
 Eindhoven University of Technology

MASTER

Interoperability between LSAT and CIF

Chakraborty, Saikat

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d1c8e85b-d8a0-419f-82bc-975ebe447cff

Department of Mechanical Engineering
Control Systems Technology group

Master: Manufacturing Systems Engineering

Interoperability between LSAT and CIF

Author:
Saikat Chakraborty [1413961]

Thesis Supervisor:
Dr. Ir. M.A. Reniers

Supervisor:
Ir. S. B. Thuijsman

Report ID:
CST2021.064

Eindhoven, September 28, 2021

Abstract
With the rapid growth of complex manufacturing systems, the importance of under-
standing, analysis, and simplification of these systems from an engineering perspective
has also risen. One approach that is widely accepted to be highly effective in this
regard is Model Based Engineering (MBE). It is an approach that uses models as an
integral part of the technical baseline that includes the requirements, analysis, design,
implementation, and verification of a capability, system, and/or product. Generally, a
model is defined as a simplified conceptual representation of a given system that can
be used to improve ease of understanding, simulate combination(s) of various possible
events, and predict scenarios likely to occur.

Various tools and languages have been developed for MBE. E.g., Supremica, Composi-
tional Interchange Format (CIF) and Logistics Specification and Analysis Tool (LSAT)
are some of the popular ones available. The contents of this research will be focused on
CIF and LSAT only.

LSAT is an Eclipse project developed and maintained jointly by ASML, ESI (TNO), and
Eindhoven University of Technology, which enables users to design flexible manufac-
turing systems while complying to the philosophy of other MBE design tools. The
functionality of the toolkit includes, but is not limited to, the specification of a system
and the relevant product flow within it, analysis of the resources being used in the
associated processes and optimization of the resource usage based on the results of
the analysis. CIF, on the other hand, is a more general tool used in the MBE domain.
Developed and maintained by Eindhoven University of Technology, it is an automata-
based modeling language wherein an automaton is used to describe a discrete-event,
timed or hybrid system. An automaton itself, in its most elementary form, consists of
possible states the system may achieve and events to transition to and from various
states. Additionally and more importantly, CIF enables the synthesis of (supervisory)
controllers which govern a given system adhering to certain requirements as defined by
the user.

The primary objective of this research is to describe how using an automata representa-
tion of a system specified in LSAT and by using specific supervisory controller synthesis
techniques as described in this research, controllers can be synthesised depending
upon the required degree of control granularity specified by the user.

Besides that, the second aspect of this research involves building a platform for the
integration of the various MBE toolchains that are commonly used in different stages
of the development of a manufacturing system (using a framework called Arrowhead).
The objective is to demonstrate how development and analysis of systems in MBE could
become much easier if these tool chains could communicate with each other, when
necessary, to overcome the limitations in the functionalities of the individual tools.

1

Contents

I Translation 4

1 Introduction 5
1.1 Flexible Manufacturing Systems . 5
1.2 Supervisory controllers . 5
1.3 Model based engineering . 6
1.4 Introduction to CIF . 6
1.5 Introduction to LSAT . 7
1.6 Research motivation . 10
1.7 Problem definition . 10
1.8 Preliminary research . 10

2 Implementation 12
2.1 Method I . 12
2.2 Method II . 16
2.3 Method III . 18
2.4 Method IV . 20
2.5 Method V . 22

3 Simulation and Results 24
3.1 Setup . 24
3.2 Results . 25

3.2.1 Number of sequences from Seq checked 25
3.2.2 Time . 26

4 Conclusion 28

II Tool chain implementation 29

5 Introduction 30

6 Arrowhead Framework 31

7 Implementation 32

8 Conclusion 32

References 33

Acknowledgement 35

Appendices 36

A LSAT code: Machine specification for Twilight system 36

B LSAT code: Settings specification for Twilight system 39

C LSAT code: Activity specification for Twilight system 42

2

D CIF code: Requirements 45

E Python code: Method I 46

F Python code: Method II 53

G Python code: Method III 61

H Python code: Method IV 71

I Python code: Method V 80

J Auxiliary code: subseqchecker 90

K Auxiliary code: ConvertToAutomata 93

L Declaration: TU/e Code of Scientific Conduct 97

3

Part I

Translation

4

1 Introduction
The onset of Industrial Revolution resulted in massive changes in the manufacturing
sector. A sector that was previously dependent on producing most items manually
shifted to the use of dedicated machinery, resulting in a leap in production volumes
throughout the sector. The next big leap in this sector came around the start of the 20th
century, when singular machines performing specific operations of a manufacturing
process were integrated to form a manufacturing system. Consequently, streamlined
end-to-end processes coupled with the advent of advanced electronic controllers resulted
in even higher volumes and lower costs.

With time and change in market scenario, there came increased demand for product
variety. Along with that came demands for manufacturing systems that could handle
production of multiple varieties of product (or recipes as it is called in the manufacturing
sector) while still retaining a high production capacity. However, the challenge with
meeting these two demands in general is that delivering one demand usually requires a
compromise of the other. On the one hand, lower variability in product types requires
manufacturing systems tailored to produce a specific type of product with minimal
stoppages, which result in increased production capacities. On the other hand, higher
variability in product types requires manufacturing systems tailored to adapt to different
product recipes using the same set of components.

1.1 Flexible Manufacturing Systems
To tackle these challenges and incorporate the demands of dynamic manufacturing
environments, there has been a rapid rise in the need to develop flexible manufacturing
systems (FMS)[1] after the turn of the century. In such systems, a high production
rate along with a high degree of product variety is achieved through the use of versatile
machinery and controllers that can quickly adapt to different recipes. Semiconduc-
tor manufacturing and automotive industries are examples where FMS are typically
used.

Optimization of production capacity is key regarding an FMS. Generally, there are
different products that may require different production processes and hence different
production times. As a result, there is a necessity of meticulous scheduling and proper
assignment of products to processes.

1.2 Supervisory controllers
As explained in [2] a supervisory controller ensures a system functions as desired by
executing only the allowed sequence of tasks. The task sequences can be both within
a component of the system or depend on multiple components as well. In general, a
supervisory controller exercises control over the entire system by using information
from its constituent parts.

The function of a supervisory controller (or supervisor in short and henceforth referred
to as such) in the context of an FMS includes scheduling of operations. Generally,
there is a fixed order of operations needed to be executed on a product and this is
ensured by the supervisor. Hence, the productivity of a system depends not only on

5

the capabilities of the machines that execute the task but also on the supervisors that
guide them.

However, to build a controller for a system, the system and its underlying processes
need to be understood first before a supervisor can be synthesised, ultimately leading
to such complex systems being realized physically. This is achieved by the application
of model based engineering.

1.3 Model based engineering
Model based engineering (MBE) is an approach of representing a system through the
usage of models [3]. Once a model representing the system has been built, it can be
used for several purposes such as analysis, design of features, verification etc. The
concept of MBE also naturally extends to the design and exploration of supervisors for
a given system.

There are several tools that can be used for MBE and supervisor synthesis. However, in
this thesis, the two tools that are dealt with specifically are mentioned below.

• Compositional Interchange Format (CIF)

• Logistics Specification and Analysis Tool (LSAT)

1.4 Introduction to CIF
Developed by researchers at Eindhoven University of Technology, CIF [4] is a tool which
is a part of the Eclipse Supervisory Control Engineering Toolkit (Eclipse ESCET™)1. It
is based on the principles of Supervisory Control Theory [5],[6] that was developed to
integrate the process of MBE and supervisor synthesis. In CIF, a system is described by
means of automata. Each automaton describes a part of the system. In its most basic
form, an automaton is consisted of locations that describe the possible states that the
sub-system might achieve. Initial locations indicate the state the sub-system starts in.
Marked locations are used to describe states which are considered to be stable by the
modeler of the system.

Events are used to model the dynamics of the subsystem by describing the transitions
between the locations. Controllable events are used to describe events that, if necessary,
can be disabled by a supervisor. Uncontrollable events are those which cannot be
prevented from happening.

Figure 1: Automata example

1The ESCET toolset and documentation is open source and freely available at https://www.eclipse.org/
escet/. ‘Eclipse’, ‘Eclipse ESCET’ and ‘ESCET’ are trademarks of Eclipse Foundation, Inc.

6

https://www.eclipse.org/escet/
https://www.eclipse.org/escet/

An example of an automaton is provided in Fig. 1, which describes a system that
starts at the initial location Location1 (indicated by the dangling arrow) and transitions
to marked location Location2 (indicated by double circles) if controllable event Event1
(indicated by the solid arrow) occurs. The system moves back to state Location1 when
uncontrollable event Event2 (indicated by the dashed arrow) occurs.

In a similar vein to classical control theory, a plant in CIF terminology is used to refer
to automata that describe the uncontrolled system behaviour. In addition, requirements
that the system needs to fulfil, like certain events being possible only after others, can
be specified. Using the plant and the requirements, a supervisor (which is analogous to
a controller in classical control theory terms) for the system can be synthesised, which
is also in the form of automata.

The reader is referred to [5],[6] for an in depth explanation of the principles behind
the synthesis procedure. Two concepts, as explained briefly below, form the basis of
supervisory synthesis.

• Non-blockingness: An automaton is deemed to be non-blocking if from any of its
reachable states a sequence of events can occur which ultimately lead to a marked
location. As explained previously, marked locations denote stable states. Hence,
the concept of non-blockingness denotes the possibility of the system described
by the automata to attain stability.

• Controllability: As explained previously, controllable events are events which can
be disabled by a supervisor and uncontrollable events are the ones that cannot be
prevented by a supervisor from occurring.

Given a plant and a set of requirements, the synthesis procedure then comes down to
building an automaton that represents the combined system behaviour, and disabling
the controllable events that either result in blocking or lead to a state with uncontrollable
events which ultimately lead to blocking.

Alongside synthesis, CIF also has several other functionalities for specification and
exploration of systems.

1.5 Introduction to LSAT
LSAT [7] is a modeling language set in the mould of MBE tools, typically used in the
design of FMS. Developed jointly by ESI (TNO), ASML and Eindhoven University of
Technology, the driving principle behind LSAT is design and exploration of supervisors
that dictate the behaviour of an FMS. Along with a textual input interface, LSAT also
allows a graphical interface using which the user can explore the behaviour of the
system, perform analysis and implement optimization techniques.

The process of specifying the structure and behaviour of a system along with the
supervisor that orchestrates the behaviour is made modular in LSAT by the usage of
four integrated domain specific languages (DSL). Each DSL describes the system at
a specific level of granularity, as a result of which a DSL of higher granularity has
a dependency on a DSL of lower granularity. The DSLs and the aspect of a system
described by each are listed below. The dependencies between the DSLs have also been
mapped in Fig. 2.

7

Figure 2: Dependencies between DSLs

• Machine specification: The fundamental language in the DSL hierarchy. This
is used to describe the components of the system that can perform a pre-defined
set of tasks. Such components are termed resources. A resource can be further
broken down into sub components, called peripherals, that work in sync to perform
the task asked of the resource.

• Settings specification: This is used to describe the physical settings of the
peripherals defined in Machine specification. Physical settings include coordinates
of allowed movement, motion profiles, etc.

• Activity specification: Using this language activities possible in a system are
established. An activity is defined as a deterministic system operation consisting
of actions that need to be performed in a definite acyclic order. An action, in turn,
is a task that can be performed by a peripheral of a given resource as defined in
the machine specification.

• Logistics or Dispatching specification: The final level in the DSL hierarchy, this
is where the product flow in the system is established. The logistics specification
defines the supervisor of the system in the form of a sequence of activities to be
executed. A different sequence of activities implies a different product flow.

The Twilight system [8] shown in Fig. 3 is used as an illustration to explain the DSLs.
It is a hypothetical system in which balls are processed according to a given recipe. The
system is a simplified representation of a lithography scanner [9].

In the system, two robots move on a rail to transport balls; the Load Robot (LR) present
on the left side of the rail picks unprocessed balls from the input (IN) and places the balls
into the conditioning area (COND) for conditioning of the ball and the drill (DRILL) for
drilling holes. A ball is considered processed if both conditioning and drilling operations
are performed on it. Similarly, the unload robot picks up processed or semi-processed
balls from COND and DRILL and places it in the output (OUT). The two robots each
contain a clamp (CL) to pick up and hold a ball, an X-motor (X) that enables movement
along the rail, and a Y-motor (Y) to move the clamp up and down. To limit the possibility
that the two robots don’t collide, a collision area (CA) has been defined, to prevent
both robots from occupying the same position at any given moment. Additionally, the
conditioner has a heater (H) to heat the ball while the DRILL has a Z-motor (Z) to move
the drill bit up and down.

8

For the Twilight system, examples of certain aspects of the system specified using each
DSL is given below.

• Machine specification:

– Resources: IN, LR, COND, DRILL etc.

– Peripherals: For LR and UR the peripherals are CL, X, Y etc. For DRILL, the
peripherals are Z and so on.

• Settings specification: The acceleration profile of Z of DRILL, velocity profile of
X of LR/ UR and so on.

• Activity specification: Actions move Y of LR down, turn CL on and finally move
Y of LR back up together constitute the activity pick product from IN of LR and so
on.

• Logistics specification: Activities of LR: pick product from IN, put product on
COND, pick product from COND, put product on DRILL, and activities of UR: pick
product from DRILL, put product in OUT can constitute an activity sequence.

LSAT also provides several tools for efficient analysis of systems. One such tool of
particular significance in this research is that of makespan optimization. In this process
however, supervisor for the system is not defined through the logistics specification
directly. Instead, the supervisor is supplied via CIF in the form of automata with edges
as activities as defined in the activity language.

The supervisor automata in turn are synthesised first by defining automata that allow

Figure 3: Twilight system. Adapted from [8]

9

all possible sequence of activities. Then, requirements are added to define the activity
sequences allowed by the system. As a result, the synthesised supervisor contains all
activity sequences allowed by the system. Once this is fed to LSAT, the activity sequence
that provides the highest makespan is determined.

1.6 Research motivation
As mentioned previously, at the moment, the supervisor supplied to LSAT for makespan
optimization defines the activity sequences allowed by the system, which is synthesized
by taking into account only the activity level requirements. There is no functionality that
allows users to define requirements explicitly at action level. However, there could be
situations in an actual manufacturing system where action level requirements have to
be factored in. In such cases, having the functionality to incorporate such requirements
enables a higher degree of control over the system. Hence, the objective of this research
is:

To find ways to develop the supervisor that reflect user defined action level requirements
as well as activity level requirements.

To illustrate, consider the following example from the Twilight system. As mentioned,
the resource collision area is defined to prevent collision between the two robots, LR
and UR. How this is achieved is each robot claims the collision area to perform any
activity related to conditioning or drilling, and releases it on completion of the activity,
which makes it available for the other robot to claim. Theoretically, if one robot moves
fast enough (or the other too slow), it is possible that it claims the collision area
immediately after its release, moves fast, and collides with the other robot. However,
with action level requirements, the possibility of such occurrences can be eliminated by
having requirements, for example, that prevent the two robots from occupying the same
state.

1.7 Problem definition
To achieve the aforementioned research objective, the broad approach adopted in this
research is to find activity sequences that can fulfil the specified action and activity
level requirements.

This work builds upon the groundwork laid in [10], wherein a method has been devel-
oped to represent the sequences along with activity and machine level specification in
automata form. Adding the requirements the actions need to fulfil to this representation,
methods are to be devised such that the user, on application of these methods, knows
exactly the sequences that can fulfil the given requirements.

Using this information, a supervisor can be synthesized to be used by LSAT.

1.8 Preliminary research
As mentioned previously, this work builds upon the groundwork laid in [10], which
describes a methodology to represent a system described in LSAT using automata.
The definition of the system elements, namely, for resources, actions, activities, and
sequences, used in this work is taken from [10].

10

Activity instantiation is an important concept with regards to this work. By definition,
an instance of an activity in a sequence is the occurrence number of the activity in
the given sequence. The instance number is usually denoted using superscript. To
illustrate, consider the sequence ω in which activities ActA, ActB, ActA are executed
sequentially. Then, ω = Act1A;Act1B ;Act2A. Here, the first and second instances of ActA
are denoted by Act1A and Act2A respectively. Since there is only one instance of ActB, it
is denoted by Act1B. [10] also explains how multiple instances of the same activity can
be executed simultaneously.

Subsequently, the steps to represent the behaviour of the system using activity, claiming
and availability automata are also detailed (It is to be noted that the automata defining
the peripheral behaviour have not been considered as part of the system behaviour as
part of this research. Only the impact of introducing dependencies between actions of
different activities are focused on).

The activity automaton for an activity instance contains as edges the constituent actions
of the activity while incorporating the dependencies between the actions as defined
in the activity definition. The claiming automaton for a given resource defines the
order in which a particular resource is claimed by different activities for a given activity
sequence. Finally, the availability automata for a resource ensures that a resource can
be claimed only when it is available or has been released by another resource. The
activity, claiming and availability automata together describe the behavior of the system
for a given sequence to which user-defined requirements are added for synthesis.

11

2 Implementation
In this section, a few methods are discussed to find activity sequences that can fulfil a
set of given requirements.

The LSAT specification elements are defined as per [10]. Furthermore, the following
points are assumptions and definitions relevant to the implementation of the defined
methods.

• The maximum length of the possible activity sequences (L) is defined by the user.
The length of a sequence (l) is defined as the number of activity instances in the
sequence.

• When defining the requirements between different actions, the instances of the
activities constituting the actions are specified, i.e., action instances are specified.

• All action instances specified in the requirements are labelled as important actions.
The constituent activity instances are labelled as important activities. Similarly,
all action instances not specified in the requirements are labelled as unimportant
actions. The constituent activity instances are labelled as unimportant activities.

2.1 Method I
Consider a set of m activities specified in the activity specification

Act = {ActA, ActB ...} such that |Act| = m

Let Seq be the set containing all activity sequences of length 1 ≤ l ≤ L that can be
generated from Act. An arbitrary sequence ω is selected from Seq. The activity, claiming
and availability automata for ω are generated as described in [10].

However, all the event edges are made uncontrollable. Furthermore, the final state of
the activity automata, the final state of the claiming automata and the unclaimed state
of the availability automata are deemed as marked as these are the states that can be
deemed to be stable.

For example, consider Act = {ActA, ActB} as shown in Fig. 4 and a sequence of l = 3:
ω = Act1A;Act1B ;Act2A. Then, the automata shown in Fig 5. describes the original
behaviour of the system (plant) to which requirements are to be added.

Figure 4: Example Act

12

(a) Activity automaton for Act1A

(b) Activity automaton for Act1B

(c) Activity automaton for Act2A

(d) Availability automaton for R1

(e) Availability automaton for R2

(f) Claiming automaton for R1

(g) Claiming automaton for R2

Figure 5: Example describing LSAT plant specifications in automata form

Now, if a set of requirements, R, are added to the plant and synthesis is performed, two
outcomes are possible as listed below:

1. Empty supervisor: This occurs if there is any behaviour in the combined system
which does not conform to the given requirements (R). As all the edges are uncon-

13

trollable, removing of edges to meet the requirements are not allowed resulting in
an empty supervisor

2. Non-empty supervisor: This occurs if there is no behaviour in the combined
system which does not conform to the given requirements (R). The synthesised
supervisor automaton is the plant itself as the edges remain unchanged due to
their uncontrollable nature

Let the checking of the sequence using the aforementioned steps be denoted by the
function check such that check(ω|R) = True if the given activity sequence ω in presence
of given requirements R results in a non-empty supervisor and False otherwise.

Therefore, if check(ω|R) = True, it can be stated that the sequence ω, under any condi-
tions, fulfils the given requirements.

The aforementioned series of steps was to check if an arbitrary sequence of activities
fulfils a given set of requirements. By extension, this can be repeated for all possible
activity sequences in Seq to determine which sequences out of all possible sequences
fulfil the requirements. Let Seqsafe denote the set containing all such sequences which
fulfil the requirements. Then, Seqsafe ⊆ Seq such that ∀ ω ∈ Seqsafe , check(ω|R) =
True. Seqsafe is populated by visiting all sequences in Seq one by one and checking if
check(ω|R) = True.

Once all sequences are checked, Seqsafe can be used to synthesise a supervisor, which
can then be used in LSAT. To illustrate, let Seqsafe = {ω1, ω2}, where ω1 = Act1A;Act1B and
ω2 = Act1A;Act1C ;Act1B. Then, one of the ways this can be used is by using a requirement
automaton of the form shown in Fig. 6 while synthesizing the supervisor for LSAT.
In general terms, this requirement automaton can be constructed by constructing an
automaton in which by following the activities, as edges, of every sequence in Seqsafe, a
marked state is reached. In other words, an automaton is made in which the sequences
of activities in Seqsafe form its marked language.

Figure 6: Example requirement automata to synthesize supervisor for LSAT

The complete process flowchart describing Method I is shown in Fig. 7.

14

Figure 7: Process flowchart: Method I

15

2.2 Method II
This method is an extension of Method I. A few observations are stated prior to better
understand the principle behind the method.

1. Observation 1: Given a sequence ω such that check(ω|R) = True, then for any new
sequence of the form ωnew = ω1;ω;ω2, check(ωnew|R) = True, if ω1, ω2 contain only
unimportant activities. Similarly, given a sequence ω such that check(ω|R) = False,
then for any new sequence of the form ωnew = ω1;ω;ω2, check(ωnew|R) = False, if
ω1, ω2 are empty sequences or contain only unimportant activities.

This is because ω1, ω2 does not introduce edges or events that are contained in R,
as a result of which effectively the relationships between the events defined in R
remain the same as in ω

2. Observation 2: If check(ω|R) = True, then for any new sequence of the form
ωnew = ωa;ω0;ωb, check(ωnew|R) = True if ω0 is an arbitrary sequence containing
only unimportant activities and ω = ωa;ωb. This is in addition to Observation 1.

This can be explained by analyzing the DAG of the sequence ω. The DAG of a
sequence implies a DAG which contains the actions of the activities to be performed
in sequential order. To satisfy the requirements defined in R, the nodes of actions
mentioned in R have to be reachable from each other in a certain order. If they
are not reachable implies the actions can occur concurrently. Introduction of
activities that do not contain any action nodes present in R, does not impact the
reachability or ordering of the nodes present previously in ω, thereby still satisfying
the requirements.

In this method, the modification done with Method I is that not all sequences in Seq are
checked individually. If a sequence fulfils the conditions mentioned under Observation
1 or Observation 2, then the explicit check for that particular sequence is not performed.
Additionally, the sequences that fulfil the conditions under Observations 1 and 2 if
check(ω|R) = True are appended to the Seqsafe set.

The motive behind the inclusion of the aforementioned steps is that it would lead to
reduced computational effort and time as performing synthesis in addition to building
the activity, claiming and availability automata is a computationally challenging proce-
dure. In comparison, simply checking if a sequence fulfils the conditions mentioned
under Observations 1 or 2 is a much simpler task and hence computationally less
demanding.

The complete process flowchart describing Method II is shown in Fig. 8.

16

Figure 8: Process flowchart: Method II

17

2.3 Method III
This method is an extension of the previously described Method II and tries to reduce
the computational effort and time to a higher extent. The technique followed to achieve
that is abstraction of the activity automata that are generated when performing check
operation for a given ω and R.

In general, abstraction is a process through which only relevant information (like states
or events for an automaton) is used for computational purposes so that the computation
load is reduced. In this case, the automata that are abstracted are the activity automata.
The way the abstraction is performed is that for a given DAG of an activity in a sequence
ω, all nodes except claim, release and nodes of important actions are removed from
the DAG. At the same time, whenever a node is removed, the predecessor nodes of the
removed node are connected to the successor nodes. An example to illustrate the step
is given in Fig. 9.

(a) DAG of activity before abstraction (b) DAG of activity after abstraction

Figure 9: Illustration of abstraction of DAG of an activity

When trying to check if a sequence of activities fulfils a given requirement, what is
checked in essence is only the relationship between the actions mentioned in the
requirement i.e., the important actions. Therefore, the nodes of all other actions can be
removed. However, claim/ release action nodes cannot be removed primarily for the
two reasons mentioned below.

1. Claim actions in the claiming automata are used to describe the sequence of
activities in a given sequence. Hence, removal of claim nodes will result in loss of
this information while forming the claiming automata.

2. Claim/ release actions together are used in availability automata to describe when
a resource is available to be used in an activity in a sequence. Removal of claim/
release nodes will therefore result in loss of this information while formation of
the availability automata.

To illustrate, if an activity instance has unimportant actions only, then removal
of the claim and release action nodes would result in an empty automaton for
the particular activity, which would then imply that the activity is not part of the
sequence. This would result in contradictions and consequently incorrect results.

This abstraction process works as all the necessary information, which is this case is
the relationship between the important actions, is preserved even after removal process.
It is to be noted that the supervisor generated while using check(ω|R) for Method III is
different from Methods I and II. However, the basic essence of these methods is to only
check if a supervisor is possible or not. Hence, the composition of the supervisor is not
as relevant.

18

Apart from the addition of the aforementioned steps of automata abstraction for the
activities in a given sequence, the rest of the steps followed are the same as Method II.
The complete process flowchart describing Method III is shown in Fig. 10.

Figure 10: Process flowchart: Method III

19

2.4 Method IV
This method uses the principles of abstraction similar to the one used in Method III.
However, this method deviates slightly from the step of setting up of activity, claiming
and availability automata used thus far in Methods I, II, and III.

Instead of making activity automata for each constituent activity of a sequence ω and
then using the claim automata to describe the sequencing of the activities in the
sequence, the combined DAG of the sequence ω is made as described in [11], hereafter
referred to as sequence-DAG. It is to be noted that the sequence-DAG describes all
existing relationships between actions of the constituent activities of ω. Following this,
the sequence-DAG is abstracted in a manner similar to Method III, by removing all action
nodes except nodes of important actions, while linking the edges from the predecessors
to the successors of the removed nodes simultaneously. It is to be noted that the claim/
release nodes can also be removed (unlike Method III) as they are now not explicitly
necessary to describe the sequence of activities in a given sequence or indicate the
availability of resources to be used in activities.

An example to illustrate the step is shown in Fig. 11, where ω = Act1A;Act1B ;Act2A, and
actA, ActB is as given in Method I. Consider (Act1A, a, p1), (Act2A, a, p1), (Act1B , b2, p2) as
important actions.

(a) Sequence-DAG before abstraction

(b) Sequence-DAG after abstraction

Figure 11: Illustration of abstraction of sequence-DAG

Once the abstraction of the sequence-DAG is complete, a sequence automaton is ex-
tracted by following the methodology described in [10] to extract the activity automaton.
The sequence automaton can then be used along with requirements, R, to synthesize a
supervisor and determine whether check(ω|R) = True.

Apart from the aforementioned steps, the rest of the methodology is similar to Methods
II and III. The process flowchart describing Method IV is shown in Fig. 12.

20

Figure 12: Process flowchart: Method IV

21

2.5 Method V
This method is an extension applicable to all methods discussed above but in this
research it is applied as an extension to Method IV.

In all methods described, the aim has been to reduce the computational time and
effort required gradually either by reducing the number of sequences (like Method II) or
through abstraction (like Methods III and IV). In this method, the former approach is
followed by trying to reduce the initial set that holds all possible sequences to be visited
Seq.

This is achieved by filtering the sequences allowed by the supervisor synthesized from
a plant that allows all possible sequence and activity level requirements. Let the set
containing the possible sequences be Seqnew.

To illustrate, if it is known before hand that due to constraints (e.g., floor plan) the
only possible sequence of activities are the ones where the first instance of ActB can
occur only after the first instance of ActA, then Seqnew = Seq \ {Ωnp}, where Ωnp is the
set containing all sequences ωnp such that ωnp = ω1;Act1B ;ω2;Act1A;ω3, and ω1,2,3 are
arbitrary sequences.

The idea behind this method is self-explanatory. If Seqnew contains lesser number of
sequences as compared to Seq, it automatically reduces the number of sequences to
be analyzed. It is to be noted that if there are no dependencies stated between the
activities, then Seqnew = Seq

The complete process flowchart describing Method V is shown in Fig. 13.

22

Figure 13: Process flowchart: Method V

23

3 Simulation and Results
In this section, the performances of the methods described are compared by applying
them on a given system and requirements.

3.1 Setup
The example system used in this section is the Twilight system described previously.
However, for the purpose of illustration in this report, only the activities involving the
LR are taken into consideration, i.e., the set Act contains the following elements:

• LR PickPrdFromInput

• LR PutPrdOnCond

• LR PutPrdOnDrill

• LR PickPrdFromCond

• LR PickPrdFromDrill

Moreover, it is assumed that the ordering of the activities are not strict, i.e, unless
specified in the form of requirements (as done for Method V), any activity can follow any
other activity or itself while forming a sequence from the given set Act. The machine,
settings and activity files of the Twilight system are provided in Appendix A, B, and C,
respectively.

The following are the dependencies between action instances which are used in this
illustration. In automata form, they are as shown in Fig. 14. The respective CIF file for
the requirements is as shown in Appendix D.

1. The first instance of action a3: Conditioner.CL.clamp of activity LR PutProdOnCond
can be performed only after the first instance of action a3: move LoadRobot.XY to

ABOVE IN with speed profile normal of LR PickPrdFrmInput has been performed

2. The second instance of action a1: move LoadRobot.XY to ABOVE COND with speed

profile normal of LR PutPrdOnCond can only be performed if at least one instance
of action a5: Drill.CL.clamp of LR PutPrdOnDrill has already been performed

For Method V, the requirement for the activities in the sequences is as shown in Fig. 15
and is mentioned below:

• The first instance of LR PickPrdFromCond can be performed only when an instance
of LR PutPrdOnCond has occurred, which in turn can be performed only when
an instance of LR PickPrdFromInput has been undertaken

The codes for the various methods are detailed in Appendix E-I. All snippets have been
commented for clarity.

The metrics used for evaluating the methods are described below:

• Number of sequences from Seq checked: As performing a check for a sequence
requires supervisory synthesis which is a computationally challenging procedure,
the lower the number of check operations performed, the better the performance
of the method.

24

(a) Requirement 1

(b) Requirement 2

Figure 14: Automata describing the defined requirements between the action instances

Figure 15: Automata describing the defined requirements between the action instances

• Time: A straightforward metric analyzing the time taken by the different methods.
One of the factors this depends on is the number of check operations performed.
However, abstraction has also been a technique applied to some of the methods.
Therefore, it is expected that a method implementing a more effective abstraction
technique will require less time to complete overall.

The performance of the discussed methods were evaluated by gradually increasing the
max length of the activity sequences, L, and comparing the aforementioned metrics in
each of the case. The results are produced in the subsequent subsection.

3.2 Results
3.2.1 Number of sequences from Seq checked

Max length of sequence (L)
1 2 3 4 5 6

Method I 5 30 155 780 3905 19530
Method II 5 12 33 122 532 2442
Method III 5 12 33 122 532 2442
Method IV 5 12 33 122 532 2442
Method V 3 6 10 19 49 186

Table 1: No. of sequences from Seq checked

As can be observed from Table 1, the number of sequences from Seq needed to be checked
keeps increasing exponentially with the increase in max size of sequence when using
Method I. This is because all sequences in Seq are checked, which in turn increases by
a value of N l with increase in the length of sequence from l− 1 to l, where N = size(Act).
In the case of this example, N = 5. So, as the length of sequence increases from l = 1 to
l = 2, the number of sequences checked increases from 5 to 5 + 52 = 30, and so on.

However, a drastic improvement in the results can be observed when using Methods
II-IV, which, as discussed before, selectively checks sequences from Seq. As expected,

25

Figure 16: No. of sequences checked vs max length of Sequence (L)

the number of sequences visited are the same for Methods II-IV as methods II and IV
does not employ any new technique to reduce the number of sequences visited, but
employs different abstraction techniques while checking a sequence. As can be seen
from Fig. 16 however, the number of sequences checked still trend to be exponentially
increasing but the rate is much lower as compared to Method I.

With the application of Method V, however, the results are significantly better, as Seq is
reduced significantly by analyzing the supervisor synthesized from the requirements
defined solely for the activities.

3.2.2 Time

Max length of sequence (L)
1 2 3 4 5 6

Method I 4.8 34.2 153.3 804.6 4352.3 22028.8
Method II 5.1 11.9 32.3 126.5 600.5 2636.5
Method III 4.9 10.9 31.2 121.1 567.9 2511.3
Method IV 4.9 11.1 30.2 115.6 513.8 2345.5
Method V 2.9 5.7 9.6 18.0 45.9 184.6

Table 2: Time (s)

As expected and can be observed from Table 2, with the increase in the number of
checked sequences, the time taken to determine the sequences that fulfil the given
requirements also increases. As can be seen from Fig. 17, the rate of increase for
Methods I and II reflects the same observation.

Method III delivers better results as compared to Method II as the activity automata are
abstracted to contain lesser number of states and hence, the time to perform supervisory
synthesis for each sequence also reduces, which the reader might recall is necessary to

26

Figure 17: Time (s) vs max length of Sequence (L)

perform check(ω|R). Furthermore, the difference in time taken increases as L increases,
as more activity automata are abstracted. Method IV improves further upon Method III
as the abstraction is to a higher degree only containing important activities.

Method V, as explained, shows better results compared to the other methods, which
can be attributed mainly to the reduction in the number of sequences in Seq.

27

4 Conclusion
Through this research different techniques were established to enable users of LSAT to
model supervisors which not only capture the dependencies between activities but also
the constituent actions of the activities, which offers a higher degree of control while
designing systems. The different techniques were compared to establish which method
would scale better while application in an industry setting and it can be concluded that
Method V suits the best due to its better performance metrics compared to the other
methods. Furthermore, it is to be noted that in all the methods discussed, memory
constraint is not a major concern (and hence has not been treated as a metric for
evaluation) as every sequence is checked individually. As a result, the size of the
supervisors synthesized are also limited. Using abstraction reduces the size to a greater
extent.

As the example showed, with the addition of correct requirements, the time taken for a
supervisor synthesis can be reduced greatly. Taking into consideration the entirety of
the Twilight system along with the correct and well-defined requirements, both at the
activity and action level, synthesis of a supervisor using Method V is a feasible task.
Consequently, Method V can be adopted for real life industrial scenarios given that the
system is well understood and the dependencies between the various activities are taken
into account as this reduces the initial search set of activity sequences greatly.

This work can be used as a building block for further work in this domain. A few
suggested guidelines are mentioned below.

• In all the methods discussed, supervisory synthesis is performed to essentially
check whether certain behaviour is always allowed in the system (as all edges are
uncontrollable). Instead of supervisory synthesis, the concept of model checking
could be explored as an approach to perform the same operation, which could
potentially lead to better performing methods.

• Another step in improving upon this research work could be to develop techniques
that allow a higher degree of control by incorporating requirements at the peripheral
and resource level.

• Right now, the methods that were discussed all check sequences one by one
to determine if a sequence fulfils given requirements. However, as can be seen
from the results, the scalability of the approach is not very good, especially for
sequences of larger length. In this regard, another approach that can be explored
is first building a supervisor that contains all allowed behaviour and extracting
the sequences by analyzing the supervisor.

28

Part II

Tool chain implementation

29

5 Introduction

Figure 18: Arrowhead Framework example

Development of systems using MBE involves various stages, starting from design to
verification and analysis. Naturally, different tools are needed at different stages of
the process. A few tools used in industry are LSAT (for system specification), CIF (for
supervisor synthesis), SDF3 [12] (to perform timing analysis), mCRL2 [13] (formal
verification).

A typical toolchain schematic showing the various steps involved in the design of a
system is shown in Fig. 18. These individual tools, however, have different specification,
operate on different types of licenses, and have different purposes. Development and
analysis of systems in MBE could become much easier if these tools could communicate
with each other when necessary to overcome the limitations in the functionalities of the
individual tools. Additionally, operations performed by one or more of these tools could
be computationally challenging. In such cases, having a tool running on a powerful
system to which other tools can communicate when necessary can prove useful.

The work described in the previous part of this report is the LSAT to CIF translation
component of the toolchain. Once an effective tool has been built, integration of the tool
within the toolchain needs to be performed; the process of which has been illustrated
in this part.

30

For this purpose, this part of the research aims to use Arrowhead Framework 1 to set
up a local cloud instance consisting of LSAT (service consumer), the developed model
translator (service provider 1) and CIF (service provider 2) as clients with the framework
orchestrating HTTP requests securely between the toolchains. In turn, this test case
would aid in highlighting the ease of deployment of local clouds and IoT automation
systems using Arrowhead. This has been highlighted in Fig. 18 .

6 Arrowhead Framework

Figure 19: Arrowhead Framework example

The Arrowhead Framework [14] developed by the Eclipse foundation consists of tools
that can be used for designing, implementing, and deploying Automation Systems
compliant with Industry 4.0 and RAMI 4.0. The framework of Eclipse Arrowhead directs
its users to adopt a common and unified approach in turn achieving high levels of
interoperability. The approach taken is that IoT’s are abstracted to services. This
enables IoT interoperability in almost any IoT’s. The automation is based on the concept
of setting up of local automation clouds.

In its most simple form, a local cloud consists of a consumer and a provider of service
with Arrowhead framework providing three core services: service registry, authorization,
and orchestration as shown in Fig. 19. A service itself is realized in the form of
HTTP request response cycles. The sequence of operations in a cloud is usually as
follows:

1. The service provider and consumer system register the services provided by them
in the cloud by sending a request to the service registry of the framework

2. Once the services are registered in the registry, authorization rules are set by the
user to define specific provider services that can be used by the consumer

31

3. Finally the orchestrator controls the actual consumption of the service by scanning
the cloud for the service desired by the consumer according to the authorization
rules set. Additionally, an orchestrator store of services can also be set up which
tells the orchestrator the exact service needed by a consumer system.

The aforementioned is an instance with a single local cloud. Many other features
may be added, such as multiple clouds, multiple providers-consumers, systems with
subscribers and publishers, etc.

7 Implementation
The following were the steps followed in the setting up of a local arrowhead cloud:

1. The LSAT to CIF translator was designed. In this case, the translator could build a
plant flower automata in CIF containing all activities in the provided LSAT model.

2. The next step was to design generic wrappers for the services provided. A wrap-
per is a program generically written to communicate with the program actually
performing the task

3. Finally, the provider wrappers were connected to the translator program and CIF
synthesis executable as these were the two service providers for this illustration.
A consumer wrapper was created to accept LSAT files and communicate with the
two service providers depending upon the input of the user

Upon implementation, the user could select a LSAT file via the consumer interface to be
sent to the server containing the provider and receive a translated CIF file. Furthermore,
the CIF file could then be selected via the consumer interface along with user defined
requirements and sent to the server containing the CIF synthesis executable and receive
the synthesised supervisor CIF model.

8 Conclusion
Through this exercise, the necessity of building a connected toolchain and the ease of
development using a framework such as Arrowhead was demonstrated.

The toolchain is planned to be expanded in the future by incorporating other tools in
the toolchain in the IoT cloud. In addition, a translator which incorporates the action
level behaviour and requirements, as described in the previous part, can easily be
incorporated into the toolchain.

32

References
[1] L.J. van der Sanden. “Performance analysis and optimization of supervisory

controllers”. PhD thesis. Electrical Engineering, Nov. 2018. isbn: 978-94-6380-
057-0. url: https://pure.tue.nl/ws/portalfiles/portal/109096741/20181122_
Sanden.pdf.

[2] R.J.M. Theunissen. “Supervisory control in health care systems”. PhD thesis.
Mechanical Engineering, 2015. isbn: 978-90-386-3789-1. url: https://pure.tue.
nl/ws/portalfiles/portal/3960230/786117.pdf.

[3] N. Shevchenko. An Introduction to Model-Based Systems Engineering (MBSE). 2020.
url: https://insights.sei.cmu.edu/blog/introduction-model-based-systems-
engineering-mbse/.

[4] D.A. van Beek et al. “CIF 3 : model-based engineering of supervisory controllers”.
In: Tools and algorithms for the construction and analysis of systems. Ed. by
E. Abraham and K. Havelund. Lecture Notes in Computer Science. Germany:
Springer, 2014, pp. 575–580. isbn: 978-3-642-54861-1. doi: 10.1007/978-3-642-
54862-8_48.

[5] W. M. Wonham and P. J. Ramadge. “On the supremal controllable sublanguage of
a given language”. In: The 23rd IEEE Conference on Decision and Control. 1984,
pp. 1073–1080. doi: 10.1109/CDC.1984.272178.

[6] W.M. Wonham. “Supervisory Control of Discrete-Event Systems”. In: Encyclopedia
of Systems and Control. Jan. 2013, pp. 1–10. isbn: 978-1-4471-5102-9. doi:
10.1007/978-1-4471-5102-9_54-1.

[7] L.J. van der Sanden and Y. Blankenstein et al. “LSAT: Specification and Analysis
of Product Logistics in Flexible Manufacturing Systems”. In: IEEE 17th Inter-
national Conference on Automation Science and Engineering (2021). url: https:
//a.storyblok.com/f/74249/x/225d57f1c5/lsat-paper.pdf.

[8] L.J. van der Sanden et al. “Compositional specification of functionality and timing
of manufacturing systems”. Nederlands. In: Proceedings of the 2016 Forum on
specification and Design Languages, FDL 2016, Bremen, Germany, September
14-16, 2016. url: https://ecsi.org/fdl.

[9] L.J. van der Sanden et al. “Modular model-based supervisory controller design for
wafer logistics in lithography machines”. In: 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS). Sept.
2015, pp. 416–425. isbn: 978-1-4673-6909-1. doi: 10.1109/MODELS.2015.7338273.

[10] S.B. Thuijsman and M.A. Reniers. “Conversion of LSAT behavioral specifications
to automata”. In: arXiv 2020 (Nov. 2020). url: https://arxiv.org/pdf/2011.03249.
pdf.

[11] J.P. Nogueira Bastos. “Modular specification and design exploration for flexible
manufacturing systems”. PhD thesis. Electrical Engineering, Dec. 2018. isbn: 978-
94-6380-091-4. url: https://pure.tue.nl/ws/portalfiles/portal/111655386/
20181203_Bastos.pdf.

33

https://pure.tue.nl/ws/portalfiles/portal/109096741/20181122_Sanden.pdf
https://pure.tue.nl/ws/portalfiles/portal/109096741/20181122_Sanden.pdf
https://pure.tue.nl/ws/portalfiles/portal/3960230/786117.pdf
https://pure.tue.nl/ws/portalfiles/portal/3960230/786117.pdf
https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/
https://insights.sei.cmu.edu/blog/introduction-model-based-systems-engineering-mbse/
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1007/978-3-642-54862-8_48
https://doi.org/10.1109/CDC.1984.272178
https://doi.org/10.1007/978-1-4471-5102-9_54-1
https://a.storyblok.com/f/74249/x/225d57f1c5/lsat-paper.pdf
https://a.storyblok.com/f/74249/x/225d57f1c5/lsat-paper.pdf
https://ecsi.org/fdl
https://doi.org/10.1109/MODELS.2015.7338273
https://arxiv.org/pdf/2011.03249.pdf
https://arxiv.org/pdf/2011.03249.pdf
https://pure.tue.nl/ws/portalfiles/portal/111655386/20181203_Bastos.pdf
https://pure.tue.nl/ws/portalfiles/portal/111655386/20181203_Bastos.pdf

[12] S. Stuijk, M.C.W. Geilen, and T. Basten. “SDF3: SDF For Free.” In: Proceedings
of the 6th International Conference ACSD 2006. Ed. by K.G.W. Goossens and L.
Petrucci. United States: IEEE Computer Society, 2006, pp. 276–278. isbn: 0-7695-
2556-3. url: https://www.es.ele.tue.nl/sdf3/publications/acsd06_sdf3.pdf.

[13] J.F. Groote et al. “The mCRL2 toolset”. In: Informal proceedings of the International
Workshop on Advanced Software Development Tools and Techniques. 2008, pp. 5–
1/10. url: https://www.jeroenkeiren.nl/assets/publications/GKM+08.pdf.

[14] R. Rocha et al. “The Arrowhead Framework applied to energy management”. In:
2018 14th IEEE International Workshop on Factory Communication Systems (WFCS)
(2018), pp. 1–10. doi: 10.1109/WFCS.2018.8402357.

34

https://www.es.ele.tue.nl/sdf3/publications/acsd06_sdf3.pdf
https://www.jeroenkeiren.nl/assets/publications/GKM+08.pdf
https://doi.org/10.1109/WFCS.2018.8402357

Acknowledgement
Research leading to these results has received funding from the EU ECSEL Joint
Undertaking under grant agreement no 826452 (project Arrowhead Tools) and from the
partners national programs/funding authorities.

35

Appendices

A LSAT code: Machine specification for Twilight sys-
tem

1 Machine Twilight
2

3 PeripheralType Clamp {
4 Actions {
5 clamp
6 unclamp
7 }
8 }
9

10 PeripheralType XYMotor {
11 SetPoints {
12 X [m]
13 Y [m]
14 }
15 Axes {
16 X [m] moves X
17 Y [m] moves Y
18 }
19 }
20

21 PeripheralType DrillMotor {
22 Actions {
23 on
24 o f f
25 }
26 }
27

28 PeripheralType Dr i l l {
29 SetPoints {
30 Z [m]
31 }
32 Axes {
33 Z [mm] moves Z
34 }
35 Conversion ”Z=Z/1000”
36 }
37

38 PeripheralType Conditioner {
39 Actions {
40 condition
41 }
42 }

36

43

44 Resource Dr i l l {
45 CL: Clamp
46 DL: DrillMotor
47 ZR: Dr i l l {
48 SymbolicPositions {
49 UP
50 DOWN
51 }
52 Pro f i l es (normal , slow)
53 Paths {
54 DOWN −−> UP pro f i l e slow
55 UP −−> DOWN pro f i l e normal
56 }
57 }
58 }
59

60 Resource Conditioner {
61 CL: Clamp
62 CD: Conditioner
63 }
64

65 Resource LoadRobot {
66 CL: Clamp
67 XY: XYMotor {
68 AxisPositions {
69 X (IN , COND, DRILL)
70 Y (ABOVE, AT)
71 }
72 SymbolicPositions {
73 ABOVE IN (X. IN , Y.ABOVE)
74 ABOVE COND (X.COND, Y.ABOVE)
75 ABOVE DRILL (X.DRILL, Y.ABOVE)
76 AT IN (X. IN , Y.AT)
77 AT COND (X.COND, Y.AT)
78 AT DRILL (X.DRILL, Y.AT)
79 OUT DRILL (X.DRILL)
80 }
81 Pro f i l es (normal)
82 Paths {
83 FullMesh {
84 pro f i l e normal
85 ABOVE IN
86 ABOVE COND
87 ABOVE DRILL
88 }
89 ABOVE IN <−> AT IN pro f i l e normal
90 ABOVE COND <−> AT COND pro f i l e normal
91 ABOVE DRILL <−> AT DRILL pro f i l e normal

37

92 ABOVE DRILL <−> OUT DRILL pro f i l e normal
93 OUT DRILL <−> AT DRILL pro f i l e normal
94 }
95 }
96 }
97

98 Resource UnloadRobot {
99 CL: Clamp

100 XY: XYMotor {
101 AxisPositions {
102 X (COND, DRILL, OUT)
103 Y (ABOVE, AT)
104 }
105 SymbolicPositions {
106 ABOVE OUT (X.OUT, Y.ABOVE)
107 ABOVE COND (X.COND, Y.ABOVE)
108 ABOVE DRILL (X.DRILL, Y.ABOVE)
109 AT OUT (X.OUT, Y.AT)
110 AT COND (X.COND, Y.AT)
111 AT DRILL (X.DRILL, Y.AT)
112 OUT DRILL (X.DRILL)
113 }
114 Pro f i l es (normal)
115 Paths {
116 FullMesh {
117 pro f i l e normal
118 ABOVE COND
119 ABOVE DRILL
120 ABOVE OUT
121 }
122 ABOVE COND <−> AT COND pro f i l e normal
123 ABOVE DRILL <−> AT DRILL pro f i l e normal
124 ABOVE DRILL <−> OUT DRILL pro f i l e normal
125 OUT DRILL <−> AT DRILL pro f i l e normal
126 ABOVE OUT <−> AT OUT pro f i l e normal
127 }
128 }
129 }

38

B LSAT code: Settings specification for Twilight sys-
tem

1 import ” twi l ight .machine”
2

3 LoadRobot .CL {
4 Timings {
5 clamp = Pert (min=0.1 , max=1, mode=0.250, gamma=10)
6 unclamp = 0.200
7 }
8 }
9

10 LoadRobot .XY {
11 Axis X {
12 Pro f i l es {
13 normal (V = 1, A = 8, J = 20)
14 }
15 Positions {
16 IN = 1
17 COND = 2
18 DRILL = 3
19 }
20 }
21 Axis Y {
22 Pro f i l es {
23 normal (V = 2, A = 15, J = 35)
24 }
25 Positions {
26 ABOVE = 0
27 OUT DRILL = 0.8
28 AT = 2
29 }
30 }
31 }
32

33 UnloadRobot .CL {
34 Timings {
35 clamp = 0.25
36

37 unclamp = 0.200
38 }
39 }
40

41 UnloadRobot .XY {
42 Axis X {
43 Pro f i l es {
44 normal (V = 8, A = 8, J = 20)
45 }
46 Positions {

39

47 COND = 2
48 DRILL = 3
49 OUT = 4
50 }
51 }
52 Axis Y {
53 Pro f i l es {
54 normal (V = 15, A = 15, J = 35)
55 }
56 Positions {
57 ABOVE = 0
58 OUT DRILL = 0.8
59 AT = 2
60 }
61 }
62 }
63

64 Conditioner .CL {
65 Timings {
66 clamp = 0.250
67 unclamp = 0.200
68 }
69 }
70

71 Conditioner .CD {
72 Timings {
73 condition = 5.0
74 }
75 }
76

77 Dr i l l .CL {
78 Timings {
79 clamp = 0.250
80 unclamp = 0.200
81 }
82 }
83

84 Dr i l l .DL{
85 Timings {
86 on = 0.5
87 o f f = 0.5
88 }
89 }
90

91 Dr i l l .ZR {
92 Axis Z {
93 Pro f i l es {
94 normal (V = 0.1 , A = 1, J = 5)
95 slow (V = 0.1 , A = 0.1 , J = 1.0)

40

96 }
97 Positions {
98 UP = 100
99 DOWN = 0

100 }
101 }
102 }

41

C LSAT code: Activity specification for Twilight sys-
tem

1 import ” twi l ight .machine”
2

3

4 ac t i v i t y LR PickPrdFromInput {
5 prerequisites {
6 LoadRobot .XY at ABOVE IN
7 }
8 actions {
9 C1: claim LoadRobot

10 R1: release LoadRobot
11 A1: move LoadRobot .XY to AT IN with speed pro f i l e normal
12 A2: LoadRobot .CL. clamp
13 A3: move LoadRobot .XY to ABOVE IN with speed pro f i l e normal
14 }
15 action flow {
16 C1 −> A1 −> A2 −> A3 −> R1
17 }
18 }
19

20 ac t i v i t y LR PutPrdOnCond {
21 prerequisites {
22 LoadRobot .XY at ABOVE IN
23 }
24 actions {
25 C1: claim LoadRobot
26 C2: claim Conditioner
27 R1: release LoadRobot
28 R2: release Conditioner
29 C3: claim CollisionArea
30 R3: release CollisionArea
31 A1: move LoadRobot .XY to ABOVE COND with speed pro f i l e normal
32 A2: move LoadRobot .XY to AT COND with speed pro f i l e normal
33 A3: Conditioner .CL. clamp
34 A4: LoadRobot .CL.unclamp
35 A5: move LoadRobot .XY to ABOVE COND with speed pro f i l e normal
36 A6: move LoadRobot .XY to ABOVE IN with speed pro f i l e normal
37 }
38 action flow {
39 C1 −> C3 −> A1 −> A2 −> C2 −> A3 −> A4 −> R2 −> A5 −> A6 −> R3

−>R1
40 }
41 }
42

43 ac t i v i t y LR PutPrdOnDrill {
44 prerequisites {
45 LoadRobot .XY at ABOVE IN

42

46 }
47 actions {
48 C1: claim LoadRobot
49 C2: claim Dr i l l
50 R1: release LoadRobot
51 R2: release Dr i l l
52 C3: claim CollisionArea
53 R3: release CollisionArea
54 A2: move LoadRobot .XY to ABOVE DRILL with speed pro f i l e normal
55 A3: move LoadRobot .XY to OUT DRILL with speed pro f i l e normal
56 A4: move LoadRobot .XY to AT DRILL with speed pro f i l e normal
57 A5: Dr i l l .CL. clamp
58 A6: LoadRobot .CL.unclamp
59 A7: move LoadRobot .XY to OUT DRILL with speed pro f i l e normal
60 A8: move LoadRobot .XY to ABOVE DRILL with speed pro f i l e normal
61 A10: move LoadRobot .XY to ABOVE IN with speed pro f i l e normal
62 }
63 action flow {
64 C1 −> C3 −> A2 −> A3 −> A4 −> C2 −> A5 −> A6 −> A7 −> R2 −> A8

−> A10 −> R3−> R1
65 }
66 }
67

68 ac t i v i t y LR PickPrdFromCond {
69 prerequisites {
70 LoadRobot .XY at ABOVE IN
71 }
72 actions {
73 C1: claim LoadRobot
74 C2: claim Conditioner
75 R1: release LoadRobot
76 R2: release Conditioner
77 C3: claim CollisionArea
78 R3: release CollisionArea
79 A1: move LoadRobot .XY to ABOVE COND with speed pro f i l e normal
80 A2: move LoadRobot .XY to AT COND with speed pro f i l e normal
81 A3: Conditioner .CL.unclamp
82 A4: LoadRobot .CL. clamp
83 A5: move LoadRobot .XY to ABOVE COND with speed pro f i l e normal
84 A6: move LoadRobot .XY to ABOVE IN with speed pro f i l e normal
85 }
86 action flow {
87 C1 −> C3 −> A1 −> A2 −> C2 −> A4 −> A3 −> R2 −> A5 −> A6 −> R3−>

R1
88 }
89 }
90

91 ac t i v i t y LR PickPrdFromDrill {
92 prerequisites {

43

93 LoadRobot .XY at ABOVE IN
94 }
95 actions {
96 C1: claim LoadRobot
97 C2: claim Dr i l l
98 R1: release LoadRobot
99 R2: release Dr i l l

100 C3: claim CollisionArea
101 R3: release CollisionArea
102 A1: move LoadRobot .XY to ABOVE COND with speed pro f i l e normal
103 A2: move LoadRobot .XY to ABOVE DRILL with speed pro f i l e normal
104 A3: move LoadRobot .XY to OUT DRILL with speed pro f i l e normal
105 A4: move LoadRobot .XY to AT DRILL with speed pro f i l e normal
106 A5: Dr i l l .CL.unclamp
107 A6: LoadRobot .CL. clamp
108 A7: move LoadRobot .XY to OUT DRILL with speed pro f i l e normal
109 A8: move LoadRobot .XY to ABOVE DRILL with speed pro f i l e normal
110 A9: move LoadRobot .XY to ABOVE COND with speed pro f i l e normal
111 A10: move LoadRobot .XY to ABOVE IN with speed pro f i l e normal
112 }
113 action flow {
114 C1 −> C3 −> A1 −> A2 −> A3 −> A4 −> C2 −> A6 −> A5 −> R2 −> A7

−> A8 −> A9 −> A10 −> R3−> R1
115 }
116 }

44

D CIF code: Requirements
1 requirement req1 :
2 location l0 :
3 i n i t i a l ;
4 marked;
5 edge LR PickPrdFromInput 1 .A3 goto l1 ;
6 location l1 :
7 marked;
8 edge LR PutPrdOnCond 1 .A3 goto l2 ;
9 location l2 :

10 marked;
11 end
12

13 requirement req2 :
14 location l0 :
15 i n i t i a l ;
16 marked;
17 edge LR PutPrdOnDrill 1 .A5 goto l1 ;
18 location l1 :
19 marked;
20 edge LR PutPrdOnCond 2 .A1 goto l2 ;
21 location l2 :
22 marked;
23 end

45

E Python code: Method I
1 #Method1: Crude Method where a l l possible sequences are individual ly

checked
2

3 import networkx as nx
4 from i te r too l s import product
5 import subprocess
6 import copy
7 import time
8 from pathlib import Path
9 from ConvertToAutomata import ConvertToAutomata

10 from subseqchecker import wr i t e t o f i l e
11

12

13 f i leDirReq=Path (”se−software−cmdline−win−win−x64−r9682/bin/
re f ina l repor t . c i f ”)

14 req=open (fi leDirReq , ” r ”)
15 Z main=req . read ()
16 req . close ()
17

18 #Start : Separating important and non−important a c t i v i t i e s
19

20 Z trav=Z main . sp l i t l ines ()
21 imp act = []
22 for l ine in Z trav :
23 i f ” edge ” in l ine :
24 wrd arr=l ine . sp l i t ()
25 imp act .append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0])
26

27 #Start : Extraction of LSAT variables
28

29 words list master = []
30 comment var=False
31 with open (’ twi l ight . ac t i v i t y ’ , ’ r ’) as f i l e :
32

33 # reading each l ine
34 for l ine in f i l e :
35

36 # reading each word
37 for word in l ine . sp l i t () :
38

39 #Remove comments
40 i f word . startswith (”//”) :
41 break
42

43 i f word . startswith (”/∗ ”) :
44 comment var=True

46

45

46 i f ” ∗/ ” in word :
47 comment var=False
48 to remove=word . sp l i t (” ∗/ ”)
49 new word=to remove [1]
50 i f new word :
51 words list master .append (new word)
52 continue
53

54 # storing the words
55 i f comment var==False :
56 i f ” : ” in word :
57 to remove=word . sp l i t (” : ”)
58 new word=to remove [0]
59 i f new word :
60 words list master .append (new word)
61 words list master .append (” : ”)
62 new word=to remove [1]
63 i f new word :
64 words list master .append (new word)
65 continue
66

67 i f ”−>” in word :
68 to remove=word . sp l i t (”−>”)
69 new word=to remove [0]
70 i f new word :
71 words list master .append (new word)
72 words list master .append (”−>”)
73 new word=to remove [1]
74 i f new word :
75 words list master .append (new word)
76 continue
77

78

79 words list master .append (word)
80

81 main Stack = []
82 a c t i v i t i e s l i s t = []
83 for word in words list master :
84 main Stack .append (word)
85

86 i f word==”} ” :
87 data Stack = []
88 main Stack .pop ()
89 while (True) :
90 x=main Stack .pop ()
91 i f x==”{ ” :
92 break
93 data Stack .append (x)

47

94

95 # print (data Stack)
96

97 i f main Stack[−1]== ” actions ” :
98 i f data Stack :
99 temp graph=nx.DiGraph ()

100 rev data Stack=data Stack [: : −1]
101

102 for word2 in range (len (rev data Stack)) :
103 i f rev data Stack [word2]== ” : ” :
104 node name=rev data Stack [word2−1]
105

106 i f rev data Stack [word2+1]== ” claim ” :
107 type var=” claim ”
108 resource var=rev data Stack [word2+2]
109 e l i f rev data Stack [word2+1]== ” release ” :
110 type var=” release ”
111 resource var=rev data Stack [word2+2]
112 e l i f rev data Stack [word2+1]== ”move” :
113 type var=” action ”
114 resource var=rev data Stack [word2+2].

sp l i t (” . ”) [0]
115 else :
116 type var=” action ”
117 resource var=rev data Stack [word2+1].

sp l i t (” . ”) [0]
118

119 temp graph . add node (node name, resource=
resource var , type=type var)

120 empty act=False
121 else :
122 empty act=True
123 # print (temp graph . nodes)
124

125 i f main Stack[−1]== ” flow ” :
126 i f data Stack :
127 rev data Stack=data Stack [: : −1]
128

129 for word2 in range (len (rev data Stack) −1) :
130 i f rev data Stack [word2]== ”−>” :
131 i f rev data Stack [word2+1]. startswith (” | ”) :
132 sync nodes = []
133 for word3 in range (len (rev data Stack)) :
134 i f rev data Stack [word3]==

rev data Stack [word2+1]:
135 i f word3<len (rev data Stack) −1:
136 i f rev data Stack [word3+1]== ”

−>” :
137 sync nodes .append (

48

rev data Stack [word3
+2])

138 for sn in sync nodes :
139 temp graph . add edge (rev data Stack [

word2−1] ,sn)
140

141

142 else :
143 i f not rev data Stack [word2−1]. startswith

(” | ”) :
144 temp graph . add edge (rev data Stack [

word2−1] , rev data Stack [word2+1])
145

146 empty act=False
147 else :
148 empty act=True
149

150 i f main Stack[−2]== ” ac t i v i t y ” and not empty act :
151 a c t i v i t i e s l i s t .append ([copy . deepcopy (main Stack [−1]) ,

copy . deepcopy (temp graph)])
152

153

154 act iv i t i es l is t names =[element [0] for element in a c t i v i t i e s l i s t]
155 #End: Extraction of LSAT variables
156

157 synths array = []
158 time var = []
159

160 s ize o f seq=1 #Max size of sequence
161

162 #Start : I n i t i a l L ist of sequences to v is i ted
163 arr temp = []
164

165 new arr names only = []
166 for i in range (s i ze o f seq) :
167 arr temp= l i s t (p for p in product (act iv i t ies l is t names , repeat= i

+1))
168 new arr names only=new arr names only+arr temp
169

170 arr names = []
171

172 for i in new arr names only :
173 instance l is t = []
174 l is t to be passed = []
175 l ist to be passed names = []
176 for j in i :
177 instance l is t .append (j)
178 l ist to be passed names .append (j +” ”+str (instance l is t . count (

j)))

49

179

180 arr names .append (list to be passed names)
181

182 # End: I n i t i a l L ist of sequences to v is i ted
183

184

185 unimp act = []
186 for i in a c t i v i t i e s l i s t :
187 for j in range (s i ze o f seq) :
188 i f (i [0]+ ” ”+str (j +1)) not in imp act :
189 unimp act .append (i [0]+ ” ”+str (j +1))
190

191

192 #End: Separating important and non−important a c t i v i t i e s
193 finalReq=” requirement req :\n”
194 cntr=0
195 seq accepted names = []
196 no of synths=0
197 synthPath=Path (’ se−software−cmdline−win−win−x64−r9682/bin/

cif3datasynth . bat ’)
198 start=time . time ()
199 for i in arr names :
200 l ist to be passed names= i
201 l is t to be passed = []
202

203 for j in range (len (i)) :
204 l is t to be passed .append ([i [j] , a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (new arr names only [arr names .
index (i)] [j])] [1]])

205

206 Y=ConvertToAutomata (l ist to be passed)
207 X=Y. str ingtowrite ()
208 f i l eDirP lant=Path (”se−software−cmdline−win−win−x64−r9682/bin/

temp . c i f ”)
209 Z=” ”
210 Z trav=Z main . sp l i t l ines ()
211 for l ine in Z trav :
212 i f ” edge ” in l ine :
213 wrd arr=l ine . sp l i t ()
214 act to remove=wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0]
215

216 act avai lable =[item [0] for item in l ist to be passed]
217 i f act to remove in act avai lable :
218 Z=Z+l ine+” \n”
219 else :
220 i f ” edge ” not in Z trav [Z trav . index (l ine) +1] and ”

i n i t i a l ; ” not in Z trav [Z trav . index (l ine) +1] and
”marked; ” not in Z trav [Z trav . index (l ine) +1]:

50

221 i f ” location ” in Z trav [Z trav . index (l ine) −1]:
222 pos=Z. rf ind (’ : ’)
223 Z=Z [: pos]+ ” ; ”
224 else :
225 Z=Z+l ine+” \n”
226

227

228 X=X+” \n”+Z
229 f =open (f i leDirPlant , ”w”)
230 f . write (X)
231 f . close ()
232 # Supervisory synthesis process
233 synth = subprocess . run (
234 [synthPath . absolute () . as posix () ,

f i l eDirP lant . absolute () . as posix ()] ,
235 capture output=True ,
236 text=True
237)
238 no of synths+=1
239 print (”Sequence v is i ted : ”+str (no of synths))
240 i f ”ERROR” not in synth . stderr :
241 seq accepted names .append (list to be passed names)
242

243

244 end=time . time ()
245

246 print (” Total synths : ”+str (no of synths))
247 print (” Total time : ”+str (end−start))
248

249 finalReq=finalReq+” \ t locat ion L0:\n\ t \ t i n i t i a l ;\n”
250 cntr=1
251

252 for i in [item [0] for item in seq accepted names] :
253 finalReq=finalReq+”\ t \ tedge ”+ i+” goto LSeq”+str (cntr) +” 1 ;\n”
254 cntr+=1
255

256 cntr=1
257 for i in seq accepted names :
258 for j in i :
259 i f i . index (j)>0:
260 finalReq=finalReq+” \ t locat ion LSeq”+str (cntr) +” ”

+str (i . index (j)) +” :\n”
261 finalReq=finalReq+” \ t \ tedge ”+ j+” goto LSeq”+str (

cntr) +” ”+str (i . index (j) +1)+” ;\n”
262

263 finalReq=finalReq+”\ t locat ion LSeq”+str (cntr) +” ”+str (i .
index (j) +1)+” :\n\ t \tmarked ;\n\n”

264 cntr+=1
265

51

266 finalReq=finalReq+” \nend”
267

268 f i l e D i r f i n a l =Path (”se−software−cmdline−win−win−x64−r9682/bin/
req final method 1 . c i f ”)

269 f in=open (f i l eD i r f ina l , ”w”)
270 f in . write (finalReq)
271 f in . close ()

52

F Python code: Method II
1 #Method 2: Improved method where sequences with addition of
2 #unimportant a c t i v i t i e s are not checked
3

4 import networkx as nx
5 import subprocess
6 import copy
7 import time
8 from pathlib import Path
9 from i te r too l s import product

10 from subseqchecker import subseqchecker
11 from subseqchecker import d i f f
12 from subseqchecker import subseqcheckerend
13 from ConvertToAutomata import ConvertToAutomata
14

15

16 f i leDirReq=Path (”se−software−cmdline−win−win−x64−r9682/bin/
re f ina l repor t . c i f ”)

17 req=open (fi leDirReq , ” r ”)
18 Z main=req . read ()
19 req . close ()
20

21

22 #Start : Separating important and non−important a c t i v i t i e s
23

24 Z trav=Z main . sp l i t l ines ()
25 imp act = []
26 for l ine in Z trav :
27 i f ” edge ” in l ine :
28 wrd arr=l ine . sp l i t ()
29 imp act .append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0])
30

31 #Start : Extraction of LSAT variables
32

33 words list master = []
34 comment var=False
35 with open (’ twi l ight . ac t i v i t y ’ , ’ r ’) as f i l e :
36

37 # reading each l ine
38 for l ine in f i l e :
39

40 # reading each word
41 for word in l ine . sp l i t () :
42

43 #Remove comments
44 i f word . startswith (”//”) :
45 break

53

46

47 i f word . startswith (”/∗ ”) :
48 comment var=True
49

50 i f ” ∗/ ” in word :
51 comment var=False
52 to remove=word . sp l i t (” ∗/ ”)
53 new word=to remove [1]
54 i f new word :
55 words list master .append (new word)
56 continue
57

58 # storing the words
59 i f comment var==False :
60 i f ” : ” in word :
61 to remove=word . sp l i t (” : ”)
62 new word=to remove [0]
63 i f new word :
64 words list master .append (new word)
65 words list master .append (” : ”)
66 new word=to remove [1]
67 i f new word :
68 words list master .append (new word)
69 continue
70

71 i f ”−>” in word :
72 to remove=word . sp l i t (”−>”)
73 new word=to remove [0]
74 i f new word :
75 words list master .append (new word)
76 words list master .append (”−>”)
77 new word=to remove [1]
78 i f new word :
79 words list master .append (new word)
80 continue
81

82

83 words list master .append (word)
84

85 main Stack = []
86 a c t i v i t i e s l i s t = []
87 for word in words list master :
88 main Stack .append (word)
89

90 i f word==”} ” :
91 data Stack = []
92 main Stack .pop ()
93 while (True) :
94 x=main Stack .pop ()

54

95 i f x==”{ ” :
96 break
97 data Stack .append (x)
98

99 # print (data Stack)
100

101 i f main Stack[−1]== ” actions ” :
102 i f data Stack :
103 temp graph=nx.DiGraph ()
104 rev data Stack=data Stack [: : −1]
105

106 for word2 in range (len (rev data Stack)) :
107 i f rev data Stack [word2]== ” : ” :
108 node name=rev data Stack [word2−1]
109

110 i f rev data Stack [word2+1]== ” claim ” :
111 type var=” claim ”
112 resource var=rev data Stack [word2+2]
113 e l i f rev data Stack [word2+1]== ” release ” :
114 type var=” release ”
115 resource var=rev data Stack [word2+2]
116 e l i f rev data Stack [word2+1]== ”move” :
117 type var=” action ”
118 resource var=rev data Stack [word2+2].

sp l i t (” . ”) [0]
119 else :
120 type var=” action ”
121 resource var=rev data Stack [word2+1].

sp l i t (” . ”) [0]
122

123 temp graph . add node (node name, resource=
resource var , type=type var)

124 empty act=False
125 else :
126 empty act=True
127 # print (temp graph . nodes)
128

129 i f main Stack[−1]== ” flow ” :
130 i f data Stack :
131 rev data Stack=data Stack [: : −1]
132

133 for word2 in range (len (rev data Stack) −1) :
134 i f rev data Stack [word2]== ”−>” :
135 i f rev data Stack [word2+1]. startswith (” | ”) :
136 sync nodes = []
137 for word3 in range (len (rev data Stack)) :
138 i f rev data Stack [word3]==

rev data Stack [word2+1]:
139 i f word3<len (rev data Stack) −1:

55

140 i f rev data Stack [word3+1]== ”
−>” :

141 sync nodes .append (
rev data Stack [word3
+2])

142 for sn in sync nodes :
143 temp graph . add edge (rev data Stack [

word2−1] ,sn)
144

145

146 else :
147 i f not rev data Stack [word2−1]. startswith

(” | ”) :
148 temp graph . add edge (rev data Stack [

word2−1] , rev data Stack [word2+1])
149

150 empty act=False
151 else :
152 empty act=True
153

154 i f main Stack[−2]== ” ac t i v i t y ” and not empty act :
155 a c t i v i t i e s l i s t .append ([copy . deepcopy (main Stack [−1]) ,

copy . deepcopy (temp graph)])
156

157 act iv i t i es l is t names =[element [0] for element in a c t i v i t i e s l i s t]
158

159 #End: Extraction of LSAT variables
160

161

162 s ize o f seq=1 #max size of sequence
163

164 #Start : I n i t i a l L ist of sequences to v is i ted
165

166 arr temp = []
167

168 new arr names only = []
169 for i in range (s i ze o f seq) :
170 arr temp= l i s t (p for p in product (act iv i t ies l is t names , repeat= i

+1))
171 new arr names only=new arr names only+arr temp
172

173 arr names = []
174

175 for i in new arr names only :
176 instance l is t = []
177 l is t to be passed = []
178 l ist to be passed names = []
179 for j in i :
180 instance l is t .append (j)

56

181 l ist to be passed names .append (j +” ”+str (instance l is t . count (
j)))

182

183 arr names .append (list to be passed names)
184

185

186 # End: I n i t i a l L ist of sequences to v is i ted
187

188 unimp act = []
189 for i in a c t i v i t i e s l i s t :
190 for j in range (s i ze o f seq) :
191 i f (i [0]+ ” ”+str (j +1)) not in imp act :
192 unimp act .append (i [0]+ ” ”+str (j +1))
193

194

195 #End: Separating important and non−important a c t i v i t i e s
196 indexes to be vis i ted= l i s t (range (len (arr names)))
197 len cntr = []
198 for i in range (1 , s i ze o f seq +1) :
199 len cntr .append (pow(len (act iv i t i es l is t names) , i))
200

201 finalReq=” requirement req :\n”
202 cntr=0
203 seq accepted names = []
204 no of synths=0
205 synthPath=Path (’ se−software−cmdline−win−win−x64−r9682/bin/

cif3datasynth . bat ’)
206 start=time . time ()
207 for i in arr names :
208 l ist to be passed names= i
209

210 i f arr names . index (i) in indexes to be vis i ted :
211 indexes to be vis i ted . remove (arr names . index (i))
212

213 for r in len cntr :
214 i f arr names . index (i)<r :
215 reg=r
216 break
217

218 l is t to be passed = []
219

220 for j in range (len (i)) :
221 l is t to be passed .append ([i [j] , a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (new arr names only [
arr names . index (i)] [j])] [1]])

222

223 Y=ConvertToAutomata (l ist to be passed)
224 X=Y. str ingtowrite ()
225 f i l eDirP lant=Path (”se−software−cmdline−win−win−x64−r9682/bin/

57

temp . c i f ”)
226 Z=” ”
227

228 Z trav=Z main . sp l i t l ines ()
229 for l ine in Z trav :
230 i f ” edge ” in l ine :
231 wrd arr=l ine . sp l i t ()
232 act to remove=wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (

” . ”) [0]
233

234 act avai lable =[item [0] for item in l ist to be passed]
235 i f act to remove in act avai lable :
236 Z=Z+l ine+” \n”
237 else :
238 i f ” edge ” not in Z trav [Z trav . index (l ine) +1]

and ” i n i t i a l ; ” not in Z trav [Z trav . index (l ine
) +1] and ”marked; ” not in Z trav [Z trav . index (
l ine) +1]:

239 i f ” location ” in Z trav [Z trav . index (l ine)
−1]:

240 pos=Z. rf ind (’ : ’)
241 Z=Z [: pos]+ ” ; ”
242 else :
243 Z=Z+l ine+” \n”
244

245

246 X=X+” \n”+Z
247 f =open (f i leDirPlant , ”w”)
248 f . write (X)
249 f . close ()
250 # Supervisory synthesis process
251 synth = subprocess . run (
252 [synthPath . absolute () . as posix () ,

f i l eDirP lant . absolute () . as posix ()] ,
253 capture output=True ,
254 shel l=True ,
255 text=True
256)
257 no of synths+=1
258 print (”Sequence v is i ted : ”+str (no of synths))
259 i f ”ERROR” not in synth . stderr :
260 seq accepted names .append (list to be passed names)
261 indexes temp= l i s t (indexes to be vis i ted)
262 i f len (indexes to be vis i ted) ==0:
263 break
264 for k in indexes temp :
265 i f k>=reg :
266 i f subseqchecker (arr names [k] ,

list to be passed names) :

58

267 i f set (d i f f (arr names [k] ,
list to be passed names)) . issubset (set (
unimp act)) :

268 seq accepted names .append (arr names [k])
269 indexes to be vis i ted . remove (k)
270

271 # print (seq accepted names)
272

273 else :
274

275 indexes temp= l i s t (indexes to be vis i ted)
276 i f len (indexes to be vis i ted) ==0:
277 break
278 for k in indexes temp :
279 i f k>=reg :
280 i f subseqcheckerend (list to be passed names ,

arr names [k]) :
281 i f set (d i f f (arr names [k] ,

list to be passed names)) . issubset (set (
unimp act)) :

282 indexes to be vis i ted . remove (k)
283

284 end=time . time ()
285

286

287 print (” Total synths : ”+str (no of synths))
288 print (” Total time : ”+str (end−start))
289

290

291 finalReq=finalReq+” \ t locat ion L0:\n\ t \ t i n i t i a l ;\n”
292 cntr=1
293

294 for i in [item [0] for item in seq accepted names] :
295 finalReq=finalReq+”\ t \ tedge ”+ i+” goto LSeq”+str (cntr) +” 1 ;\n”
296 cntr+=1
297

298 cntr=1
299 for i in seq accepted names :
300 for j in i :
301 i f i . index (j)>0:
302 finalReq=finalReq+” \ t locat ion LSeq”+str (cntr) +” ”

+str (i . index (j)) +” :\n”
303 finalReq=finalReq+” \ t \ tedge ”+ j+” goto LSeq”+str (

cntr) +” ”+str (i . index (j) +1)+” ;\n”
304

305 finalReq=finalReq+”\ t locat ion LSeq”+str (cntr) +” ”+str (i .
index (j) +1)+” :\n\ t \tmarked ;\n\n”

306 cntr+=1
307

59

308

309 finalReq=finalReq+” \nend”
310

311 f i l e D i r f i n a l =Path (”se−software−cmdline−win−win−x64−r9682/bin/
req final method 2 . c i f ”)

312 f in=open (f i l eD i r f ina l , ”w”)
313 f in . write (finalReq)
314 f in . close ()

60

G Python code: Method III
1 #Method 3: Improved method where actions which are not claim release
2 #or connecting a c t i v i t i e s are ignored
3

4 import networkx as nx
5 import subprocess
6 import copy
7 import time
8 from pathlib import Path
9 from i te r too l s import product

10 from ConvertToAutomata import ConvertToAutomata
11 from subseqchecker import subseqchecker
12 from subseqchecker import subseqcheckerend
13 from subseqchecker import d i f f
14

15 f i leDirReq=Path (”se−software−cmdline−win−win−x64−r9682/bin/
re f ina l repor t . c i f ”)

16 req=open (fi leDirReq , ” r ”)
17 Z main=req . read ()
18 req . close ()
19

20 #Start : Separating important and non−important a c t i v i t i e s
21 Z trav=Z main . sp l i t l ines ()
22 imp act = []
23 imp action={}
24

25 for l ine in Z trav :
26 i f ” edge ” in l ine :
27 wrd arr=l ine . sp l i t ()
28 imp act .append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0])
29 i f wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”) [0] in

imp action :
30 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0]] . append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” .
”) [1])

31 else :
32 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0]] = []
33 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0]] . append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” .
”) [1])

34

35 #Start : Extraction of LSAT variables
36

37 words list master = []
38 comment var=False
39 with open (’ twi l ight . ac t i v i t y ’ , ’ r ’) as f i l e :

61

40

41 # reading each l ine
42 for l ine in f i l e :
43

44 # reading each word
45 for word in l ine . sp l i t () :
46

47 #Remove comments
48 i f word . startswith (”//”) :
49 break
50

51 i f word . startswith (”/∗ ”) :
52 comment var=True
53

54 i f ” ∗/ ” in word :
55 comment var=False
56 to remove=word . sp l i t (” ∗/ ”)
57 new word=to remove [1]
58 i f new word :
59 words list master .append (new word)
60 continue
61

62 # storing the words
63 i f comment var==False :
64 i f ” : ” in word :
65 to remove=word . sp l i t (” : ”)
66 new word=to remove [0]
67 i f new word :
68 words list master .append (new word)
69 words list master .append (” : ”)
70 new word=to remove [1]
71 i f new word :
72 words list master .append (new word)
73 continue
74

75 i f ”−>” in word :
76 to remove=word . sp l i t (”−>”)
77 new word=to remove [0]
78 i f new word :
79 words list master .append (new word)
80 words list master .append (”−>”)
81 new word=to remove [1]
82 i f new word :
83 words list master .append (new word)
84 continue
85

86

87 words list master .append (word)
88

62

89 main Stack = []
90 a c t i v i t i e s l i s t = []
91 for word in words list master :
92 main Stack .append (word)
93

94 i f word==”} ” :
95 data Stack = []
96 main Stack .pop ()
97 while (True) :
98 x=main Stack .pop ()
99 i f x==”{ ” :

100 break
101 data Stack .append (x)
102

103 # print (data Stack)
104

105 i f main Stack[−1]== ” actions ” :
106 i f data Stack :
107 temp graph=nx.DiGraph ()
108 rev data Stack=data Stack [: : −1]
109

110 for word2 in range (len (rev data Stack)) :
111 i f rev data Stack [word2]== ” : ” :
112 node name=rev data Stack [word2−1]
113

114 i f rev data Stack [word2+1]== ” claim ” :
115 type var=” claim ”
116 resource var=rev data Stack [word2+2]
117 e l i f rev data Stack [word2+1]== ” release ” :
118 type var=” release ”
119 resource var=rev data Stack [word2+2]
120 e l i f rev data Stack [word2+1]== ”move” :
121 type var=” action ”
122 resource var=rev data Stack [word2+2].

sp l i t (” . ”) [0]
123 else :
124 type var=” action ”
125 resource var=rev data Stack [word2+1].

sp l i t (” . ”) [0]
126

127 temp graph . add node (node name,name=node name,
resource=resource var , type=type var)

128 empty act=False
129 else :
130 empty act=True
131 # print (temp graph . nodes)
132

133 i f main Stack[−1]== ” flow ” :
134 i f data Stack :

63

135 rev data Stack=data Stack [: : −1]
136

137 for word2 in range (len (rev data Stack) −1) :
138 i f rev data Stack [word2]== ”−>” :
139 i f rev data Stack [word2+1]. startswith (” | ”) :
140 sync nodes = []
141 for word3 in range (len (rev data Stack)) :
142 i f rev data Stack [word3]==

rev data Stack [word2+1]:
143 i f word3<len (rev data Stack) −1:
144 i f rev data Stack [word3+1]== ”

−>” :
145 sync nodes .append (

rev data Stack [word3
+2])

146 for sn in sync nodes :
147 temp graph . add edge (rev data Stack [

word2−1] ,sn)
148

149

150 else :
151 i f not rev data Stack [word2−1]. startswith

(” | ”) :
152 temp graph . add edge (rev data Stack [

word2−1] , rev data Stack [word2+1])
153

154 empty act=False
155 else :
156 empty act=True
157

158 i f main Stack[−2]== ” ac t i v i t y ” and not empty act :
159 a c t i v i t i e s l i s t .append ([copy . deepcopy (main Stack [−1]) ,

copy . deepcopy (temp graph)])
160

161

162 act iv i t i es l is t names =[element [0] for element in a c t i v i t i e s l i s t]
163

164 #End: Extraction of LSAT variables
165

166 alternate dag imp = []
167 alternate dag unimp = []
168 for i in act iv i t i es l is t names :
169 match found=False
170 for j in imp act :
171 temp name=copy . deepcopy (j . r sp l i t (’ ’ ,1) [0])
172 i f temp name== i :
173 temp graph1=copy . deepcopy (a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (i)] [1])
174 nodes l ist= l i s t (temp graph1 . nodes)

64

175

176 for k in nodes l ist :
177 i f temp graph1 . nodes [k] [’ type ’] ! = ’ claim ’ and

temp graph1 . nodes [k] [’ type ’] ! = ’ release ’ :
178 i f k not in imp action [j] :
179

180 pred node= l i s t (temp graph1 . predecessors (k))
181 succ node= l i s t (temp graph1 . successors (k))
182 temp graph1 . remove node (k)
183 e l i s t = []
184 for pred in pred node :
185 for succ in succ node :
186 e l i s t .append ((pred , succ))
187

188 temp graph1 . add edges from (e l i s t)
189

190 alternate dag imp .append (copy . deepcopy (temp graph1))
191 match found=True
192 break
193

194 i f not match found :
195 alternate dag imp .append(−1)
196

197 for i in act iv i t i es l is t names :
198 temp graph1=copy . deepcopy (a c t i v i t i e s l i s t [act iv i t i es l is t names .

index (i)] [1])
199 nodes l ist= l i s t (temp graph1 . nodes)
200

201 for k in nodes l ist :
202 i f temp graph1 . nodes [k] [’ type ’] ! = ’ claim ’ and temp graph1 .

nodes [k] [’ type ’] ! = ’ release ’ :
203

204 pred node= l i s t (temp graph1 . predecessors (k))
205 succ node= l i s t (temp graph1 . successors (k))
206 temp graph1 . remove node (k)
207 e l i s t = []
208 for pred in pred node :
209 for succ in succ node :
210 e l i s t .append ((pred , succ))
211

212 temp graph1 . add edges from (e l i s t)
213

214 alternate dag unimp .append (copy . deepcopy (temp graph1))
215

216 s ize o f seq=6 #max size of sequence
217

218

219 #Start : I n i t i a l L ist of sequences to v is i ted
220

65

221 arr temp = []
222

223 new arr names only = []
224 for i in range (s i ze o f seq) :
225 arr temp= l i s t (p for p in product (act iv i t ies l is t names , repeat= i

+1))
226 new arr names only=new arr names only+arr temp
227

228 arr names = []
229

230 for i in new arr names only :
231 instance l is t = []
232 l is t to be passed = []
233 l ist to be passed names = []
234 for j in i :
235 instance l is t .append (j)
236 l ist to be passed names .append (j +” ”+str (instance l is t . count (

j)))
237

238 arr names .append (list to be passed names)
239

240 # End: I n i t i a l L ist of sequences to v is i ted
241

242 #Start : Separating important and non−important a c t i v i t i e s
243

244 unimp act = []
245 for i in a c t i v i t i e s l i s t :
246 for j in range (s i ze o f seq) :
247 i f (i [0]+ ” ”+str (j +1)) not in imp act :
248 unimp act .append (i [0]+ ” ”+str (j +1))
249

250

251 #End: Separating important and non−important a c t i v i t i e s
252 indexes to be vis i ted= l i s t (range (len (arr names)))
253 len cntr = []
254 for i in range (1 , s i ze o f seq +1) :
255 len cntr .append (pow(len (act iv i t i es l is t names) , i))
256

257

258 finalReq=” requirement req :\n”
259 cntr=0
260 seq accepted names = []
261

262 no of synths=0
263 synthPath=Path (’ se−software−cmdline−win−win−x64−r9682/bin/

cif3datasynth . bat ’)
264 start=time . time ()
265 cntr=1
266 for i in arr names :

66

267 l ist to be passed names= i
268

269 i f arr names . index (i) in indexes to be vis i ted :
270 indexes to be vis i ted . remove (arr names . index (i))
271 for r in len cntr :
272 i f arr names . index (i)<r :
273 reg=r
274 break
275

276 l is t to be passed = []
277

278 for j in range (len (i)) :
279 i f i [j] in imp act :
280 temp graph=copy . deepcopy (a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (new arr names only [
arr names . index (i)] [j])] [1])

281 for k in l i s t (temp graph . nodes) :
282 i f temp graph . nodes [k] [’ type ’] ! = ’ claim ’ and

temp graph . nodes [k] [’ type ’] ! = ’ release ’ :
283 i f k not in imp action [i [j]] :
284

285 pred node= l i s t (temp graph . predecessors (k)
)

286 succ node= l i s t (temp graph . successors (k))
287 temp graph . remove node (k)
288 e l i s t = []
289 for pred in pred node :
290 for succ in succ node :
291 e l i s t .append ((pred , succ))
292

293 temp graph . add edges from (e l i s t)
294

295 l is t to be passed .append ([i [j] , copy . deepcopy (
temp graph)])

296 else :
297 l is t to be passed .append ([i [j] , a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (new arr names only [
arr names . index (i)] [j])] [1]])

298

299

300 Y=ConvertToAutomata (l ist to be passed)
301 X=Y. str ingtowrite ()
302 f i l eDirP lant=Path (”se−software−cmdline−win−win−x64−r9682/bin/

temp new 3 . c i f ”)
303 Z=” ”
304

305 Z trav=Z main . sp l i t l ines ()
306 for l ine in Z trav :
307 i f ” edge ” in l ine :

67

308 wrd arr=l ine . sp l i t ()
309 act to remove=wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (

” . ”) [0]
310

311 act avai lable= i
312 i f act to remove in act avai lable :
313 Z=Z+l ine+” \n”
314 else :
315 i f ” edge ” not in Z trav [Z trav . index (l ine) +1]

and ” i n i t i a l ; ” not in Z trav [Z trav . index (l ine
) +1] and ”marked; ” not in Z trav [Z trav . index (
l ine) +1]:

316 i f ” location ” in Z trav [Z trav . index (l ine)
−1]:

317 pos=Z. rf ind (’ : ’)
318 Z=Z [: pos]+ ” ; ”
319 else :
320 Z=Z+l ine+” \n”
321

322

323 X=X+” \n”+Z
324 f =open (f i leDirPlant , ”w”)
325 f . write (X)
326 f . close ()
327 # Supervisory synthesis process
328 synth = subprocess . run (
329 [synthPath . absolute () . as posix () ,

f i l eDirP lant . absolute () . as posix ()] ,
330 capture output=True ,
331 text=True
332)
333 no of synths+=1
334 print (”Sequence v is i ted : ”+str (no of synths))
335 i f ”ERROR” not in synth . stderr :
336 seq accepted names .append (list to be passed names)
337 indexes temp= l i s t (indexes to be vis i ted)
338 i f len (indexes to be vis i ted) ==0:
339 break
340 for k in indexes temp :
341 i f k>=reg :
342 i f subseqchecker (arr names [k] ,

list to be passed names) :
343 i f set (d i f f (arr names [k] ,

list to be passed names)) . issubset (set (
unimp act)) :

344 seq accepted names .append (arr names [k])
345 indexes to be vis i ted . remove (k)
346

347 # print (seq accepted names)

68

348

349 else :
350 indexes temp= l i s t (indexes to be vis i ted)
351 i f len (indexes to be vis i ted) ==0:
352 break
353 for k in indexes temp :
354 i f k>=reg :
355 i f subseqcheckerend (list to be passed names ,

arr names [k]) :
356 i f set (d i f f (arr names [k] ,

list to be passed names)) . issubset (set (
unimp act)) :

357 indexes to be vis i ted . remove (k)
358

359

360

361

362 end=time . time ()
363

364

365 print (” Total synths : ”+str (no of synths))
366 print (” Total time : ”+str (end−start))
367

368

369 finalReq=finalReq+” \ t locat ion L0:\n\ t \ t i n i t i a l ;\n”
370 cntr=1
371

372 for i in [item [0] for item in seq accepted names] :
373 finalReq=finalReq+”\ t \ tedge ”+ i+” goto LSeq”+str (cntr) +” 1 ;\n”
374 cntr+=1
375

376 cntr=1
377 for i in seq accepted names :
378 for j in i :
379 i f i . index (j)>0:
380 finalReq=finalReq+”\ t locat ion LSeq”+str (cntr) +” ”+str (i .

index (j)) +” :\n”
381 finalReq=finalReq+”\ t \ tedge ”+ j+” goto LSeq”+str (cntr) +”

”+str (i . index (j) +1)+” ;\n”
382

383 finalReq=finalReq+”\ t locat ion LSeq”+str (cntr) +” ”+str (i . index (j)
+1)+” :\n\ t \tmarked ;\n\n”

384 cntr+=1
385

386

387

388 finalReq=finalReq+” \nend”
389

390 f i l e D i r f i n a l =Path (”se−software−cmdline−win−win−x64−r9682/bin/

69

req final new . c i f ”)
391 f in=open (f i l eD i r f ina l , ”w”)
392 f in . write (finalReq)
393 f in . close ()

70

H Python code: Method IV
1 import networkx as nx
2 import subprocess
3 import copy
4 import time
5 from multiprocessing import Pool
6 from pathlib import Path
7 from i te r too l s import product
8 from ConvertToAutomata2 import ConvertToAutomata
9 from subseqchecker import subseqchecker

10 from subseqchecker import subseqcheckerend
11 from subseqchecker import d i f f
12 from subseqchecker import wr i t e t o f i l e
13

14 i f name == ’ main ’ :
15 f i leDirReq=Path (”se−software−cmdline−win−win−x64−r9682/bin/

re f ina l repor t . c i f ”)
16 req=open (fi leDirReq , ” r ”)
17 Z main=req . read ()
18 req . close ()
19

20 #Start : Separating important and non−important a c t i v i t i e s
21 Z trav=Z main . sp l i t l ines ()
22 imp act = []
23 imp action={}
24

25 for l ine in Z trav :
26 i f ” edge ” in l ine :
27 wrd arr=l ine . sp l i t ()
28 imp act .append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”

) [0])
29 i f wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”) [0] in

imp action :
30 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”

) [0]] . append (wrd arr [wrd arr . index (” edge ”) +1].
sp l i t (” . ”) [1])

31 else :
32 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”

) [0]] = []
33 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”

) [0]] . append (wrd arr [wrd arr . index (” edge ”) +1].
sp l i t (” . ”) [1])

34

35 #Start : Extraction of LSAT variables
36 print (imp action)
37 words list master = []
38 comment var=False
39 with open (’ twi l ight . ac t i v i t y ’ , ’ r ’) as f i l e :

71

40

41 # reading each l ine
42 for l ine in f i l e :
43

44 # reading each word
45 for word in l ine . sp l i t () :
46

47 #Remove comments
48 i f word . startswith (”//”) :
49 break
50

51 i f word . startswith (”/∗ ”) :
52 comment var=True
53

54 i f ” ∗/ ” in word :
55 comment var=False
56 to remove=word . sp l i t (” ∗/ ”)
57 new word=to remove [1]
58 i f new word :
59 words list master .append (new word)
60 continue
61

62 # storing the words
63 i f comment var==False :
64 i f ” : ” in word :
65 to remove=word . sp l i t (” : ”)
66 new word=to remove [0]
67 i f new word :
68 words list master .append (new word)
69 words list master .append (” : ”)
70 new word=to remove [1]
71 i f new word :
72 words list master .append (new word)
73 continue
74

75 i f ”−>” in word :
76 to remove=word . sp l i t (”−>”)
77 new word=to remove [0]
78 i f new word :
79 words list master .append (new word)
80 words list master .append (”−>”)
81 new word=to remove [1]
82 i f new word :
83 words list master .append (new word)
84 continue
85

86

87 words list master .append (word)
88

72

89 main Stack = []
90 a c t i v i t i e s l i s t = []
91 for word in words list master :
92 main Stack .append (word)
93

94 i f word==”} ” :
95 data Stack = []
96 main Stack .pop ()
97 while (True) :
98 x=main Stack .pop ()
99 i f x==”{ ” :

100 break
101 data Stack .append (x)
102

103 # print (data Stack)
104

105 i f main Stack[−1]== ” actions ” :
106 i f data Stack :
107 temp graph=nx.DiGraph ()
108 rev data Stack=data Stack [: : −1]
109

110 for word2 in range (len (rev data Stack)) :
111 i f rev data Stack [word2]== ” : ” :
112 node name=rev data Stack [word2−1]
113

114 i f rev data Stack [word2+1]== ” claim ” :
115 type var=” claim ”
116 resource var=rev data Stack [word2+2]
117 e l i f rev data Stack [word2+1]== ” release ” :
118 type var=” release ”
119 resource var=rev data Stack [word2+2]
120 e l i f rev data Stack [word2+1]== ”move” :
121 type var=” action ”
122 resource var=rev data Stack [word2+2].

sp l i t (” . ”) [0]
123 else :
124 type var=” action ”
125 resource var=rev data Stack [word2+1].

sp l i t (” . ”) [0]
126

127 temp graph . add node (node name,name=
node name, resource=resource var , type=
type var)

128 empty act=False
129 else :
130 empty act=True
131 # print (temp graph . nodes)
132

133 i f main Stack[−1]== ” flow ” :

73

134 i f data Stack :
135 rev data Stack=data Stack [: : −1]
136

137 for word2 in range (len (rev data Stack) −1) :
138 i f rev data Stack [word2]== ”−>” :
139 i f rev data Stack [word2+1]. startswith (” | ”

) :
140 sync nodes = []
141 for word3 in range (len (rev data Stack

)) :
142 i f rev data Stack [word3]==

rev data Stack [word2+1]:
143 i f word3<len (rev data Stack)

−1:
144 i f rev data Stack [word3

+1]== ”−>” :
145 sync nodes .append (

rev data Stack [
word3+2])

146 for sn in sync nodes :
147 temp graph . add edge (

rev data Stack [word2−1] ,sn)
148

149

150 else :
151 i f not rev data Stack [word2−1].

startswith (” | ”) :
152 temp graph . add edge (

rev data Stack [word2−1] ,
rev data Stack [word2+1])

153

154 empty act=False
155 else :
156 empty act=True
157

158 i f main Stack[−2]== ” ac t i v i t y ” and not empty act :
159 a c t i v i t i e s l i s t .append ([copy . deepcopy (main Stack [−1])

,copy . deepcopy (temp graph)])
160

161

162 act iv i t i es l is t names =[element [0] for element in a c t i v i t i e s l i s t]
163

164 #End: Extraction of LSAT variables
165

166 alternate dag imp = []
167 alternate dag unimp = []
168 for i in act iv i t i es l is t names :
169 match found=False
170 for j in imp act :

74

171 temp name=copy . deepcopy (j . r sp l i t (’ ’ ,1) [0])
172 i f temp name== i :
173 temp graph1=copy . deepcopy (a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (i)] [1])
174 nodes l ist= l i s t (temp graph1 . nodes)
175

176 for k in nodes l ist :
177 i f temp graph1 . nodes [k] [’ type ’] ! = ’ claim ’ and

temp graph1 . nodes [k] [’ type ’] ! = ’ release ’ :
178

179 i f k not in imp action [j] :
180

181 pred node= l i s t (temp graph1 . predecessors (k
))

182 succ node= l i s t (temp graph1 . successors (k))
183 temp graph1 . remove node (k)
184 e l i s t = []
185 for pred in pred node :
186 for succ in succ node :
187 e l i s t .append ((pred , succ))
188

189 temp graph1 . add edges from (e l i s t)
190

191 alternate dag imp .append (copy . deepcopy (temp graph1))
192 match found=True
193 break
194

195 i f not match found :
196 alternate dag imp .append(−1)
197

198 for i in act iv i t i es l is t names :
199 temp graph1=copy . deepcopy (a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (i)] [1])
200 nodes l ist= l i s t (temp graph1 . nodes)
201

202 for k in nodes l ist :
203 i f temp graph1 . nodes [k] [’ type ’] ! = ’ claim ’ and temp graph1 .

nodes [k] [’ type ’] ! = ’ release ’ :
204

205 pred node= l i s t (temp graph1 . predecessors (k))
206 succ node= l i s t (temp graph1 . successors (k))
207 temp graph1 . remove node (k)
208 e l i s t = []
209 for pred in pred node :
210 for succ in succ node :
211 e l i s t .append ((pred , succ))
212

213 temp graph1 . add edges from (e l i s t)
214

75

215 alternate dag unimp .append (copy . deepcopy (temp graph1))
216

217 s ize o f seq=2 #max size of sequence
218

219 #Start : I n i t i a l L ist of sequences to v is i ted
220

221 arr temp = []
222

223 new arr names only = []
224 for i in range (s i ze o f seq) :
225 arr temp= l i s t (p for p in product (act iv i t ies l is t names ,

repeat= i +1))
226 new arr names only=new arr names only+arr temp
227

228 arr names = []
229

230 for i in new arr names only :
231 instance l is t = []
232 l is t to be passed = []
233 l ist to be passed names = []
234 for j in i :
235 instance l is t .append (j)
236 l ist to be passed names .append (j +” ”+str (instance l is t .

count (j)))
237

238 arr names .append (list to be passed names)
239

240 # End: I n i t i a l L ist of sequences to v is i ted
241

242 #Start : Separating important and non−important a c t i v i t i e s
243

244 unimp act = []
245 for i in a c t i v i t i e s l i s t :
246 for j in range (s i ze o f seq) :
247 i f (i [0]+ ” ”+str (j +1)) not in imp act :
248 unimp act .append (i [0]+ ” ”+str (j +1))
249

250

251 #End: Separating important and non−important a c t i v i t i e s
252 indexes to be vis i ted= l i s t (range (len (arr names)))
253 len cntr = []
254 for i in range (1 , s i ze o f seq +1) :
255 len cntr .append (pow(len (act iv i t i es l is t names) , i))
256

257

258 finalReq=” requirement req :\n”
259

260 seq accepted names = []
261

76

262 no of synths=0
263 synthPath=Path (’ se−software−cmdline−win−win−x64−r9682/bin/

cif3datasynth . bat ’)
264

265 start=time . time ()
266 cntr=1
267 for i in arr names :
268 l ist to be passed names= i
269

270 i f arr names . index (i) in indexes to be vis i ted :
271

272 indexes to be vis i ted . remove (arr names . index (i))
273 for r in len cntr :
274 i f arr names . index (i)<r :
275 reg=r
276 break
277

278 l is t to be passed = []
279

280 # for j in range (len (i)) :
281 # i f i [j] in imp action :
282 # l ist to be passed .append ([i [j] ,

alternate dag imp [act iv i t i es l is t names . index (new arr names only [
arr names . index (i)] [j])]])

283 # else :
284 # l ist to be passed .append ([i [j] ,

alternate dag unimp [act iv i t i es l is t names . index (new arr names only
[arr names . index (i)] [j])]])

285

286 for j in range (len (i)) :
287 l is t to be passed .append ([i [j] , a c t i v i t i e s l i s t [

act iv i t i es l is t names . index (new arr names only [
arr names . index (i)] [j])] [1]])

288

289 Y=ConvertToAutomata (l ist to be passed)
290 X=Y. stringtowrite8 (imp action)
291 f i l eDirP lant=Path (”se−software−cmdline−win−win−x64−r9682/

bin/temp new 3 . c i f ”)
292 Z=” ”
293

294 Z trav=Z main . sp l i t l ines ()
295 for l ine in Z trav :
296 i f ” edge ” in l ine :
297 wrd arr=l ine . sp l i t ()
298 act to remove=wrd arr [wrd arr . index (” edge ”) +1].

sp l i t (” . ”) [0]
299 action to remove=wrd arr [wrd arr . index (” edge ”)

+1]. sp l i t (” . ”) [1]
300 act avai lable= i

77

301 i f act to remove in act avai lable :
302 i f action to remove in imp action [

act to remove] :
303 temp line=l ine . replace (’ . ’ , ’ ’)
304 Z=Z+temp line+” \n”
305 else :
306 i f ” edge ” not in Z trav [Z trav . index (l ine)

+1] and ” i n i t i a l ; ” not in Z trav [Z trav .
index (l ine) +1] and ”marked; ” not in Z trav
[Z trav . index (l ine) +1]:

307 i f ” location ” in Z trav [Z trav . index (
l ine) −1]:

308 pos=Z. rf ind (’ : ’)
309 Z=Z [: pos]+ ” ; ”
310 else :
311 Z=Z+l ine+” \n”
312

313

314 X=X+” \n”+Z
315 f =open (f i leDirPlant , ”w”)
316 f . write (X)
317 f . close ()
318 # Supervisory synthesis process
319 synth = subprocess . run (
320 [synthPath . absolute () . as posix () ,

f i l eDirP lant . absolute () . as posix ()
] ,

321 capture output=True ,
322 text=True
323)
324 no of synths+=1
325 print (”Sequence v is i ted : ”+str (no of synths))
326 i f ”ERROR” not in synth . stderr :
327 seq accepted names .append ((list to be passed names ,

cntr , unimp act))
328 cntr+=1
329 indexes temp= l i s t (indexes to be vis i ted)
330 i f len (indexes to be vis i ted) ==0:
331 break
332 for k in indexes temp :
333 i f k>=reg :
334 i f subseqchecker (arr names [k] ,

list to be passed names) :
335 i f set (d i f f (arr names [k] ,

list to be passed names)) . issubset (set
(unimp act)) :

336 indexes to be vis i ted . remove (k)
337 i f not subseqcheckerend (

list to be passed names , arr names

78

[k]) :
338 seq accepted names .append ((

arr names [k] , cntr , unimp act))
339 cntr+=1
340

341 # print (seq accepted names)
342

343 else :
344

345 indexes temp= l i s t (indexes to be vis i ted)
346 i f len (indexes to be vis i ted) ==0:
347 break
348 for k in indexes temp :
349 i f k>=reg :
350 i f subseqcheckerend (list to be passed names ,

arr names [k]) :
351 i f set (d i f f (arr names [k] ,

list to be passed names)) . issubset (set
(unimp act)) :

352 indexes to be vis i ted . remove (k)
353

354

355 end=time . time ()
356

357 print (” Total synths : ”+str (no of synths))
358 print (” Total time : ”+str (end−start))
359

360 pool=Pool (processes=5)
361 temp str arr= l i s t (pool .map(wr i t e to f i l e , seq accepted names))
362

363 finalReq=finalReq+”\ t locat ion L0:\n\ t \ t i n i t i a l ;\n”
364

365 arr1 =[element [0] for element in temp str arr]
366 arr2 =[element [1] for element in temp str arr]
367 finalReq=finalReq+ ’ ’ . jo in (arr1)
368 finalReq=finalReq+ ’ \n ’ . jo in (arr2)
369 finalReq=finalReq+”\nend”
370

371 f i l e D i r f i n a l =Path (”se−software−cmdline−win−win−x64−r9682/bin/
req final new . c i f ”)

372 f in=open (f i l eD i r f ina l , ”w”)
373 f in . write (finalReq)
374 f in . close ()

79

I Python code: Method V
1

2

3 import networkx as nx
4 import i t e r too l s
5 import os . path
6 import subprocess
7 import copy
8 import time
9 from subseqchecker import subseqchecker

10 from subseqchecker import d i f f
11 from ConvertToAutomata import ConvertToAutomata
12 from activitySequenceExtractor import activitySequenceExtractor
13 #Start : Extraction of LSAT variables
14

15 f i leDirReq=os . path . jo in (”F:/ Personal/TU Eindhoven/Post Registration/
Grad Project/LSAT/se−software−cmdline−win−win−x64−r9682/bin/” , ” req
. c i f ”)

16 req=open (fi leDirReq , ” r ”)
17 Z main=req . read ()
18 req . close ()
19

20 Z trav=Z main . sp l i t l ines ()
21 imp act = []
22 imp action={}
23 for l ine in Z trav :
24 i f ” edge ” in l ine :
25 wrd arr=l ine . sp l i t ()
26 imp act .append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0])
27 i f wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”) [0] in

imp action :
28 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0]] . append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” .
”) [1])

29 else :
30 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0]] = []
31 imp action [wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” . ”)

[0]] . append (wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (” .
”) [1])

32

33

34

35 words list master = []
36 comment var=False
37 with open (’ Example Convert 2 . ac t i v i t y ’ , ’ r ’) as f i l e :
38

80

39 # reading each l ine
40 for l ine in f i l e :
41

42 # reading each word
43 for word in l ine . sp l i t () :
44

45 #Remove comments
46 i f word . startswith (”//”) :
47 break
48

49 i f word . startswith (”/∗ ”) :
50 comment var=True
51

52 i f ” ∗/ ” in word :
53 comment var=False
54 to remove=word . sp l i t (” ∗/ ”)
55 new word=to remove [1]
56 i f new word :
57 words list master .append (new word)
58 continue
59

60 # storing the words
61 i f comment var==False :
62 i f ” : ” in word :
63 to remove=word . sp l i t (” : ”)
64 new word=to remove [0]
65 i f new word :
66 words list master .append (new word)
67 words list master .append (” : ”)
68 new word=to remove [1]
69 i f new word :
70 words list master .append (new word)
71 continue
72

73 i f ”−>” in word :
74 to remove=word . sp l i t (”−>”)
75 new word=to remove [0]
76 i f new word :
77 words list master .append (new word)
78 words list master .append (”−>”)
79 new word=to remove [1]
80 i f new word :
81 words list master .append (new word)
82 continue
83

84

85 words list master .append (word)
86

87 main Stack = []

81

88 a c t i v i t i e s l i s t = []
89 for word in words list master :
90 main Stack .append (word)
91

92 i f word==”} ” :
93 data Stack = []
94 main Stack .pop ()
95 while (True) :
96 x=main Stack .pop ()
97 i f x==”{ ” :
98 break
99 data Stack .append (x)

100

101 # print (data Stack)
102

103 i f main Stack[−1]== ” actions ” :
104 i f data Stack :
105 temp graph=nx.DiGraph ()
106 rev data Stack=data Stack [: : −1]
107

108 for word2 in range (len (rev data Stack)) :
109 i f rev data Stack [word2]== ” : ” :
110 node name=rev data Stack [word2−1]
111

112 i f rev data Stack [word2+1]== ” claim ” :
113 type var=” claim ”
114 resource var=rev data Stack [word2+2]
115 e l i f rev data Stack [word2+1]== ” release ” :
116 type var=” release ”
117 resource var=rev data Stack [word2+2]
118 e l i f rev data Stack [word2+1]== ”move” :
119 type var=” action ”
120 resource var=rev data Stack [word2+2].

sp l i t (” . ”) [0]
121 else :
122 type var=” action ”
123 resource var=rev data Stack [word2+1].

sp l i t (” . ”) [0]
124

125 temp graph . add node (node name, resource=
resource var , type=type var)

126 empty act=False
127 else :
128 empty act=True
129 # print (temp graph . nodes)
130

131 i f main Stack[−1]== ” flow ” :
132 i f data Stack :
133 rev data Stack=data Stack [: : −1]

82

134

135 for word2 in range (len (rev data Stack) −1) :
136 i f rev data Stack [word2]== ”−>” :
137 i f rev data Stack [word2+1]. startswith (” | ”) :
138 sync nodes = []
139 for word3 in range (len (rev data Stack)) :
140 i f rev data Stack [word3]==

rev data Stack [word2+1]:
141 i f word3<len (rev data Stack) −1:
142 i f rev data Stack [word3+1]== ”

−>” :
143 sync nodes .append (

rev data Stack [word3
+2])

144 for sn in sync nodes :
145 temp graph . add edge (rev data Stack [

word2−1] ,sn)
146

147

148 else :
149 i f not rev data Stack [word2−1]. startswith

(” | ”) :
150 temp graph . add edge (rev data Stack [

word2−1] , rev data Stack [word2+1])
151

152 empty act=False
153 else :
154 empty act=True
155

156 i f main Stack[−2]== ” ac t i v i t y ” and not empty act :
157 a c t i v i t i e s l i s t .append ([copy . deepcopy (main Stack [−1]) ,

copy . deepcopy (temp graph)])
158

159 act iv i t i es l is t names =[element [0] for element in a c t i v i t i e s l i s t]
160

161 #End: Extraction of LSAT variables
162

163 s ize o f seq=3 #max size of sequence
164

165

166

167 #Start timer
168 start=time . time ()
169

170 act iv i ty path= ’Example . ctrlsys statespace . c i f ’
171 activityG=activitySequenceExtractor (act iv i ty path)
172

173 extracted seq list names = []
174 for i in activityG . nodes :

83

175 # print (i)
176 # print (activityG . nodes [i])
177

178 i f activityG . nodes [i] [’ i n i t i a l ’] :
179 for j in activityG . nodes :
180 i f activityG . nodes [j] [’marked ’] :
181

182 paths= l i s t (nx . all simple edge paths (activityG , i , j ,
cutof f=s ize o f seq))

183

184 for l in paths :
185 seq temp = []
186 for k in l :
187

188 seq temp .append (activityG [k [0]] [k [1]] [k [2]] [’
name ’])

189

190 extracted seq list names .append (copy . deepcopy (
seq temp))

191

192

193

194 #Start : I n i t i a l L ist of sequences to v is i ted
195

196 arr temp = []
197 new arr = []
198 for i in range (s i ze o f seq) :
199 arr temp= l i s t (p for p in i t e r too l s . product (a c t i v i t i e s l i s t ,

repeat= i +1))
200 for j in arr temp :
201 new arr .append (j)
202

203 arr names = []
204 for i in new arr :
205 instance l is t = []
206 l is t to be passed = []
207 l ist to be passed names = []
208 for j in i :
209 instance l is t .append (j [0])
210 l ist to be passed names .append (j [0]+ ” ”+str (instance l is t .

count (j [0])))
211 arr names .append (list to be passed names)
212

213 arr = []
214 for i in arr names :
215 temp list = []
216 for j in range (len (i)) :
217

218 temp graph1=copy . deepcopy (new arr [arr names . index (i)] [j] [1])

84

219 i f i [j] not in imp act :
220 nodes l ist= l i s t (temp graph1 . nodes)
221

222 for k in nodes l ist :
223 i f temp graph1 . nodes [k] [’ type ’] ! = ’ claim ’ and

temp graph1 . nodes [k] [’ type ’] ! = ’ release ’ :
224 remove node pred=True
225 remove node succ=True
226

227 for n in temp graph1 . predecessors (k) :
228 i f temp graph1 . nodes [n] [’ resource ’] ! =

temp graph1 . nodes [k] [’ resource ’] :
229 remove node pred=False
230 break
231

232 for n in temp graph1 . successors (k) :
233 i f temp graph1 . nodes [n] [’ resource ’] ! =

temp graph1 . nodes [k] [’ resource ’] :
234 remove node succ=False
235 break
236

237 i f remove node pred and remove node succ :
238 pred node=temp graph1 . predecessors (k)
239 succ node=temp graph1 . successors (k)
240 temp graph1 . remove node (k)
241 e l i s t = []
242 for pred in pred node :
243 for succ in succ node :
244 e l i s t .append ((pred , succ))
245

246 temp graph1 . add edges from (e l i s t)
247

248 temp list .append ([i [j] , copy . deepcopy (temp graph1)])
249

250 else :
251 nodes l ist= l i s t (temp graph1 . nodes)
252

253 for k in nodes l ist :
254 i f temp graph1 . nodes [k] [’ type ’] ! = ’ claim ’ and

temp graph1 . nodes [k] [’ type ’] ! = ’ release ’ :
255 i f k not in imp action [i [j]] :
256

257 remove node pred=True
258 remove node succ=True
259

260 for n in temp graph1 . predecessors (k) :
261 i f temp graph1 . nodes [n] [’ resource ’] ! =

temp graph1 [k] [’ resource ’] :
262 remove node pred=False

85

263 break
264

265 for n in temp graph1 . successors (k) :
266 i f temp graph1 . nodes [n] [’ resource ’] ! =

temp graph1 [k] [’ resource ’] :
267 remove node succ=False
268 break
269

270 i f remove node pred and remove node succ :
271 pred node=temp graph1 . predecessors (k)
272 succ node=temp graph1 . successors (k)
273 temp graph1 . remove node (k)
274 e l i s t = []
275 for pred in pred node :
276 for succ in succ node :
277 e l i s t .append ((pred , succ))
278

279 temp graph1 . add edges from (e l i s t)
280

281 temp list .append ([i [j] , copy . deepcopy (temp graph1)])
282

283

284

285 arr .append (copy . deepcopy (temp list))
286

287 print (len (arr))
288 #Taking intersection of sequences
289 arr names temp=copy . deepcopy (arr names)
290 arr temp=copy . deepcopy (arr)
291 arr names = []
292 arr = []
293 for i in range (len (arr names temp)) :
294 i f arr names temp [i] in extracted seq list names :
295 arr names .append (arr names temp [i])
296 arr .append (arr temp [i])
297

298 print (len (arr))
299 # End: I n i t i a l L ist of sequences to v is i ted
300

301

302 #Start : Separating important and non−important a c t i v i t i e s
303

304 unimp act = []
305 for i in a c t i v i t i e s l i s t :
306 for j in range (s i ze o f seq) :
307 i f (i [0]+ ” ”+str (j +1)) not in imp act :
308 unimp act .append (i [0]+ ” ”+str (j +1))
309

310

86

311 #End: Separating important and non−important a c t i v i t i e s
312

313

314 finalReq=” requirement req :\n”
315 cntr=0
316 seq accepted = []
317 seq accepted names = []
318 redundant seq names = []
319 no of synths=0
320

321 for i in arr :
322 l is t to be passed= i
323 l ist to be passed names=arr names [arr . index (i)]
324

325 i f list to be passed names not in redundant seq names and
list to be passed names not in seq accepted names :

326 Y=ConvertToAutomata (l ist to be passed)
327 X=Y. str ingtowrite ()
328 f i l eDirP lant=os . path . jo in (”F:/ Personal/TU Eindhoven/Post

Registration/Grad Project/LSAT/se−software−cmdline−win−win
−x64−r9682/bin/” , ” temp . c i f ”)

329 Z=” ”
330

331 Z trav=Z main . sp l i t l ines ()
332 for l ine in Z trav :
333 i f ” edge ” in l ine :
334 wrd arr=l ine . sp l i t ()
335 act to remove=wrd arr [wrd arr . index (” edge ”) +1]. sp l i t (

” . ”) [0]
336

337 act avai lable =[item [0] for item in l ist to be passed]
338 i f act to remove in act avai lable :
339 Z=Z+l ine+” \n”
340 else :
341 i f ” edge ” not in Z trav [Z trav . index (l ine) +1]

and ” i n i t i a l ; ” not in Z trav [Z trav . index (l ine
) +1] and ”marked; ” not in Z trav [Z trav . index (
l ine) +1]:

342 i f ” location ” in Z trav [Z trav . index (l ine)
−1]:

343 pos=Z. rf ind (’ : ’)
344 Z=Z [: pos]+ ” ; ”
345 else :
346 Z=Z+l ine+” \n”
347

348

349 X=X+” \n”+Z
350 f =open (f i leDirPlant , ”w”)
351 f . write (X)

87

352 f . close ()
353 # Supervisory synthesis process
354 synth = subprocess . run (
355 [’F:/ Personal/TU Eindhoven/Post

Registration/Grad Project/LSAT/se−
software−cmdline−win−win−x64−r9682/bin
/cif3datasynth . bat ’ , f i l eDirP lant] ,

356 capture output=True ,
357 text=True
358)
359 no of synths+=1
360 print (”Sequence v is i ted : ”+str (list to be passed names))
361 i f ”ERROR” not in synth . stderr :
362 seq accepted names .append (list to be passed names)
363 for k in range (1 , s ize of seq −len (list to be passed names)

+1) :
364 x=[element for element in i t e r too l s . product (unimp act

, repeat=k)]
365 for l in x :
366 y= l i s t (i t e r too l s . chain (list to be passed names , l)

)
367 i f y in arr names :
368 seq accepted names .append (y)
369 y= l i s t (i t e r too l s . chain (l , list to be passed names)

)
370 i f y in arr names :
371 seq accepted names .append (y)
372

373 # print (seq accepted names)
374

375 for k in range (arr names . index (list to be passed names)
+1, len (arr names)) :

376 i f subseqchecker (arr names [k] ,
list to be passed names) and arr names [k] not in
seq accepted names :

377 i f a l l (item in unimp act for item in d i f f (
arr names [k] , list to be passed names)) :

378 seq accepted names .append (arr names [k])
379 # print (” Potential addition : ”)
380 # print (arr names [k])
381

382

383 else :
384

385 print (synth . stderr+” in : ”+str (arr . index (i)))
386 for k in range (1 , s ize of seq −len (list to be passed names)

+1) :
387 x=[element for element in i t e r too l s . product (unimp act

, repeat=k)]

88

388 for l in x :
389 y= l i s t (i t e r too l s . chain (list to be passed names , l)

)
390 redundant seq names .append (y)
391 y= l i s t (i t e r too l s . chain (l , list to be passed names)

)
392 redundant seq names .append (y)
393

394

395

396

397 finalReq=finalReq+” \ t locat ion L0:\n\ t \ t i n i t i a l ;\n”
398 cntr=1
399

400 for i in [item [0] for item in seq accepted names] :
401 finalReq=finalReq+”\ t \ tedge ”+ i+” goto LSeq”+str (cntr) +” 1 ;\n”
402 cntr+=1
403

404 cntr=1
405 for i in seq accepted names :
406 for j in i :
407 i f i . index (j)>0:
408 finalReq=finalReq+” \ t locat ion LSeq”+str (cntr) +” ”

+str (i . index (j)) +” :\n”
409 finalReq=finalReq+” \ t \ tedge ”+ j+” goto LSeq”+str (

cntr) +” ”+str (i . index (j) +1)+” ;\n”
410

411 finalReq=finalReq+”\ t locat ion LSeq”+str (cntr) +” ”+str (i .
index (j) +1)+” :\n\ t \tmarked ;\n\n”

412 cntr+=1
413

414

415

416 finalReq=finalReq+” \nend”
417 print (finalReq)
418 f i l e D i r f i n a l =os . path . jo in (”F:/ Personal/TU Eindhoven/Post Registration

/Grad Project/LSAT/se−software−cmdline−win−win−x64−r9682/bin/” , ”
req final new 3 . c i f ”)

419 f in=open (f i l eD i r f ina l , ”w”)
420 f in . write (finalReq)
421 f in . close ()
422 print (” Total synths : ”+str (no of synths))
423

424 #End timer
425 end=time . time ()
426

427 print (”Time : ”)
428 print (end−start)

89

J Auxiliary code: subseqchecker
1 import networkx as nx
2 from pathlib import Path
3

4

5 #Larger array comes f i r s t
6 def subseqchecker (arr1 , arr2) :
7 ind=−1
8 for i in arr2 :
9 i f i in arr1 :

10 i f arr1 . index (i)<=ind :
11 return False
12 else :
13 ind=arr1 . index (i)
14 else :
15 return False
16

17 i f ind==−1:
18 return False
19 else :
20 return True
21

22 #Smaller array comes f i r s t
23 def subseqcheckerend (arr1 , arr2) :
24 i f arr1 [0] not in arr2 :
25 return False
26 else :
27 part=arr2 [arr2 . index (arr1 [0]) : arr2 . index (arr1 [0]) +len (arr1)]
28 i f part==arr1 :
29 return True
30 else :
31 return False
32

33

34

35 def d i f f (arr1 , arr2) :
36 return l i s t (set (arr1) − set (arr2)) + l i s t (set (arr2) − set (arr1))
37

38

39 def wr i t e t o f i l e (seq accepted names) :
40 finalReq2=” ”
41 finalReq=” ”
42 seq accepted name=seq accepted names [0]
43 cntr=seq accepted names [1]
44 unimp act=seq accepted names [2]
45 for j in seq accepted name :
46 i f seq accepted name . index (j) ==0:
47 finalReq=finalReq+”\ t \ tedge ”+ j+” goto LSeq”+str (cntr) +”

90

1 ;\n”
48 i f seq accepted name . index (j)>0:
49 finalReq2=finalReq2+” \ t locat ion LSeq”+str (cntr) +” ”+str (

seq accepted name . index (j)) +” :\n”
50 finalReq2=finalReq2+” \ t \ tedge ”+ j+” goto LSeq”+str (cntr) +

” ”+str (seq accepted name . index (j) +1)+” ;\n”
51

52 finalReq2=finalReq2+” \ t locat ion LSeq”+str (cntr) +” ”+str (
seq accepted name . index (j) +1)+” :\n\ t \tmarked ;\n”

53 for k in unimp act :
54 i f k not in seq accepted name :
55 finalReq2=finalReq2+” \ t \ tedge ”+k+” ;\n”
56

57 return [finalReq , finalReq2]
58

59

60 def automataToAutomataDAG(Z main) :
61 automataDAG=nx.DiGraph ()
62 Z trav=Z main . sp l i t l ines ()
63 for l ine in Z trav :
64 i f ” location ” in l ine :
65 node temp=l ine . sp l i t () [1]
66 node temp=node temp . sp l i t (” : ”) [0]
67 i f node temp not in l i s t (automataDAG. nodes) :
68 automataDAG. add node (node temp , i n i t i a l =False ,marked=

False)
69 else :
70 automataDAG. nodes [node temp] [’ i n i t i a l ’]= False
71 automataDAG. nodes [node temp] [’marked ’]= False
72

73 i f ” i n i t i a l ; ” in l ine :
74 automataDAG. nodes [node temp] [’ i n i t i a l ’]=True
75

76 i f ”marked; ” in l ine :
77 automataDAG. nodes [node temp] [’marked ’]=True
78

79 i f ” edge ” in l ine :
80 edges temp=l ine . sp l i t ()
81 edge name=edges temp [edges temp . index (’ edge ’) +1]
82 i f ’ goto ’ not in edges temp :
83 dest node=node temp
84 else :
85 dest node temp=edges temp [edges temp . index (’ goto ’) +1]
86 dest node=dest node temp . sp l i t (” ; ”) [0]
87

88 i f (node temp , dest node) not in automataDAG. edges :
89 automataDAG. add edge (node temp , dest node ,edgeName=[

edge name])
90 else :

91

91 automataDAG. edges [node temp , dest node] [’edgeName ’] .
append (edge name)

92

93 in i t ia l nodes = []
94 marked nodes = []
95 for node in l i s t (automataDAG. nodes) :
96 i f automataDAG. nodes [node] [’ i n i t i a l ’] :
97 in i t ia l nodes .append (node)
98

99 i f automataDAG. nodes [node] [’marked ’] :
100 marked nodes .append (node)
101

102 all paths = []
103 for source in ini t ia l nodes :
104 for dest in marked nodes :
105 i f source != dest :
106 paths= l i s t (nx . all simple edge paths (automataDAG,

source , dest))
107 for path in paths :
108 print (path)
109 return automataDAG

92

K Auxiliary code: ConvertToAutomata
1

2 class ConvertToAutomata :
3 # I n i t i a l i z e class instances
4 def i n i t (se l f , a c t i v i t i e s d i c t) :
5 se l f . a c t i v i t i e s d i c t = a c t i v i t i e s d i c t
6

7

8 def checkcommon(se l f , l i s t1 , l i s t2) :
9 for x in l i s t1 :

10 for y in l i s t2 :
11 i f x==y :
12 return True
13

14 return False
15

16 #function to create string to be written to f i l e
17 def str ingtowrite (s e l f) :
18 str ing x=” ”
19

20 for i in se l f . a c t i v i t i e s d i c t :
21

22 #Writing ac t i v i t y names to string
23 str ing x=str ing x+”\n”
24

25

26 str ing x=str ing x+” plant ”+ i [0]+ ” : ”
27

28 #Writing edge names to string
29 str ing x=str ing x+”\n”
30 for j in i [1] . nodes :
31 str ing x=str ing x+”\ tuncontrollable ”+ j+” ;\n”
32

33 #Writing state transit ions to string
34 #dictionary that holds the locations and edges
35 str ing x=str ing x+”\n”
36 automatalocs={}
37

38 # l i s t that holds locations to v i s i t
39 l i s t o f l o c s = []
40 l i s t o f l o c s .append (l i s t (i [1] . nodes))
41

42 for j in l i s t o f l o c s :
43

44 locname= ’ ’ . jo in (map(str , j))
45 automatalocs [locname] = []
46

47 for k in j :

93

48

49 i f i [1] . in degree (k)==0 or not se l f .checkcommon(i
[1] . predecessors (k) , j) :

50

51 temp1= j [:]
52 temp1. remove (k)
53

54 i f temp1:
55 temp1 str= ’ ’ . jo in (map(str , temp1))
56 else :
57 temp1 str=” empty ”
58 temp2=[k, temp1 str]
59 automatalocs [locname] . append (temp2)
60 i f temp1:
61 i f temp1 not in l i s t o f l o c s :
62 l i s t o f l o c s .append (temp1)
63

64

65

66 locstonums= l i s t (automatalocs)
67 for i in locstonums :
68 str ing x=str ing x+”\ t locat ion L”+str (locstonums . index

(i)) +” :\n”
69 i f locstonums . index (i) ==0:
70 str ing x=str ing x+”\ t \ t i n i t i a l ;\n”
71

72 for j in automatalocs [i] :
73

74

75 i f j [1] not in locstonums :
76 str ing x=str ing x+”\ t \ tedge ”+ j [0]+ ” goto

empty ”+” ;\n”
77 else :
78 str ing x=str ing x+”\ t \ tedge ”+ j [0]+ ” goto L”+

str (locstonums . index (j [1])) +” ;\n”
79

80 str ing x=str ing x+”\ t locat ion empty :\n\ t \tmarked ;\nend\
n”

81

82 #writing claim release automata
83 automatalocs claim={}
84 automatalocs rel={}
85 temp= []
86 for i in se l f . a c t i v i t i e s d i c t :
87 temp.append (i [0])
88 for j in i [1] . nodes :
89 i f i [1] . nodes [j] [’ type ’]== ’ claim ’ :
90 i f i [1] . nodes [j] [’ resource ’] in

automatalocs claim :

94

91 automatalocs claim [i [1] . nodes [j] [’ resource ’
]] . append ([i [0] , j])

92 else :
93 automatalocs claim [i [1] . nodes [j] [’ resource ’

]] = [[i [0] , j]]
94

95 i f i [1] . nodes [j] [’ type ’]== ’ release ’ :
96 i f i [1] . nodes [j] [’ resource ’] in automatalocs rel :
97 automatalocs rel [i [1] . nodes [j] [’ resource ’]] .

append ([i [0] , j])
98 else :
99 automatalocs rel [i [1] . nodes [j] [’ resource ’

]] = [[i [0] , j]]
100

101 for i in automatalocs claim :
102 str ing x=str ing x+”\n”
103 str ing x=str ing x+” plant a v a i l a b i l i t y ”+ i+” :\n”
104 str ing x=str ing x+”\ t locat ion unclaimed :\n\ t \ t i n i t i a l ;\n\

t \tmarked ;\n”
105 temp3=automatalocs claim [i] [:]
106 res = [i for n, i in enumerate (temp3) i f i not in temp3 [:

n]]
107 for j in res :
108 str ing x=str ing x+”\ t \ tedge ”+ j [0]+ ” . ”+ j [1]+ ” goto

claimed ;\n”
109

110 str ing x=str ing x+”\ t locat ion claimed :\n”
111 temp3=automatalocs rel [i] [:]
112 res = [i for n, i in enumerate (temp3) i f i not in temp3 [:

n]]
113 for j in res :
114 str ing x=str ing x+”\ t \ tedge ”+ j [0]+ ” . ”+ j [1]+ ” goto

unclaimed ;\n”
115

116 str ing x=str ing x+”end\n”
117

118 for i in automatalocs claim :
119 cntr=0
120 str ing x=str ing x+”\n”
121 str ing x=str ing x+” plant claimingAutomata ”+ i+” :\n”
122 for j in automatalocs claim [i] :
123 i f cntr==0:
124 str ing x=str ing x+”\ t locat ion l ”+str (cntr) +” :\n\ t

\ t i n i t i a l ;\n”
125 else :
126 str ing x=str ing x+”\ t locat ion l ”+str (cntr) +” :\n”
127

128 cntr+=1
129 str ing x=str ing x+”\ t \ tedge ”+ j [0]+ ” . ”+ j [1]+ ” goto l ”

95

+str (cntr) +” ;\n”
130

131 str ing x=str ing x+”\ t locat ion l ”+str (cntr) +” :\n\ t \tmarked
;\n”

132 str ing x=str ing x+”end\n”
133 return str ing x

96

L Declaration: TU/e Code of Scientific Conduct

97

January 15 2016

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis

I have read the TU/e Code of Scientific Conduct i.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific

Conduct

Date

…………………………………………………..…………..

Name

…………………………………………………..…………..

ID-number

…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i
 See: http://www.tue.nl/en/university/about-the-university/integrity/scientific-integrity/

The Netherlands Code of Conduct for Academic Practice of the VSNU

can be found here also.

More information about scientific integrity is published on the websites of TU/e and VSNU

27/09/2021

SAIKAT CHAKRABORTY

1413961

	I Translation
	Introduction
	Flexible Manufacturing Systems
	Supervisory controllers
	Model based engineering
	Introduction to CIF
	Introduction to LSAT
	Research motivation
	Problem definition
	Preliminary research

	Implementation
	Method I
	Method II
	Method III
	Method IV
	Method V

	Simulation and Results
	Setup
	Results
	Number of sequences from Seq checked
	Time

	Conclusion

	II Tool chain implementation
	Introduction
	Arrowhead Framework
	Implementation
	Conclusion
	References
	Acknowledgement
	Appendices
	LSAT code: Machine specification for Twilight system
	LSAT code: Settings specification for Twilight system
	LSAT code: Activity specification for Twilight system
	CIF code: Requirements
	Python code: Method I
	Python code: Method II
	Python code: Method III
	Python code: Method IV
	Python code: Method V
	Auxiliary code: subseqchecker
	Auxiliary code: ConvertToAutomata
	Declaration: TU/e Code of Scientific Conduct

