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Abstract

The end of Moore’s law [1] is slowly shifting the computing paradigm
to alternatives such as quantum computers [2] and neuromorphic
computers [3]. Unlike digital computers, neuromorphic computers
require analog devices. Our three-terminal neuromorphic organic
device (NODe) can provide both analog computing and memory in
a single device. With a computing speed of 51 MHz and a 32-state
memory, we estimate an energy efficiency of 0.1 pJ per multiply-
accumulate operation in our devices. We have demonstrated with
fabrication of a 3x3 crossbar array with NODes, that state-of-the-art
energy-efficient parallel computing is possible. The independent
configurability of each NODe prevents crosstalk as seen in two-
terminal memristor crossbars [4]. The functionality of a 3x3 crossbar
with NODes is demonstrated with an average programming error of
4% from its expected conductance without the use of error correcting
techniques. This work shows that NODes can potentially act as a
computational layer in mechanically flexible organic sensors, such as
medical wearable patches.



Contents

1 Introduction 1
1.1 Wearable medical sensors . . . . . . . . . . . . . . . . . . . . 1
1.2 Mimicking the brain with in-memory computing . . . . . . . 1
1.3 Alternative to silicon for computation in flexible sensors . . . 2
1.4 Motivation of this work . . . . . . . . . . . . . . . . . . . . . 2
1.5 Aim of this work . . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Neuromorphic and computing 4
2.1 Neuroscience and artificial networks in brief . . . . . . . . . 4
2.2 Electronic components for modelling of a NODe . . . . . . . 6

2.2.1 Resistor . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Parallel plate capacitor . . . . . . . . . . . . . . . . . 6
2.2.3 Electrical double layer capacitance . . . . . . . . . . 7
2.2.4 Transistor . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Important parameters of the NODes for computing . . . . . 8

3 An electrical model for the NODe 10
3.1 The neuromorphic organic device . . . . . . . . . . . . . . . 10
3.2 Equivalent electrical model of the NODe . . . . . . . . . . . 12
3.3 Capacitance from temporal measurements . . . . . . . . . . 12
3.4 Capacitance from direct measurements . . . . . . . . . . . . 15
3.5 Scaling of NODe’s capacitance with area . . . . . . . . . . . 17

4 Temporal characteristics of NODes 19
4.1 Slow and fast exponential relaxation of NODes . . . . . . . . 19
4.2 Temporal efficiency of NODes . . . . . . . . . . . . . . . . . 20
4.3 Programming efficiency of NODes and the effects of pulse

shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 The effect of charge on capacitance and programming efficiency 23
4.5 State retention time and variability of NODes . . . . . . . . 23

5 Parallel computing with crossbars 25
5.1 Computation based on a crossbar array . . . . . . . . . . . . 25
5.2 Individual programming with NODes . . . . . . . . . . . . . 26
5.3 NODes in a crossbar . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Processing in a 3x3 NODes crossbar . . . . . . . . . . . . . . 27
5.5 Energy per classification with NODes . . . . . . . . . . . . . 30

6 Conclusions 32

7 Outlook 32

Acknowledgement 34

Appendices 38



A Optimal ratio between gate and channel volume 38

B PCB for a crossbar of 3x3 NODes 38
B.1 Microampere current source . . . . . . . . . . . . . . . . . . 38
B.2 80 MHz bandwidth TIA . . . . . . . . . . . . . . . . . . . . 39
B.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B.4 Conductance versus stored gate charge . . . . . . . . . . . . 41

C Gate charging after programming 41

D NODe fabrication 42
D.1 PEDOT:PSS mixture . . . . . . . . . . . . . . . . . . . . . . 42
D.2 Metal electrode patterning . . . . . . . . . . . . . . . . . . . 42
D.3 PEDOT:PSS patterning . . . . . . . . . . . . . . . . . . . . 43
D.4 Gel fabrication . . . . . . . . . . . . . . . . . . . . . . . . . 43

E Bandwidth of a single NODe 43



1 Introduction

In this chapter, firstly the impact which NODes can have in medical sensing
is presented. Secondly, the motivation of this work will be given. Lastly,
the aim of this work will be defined.

1.1 Wearable medical sensors

Rapid advancements in technology allow us to measure, predict and alleviate
diseases. A recent trend in electronics, possible due to innovations in mate-
rial science and processing, is wearable electronics. These electronics are in
close contact with the patient’s skin and aim for a comfortable non-invasive
way to continuously sense relevant biomedical parameters. One impor-
tant category of these parameters are bio-potentials which show cardiac
(electrocardiogram), neural (electroencephalography), muscular (electromyo-
graphy), and ocular (electrooculography) function. Since the signals differ
over the skin, typically these sensors are spread in hundreds spatial channels,
leading to generation of huge data sets. Processing of these data sets can
be off-loaded to an external location such as the cloud. However, moving
information comes at a cost, it requires bandwidth, connectivity and en-
ergy [5]. Indeed, certain applications like brain-computing interfaces which
should translate EEG signals into real-time motions, are latency sensitive
and thus use of cloud computing is not a viable option. For this reason,
energy-efficient computational hardware integrated on the wearable would
be a very interesting option to offer effective in-situ elaboration of the sensed
data.

1.2 Mimicking the brain with in-memory computing

The work of Van De Burgt et al. [6] show that NODes based on Poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) are compat-
ible with wearable electronics processing. More importantly, these devices
have spike-timing dependent plasticity (STDP) with short- and long-term
potentiation (STP and LTP). At a device level STDP effectively means that
the device’s conductance can be temporally tuned (programming) and this
change can be temporary or permanent (STP and LTP, respectively). Espe-
cially LTP is an interesting energy-efficient feature, as it is the neuromorphic
approach to beat the von Neumann bottleneck. This bottleneck is due to a
rigid separation of functional units in typical contemporary processors. In
von Neumann machines, data must be rapidly shuffled between different
units such as the arithmetic/logic unit (ALU) and memory unit (MU).
This slows down the computational process and hence increases the energy
consumption. Combining both ALU and MU in one physical unit, similar
to the energy-efficient brain with its neurons and synapses, is the approach
of in-memory computing (IMC).
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1.3 Alternative to silicon for computation in flexible
sensors

Due to various advantages such as, mechanical flexibility, material com-
patibility, process-ability next or on-top of organic sensors arrays and bio-
compatibility, NODes are an excellent candidate to perform pre-processing
or feature extraction in flexible wearable electronics. Indeed, monolithic
integration of PEDOT:PSS based glucose, cortisol and temperature sen-
sors [7;8;9;10] with a computing layer of NODes also based on PEDOT:PSS is
theoretically possible. The material and processing compatibility enables 3D
stacking of functional thin-film layers. Furthermore, active matrix sensors
could be realized using Indium-Gallium-Zinc-Oxide Thin-Film Transistors
(IGZO TFTs) which are also compatible with the NODe’s process flow and
can act as a compact additional functional layer.

1.4 Motivation of this work

Although interesting properties have been shown in the initial work of Van
De Burgt et al. [6], the authors do not discuss what kind of arrangement of
devices would allow energy-efficient neuromorphic computing. Unlike their
experiments where the signal travels from gate to source, we propose an
crossbar [11] layout where the signal travels from source to drain. This allows
the programming of the NODe to occur beforehand via slow ion dynamics
and fast computations over the highly conductive PEDOT:PSS afterwards.
But before that is possible, we first of all investigate what an applicable
device model is for the NODe as an IMC device. Furthermore, we examine
how parameters of the NODe should be chosen, such that accurate and
efficient conductance tuning is possible. Lastly, we study what configuration
of NODes would allow for energy-efficient parallel computations and the
effects of such novel physical layout for neuromorphic computing.

1.5 Aim of this work

In an effort to demonstrate the possibility to integrate efficient neuromor-
phic computation on a flexible and wearable platform, this work aims at
demonstrating the capability to program (store) and execute energy-efficient
linear operations (compute), with a collection of NODes arranged in a
neural network-compatible layout.

1.6 Approach

Before diving in the device specifics of the NODe, this work preludes
with a explanation of a few borrowed terminologies from neuroscience and
artificial networks in Section 2. In the same Section key parameters for
NODes in computing are mentioned. Afterwards the NODe is explained
and electrically modelled in 3. With this model in mind, the temporality of
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NODes is investigated in 4. Mainly the temporal nature of these devices was
attributed to an exponential relaxation back to its original state. Finally
Section 5 discusses the parallel-computing crossbar layout and shows a few
experiments on the functionality such layout. Especially, the programming
of such array with NODes, all at the same time was expected to occur only
in the selected device. This work concludes in Section 6.
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2 Neuromorphic and computing

In this Section, common terminology used in the field of neuromorphic
computing is introduced along with a few key concepts in the field of
neuroscience and artificial networks. It is then followed by a basic description
of the circuit elements required to model a NODe. Finally, this Section will
end with a summary of important design parameters which are studied in
Section 3 and Section 4.

2.1 Neuroscience and artificial networks in brief

CR 𝜃
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Figure 2.1: (a) Schematic drawing of a neuron with (a.1) the dendrite, (a.2) the
soma and (a.3) the axon adjusted from [12]. (b) The leaky integrate-and-fire circuit
consisting of a current source (I) followed by a switch, charging a resistor (R),
capacitor (C) and a non-linear function (θ). (c) A drawing showing the charging
of VLIF versus the time as result of current spikes by closing and opening drawn
below. The arrow in the drawing shows the moment a spike occurs.

To start off, consider the neuron or nerve cell which allows communication
with other cells (Figure 2.1.a). Each neuron allows communication via three
main constituents, the dendrites (input), the soma (processor) and the axon
(output). One of the first kind of simple models for the response of a neuron
were the integrate-and-fire models. In these models the incoming current
pules (spikes) are integrated. After a certain condition (θ, e.g. the threshold)
is met, an output spike is generated. This output spike travels along the
axon to other neurons via synapses. Synapses are the junctions between
neurons and they determine the weight of the output spike. This weight
can be potentiated (stronger output) or depressed (weaker output). In
Figure 2.1.b the leaky integrate-and-fire (LIF) model is drawn for a passive
membrane. The model is implemented cascading a parallel RC-circuit with
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a non-linear function (θ). The non-linear function will result in an output
spike, if the membrane potential passes a certain threshold and resets the
membrane potential back to its rest potential (Vrest). However, this model
turned out to be too simple. It did not include effects observed in real
biological neurons, such as refractoriness (a minimum dead time before
another spike can be generated) or adaptation (STP or LTP). It was in 1952
that Hodgkin and Huxley showed a more general model for the dynamics of
a neuron. In this model they coupled the various ion concentrations outside
and inside the membrane to the charging of the membrane and were able
to simulate adaptation and refractoriness with their model. To this date
the Hodgkin-Huxley model is still a very popular way to simulate neuronal
dynamics.

-1 -1 -1

-1 8 -1

-1 -1 -1

തത𝑎 =  

z = -0.5

Figure 2.2: On the left an input image and on the right a CeNN output image in
gray scale, after time evolution given by Equation 2.1, with the coefficients above
the arrow and the threshold given below the arrow. The detected border between
the outer blue square and inner black square (left) is shown in white (right).

Also in the 50’s, machine learning algorithms such as the perceptron
(1958) were invented. However, it was not until 2012 [13] when the field of
machine learning gained traction. This was a pivotal moment, as machine
learning using deep convolutional neural networks (CoNN) reached half the
error rate of competing approaches for pattern recognition tasks. These
algorithms are characterized by multiple hidden layers between input and
output. Each of these layer transform incoming data, for example an image,
into features which are an abstraction of measurable properties. Typically,
these features do not need to be interpretable for humans, however feature
extraction can be simple and interpretable. A particular example is the
edge detection template in cellular neural networks (CeNN) as shown in
Figure 2.2, this specific example of CeNN combines neighbouring pixel data
as a feature. The evolution of each pixel (pij) is given by the following [14],

dpij
dt

= −pij + z +
∑

k,l∈{−1,0,1}

aklykl, (2.1)

with akl a matrix of coefficients, z a threshold and ykl a non-linear function
of pij. Only ten coefficients are needed to filter the edges of the square.
The particular choice of coefficients in Figure 2.2, can be interpreted as a
discretized laplacian operator. However, neural networks can be much more
powerful than simple edge detection circuits.
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In the recent years, the field of machine learning has seen a lot of success
in deep learning algorithms for voice recognition, visual object recognition,
object detection and many other domains such as drug discovery and
genomics [15]. Most of the neural networks now, are based on CoNN which
can have tens of hidden layers with over millions of weights. Back in 2012 it
would take weeks to fine-tune the parameters (train). However advances in
hardware, software and algorithms have reduced this to the matters of hours
with commercially available graphic processing unit (GPU) hardware, such
as the Nvidia RTX 3080 TI. At the core of CoNN are multiple multiplications
which are summed together (weighted sum). Each computation consists
of the following two operations, multiply and accumlate (MAC). These
operations are heavily optimized in contemporary GPU’s. Unfortunately,
due to the huge parameter space, neural network algorithms are often
memory limited and also power limited. Hence, vast effort is spent in search
of highly energy efficient systems such as neuromorphic systems. In the
field of neuromorphic computing, breakthrough efficiencies of more than
thousands Tera Operation Per Second per Watt (TOPS/W) [16] are projected
by mimicking the brain.

2.2 Electronic components for modelling of a NODe

In order to electrically model the devices in this work, a few key components
are discussed below.

2.2.1 Resistor

The resistor relates the voltage (V ) and current (I). For an ideal resistor
this is according to Ohm’s law,

R =
V

I
, (2.2)

with R the resistance.

2.2.2 Parallel plate capacitor

The capacitance (C) is defined as,

C =
Q

V
, (2.3)

with Q the charge. In first principle, a capacitor can be considered to exist
out of two thin conductive metal plates with area S (Figure 2.3). These
plates are separated at a distance d, filled with a dielectric with absolute
permittivity ε. In order to find the voltage on this capacitor, consider the
charge density σ = Q/A on both plates but with opposite charge. The
potential (V) over the capacitor can be found from the electric field as the
following line integral, ∫ d

0

E(z)dz = Ed, (2.4)
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Figure 2.3: (a) An ideal parallel plate capacitor, with plate area S, separation
distance d and absolute permittivity ε. (b) Two series-connected capacitors with,
from top to bottom, a capacitance C1 and C2. The drop in potential is given in
the same order as V1 and V2.

with E = σ/ε from Gauss’s law. Hence, the capacitance can also be given
as,

C =
εS

d
. (2.5)

From this Equation follows that for smaller separation distances the ca-
pacitance increases. Whereas the capacitance decreases, when the plates
have a larger seperation distance. To add, the replacement capacitance
or equivalent capacitance (Ceq) of two series capacitors is less than its
constituents. The Ceq of two series capacitors can be found by considering
the circuit in Figure 3.2. Accordingly, Ceq can be given as,

Q

Ceq

=
Q

C1

+
Q

C2

,

Ceq =
C1C2

C1 + C2

,

(2.6)

with C1 and C2 the capacitance of capacitor 1 and 2, respectively.

2.2.3 Electrical double layer capacitance

Novel materials introduce characteristics that deviate from ideal elements.
Interestingly, when certain materials such as graphene [17] are brought into
contact with a solution with free-moving ions, two parallel layers are formed.
This material firstly adsorb ions to its surface due to electrochemical inter-
actions (first layer). Then, the surface charge of the first layer is screened by
the freely moving ions and forms a second layer of charges. The formation of
such layers is called an electrical double layer (EDL). EDLs mostly behave
capacitively, as they separate opposite charges, just like a capacitor.

2.2.4 Transistor

The Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET), are
one of the key devices which facilitated the digital revolution. Their main
use in digital circuits is as electronically-controllable switches. MOSFETs
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G
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S

Figure 2.4: Metal–Oxide–Semiconductor Field-Effect Transistor (MOSFET), with
gate (G), source (S) and drain (D) terminals. The gate metal in black, the highly
doped source and drain contacts in blue and the semiconductor in orange.

have three terminals, the source, the drain and the gate (Figure 2.4). For
a N-type doped semiconductor between source and drain (P-MOSFET),
a channel is formed for VSG − |Vth| > 0, with Vth a threshold potential.
In the gradual channel approximation [18] under the condition VDG > |Vth|,
the channel current (between source and drain) behaves like a resistor,
proportional to the relative source, drain and gate voltages. In that case,
the MOSFET can act as a switch which is mainly controlled by the gate
potential.

More detailed discussion is out of context, but the MOSFET mentioned
here has a similar three-terminal structure like the NODes. Therefore,
the same gate, drain and source terminology is used. Furthermore, in
neuromorphic computers, IMC devices such as NODes are the replacements
to MOSFETs in digital computers. While a collection of MOSFETs can
do either computing or memory, both functionalities will be shown for the
NODes in this work.

2.3 Important parameters of the NODes for comput-
ing

The brain is dense network of interconnected neurons. Thus, to create a
network similar to the brain an array of synapse-like devices is required.
The NODe is a candidate, however in order to understand whether they
can function in an array, it is firstly required to understand the individual
device characteristics. Accurate characterization is needed when the total
functionality depends on the interplay between NODes, aiming for the
NODes to be used as a computing memory element (artificial synapse). The
time a certain precision can be guaranteed for the channel conductance state
(retention time) has to be great enough to be considered constant during
computation. Furthermore, long retention times require fewer refreshes
and thus improve energy efficiency. In order to keep signal integrity, allow
for a large range of sensor compatibility and have high energy efficiency,
the bandwidth of the NODes are of key importance. Towards wearable
electronics on batteries, the power draw of every element is important and
should be minimized to minimize battery size and improve comfort. Also to
keep the wearable form factor, the area should be limited to the sensor. The
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peripheral electronics supporting the sensor, should ideally be placed in the
remaining z-dimension. This is also known as 3D electronics. In short, we
believe the main design parameters for NODes are: retention time, speed,
power consumption and device area.
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3 An electrical model for the NODe

This Section will discuss the physical basis towards an applicable electrical
model for NODes. It mainly focusses on the capacitive behaviour of NODes,
because it can be determined from the physical layout. The capacitance mat-
ters for circuit stability but more importantly, it determines the relaxation
of the programmed conductance.

3.1 The neuromorphic organic device

S D

G

PEDOT:PSS

Electrolyte

Gold

S

D

G

(a) (b)

Conductance:

I t

(c)

Figure 3.1: (a) Circuit symbol for NODe, with gate (G), source (S) and drain
(D). (b) Sketch of NODe’s physical layout. (c) Simplified sketch of device for
programming the channel conductance. Initially, an external hole (white circle)
is injected which dopes the gate PEDOT:PSS by expulsion of a cation (orange
circle). Then, another cation enters the channel PEDOT:PSS from the electrolyte
(orange arrow) and dedopes this film by removal of a polaron, which exits as a
hole current (black arrow) through the drain.

It is important to understand the device physics of the NODes in order
to define suitable programming and computing schemes of these devices.
The NODe (Figure 3.1.b) is mainly based on two PEDOT:PSS films. One
film is on top of the gate electrode and another film is called channel and
connected to two electrodes (source and drain). The two films are connected
via an electrolyte. This forces the charge transfer between channel and
gate to solely occur by ions and not electrons or holes. Thus e.g., upon
forcing a positive amount of electronic charge onto the gate, cations will
flow from the gate to the channel through the electrolyte (Figure 3.1.c). In
turn, charge neutrality of the film is kept by removal of a hole from the
PEDOT backbone. This effectively dedopes the channel film and reduces
its conductance, as PEDOT:PSS is mainly a hole-conducting polymer. The
reverse reaction can also be achieved by removal of charge from the gate.
This leads to doping of the channel. It should be noted that channel doping
or dedoping will be called programming the NODe from this point.
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Figure 3.2: (a) Ideal equivalent circuit of the NODe starting from the gate, with
gate and channel PEDOT:PSS given in light blue and electrolyte in light grey.
In black the electronic part of capacitor, green the ionic part of the capacitor
and dark blue circles sketches the coupling between ionic and electronic charge
carriers. Note that each capacitor plate has an ionic as well as an electronic
part. Also, the electrolyte typically covers both PEDOT:PSS patches totally. (b)
The equivalent circuit with the equivalent resistance (Req) due to parasitics and
a equivalent capacitance (Ceq) replacing the two series capacitors. The channel
resistance is split into two contributions each half RSD, which varies according to
the gate voltage drawn with dotted lines. The dashed arrows denote the direction
of the electric field.
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3.2 Equivalent electrical model of the NODe

Clever programming schemes, require knowledge of the physics of the device.
These schemes should allow parameter variability and device imperfections.
However, achieving higher performance require tighter tolerances on the
devices. Therefore, it is key to have a device model that can describe its
performance parameters to its control parameters. The main performance
parameter is the conductance of the channel (G). As mentioned in Section
3.1, G is determined by the gate charge. This charge storage behaviour
of PEDOT:PSS is one of the main reasons it is a promising material in
devices, such as supercapacitors, OECTs, fuel cells and batteries [19;20;21;22;23].
Typically, the charge storage or capacitive behavior of PEDOT:PSS is
attributed to redox reactions, however recent works [24;25] demonstrate that
the capacitance originates from electrical double layer formation along the
interfaces between PEDOT-rich and PSS-rich interconnected grains. The
bulk PEDOT:PSS can be thought as consisting of many PEDOT and PSS
grains. From the physical layout of our device, the ideal electrical equivalent
gate circuit should thus consist of two series-connected capacitors (Figure
3.2.a).

Initial findings relate the discharge of the the equivalent capacitor (Ceq)
through a parallel equivalent resistor (Req) (Figure 3.2.e). The exact physical
mechanism causing the discharge of Ceq, and thus the presence of Req is not
well understood. The precise physical modelling of Req is considered out
of scope, because the synaptic weight can be considered constant during
computation. Possibilities giving rise to Req include, diffusion of charge
carriers and parasitic reactions with the environment such as electrolyte
evaporation and oxygen-aided reactions. Despite the loss of stored charge,
a solution to keep the correct synaptic weight is by continuous refreshing
the state. To put this into perspective, real biological synapses persist for
minutes up to days for LTP, while STP is typically attributed to timescales
below minutes [26;27;28;29;30]. Additionally, it turns out that currently, the
energy efficiency is lead by the channel resistance (RSD = G−1). The
PEDOT:PSS channel film can be thought of a transmission line between
source and drain. The channel film can then be thought of being split into
many pieces. Each piece of PEDOT:PSS contributes a very small part of
RSD, Req and Ceq. Averaging along the horizontal channel direction, results
in the Req and Ceq to be electrically connected in the middle of the channel,
between two half-channel resistors 1

2
RSD (Figure 3.2.b).

3.3 Capacitance from temporal measurements

Programmable materials such as PEDOT:PSS can be dedoped due to redox
reaction, which implies charge neutrality. However, initial tests show that a
considerable field can be built from gate to drain (VGD) with a capacitance
in the order of µF’s. The explanation given in Section 3.2 supports this view
with a large equivalent capacitance. Since the charging of the capacitance
is equivalent to charging of the PEDOT-rich and PSS-rich regions, the
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conductance of PEDOT:PSS and the field from gate to drain could be
related. In order to verify the validity of this claim, the relaxation of the
gate voltage is compared to the relaxation of the channel conductance.
More specifically, as the doping is a direct result of the voltage on the gate,
the channel conductance is expected to relax with the same time constant.
Initially, a first-order relaxation is assumed for the gate which electrically
can be modelled as a RC-time constant. In that case a large capacitance is
preferred as it would imply long retention times. Furthermore, determining
the equivalent load capacitance for programming circuits is important for
circuit stability.

CeqReqVg

Vs Vg
(a) (b)

Vs

Figure 3.3: (a) Setup used to determine steady state current with a voltage source
set at Vg. (b) The equivalent circuit of (a).

Firstly, the resistance of the time constant was fixed by inserting an
external resistor (Rext as in Figure 3.4). That is to prevent variations
in the internal equivalent resistance from influencing the time constant.
For this reason, the external resistor needs to be much smaller than the
NODe’s internal equivalent resistance. In order to estimate Req and thus
choose Rext, the DC gate current under VSD = 0.2 V and VGD = 0.3 V
was measured. In this experiment consider the setup shown in Figure 3.3.
Initially, the gate is charged and eventually the capacitive current becomes
negligible. Hence, the gate current is dominated by the resistor current
(Figure 3.3.b). The resistor current is measured at several intervals and
after one hour the current is <0.5 nA. The exact equivalent resistance could
not be determined as the leakage current through the cables and connectors
were non-negligible, but Req was at least 600 MΩ. In any case, to neglect
the effects of leakage current through Req, cables and connectors the Rext

was chosen to be 0.98 MΩ.
Secondly, the Ceq of a NODe after charging the gate for various PE-

DOT:PSS volumes was determined. This experiment projects the temporal
behaviour of NODes while reading of the processed result. Various initial
conditions (VGD) are tested under channel bias of VSD = 0.1, 0.2 and 0.3
V as indicated in Figure 3.4. Here, a larger initial condition would allow
more charge to be injected. This mimics the temporal behaviour under
various channel states. As follows, time-dependent measurements of the
gate voltage and current (ISD) are performed (Keithley 2010) and fitted to
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Figure 3.4: Setup used to determine the relaxation time where (a) pre-charges
the gate which eventually nears the set voltage Vg. (b) The gate current (Ig) is
measured during discharge and results in the gate voltage as IgRext. Additionally,
VSD the channel bias, ISD the channel current and the right half the equivalent
circuit is drawn.

the Equation,
VGD = V0 exp (−t/τV ), (3.1)

and
ISD = I0 + IQ exp(−t/τI), (3.2)

with t the time, V0 the voltage at t = 0, I0 the current at zero gate charge,
IQ the change in current due to addition of a charge Q onto the gate, τV
and τI the time constant for voltage and channel current relaxation.
τV and τI are expected to be the same. In that case, the discharge current

of the gate PEDOT:PSS should be facilitated by the Ceq of the NODe. It
requires discharge of channel capacitance and thus doping of the channel.
In other words, the experiment finds the equivalent capacitance from time-
resolved measurements, which is summarized in Table 1. It also confirms
the coupling between the relaxation of VGD and ISD. Indeed, both the VGD

Table 1: Average voltage and current relaxation time for various PEDOT:PSS
areas

PEDOT:PSS area (cm2) τV (s) τI (s) Ceq(µF )
4.65 4.3 4.3 4.4
2.85 2.1 2.0 2.1
2.35 1.4 1.2 1.4

and ISD relax with the same time constant. This implies that the time-
dependent state of G can be described by the discharge of the equivalent
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capacitance (Ceq = τV /Rext) as seen from the gate. Also, these time-
dependent measurements show that the Ceq decreases with PEDOT:PSS
area. This confirms that devices with less PEDOT:PSS volume, show
decreased capacitance from temporal measurements.

3.4 Capacitance from direct measurements

Current source

Vs
(a) (b)

Ceq
Req

Vs

Figure 3.5: Setup used to determine the capacitance from the change in voltage
in (a) the channel is biased at VSD and at the gate a fixed amount of charge is
injected by opening and closing of the switch, (b) the equivalent circuit.

In order to study the linearity of the capacitance, charge pulses were
injected into the NODe’s gate using the setup shown in Figure 3.5. As the
amount of stored charge is increased, the capacitance could become more
non-linear. This is due to, but not limited to, changing chemical potential
at different hole concentrations. Also, VSD was biased at 0.2 V and 0.3 V, in
order to measure the influence of the channel bias on the capacitance. The
horizontal channel field could influence the vertical gate field. This would
possibly reorganize the PEDOT:PSS grains and therefore also influence the
capacitance.

During this measurement, a current (I) charges the gate for a set time
by closing (thigh) and opening a switch (tlow). Each time the gate of the
device is charged, the change in the gate voltage (∆V ) is measured. This
is repeated several times (forward sweep), then the sign of the current
is swapped and the gate is discharged in steps (backward sweep). The
equivalent capacitance (Ceq) after each charge pulse (∆Q = Ithigh) can then
be found from,

Ceq =
∆Q

∆V
. (3.3)

Both backward and forward sweep were repeated for twenty times. The
total pulse duration (thigh+tlow) was chosen such that negligible charge is
lost through Req.

Both Figure 3.6.a and 3.6.b start at the same capacitance, while they
differ in channel bias. No significant change in capacitance is measured due
to VSD. The measurements directly after switching the sweep direction have
a jump in capacitance, as seen at both ends of the x-axis. This jump in the
capacitance value can be explained by considering which PEDOT:PSS film
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(a) (b)

(c) (d)

Figure 3.6: Measurement of the capacitance as function of the gate-drain voltage.
A fixed amount of charge is injected for devices with gate to channel area ratio of
one (a and b), of four (b and c), at VSD = 0.2 V (a,c) and at VSD = 0.3 V (b,d).
Forward sweep is given in orange squares and backward sweep in blue circles.
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is doped as a result of moving the charge. In case of backward sweep, the
channel film is doped and in case of forward sweep, the gate film is doped.
The reasoning is as follows, at the start of the backward sweep the channel
is in a dedoped state and is in its lowered conductance state for VGD > 0.
Now being in a charged state, this could lead fewer grains in PEDOT:PSS
to contribute to the electrical double layer capacitance. Therefore, the
sweeps start at the minimal capacitance in Figure 3.6. Correspondingly, in
a four-times channel-area down-scaled device. The forward sweep in Figure
3.6.c and 3.6.d has a ∆C = 0.2 µF and is four times smaller compared to
the ∆C = 0.8 µF of the backward sweep. Lastly, the forward and backward
sweeps do not cross each other at 0 V. It should happen at 1

2
VSD, because

then the potential over Ceq is zero. Hence, the NODe shows the same
capacitance for forward as backward sweep at approximately 1

2
VSD.

3.5 Scaling of NODe’s capacitance with area

With the same setup from Section 3.4 the equivalent capacitance of NODes
with different PEDOT:PSS volumes can be determined. Firstly, consider
the two series capacitors of Figure 3.1.d. The equivalent capacitor (Ceq)
can be given as,

Ceq =
CgateCchannel

Cgate + Cchannel

, (3.4)

with Cgate and Cchannel the capacitance due to the gate and channel film,
respectively. For an uniform, thin-film, volumetric capacitor this implies,

Ceq = C∗∗
AgateAchannel

Agate + Achannel

, (3.5)

with C∗∗ the capacitance per unit area and A the area of the film.

(a) (b)

Figure 3.7: The equivalent capacitance as function of PEDOT:PSS area, (a)
channel and (b) gate area. Solid line is a fit according to Equation 3.5, with error
bars.
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In order to verify Equation 3.5, the channel area and gate volume were
varied (Figure 3.7) while keeping the gate and channel area constant,
respectively. Indeed, the scaling of the equivalent capacitance follows
the physical layout, which are two series connected PEDOT:PSS films.
Each film results in a volumetric capacitor. These capacitance per unit
area was (a) 2.75 F m−2 and (b) 2.25 F m−2. There is a slight discrepancy
between (a) and (b), because they were fabricated at different moments.
The height of (a) was measured to be 80± 10 nm and (b) 113± 4 nm. The
difference in height is mainly attributed to the different cross-linking degree
of the PEDOT:PSS mixture. This could also be the reason why the thicker
film (b) has less areal capacitance. Accordingly, the ratio between channel
PEDOT:PSS and gate PEDOT:PSS, which maximizes the capacitance given
a certain area is one (Appendix A).
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4 Temporal characteristics of NODes

This Section defines the temporal and programming efficiency and affect
the energy efficiency of the NODe. In order to determine these efficiencies,
firstly the relaxation of the channel conductance is modelled. Afterwards,
the effects of pulse shape on the programming efficiency is studied. Finally,
the equivalent digital precision is determined from the variation in the
programming efficiency.

4.1 Slow and fast exponential relaxation of NODes

With the intention to study the natural relaxation of VGD and G through
Req, instead of the externally forced relaxation through Rext. The external
resistance of the setup in Figure 3.4 was replaced with an electronically
controllable switch. The leakage current of the electronic switch (5 pA)
is much smaller than the charge loss due to the relaxation of the NODes.
Therefore, this switch was suitable to study the slower relaxation dynamics
of NODes.

In the initiation phase of this experiment, VGD is charged to a pre-
determined voltage for 10 seconds and then the switch is opened (t = 0 s).
The G will now relax towards it state before programming (Figure 4.1) and
is because of the much slower dynamics, now fitted according to,

G(t) = G0 + A exp(−t/τs) +B exp(−t/τf ), (4.1)

with A and B the change in conductance due to charging of VGD, G0

the conductance at t = 0, ts and tf the time constants for slow and fast
relaxation, respectively.

Figure 4.1: At time = 0, the VGD was 0.1 V( purple), 0.3 V (orange), 0.4 V
(blue) and 0.5 V (yellow). Under a VSD bias of 0.2 V. Note that the markers
overlap.

19



Table 2: Fast and slow relaxation time of NODes

VGD (t=0) 0.1 V 0.3 V 0.4 V 0.5 V
τf (s) 451 255 228 267
τs (s) 11496 11219 6816 5580

The channel conductance in Figure 4.1 initially shows a fast relaxation
followed by a slower relaxation from programmed state, τf and τs respectively.
The fast relaxation was not visible in the experiments before, because the
external resistor enforced much shorter experimental conditions. A possible
mechanism for the fast relaxation is due to the remaining charges in the
PEDOT:PSS which were not removed yet by the external circuit. After
the removal of the external field, there is a fast re-doping of the material
followed by a slow re-doping due to the internal electric field and charge
carrier diffusion. The top curve shows the dedoping of the channel instead,
as the gate-drain voltage starts slightly below 1

2
VSD. It slowly approaches

a value slightly above 1
2
VSD (Appendix C). This leads to a different tf

for VGD = 0.1 V instead. Using an exponential fit, ts (Table 2) is found
to be decreased at increased programming voltage on the gate. This was
expected from the decreased Ceq (Figure 3.6) at increased VGD. However,
the decrease in slow relaxation is more than is expected from the decrease
in capacitance. This implies that the discharge through the equivalent
resistance should also be a decreasing function of the charge injected and is
therefore non-linear with VGD. A possible explanation is that the charge
carrier concentrations in the gate and channel PEDOT:PSS are unbalanced
due to the charging of the gate and dedoping of the channel. In that case,
the diffusion is increased as result of a larger charge carrier concentration
gradient. It should be mentioned, that non-ideal circuit elements such as the
Warburg-impedance [31] can be an appropriate model for a diffusion process.
However, this would require characterization of physical quantities such as
the diffusion coefficient and charge carrier concentration of the PEDOT:PSS
first. Since the measurements for these quantities is complex, it can not be
modelled as such, yet.

4.2 Temporal efficiency of NODes

Due to temporal effects such as relaxation of channel conductance, the
time to program a NODe is important for its energy efficiency. Although
erroneous readouts are prevented by refreshing the nodes, each refreshing
event requires energy and therefore limits the device energy efficiency
ultimately. Therefore, this work defines the parameter temporal efficiency
(ηt) as,

ηt =
T

Tw
, (4.2)

with T the state retention time, Tw the time to change the state by one level.
If the temporal efficiency is low, the effective lifetime to readout NODes is

20



short. This means less data can be processed correctly within a certain time
frame and this decreases the energy efficiency of these devices. Additionally,
Tw depends on the implementation of the programming scheme and also
the programming efficiency.

4.3 Programming efficiency of NODes and the effects
of pulse shape

0 0.5 1 1.5 2 2.5 3

 Q (C) 10
-8
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 (

S
)

10
-6

Figure 4.2: The change in conductance as function of the injected charge, with a
linear fit as solid line. The error is within marker size.

he NODe state is stored as a channel conductance by modulating a certain
amount of charge. The conductance scales linearly with the amount of
charge injected (Figure 4.2). Therefore, it is helpful to define the transfer
from input to output, now called the programming efficiency (ηw) as,

ηw =
∆G

∆Q
, (4.3)

with ∆G the change in conductance upon injection of ∆Q. With the
intention to show a linear relation between ∆G versus ∆Q, ∆Q was varied
in Figure 4.2. The programming efficiency obtained from Figure 4.2 is
−270± 1 S C−1.

Towards high energy efficiency of NODes the effect of the programming
pulse shape was investigated. Short programming pulses (thigh+ tlow) are
preferred as these have a high temporal efficiency and thus allow higher
energy efficiency. This work uses square programming pulses with a high
(thigh) and a low part (tlow) (Section 3.4). Firstly, the high part was decreased
from 500 ms to 1 ms with tlow set to 1000 ms and the total charge was fixed
to 0.9 µC (Q), with ∆Q fixed to 20 nC (Figure 4.3). Secondly, tlow can also
be changed and was gradually decreased from 500 ms to 50 ms with thigh =
10 ms, Q = 0.9 µC and ∆Q = 20 nC (Figure 4.4).
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(b)(a)

Figure 4.3: The programming efficiency over the high part of a square pulse. (a)
Channel and gate volumes similar (2.3 mm2). (b) Channel volume four times
smaller than gate and (a).

The energetic programming efficiency stays roughly constant up to the
lower bound of 1 ms for thigh (Figure 4.3.a). In comparison, devices with a
smaller channel area (Figure 4.3.b), the programming efficiency is decreased
for thigh < 200 ms. This could be due to the smaller channel-electrolyte
interface, which limits the number of charges penetrating this interface.
This lower rate then leads to a decreased programming efficiency, because
the remaining injected charges are expected to concentrate at the electrolyte
interface and upon removal of the external vertical gate field, these charges
will diffuse back to the gate PEDOT:PSS. To add, since diffusion is a slow
process it is also possible that the charges stay in the water and redistribute
upon removal of the external field. In this view, tlow could also decrease the
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Figure 4.4: The programming efficiency over the low part of a square pulse.

programming efficiency below a certain threshold. However, in the range of
2 ms to 500 ms the programming efficiency stays relatively similar (Figure
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4.4). Concluding, the conductance tuning of NODes can be affected by the
pulse shape and attention is required when programming time is limited.

4.4 The effect of charge on capacitance and program-
ming efficiency

Gate charge

Figure 4.5: Change of gate-drain voltage (VGD) as function of the absolute
programming efficiency. The total injected gate charge increases with the x-axis.

Not only does the capacitance increase, also the conductance can be
shown to be a function of the charge or equivalently the pulse number
(Appendix B.4). Since both programming efficiency as capacitance increase
with the pulse number, the fixed injected charge can supposed to be split into
two contributions; charging the capacitance and dedoping the channel. As
follows, gradually a larger portion of the injected charge is used for dedoping
the channel and a smaller portion is charging the equivalent capacitance.
Since fewer charge carriers participate in building the electric field on the
gate, this can be interpreted as increased capacitance in the setup described
in Section 3.4. In order to confirm this supposition, charge is injected into
the gate. The resulting ∆VGD versus the absolute programming efficiency
is shown in Figure 4.5. The results seem to follow a straight decreasing
line. Indeed this could imply that more charges will dedope the channel
and therefore increase the programming efficiency. Even though, the total
number of injected charge did not change, fewer charges are left to build
the electric field. This could explain why the change in VGD progressively
decreases as function of the charge.

4.5 State retention time and variability of NODes

Although the conductance of NODes can be arbitrarily tuned (analog), the
temporal channel state is discretized in order to compare with its digital
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counterparts. Temporal relaxation of the programmed state will slowly
relax to the previous discrete level. Hence, using exponential relaxation of
the conductance and linearly spaced quantization levels, this work defines
the state retention time (T) as,

T = − ln(1− 2−N)τs, (4.4)

with N the number of bits, corresponding to the chosen number of states.
For large N , T will tend to halve when doubling the number of quantization
levels. For a 5-bit system a state retention time of 216 s can be expected
for a relaxation time of 6816 s (Table 2).
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Figure 4.6: The variation of programming efficiency over cycle number. Forward
passes as circles and backward passes as crosses.

Usually the number of quantization levels is determined by the noise.
However, the results in Section 3.4 and 3.5 show that the variation in
programming can mostly be attributed to non-linearity in Ceq and Req. To
estimate the equivalent digital precision of the programming, the variation
in the programming efficiency was investigated. The setup in Figure 3.5
under a VSD bias of 0.3 V was re-used. ISD was recorded, while being cycled
back and forth by injecting approximately 28 times ∆Q = 20 nC. The slope
of the current versus charge is determined and given as ηw in Figure 4.6.
The digital precision is then determined from the normalized variance, which
was 2%. If one sigma separation between states is required, the limit would
be 50 states for programming. That means the equivalent digital precision
of NODes is maximally 5-bit. This could be improved by injecting a smaller
amount of charge, which explores a smaller conductance programming
range. Whether 5-bit enough depends on the accuracy required of the
specific application, however the work of Pfeil et al. [32] reasons that 4-bit
could be enough for neuromorphic systems.
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5 Parallel computing with crossbars

Before parallel computation in a 3x3 crossbar can be shown, firstly the
mathematics of crossbars is discussed. Afterwards, this Section focuses
on disturbless-parallel programming of each device. Firstly, the results on
the effect of device area scaling is given. Secondly, the importance of the
pulse shape is shown with experiments on the pulse duration. Lastly, the
functionality of a 3x3 crossbar is shown.

5.1 Computation based on a crossbar array

C
o

n
d

u
ct

an
ce

In
p

u
t 

vo
lt

ag
e

Output current

Figure 5.1: Schematic view of a crossbar with at each crossing-point an IMC
device such as the NODe. From white (small value) to blue (large value) the
synaptic weight, here the conductance. In orange the output voltage waveform
and yellow the output current waveform.

In order to perceive the world, our senses receive information simultaneously.
This information has to be processed all at the same time (parallel). A way
to view this in mathematical terms is to consider the input sensory data as
a vector and the processing as a weight matrix, which can be implemented
in a crossbar. Its output is also a vector. Assuming at each crossing-point
of the crossbar is implemented with a transconductance amplifier, such as
the NODe, the in- and output relation is then given, by

Iout = Vin G, (5.1)

with Iout the output current vector, Vin the input voltage vector and G the
transconductance matrix. The input voltage vector is applied in parallel
to all rows and the output is read out in parallel column-wise (Figure 5.1).
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Again, this layout shows similarities to biology. Each cross-point/node
device or element in the conductance matrix can be considered as an
artificial synapse. Since each column adds multiple processed input signals
and has single ended output, it can be considered as an artificial neuron.
This similarity to biology and physics-based parallel computation should
allow crossbars to be an efficient physical implementation of neuromorphic
computation based on NODes.

5.2 Individual programming with NODes

Undoubtedly, crossbar arrangements of IMC devices (Figure 5.1) are a way
to realize neuromorphic computing. However, non-idealities, circuit imper-
fections and unclear device physics [33] have led state-of-the-art programming
schemes for memristor crossbar array to focus on robustness [4;11;34]. These
simple programming schemes rely on reading the state of each memristor.
Afterwards every device is compared to its set value. When this comparison
fails a programming command is sent. Due to the slow sequential nature
of this scheme it does not scale well for dense arrays. Of course, tricks
such as initializing random conductance states can be used to decrease the
programming energy. Unfortunately, this programming scheme still requires
several iterations before convergence to the set value is reached. Moreover,
every read performed, introduces changes to the conductance state due
to the finite read current. Whereas, every write performed, disturbs the
conductance state of other memristors in the crossbar as some memristors
are half-selected. Possibly, alternative devices and the appropriate device
models can greatly improve current programming schemes. For example,
separation of read and write mechanisms at device level will greatly reduce
crosstalk between devices. The NODe can, because of its three-terminal
structure, be programmed individually. Furthermore, by appropriate iso-
lation of the gate, the NODe allows computation without affecting its
conductance state during computation. A first step for appropriate pro-
gramming schemes is the initial electrical model developed in Section 3.
The relatively small programming non-linearity allows blind programming
(Section 4.5) up to 5-bit.

5.3 NODes in a crossbar

As mentioned before, matrix-like crossbar arrangement is a way to achieve
efficient IMC. Yet, the design of these crossbars is not trivial. Having both
computing and storage abilities in the same physical spot allows for various
memory programming schemes depending on the physical placement of
the NODes. Trying to achieve such IMC functionality is coupled with the
introduction of new engineered materials. Unfortunately these materials
have additional design complexities, e.g. programming non-linearity in
memristors [4]. Generally two approaches to counteract these complexities
are taken. One approach is to have programming schemes that tolerates
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moderate device or circuit imperfections. Another approach is to tune the
state of the devices in such way that the classification error is minimized,
typically by embedding learning algorithms in peripheral circuits. Thus,
instead of pursuing high programming accuracy of the synaptic weight,
high classification accuracy of the neural network are preferred. This work
considers novel devices in a technology under development, therefore a
system for programming and reading NODes is gradually made with simpler
architectures. To show that efficient parallel computation is possible in
an arrangement of NODes, it is not required to design a full neural net-
work. Moreover, there is no general consensus on how biology programs its
synapses, therefore choosing an appropriate learning rule for the peripheral
circuitry is difficult and out of scope. Hence, this work will focus on pro-
gramming the synaptic weight onto NODes in a small crossbar of 3x3 and
show data-processing capability. This is the simplest realization to test for
crosstalk between its nearest-neighbours.

In order for the programming to persist similar to a LTP, typically an
external resistor between the gate and the power source is placed [6]. However,
in pursuit of minimal programming energies, a non-linear selector device
was found to be more suitable [35]. Simply said, the programming circuit
should disconnect after programming in order to prevent charge leakage and
thus relaxation of the system. Another view of the functionality of a non-
linear element, is that ion movement should be stopped. This is possible
by disconnecting the gate, as it makes the ion movement energetically
unfavourable. A more extreme solution would be removing the physical path
by evaporation of the electrolyte. While the work Van De Burgt et al. [6] used
a resistor in series with the gate. The voltage drop across the resistor leads
to unwanted non-linear programming. In their configuration the resistor was
implementing a very crude current source. To add from an integration point
of view, large passive resistances( GΩ) are difficult to include in thin-film
processes. A better alternative would be an electronically-controlled switch,
which closes during write and opens during read. An example of such device
are IGZO TFTs [36], these exhibit a very low off-current and a high on-to-off
current ratio. Moreover, IGZO TFTs are compatible with the processing
of the NODes and leads to configurations similar to, but not identical
to memristor crossbar arrays with 1 transistor 1 memristor (1T1M) [11].
However, to avoid modifying the process flow, silicon off-the-shelf discrete
transistors are used in order to prove the computational abilities of a NODes
array in this work.

5.4 Processing in a 3x3 NODes crossbar

In the crossbar, the sources are connected row-wise and the drains are
connected column-wise (Figure 5.2) externally on a PCB. Each gate is
separately connected to a switch followed by a programmable current source
(Appendix B.1). The charge is accurately controlled by closing and opening
of the electronic switch. The row signal chain is a digital to analog converter
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Figure 5.2: (a) Implementation of demonstrated 3x3 crossbar. Every row path
a D/A, a low-pass filter (LPF) and a voltage buffer. Every column path a TIA,
a voltage buffer, a LPF and an A/D. Each gate has a separate current source
and can be individually programmed. Nine NODes are connected in crossbar
configuration, with source connected row-wise and drain connected column-wise.
(b) PCB with amplifiers, current sources and switches for programming and
reading of 3x3 crossbar array of NODes.

(D/A), low-pass filter (LPF) and a voltage buffer. Each column is read out
by means of a transimpedance amplifier (TIA as in Appendix B.2) . The
TIA is followed by a non-inverting amplifier, the voltage output is low-pass
filtered and then read out by an analog to digital converter (A/D). The
gate switches are digitally controlled by a NI-6534 data aquisition system
(DAQ), as well are the D/A and A/D. The calibration of the current source,
input buffer and TIA can be found in Appendix B.3.

In accordance with previous experiments the programming pulses were
chosen to be thigh = 10 ms and tlow = 100 ms. The programming range is
0.96 µC and was explored by injection of 48 pulses. Hence, for 16 states, each
state change requires three programming pulses. During this exploration, the
current of each device is measured by applying a VSD = 0.2 V. Afterwards,
the conductance change of each pulse can be determined by reading the
conductance during the low phase of the pulse. The conductance of each
state is read and stored with MATLAB (Appendix B.4) and will be used to
calculate the expected output of the crossbar. In order to show functionality
of the crossbar, the input voltage is drawn from a uniform pseudorandom
integer distribution between 0 and 200 mV. The chosen programmed state
of each node is also drawn from the same distribution, but between 1 and 16.
The pre-determined programming charge pulses are then sent to each NODe
in parallel. After programming, the input will be applied and the current
is read, at the same time instance. In order to simulate the processing
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Figure 5.3: Output current per column 1 (blue), 2 (red) and 3 (yellow) during
programming of the NODes.
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Figure 5.4: Processing of input signals, the output current per column 1 (blue), 2
(red) and 3 (yellow) as function of time, after programming.
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of a dataset, the input will be redrawn from the same distribution. The
multiple input data (dataset) were spread sequentially in time. Finally, the
output current will be compared to the expected output current according
to Equation 5.1 in Figure 5.4.

But first, each individual node has a programming range from 940 to 670
µS (Appendix B.4), with a typical programming of 130 ± 16 µS between
the begin state and the end state. During programming of the NODes
the channel current is measured and given in Figure 5.3. No significant
programming error was found due to crosstalk. This was enabled by
the individual access to programming via the gate of each device. The
final programming error for each column (1, 2 and 3) is 3, -14 and 11 µS
respectively, after linear calibration (Appendix B.3). This linear calibration
can easily be done in hardware with no loss of performance by adjusting
the TIA gain and TIA offset. Likewise, this calibration can also be stored
in a buffer in a post-processing circuit. The maximum over minimum
conductance ratio was 1.18 ± 0.01 and could be increased by injecting a
larger amount of charge. The trade-off here is an increased programming
non-linearity. Nonetheless, the crossbar was characterized in Figure 5.4.
The error was found to be within 7% and averages out to 2.1% for the
random dataset. The largest error occurred for column two and is due to the
programming error of that column. Furthermore, the speed of the testing
system was limited by the DAQ and the increased settling time is due to
peaking of the TIA. This system can be improved by shorter connections of
the devices under test with the testing system. The feedback network of the
TIA should be adjusted accordingly and peaking will be greatly reduced.
Also for limit testing, a high-speed DAC with atleast 51 Msamples/s per
channel should be used.

5.5 Energy per classification with NODes

To achieve parallel and energy efficient computations, it is important to
understand the energy cost of using a crossbar of NODes for computation
purposes. Mainly, the novel arrangement of a three-terminal IMC device
(NODes) in a crossbar are studied. Therefore, this work consider the
peripheral circuits out of scope for this discussion. The energy required
to do one calculation or energy per classification (Eclass) depends on the
channel power (PSD) and the power required to keep the programmed state
of the NODe (Pr).

To find the power to keep the state (refresh), first consider the energy
required to charge a capacitor (Ew), which is given by,

Ew =
CV 2

w

2
, (5.2)

with C the capacitance and Vw the programming voltage. Accordingly, the
programming energy per quantization level (∆E) is on average,

∆E =
CV 2

w

2N+1
. (5.3)
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Each refresh requires ∆E and the time before refreshing is (1 − η−1t )T .
Therefore, Pr is given as,

Pr =
∆E

(1− η−1t )T
(5.4)

During classification the channel has a power consumption (PSD) given
by,

PSD = G(t)V 2
SD. (5.5)

In order to find the minimal time for one computation, consider the
system to be low-pass bandlimited. The minimal time given by the rise
time to reach 99% of the input signal, is

tr = − ln(0.01)

2πfBW

, (5.6)

with fBW the 3dB-bandwidth of the NODe from source to drain. The
bandwidth is found to be at least 51 MHz (Appendix E), therefore the rise
time for NODes is 14 ns. It should be noted the actual bandwidth of NODes
could lie beyond 51 MHz, as it is currently limited by the measurement
system.

Finally, the classification energy can be given as,

Eclass = (PSD + Pr) trD, (5.7)

with D the number of NODes required in the network for classification.
For the sake of example, the classification energy for the MNIST bench-

mark will be given. The benchmark has, handwritten digits of 28x28 pixels
as input and classifies them in 10 groups (0-9). This yields a network size
with D = 7840. In such large array each NODe approximately contributes
to one MAC operation. Thus, the energy efficiency per (ηe) is,

ηe =
Eclass

D
(5.8)

with η in pJ per MAC or equivalently TOPS/W (2η−1e ).

Table 3: Values used for the energy per classification

N C Tw T fBW VSD Vw G
5 2.8 µF 0.33 s 216 s 51 MHz 0.1 V 0.36 V 800 µS

Using the parameters found in this work (summarized in Table 3), we
project a classification energy of 0.9 nJ per image, which is 22x more
efficient than reported by Guo et al. [37] with a crossbar of floating-gate
memories. The energy efficiency of 0.1 pJ/MAC or equivalently 20 TOPS/W,
is mainly dominated by the power consumption of the channel. Higher energy
efficiencies can be reached by more resistive PEDOT:PSS formulations or
smaller VSD. Interestingly, with energy harvesting e.g. flexible piezoelectric
sensors [38] and more resistive PEDOT:PSS formulations. The channel power
can be supplied by the sensor, bringing the external energy cost down to
less than a fJ/MAC.
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6 Conclusions

This work demonstrated a three-terminal neuromorphic organic device
(NODe) in a 3x3 matrix-like crossbar array. Neighbouring NODes had
negligible write disturb, while writing the information as its conductance
state. Relaxation time back to initial state of over one hour were measured.
This was as result of a large equivalent gate capacitance, with an areal
capacitance of 2.25 F m−2. Charge injection measurements show that capac-
itance as well as programming efficiency increases with the total amount of
gate charge. Variation in the programming, limit the the equivalent digital
precision to 5-bit. For a 5-bit precision and measured results in this work,
an energy efficiency of 0.1 pJ/MAC is expected. Thus, NODes are energy-
efficient in-memory computing elements which can be used with flexible
sensors and might enable high quality healthcare with 3D electronics.

7 Outlook

Novel material systems which can act as a non-volatile memory are key in
the neuromorphic community, because their intrinsic physics can be mapped
to certain features shown in biological synapses or neurons. Examples of
such systems include, phase-change memory [39], resistive random access
memory [40], spin-torque transfer random access memory [41] and now NODes.
Our devices have shown promising neuromorphic capabilities. In this work
the computing abilities of NODes were proven. However due to limited
time and scope, the exact physical mechanism leading to programming and
slight volatility is a open question. In order to understand the movement of
charges during programming. We suggest as a first step, to understand the
movement of charges at a better level by studying a novel 6-terminal device.
The device would be similar as the NODes, however both PEDOT:PSS films
will have source, drain and gate contact in between. With this device, one
can indeed verify the that dedoping of one PEDOT:PSS film leads to doping
of the other PEDOT:PSS film. Additionally, sensitive electronics can be
designed which closely tracks all charge entering and leaving the device
(charge counting). Charge counting could help with the interpretation
and maybe even explain the huge apparent volumetric capacitance present
in NODes. Indeed, NODes are suitable for neuromorphic systems. But,
could also teach us about interesting physics and possibly answer how the
electronic and ionic charge carriers are coupled. Interestingly, perovskite
materials also show ion-induced capacitance [42;43;44].

Another open opportunity is the design of energy efficient peripheral
circuity. In this work, this was out of scope. However for a low-cost and
energy efficient healthcare sensor, design of peripheral circuitry in process-
compatible technology is still missing. Examples of required circuitry
are amplifiers, switches and current sources, all which could be simply
implemented with IGZO TFTs.

The final challenge is to weigh all parameters (examples are given in
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Section 2.3) and scale the crossbar to its specific sensor application. Mainly,
one should decide the ideal device area in accordance with the required
number of devices and sensor area.
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Appendices

A Optimal ratio between gate and channel

volume

Firstly, consider Equation 3.5 with Achannel = Agate = A. It is proposed
that the ideal ratio between channel area and gate area is one. To proof
this, consider moving an piece (δ) of gate PEDOT:PSS to the channel
PEDOT:PSS. In that case, Equation 3.5 becomes,

C ′eq =
(Agate − δ)(Achannel + δ)

Agate + Achannel

,

=
A2 − δ2

2A
,

(A.1)

with δ ∈ (0, A). For all possible δ, C ′eq < Ceq. Hence, the ideal choice is

Achannel = Agate. In other words the Achannel

Agate
ratio which maximizes the

capacitance for given area, is one.

B PCB for a crossbar of 3x3 NODes

The goal of the PCB was to accurately program NODesand reading of
current domain signals.

B.1 Microampere current source

Figure B.1: The circuit diagram of the programmable current source. SETI1 is
the input voltage and I1 the output current according to Equation B.1.

The circuit for the current source used to generate charge pulses is given
in Figure B.1. Assuming ideal components the output current I1 is given
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by,

I1 =
SETI1

106
, (B.1)

with I1 in A and SET1 in V.

B.2 80 MHz bandwidth TIA

Figure B.2: The transimpedance amplifier circuit diagram.

The TIA for the readout PCB is given in Figure B.2. It is followed by a
non-inverting amplifier with gain of three. Therefore, ideally, the output
voltage is given by,

VTIA = ISD · 6000, (B.2)

with VTIA in V and ISD in A.

B.3 Calibration

The current source was calibrated for an output current of 2 µA at 2 V input.

Calibration of the three input buffer measured a positive offset of 7 mV,
which was within manufacturer specifications.

Each channel of the TIA is calibrated using various current sizes (Keithley
2010) summarized in Figure B.3. A linear fit is made and the input current
of the TIA can then be found from this linear relation. The gain is slightly
less than expected due to component accuracy and insertion loss of the low
pass filter (Mini-circuits SLP-10.7+).
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Figure B.3: The output of the TIA 1 (a), 2 (b) and 3 (3) after a gain stage of
three. The input current was varied and the linear fit through the points is given
as dotted line. The fit parameters are given in the right corner.
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B.4 Conductance versus stored gate charge
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Figure B.4: The programmed conductance as function of injected charge for the
nine NODes in the 3x3 crossbar.

The conductance of every node in the 3x3 crossbar is given in Figure B.4.
With the numbering of the nodes according to Figure 5.1, starting from left
upper corner as one and right lower corner as nine.

C Gate charging after programming

Due to the applied external vertical field. It is expected for Vg < Vs , Vg
increases towards Vs near the source contact. While Vg increases towards Vd
near the drain contact. On average along the channel, VGD will be roughly
1
2
VSD as can be seen in Figure C.1. Peculiarly, the slope changes sign and

becomes negative after 1000 seconds. Initially it would be expected that a
stable point would be reached. However, as can be seen the voltage that
has been reached at 1000 seconds is above 1

2
VSD. This could be due to local

concentration gradients in the electrolyte. After 1000 seconds, the electric
field due to these local concentration spots appear to equilibrate and seem
to vanish.
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Figure C.1: The gate-drain voltage over time after charging the gate to VGD=
0.1 V and opening the switch at time is zero.

D NODe fabrication

NODe fabrication consists of 3 main components, the electrode, the organic
semiconductor (PEDOT:PSS mixture of Section D.1) and the electrolyte
(gel or water).

D.1 PEDOT:PSS mixture

The organic semiconductor was made by mixing 5 wt% ethylene glycol (EG),
1 wt% 2-dodecylbenzenesulfonic acid (DBSA), 1 wt% (3-glycidyloxypropyl)trimethoxysilane
(GOPTS) and PEDOT:PSS (Clevios PH1000, Heraus). For ease of pro-
cessing, a lateral gate structure as shown in Figure 3.1.b was used. The
electrolyte can be placed on top. This was Milli-Q water for experiments
with single devices and short experimental conditions (<60 s). In all other
cases gel electrolyte was used (Appendix D.4).

D.2 Metal electrode patterning

To start off, clean glass substrates are used. The glass is fully covered with
titanium and gold by sputter deposition, 3 nm and 75 nm thick, respectively.
Titanium was used as interlayer due to its good surface adhesion to glass
and gold. Afterwards, Fujifilm HPR-504 photoresist is used to cover the
gold by spincoating at 2000 rpm, in an open spinner with an approximate
final thickness of 1.3 µm. This coating is dried by baking it at 95 °C. With
the Heidelberg instruments optical laser writer structures are patterned
and the substrate is then transferred into tetramethylammonium hydroxide
(TMAH) developer solution for 90 seconds. Then, commercial etchant
solution is 3x diluted with water and then used to etch the gold. Directly
after, the titanium is etched at 70 °C. The etch time is dependent on the
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level of surface oxidation present. After the titanium etch, electrical tests
are used to test for gold exposure and erroneous short circuits.

D.3 PEDOT:PSS patterning

For the PEDOT:PSS patterning, firstly the glass substrates with patterned
metal electrodes is spincoated with SU8 2000.5 at 2000 rpm for a thickness of
0.6 µm. The SU8 is also dried and baked at 95 °C, exposed with the optical
laser and extra baking again at 95 °C. It is then developed in microresist
GmbH mr-Dev 600 for 2 min and hard baked at 130 °C. The now exposed
gold contacts and substrate are cleaned with O2-plasma. The PEDOT:PSS
mixture described in Section D.1 is spincoated in a closed spinner at 1050
rpm for 60 seconds. The spincoated layer thickness is between 80 and 120
nm and depends on the the time between adding the crosslinker to the
PEDOT:PSS mixture and the spincoating. In order to pattern the organic
semiconductor, Orthogonal Inc. photoresist was spincoated in an open
spinner at 2000 rpm. This photoresist is dried at 95 °C, exposed with the
optical laser and baked again at 95 °C. Corresponding Orthogonal Inc.
developer was used three times with the substrate still on the spincoater.
The exposed organic semiconductor is removed with a reactive-ion etch at
500 W for 2 minutes. The remaining photoresist is stripped with Orthogonal
Inc. stripper, again three times on the spincoater.

D.4 Gel fabrication

A solution of 4.4 wt% poly(vinylidene fluoride-co-hexafluoropropylene), 17.6
wt% aprotic 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide
and 78 wt% acetone was heated at 40 °C for over 30 minutes. The solution
is then left to cool in a silicone mould, which resulted in films of about 2
mm thick. These were then cut to size with a knife and placed on top of
the gate as well as the channel semiconductor. Dehydration of the gel film
could immobilize ions and reduce programming efficiency. However, the gel
films did not show performance loss as electrolyte for NODes.

E Bandwidth of a single NODe

A single NODe was tested with the PCB as given in Appendix B. The
spectrum analyzer (HP 3588A) sourced the the frequencies of interest into
the input buffer. The output of the PCB was connected to the input of the
spectrum analyzer. The device was tested under two conditions. Firstly,
the baseline measurement grounds the gate of the NODe and is then left
floating. Secondly, the VGD was charged to 0.3 V and is then left floating.
After conditioning the gate, the frequency is swept and the power spectral
density (PSD) is given (Figure E.1) in a 50-ohm matched system. Non-
linearity in the spectrum is seen already in the baseline measurement. This
is because of improper zero cancellation by the feedback capacitance of the
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Figure E.1: The output spectrum (left y-axis) of an unprogrammed NODe (circles)
and programmed node (squares). The difference in output (right y-axis) is given
as crosses.

TIA. Reasons include the board and connector parasitics. More important,
the spectrum does not show that the TIA is destabilized. The difference
between the first spectrum and second spectrum stays constant and becomes
0 at 51 MHz. Shortly after 51 MHz, the dominant pole (80 MHz) of the
TIA decreases the TIA gain. Although, Ceq= 2.8 µF and a much lower
bandwidth is expected. The ions in the electrolyte can not follow the speed
of the applied electric field. Hence, the programmed conductance is not
lost, even at MHz frequencies.
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