributes, trip context variables and personal characteristics.? This process is summarized below.
For all models, VIF scores were below the threshold of 4 (Miles and Shevlin, 2001; Kang and
Fricker, 2013), indicative for the absence of problematic degrees of multicollinearity. Details
regarding the specific models are discussed in the subsequent paragraphs.

First, a Multinomial Logit Model was estimated. The explanatory variables with the highest
correlation with choice behavior were entered first (r > 0.05). Count and density measurements
were alternated to evaluate which combination results in the best model fit. Those independent
variables vyielding insignificant results were omitted iteratively to evaluate the consequences for
the remaining ones. Although the density of bike facility interruptions correlates relatively strongly
with route choice behavior (r = 0.70), it was excluded due to its interpretability. That is, the positive
correlation and MNL coefficient implies that cyclists prefer routes with a high density of bike
facility interruptions, which is counterintuitive. This does not seem to be attributable to the notion
that more bike facility interruptions also means more bike facilities, since the correlation between
those two is negatieve (r= -0.04). Plausibly, the documentation of bike facilities in Utrecht by

OpenStreetMap is lacking. As such, variables related to bike facilities were abandoned.

2 Intermediate results are available upon request.
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Thereafter, the Path Size correction factor was introduced, yielding a PSL model. The MNL model
definition was taken as a starting point and again route attributes were included and excluded
iteratively in an attempt to improve the model fit. The final PSL model definition remained the
same as that of the MNL model, including the correction factor.

Next, several interaction effects with context variables were introduced to the PSL model. These
context variables concern trip purpose (leisure, shopping, commute and other) and departure time
(off- versus on-peak). Earlier excluded variables were reintroduced to test whether their effects
might be context dependent.

Finally, a Latent Class Analysis was performed, based on the PSL model with interaction
effects. The findings discussed in §6.1.4 were used to select additional explanatory variables
which may show preference heterogeneity and personal characteristics which discriminate
between the classes. The added independent variables were also included post hoc in earlier

models to demonstrate that certain opposing preferences cancel eachother out.

6.2.1 Main Effects Multinomial Logit Model

Table 6.1 presents the results of the main effects Multinomial Logit Model. The McFadden Pseudo
Rho square statistic indicates a moderate model fit (Hensher, Rose and Greene, 2015). Further, all
VIF scores are below the threshold 4, the highest being 3.5 (see Appendix IX). The model mainly
contains route attributes which are related to traffic safety, efficiency and convenience. An
alternative model which considers only the non imputed speed limits was also tested (see
Appendix IX). The performance of this model is similar to the one that includes imputed speed
limits. However, the coefficient for the non imputed speed limit is positive, indicating that cyclists
would select routes with higher traffic speeds compared to their alternatives. Since this seems

implausible, the imputed version is used in subsequent analyses.

Table 6.1 - Results Main Effects Multinomial Logit Model McFadden Pseudo Rho square = 0.24, AIC/N = 28.6
Variable Coefficient Significance SIEEEE z e, exgtid (Cemielznen
Error |z|>z* Interval
Degree of Detour -0.07 *x 0.00 -34.51 0.00 -0.07 -0.07
Turn Density (/km) -0.39 * 0.01 -28.64 0.00 -0.42 -0.37
Number of Intersections -0.10 *x 0.00 -26.30 0.00 -0.11 -0.10
Number of Traffic Lights -0.11 * 0.01 -13.47 0.00 -0.13 -0.09
Speed Limit (Imputed) -0.08 * 0.01 -16.53 0.00 -0.09 -0.07
\Agriculture (50m Buffer) 0.01 * 0.01 1.83 0.07 0.00 0.03
Number of Bridges 0.46 * 0.02 23.98 0.00 0.42 0.50

* significant at 5% level, ** significant at 1% level

Several interesting observations can be made regarding the results in Table 6.1. Cyclists appear to

be sensitive to the degree of detour (8 = -0.07, p = 0.00). This indicates that cyclists prefer routes
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which do not deviate substantially from their shortest alternative. The other results do indicate that
cyclists are willing to detour to satisfy specific preferences. For example, cyclists seem to select
routes with a low density of turns (8 = -0.39, p = 0.00). That is, they seem to select simple routes
over complex ones, possibly because the latter are harder to remember and may delay cyclists
(Gliebe, 2012). Further, they avoid routes with a high number of intersections (8 =-0.70, p = 0.00)
and traffic lights (8 = -0.717, p = 0.017). It must be noted that traffic lights may simply be positioned
at busy intersections with a high risk of collision (Kang and Fricker, 2013), which could be the
reason that these intersections are considered particularly unattractive. To add, cyclists seem to
dislike routes with high speed limits (8 = -0.08, p = 0.00). Interestingly, chosen routes seem to
include a relatively high number of bridges (8 = 0.30, p = 0.00). This could be related to the high
number of bridges in the city center of Utrecht, which makes them hard to avoid. Moreover, these
canal bridges are relatively flat and therefore do not require much effort to pass. To add, the
strategic locations of these bridges may make them appealing connections between islands in the
network, as is the case in Copenhagen (Prato, Halldérsdéttir and Nielsen, 2018). Finally, cyclists
seem to be attracted to green surroundings (8 = 0.07, p = 0.07), although this effect is less

significant compared to the other attributes.

6.2.2 Main Effects Path Size Logit Model

Table 6.2 presents the results of the main effects Path Size Logit model. The significance of the
Path Size correction factor highlights the importance of correcting for spatial overlap when dealing
with revealed route choice data. The introduction of this parameter also severely improves model
fit (A McFadden Pseudo Rho square = 0.28, A AIC/N = -10.3). Hence, the Path Size correction
factor is included in all subsequent analyses. The McFadden Pseudo Rho square indicates that
the model fit is beyond acceptable (Hensher, Rose and Greene, 2015). Further, all VIF scores are

below the threshold 4, the highest being 3.9 (see Appendix IX).

Table 6.2 - Results Main Effects Path Size Logit Model McFadden Pseudo Rho square = 0.52, AIC/N = 18.3
Variable Coefficient Significance SR z Prob.* B (Caielzee
Error |z|>Z Interval

Path Size Factor 9.21 * 0.13 69.35 0.00 8.95 9.47
Degree of Detour -0.11 > 0.00 -46.35 0.00 -0.11 -0.10
Turn Density (/km) -0.49 * 0.02 -32.54 0.00 -0.52 -0.46
Number of Intersections -0.13 = 0.00 -30.60 0.00 -0.13 -0.12
Number of Traffic Lights -0.09 > 0.01 -10.36 0.00 -0.11 -0.08
Speed Limit (Imputed) -0.10 > 0.01 -18.85 0.00 -0.11 -0.09
IAgriculture (50m Buffer) -0.01 0.01 -1.43 0.15 -0.03 0.01
Number of Bridges 0.31 b 0.02 15.47 0.00 0.27 0.35

* significant at 5% level, ** significant at 1% level
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For almost all route attributes, the nature and significance of their effects correspond to the results
of the main effects Multinomial Logit model. The change that stands out most concerns the effect
of agricultural green, which has become insignificant. As discussed later, the preferences for

green surroundings mixed, yielding an insignificant result for the general sample.

6.2.3 Path Size Logit Model with Interactions

The interaction model slightly outperforms the main effects Path Size Logit model (A McFadden
Pseudo Rho square = 0.01, A AIC/N = -0.5). Again, all VIF scores are below the threshold 4, the
highest being 3.9 (see Appendix IX). Further, it provides valuable insights into the role of trip
purpose in route choice behavior. Specifically, the results in Table 6.3 indicate that preferences for
agricultural green depend on whether someone is commuting or not. That is, cyclists appear to
generally be attracted to farmland (8 = 0.06, p = 0.00), but not when commuting (8 = -0.50, p =
0.00). Most likely, commuters look for an efficient route and are not willing to trade speed, safety
and comfort for pleasurable surroundings (Bernardi, Geurs and Puello, 2018). Therefore, they likely
stick to urbanized areas, which offer a higher connectivity compared to agricultural landscapes.
As discussed in the next paragraph, the interaction effect between traffic lights and peak hour

departure time is only significant when the cyclists in the sample are segmentized.

Table 6.3 - Results Path Size Logit Model with Interactions McFadden Pseudo Rho square = 0.53, AIC/N = 17.8
Variable Coefficient Significance izl z e, o CaniElne?
Error |z|>z* Interval
Path Size Factor 9.37 ** 0.13 69.45 0.00 9.11 9.64
Degree of Detour -0.10 > 0.00 -45.20 0.00 -0.11 -0.10
Turn Density (/km) -0.45 b 0.02 -29.49 0.00 -0.48 -0.42
Number of Intersections -0.14 *x 0.00 -31.32 0.00 -0.15 -0.13
Number of Traffic Lights -0.06 ** 0.01 -4.84 0.00 -0.08 -0.03
Number of Traffic Lights X -0.03 0.02 -1.61 0.11 -0.07 0.01
Peak Hour
Speed Limit (Imputed) -0.10 ** 0.01 -17.82 0.00 -0.11 -0.09
\Agriculture (50m Buffer) 0.06 *x 0.01 6.55 0.00 0.04 0.08
\Agriculture X Commute -0.50 ** 0.03 -18.77 0.00 -0.55 -0.45
\IAgriculture X Leisure -0.05 0.06 -0.82 0.41 -0.17 0.07
Number of Bridges 0.30 *x 0.02 14.33 0.00 0.26 0.34

* significant at 5% level, ** significant at 1% level

6.2.4 Latent Class Analysis

Table 6.4 presents the results of the Latent Class Analysis. The model specification corresponds
to the Path Size Logit (PSL) model with interactions, including three personal characteristics. An
attempt was made to estimate a three or four class model, without success. This could be
expected due to the limited number of participants (N=739). The average class probabilities of

class 1 and 2 are 0.75 and 0.25 respectively. The significant constant in the probability model (c =
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3.73, p = 0.00) indicates that the preference heterogeneity cannot be fully explained by the
personal characteristics in the model. This is not unexpected, given the limited demographic data
that was available and the strong correlations across the motivators and deterrents of cycling (see
§6.1.2). However, the model fit has increased substantially in comparison to the PSL model with
interactions (A McFadden Pseudo Rho square = 0.11, A AIC/N = -4.1). This underscores the value
of differentiating between the two identified classes of cyclists. Further, the results do provide

some interesting insights into the compositions and preferences of these two classes.

Table 6.4 - Results Latent Class Model McFadden Pseudo Rho square = 0.64, AIC/N = 13.7
Variable Coefficient Sig. Standard z Prob. 95% Confidence
Error |z|>Z* Interval
Utility parameters in latent class 1 Average class probability: 0.747
Path Size Factor 16.89 *x 0.37 45.79 0.00 16.17 17.62
Degree of Detour -0.28 ** 0.01 -42.13 0.00 -0.30 -0.27
Turn Density (/km) -0.93 * 0.03 -30.88 0.00 -0.98 -0.87
Number of Intersections -0.12 ** 0.01 -22.32 0.00 -0.13 -0.11
Number of Traffic Lights -0.55 * 0.02 -30.84 0.00 -0.59 -0.52
Number of Traffic Lights X Peak Hour 0.20 ** 0.04 4.55 0.00 0.11 0.29
Speed Limit (Imputed) -0.58 * 0.01 -56.06 0.00 -0.60 -0.56
Agriculture (50m Buffer) -0.16 * 0.01 -14.22 0.00 -0.18 -0.14
Agriculture X Commute -1.11 ** 0.08 -13.89 0.00 -1.27 -0.95
Agriculture X Leisure 0.27 ** 0.04 7.38 0.00 0.20 0.35
Number of Bridges 0.71 * 0.05 14.25 0.00 0.61 0.81
Utility parameters in latent class 2 Average class probability: 0.253
Path Size Factor 6.87 ** 0.20 35.02 0.00 6.49 7.26
Degree of Detour -0.01 ** 0.00 -15.03 0.00 -0.01 -0.01
Turn Density (/km) -0.36 * 0.03 -12.55 0.00 -0.41 -0.30
Number of Intersections -0.16 * 0.01 -31.87 0.00 -0.17 -0.15
Number of Traffic Lights 0.01 0.03 0.45 0.65 -0.04 0.07
Number of Traffic Lights X Peak Hour -0.09 * 0.05 -2.06 0.04 -0.18 0.00
Speed Limit (Imputeq) -0.08 ** 0.01 -10.25 0.00 -0.09 -0.06
Agriculture (50m Buffer) 0.16 ** 0.02 9.07 0.00 0.12 0.19
Agriculture X Commute 0.08 0.05 1.77 0.08 -0.01 0.17
Agriculture X Leisure 0.53 * 0.12 4.39 0.00 0.30 0.77
Number of Bridges -0.14 * 0.03 -4.68 0.00 -0.20 -0.08
Probability model class 1 (Parameters class 2 fixed to zero.)
Constant 3.73 * 0.66 5.67 0.00 2.44 5.02
Motivated by Enjoyment -0.34 *x 0.11 -3.21 0.00 -0.55 -0.13
Race Bike Ownership -1.44 ** 0.19 -7.68 0.00 -1.80 -1.07
Age 65+ (retired) -1.44 * 0.37 -3.88 0.00 -2.16 -0.71

* significant at 5% level, ** significant at 1% level

79



The results of the class membership model at the bottom of Table 6.4 give an impression of the
compositions of classes 1 and 2. As indicated by the negative coefficients, cyclists who have not
reached retirement (<65 years old), do not own a race bike and do not report to cycle for pleasure,
are more likely to be a member of class 1.

Although some preferences appear to be similar in nature across the two classes, their
magnitudes seem to differ. For example, cyclists in class 1 appear to be more sensitive to the
degree of detour (8 = -0.28, p = 0.00) compared to those in class 2 (8 = -0.07, p = 0.00). In
confirmation, the mean degree of detour among class 1 (M = 0.51%) is much lower compared to

that of class 2 (M

13%). Further, class 1 appears to be slightly less concerned with the number
of intersections (8 = -0.72, p = 0.00 vs. B =-0.17, p = 0.00) and more concerned with turn density
(B=-0.93 p=0.00vs. B=-0.34, p = 0.00) and speed limits (8 =-0.58, p = 0.00 vs. 3 =-0.09, p =
0.00).

Other route aspects show even stronger distinctions in preferences. First, the number of
traffic lights does not appear to be relevant to cyclists in class 2 (p = 0.65), except during peak
hour, in which case they tend to avoid them (8 = -0.09, p = 0.04). In contrast, class 1 seems to
select routes with fewer traffic signals in general (8 = -0.55, p = 0.00), but appears to like them
better during peak hours (8 = 0.20, p = 0.00). These distinctive preferences explain why the
‘Number of Traffic Lights X Peak Hour’ interaction was insignificant in the earlier estimated PSL
model with interactions. Further, class 2 seems to have a preference for agricultural landscapes (8
= 0.18, p = 0.00), particularly when travelling to a leisure location (8 = 0.84, p = 0.00). Class 1, on
the other hand, appears to avoid farmland (8 = -0.76, p = 0.00), especially during commute (8 =
-1.11, p = 0.00). However, class 1 does seem to choose routes with agricultural surroundings
when on their way to a leisure location (8 = 0.27, p = 0.00), albeit to a lesser extent compared to
class 2 (8 = 0.84, p = 0.00). Interestingly, cyclists in class 1 appear to be attracted to bridges (B =
0.71, p = 0.00), whereas those in class 2 seem to avoid them instead (8 = -0.13, p = 0.00).

6.2.5 Class Comparison

As discussed in §6.1.2, there are strong correlations among the personal characteristics, in
particular regarding the motivators and deterrents of cycling. Consequently, only a handful of
them could be combined in the Latent Class Analysis (LCA). To gain a deeper understanding of
the two groups, independent-samples T-tests (for continuous variables) and Chi-Square tests (for
categorical variables) are performed. The participants are assigned to the class for which they
have the highest posterior membership probability. Appendix X (see also the digital repository)

provides the processed results of these tests.
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Table 6.5 provides the mean statistics for those variables that show significant differences across
the two identified segments of cyclists. These findings confirm the earlier conclusions regarding
these two groups. That is, class 1 seems to consider the bike as a mode of transportation. This
group is less motivated by physical or mental health or the mere enjoyment of cycling in itself.
Moreover, they seem to enjoy being outside less and are more discouraged by distant
destinations. They also report to be less motivated by traffic safety conditions compared to the
other group. This could be an indication that these people experience the traffic safety of their
surroundings to be suboptimal. Looking back at the results of the LCA, this experience may
originate from the higher need for a safe infrastructure. That is, this group puts more emphasis on
low speed limits and few crossings. Further, they have the tendency to seek the safety of
signalised intersections during peak hours. When these aspects are lacking, cyclists belonging to
class 1 will likely be less motivated to cycle. In sum, the above confirms the earlier reasoning that
this class puts efficiency and safety above pleasurable surroundings.

In contrast, class 2 has a stronger intention to cycle and seems to do so out of pure
enjoyment. They report being more motivated to cycle to benefit their physical and mental health
and to like being outside more. Further, this group reports to be less discouraged by distant
destinations, which corresponds to the earlier conclusion that this group is willing to tolerate a
relatively high degree of detour. Moreover, race bikes are much more popular among these
cyclists (41% versus 23%). Overall, it seems that this group consists of enthusiastic and more
advanced riders. This may explain why these cyclists are comfortable cycling among motorized
traffic at higher speeds (Sener, Eluru, Bhat, 2009). Further, their agility and confidence in traffic
safety may also justify the higher tolerance for intersections and turns, as was observed in the

LCA. Overall, these observations confirm the picture painted by the LCA.

Table 6.5 - Comparison Classes

Class 1 Class 2
Mean Median Mean Median

Motivators  Physical Health (1-7) 6.16 6.00 6.59 7.00

Mental Health (1-7) 5.65 6.00 6.17 6.00

Traffic Safety (1-7) 3.56 4.00 4.34 5.00

Being Outside (1-7) 5.94 6.00 6.39 7.00

Enjoyment (1-7) 5.52 6.00 6.17 6.00
Deterrents Distant Destination (1-7) 5.22 5.50 4.71 5.00
Other Intention to bike (1-5) 3.51 4.00 4.15 5.00

Percentage Percentage
Race Bike Ownership (0/1) 23% 41%
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6.3 Conclusion

The results reveal two distinguishable segments of cyclists. Table 6.6 summarizes the findings of
the current study. The first group is characterized by their tendency to stick to the shortest route.
They have relatively strong preferences when it comes to intersections, turns, speed limits and
traffic lights. As such, it seems that this group is particularly concerned with convenience and
safety. Indeed, they report that they are absolutely not motivated to cycle based on traffic safety.
They have a relatively low intention to cycle and are less likely to report to cycle because they
enjoy it. Hence, they appear to consider a bike to be a mode of transport. The second group is
willing to detour substantially more in comparison. These cyclists are more keen on green
surroundings, regardless of their trip purpose. They appear to be the more advanced cyclists who
are more likely to own a race bike and have a relatively high intention to cycle. To add, they report
to cycle because they like being outside, it increases their physical and mental health and they
simply enjoy it. Therefore, these cyclists seem to consider the bike as more than a transport

mode, they also cycle for pleasure.
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Table 6.6 - Summary Latent Class Analysis

Class 1: “Cycle for Transport”

Class 2: “Cycle for Pleasure”

Relatively low willingness to detour.
Average detour: 0.51%
Average route length: 2.7km

Relatively high willingness to detour.
Average detour: 13%
Average route length: 2.5km

Avoids crossings. A

Avoids crossings. ¥

Avoids traffic lights during off-peak hours, but

finds them more appealing during on-peak
hours.
Passes 2.4 traffic lights on average.

= |ufm|

Avoids traffic lights during on-peak hours.
Passes 2.7 traffic lights on average.

Prefers low speed limits. A

Prefers low speed limits. ¥

Prefers straight roads. A

AYS

Prefers straight roads. ¥

Avoids farmland when cycling, particularly
during commute. Is attracted to farmland
when traveling to/from a leisure location.

\

Prefers cycling in agricultural surroundings,
also during commute and particularly when
going to/from a leisure location.

Less likely to own a race bike (23%).

3D

More likely to own a race bike (41%).

Less likely to have reached retirement (4%).

65+

More likely to have reached retirement (10%).

Lower intention to bike (3.5 / 5).

R

Higher intention to bike (4.2 / 5).

Physical health ¥
Mental health ¥

Physical health A
Mental health A

Motivators - i
Being outside ¥ Bemg outside A
Enjoyment ¥ Enjoyment A
> Traffic safety
Distant destination A Deterrents Distant destination

Traffic safety

V = lower preference compared to other class, A = higher preference compared to other class
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7. Conclusions and Discussion

7.1 Summary of Findings
The results in Chapter 6 provide some interesting insights regarding the research questions
defined in §1.3.1. First, the results of the Multinomial Logit (MNL) model (§6.3.2) indicate which
built environmental and infrastructural characteristics influence route choices of cyclists in the
municipality of Utrecht. As it turns out, aspects related to efficiency and safety are dominant. That
is, all cyclists appear to be discouraged by roads with high speed limits and a large number of
intersections and turns. Most likely, they perceive the risk of collision to be higher on those roads.
To add, cyclists appear to be attracted to bridges, plausibly because these represent efficient
connections between parts of the city. Further, in general, traffic lights seem to be avoided,
possibly because they cause delays. Moreover, although cyclists seem attracted to agricultural
green, they appear to avoid it during their commutes. Again, efficiency seems to play a role here.
That is, cyclists seem to prefer strongly connected urbanized areas over losely connected
farmland when commuting. Finally, the willingness to detour among Utrecht’s cyclists is low,
specifically, 5.5% on average. Overall, it seems that cyclists from Utrecht are mainly concerned
with efficiency and safety.

The results also provide indications of preference heterogeneity among Utrecht’s cyclists.
In particular, two distinct segments are identified, as elaborated upon in §6.3.3 and §6.3.4. The
first segment seems to consider the bike to be a mode of transport. They put more emphasis on
efficiency, convenience and safety and are less willing to detour (0.51%). The second segment
seems to cycle out of pure enjoyment. They have a higher intention to cycle, are more motivated
to cycle to benefit their physical and mental health, like being outside more and are more likely to
own a race bike. They also appear to be more attracted to agricultural landscapes, regardless of
their trip purpose. Further, they are willing to detour considerably more (13%). Interestingly,
opposing preferences for traffic lights can be observed for these two segments. That is, the first
segment avoids them, but less so during peak hours, when signals may provide them with safe
and efficient passage through heavy traffic. In contrast, the second segment avoids traffic lights
during peak hours, possibly because they are willing to detour substantially to evade them. Table
6.6 (see §6.4) provides a complete summary of the differences between these segments.

Finally, there are also indications that context influences route choices. In particular,
farmland appears to be more appealing to both segments when travelling to or from a leisure

location. Possibly, cyclists are more concerned with efficiency during utilitarian trips, due to time
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constraints, and less so when cycling in their free time. Further, as discussed before, preferences

for traffic lights turn out to differ across on and off-peak situations.

7.2 Theoretical Implications
The results of this study confirm several earlier findings discussed in the literature review (Chapter
2). In a broad sense, the results underscore the importance of traffic safety to cyclists, as
discussed in §2.7. Further, several more specific findings are also replicated. For example, Kang
and Fricker (2013) also conclude that intersections with traffic signals are generally less appealing
to cyclists. They argue that these crossings might be more dangerous, which might be the
underlying reason for this behavior. To add, the appeal of traffic lights during times of heavy traffic
has also been observed by others (Park and Akar, 2019; Broach, Dill and Gliebe, 2012). As argued
by Broach et al. (2012), the safety benefits of traffic lights seem to outweigh the delay they cause
in those situations. Further, the aversion towards turns is broadly reported in the literature
(Providelo and da Penha Sanches, 2011; Hood, Sall and Charlton, 2011; Zimmermann, Mai and
Frejinger, 2017; Ghanayim and Bekhor, 2018; Broach, Dill and Gliebe, 2012; Prato, Halldérsdaéttir
and Nielsen, 2018; Skov-Petersen, Barkow, Lundhede and Jacobsen, 2018). Further,
Skov-Petersen, Barkow, Lundhede, and Jacobsen (2018) also report a disutility for green areas
among cyclists in Copenhagen. They argue that these areas are less safe and lack street lights.
The current study indicates that this aversion is most evident among cyclists who put efficiency
and safety first. To add, the results confirm that green surroundings are considered attractive in
the context of leisure trips, as also concluded by Chen, Shen and Childress (2018). Further, the
often reported preference for low speed limits is also evident in the current study (Anowar, Eluru
and Hatzopoulou, 2017; Ghanayim and Bekhor, 2018; Melson, Duthie and Boyles, 2014; Parkin,
Wardman and Page, 2008; Sener, Eluru and Bhat, 2009; Winters, Davidson, Kao and Teschke,
2011; Zimmermann, Mai and Frejinger, 2017). The insights discussed above are valuable, because
only a handful of studies focus on the unique context of the Dutch cycling infrastructure. It is
therefore interesting to see that some of the earlier observations from other countries apply to the
cyclists in Utrecht as well.

However, some findings conflict with those of earlier studies. For example, Zimmermann,
Mai and Frejinger (2017) report that cyclists avoid bridges. In contrast, cyclists in the current study
generally seem to be attracted to routes with bridges. Prato, Halldérsdottir and Nielsen (2018)
make a similar observation for cyclists in Copenhagen. As they argue, bridges may provide
efficient routes across town. It therefore seems important to consider urban layout when it comes
to preferences for bridges. In some cases, bridges could potentially be avoided to some degree

without the need to detour substantially. However, in other situations cyclists might be thankful for
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the quick shortcut they offer. Looking at the situation of the city center of Utrecht specifically,
where a large portion of the routes is concentrated, bridges are often hard to avoid when selecting
a short and efficient route. Moreover, the type of bridge may also be important to consider. For
example, Copenhagen and Utrecht both know a lot of flat bridges with low traffic volumes (see
examples in Appendix Xl). In contrast, the bridges in Eugene, where Zimmermann et al. (2017)
conducted their study, are generally high and part of major arteries. These may therefore be less
appealing to cyclists, because of the effort to climb them and the exposure to motorized traffic.
Another important contradiction between the findings of the current study and the reviewed
literature is related to the preferences for intersections. Specifically, Lu, Scott and Dalumpines
(2018) argue that cyclists are relatively tolerant of intersections, whereas the current study
indicates the opposite. There are several plausible explanations for this difference. First, the
sample of Lu et al. (2018) consists only of bikesharers, who may have distinct preferences from
the general population of cyclists. Further, the traffic situations and infrastructural layout in
Hamilton (Canada) might not be comparable to that of Utrecht. That is, the intersections passed
by cyclists in Hamilton could be less dangerous or troublesome. To add, Lu et al. (2018) do not
make a distinction between urbanized and agricultural areas. As observed in the current study,
cyclists seem to prefer the strongly connected urbanized areas over losely connected agricultural
ones. This preference for connectivity may have clouded the findings of Lu et al. (2018) regarding
intersections. That is, when cyclists choose routes in well connected urbanized areas, they will
simply be exposed to more intersections, but this does not mean they are attracted to them.
Further, several observations of the current study concern new contributions to the
existing literature. For example, the results provide strong indications for preference heterogeneity
regarding traffic lights. That is, it appears that some cyclists avoid them during peak hours,
whereas others seem to be attracted to them at those times. This may explain why there is no
clear consensus in the literature regarding this topic. Furthermore, recall that Prato, Halldérsdottir
and Nielsen (2018) observed a particularly strong aversion towards turns among a specific group
of cyclists. Unfortunately, they did not discuss the personal characteristics of those cyclists. The
current study made a similar observation for the first class in the Latent Class Analysis (LCA). The
use of a LCA with a class membership model based on personal characteristics allows one to
draw up a profile of both classes. Moreover, the supplementary analysis of the descriptives across
both classes provides even more detail on who the members of these classes are. The current
study is therefore able to conclude that those cyclists with a particularly strong aversion towards
turns have a relatively low intention to cycle, are less likely to own a race bike, are more

demotivated by distant destinations, and so on. In sum, the current study shows that it is
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important to consider trip context (e.g. departure time) and opposing preferences of different

segments when studying route choice behavior.

7.3 Practical Implications

The findings of this study are valuable to the municipality of Utrecht, since they may guide future
interventions to make the cycling infrastructure more attractive. Specifically, this study reveals two
distinct segments of cyclists with unique preferences. First, the dominant group of cyclists in the
sample find safety, convenience and efficiency most important. This group can be catered with
reduced speed limits, and signalized intersections at busy crossings during peak hours. Possibly,
the municipality could consider the installment of extra traffic lights which are only functional
during peak hours along the routes which are popular among this group. Moreover, they have a
preference for straight roads. Hence, new infrastructure targeted at these cyclists should be kept
as straightforward and simple as possible. Further, it is important to realize that this group is very
reluctant to detour. Thus, it will be very difficult to redirect these cyclists. Therefore, extremely
attractive infrastructure is needed to guide them in a different direction. These cyclists are also
more demotivated by distant destinations. Hence, a high facility density is needed to convince
these people to get on their bike at all. Those in the second group have a higher intention to cycle
and are willing to detour substantially. They are also more likely to own a race bike and to be
seniors. These cyclists are less sensitive to aspects related to traffic safety, such as intersections,
although these may still influence their route choices. In contrast, they put more emphasis on
green surroundings. Hence, these cyclists would benefit from bike-friendly infrastructure in
agricultural areas. Further, these cyclists appear to avoid traffic lights during peak hours, possibly
because they delay them. Responsive traffic lights which prioritise cyclists over motorized traffic
may make the inner city more appealing to this group during peak hours. In sum, the current
study identifies two segments of cyclists with distinct preferences, which should be considered
during future interventions by the municipality.

The findings of this study can also directly be translated to the cycling infrastructure of
Utrecht. Specifically, the estimates from the Path Size Logit model with interactions and the Latent
Class Analysis (LCA) can be used to score the links in Utrecht’s network. The results of these
calculations are translated to a dashboard, which can be accessed from the digital repository. The
user is able to select a class from the LCA, a trip purpose, and a departure time (off or on peak).
According to this input, an index score is calculated for each link in the network, following the
procedures described in §4.5. The links are assigned a color according to their index score

ranging from red (lowest) to green (highest). Thus, the user can intuitively identify segments which
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underperform. Moreover, it is possible to select one or more segments, which will trigger a refresh
of the figures and charts. This allows the user to zoom in on a particular area of interest.

The dashboard makes the data generated in this study accessible to those unfamiliar with
GIS software. This information is particularly valuable to policy makers. The dashboard allows
them to intuitively compare the attractiveness of specific road segments and identify problematic
situations. Moreover, the information in the tooltip and charts can help them derive why a
segment is underperforming. Thus, the dashboard can support the municipality to develop
successful interventions. For example, it may help them redirect cyclists away from overly
crowded areas by improving certain aspects of underperforming alternative routes. Further, the
dashboard could also be used by citizens or organizations such as De Fietsersbond, to give them
more leverage when confronting the municipality with complaints or making suggestions to
improve the cycling infrastructure. Appendix Xll provides an overview of the most important

functionality. A link to the dashboard is provided in the digital repository.
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Figure 7.1 - Screenshot of Dashboard

7.4 Limitations and Future Research

Although the use of GPS data to study revealed preferences has proven to be a fruitful approach,
it also imposes some limitations. First, strong correlations among route characteristics limit the
number of attributes which can be combined in a route choice model. That is, some aspects
simply do or do not coexist often in real life. In contrast, choice sets in stated preference

experiments can be specifically designed to disentangle the effects of strongly related attributes.
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This is possible because the alternatives are fictitious and their characteristics can be tweaked to
the researcher's will. As the availability of GPS data increases, new methods to deal with
correlated attributes in revealed route choice data could be very valuable. While these methods
are still lacking, studies may benefit from a large research area to maximize the variation in choice
situations. To add, it would be interesting to see more combinations of revealed and stated
preference experiments. For example, Hensher (2008) pooled stated and revealed mode choice
data to successfully “accommodate correlated observations” (p.23). In this regard, Ben-Akiva et
al. (1994) discuss methods which combine revealed preference data with different types of stated
preference data.

To add, revealed route choice studies rely on the available GIS data to determine the route
characteristics. Some of this data is publically available at a worldwide scale. For example, the
OpenStreetMap database documents speed limits and road types, along with many other aspects
all over the world. However, it is important to acknowledge that this service runs on volunteers.
The data is entered and reviewed by a community, but not by an official organization. It may
therefore be error prone or incomplete. For example, in the current study the documentation of
bike facilities, cycle lanes in particular, was clearly lacking. Specifically, only 230km of cycle lanes
are documented in OpenStreetMap for the whole province, amounting to about 3% of the roads.
Upon closer inspection, it turned out that many bike lanes were missing in the data. This made it
difficult to evaluate preferences for bike facilities, as many other studies have done. This could be
overcome by reaching out to local organizations such as De Fietsersbond to access professional
databases, given that the budget is available. However, there is also a benefit to the use of public
data. Since the current study relies only on public GIS data which is available at at least a national
scale, the methodology could directly be applied to other Dutch cities without extra expenses.

Further, revealed route choice studies require the researcher to generate alternative routes.
As discussed in §3.6, there are several methods to do so. The current study used the algorithm
developed by De Fietsersbond to generate nine types of alternative routes. These nine distinct
route types together compose a plausible set of alternatives that could be considered by cyclists.
However, it must be noted that the generated alternatives concern recommended routes by De
Fietsersbond, as such, they will not include extremely unattractive routes. In future research
efforts, it could be valuable to include one or more seemingly unattractive routes to increase
variation.

Further, there are several limitations of this study which can be related to the specific
dataset which was used. For example, the data lacked confirmed trip purposes. Thus the
potential purpose had to be derived based on the departure time and the type of origin and

destination. This led to a relatively large number of trips which could not be classified. Therefore,

89



it could be valuable to ask users of the ikFiets app or other apps alike to confirm their trip purpose
afterwards in the future. Furthermore, weather conditions were not included as context variables
in the analyses. This was a consequence of the decision to use regular trips, which are clusters of
repeated trips made by one user. It was not possible to retrieve the weather conditions for these
regular trips, because they are not assigned to a specific day. Future studies working with similar
data may consider studying weather patterns of trip clusters, but this was outside the scope of
the current study. Lastly, the data on the number of accidents turned out to be unsuitable for the
analysis, because of the lack of detail. Unfortunately, the exact locations of the accidents were
unknown. They could only be linked to complete roads. Moreover, only severe accidents which
involve multiple parties, injuries and fatalities are included. An initiative among data specialists at
the provincial level aims to generate a more complete view of the number of accidents, based on
the administration of the local first aid departments. However, as for now, this data is only
available for the main cycling infrastructure.

To add, the number of cyclists included in the analysis (N=139) is somewhat limited
compared to other studies. A larger dataset might have allowed for more detailed segmentation in
the Latent Class Analysis. Moreover, the cyclists participated in the survey at their own initiative.
The sample may therefore be subject to a self selection bias. An observation that supports this
proposition is the large proportion of highly educated participants compared to the national
average (83.1% and 40% respectively). If highly educated cyclists have distinct preferences, this
may have influenced the results of the study. Unfortunately, this is a common issue in these types
of studies (see for example Anowar, Eluru and Hatzopoulou, 2017; Winters, Davidson, Kao and
Teschke, 2011). Future studies could try to avoid this by specifically targeting unresponsive
groups. Moreover, travel diary data from the Dutch Mobility Panel initiative could be replaced by
GPS data in the near future, as suggested by Thomas, Geurs, Koolwaaij and Bijlsma (2015). It
would be very interesting to see a similar methodology be applied to this data as it becomes
available.

Finally, the current study has also sparked some suggestions for future research
directions. For example, it remains unclear whether the layout, height and other characteristics of
bridges influence route choice of cyclists. It would be valuable to see more studies such as
Broach, Dill and Gliebe (2012), conducted in different countries, to better understand preferences
for bridges. Moreover, it would be interesting to evaluate whether some relationships between
route characteristics and route choice behavior could be nonlinear in nature. Further, the
distinction between urbanized and agricultural areas in the current study suggest that connectivity
plays a role in route choices of cyclists. A detailed study on connectivity could elaborate on this

proposition. To add, it would be interesting to see a study which aims to capture route choice
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behavior of cyclists in an agent-based model. Such a model could be used to evaluate possible
implications of interventions in the cycling infrastructure. The findings of the current study, and

others alike, could be used to program the agents.
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Appendix | - Literature Review Methodology

The literature study is executed following the guidelines by Okoli and Schabram (2010) on
conducting a Systematic Literature Review. Accordingly, the process is initiated by explicitly
specifying the purpose of the review. Given the notion that this review employed only the main
author, no formal protocol is developed other than specifying the search and eligibility criteria and
training of additional reviewers is unnecessary. However, the outline of the process is recorded
and reviewed by a full professor and supervisor of the project. Next, the scope of the search is
defined. This includes the databases which are to be queried as well as the search terms that are
to be used. Comprehensiveness is ensured through combining both specific (e.g. cycleability) and
broad (e.g. cycling) search terms employing Boolean operators. Furthermore, an online thesaurus
is used to check for possible synonyms (e.g. cyclists, bicyclers, bicyclist, etc.). Once the
documents are collected, a practical screen takes place to develop a reasonably comprehensive
final list of publications, whilst accounting for the limitations of the reviewer. Documents that meet
the eligibility criteria move on to the extraction phase. In this phase, the data on specific topics is
extracted and cross-referenced. Predefined tabular formats assure that every study is reviewed
thoroughly and for the same elements. Finally, the findings are summarized and contrasted to
provide an overview of the literature on indicators of cycleability. To add, a list of commonly
studied indicators and their reported effects is developed. Further, the variations among different

types of cyclists (e.g. commuters vs. sportive cyclists) are summarized.

.1 Purpose of the Review

This literature review is conducted as part of a larger study on cycleability. The goal of the review
is twofold. First, it serves to generate a list of commonly studied indicators of cycleability and to
summarize the reported nature and magnitude of their effects. This overview is a starting point for
discussions with field experts on the relative importance and comprehensiveness of these
indicators. Furthermore, it serves as a guide for selecting the indicators to be considered in a
revealed preference experiment. Second, the review should provide insight into the reported
variations among different types of cyclists when it comes to the effects of the indicators. An
understanding of these differences helps determine which personal characteristics should be
considered during the upcoming experiment. Moreover, the results of the revealed preference
study can then be contrasted against earlier findings from the general literature. This may reveal
important attitudinal differences between the Dutch cycling culture, which is the focus of the

experiment, and the North-American culture, which is more commonly addressed in academic
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studies. All in all, the literature review should provide a strong foundation for the upcoming

experiment.

1.2 Research Protocol

As discussed in detail later, a set of databases and qualified journals is selected to conduct the
search. Further, a query is drawn up that fits the defined search criteria (see below). The resulting
list of content is screened during a “practical screen” for the applicability to the review at hand. A
set of eligibility criteria is defined to structure this process. These criteria can be found below. The
search results, their inclusion verdict, and the extracted information are recorded digitally in
tabular form. A predefined tabular format assures that every study is reviewed thoroughly and for
the same elements. The results of the literature search are presented in this original format in the

digital repository (‘literatureSearch.xlsx’).

Search Criteria: Eligibility Criteria:

e No grey literature. An article should... _ .
e Dates from 1990 onwards. e evaluate relationships between route

onl blished , N characteristics and cycling behavior.
¢ nly published or in-press. No grey e cover infrastructural, built environment

literature. and/or natural characteristics.

e Only English or Dutch. e contain predominantly objective

e SCimago Journal Rank Indicator Q1 or measures. That is, it should not focus
Q2 in the “Transport” category. on attitudinal or perceptual aspects.

1.3 Literature Search

As discussed earlier, several search criteria have been drawn up to limit the scope of the search.
The two most important ones, publication-quality and timeframe, are elaborated upon below. In
addition, only English and Dutch language articles are considered, given the language capabilities
of the reviewer. This should cover the general body of studies originating from Western societies.
Further, the articles should be published or in press and therefore available in the databases
accessible to the reviewer. Although Okoli and Schabram (2010) consider some of these issues
part of the practical screen, these criteria can already be applied to the search query. Doing so

reduces the burden of the practical screen.
1.3.1 Publication-Quality

The Sclmago journal ranking is used to generate a list of journals to be queried for publications.

This ranking is based on the SJR2 index, which was created to measure the “scientific prestige”
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of journals, based on the weighted number of citations (Guerrero-Bote & Moya-Anegoén, 2012).
The developers take into account varying citation customs, which makes the index comparable
across research fields. Moreover, citations are weighted for the thematic relatedness of the two
journals at hand. This adds more nuance to the indicator, as opposed to simpler measures such
as the impact factor. The current Sclmago journal ranking can be found on the ScimagoJR
website (SClmago, n.d.). When filtering for a particular subject, the ranking table will also show
whether a journal falls in the best quantile (Q1), second-best (Q2), and so on. The current literature
review considers the Sclmago journal ranking of 2019 given that this provides the most recent
complete overview. Only journals from the first and second-best quantiles in the subject category
“transportation” are considered. Further, some journals were excluded a posteriori upon a review
of their descriptions, to limit the number of results. These concerned journals with a sole focus on

public or maritime transport or logistics. The resulting journal list is provided in Table 1.1.

Table 1.1 - Sclmago’s (n.d.) Journal Ranking of 2019 in “Transportation” Category

Rank Title Quantile Selected
1 Analytic Methods in Accident Research Q1 v
2 Transportation Research, Part C: Emerging Technologies Q1
3 Transport Reviews Q1 v
4 Tourism Management Q1 v
5 Journal of Travel Research Q1 v
6 Transportation Research Part B: Methodological Q1 v
7 Transportation Science Q1 v
8 International Journal of Physical Distribution and Logistics Management Q1
9 Transportation Research Part E: Logistics and Transportation Review Q1 v
10 Transportation Research Part A: Policy and Practice Q1 v
11 EURO Journal on Transportation and Logistics Q1
12 IEEE Transactions on Transportation Electrification Q1
13 Transportation Q1 v
14 Journal of Transport Geography Q1 v
15 Transportation Research Part D: Transport and Environment Q1 v
16 Transport Policy Q1 v
17 International Journal of Sustainable Transportation Q1 v
18 Travel Behaviour and Society Q1 v
19 Sustainable Cities and Society Q1 v
20 Maritime Policy and Management Q1
21 International Journal of Transportation Science and Technology Q1 v
22 Journal of Air Transport Management Q1
23 Economics of Transportation Q1 v
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24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Transportation Research Part F: Traffic Psychology and Behaviour
Transportation Geotechnics

International Journal of Logistics Management
Mobilization

Transportmetrica B

International Journal of Tourism Research

Journal of Transport and Health

Transportmetrica A: Transport Science

Research in Transportation Business and Management
IATSS Research

Research in Transportation Economics

Journal of Transport and Land Use

Maritime Economics and Logistics

Transportation Journal

European Journal of Transport and Infrastructure Research
International Journal of Rail Transportation

Transportation Letters

Journal of Public Transportation

Urban Rail Transit

European Transport Research Review

Journal of Transport Economics and Policy

Public Transport

IET Intelligent Transport Systems

Journal of Traffic and Transportation Engineering (English Edition)
Case Studies on Transport Policy

Archives of Transport

Asian Journal of Shipping and Logistics

Transportation Planning and Technology

Journal of Transportation Safety and Security

International Journal of Shipping and Transport Logistics

Journal of Transportation Engineering

1.3.2 Timeframe

Under the influence of cultural, economical, and societal changes, it can be expected that the
behavior and preferences of cyclists have changed over time. It is therefore important to define a
timeframe for the literature search that limits the scope to reasonably recent publications. This
also makes the finding of the selected publications more comparable. An interesting development
to consider is the growing accessibility to cars in Western countries. High levels of car ownership

may mean that people are more selective in the use of a bike for particular trips, given they more
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often have the car as an alternative. That is, car ownership influences mode choice behavior.
Furthermore, the infrastructure has been adapted to accommodate the increasing stream of
motorized traffic. This has changed the look and feel of the streets to cyclists. To add, an increase
in traffic volume may also influence the cycling experience and could lead to more accidents.
Hence, car ownership is argued to substantially influence multiple facets of cycling behavior.

In the Netherlands, one can observe a rapid growth in the number of cars per capita between
1970 and 1980 (see Figure 1.1). This growth still continues today, but is slowly stagnating towards
one car per two inhabitants. Taking this into consideration, it can be concluded that between the
years 2000 and 2020, the level of accessibility to a car has been roughly the same. Therefore, the

search is constrained to publications between 2000 and 2020.

0.5
0.4
0.3
0.2
0.1
0.0

1930 1940 1950 1960 1970 1980 1990 2000 2010 2020

Figure I.1 - Cars Per Capita in The Netherlands

1.6 Practical Screen

The practical screen step is described by Okoli and Schabram (2010) as strongly subijective.
Nevertheless, the choices of the reviewer must result in a reasonably comprehensive final list of
publications, whilst accounting for the limitations of the reviewer. The guidelines for the practical
screen are discussed below. These complement the search criteria discussed in the previous

section.

1.6.1 Fit with Review Goals

The main inclusion criterion concerns the fit with the review goals. That is, a selected study should
discuss infrastructural, built environment, and natural factors which influence cycling behavior.
Preferably, a study should be related to preferences of cyclists or route choice behavior. However,
studies on cycling habits (e.g. frequency), trends (e.g. counts), experiences or mode choice may
also indirectly reveal preferences. For example, Snizek, Sick Nielsen and Skov-Petersen (2013)
relate positive and negative experiences of cyclists to aspects of the cycling infrastructure. The

aggregate of these perceptions captures the general attitude of cyclists towards particular
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aspects of the infrastructure. This attitude ultimately influences a cyclist’s evaluation of a route
and therefore the perceived cycleability. Hence, the literature review should not be limited to

studies that explicitly discuss indicators of cycleability.

1.6.2 Research Design

Cycleability can be measured in a variety of ways. For example, subjects can be asked explicitly
what boosts or hurts the cycleability of the infrastructure. Alternatively, discrete choice
experiments can be conducted where participants are presented with sets of hypothetical
situations and asked to choose, rate, or rank them. Their choices can then be studied to reveal
their preferences for particular aspects. In contrast, revealed choice experiments derive
preferences based on real-life actions. In the case of cycleability, these actions can be recorded
as GPS data of routes chosen by cyclists. Comparing the characteristics of the selected route and
the possible alternatives may again reveal the hidden preferences of the subject. Considering the

above, the selection is not restricted to a particular research design.

1.6.3 Study Setting

As discussed, the results of this literature review will serve as a foundation for an empirical study
on cycleability. This study will focus on the Dutch municipality “Utrecht”. The Netherlands
provides a unique case, given its historical cycling culture. Considering its densely populated
areas and flat topography, cycling often poses a suitable alternative to car travel. It is important to
realize that these characteristics may complicate the translation of research findings from other
countries to the Dutch situation. It is therefore tempting to focus the review on the unique Dutch
context only. However, it is expected that this will limit the number of selected studies
substantially. Consequently, the review might miss out on some important indicators which have
not been studied in the Netherlands. Therefore, studies conducted in other European and
North-American countries are also included in this review. However, their results are explicitly

contracted against the Dutch findings.
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Appendix Il - Coding Location Types

Retail / Eating Out

alcohol_shop, bakery_shop, bar, beauty_shop, bicycle_shop, cafe, charity_shop, chemist_shop,
chocolate_shop, clothes_shop, coffee_and_tea_shop, commercial, confectionery_shop,
convenience_shop, deli_shop, doityourself, electronics_shop, farm_shop, florist_shop,
furniture_shop, garden_centre_shop, greengrocer_shop, hairdresser_shop, hearing_aids_shop,
hifi_shop, houseware_shop, ice_cream, interior_design_office, internet_cafe, jewelry_shop,
kitchen_utensils_shop, lighting_shop, locksmith_shop, mall, optician_shop, pastry_shop,
perfumery_shop, pub, restaurant, retail, second_hand_shop, shop, soft_drugs_shop, sports_shop,
supermarket, toys_shop, variety_store_shop, interior_decoration_shop, art_shop, books_shop,

butcher_shop, shoes_shop, tattoo_shop, tobacco_shop

Work / School / Daycare

architect_office, educational_institution_office, events_office, industrial, kindergarten,
lawyer_office, music_composer_office, newspaper_office, ngo_office, office, research_institute,
school, tailor_school, university, interior_design_office, childcare, conference_centre,

coworking_office

Services / Healthcare
bank, car_repair_shop, charging_station, dentist, doctors, estate_agent _shop, fuel,
government_office, hospital, information, pharmacy, post_office, public_building, service,

social_facility, townhall, veterinary, car_rental, police

Leisure Locations

arts_centre, artwork, athletics_pitch, attraction, boat_rental, camp_site, caravan_site, cinema,
climbing_sports_centre, community_centre, cycling_sports_centre, equestrian_sports_centre,
field_hockey_sports_centre, fitness_centre, frisbee_pitch, gambling, golf_course,
gymnastics_sports_centre, hockey_sports_centre, ice_rink, library, museum, playground,
recreation_ground, sauna, skiing_sports_centre, soccer_pitch, pitch, soccer_sports_centre,
sports_centre, squash_sports_centre, stadium, swimming_pool, swimming_sports_centre,

tennis_sports_centre, theatre, water_park, zoo, fort
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Nature

forest, grass, nature_reserve, park, stream, water

Home / Visits
apartments, home, house, houseboat, neighbourhood, nursing_home, residence, residential,

beach

Places to Stay

hostel, hotel, caravan_site

Other

area, bicycle_parking, bridge, bus, canal, cemetery, childcare, church, fence, fire_station,
guest_house, greenfield, lock, mosque, parking, pedestrian area, picnic_table, place,
place_of_worship, platform, rail, recycling, river, roof, shed, static_caravan, station, tower, tram,

vending_machine, water_well, grave_yard, building, common, ferry_terminal, viewpoint
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Appendix Ill - Coding Educational Level

Low: Primary School, LBO, LEAO, LHNO, LTS, MAVO, VMBO, MULO, MBO
Medium: HAVO, HBS, VWO, HBO, HTS, HEAO
High: University (BSc / MSc)

SPSS Syntax:

RECODE opleiding (1=1) (2=1) (3=1) (4=2) (5=3) (7=SYSMIS) (6=SYSMIS) INTO
Edu_cat.
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Appendix IV - NLogit Syntax

Main Effects MNL Model:

Reset$
Read; File=path\to\data.csv $

create; Nalt=10 $

Nlogit

; Ins = chosen,Nalt

; rhs = detour, t_X46, t_X57, t_X3, t_X42, t_X27,t_X12
; pds = Nsets

; Parameters (Save posterior results)

; WTS = Ntrips

$

Main Effects PSL Model:

Reset$
Read; File=path\to\data.csv $

create; Nalt=10 $

Nlogit

; lhs = chosen,Nalt

; rhs = PSin, detour, t_X46, t_X57, t_X3, t_X42, t_X27,t_X12
; pds = Nsets

; Parameters (Save posterior results)

; WTS = Ntrips

$
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PSL Model With Interaction Effects & LCA:

Reset$
Read; File=path\to\data.csv $

create; Nalt=10 $

Nlogit

; Ins = chosen,Nalt

; rhs = PSin, detour, t_X46, t_X57, t_X3, t3c15, t_X42,t_X27, 127¢10, t27¢c9, t X12
;lem =18, f1, u12

; Pts=2

; pds = Nsets

; Parameters (Save posterior results)

; WTS = Ntrips

$
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Appendix V - Correlations Among Route Characteristics

Route Total
Length

Route Total Length

Degree of Detour

Traffic Lights Count

Traffic Lights Density (/km})

Shops Count

Shops Denisty (/km)

Accidents Count

Accidents Denisty

Bridges Count 0.73
Bridges Denisty

Cycleway Total Length

Cycleway Proportion

Cycle Lane Total Length

Cycle Lane Proportion

Bike Facility Proportion

Landuse 25m buffer - Archiculture
Landuse 25m buffer - Green
Landuse 25m buffer - Retail
Landuse 25m buffer - Commercial
Landuse 25m buffer - Industrial
Landuse 25m buffer - Residential
Landuse 50m buffer - Archiculture
Landuse 50m buffer - Green
Landuse 50m buffer - Retail
Landuse 50m buffer - Commercial
Landuse 50m buffer - Industrial
Landuse 50m buffer - Residential
Landuse 100m buffer - Archiculture
Landuse 100m buffer - Green
Landuse 100m buffer - Retail
Landuse 100m buffer - Commercial
Landuse 100m buffer - Industrial
Landuse 100m buffer - Residential
PM10 Level

PM10 Maximum Level

NOx Level

NOx Maximum Level

Weighted Average Speed - Imputed
Weighted Average Speed - Known Only
Turn Count

Turn Density (/km)

Intersection Count

Intersection Density (/km)

Bike Facility Interruption Count 0.76
Bike Facility Interruption Denisity (/km)

50m buffer - Water Area 0.77
50m buffer - Water Area / km

Home Count 0.54

Home Density (/km)
Monument Count
Monument Weighted Count.

Count

0.57

Traffic Lights Traffic Lights Shops Count
Density (/km)

0.76
0.54

0.61
0.52

Shops
Denisty (/km)

0.76

Accidents Accidents Bridges

Count Denisty Count
0.73
0.54
0.67
0.67
0.55
0.63
0.74
0.62 0.74
0.64
0.63
0.59
0.53 0.51
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Bridges Cycleway

Cycleway

Cycle Lane

Cycle Lane Bike Facility  Landuse Landuse Landuse Landuse Landuse

Denisty Total Length  Proportion  Total Length  Proportion Proportion  25m buffer - 25m buffer - 25m buffer - 25m buffer - 25m buffer -

0.57

0.54

0.74

0.54

0.71
0.79

Archiculture Green Retail Commercial  Industrial

0.79
071

-0.63

-0.52



Landuse Landuse Landuse Landuse Landuse Landuse Landuse Landuse Landuse Landuse Landuse Landuse Landuse  PM10 Level PM10 NOx Level NOx Weighted Weighted  Turn Count

25m buffer - 50m buffer - 50m buffer - 50m buffer - 50m buffer - 50m buffer - 50m buffer - 100m buffer - 100m buffer - 100m buffer - 100m buffer - 100m buffer - 100m buffer - Maximum Maximum  Average Average
Residential Archiculture  Green Retail G i i Residenti i Green Retal  C i i identi Level Level Speed - Speed -
Imputed  Known Only

Route Total Length 0.35 0.23 0.35 -0.19 0.09 0.08 0.36 0.24 0.38 0.19 0.13 0.16 0.30
Degree of Detour 0.10 0.14 0.08 0.01 0.01 0.09 0.10 0.15 0.08 0.03 0.10 0.09
Traffic Lights Count ).03 0.07 0.01 0.05 0.16 0.04 0.09 0.01 0.03 017 0.33 0.14 0.06
Traffic Lights Density (/km) 0.13 1 -0.16 017 0.1 0.13 0.01 017 0.19 0.12 0.24 021
Shops Count 020 -0.11 -0.26 -0.0¢ 0.20 -0.25 010 -0.04 0.37 0.05 [EF
Shops Denisty (/km) 0.23 032 0.23 -0.31 0.04 -0.07 0.27 0.10 012
Accidents Count 0.14 0.18 0.01 0.14 0.17 0.03 0.45 0.06 038
Accidents Denisty 0.32 -0.15 -0.34 0.0¢ 0.04 0.32 -0.34 01 035 0.08 0.04 0.10
Bridges Count 0.16 0.08 0.20 0.10 017 0.22 0.10 0.25 0.10 0.16 _
Bridges Denisty 0.11 -0.10 0.05 0.0¢ 0.09 0.10 -0.05 018 0.06 0.19 0.04 0.04 0.12
Cycleway Total Length 0.08 017 oo [ oss
Cycleway Proportion _ 0.04 0.02
Cycle Lane Total Length 0.07 0.30
Cycle Lane Proportion 0 -0.02
Bike Facility Proportion 0.03 0.06
Landuse 25m buffer - Archiculture 0.19 0.18
Landuse 25m buffer - Green 0.14 0.22
Landuse 25m buffer - Retail 0.04 -0.15
Landuse 25m buffer - Commercial 0.08
Landuse 25m buffer - Industrial 0.04
Landuse 25m buffer - Residential 0.20
Landuse 50m buffer - Archiculture 0.15
Landuse 50m buffer - Green 0.25

Landuse 50m buffer - Retail

-0.11
Landuse 50m buffer - Commercial 0.00
Landuse 50m buffer - Industrial 0.03
Landuse S0m buffer - Residential 0.03

Landuse 100m buffer - Archiculture

0.16
Landuse 100m buffer - Green 027
Landuse 100m buffer - Retail 0.16
Landuse 100m buffer - Commercial 0.07
Landuse 100m buffer - Industrial 0.0 0.06
Landuse 100m buffer - Residential 024 023
PM10 Level 0.11 -0.07
PM10 Maximum Level 0.10 023
NOX Level 0.05 0.15 0.23 0.13 0.16
NOx Maximum Level -0.22 0.06 0.0: 0.1 0.39
Weighted Average Speed - Imputed -0.01 0.10 0.04 0.0 -0.03 0.1 0.10 1.00 0.14
Waeighted Average Speed - Known Only 022 0.15 0.18 0.14 023 0.18 0.22 1.00 0.20
Turn Count 0.20 0.15 0.25 0.22 X 0.27 0.20 1.00
Turn Density (/km) 0.34 0.19 0.30 0.34 0.19 0.32 017 0.09
Intersection Count 0.10 0.08 011 0.0¢ 0.03 0.11 0.09 0.14 0.18 _
Intersection Density (/km) . 056 0.05 o s 014 020
Bike Facility Interruption Count 0.13 0.04 0.09 0.20 017 _
Bike Facility Interruption Denisity (/km) 0.28 8 0.06 0.19 -0.23 0.14 0.11
50m buffer - Water Area 0.27 0.16 0.24 0.15 0.15 0 0.28 0.15 0.25 0.14 017 026 _
50m buffer - Water Area / km 0.10 0.07 0.10 -0.12 0.14 0.06 -0.10 0.04 0.08 -0.11 0.18 0.04 0.07 0.23
Home Count 0.11 -0.12 015 -0.25 -0.08 0.0 0.1 o0n -0.13 026 0.08 0.0 _
Home Density (/km) 0.39 -0.29 -0.13 017 0.04 0.39 0.29 _ 0.16 -0.19 5 -0.26
Monument Count 0.20 0.12 021 -0.23 0.03 0.07 0.20 0.12 -0.20 024 2 038
Monument Weighted Count 0.10 0.05 012 022 0.04 0.05 0.10 0.04 0.09 023 003 0.46
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Route Total Length

Deagree of Detour

Traffic Lights Count

Traffic Lights Density (/km)

Shops Count

Shops Denisty (/km)

Accidents Count

Accidents Denisty

Bridges Count

Bridges Denisty

Cycleway Total Length

Cycleway Proportion

Cycle Lane Total Length

Cycle Lane Proportion

Bike Facility Proportion

Landuse 25m buffer - Archiculture
Landuse 25m buffer - Green
Landuse 25m buffer - Retail
Landuse 25m buffer - Commercial
Landuse 25m buffer - Industrial
Landuse 25m buffer - Residential
Landuse 50m buffer - Archiculture
Landuse 50m buffer - Green
Landuse 50m buffer - Retail
Landuse 50m buffer - Commercial
Landuse 50m buffer - Industrial
Landuse 50m buffer - Residential
Landuse 100m buffer - Archiculture
Landuse 100m buffer - Green
Landuse 100m buffer - Retail
Landuse 100m buffer - Commercial
Landuse 100m buffer - Industrial
Landuse 100m buffer - Residential
PM10 Level

PM10 Maximum Level

NOx Level

NOx Maximum Level

Weighted Average Speed - Imputed
Weighted Average Speed - Known Only
Tumn Count

Turn Density (/km)

Intersection Count

Intersection Density (/km)

Bike Facility Interruption Count
Bike Facility Interruption Denisity (/km)
50m buffer - Water Area

50m buffer - Water Area / km
Home Count

Home Density (/km)

Monument Count

Monument Weighted Count

Turn Density
(tkm)

Intersection
Count

0.82

0.64

0.57

0.70

0.71

0.81

0.68

0.55

0.62

0.51

Intersection Bike Facility Bike Facility 50m buffer - 50m buffer - Home Count Home
Density (/km) Interruption Interruption Water Area Water Area / Density (/km)
Count Denisity km
(/km)
0.76 0.77 0.54
0.64 0.63
0.58
0.79 0.66 0.60
0.74 0.57 0.68
0.75
0.62 0.57
0.62 0.65
0.65
0.57
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Monument
Count

0.61

0.59

0.57

Monument
Weighted
Count

0.52

0.53

0.51

0.59



Appendix VI - Correlations Among Personal Characteristics

Race Bike

Mountain Bike

Speed

Physical Health

Mental Health

Climate

Traffic Safety

Travel Costs

Being Outside
Enjoyment

Ease

Ensurance (e.g. no traffic jams)
Precipitation

Wind

Cold

Tired

Sweat

Distant Destination
Luggage

Fancy Clothing

Gender

Physical Condition
Intention to Cycle

Age

Living Alone

Couple without children
Alone / couple, with children
Student housing, community or
with family

Lower Education Level
Medium Education Level
High Education Level
Age 65+

Race Bike

0.16
0.12

0.12

0.06
018
013
015
0.10
003
0.14
014
<008
014
024
0.09

011
0.19

022

015
0.15

Mountain
Bike
0.16

0.16

014
0.06
0.10
006
-0.09
0.08

0.16
0.10
005
013
-024
0.08
-006

-0.08

Speed
012

0.16

0.1

0.39
-018
<015
011

027
<011
-016
012

oos
0.10
0.10

0.09
-0.09

Physical Mental

Being

Health Health Climate Traffic Safety Travel Costs Outside Enjoyment Ease traffic jams) Precipitation mth

011
0.16

030

-0.25
-0.20
-0.18
-0.10

-0.20
-0.05

0.08
an
026

013
-0.27

-0.06
0.08
012

0.11
047

0.25
0.30
0.08
0.85
0.57
023
0.25
018
023
014
016
021
-0.35
010

0.07
005
013

010
0.23
0.21

-0.12
0.16
0.14
045
0.25

023
0.38
027
0.37
028
-0.31
-0.36
-023
027
011
-0.10
-0.12
0.07
0.09
0.10
024
-0.10

0.1
-0.09

007

017

0.37
014

023

0.15
027
0.38
027
0.24
-0.10
-0.16
-007
-0.06
013
-0.20
-0.08

-0.10
0.05
023
017
-0.11
-0.15

012

-0.09
023

-0.14
0.16
o7
008

0.15

-0.05
-0.09
022
0.28

013
017
017

0.08
0.13

030
-018

0.09
-0.15
0.08

0.11
0.1
ooa

0.06

048
0.85
0.38
027
-0.05

0.63
014
0.20
018
027
023
0.16
0.15
027

0.08
023
0.05

0.21
022

0.10
0.1

0.46
0.57
027
0.38
-0.09
0.63

0.18
-0.34

0.06
-0.08
023

-194"
008
0.44
030
023
0.37
027
022
014
021

0.33
-0.12

007
-0.10

-0.08
-0.11

011
0.07
0.09
008
0.15
0.08
0.06

Ensurance
(e.g.no
-013 0.15 010
-0.09 0.08
0.39 -0.18 0.15
022 01 0.25
0.25 019 023
028 0.31 -0.36
024 -0.10 0.16
028 2 013
020 -0.18 027
024 -0.13 -0.28
0.39 012
-0.14 £0.15
014 0.75
-0.15 075
013 0.59 086
0.1 0.52 082
-0.30 0.50 0.52
-0.14 028 024
047 0.38
-0.08 053 0.52
-0.06 C
0.19 -027 £0.18
015 015 018
022 022
-0.10 0.10 013
0.12 0.15
020 -0.20 027
-0.17
-007
-0.07
011
006 01 011
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Cold

0.07
0.1
020
0.14
023
-0.07

0.17
023
-0.26
007
-0.13
0.59
0.66

057
0.49
029
038

-0.21
0.09
024
0.14
0.08

019 -

0.08

Tired
0.14

-0.15
-0.18
0.6
-027
-0.06
017
-0.16
-0.16
0.10
-0.1
0.52
0.62
0.57

-0.06
0.08

Distant Fancy
Sweat Destination Luggage Clothing Gender Condition
014 0.14
0.16 0.10 0.05 0.13
027 0.1 0.16 -0.12
-0.10 -0.20 -005
021 0.35 -0.10
0.1 -0.10 0.12
013 -0.20 -0.08
C 0.08
-0.15 -027
017 -025 0.15 -0.06
008 £on
-0.30 -0.14 0 -0.08
0.50 028 047 0.53
0.52 0.24 0.38 0.52
0.49 029 0.36 0.43
0.49 033 0.36 0.42
027 0.34 0.49
027 0.38 0.23
0.34 0.38 0.35
0.49 023 035
-0.08 0.07 0.15
029 013 0.25 -021
0.05 0.15
-0.08 -0.09 018 4
0.15 007 0.14
-0.06
-0.09 2 -0.12
-0.08 -0.08
020 017 -0.10
0.1 -0.08
0.11 017 0.12 0.06
015 023 -007

-.240™
-0.24

0.07
-0.10
0.13
-0.05
-0.24
0.11
-0.08

0.07
-0.06
0.07

023
-0.08
022

0.1
-0.08
0.24

-0.07
-0.10
0.14
-0.12

Physical

0.08
0.07
0.09
0.05

0.10
007
0.19
027
018
021
023

013
-0.25
021
-0.23

012

0.11
-0.09

Intention to
Cycle

0.08
0.08
o
0.05
0.10
023
0.30
008
0.09
009
0.15
015
0.18
0.09
007

005
0.15
-0.08

013

0.1
013

Age Living Alone mth

0.11
-0.08
0.10
0.26
013
0.24
017
-0.18
023
0.40
0.08
022
-0.22
-024
0.1
-0.08
-0.09
-0.18

-022
0.07

0.1
0.22
-0.47

-0.07
0.07

192"

0.10

0.10

015
0.10
o010
013
014
0.10
015
-0.07

0.30
-0.32
0.15

0.09
-0.07
o1

0.1

-0.10

0.1
0.09

007
0.24

mth
-216"

0.09
013
023
0.16
022

015
021

0.16
006
020
-0.20
-0.z7

mth

-0.09
-0.21
021
-0.09
-0.15
0.08
-022
-0.34

047

018 ¢
013 00
009 ¢

012
-0.08

022
-0.32
-0.57

006

-0.06
-0.08

-0.12

-0.47

-0.15

027
029

020

007 ¢

0.10
023

-0.15
a1

Lower Medium High
Education Education Education
Level Level Level

-0.15 0.15
-0.08
0.06 0 0
-0.06 0.08
007
0.12 -0.09
011 -0.11
0.06 -0.06
007 -0.07 0.11
20.10 0 02
-0.06 0.06 0.02
- 011 0.11
020 008 0.17
017 0.12
0.10 ) 0.06
007 -0.10 0.14
0.1 -0.09 03
0.13 1,04 0.1
007 0.07 4
0.00 0.07
-0.10 007
0.06 -0.07 0.10
0.20 015
-0.23 0.3
022 s
0.1 ) 010

Age 65+

0.12
017
023
0.08

0.11
023

0.06
on
on
-0.09

0.15
-023
-0.07
012
0.10
0.13
0.55
0.1
024
023
0.1

0.1



Appendix VIl - Correlations Route Characteristics and Behavior

Route Attribute

Correlation with Chosen Route Dummy

Route Total Length

Degree of Detour

Traffic Lights Count

Traffic Lights Density (/km)

Shops Count

Shops Denisty (/km)

Accidents Count

Accidents Denisty

Bridges Count

Bridges Denisty

Cycleway Total Length

Cycleway Proportion

Cycle Lane Total Length

Cycle Lane Proportion

Bike Facility Proportion

Landuse 25m buffer - Agriculture
Landuse 25m buffer - Green
Landuse 25m buffer - Retail
Landuse 25m buffer - Commercial
Landuse 25m buffer - Industrial
Landuse 25m buffer - Residential
Landuse 50m buffer - Agriculture
Landuse 50m buffer - Green
Landuse 50m buffer - Retail
Landuse 50m buffer - Commercial
Landuse 50m buffer - Industrial
Landuse 50m buffer - Residential
Landuse 100m buffer - Agriculture
Landuse 100m buffer - Green
Landuse 100m buffer - Retail
Landuse 100m buffer - Commercial
Landuse 100m buffer - Industrial
Landuse 100m buffer - Residential
PM10 Level

PM10 Maximum Level

NOXx Level
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-0.06

-0.07

-0.07

-0.06



Route Attribute Correlation with Chosen Route Dummy

NOx Maximum Level
Weighted Average Speed - Imputed -0.10
Weighted Average Speed - Known Only

Turn Count -0.11
Turn Density (/km) -0.09
Intersection Count -0.06
Intersection Density (/km) -0.06

Bike Facility Interruption Count

Bike Facility Interruption Denisity (/km) 0.10
50m buffer - Water Area

50m buffer - Water Area / km

Home Count

Home Density (/km)

Monument Count

Monument Weighted Count
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Appendix VIl - Differences Based on Personal Characteristics

Overall
Sample
Route Total Length

Degree of Detour

Traffic Lights Count
Traffic Lights Density (/km)
Shops Count

Shops Denisty (/km)
Accidents Count

-0.06

Accidents Density

Bridges Count

Bridges Denisty

Cycleway Total Length

Cycleway Proportion

Cycle Lane Total Length

Cycle Lane Proportion

Bike Facility Proportion

Landuse 25m buffer - Archiculture
Landuse 25m buffer - Green
Landuse 25m buffer - Retail
Landuse 25m buffer - Commercial

-0.07

Landuse 25m buffer - Industrial
Landuse 25m buffer - Residential
Landuse 50m buffer - Archiculture
Landuse 50m buffer - Green
Landuse 50m buffer - Retail
Landuse 50m buffer - Commercial

-0.07

Landuse 50m buffer - Industrial
Landuse 50m buffer - Residential
Landuse 100m buffer - Archiculture
Landuse 100m buffer - Green
Landuse 100m buffer - Retail
Landuse 100m buffer - Commercial

-0.06

Landuse 100m buffer - Industrial
Landuse 100m buffer - Residential
PM10 Level

PM10 Maximum Level

NOXx Level

NOx Maximum Level

Weighted Average Speed - Imputed
Weighted Average Speed - Known Only

-0.10

Turn Count
Turn Density (/km)
Intersection Count

-0.11
-0.09
-0.06
Intersection Density (/km) -0.06
Bike Facility Interruption Count

Bike Facility Interruption Denisity (/km)
50m buffer - Water Area

50m buffer - Water Area / km

Home Count

Home Density (/km)

Monument Count

0.10

Monument Weighted Count

Young Adults Adults Seniors 65-

-0.13 -0.08 -0.06
-0.05
0.06
0.07
-0.07
-0.05
0.08 -0.12 -0.07 -0.07
0.07
-0.08 0.09
-0.06 0.06
-0.07
-0.10 -0.08 -0.07
0.08
-0.08 0.08
-0.06 0.06
-0.08
-0.08 -0.08 -0.06
0.09
-0.07 0.08
-0.05 0.07
-0.17 009 -0.08 -0.10
0.05
-0.12 011 -010 -0.11
-0.08 -0.10 -0.07 -0.09
-0.07 -0.06 -0.06 -0.08
-0.05 -0.07 -0.05
0.08 010 013 o0.10

65+

0.05

-0.07
0.05
0.05

-0.07
0.10

-0.08
0.09

0.08

0.13

-0.10

0.08

0.07

-0.13

0.08

0.07

-0.12
-0.08
-0.05
-0.05
-0.08
0.12

-0.06

Correlation with Route Choice Dummy

Females Males No Racebike Racebike Children No Children

-0.06 -0.09
0.05
-0.05
-0.09 -0.09
0.06
0.05 -0.08
-0.10 -0.09
0.06
0.06
-0.08
-0.08 -0.09
-0.05
0.06
-0.06
-0.08 -0.12 -0.09 -0.14
0.05
011 -0.11 -0.11 -0.11
-0.07 -0.11 -0.07 -0.12
-0.06 -0.08 -0.06 -0.06
-0.08 -0.08
012 0.8 0.1 0.10
-0.05
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0.15

-0.06
0.09
0.21

-0.06
-0.08
0.05
0.05
-0.11

0.07
0.25
0.13
-0.14
-0.28

0.10
0.26
0.11

-0.19
-0.25
-0.05
0.13
0.26
0.11

-0.13

-0.14
0.09
0.08

-0.09

0.05

-0.08

-0.11

-0.11
-0.10
-0.08
-0.06

0.10

Low Enjoyment High Enjoyment

(1-3)

-0.08

-0.10
0.13

0.06

0.05
0.07

-0.10

0.12
0.07

0.05

-0.05

0.06

-0.07

0.07

0.06
0.06
0.06
-0.08

-0.14

-0.12

0.07
0.14

0.14
0.12

(&-7)

-0.10

0.05

0.08

-0.10

0.06
0.08

-0.05
-0.09

0.06

-0.10

-0.11
-0.08
-0.06
-0.06

0.11

min
-0.05
-0.13
-0.05
-0.10
0.01

0.02
-0.02
0.00
-0.03
-0.01
-0.03
-0.10
0.02
0.02
-0.07
-0.05
-0.12
-0.04
-0.04
-0.08
-0.06
-0.07
-0.10
-0.05
-0.04
-0.08
-0.06
-0.08
-0.13
-0.05
-0.05
-0.07
-0.05
0.00
-0.02
-0.01
-0.03
-0.17
-0.03
-0.14
-0.12
-0.07
-0.08
-0.01
0.08
-0.05
-0.06
-0.04
0.01
-0.01
-0.01

-0.02
-0.01
-0.01
0.00
013
0.06
0.08
0.02
0.05
0.07
-0.02
-0.01
012
0.07
0.03
0.10
0.08
0.09
0.07
0.09
0.08
0.13
0.03
0.08
0.08
0.08
0.07
0.02
0.03
0.08
0.09
0.08
0.07
0.01
0.06
0.08
0.06
-0.08
0.05
-0.08
-0.05
-0.04
0.01
0.07
0.14
-0.03
-0.01
0.00
0.04
0.14
012

range

0.03
0.12
0.04
0.10
0.13
0.04
0.09
0.02
0.08
0.08
0.01
0.10
0.11
0.05
0.10
0.15
0.18
0.13
0.11
0.17
0.14
0.20
0.13
0.12
0.12
0.16
0.12
0.09
0.15
0.13
0.14
0.15
0.12
0.02
0.08
0.07
0.09
0.10
0.08
0.06
0.07
0.03
0.10
0.08
0.08
0.03
0.05
0.04
0.03
0.15
0.13



Appendix IX - Output Models

Main Effects MNL Model:

Results:

Results Main Effects Multinomial Logit Model McFadden Pseudo Rho square = 0.24, AIC/N = 28.6
Variable Coefficient Significance Standard z Prob. 95% Confidence

Error |z|>z* Interval

Degree of Detour -0.07 ** 0.00 -34.51 0.00 -0.07 -0.07
Turn Density (/km) -0.39 ** 0.01 -28.64 0.00 -0.42 -0.37
Number of Intersections -0.10 ** 0.00 -26.30 0.00 -0.11 -0.10
Number of Traffic Lights -0.11 ** 0.01 -13.47 0.00 -0.13 -0.09
Speed Limit (Imputed) -0.08 ** 0.01 -16.53 0.00 -0.09 -0.07
\Agriculture (50m Buffer) 0.01 * 0.01 1.83 0.07 0.00 0.03
Number of Bridges 0.46 ** 0.02 23.98 0.00 0.42 0.50

* significant at 5% level, ™ significant at 1% level

McFadden Pseudo Rho square:
LL =-10610.00634

LLO =-14031.95356
pseudo-R2 =1 - (-10610.00634 / -14031.95356 ) = 0.24

Collinearity Diagnostics:

VIF Scores

Variable VIF
Degree of Detour 1.012
Turn Density (/km) 1.196
Number of Intersections 3.545
Number of Traffic Lights 1.941
Speed Limit (Imputed) 1.095
\Agriculture (50m Buffer) 1.055
Number of Bridges 2.288
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Main Effects MNL Model With Non Imputed Speed Limit:

Results:

Results Main Effects Multinomial Logit Model McFadden Pseudo Rho square = 0.24, AIC/N = 28.1
Variable Coefficient Significance Standard z Prob. 95% Confidence

Error |z|>z* Interval

Degree of Detour -0.07 ** 0.00 -33.65 0.00 -0.07 -0.06
Turn Density (/km) -0.41 > 0.01 -29.65  0.00 -0.43 -0.38
Number of Intersections -0.12 ** 0.00 -31.16 0.00 -0.13 -0.11
Number of Traffic Lights -0.10 * 0.01 -12.33  0.00 -0.11 -0.08
Speed Limit (Non Imputed) 0.03 ** 0.00 10.37 0.00 0.03 0.04
Agriculture (50m Buffer) 0.01 0.01 1.20 0.23 -0.01 0.03
Number of Bridges 0.45 > 0.02 23.16 0.00 0.41 0.49

* significant at 5% level, ** significant at 1% level

McFadden Pseudo Rho square:
LL =-10697.04941

LLO =-14031.95356
pseudo-R2 =1 - (-10697.04941 / -14031.95356 ) = 0.24
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Main Effects PSL Model:

Results:
Results Main Effects Multinomial Logit Model McFadden Pseudo Rho square = 0.52, AIC/N = 18.3
Variable Coefficient Significance Standard Error z Prob. 95% Confidence
|z|>z* Interval
Path Size Factor 9.21 b 0.13 69.35 0.00 8.95 9.47
Degree of Detour -0.11 * 0.00 -46.35 0.00 -0.11 -0.10
Turn Density (/km) -0.49 b 0.02 -32.54 0.00 -0.52 -0.46
Number of Intersections -0.13 ** 0.00 -30.60 0.00 -0.13 -0.12
Number of Traffic Lights -0.09 * 0.01 -10.36 0.00 -0.11 -0.08
Speed Limit (Imputed) -0.10 b 0.01 -18.85 0.00 -0.11 -0.09
\Agriculture (50m Buffer) -0.01 0.01 -1.43 0.15 -0.03 0.01
Number of Bridges 0.31 ** 0.02 15.47 0.00 0.27 0.35

* significant at 5% level, ** significant at 1% level

McFadden Pseudo Rho square:

LL =-6797.12911

LLO =-14031.95356

pseudo-R2 = 1- (-6797.12911 / -14031.95356) = 0.52

Collinearity Diagnostics:

VIF Scores

Variable VIF
Path Size Factor 1.071
Degree of Detour 1.203
Turn Density (/km) 3.857
Number of Intersections 1.952
Number of Traffic Lights 1.095
Speed Limit (Imputed) 1.055
\Agriculture (50m Buffer) 2.297
Number of Bridges 1.248
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PSL Model With Interaction Effects:

Results:
Results Path Size Logit Model McFadden Pseudo Rho square = 0.53, AIC/N = 17.8
Variable Coefficient Significance Standard z Prob. 95% Confidence
Error |z|>z* Interval
Path Size Factor 9.37 > 0.13 69.45 0.00 9.11 9.64
Degree of Detour -0.10 ** 0.00 -45.20 0.00 -0.11 -0.10
Turn Density (/km) -0.45 ** 0.02 -29.49 0.00 -0.48 -0.42
Number of Intersections -0.14 > 0.00 -31.32 0.00 -0.15 -0.13
Number of Traffic Lights -0.06 ** 0.01 -4.84 0.00 -0.08 -0.08
Number of Traffic Lights X -0.038 0.02 -1.61 0.11 -0.07 0.01
Peak Hour
Speed Limit (Imputed) -0.10 ** 0.01 -17.82 0.00 -0.11 -0.09
\Agriculture (50m Buffer) 0.06 b 0.01 6.55 0.00 0.04 0.08
IAgriculture X Commute -0.50 *x 0.03 -18.77 0.00 -0.55 -0.45
\Agriculture X Leisure -0.05 0.06 -0.82 0.41 -0.17 0.07
Number of Bridges 0.30 b 0.02 14.33 0.00 0.26 0.34

* significant at 5% level, ** significant at 1% level

McFadden Pseudo Rho square:
LL =-6608.93184
LLO =-14031.95356

pseudo-R2 = 1- (-6608.93184 / -14031.95356) = 0.53

Collinearity Diagnostics:

VIF Scores

Variable Coefficient
Path Size Factor 1.081
Degree of Detour 1.204
Turn Density (/km) 3.878
Number of Intersections 2.071
Number of Traffic Lights 1.201
Number of Traffic Lights X Peak Hour 1.103
Speed Limit (Imputed) 1.111
\Agriculture (50m Buffer) 1.106
IAgriculture X Commute 1.102
IAgriculture X Leisure 2.314
Number of Bridges 1.248
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Latent Class Analysis:

Remark: Both the AIC/N and Mc Fadden’s rho squared statistics are calculated manually
(including the value of the log likelihood function) in case of the Latent Class Analysis (LCA), since

NLogit is not able to handle the weighted cases properly in that situation.

Results Latent Class Model McFadden Pseudo Rho square = 0.64, AIC/N = 13.7
Variable Coefficient  Significance Standard z Prob.  95% Confidence
Error |z|>Z* Interval
Random utility parameters in latent class 1 Average class probability: 0.747
Path Size Factor 16.89 ** 0.37 45.79 0.00 16.17 17.62
Degree of Detour -0.28 *x 0.01 -42.13 0.00 -0.30 -0.27
Turn Density (/km) -0.93 ** 0.03 -30.88 0.00 -0.98 -0.87
Number of Intersections -0.12 o 0.01 -22.32 0.00 -0.13 -0.11
Number of Traffic Lights -0.55 > 0.02 -30.84 0.00 -0.59 -0.52
Number of Traffic Lights X 0.20 > 0.04 4.55 0.00 0.11 0.29
Peak Hour
Speed Limit (Imputed) -0.58 ** 0.01 -56.06 0.00 -0.60 -0.56
Agriculture (50m Buffer) -0.16 ** 0.01 -14.22 0.00 -0.18 -0.14
Agriculture X Commute -1.11 il 0.08 -13.89 0.00 -1.27 -0.95
Agriculture X Leisure 0.27 * 0.04 7.38 0.00 0.20 0.35
Number of Bridges 0.71 ** 0.05 14.25 0.00 0.61 0.81
Random utility parameters in latent class 2 Average class probability: 0.253
Path Size Factor 6.87 * 0.20 35.02 0.00 6.49 7.26
Degree of Detour -0.01 * 0.00 -15.03 0.00 -0.01 -0.01
Turn Density (/km) -0.36 * 0.03 -12.55 0.00 -0.41 -0.30
Number of Intersections -0.16 ** 0.01 -31.87 0.00 -0.17 -0.15
Number of Traffic Lights 0.01 0.03 0.45 0.65 -0.04 0.07
Number of Traffic Lights X -0.09 * 0.05 -2.06 0.04 -0.18 0.00
Peak Hour
Speed Limit (Imputed) -0.08 *x 0.01 -10.25 0.00 -0.09 -0.06
Agriculture (50m Buffer) 0.16 *x 0.02 9.07 0.00 0.12 0.19
Agriculture X Commute 0.08 0.05 1.77 0.08 -0.01 0.17
Agriculture X Leisure 0.53 *x 0.12 4.39 0.00 0.30 0.77
Number of Bridges -0.14 * 0.03 -4.68 0.00 -0.20 -0.08
Probability model class 1 (Parameters class 2 fixed to zero.)
Constant 3.73 * 0.66 5.67 0.00 2.44 5.02
Motivated by Enjoyment -0.34 *x 0.11 -3.21 0.00 -0.55 -0.13
Race Bike Ownership -1.44 *x 0.19 -7.68 0.00 -1.80 -1.07
Age 65+ (retired) -1.44 ** 0.37 -3.88 0.00 -2.16 -0.71

* significant at 5% level, ** significant at 1% level
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McFadden Pseudo Rho square:
LL =-5075.024310
LLO =-14031.95356

pseudo-R2 = 1- (-8082.96426 / -14031.95356) = 0.64

Akaike Information Criterion:

k=11+11+ 4 =26 (number of parameters)
N =743 (number of choice sets)
LL =-5075.024310

AIC = 2k —2In(L)

AIC = 2(26) - 2(-5075.024310) = 10202.04
AIC/N = 10202.04/743 = 13.7
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Appendix X - Class Comparison

Speed
Physical Health

Mental Health

Traffic Safety
Motivators

Being Outside

Enjoyment

Deterrents

Distant Destination

Other  Intention to Bike

Independent Samples Test

Equal variances assumed
Equal variances not assumed
Equal variances assumed
Equal variances not assumed
Equal variances assumed
Equal variances not assumed

Equal variances assumed
Equal variances not assumed

Equal variances assumed
Equal variances not assumed
Equal variances assumed
Equal variances not assumed

Equal variances assumed
Equal variances not assumed

Equal variances assumed
Equal variances not assumed

Levene's Test for

Equality of

Variances

F Sig.
0.12 0.73
0.20 0.66
2.24 0.14
2.20 0.14
0.39 0.53
4.36 0.04
3.55 0.06
0.77 0.38

If the p-value of Levene’s test is less than 0.05, the “Unequal variance” result is used.
\Otenfvise, the "Equal variance" result is used.
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-1.13
-1.13
-2.69
-2.96
-2.47
-2.88

-2.72
-2.51

-2.48
-2.87
-3.08
-3.66

1.75
1.65

-2.01
-1.88

df

137.00
75.26
137.00
94.08
137.00
108.63

137.00
63.74

137.00
106.57
137.00
113.56

137.00
66.38

137.00
65.20

t-test for Equality of Means

Sig. (2-tailed)

0.26
0.26
0.01
0.00
0.02
0.01

0.01
0.02

0.01
0.01
0.00
0.00

0.08
0.10

0.05
0.07

Mean
Difference

-0.28
-0.28
-0.42
-0.42
-0.52
-0.52

-0.78
-0.78

-0.45
-0.45
-0.85
-0.65

0.52
0.52

-0.64
-0.64

Std. Error
Difference

0.25
0.25
0.16
0.14
0.21
0.18

0.29
0.31

0.18
0.16
0.21
0.18

0.30
0.31

0.32
0.34

95%
Confidence
Interval of the
Difference
Lower Upper
-0.78 0.22
-0.79 022
-0.73  -0.11
-0.71  -0.14
-093 -0.10
-0.87 -0.16
-1.35  -0.21
-1.40 -0.16
-0.81 -0.09
-0.76 -0.14
-1.07 -0.23
-1.00 -0.30
-0.07 1.10
-0.11  1.14
-1.26  -0.01
-1.31  0.04



Motivators

Deterrents

Other

Motivators

Deterrents

Other

Descriptives for Variables in Independent Samples Test

Physical Health
Mental Health

Traffic Safety

Being Outside
Enjoyment

Distant Destination

Intention to Bike

Physical Health
Mental Health

Traffic Safety

Being Outside
Enjoyment

Distant Destination

Intention to Bike

Descriptive Statistics - Class 1

Minimum

1.00
1.00

1.00

1.00
1.00

1.00

1.00

Descriptive Statistics - Class 2

Minimum

4.00
4.00

1.00

4.00
4.00

1.00

1.00
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Maximum

7.00
7.00

6.00

7.00
7.00

7.00

7.00

Maximum

7.00
7.00

7.00

7.00
7.00

7.00

7.00

Mean

6.16
5.65

3.56

5.94
5.52

5.22

3.51

Mean

6.59
6.17

4.34

6.39
6.17

4.71

4.15

Std. Deviation

0.89
1.23

1.44

1.06
1.25

1.52

1.61

Std. Deviation

0.71
0.83

1.76

0.74
0.80

1.75

1.91

Median

6.00
6.00

4.00

6.00
6.00

5.50

4.00

Median

7.00
6.00

5.00

7.00
6.00

5.00

5.00



Results Chi-Square Tests

Pearson Chi-Square df Asymptotic Significance (2-sided)
Race Bike Ownership 4.57 1 0.03
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Appendix Xl - Examples Bridges

Ferry Street Bridge in Eugene

Source: Google Maps, Retrieved on July 15 2021
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Appendix XlI - Functionality Dashboard

Selecting network segments, series of segments or areas.

One can select one segment to focus on by clicking on it in the map canvas. Multiple segments
can be selected by holding the [control] button while clicking them. Further, the selection tool,
which can be accessed from the top left map menu, can be used to select larger areas. The
charts and figures on the dashboard will be refreshed automatically. The selection can be
cancelled by clicking anywhere on the map and pressing [Esc] or making an empty selection with

the selection tool.

£ UTRECHT //

Cyclists Segment:  Trip Purpose:

Welghted Average Relevant Positive I Relevant Negative
3 X Aspects: Aspect:
core: . Intarsactions SpeedLmi
Agricuture
-0.2109 . |

The bottom bar of the dashboard summarizes the information on the selected segment(s). One

can see the average score of the segments (weighted for their length) and the relevant positive
and negative aspects which contribute to this score. One can also see what proportion of the
segments scores below, at or above average. Further, the total length of infrastructure for each
road type is displayed in a pie chart. This allows the user to study the performance of the selected
segments in detail. Moreover, the chart at the bottom right corner displays the number of routes
of class 1 and class 2 which passed at least one of the segments in the selection. This provides

an indication of which segments are (un)popular among each segment.

129



Information regarding a specific segment is viewed upon hover-over, which makes a tooltip
appear. This tooltip provides data on all the relevant route characteristics, including the index

score of the segment.

‘ Score: -0.053

Street name: Tolakkerlaan
Street type: unclassified
Length: 888 m

Turn density: 0.0000 turns/km

Number of intersections: 4
Number of traffic lights: 0

Speed limit: 60 km/h

Agricultural surroundings: 26.0 %
Number of bridges: 0

Select a class, trip purpose and departure time.

Based on the results in §6.2, one can conclude that trip purpose and departure time influence
route preferences. These findings have been translated to the dashboard such that users can
select a trip purpose and departure time. Further, two classes of cyclists were identified which
display distinct preferences for specific route aspects (§6.2.4-§6.2.5). The dashboard therefore
also allows the user to distinguish between the scores of class 1 and class 2. This can be done in
the top-right menu. All charts and figures are refreshed upon making changes. This provides

insight into the dynamics of the preferences.

Peak Hour: Cyclists Segment: Trip Purpose:
yes v |class1 v | genera v
general

class 1

class 2

Filter based on score or road type.

One can filter for the network segments which perform below, at or above average bij clicking the
respective slice in the pie-chart in the bottom pane. The map will then only show those network
segments and all charts and figures are recalculated. The same holds for the pie-chart for road

types. Click the same slice to cancel the filter. Hold [ctrl] to select multiple slices.
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$UTRECHT //

Peak Hour: Cyclists Segment:  Trip Purpose:

[index Score:

1.0000] J-0.2502
Weighted Average Relevant Positive I Relevant Negative Scores: Road Types: Routes:
Aspects: Aspects:
Score: B
: Agriculture Bridges - Intersections Speed Limit
-0.3976 I

Filter based on positive / negative aspects.
One can click on one of the positive or negative aspects in the bottom pane to display only those

segments to which it is applicable. Click the same aspect again to cancel the filter.

$UTRECHT //

Peak Hour:  Cyclists Segment: Trip Purpose:

yes v | genera v | genera -

Please note that
rescaled utility
scores cannot be
used to calculate
\_probabilities. /

Index Score:
© 2021 Mapbox © OpenStreetMap -1.000 1.000
. Relevant Positive Relevant Negative Aspects: Scores: Road Types: Routes:
Weighted fcprE
Average Score: . Intersections Speed Limit
Agriculture Traffic Lights Turn Density

0.1631
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