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Abstract

Many geophysical and astrophysical flows are driven by convection and meanwhile af-
fected by convection, which can be described by the fundamental process of Rotating
Rayleigh-Bénard convection. This process is investigated by confined cylindrical exper-
iments and direct numerical simulations. The experiments and numerical simulations
show a large prominent velocity structure in the vertical and azimuthal direction in the
wall region, resulting in a larger heat transport compared to periodic simulations with
equal thermal forcing. This research is a continuation of the work of De Wit et al. [2020],
who discovered this prominent wall structure, using direct numerical simulations on a
confined cylindrical domain. The new results show that the wall mode remains present
in highly turbulent flow and that its amplitude increases with increasing the thermal
forcing. A maximum precessing speed of the wall mode in azimuthal direction is found
for a certain degree of thermal forcing. Analysis of the flow field and the prominent wall
structure show a clear relation between the coherence of the wall mode and the vertical
heat transport. The flow structure in the bulk is analyzed too, showing similarities with
geostrophic modes. The simulation results clearly show a critical degree of thermal forc-
ing where the columnar flow structure changes to the regime of plumes. This transition
is marked by the several changes in velocity profiles, that should be investigated further
for better understanding.
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1 Introduction

Convection affected by rotation takes place in many flows on the geophysical scale, for ex-
ample in the atmosphere (Hartmann et al. [2001]) and in the ocean (Marshall and Schott
[1999]). In the earth’s outer core the same convective process takes place, resulting in the
magnetic field of the earth (Roberts and King [2013]). These processes of convection affected
by rotation can be simplified by the model of Rotating Rayleigh-Bénard Convection (RRBC).
This model describes a system of a fluid, between two plates, which is heated from below and
cooled from above within a gravitational field parallel to the temperature field. This set-up
rotates around the vertical axis, resulting in a Coriolis force on the fluid.

The problem by studying these astrophysical flows, e.g. inside the core of the earth, is that
they occur under extreme circumstances: very strong thermal forcing (high Rayleigh number
Ra, defined later) and strong rotation (low Ekman number Ek, defined later). This problem
can be approached in two ways: simulations or experiments. The disadvantage of simulations
is that the dynamics are resolved down to the grid resolution, whereas in experiments the flow
at all scales are ”resolved”. For direct numerical simulation (DNS) the computational power
is the limiting factor to reach the parameter space (high Ra and low Ek) at which RRBC
takes place in geophysical and astrophysical flows because the flow needs to be resolved down
to the smallest active scale. The advantage of DNS is that the velocity and temperature fields
can easily be analyzed, because for every grid point the velocity and temperature are calcu-
lated, while for experiments the fields need to be measured using experimental techniques,
such as temperature sensors and Particle Image Velocimetry (PIV).

However, one of the largest disadvantages of experiments is that the flow is confined within
a set-up (typically an upright cylinder), while for simulations a quasi-infinite domain can be
achieved using periodic boundary conditions, which agrees better with large scale geophysical
and astrophysical flows. The sidewall of the cylinder has a large impact on the flow field inside
and causes an increase in heat transport (larger Nusselt number Nu, defined later) between

Figure 1.1: Nusselt numbers of previously performed studies: confined experiments (circles),
confined simulations (diamonds) and periodic simulations (squares). A quantitative match be-
tween the Nusselt number of the bulk (open diamonds) and periodic simulations (open squares)
for Ra ≥ 1.4× 1011 is observed. From: De Wit et al. [2020].
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the top and bottom plate. This is displayed in fig. 1.1 where the Nusselt number is displayed
as a function of the thermal forcing (Rayleigh number) for both confined experiments (closed
circles) and quasi-infinite periodic simulations (open squares). The figure shows that for
Ra > 9.0×1010 the data split into two branches: confined experimental results with a higher
Nusselt number and periodic simulation results with a lower Nusselt number. To investigate
the gap between the confined experiments and the periodic simulations, new simulations were
done by De Wit et al. [2020] using a confined cylindrical set-up (closed diamonds). These
results nicely match with the experimental results of Cheng et al. [2015] and Cheng et al.
[2018] using a confined cylinder.

In the results of De Wit et al. [2020], close to the sidewall of the cylinder large vertical veloc-
ity structures are observed, divided into two halves, one with positive and one with negative
vertical velocity (fig. 1.2). This ring of up- and downward velocity coincides with the hot
and cold temperature field respectively, resulting in a significant contribution to the vertical
heat transport. De Wit et al. [2020] separated this outer ring of heat transport from the
bulk part, from which the Nusselt number of the inner flow (bulk part) was calculated (open
diamonds of fig. 1.1). For Ra ≥ 9.0× 1010, i.e. after the split into two branches, the Nusselt
number of the bulk part coincides with the Nusselt number of periodic simulations.

Figure 1.2: Snapshot of the vertical velocity at mid-height for Ra = 5.0×1010, showing the vertical
velocity structure in the vicinity of the sidewall. The dashed circle indicates the boundary between
the wall and bulk region. From: De Wit et al. [2020].

This flow structure close to the sidewall is called the wall mode. This mode is theoretically
predicted as onset mode for convection by Herrmann and Busse [1993] and Zhang and Liao
[2009]. Although being present near the onset of convection, this mode is very robust and
still present far from the onset of convection in the turbulent regime (Zhang and Liao [2009];
Shishkina and Wagner [2006]; De Wit et al. [2020]; Favier and Knobloch [2020]). Fig. 1.1
shows that this mode heavily contributes to the overall heat transport, whereas the heat
transport of the bulk part (surface enclosed by the dashed circle of fig. 1.2) quantitatively
matches with the heat transport of quasi-infinite simulations. It is therefore interesting to
better understand the interaction between the (velocity structures of the) wall and bulk re-
gion.

In this study the research of De Wit et al. [2020] is continued by extending the series of
confined simulations with five new simulations, where the thermal forcing (Ra) is varied,
while the degree of rotation (Ek), fluid properties (Pr, defined later) and cylinder dimen-
sions (Γ, defined later) are kept constant. Two simulations are executed to focus on the
parameter space close to where the confined and periodic simulations start to diverge i.e.
around Ra = 1.4 × 1011). Three simulations are performed to investigate the flow behavior
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for larger Rayleigh numbers. Another two new simulations are performed with stress-free
sidewall conditions to investigate the effect of the sidewall on the flow structure.

In chapter 2 the relevant parameters and physical relations will be introduced, and an
overview will be given about the research already performed in this scope. In chapter 3
the numerical approach and the used parameters will be discussed. The results will be dis-
cussed in chapter 4 and 5. Chapter 4 will focus on the flow observed close to the sidewalls
and the stress-free sidewall simulations are discussed here too. Chapter 5 will mainly focus
on the bulk flow. The conclusions and suggestions for further research are covered in chapter
6.
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2 Theoretical background

2.1 Problem definition

In this report, the gap between the Nusselt numbers of periodic and cylindrical confined
simulations, as displayed in fig. 1.1, is further investigated by performing new simulations in
the cylindrical confined set-up. This set-up uses a cylindrical coordinate system (r, θ, z) and
unit vectors (~er, ~eθ, ~ez) in radial, azimuthal and axial direction respectively as displayed in
fig. 2.1. The cylindrical set-up has height H, diameter D and rotates along the central axis
with angular velocity Ω = Ω~ez, parallel to gravity g; the coordinate system is corotating.
The top plate has temperature Tc and the bottom plate has temperature Th, and Th > Tc.
The top and bottom boundaries have no-slip boundary conditions, whereas the sidewall has
no-slip or stress-free boundary conditions.

Figure 2.1: Schematic representation of the cylinder, with height H, diameter D, angular velocity
Ω and temperatures Th and Tc.

2.2 Dimensionless numbers

The process of Rotating Rayleigh-Bénard Convection (RRBC) can be described with four
independent dimensionless parameters, which define the geometry, flow properties, buoyancy
strength, and the rotation speed of the cylinder. These are the input parameters of the sim-
ulations.

The geometry of the cylinder is described by the aspect ratio Γ, defined as

Γ ≡ D

H
. (2.1)

The ratio between the strengths of viscous and thermal diffusion is described by the Prandtl
number Pr, defined as
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Pr =
ν

κ
, (2.2)

with ν the kinematic viscosity and κ the thermal diffusivity.

The degree of thermal forcing is described by the Rayleigh number Ra, which is the ratio
between buoyancy and diffusivity forces, defined as

Ra ≡ U2H2

νκ
=
gαH3∆T

νκ
, (2.3)

in which U ≡
√
gαH∆T is the free-fall velocity (Cheng et al. [2018]) with ∆T ≡ Th − Tc, α

the thermal expansion coefficient and g the gravitational acceleration.

The degree of rotation is defined by the Rossby number Ro, which is the ratio between inertial
and Coriolis forces:

Ro ≡ U

2ΩH
=

√
gαH∆T

2ΩH
. (2.4)

In the simulations, the Rossby number is required as an input parameter. In the analysis
of the results, the Ekman number Ek will be used instead of the Rossby number. This is a
parameter that also quantifies the degree of rotation. The Ekman number is defined as

Ek ≡ ν

2ΩH2
= Ro

√
Pr

Ra
. (2.5)

2.3 Governing equations

The equations that fully describe this problem are the general Navier-Stokes equation in
Boussinesq approximation, for an incompressible Newtonian fluid. The Boussinesq approxi-
mation means that any variation of fluid properties, except those that come from the coupling
of density and gravity, will be ignored. This approximation is validated by Cheng et al. [2018].
The following equations will describe the conservation of momentum, energy, and mass.

The conservation of momentum is described by Chandrasekhar [1961]:

ρ
Du

Dt︸ ︷︷ ︸
[1]

= −∇p− ρg~ez︸ ︷︷ ︸
[2]

+ ρν∇2u︸ ︷︷ ︸
[3]

+ gαρ (T − Tref )~ez︸ ︷︷ ︸
[4]

+ F︸︷︷︸
[5]

(2.6)

[1] The material derivative with respect to time is defined as D
Dt = ∂

∂t + (u ·∇), with u the
velocity, ρ the density of the fluid and t the time.

[2] The gradient of pressure p contains a hydrostatic contribution, that cancels out with
the gravity term ρg~ez. Defining the reduced pressure as p̂ = p − ρg(H − z), results in
−∇p̂ = −∇p− ρg~ez.

[3] This term is the viscous force.

[4] This term is the buoyancy in Boussinesq approximation, with T the local temperature
of the fluid and Tref a reference temperature. In this study Tref is the temperature of
the cold top plate of the cylinder, i.e. Tref ≡ Tc.

[5] This term represents additional forces that are working on the fluid. In this case, there
are two forces, namely the centrifugal and Coriolis force. The centrifugal buoyancy due
to centrifugal forces is neglected. In experiments, this is allowed to do when the Froude

number Fr ≡ Ω2D
2g is smaller than 0.1 (Cheng et al. [2018]), which is the case for the
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reference experiments. The Coriolis force is given by −2ρΩ×u (Lanczos [2020]), which
results in F = −2ρΩ~ez × u.

Substituting [2] and [5] in eq. (2.6), and by multiplying both sides of the equation by H/(ρU2)
results in the dimensionless equation

H

U2

Du

Dt
= − H

ρU2
∇p̂+

Hν

U2
∇2u +

T − Tc
∆T

~ez −
2ΩH

U2
~ez × u. (2.7)

Note that the fourth term is rewritten using the free-fall velocity, which is defined in sec-
tion 2.2. The individual quantities of the equation are made dimensionless too, using

t̃ ≡ tU
H , ũ ≡ u

U , ∇̃ ≡ H∇,

p̃ ≡ p
ρU2 , T̃ ≡ T−Tc

∆T .
(2.8)

in which U is the free-fall velocity. Note that t̃ ≡ tU
H is made dimensionless by dividing it by

the convective time unit τc = H/U . Substituting these dimensionless quantities into eq. (2.7)
results in

Dũ

Dt̃
= −∇̃p̃+

ν

HU
∇̃2ũ + T̃~ez −

2ΩH

U
~ez × ũ. (2.9)

The dimensionless Pr, Ra and Ro, defined in section 2.2, are substituted in this equation,
resulting in

Dũ

Dt̃
= −∇̃p̃+

(
Pr

Ra

) 1
2

∇̃2ũ + T̃~ez −
1

Ro
~ez × ũ (2.10)

The conservation of energy in this system can be described by (Rajaei [2017])

DT

Dt
= κ∇2T, (2.11)

in which the dimensionless quantities of eq. (2.8) can be substituted, resulting in

DT̃

Dt̃
=

κ

UH
∇̃2T̃ . (2.12)

Filling in the dimensionless numbers of section 2.2 yields

DT̃

Dt̃
=

1

(RaPr)
1
2

∇̃2T̃ . (2.13)

The equation of the conservation of mass ∇ · u = 0 is made dimensionless using eq. (2.8),
resulting in

∇̃ · ũ = 0. (2.14)

Summarizing, the set of equations is given by
Dũ
Dt̃

= −∇̃p̃+
(
Pr
Ra

) 1
2 ∇̃2ũ + T̃~ez − 1

Ro~ez × ũ

DT̃
Dt̃

= 1

(RaPr)
1
2
∇̃2T̃

∇̃ · ũ = 0

(2.15)

In eq. (2.8) the velocity is made dimensionless by dividing it by the free-fall velocity U . The
dimensionless velocity can also be rewritten as
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ũ =
u

U
=

u√
gαH∆T

= u

√
1

Ra

H2ν

ν2κ
=

u

ν/H

√
Pr

Ra
, (2.16)

in which u
ν/H is the dimensionless velocity in viscous units. The viscous dimensionless velocity

can thus easily be calculated by ũ ·
√
Ra/Pr. Using this quantity, velocity amplitudes of

simulations with different Rayleigh numbers can be compared properly. It will be explicitly
mentioned when this quantity is used.

2.4 Nusselt number

One of the output parameters of the simulations is the Nusselt number, which is defined as
the ratio between the total heat transfer and heat transfer by conduction:

Nu ≡ 〈q〉H
k∆T

, (2.17)

in which 〈q〉 is the average heat flux in the vertical direction and k the thermal conductivity.
The average heat flux can be split into a conductive (qcond) and a convective (qconv) part.
The conductive contribution can be written as

qcond = −k∂T
∂z

= −k∆T

H

∂T̃

∂z̃
, (2.18)

and the convective part as

qconv = ρcpuzT =
k

κ
uzT =

k

κ
U∆T ũzT̃ , (2.19)

with cp the specific heat capacity. This can be combined together to an overall Nusselt
number, defined as

Nu =
UH

κ

〈
ũzT̃

〉
−

〈
∂T̃

∂z̃

〉
= (PrRa)

1
2

〈
ũzT̃

〉
−

〈
∂T̃

∂z̃

〉
. (2.20)

There are different ways to calculate the Nusselt number because different averaging opera-
tions are possible. When the average is calculated over the entire volume, the second part of
the definition will be −1, since the temperature T̃ changes from 1 to 0, when z̃ goes from 0
to 1. This gives the volume-averaged Nusselt number as

NuV = (PrRa)
1
2

〈
ũzT̃

〉
V

+ 1. (2.21)

The averaging can also be performed over an arbitrary cross-sectional area within the cylinder.
At z̃ = 0 and z̃ = 1 the vertical velocity ũ is equal to zero because the boundaries are
impermeable. So at these heights, the heat transport has only a conductive part and gives a
wall averaged Nusselt number defined as

Nuwall = −

〈
∂T̃

∂z̃

〉
z̃=0,1

. (2.22)

The Nusselt number can also be calculated using the dissipation energy rate (Shraiman and
Siggia [1990]), which is (also in dimensionless units),

ε = ν|∇u|2, ε̃ =
(
Pr
Ra

) 1
2 |∇̃ũ|2, (2.23)

resulting in

Nukin = (PrRa)
1
2 〈ε̃〉+ 1. (2.24)
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The thermal variance N = κ|∇T |2 can also be used to calculate the Nusselt number. Sub-

stituting the dimensionless quantities from eq. (2.8) results in Ñ = (PrRa)−
1
2 |∇̃T̃ |2, from

which the Nusselt number is defined as

Nudis = (PrRa)
1
2 〈Ñ〉. (2.25)

These Nusselt number definitions will all be used later on to calculate a well-averaged Nusselt
of the simulations. The right hand side of eq. (2.20) will be used to calculate the local Nusselt
number of the flow.

2.5 Flow regimes

In previous work (Julien et al. [2012]; Ecke and Niemela [2014]; De Wit et al. [2020]) it
is found that RRBC shows different flow characteristics depending on the interplay of the
different forcings (Ra and Ek) and the fluid properties. De Wit et al. [2020] found different
flow characteristics within their parameter range: Ra (5.0 × 1010 − 4.3 × 1011), constant Γ
(0.1), constant Ek (10−7) and constant Pr (5.2). This parameter range covers different flow
regimes, according to the classifications of Julien et al. [2012] and Cheng et al. [2018]. The
boundaries of the different flow regimes are defined by the interplay between the thermal
(Ra) and rotational (Ek) forces and fluid properties (Pr). When Ek is kept constant, while
Ra is increased, the thermal forcing will be become more and more dominant. For small
Ra, the flow is structured into convective Taylor columns (CTC), displayed in (fig. 2.2a).
Increasing Ra will result in a transition from a columnar profile into plumes (fig. 2.2b)). For
the current parameter settings, the transition between the regimes occurs at (Cheng et al.
[2020], Kunnen [2021])

RaCP ≈ 5.4Ek−1.47. (2.26)

The transition from plumes to geostrophic turbulence (GT) (see fig. 2.2c) is not unambigu-
ously known for Pr > 3 (Cheng et al. [2018]). Further increasing Ra results in a transition
from geostrophic turbulence into the regime of rotationally influence turbulence (RIT) (Cheng
et al. [2020]). This transition takes place (for any Pr), according to Julien et al. [2012], at

RaGTU,1 ≈ Ek−8/5Pr3/5, (2.27)

or for Pr ≈ 6, according to Ecke and Niemela [2014], at

RaGTU,2 ≈ 1.3Ek−1.65. (2.28)

Since the highest Ra simulation of De Wit et al. [2020] is close to this transition, the
geostrophic turbulent regime is also covered in that project. In this project, the Rayleigh
number is further increased, while keeping the other parameters constant, whereby the RIT
regime (fig. 2.2d) is covered too. The transition from the RIT regime into the non-rotating
regime for large Pr occurs when the convective Rossby number is equal to 1 (Gilman [1977]),
for which Roc is defined as (Cheng et al. [2018])

Roc ≡
(
RaEk2

Pr

)1/2

. (2.29)

So, the Rayleigh number of this transition is defined as

RaUNR ≈ PrEk−2. (2.30)

This transition is not achieved in the new simulations either.
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Figure 2.2: Flow regimes, that are covered in this work. Figures are obtained for Γ = 0.2,
Ek = 5× 10−8, Pr ≈ 5.2 and Ra =(a) 9.6× 1010 (columnar), (b) 8.6× 1011 (plumes), (c) 1.2× 1012

(geostrophic turbulence) and (d) 3.3 × 1012 (rotationally influenced turbulence). Adapted from:
Cheng et al. [2020].

2.6 Boundary layers

Boundary layers are present to connect the bulk flow with the boundaries. At the top
and bottom plate of the cylinder, Ekman boundary layers will form. The thickness of this
boundary layer scales with (Nieuwstadt et al. [2016])

δ̃E ∼ Ek1/2. (2.31)

There will be a radially in- or outward flux in this boundary layer, based on the net vorticity
of the bulk flow. The negative vorticity of the bulk results in a ’pumping’ of fluid from the
bulk region into the Ekman boundary layer (fig. 2.3a), resulting (due to mass conservation)
in a radially outward velocity field. The other way around is called Ekman suction, where
fluid is sucked from the boundary layer into the bulk (fig. 2.3b), resulting in a radially inward
flow in the boundary layer and a positive vorticity of the bulk.

(a) Ekman pumping (b) Ekman suction

Figure 2.3: Schematic representation of Ekman pumping and suction, due to the sign of vorticity
in the bulk.

The cylindrical set-up is a closed system, so the radially in- or outward fluxes in the top and
bottom Ekman boundary layers need to be compensated near the sidewalls. Close to the
sidewall, Stewartson boundary layers are present, that connect the no-slip sidewall with the
bulk flow. The Stewartson layer has a theoretical thickness of (Stewartson [1957])
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δ̃S,1/4 = (2Ek)1/4, (2.32)

and connects the boundary layer flow with the bulk flow. Within this layer, there is an even
smaller layer (Stewartson [1957])

δ̃S,1/3 = (2Ek)1/3, (2.33)

that connects the sidewall flow with the no-slip sidewall boundaries.

Another definition to connect the bulk flow with the walls is used by Julien et al. [2012], who
defined the location of the maximum viscous dissipation rate as the thickness of the kinetic
boundary layer. Stevens et al. [2010] used the location of the maximum root mean square
of the temperature (TRMS) and velocity (ur,θ,zRMS) as the thickness of the thermal and
kinetic boundary layer respectively. Note that the RMS is not the real RMS, but defined (in
this case for the temperature) as

Trms =
√
〈T 2〉 − 〈T 〉2. (2.34)

This definition is used throughout this study and is referred to as the RMS.

There exists a region close to the sidewall with sections with large vertical (and azimuthal)
velocity values, both positive and negative (fig. 1.2). The thickness of this layer can be deter-
mined in several ways. De Wit et al. [2020] defined the thickness of this layer as the location
where the root mean square of the vertical velocity field has its local minimum, which means
that at that radial distance the vertical velocities are minimal. Zhang et al. [2020] defined
the thickness of this layer as the location where the azimuthally averaged azimuthal velocity
is equal to zero. These two definitions will be used in this study to decouple the wall region
from the bulk region.

The structure of positive and negative velocities near the sidewall drifts in the azimuthal
direction, with a velocity which is more than two orders of magnitudes slower than the ro-
tation rate of the cylinder (De Wit et al. [2020]). Favier and Knobloch [2020] argued that
these observed structures are wall modes, albeit far from their linear onset, i.e. the region
where they are supposed to exist. Wall modes were first computed, within linear theory, by
Goldstein et al. [1993]. The modes are very stable and persist in turbulent bulk flows and
even changes in the shape of the cylinder do not destroy the wall mode (Favier and Knobloch
[2020]). The precession rate depends on the Rayleigh number, Ekman number and dimen-
sions of the cylinder (Ecke et al. [1992]; De Wit et al. [2020]; Zhang et al. [2021]). The wall
mode can precess in both prograde and retrograde direction (Horn and Schmid [2017]).

The onset of wall modes depends on the Rayleigh and Ekman number. By increasing the
thermal forcing (increasing Ra), while keeping the rotation (Ek) constant, a parameter space
is reached where a bulk mode arises. These bulk modes are convective structures that domi-
nate the core of the cylinder and its velocity components have periodic behavior in the radial
and azimuthal direction. In general, the wall modes precess with a higher precession rate
than the bulk modes (c.f. Favier and Knobloch [2020]).

2.7 Kolmogorov and Batchelor scales

A suitable grid resolution is required to resolve the above-described equations (eq. (2.15)). A
suitable resolution has not too many length scales of the smallest flow features in one grid cell.
For velocity features the smallest length scale is the Kolmogorov length scale η, for thermal
features the Batchelor length scale ηT . Both length scales are based on the dissipation rate
of kinetic energy ε (eq. (2.23)), which results for the Kolmogorov and Batchelor length scales
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into (Monin et al. [1975])

η =
(
ν3

ε

) 1
4

, η̃ =
(
Pr
Ra

) 3
8 ε̃−

1
4 , (2.35)

ηT = η
(
κ
ν

) 1
2 , η̃T = η̃P r−

1
2 . (2.36)

In this report, the dimensionless units, as displayed in eq. (2.8), will be used by default.
It will explicitly be mentioned when other units are used. So time is convective time and
velocity is velocity divided by the free-fall velocity etc. For simplicity, and ease of reading,
tildes will be omitted.
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3 Methods

3.1 Code description

To simulate RRBC in a cylinder the numerical method that is described by Verzicco and
Orlandi [1996] is used to solve eq. (2.15) using a finite-difference method that is second-order
accurate in space and time. A cylindrical coordinate system is used to solve the equations,
which causes problems in the numerical scheme at r = 0 due to the singularities of the
Navier-Stokes equations. This is solved by not solving the equations for the velocities fields,
but by solving the flow for qθ, qr and qz which are defined as qθ ≡ uθ = u · ~eθ,

qr ≡ rur = ru · ~er,
qz ≡ uz = u~ez.

(3.1)

This solves the singularity struggle in the origin with qr = 0 at r = 0.

As schematically displayed in fig. 3.1, the pressure p and temperature Φ are calculated in the
center of the grid cells, whereas the azimuthal, radial and vertical velocities are calculated at
the center of the faces of the cells, perpendicular to the velocity directions.

Figure 3.1: Schematic representation of the grid cells, showing the locations where the velocities,
pressure and temperature are calculated.

Simulations with both stress-free and no-slip sidewall boundaries are performed, whereas the
top and bottom boundaries have no-slip conditions in all the cases. The non-permeability
condition holds for all the boundaries. The sidewall of the cylinder is isolated and the top
and bottom plates are set to a constant temperature. So for the no-slip simulations:

u = 0, T = 1, at z = 0,
u = 0, T = 0, at z = 1,
u = 0, ∂T

∂r = 0, at r = Γ/2.
(3.2)

And for stress-free sidewall simulations:
u = 0, T = 1, at z = 0,
u = 0, T = 0, at z = 1,

ur = ∂uθ
∂r = ∂uz

∂r = 0, ∂T
∂r = 0, at r = Γ/2.

(3.3)

3.2 Input parameters

Five new simulations with no-slip sidewall boundary conditions and two new simulations with
stress-free sidewall boundaries are performed in this study. To compare the new results with
previous simulations obtained by De Wit et al. [2020], the same Prandtl number (Pr = 5.2),
Ekman number (Ek = 10−7) and aspect ratio (Γ = 0.2) are used. The input parameters are
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tabulated in section 3.2. De Wit et al. [2020] found different results for Ra being smaller or
larger than 1.4×1011. To investigate this change of behavior, two simulations are performed,
from which the Rayleigh numbers are logarithmically in the middle of the gap between the
data points around Ra = 1.4 × 1011, namely at Ra = 9.9 × 1011 and Ra = 2.1 × 1011. The
other three no-slip simulations, with larger Ra, are chosen to further investigate the gap be-
tween the Nusselt numbers in periodic simulations and simulations in a cylindrical domain.
The Ra of these simulations coincide with the Rayleigh numbers used by Aguirre Guzmán
[2021] in periodic simulations for a good comparison.

One Rayleigh number of the stress-free sidewall simulations is below Ra = 1.4 × 1011, the
other above Ra = 1.4 × 1011 to investigate the sidewall influence on both observed flow
behaviors. The chosen Rayleigh numbers coincide with the Rayleigh numbers of no-slip
sidewall simulations performed by De Wit et al. [2020].

Ra Pr Ek Ro Sidewall
9.9×1010 5.2 10−7 1.4×10−2 no-slip
2.1×1011 5.2 10−7 2.0×10−2 no-slip
6.0×1011 5.2 10−7 3.4×10−2 no-slip
9.5×1011 5.2 10−7 4.3×10−2 no-slip
1.5×1012 5.2 10−7 5.4×10−2 no-slip
5.0×1010 5.2 10−7 9.8×10−3 stress-free
3.2×1010 5.2 10−7 2.5×10−2 stress-free

Table 3.1: Input parameters of the simulations.

For a general analysis of the flow structures and the Ra dependence, the simulation data
obtained by De Wit et al. [2020] is used too. The simulations of De Wit et al. [2020] are
performed at Ra = 5.0× 1010, 7.0× 1010, 1.4× 1011, 3.2× 1011 and 4.3× 1011.

3.3 Grid resolution

For the simulations with Ra = 9.9×1010 and 2.1×1011 and both stress-free simulations a grid
with 769× 351× 1025 grid points in the azimuthal, radial, and axial direction is used. This
grid is uniform in the azimuthal direction and non-uniform in the radial and axial direction.
A higher grid resolution close to the sidewall and close to the top and bottom is applied, to
properly simulate the Ekman layers and the sidewall boundary layer.

The grid resolution of the bulk is verified by calculating the Batchelor length ηT because
this is the smallest length scale in the bulk for Pr > 1 (eqs. (2.35) to (2.36)). The maxi-
mum number of Batchelor lengths within one grid cell is calculated by dividing the Batchelor
length scale by the maximum distance between grid points in one of the directions, i.e.
ηT /max(∆θ,∆r,∆z). This gives the largest number of Batchelor lengths per grid cell in the
azimuthal, radial, or axial direction. According to Verzicco and Camussi [2003], the maxi-
mum number of length scales should remain below 4. The size of the length scales decreases
with increasing Ra, while keeping the other parameters constant. So the simulations with
the largest Ra are discussed, because when the grid is sufficient with the largest Ra, it will
also be sufficient for lower Ra. The number of Batchelor lengths of the stress-free simulation
with Ra = 3.2×1011 is displayed in fig. 3.2a. The figure shows that for these simulations the
number of Batchelor lengths is below 4 in the bulk, which means that the bulk resolution is
sufficient.

The simulation with the largest Rayleigh number (Ra = 4.3 × 1011) of De Wit et al. [2020]
showed a too coarse grid in the bulk region. The amount of Batchelor lengths within a grid
cell was above 4 (but still below 5). So, for the three simulations with Ra = 6.0 × 1011-
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1.5 × 1012 a higher grid density is used: 1025 × 469 × 1365 grid points in the azimuthal,
radial, and axial direction. The simulations with Ra = 6.0 × 1011 and 9.5 × 1011 show a
high enough grid density, i.e. less than 4 Batchelor lengths per cell in all directions. The
simulation with Ra = 1.5× 1012 showed numbers of length scales above 4, but below 5.5, as
displayed in fig. 3.2b. Whereas De Wit et al. [2020] found proper results while exceeding the
number of 4 Batchelor length scales in the bulk, we expect proper results for simulations with
Ra = 1.5×1012 too. It is known that a too coarse grid resolution results in a too high Nusselt
number (Verzicco and Camussi [2003]). The Nusselt number of Ra = 1.5× 1012 is compared
with experimental results (will be displayed in chapter 4), showing no overestimation of the
Nusselt number, from which is concluded that the grid resolution is sufficient.

(a) Ra = 3.2× 1011, stress-free (b) Ra = 1.5× 1012, no-slip

Figure 3.2: Maximum number of Batchelor length scales in one of the directions (r,θ,z)per grid
cell for stress-free (a) and no-slip (b) sidewall conditions.

According to Verzicco and Camussi [2003], there should be at least six cells in the boundary
layers (Ekman and sidewall) to simulate them properly. The simulations are all performed
at the same Ekman number, so the Ekman boundary layer thickness is expected to be the
same in all simulations. The Ekman boundary layer thickness is determined by the peak of
the root mean square of the velocity parallel to the boundaries. The simulations with the
lowest grid resolution (769 × 351 × 1025) all showed a boundary layer that was covered by
16 cells. The finer grid (1025 × 469 × 1365) showed the boundary layer covered by 23 cells.
This number of grid cells in the Ekman boundary layers is more than sufficient.
At the sidewall of the simulations with the lowest resolution, 27 grid cells were found in
the sidewall boundary layer based on the Stewartson boundary layer thickness for no-slip
simulations (eq. (2.32)). For the higher resolution, 41 grid cells were found in the sidewall
boundary layer, which is also more than sufficient.
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4 Results and Discussion: Wall mode

The results of this study are split into two chapters: part concerning the wall region (approx.
0.08 < r < 0.1) and a part concerning the bulk region (approx. 0 < r < 0.08). Flow phenom-
ena concerning the wall region are discussed in this chapter. Flow phenomena that dominate
in the bulk will be discussed in chapter 5. This chapter is split into two main sections. In
section 4.1 the results of the simulations with no-slip sidewall conditions are discussed, in
section 4.2 the results with stress-free sidewalls are discussed.

The structure of section 4.1 is as follows: first, the presence of the wall mode will be proved
and the precession rate will be determined, from which rotation averaged flow structures are
generated. The strength, coherence, and thickness of the wall mode are calculated and the
Ra dependence is investigated. Next, the thickness of the wall region is used to decouple the
wall region from the bulk region, after which the heat transport (Nusselt number) of both
regions (bulk and wall) is calculated. The degree of coherence of the wall mode and the trans-
port in the top and bottom Ekman boundary layers are used to explain the Ra dependence
of the heat transport. Finally, rotation averaged flow structures are used to mathematically
approach the problem using a 3D fitting method, to investigate the Ra dependence of the
different parameters.

This same structure is used in section 4.2.

4.1 No-slip sidewall

Close to the sidewall of a cylindrical set-up in RRBC conditions a large stable velocity
field arises with well-pronounced positive and negative vertical velocity regions. This is
exemplarily displayed in figs. 4.1a to 4.1c where snapshots of the vertical velocity at mid-
height (z = 0.50) for three different Ra cases are shown. In figs. 4.1d to 4.1f the vertical
velocity profiles along the dashed lines of figs. 4.1a to 4.1c are shown. For low Ra, e.g.
Ra = 5.0 × 1010, a step-like flow structure of vertical velocity is observed, whereas a well-
pronounced sinusoidal profile with deviations is observed for large Ra, e.g. Ra = 1.5× 1012.
In between these numbers (Ra = 1.4×1011) the vertical flow structure has a weak sinusoidal
shape, with strong irregularities. Note that these graphs are unaveraged snapshots, although
being exemplarily for the vertical flow observed around these Ra values.

4.1.1 Precessing wall mode

The observed structure in the vicinity of the sidewall precesses in the azimuthal direction as
a function of time. Following De Wit et al. [2020] the vertical flow structure is fitted in time
using the sinusoidal fit

uz(θ) = Aamp · cos(θ − φ0) +Bos, (4.1)

where Aamp is the amplitude, φ0 the azimuthal orientation (from which the precession veloc-
ity can be calculated) and Bos the offset (almost zero). The sinusoidal fitting is performed
at the radial distance where the azimuthally and temporally averaged root mean square of
the vertical velocity (uzRMS) is maximal. This maximum in RMS means that at this radial
distance the data points are most widely spread, which means that at this radial distance
the difference in up- and downward velocity is maximal. This is different from De Wit et al.
[2020], who used a radial distance halfway the boundary layer to fit the vertical velocity pro-
file. Using the method of De Wit et al. [2020] is correct when only the precession (velocity)
is evaluated. The flow profile could have a different shape in the radial direction for different
Ra, resulting in maximum velocities at different radial distances. Using the radial distance
where uzRMS is maximal to fit the sinusoidal profile, makes it also possible to compare the
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(a) Ra = 5.0× 1010 (b) Ra = 1.4× 1011 (c) Ra = 1.5× 1012

(d) uz in azimuthal direction for
Ra = 5.0× 1010.

(e) uz in azimuthal direction for
Ra = 1.4× 1011.

(f) uz in azimuthal direction for
Ra = 1.5× 1012.

Figure 4.1: Fig. (a)-(c): Vertical velocity profiles at mid-height (z = 0.50) for different Ra. Fig.
(d)-(f): vertical velocity profile along dashed circles of fig. (a)-(c), showing a n = 1 mode in azimuthal
direction. The data is fitted (red dashed line) using a sinusoidal equation (eq. (4.1)).

amplitudes of the vertical velocity profile of the different Ra cases in the wall region.

The angular position φ0 of the flow profile as a function of time for all Ra is displayed in
fig. 4.2a and shows that in all cases the wall structure rotates in the negative azimuthal
direction. The figure shows that in the range of Ra = 5.0× 1010 − 6.0× 1011 the phase shift
of the vertical flow profile in time (i.e. precession frequency) increases with increasing Ra. A
close-up of the precession frequency of the three highest Ra (Ra = 6.0 × 1011 − 1.5 × 1012)
is displayed in fig. 4.2b. The figure shows that these three cases have flow structures that
rotate with almost the same velocity in the azimuthal direction.

The averaged precession speed of the profile in the azimuthal direction is calculated by fitting
the phase shifts of fig. 4.2a and is displayed in fig. 4.3 as a function of the Rayleigh number.
The figure shows a Ra dependence of the precession speed until a maximum speed is reached
at Ra = 6.0 × 1011. For the range Ra = 5.0 × 1010 − 6.0 × 1011 a Ra dependence is found
as |ωsc| = (2.4 × 10−9) · Ra0.64±0.12. A constant precession speed of |ωsc| = 0.079 is found
for the largest three Ra cases. This maximum precession speed is expected, because at a
certain speed the force to precess and the sidewall friction are in equilibrium, resulting in a
maximum speed. The size of sidewall friction is based on the aspect ratio Γ, which is thus the
parameter that determines the maximum precession speed. Varying this parameter should
result in different maximum precession speeds.

When the snapshots of fig. 4.1 are averaged in time, the positive and negative velocity sec-
tions close to the sidewall boundary will average out, because the structure precesses in the
azimuthal direction in time. Using the phase shifts (fig. 4.2a), the snapshots can be rotated
back to a fixed orientation, after which a rotation averaged flow profile can be made. This is
done as a representative example for Ra = 4.3×1011 at mid-height in fig. 4.4 for the vertical,
radial and azimuthal velocity field. Here, the in-plane r − θ velocity field is displayed with
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(a) Azimuthal orientation of the wall mode as a func-
tion of time.

(b) Close-up of the 3 highest Ra cases, showing a
phase shift of the wall structure that is independent
of the Rayleigh number.

Figure 4.2: Angular position of the vertical wall structure in time for varying Rayleigh numbers,
showing a Ra dependent precession velocity for Ra ≤ 6.0×1011 and independent for Ra ≥ 6.0×1011.

Figure 4.3: The absolute angular velocity | ωwc | for different Rayleigh numbers. The uncertainties
are calculated by fitting the data of fig. 4.2a. A power-law is fitted, resulting in | ωwc |= (2.4 ×
10−9) ·Ra0.64±0.12 for Ra ≤ 6.0× 1011.

the vector field. The figures show an n = 1 mode in azimuthal direction for the vertical
velocity profile in the wall region, whereas an n = 2 mode is observed in the bulk region for
ur and uθ. Rotation averaged profiles of uz, ur and uθ for all Ra at z = 0.25, 0.50 and 0.75
are displayed in appendix D.1.

The overall vertical velocity scale increases with increasing Ra. This is displayed in fig. 4.5a,
where the root mean square of the vertical velocity (uzRMS) averaged in the azimuthal di-
rection and in time at mid-height is displayed as a function of the radius r. The figure shows
an increase of uzRMS in the bulk region (approx. 0 < r < 0.08) with increasing Rayleigh
number. This is caused by stronger thermal forcing, which causes larger velocity scales and
so larger RMS values, because of the wider spread of the data. For each Ra, the uzRMS
graph clearly shows a peak in RMS-value in the wall region. This peak is caused by the
well-pronounced up- and downward going velocity sections, i.e. the wall mode. The peaks of
the uzRMS of the Ra = 7.0 × 1010 − 1.4 × 1011 simulations are lower than the peak of the
Ra = 5.0 × 1010 case. This lower uzRMS is probably the result of a less-pronounced wall
mode, resulting in a smaller spread of data points and so a lower RMS value.
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(a) Vertical velocity field. (b) Radial velocity field. (c) Azimuthal velocity field.

Figure 4.4: Precession averaged velocity fields at mid-height with Ra = 4.3 × 1011. The in-plane
r − θ velocity field in indicated with the vector field. The n = 1 (vertical) and n = 2 (radial and
azimuthal) structures are clearly visible.

The velocity scales increase with increasing Ra, see bulk part (approx. 0 < r < 0.08) of
fig. 4.5a, so a quantitative comparison between strengths of wall modes with different Ra
can only be made when the relative strength of the wall modes are compared. This relative
strength is calculated by dividing the time-averaged amplitude of the cosine fit (eq. (4.1)) by
the averaged uzRMS value of a part of the bulk (0 < r < 0.05). This fixed radius is used,
instead of the boundary between bulk and wall, to cancel out influences from the wall into
the bulk, e.g. the second peak in uzRMS, which is present for Ra = 5.0× 1010. The relative
strength of the wall mode is displayed in fig. 4.5b, where a dip in the strength is observed
around Ra = 1.4 × 1011, which is in accordance with fig. 4.5a where a lower uzRMS-peak
value is observed for this Ra. For cases with Ra < 1.4× 1011, a strong decrease of wall mode
strength is observed, whereas for Ra > 1.4 × 1011 the wall mode has a constant strength,
relative to the velocity scales.

(a) uzRMS as a function of the radius r at mid-
height, showing an increase in RMS for increasing Ra,
and a strong increase in RMS close to the sidewall
boundary.

(b) Strength of the wall structure, relative to the over-
all vertical velocity scales as a function of Rayleigh.
Error bars indicating one standard deviation.

Figure 4.5

The degree of correlation of the cosine fit and the vertical flow structure in the sidewall
boundary region is reviewed by calculating the coefficient of determination R2 for the fits of
these velocity profiles (figs. 4.1d to 4.1f). R2 is the normalized sum of squares between the
fit and the data and takes values between 0 (no correlation) and 1 (full correlation). So, a
well-pronounced sinusoidal flow profile with small deviations will result in a relatively high
R2 (fig. 4.1d and 4.1f), while a flow profile with large deviations will have a low R2 (fig. 4.1e).

20



This calculation is done for all time instances at the radial distance where uzRMS is max-
imal. The time-averaged R2 values are displayed in fig. 4.6 and show a strong decrease in
R2 with increasing Rayleigh number for Ra ≤ 1.4 × 1011. For larger Ra, an approximated
constant value of R2 = 0.63± 0.04 is found. The largest uncertainties are logically found for
the lowest R2 values Ra = 1.4 × 1011 − 2.1 × 1011 because when the wall mode is the least
stable, the largest fluctuations will occur.

Figure 4.6: R2 as a function of the Rayleigh number, clearly indicating the less-pronounced wall
mode around Ra = 1.4× 1011, with one time the standard deviation as error bars.

Note that for high Ra (Ra ≥ 3.2×1011) a cosine is a more convenient function to fit the wall
structure because the vertical profile has a sinusoidal shape with irregularities (see fig. 4.1f).
For the low Ra cases (Ra ≤ 9.9× 1010), the vertical flow profile has a more square-wave-like
function (fig. 4.1d), which underestimates the coherence of the wall mode, because the wall
mode is very coherent, but has not its sinusoidal shape. This is not a problem, since the
largest R2 values are still found for the lowest Rayleigh numbers.
Summarizing, the relative strength of the wall mode and the coherence decrease for Ra ≤
1.4 × 1011 for increasing Ra, resulting in the relative low uzRMS values for these Ra in
fig. 4.5a. For larger Ra, the uzRMS increases with increasing Ra.

4.1.2 Sidewall Boundary Layer Thickness

A clear definition of the sidewall boundary layer width is important because with a coherent,
meaningful definition the wall and bulk parts could probably be decoupled, and both can be
analyzed separately. The thickness of the sidewall boundary layer can be described by several
definitions, as described in section 2.6. In fig. 4.7a the thickness of the boundary layers is
displayed as a function of Ra for different definitions. The kinetic boundary layer definitions
based on the RMS in vertical (uzRMS) and azimuthal (uθRMS) velocity (used by Stevens
et al. [2010]) show an (almost) constant boundary layer thickness that coincides with each
other. Moving radially further outward, the RMS decreases (i.e. the velocities decrease) due
to the no-slip sidewall. This means that these definitions indicate the thickness of the kinetic
boundary layer that connects the boundary flow with the no-slip sidewalls, with almost the
same thickness as the theoretical Ek1/3-layer (Stewartson [1957]).

Further, the figure shows the ever-increasing boundary layer width using the uzRMS-dip
definition (De Wit et al. [2020]) with a fit: δ = ((7 ± 2) × 10−5) · Ra0.21±0.02. This is also
visible in fig. 4.5a where the distance between the wall and the dip in RMS value increases
with increasing Ra. This fit is based on the Rayleigh number only, whereas this is the only
parameter that is varied in this study, so dependences on the Ekman number, Prandtl num-
ber, and aspect ratio can not be excluded. Note that for some cases at mid-height the dip in
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uzRMS is hardly visible, e.g. Ra = 2.1× 1011 and Ra = 4.3× 1011 in fig. 4.5a.

Analysis of the overall vertical structure of the simulations show that there are some heights
where no uzRMS-dip is observed, e.g. Ra = 1.5 × 1012 at heights z = 0.25 and z = 0.75
and for the stress-free sidewall boundary simulation with Ra = 3.2 × 1011 no uzRMS-dip
is observed at any height. In these cases, there is just a decrease in slope. A more general
definition that can also be applied for these cases is:

min

(∣∣∣∣∂uzRMS

∂r

∣∣∣∣) , (4.2)

which will locate both uzRMS-dip and the decrease in slope, and so define the thickness of
the boundary layer, correctly.

(a) Boundary layer thickness for several definitions as
functions of Ra.

(b) uzRMS and 〈uθ〉. Vertical dashed lines indicate
the boundary layer thickness based on uzRMS-dip
and 〈uθ〉 = 0 and show the constant distance C that
is observed for Ra ≥ 1.4× 1011.

Figure 4.7

Fig. 4.7a shows that the boundary layer thicknesses that rely on the definitions based on
TRMS-peak (Stevens et al. [2010]) and 〈uθ〉 = 0 (Zhang et al. [2020]) both show a certain kink
around Ra = 1.4×1011. This obvious change of behavior could be the transition between two
different regimes of wall modes. Fitting the boundary layer widths for Ra ≥ 1.4× 1011 using
the 〈uθ〉 = 0 definition, show a fit which is (almost) parallel to the fit based on the uzRMS-
dip definition, with equation δ = ((5 ± 1) × 10−5)Ra0.22±0.02 − C, where C is the averaged
difference between uzRMS-dip and 〈uθ〉 = 0. This means that there is a constant (C ≈ 0.01)
distance between the zero-crossing of the azimuthal flow profile and the zero-crossing of the
vertical flow profile which is independent of the Rayleigh number for Ra ≥ 1.4× 1011. This
is, as an example, visualized at mid-height for Ra = 3.2×1011 in fig. 4.7b, where the constant
distance C is the distance between the two vertical dashed lines which indicate the location of
the boundaries based on the uzRMS-dip and 〈uθ〉 = 0 definition. That this distance between
both definitions (i.e. C) is Ra independent, whereas the total thickness of the boundary layer
increases with increasing Ra, means that this section (between the two dashed lines) moves
radially inward with increasing Ra and that the growth of thickness of the boundary layer
takes place in the region between 〈uθ〉 = 0 and the sidewall.

4.1.3 Ekman boundary layers at top and bottom plates

Whereas the sidewall boundary layer thickness changes as a function of the Rayleigh number,
the top and bottom boundary layer thicknesses are conserved because the Ekman number is
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not changed (Ek = 10−7). This shows that the boundary layers at the top and bottom plates
remain laminar Ekman-type boundary layers. In fig. 4.8a the azimuthally and temporally
averaged vector field of the radial and vertical velocity for Ra = 4.3 × 1011 is displayed for
the region close to the bottom of the cylinder. The figure shows a strong radially outward
velocity field close to the bottom plate (Ekman boundary layer) and a dominant vertical
velocity field in the sidewall region. In fig. 4.8b the radial velocity, averaged in the azimuthal
direction, in time and over the radial distance of the bulk, so in this case over 0 < r < 0.08,
is displayed as a function of the height z. In other words, the figure shows the average radial
velocity as a function of the height z and indicates the Ekman boundary layers at the top
and bottom of the cylinder. The zero crossings of the velocity profile are used as thicknesses
of the Ekman boundary layer in fig. 4.8a.

(a) ur-uz vector field close to the bottom plate, dis-
playing the Ekman (1) and sidewall (2) boundary lay-
ers and the bulk region (3).

(b) Averaged radial velocity as function of height,
showing the presence and thickness of the Ekman
boundary layers.

Figure 4.8: Ekman boundary layers for Ra = 4.3× 1011.

The averaged radial velocity of the Ekman boundary layer, i.e. averaged in time, over the
thickness of the boundary layer and in the radial direction, is displayed in fig. 4.9 for the
top and bottom Ekman boundary layer. The figure shows an increasing radial velocity as
a function of Rayleigh, with its zero-crossing around Ra = 9.9 × 1010 − 1.4 × 1011. This
means that for the low Ra cases the mean radial velocity in the Ekman boundary layer is
negative, resulting in an Ekman suction from the Ekman region into the bulk region. For
high Ra cases, the situation is the opposite, with a net Ekman pumping flow from the bulk
region into the bottom and top boundary layers. This supports the earlier found results of
the relative strength of the wall mode (fig. 4.5b) and the thickness of the thermal boundary
layer (fig. 4.7a) that there are two different kinds of wall modes, with the transition around
Ra = 1.4× 1011.

4.1.4 Nusselt number

In section 2.4, five different methods are described to calculate the average Nusselt number.
The Nusselt number is calculated using all five methods and weighted averaged while taking
the uncertainty into account (Taylor [1997]) (appendix C.1). All individual Nusselt numbers
and their uncertainties are displayed in appendix C.2. The averaged results are displayed in
fig. 4.10, marked with the red diamonds. The figure shows that the Nusselt number of the
new simulations are in accordance with the previously found results of De Wit et al. [2020]
(green diamonds), and following the data points that are found experimentally by Cheng
et al. [2015] (red dots).

Following De Wit et al. [2020], the uzRMS-dip sidewall boundary layer definition, described
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Figure 4.9: Averaged radial velocities in the Ekman boundary layers as a function of the Rayleigh
number.

in section 4.1.2, is used to separate the flow into a wall and a bulk region. The local Nusselt
number of the bulk region, i.e. the surface that is enclosed by the radius using the uzRMS-dip
definition, is calculated at mid-height (z = 0.50), using eq. (2.20). The results are displayed
with the red open diamonds in fig. 4.10. The new simulations are in line with the inner
Nusselt numbers found by De Wit et al. [2020] (open blue diamonds), showing a large gap
between the overall Nusselt number and the Nusselt number of the bulk. For simulations
with Ra ≥ 1.4 × 1011, the split into two branches of Nusselt numbers is visible, where the
Nusselt numbers of the bulk part have a Nusselt number that is comparable with the numbers
of the periodic simulations of Aguirre Guzmán [2021] (light orange open squares).

Figure 4.10: Nusselt number as a function of Rayleigh. The boundary layer definition uzRMS-dip
is used to extract the ’inner Nu’ from the total Nusselt number.

The Nusselt number dependence on the Rayleigh number of the bulk and wall region, to-
gether with the overall Nusselt number are displayed in fig. 4.11 for two different boundary
layer definitions: uzRMS-dip and 〈uθ〉 = 0. Looking at the overall Nusselt number (Nu
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total), an continuously increasing relation is found. This is caused by a larger tempera-
ture difference, i.e larger thermal forcing, which causes larger vertical velocities, resulting
in a larger Nusselt number. For Ra ≤ 1.4 × 1011, the increase in overall heat transport is
caused by an increase of heat transport of the bulk region, whereas the heat transport in the
boundary region remains constant. For Ra ≥ 1.4× 1011 both wall and bulk Nusselt numbers
increase. An attentive reader would observe that for most Ra, both the local Nusselt num-
ber of the bulk and the local Nusselt number of the wall region are higher for the 〈uθ〉 = 0
boundary layer definition, compared to the local Nu belonging to the uzRMS-dip definition,
whereas the total Nusselt number is the same. This is due to the different boundary layer
definitions the local Nu is averaged over different areas, resulting in these paradoxical results.

(a) Nusselt number of bulk, wall and total, with
uzRMS-dip as boundary layer definition.

(b) Nusselt number of bulk, wall and total, with 〈uθ〉
as boundary layer definition.

Figure 4.11: Bulk, wall and total Nusselt Number as functions of Rayleigh using uzRMS-dip and
〈uθ〉 as boundary layer definitions.

In fig. 4.11 for Ra ≤ 9.9 × 1010 a line with Ra3 is plotted for the Nusselt number of the
bulk. This is in accordance with the power-law found by Stellmach et al. [2014]. The strong
increase of the Nusselt number of the bulk (open diamonds in fig. 4.10) for Ra ≤ 1.4× 1011

can be explained by the Ekman suction from the top and bottom boundary regions into the
bulk, which is observed for the lowest Ra cases (see fig. 4.9). The Nusselt numbers of the
bulk with Ra ≥ 1.4 × 1011 are fitted with Nu ∼ Raα for both boundary layer definitions,
resulting in α = 0.31±0.04 and α = 0.30±0.04 for uzRMS-dip and 〈uθ〉 respectively. These
values agree reasonably well with the α = 0.322 power-law which was found by Cheng et al.
[2015] for not rotation-dominated flows. So, for Ra ≥ 1.4 × 1011 the thermal forcing (Ra)
dominates over the rotational force (Ek) resulting in a Ra dependence of the heat transfer
that scales with α = 0.322, whereas for Ra ≤ 1.4 × 1011,which is for this Ek in the regimes
of CTC’s (section 2.5), the Nusselt number reasonably matches with the Ra3 line (Stellmach
et al. [2014]). So, for the Nusselt number of the bulk the same transition from power law
scaling takes place as observed for the cylinder as a whole (Cheng et al. [2015]).

As displayed in fig. 4.6, the lowest correlation of the cosine fit through the vertical velocity
profile in the boundary region is observed for Ra = 1.4×1011. This agrees with the relatively
low Nusselt number in the boundary region in this case (fig. 4.11). In fig. 4.12 the Nusselt
number as a function of time and the fitting coherence of the cosine through the vertical
velocity profile (R2) are displayed for Ra = 1.4×1011 and Ra = 2.1×1011, i.e. the two cases
with the lowest R2. The figure clearly shows that fluctuations of the overall Nusselt number
are mainly caused by fluctuations of the vertical coherence, and thus the heat transport in
the boundary region, whereas the Nusselt number of the bulk is more or less constant in time
(fig. 4.12a and 4.12b).
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(a) Nusselt number in time for Ra = 1.4× 1011. (b) Nusselt number in time for Ra = 2.1× 1011.

(c) R2 in time for Ra = 1.4× 1011. (d) R2 in time for Ra = 2.1× 1011.

(e) Cross-correlation for Ra = 1.4× 1011. (f) Cross-correlation for Ra = 2.1× 1011.

Figure 4.12: Nusselt number and R2 as functions of time, together with their cross-correlation for
Ra = 1.4× 1011 and Ra = 2.1× 1011.

There is a clear correlation between the heat transport in the boundary region and the de-
gree of coherence of the cosine fit through the vertical velocity field, i.e. peaks and troughs
of the Nusselt number in the wall region correspond with peaks and troughs of R2. Cross-
correlation calculations of the Nusselt number in the boundary region and the R2 (fig. 4.12e
and 4.12f) show for Ra = 1.4 × 1011 a Nusselt number signal that is a time gap τ = 11.5
later, relative to the R2 value. For Ra = 2.1× 1011 the Nusselt number is a time gap τ = 5
later. The cross-correlation is performed for the other simulations too, showing in all cases a
later Nusselt number signal, with an average of τ = 5± 3. The delay of the Nu signal means
that a well-established wall mode results in high Nusselt numbers.

The strongly fluctuating R2 value, with sometimes almost zero correlation, indicates that

26



around these Rayleigh numbers (Ra = 1.4 × 1011 − 2.1 × 1011) the wall mode structure
vanishes at certain times. This behavior of appearing and disappearing is not found for the
other Rayleigh numbers, indicating that around these Ra the wall mode is very unstable and
probably a transition between two different wall mode regimes takes place.

4.1.5 Wall mode fitting

Inspired by the theoretical studies of wall modes by Herrmann and Busse [1993] and Zhang
and Liao [2009] the wall mode pattern is approached in a more theoretical way to get an
insight into how the shape (amplitude, thickness) of the wall mode changes as a function
of Ra. The vertical velocity field of the wall mode is mathematically approximated by a
sine wave in azimuthal direction combined with a radially inward damped sine. This is
mathematically represented as

uz(r, θ) = Az · sin((r − 0.1) ·Bz) · sin(θ + Cz) · exp(−(0.1− r) ·Dz), (4.3)

with Az the amplitude scale factor, Bz a scaling for the radial wavenumber, Cz the azimuthal
shift of the vertical profile relative to its origin and Dz the radial (inward) damping factor.
Note that sin(θ+Cz) is used instead of sin(F · θ+Cz) because in all Ra cases a wave profile
with n = 1 in the azimuthal direction is observed for the vertical velocity field. Using the
(r − 0.1) notation forces the velocity to be zero at the sidewall (no-slip). As an example,
the simulated and approximated vertical velocity fields of Ra = 4.3 × 1011 are displayed in
fig. 4.13. The figures show a great coherence concerning boundary layer width and amplitude.
Whereas fitting parameter Cz is just a phase constant, attention is paid to the amplitude
(Az), radial wavenumber (Bz), and damping (Dz) parameters.

(a) Simulation (b) Mathematical approximation

Figure 4.13: Simulated and approximated vertical velocity profiles for Ra = 4.3×1011 at z = 0.50,
with the uzRMS-dip boundary displayed with the dashed circle.

To compare the fitting parameters of the different fits correctly, the velocities are made
dimensionless in viscous units according to eq. (2.16), changing the velocity dimensionless
uz/Ufree−fall into uz/(ν/H).

Eq. (4.3) is applied for the no-slip simulations at mid-height using a 3D-least square fitting
algorithm. The fitting parameters as functions of the Rayleigh number are displayed in
fig. 4.14 and their corresponding equations in table 4.1. The radial wavenumber (Bz), which
is a parameter for the first zero-crossing of the vertical velocity profile (i.e. the boundary
layer thickness), shows a monotonous behavior, in accordance with the definition of uzRMS-
dip of fig. 4.7a. Note that the equation of the radial wavenumber (Bz) is the inverse of
the boundary layer thickness equation of uzRMS-dip. The boundary layer thickness is
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the wavelength of the vertical structure in the radial direction, which is the inverse of the
wavenumber (Bz) in the radial direction. The amplitude (Az) and damping (Dz) parameters
both show a discontinuous relation, with the breaking point around the fourth data point
(Ra = 1.4 × 1011). For the low Ra cases, a constant amplitude (Az) is observed. This
could be the explanation for the (almost) constant Nusselt number in the boundary region
(fig. 4.11) for low Rayleigh numbers. For Ra ≥ 1.4×1011 an increase of wall mode amplitude
is observed, which can be explained by the increasing velocity scales for increasing Rayleigh
number and the change of sign of radial velocity in the Ekman layer (see fig. 4.9), resulting in a
net transport from the Ekman boundary layer into the sidewall boundary layer. The damping
factor (Dz) causes an exponential damping for smaller radial values, i.e. lower amplitudes
when moving radially inwards. Further, the damping factor (Dz) has an impact on the shape
of the sinusoidal flow profile in the boundary region, i.e. larger damping factor causes a more
asymmetric sinusoidal lobe in the wall region. Without damping, the sinusoidal wave (as a
function of r) will be perfectly symmetric. Adding a damping factor results in a steep profile
close to the sidewall boundary. For the lowest Rayleigh cases, a constant damping is observed:
the amplitude difference between the first vertical flow lobe and the second (radially inward)
lobe is constant and the shape of the lobes is constant too for different Rayleigh numbers. For
larger Ra, an increase in damping factor is observed, i.e. the second lobe becomes weaker and
the shape of the first lobes becomes more asymmetric. This behavior is observed in fig. 4.5a
too, where the uzRMS profile becomes more asymmetric, for increasing Rayleigh number.

(a) Wall mode amplitude (Az) as function of Ra. (b) Radial wavenumber (Bz) as function of Ra.

(c) Damping (Dz) as a function of Ra.

Figure 4.14: Viscous dimensionless fitting parameters as function of the Rayleigh number.

The same fitting procedure using eq. (4.3) is also applied at z = 0.25 and z = 0.75 to get
an insight into the vertical dependence of the vertical flow field. The results (fig. App. A.1)
show the same shapes of graphs as displayed in fig. 4.14. Differences are that the vertical
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Low Ra High Ra
Amplitude (Az) 4952 (1.7× 10−11) ·Ra1.30

Radial wavenumber (Bz) (5.9× 104) ·Ra−0.22 (5.9× 104) ·Ra−0.22

Damping (Dz) 107 (0.13) ·Ra0.26

Table 4.1: Equations belonging to the fitting parameters of the viscous dimensionless velocity fields.

flow field in the boundary at z = 0.25 and z = 0.75 have a lower amplitude (Az), larger
radial wave number (Bz) (so smaller sidewall boundary layer), and a larger damping factor
(Dz) compared to the observations at z = 0.50. The fitting parameters at z = 0.25 and
z = 0.75 are comparable, indicating that the vertical flow is mirror-symmetric in z = 0.50,
with its maximum at mid-height and its minimum at the bottom and top plate. Doing the
same analysis at z = 0.10 confirms the estimated profile with the lowest amplitudes close to
the bottom (and top) plate.

4.2 Stress-free sidewall

Two simulations are performed with stress-free sidewall boundaries: Ra = 5.0 × 1010 and
Ra = 3.2× 1011. Note that in these cases the top and bottom boundaries are not stress-free.
The RMS of the vertical velocity of both cases is displayed in fig. 4.15a. For comparison
the uzRMS of the no-slip cases is displayed in fig. 4.15b. Here it is visible that the stress-
free simulations have their maximum uzRMS values at the sidewall boundary, with a larger
amplitude. The RMS of the bulk (approx. 0 < r < 0.08) of the lowest Ra case is almost
identical in both cases (no-slip and stress-free), whereas for the largest Ra, the RMS of the
stress-free bulk is much lower. This difference suggests that the flow field for Ra = 3.2×1011

is significantly different compared to the stress-free case.

(a) uzRMS as a function of r for the stress-free side-
wall boundary.

(b) uzRMS as a function of r for the no slip sidewall
boundary.

Figure 4.15

The vertical velocity fields in the boundary region of the stress-free simulations precess in
the azimuthal direction too. The precession path of both simulations, compared with the
no-slip simulations, are displayed in fig. 4.16. The angular drift of the stress-free simula-
tion with Ra = 3.2 × 1011, which remarkably precesses in the positive/cyclonic direction,
is multipied with −1 for comparison. The sinusoidal functions, to measure the phase shift
(and amplitude), are fitted at the sidewall boundary, because uzRMS is maximal here (see
fig. 4.15a). The figures show that for the lowest Ra case the precession speed is much slower
for the stress-free simulation, whereas for Ra = 3.2 × 1011 the precession speed is almost
equal, but in the opposite direction . A prograde rotating wall mode is earlier observed in
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simulations of Horn and Schmid [2017], showing that this observed phenomenon is not unique.

(a) Ra = 5.0× 1010 (b) Ra = 3.2× 1011

Figure 4.16: Azimuthal orientation of the wall mode as functions of time. The stress-free drift of
Ra = 3.2×1011 has its sign flipped for plotting convenience. The slower rotation for Ra = 5.0×1010

and equal rotation but in the opposite direction for Ra = 3.2× 1011 are visible.

For Ra = 3.2 × 1011, the lines of the azimuthal phase shift in time (fig. 4.16) are much
smoother, i.e. have fewer irregularities, for the stress-free sidewall case compared to the
no-slip case, suggesting that this stress-free mode is more coherent and precesses with a con-
stant velocity. This behavior is also found for the coherence (R2) of the wall mode. A fitting
coherence of R2 = 0.84± 0.10 is found for the stress-free case, which is much higher than for
the no-slip case (R2 = 0.65±0.13). This means that the spread of data points relative to the
size of the sinusoidal profile is less for the stress-free case. The coherence of the no-slip simu-
lation with Ra = 5.0× 1010 is already high (R2 = 0.88± 0.04), so no significant difference is
observed here (stress free: R2 = 0.89±0.03). So, the wall mode of the stress-free simulations
is more stable and precesses with a more constant precession rate.

The precession speed of the wall mode is used to generate a rotation average of the flow
profiles at mid-height. The flow profiles of the rotation corrected averages are compared with
the no-slip simulations at mid-height. The stress-free simulations of Ra = 5.0 × 1010 show
minor differences in flow structure at mid-height (appendix D.1 and D.2); the boundary re-
gion of the vertical flow profile is narrower, with a higher amplitude, whereas the azimuthal
and radial flow profiles almost match. The flow fields at mid-height for both the no-slip
and stress-free case for Ra = 3.2 × 1011 are displayed in fig. 4.17. The vertical flow profile
is displayed in fig. 4.17a and fig. 4.17d, showing a narrower boundary layer with a higher
amplitude. The radial velocity field also shows more or less the same profile, but with a
lower amplitude. The azimuthal velocity profile no longer has its 4 lobe structure with pro-
grade and retrograde sections, but it is separated in a prograde rotating wall region and a
retrograde rotating bulk region.

The boundary layer widths of the stress-free simulations are calculated using both uzRMS-
dip (eq. (4.2)) and the 〈uθ〉 = 0 definitions. Their widths, together with the widths of the
no-slip cases, are tabulated in table 4.2. For the uzRMS-dip definition in both cases, a
boundary layer is observed which is 0.004 narrower in the stress-free case. This distance is
equal to the distance between the uzRMS-peak’s and the sidewall in fig. 4.15b, This distance
is almost the thickness of the Ek1/3-boundary layer that connects the sidewall flow to the
sidewall and is logically missing for stress-free sidewall conditions. Using the 〈uθ〉 = 0 defini-
tion, a narrower boundary layer is observed for the lowest Ra case, which can be explained by
the stress-free sidewall. The Ra = 3.2×1011 case shows a much wider boundary based on the
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(a) No-slip vertical velocity. (b) No-slip radial velocity. (c) No-slip azimuthal velocity.

(d) Stress-free vertical velocity. (e) Stress-free radial velocity. (f) Stress-free azimuthal velocity.

Figure 4.17: Rotation averaged velocity profiles at mid-height for Ra = 3.2 × 1011 for no-slip
fig.(a)-(c) and stress-free fig.(d)-(f) sidewall boundaries.

〈uθ〉 = 0 definition in the stress-free case. This boundary width coincides with the boundary
layer width based on the uzRMS-dip definition of the stress-free case. This means that the
vertical and azimuthal velocity are zero at the same radial distance, which results, combined
with the lower radial velocities in the stress-free case (fig. 4.17e), in a strong decoupling of
the wall region from the bulk region. Note that the shape of the vertical flow structure stays
the same for stress-free and no-slip sidewall conditions, whereas the azimuthal flow structure
drastically changes. This means that a general definition of the thickness of the wall mode
can better be based on the vertical velocity.

Ra 5.0× 1010 (ns) 5.0× 1010 (sf) 3.2× 1011 (ns) 3.2 · 1011 (sf)
uzRMS-dip 0.014 0.010 0.019 0.015
〈vθ〉 = 0 0.007 0.005 0.009 0.015

Table 4.2: Boundary layer thicknesses of simulations with stress-free (sf) and no-slip (ns) sidewall
boundaries.

Since the Ekman number for the stress-free and no-slip sidewall boundaries is the same, the
thickness of the top and bottom Ekman boundary layers is conserved too. The average radial
velocity in the Ekman boundary layer is calculated for the stress-free cases too and is tabu-
lated in table 4.3, where the averaged velocity of both the top and bottom boundary layer
is displayed. For the lowest Ra, a small difference is observed, which agrees with previous
observations that the flow profile is almost identical for the stress-free and no-slip boundary
conditions. For Ra = 3.2× 1011 a larger radial velocity in the Ekman boundary is observed,
which has comparable amplitude to the no-slip simulation with Ra = 1.5× 1012.

The total Nusselt number is calculated using the 5 methods described in section 2.4 and av-
eraged. The local Nusselt number at mid-height for both the boundary and bulk region are
calculated using (eq. (2.20)). The Nusselt numbers and the numbers of the previously found
no-slip cases are displayed in table 4.4. The results show for Ra = 5.0× 1010 larger Nusselt
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Ra 5.0× 1010 (ns) 5.0× 1010 (sf) 3.2× 1011 (ns) 3.2× 1011 (sf)
〈ur〉 −3.2× 10−4 −2.5× 10−4 3.4× 10−4 1.25× 10−3

Table 4.3: Averaged radial velocity in the Ekman boundary layer for stress-free (sf) and no-slip
(ns) sidewall boundaries.

numbers (local and total) which can be explained by the overall higher vertical velocity due
to the stress-free boundaries at equal Rayleigh number, whereas the overall flow profile stays
the same. The total Nusselt number analysis is displayed in appendix C.3.

For Ra = 3.2× 1011 the flow profile for the stress-free simulation (fig. 4.17) is different, with
a lower radial velocity, resulting in a larger decoupling between the bulk and the boundary
region. This stronger decoupling results in a lower Nusselt number of the bulk and an even
higher Nusselt number of the boundary region. The large gap between the Nubulk for stress-
free simulations and Nubulk of no-slip simulations suggest that the latter is still fed by heat
transport from the boundaries.

Ra 5.0× 1010 (ns) 5.0× 1010 (sf) 3.2× 1011 (ns) 3.2× 1011 (sf)
Nubulk 11.5 15.0 154.2 72.3
Nuwall 174.5 249.4 544.8 994.3
Nutotal 53.2 58.8 280.0 325.1

Table 4.4: Nusselt number of simulations with stress-free (sf) and no-slip (ns) sidewall boundaries.

The rotation averaging is applied at z = 0.25 and z = 0.75 too. The results are displayed
in appendix D.2. The vertical velocity field has its maximum amplitude at mid-height and
lower maximum velocities at z = 0.25 and z = 0.75, which is the same behavior as observed
for the no-slip boundary simulations. The radial velocity field has its lowest amplitudes at
mid-height and higher velocities at z = 0.25 and z = 0.75. The vertical and radial velocity
fields further show no height-dependent behavior. The azimuthal velocity field is displayed in
fig. 4.18 (first column). At mid-height, the azimuthal velocity field is almost symmetric, with
a prograde rotating ring and a retrograde rotating core. The rotating averages at z = 0.25
and z = 0.75 are almost the same but mirrored. Both cross-sections have a narrow half-ring
with a high azimuthal velocity and a wide half-ring with relatively low azimuthal velocity.
This phenomenon could be approximated by a superposition of a narrow prograde rotating
ring (second column of fig. 4.18) combined with a second double-ring structure with prograde
and retrograde sections (third column of fig. 4.18) with half the amplitude compared to the
second column. This pattern should be mirrored at mid-height, where its amplitude is equal
to zero at z = 0.50. Combining these two fields is displayed in the fourth column of fig. 4.18.
These figures show large degrees of coherence with the simulation results displayed in the first
column, suggesting that the wall mode which is present in the simulations is a superposition
of the 2 minor effects described in columns 2 and 3.
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(a) z = 0.25 simulation (b) constant field. (c) pro/retrograde field. (d) superposition.

(e) z = 0.50 simulation (f) constant field (g) pro/retrograde field (h) superposition

(i) z = 0.75 simulation (j) constant field (k) pro/retrograde field (l) superposition

Figure 4.18: Mean azimuthal flow profile at z = 0.25, 0.50 and 0.75 (column 1) for Ra = 3.2 ×
1011 with stress-free sidewall conditions. The simulation azimuthal field can be explained by a
superposition of a constant height-independent rotating ring (column 2) and prograde-retrograde
structure which changes sign at z = 0.50. This results in column 4, which shows large degrees of
similarities with column 1.

.
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5 Results and Discussion: Bulk mode

In this chapter, the flow pattern in the bulk will be analyzed. First, a distinction between two
different flow structures will be made: structures observed for low and high Rayleigh num-
bers. The overall flow structure will be analyzed using the RMS at different heights. The
simulations with low Rayleigh numbers will be analyzed qualitatively, where the general flow
structure will be explained. The simulations with high Rayleigh numbers will be analyzed
more quantitatively because the periodic structure makes it possible to approach the struc-
tures mathematically. The observed bulk mode of the azimuthal velocity will be subtracted
from the observed profiles, resulting in an isolated azimuthal wall mode. This wall mode
will be compared with the vertical wall mode that is discussed in chapter 4. Finally, these
observed and modeled structures will be compared with bulk mode structures from theory.
The results of the stress-free simulations will not be discussed in detail, whereas the bulk flow
of Ra = 3.2× 1011 is already discussed in section 4.2 and the bulk flow of Ra = 5.0× 1010 is
identical to the simulation with no-slip sidewalls (see appendix D.1 and appendix D.2).

The velocity profile in the bulk (approx. 0 < r < 0.08) is dominated by the radial and az-
imuthal velocities, which are characterized by their flow profile with azimuthal wavenumber
n = 2 (fig. 4.4). In the previous chapter, a clear distinction is found between the two parts
of flow structures (i.e. bulk region and wall region). Simulations with Ra ≤ 1.4 × 1011 are
characterized with a vertical wall mode structure with an (almost) constant amplitude and
a strong increase of the Nusselt number of the bulk, whereas for Ra ≥ 1.4 × 1011 the wall
mode amplitude increases as a function of Rayleigh.

(a) Ra = 5.0× 1010. (b) ur profile at r = 0.050 for Ra < 2.1× 1011.

(c) Ra = 4.3× 1011. (d) ur profile at r = 0.050 for Ra > 2.1× 1011.
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(e) Ra = 5.0× 1010. (f) uθ profile at r = 0.078 for Ra < 2.1× 1011.

(g) Ra = 4.3× 1011. (h) uθ profile at r = 0.078 for Ra > 2.1× 1011.

Figure 5.1: Separation of the rotation averaged radial and azimuthal velocity fields at mid-height
(z = 0.50) in a low Ra < 2.1 × 1011 and high Ra > 2.1 × 1011 Ra regime, based on their flow
characteristics. Exemplaric displayed for Ra = 5.0 × 1010 (low Ra) in fig.(a),(e) and 4.3 × 1011

(high Ra) in fig. (c),(g). The velocity profiles along the dashes circles of the figures is displayed in
fig.(b),(d),(f) and (h).

This change of flow behavior is also found for the radial and azimuthal velocity profiles, as
displayed in fig. 5.1. These figures display averages of the radial and azimuthal velocity, where
the wall mode precession is used to rotation average the flow profile. Theoretically, the wall
modes precess with a larger velocity than the bulk mode (Favier and Knobloch [2020]), so our
approach is theoretically not appropriate. We tried to improve the rotation averaging of the
bulk by using a large range of precession rates. This resulted in more smoothed graphs with
lower maximum amplitudes, which suggests that in these simulations the wall and bulk mode
precess with the same rate. The results of the rotation averaged flow profiles at z = 0.25,
0.50, and 0.75 are displayed in appendix D.1.

For low Rayleigh (Ra < 2.1 × 1011), there are two strong inward jets found (e.g. fig. 5.1a),
combined with a large background region of radially outward flow. For high Rayleigh
(Ra > 2.1 × 1011) the flow profile is more like a symmetric profile with in- and outward
velocity sections (e.g. fig. 5.1c). In fig. 5.1b and fig. 5.1d the velocity in the radial direction
at r = 0.050 (dashed circle) is displayed for the different flow sections. fig. 5.1b clearly shows
the local inward jets combined with a larger region with weak radially outward flow, whereas
fig. 5.1d shows a more sinusoidal shaped profile for the high Rayleigh cases and a four lobe
structure.

The same distinction is observed for the velocity profiles in the azimuthal direction, where the
profiles can be separated for Rayleigh being larger or smaller than 2.1× 1011. For the lowest
Rayleigh cases (fig. 5.1e and 5.1f) a saw-tooth profile of the azimuthal flow profile is observed
at r = 0.078, whereas for high Rayleigh cases a sinusoidal profile is observed (fig. 5.1g and
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5.1h). Using exact this distance (r = 0.078) the dashes circle is located in all simulations in
the second lobe when moving radially inward.

In the following chapters the results of the ’Low Rayleigh’-cases (Ra < 2.1 × 1011) and
’High Rayleigh’-cases (Ra > 2.1× 1011) with be analyzed separately.

In fig. 5.2 the azimuthally and temporally averaged data of the RMS of the azimuthal velocity
field are displayed. The azimuthal flow structure is symmetric in z = 0.50, resulting in identi-
cal RMS graphs at z = 0.25 and z = 0.75, only the latter is displayed here. For completeness,
the RMS graph at z = 0.25 is displayed in appendix B. The figures show increasing velocity
scales with increasing Ra, the same as observed for the vertical velocity field. Further, at
z = 0.75 (and thus also at z = 0.25) a large uθRMS-peak is observed close to the sidewall,
which indicates the presence of region with well pronounced positive and negative velocities,
i.e. prograde and retrograde rotating velocity structures. The sidewall located peak in RMS-
value is not observed at mid-height (z = 0.50), indicating an anti-symmetric profile. The
RMS-values of the bulk (approx. 0 < r < 0.08) show a wavy behavior, indicating that there
is a kind of sinusoidal profile present in the bulk.

(a) z = 0.50 (b) z = 0.75

Figure 5.2: Root mean squares of the azimuthal velocity for different Rayleigh numbers at 0.50 and
0.75. The figures show a peak in RMS-value close to the boundary at 0.75, which is not observed
for z = 0.50.

In fig. 5.3 the mean azimuthal velocity, which is averaged in time and in the azimuthal di-
rection is displayed as a function of the radius for the different simulations at z = 0.50. The
figure shows that close to the sidewall the azimuthal velocity is positive on average. Mov-
ing radially inwards, sections with negative and positive azimuthal velocity are observed for
Ra ≤ 3.2× 1011, whereas for larger Rayleigh numbers the velocity of the bulk remains nega-
tive. Zooming in on the average velocity of the bulk (approx. r < 0.08) an overall prograde
circulation is observed for Ra ≤ 7.0× 1010, a net circulation of (plus-minus) zero is observed
for Ra = 9.9 × 1011 and Ra = 1.4 × 1011 and a retrograde circulation for Ra ≥ 2.1 × 1011.
The change of sign in averaged azimuthal velocity coincides with the change in sign of the
averaged radial velocity in the top and bottom Ekman boundary layer (fig. 4.8). This is in
line with the theory, where Ekman pumping is related to negative vorticity, i.e. negative
azimuthal velocity, and Ekman suction to positive vorticity, i.e. positive azimuthal velocity.

The radial velocity profile is symmetric in z = 0.50 too. The root mean square of the radial
velocity at 0.50 and 0.75 is displayed in fig. 5.4 (z = 0.25 in appendix B). The figures logically
show low RMS values close to the sidewall boundary and in the core, i.e. low radial velocities
are measured close to the sidewall boundary and in the core. Further, the increasing RMS
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Figure 5.3: Mean azimuthal velocity (averaged in azimuthal direction and time) at z = 0.50 as a
function of the radius for Ra = 5.0× 1010 − 1.5× 1012.

as a function of Rayleigh is clearly observed.

(a) z = 0.50 (b) z = 0.75

Figure 5.4: RMS of the radial velocity for different Rayleigh numbers at z = 0.50 and 0.75.

5.1 Low Rayleigh

In fig. 5.5 the radial and azimuthal velocity profiles for Ra = 5.0 × 1010 are displayed for
z = 0.25, 0.50 and 0.75 as an example of a ’Low Rayleigh’ flow profile. The other profiles
(Ra = 7.0 × 1010 − 2.1 × 1011) are displayed in appendix D.1. The ’Low Rayleigh’ simula-
tions are characterized by the well-pronounced radial inward jets, which are present over the
whole height. The azimuthal profile is a combination of a constant bulk structure combined
with a strong wall structure that changes sign at mid-height, through which the wall mode
is (theoretically) not visible at z = 0.50. The radially inward-going jets coincide with loca-
tions with strong positive azimuthal velocities. This can be explained by the conservation of
angular momentum, where radially inward moving matter gains a positive azimuthal velocity.

As mentioned before, the azimuthal profile is a superposition of a constant rotation-symmetric
bulk structure and a strong non-rotation-symmetric wall structure. This asymmetric behavior
results in an amplification of azimuthal velocities near the bottom of fig. 5.5d and near the
top of fig. 5.5f, where two strong rings are visible (regions marked with blue dashed boxes).
A close-up of the dashed boxes at z = 0.25 is displayed in fig. 5.6. In the outermost ring, the
azimuthal velocities are pointing outwards, resulting in a radial suction of mass. This mass
is supplied by the second outer ring, where two sections of azimuthal velocity collide with
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(a) ur, z = 0.25 (b) ur, z = 0.50 (c) ur, z = 0.75

(d) uθ, z = 0.25 (e) uθ, z = 0.50 (f) uθ, z = 0.75

Figure 5.5: Radial and azimuthal velocity profiles for Ra = 5.0× 1010 at z = 0.25, 0.50 and 0.75.

each other, resulting in velocities in the perpendicular direction, moving radially inwards and
outwards. This local flow behavior causes the remarkable ’red dots’ at the end of the jets in
the radial flow profiles. The prograde and retrograde rotating wall mode sections at z = 0.25
and 0.75 collide with each other in the regions marked with the black dashed box, resulting in
a strong inward jet. Here, the (only present) outermost ring collides, so no radially outward
velocity (red dot) is possible.

(a) Close-up of radial velocity field (blue dashed
box in fig. 5.5a).

(b) Close-up of azimuthal velocity field (blue
dashed box in fig. 5.5d).

Figure 5.6: Close-up of dashed boxes in fig. 5.5a and fig. 5.5d for Ra = 5.0× 1010 at z = 0.25.

Comparing the different Rayleigh cases with each other (appendix D.1), it is visible that the
radially inward jet is getting wider for increasing Ra, finally resulting in the sinusoidal profile
as observed for the ’High Rayleigh’ cases. For the azimuthal profile, a tendency is observed
where the double-ringed wall structure combined with the bulk with two prograde orientated
jets transform to a single-ringed wall structure combined with a double lobe structure in the
bulk.
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5.2 High Rayleigh

5.2.1 Rotation averaged profiles

In fig. 5.7 the rotation averaged azimuthal velocity fields at z = 0.25, 0.50 and 0.75 are
displayed for Ra = 4.3×1011. At mid-height, the figure shows a well-pronounced profile with
4 lobes in the azimuthal direction (n = 2) and 2 or 3 lobes in the radial direction. At z = 0.25
and 0.75, a field with high velocities is observed with n = 1 in the wall region, which is the
cause of the peaks in RMS-value of fig. 5.2. The dashed rings in the figures indicate the zero-
crossings of the azimuthal flow profile and are the locations of the uθRMS-dip from fig. 5.2.
Using uθRMS-dip, the location of the zero-crossing in the radial direction can be found in
the same way as using uzRMS-dip to determine the thickness of the sidewall boundaries.

(a) z = 0.25 (b) z = 0.50 (c) z = 0.75

Figure 5.7: Rotation averaged azimuthal velocity profiles at z = 0.25, 0.50 and 0.75 for Ra =
4.3 × 1011. Dashed circles indicating the the zero crossings of the flow profile in radial direction,
based on uθRMS-dip.

The profile observed in fig. 5.7b looks like a profile with only a bulk mode with n = 2, whereas
the profiles at z = 0.25 and 0.75 are more like a combination of a wall mode with n = 1
and a bulk mode with n = 2. The inner circle of these profiles could be described as the
bulk mode (n = 2), whereas the outer ring (n = 1) is the wall mode. The ring in between is
well-pronounced at one side, and badly pronounced at the opposite side. This is caused by
constructive and destructive interference of the periodic behavior of the bulk and wall mode.

(a) z = 0.25 (b) z = 0.50 (c) z = 0.75

Figure 5.8: Rotation averaged radial velocity profiles at z = 0.25, 0.50 and 0.75 for Ra = 4.3×1011.

The orientation averaged radial velocity fields at z = 0.25, 0.50 and 0.75 for Ra = 4.3× 1011

are displayed in fig. 5.8. The figures show a 4 lobe structure in the azimuthal direction and
slightly higher velocities at z = 0.25 and 0.75 compared to mid-height. The lobe structure
is rotated 45 degrees compared to the azimuthal flow structure (fig. 5.7b), which combined
causes the 4 circulation cells displayed with the r − θ vector field in the figures. At z = 0.25
and 0.75, one of the radial inward jets is weaker and shorter compared to the other inward jet.
This is caused by the ’red dots’, as described in section 5.1. At z = 0.50 there is no strong
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sidewall circulation in the azimuthal direction present, resulting in an (almost) symmetric
velocity profile.

5.2.2 Bulk mode fitting

The azimuthal velocity profile of the bulk at mid-height is approached with the function

uθ(r, θ) = A1θ · sin(r ·B1θ) · sin(2 · θ + C1θ) (5.1)

with A1θ the amplitude, B1θ the radial wavenumber, and C1θ the azimuthal shift. Note the
factor 2 in front of θ because of the azimuthal wavenumber of 2. The radial dependence
(sin(r · B1θ)) is chosen to force the velocity to be zero in the origin. Note that no radial
decay factor is added to this fit because the RMS-values of the azimuthal velocity (fig. 5.2)
as functions of the radius do not suggest such behavior. The modeled azimuthal flow profile
at mid-height is displayed in fig. 5.9a, showing great degrees of coherence with fig. 5.7b.

(a) uθ (b) ur

Figure 5.9: Fitted azimuthal and radial velocity profile at mid-height according to eq. (5.1) and
eq. (5.2). Dashed circles indicate the zero-crossings of the profile in radial direction.

The same fitting analysis as described above is used to model the radial velocity profile at
mid-height. Whereas the RMS of the azimuthal velocity profile (fig. 5.2) show a more or
less constant value in the bulk (approx. 0 < r < 0.08), the RMS of the radial velocity show
a certain decrease when moving outward, which is caused by lower velocities. The radial
velocity is, just as the azimuthal velocity, zero at the origin, so the same fit is used, but with
an exponential decay term in the radial direction:

ur(r, θ) = Ar · sin(r ·Br) · sin(2 · θ + Cr) · exp(−r ·Dr), (5.2)

with the parameters that have the same function as described earlier and Dr the damping
factor. This damping is added because the RMS values of the radial velocity (fig. 5.4) show
a radial dependence.

To quantitatively compare the simulations with the different Rayleigh numbers, the radial
and azimuthal data are made viscous dimensionless using eq. (2.16). The rotation averaged
slabs at mid-height for the velocity in radial (fig. 5.8b) and azimuthal (fig. 5.7b) direction
are fitted using eq. (5.1) and eq. (5.2). The fitting parameters of the amplitude (A), ra-
dial wavenumber (B), and damping (D) of the radial and azimuthal profile are tabulated in
table 5.1. Note that although it looks like that there is a strong relationship between the
radial wavenumber (Br and B1θ) and the Rayleigh number, the zero-crossing of the profile
moves just 0.003 units between the lowest and highest Rayleigh case, i.e. the radial wave-
length is almost constant. The increase of radial wavenumber as a function of Ra means that
the zero-crossings of the bulk structure move radially inward. This behavior matches with
the increase of sidewall boundary layer thickness (section 4.1.2), i.e. increasing the sidewall
thickness results in a smaller bulk region. This means that the pattern in the bulk is not
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only dependent on the dimensions of the cylinder (Γ) but also depend on the thickness of the
sidewall.

The radial velocity at mid-height (fig. 5.8b) is fitted using eq. (5.2), resulting in fig. 5.9b,
which show a great degree of coherence with the simulated data (fig. 5.8).

Ra Ar (×103) Br Dr A1θ (×103) B1θ

2.1× 1011 1.5 33.9 7.3 0.89 61.8
3.2× 1011 2.5 34.3 7.7 1.5 63.2
4.3× 1011 4.7 34.8 11.0 2.4 64.7
6.0× 1011 4.8 34.4 12.0 2.3 64.2
9.5× 1011 5.4 34.6 10.5 2.9 64.4
1.5× 1012 8.5 35.1 12.8 4.2 66.4

Table 5.1: Fit parameters of the radial and azimuthal velocity fields in viscous units at mid-height.

In fig. 5.10 the amplitude and radial wavenumbers of the radial and azimuthal velocity profiles
of the simulations with different Rayleigh numbers are displayed as functions of each other.
The data is fitted in both cases with a linear fit: A1θ = aA ·Ar and B1θ = aB ·Br respectively.
This results in the fitting parameters aA = 0.51 and aB = 1.86. The figures show that the
amplitudes and radial wavenumbers of the radial and azimuthal velocity fields in the bulk
are strongly related to each other.

(a) Amplitude relation (b) Radial wavenumber relation

Figure 5.10: Dependence of amplitude and radial wavenumber of radial and azimuthal velocity
fields on each other.

To get an insight on the vertical distribution of the radial velocity scales, the radial velocity
profiles at z = 0.25 and 0.75 are fitted too using eq. (5.2). Whereas the radial velocity pro-
file is assumed to be mirror-symmetric in the height z = 0.50, the average of both profiles
(z = 0.25 and 0.75) is taken to cancel out the asymmetry which is observed in fig. 5.8a and
5.8c relative to fig. 5.8b. The fitting parameters amplitude (Ar), radial wavenumber (Br),
and damping (Dr), together with the parameters of the fit at mid-height (also tabulated in
table 5.1) are tabulated in appendix A and show a constant bulk mode amplitude over the
height of the cylinder. The radial wavenumber at mid-height is slightly higher compared to
the average wavenumbers of z = 0.25 and z = 0.75, resulting in a more compact structure
at mid-height. This agrees with the observations of the boundary layer thickness, which is
slightly thicker at mid-height (fig. App. A.1), resulting in a smaller bulk.
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5.3 Isolating azimuthal wall mode

As mentioned before, the azimuthal flow profile at z = 0.25 and 0.75 is a superposition of
a bulk and wall structure. Comparing the subfigures of fig. 5.7 with each other, an almost
constant bulk mode is observed. The bulk profile (fig. 5.7b) is subtracted from the profiles
observed at z = 0.25 and 0.75, resulting in an isolated wall structure. This is displayed in
fig. 5.11, where the wall structure with azimuthal wavenumber n = 1 is visible. The wall
mode is fitted with

uθ(r, θ) = A2θ · cos((r − 0.1) ·B2θ) · sin(y + C2θ) · exp(−(0.1− r) ·D2θ), (5.3)

with A2θ the amplitude, B2θ the radial wavenumber, C2θ the azimuthal shift and D2θ the
radial damping factor.

(a) Wall mode for z = 0.25. (b) Wall mode for z = 0.75.

Figure 5.11: Isolated wall modes for z = 0.25 and 0.75 at Ra = 4.3 × 1011, which is isolated
by substracting the bulk profile (z = 0.50) from the profiles at z = 0.25 and 0.75. Dashed circles
indicate the zero-crossings of the profile in radial direction.

Superpositions of eq. (5.1) and eq. (5.3) are displayed for z = 0.25 and 0.75 in fig. 5.12a and
fig. 5.12b and show large degrees of coherence with the profile as observed in fig. 5.7a and
fig. 5.7c, suggesting that the observed profiles at z = 0.25 and 0.75 are just simple superpo-
sitions of a wall and bulk mode.

(a) z = 0.25 (b) z = 0.75

Figure 5.12: Azimuthal velocity profiles as superposition of eq. (5.1) and eq. (5.3), showing large
degrees of coherence with the azimuthal flow profiles observed at z = 0.25 and 0.75. Dashed circles
indicate the zero-crossings of the profile in radial direction.
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The isolated wall structure is fitted (in viscous dimensionless units eq. (2.16)) for Ra =
5.0 × 1010 − 1.5 × 1012 using eq. (5.3), after which the parameters A2θ, B2θ and D2θ from
z = 0.25 and 0.75 are averaged, to get one value per parameter per Rayleigh number. These
results are displayed as functions of Ra in fig. 5.13. The fits of the radial wavenumber (B2θ)
show a constant decrease with increasing Ra, whereas the amplitude (A2θ) and damping
(D2θ) show sections with Ra independent and Ra dependent behavior. This behavior is also
observed for the fitting parameters of the vertical velocity field (fig. 4.14). The mathematical
relation of the Rayleigh number dependence is tabulated in table 5.2. Comparing the equation
of table 4.1 and 5.2, i.e. comparing the vertical and azimuthal velocity fields, one observes
that the power of the amplitude parameter (A2θ) is almost twice as large for the vertical
velocity field. The radial wavenumber (B2θ) scaling, i.e. a scaling for the first zero-crossing
of the velocity field, of both fields is almost identical. The damping (D2θ) parameter power
has equal size but opposite power, i.e. increasing the Rayleigh number results in faster
radially decay for the vertical velocity, whereas the azimuthal velocity decays slower when
moving radially inward.

(a) Amplitude (A2θ) as a function of Ra. (b) Radial wave number (B2θ) as a function of Ra.

Figure 5.13: Fitting parameters of the azimuthal wall structure.

(c) Damping (D2θ) as a function of Ra.

Figure 5.13: Fitting parameters of the azimuthal wall structure.

43



Low Ra High Ra
Amplitude (A2θ) 1700 (2.4× 10−5) ·Ra0.71

Radial wavenumber (B2θ) (1.4× 105) ·Ra−0.27 (1.4× 105) ·Ra−0.27

Damping (D2θ) 44.5 (3.0× 104) ·Ra−0.26

Table 5.2: Equations belonging to the fitting parameters.

5.4 Inertial mode

The previous paragraphs concerning the bulk mode discussed the results of the simulations.
In this paragraph, an attempt is made to connect the observed structures with theory.

An inertial wave mode, driven by convective instabilities, can exist in rotating Rayleigh
Bénard Convection systems. The complete spectrum of inertial modes for a rotating cylinder
is then determined by all axis-symmetric oscillation modes, a single geostrophic mode, and all
non-axis-symmetric inertial modes (Zhang and Liao [2017]). The modes are superpositions
of the Bessel function that decay radially outward. In the simulations for Ra ≥ 2.1 × 1011

a bulk mode is observed which is z independent, with wavenumber n = 2 in azimuthal
direction, and wavenumber k = 1 (ur) or 2 (uθ) in radial direction. The axis-symmetric
oscillation modes and non-axis-symmetric inertial modes both show a sinusoidal behavior
with zero velocity at mid-height, whereas the simulation results show a mode with almost
constant amplitude between z = 0.25− 0.75. However, the velocity components of the non-
axis-symmetric geostrophic mode show no z-dependence and are given by (Zhang and Liao
[2017])
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(
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(5.4)

Here, ξn,k is the k’th solution of the Bessel function Jn(ξn,k) = 0. Using these equations, the
radial and azimuthal velocity profiles of the bulk can be calculated. As observed before, the
bulk structure gets more compact with increasing Ra, which was explained by the fact that
the sidewall thickness increasing with increasing Ra, through which the effective aspect ratio

(Γeff) of the bulk decreases, where Γeff = (D−2r∗)
H , where r∗ is the sidewall boundary layer

thickness base on the position of uzRMS-dip. Eq. (5.4) shows a Γ dependence, which could
explain the observations.

The velocity profiles are calculated using eq. (5.4) for both Γ and Γeff and displayed in fig. 5.14.
For comparison, the simulation results of Ra = 4.3 × 1011 at z = 0.50 are displayed too. In
the figures, the boundary between the bulk and the wall region, based on the uzRMS-dip
definition, is displayed with the black circle. The first zero-crossing of the simulation results
of uθ is displayed with the dashed circle and plotted in the other figures as reference. The
flow profiles according to the equations show large degrees of similarity with the simulation
results. The flow structure using the Γeff aspect ratio shows the largest similarity, This
suggests that the bulk mode is not based on the dimensions (Γ) of the cylinder, but on the
effective bulk cross-section of the cylinder, which is the cross-section of the cylinder minus
the surface of the boundary layer flow.
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(a) ur, simulations (b) ur, equation, using Γ (c) ur, equation, using Γeff

(d) uθ, simulations. (e) uθ, equation, using Γ (f) uθ, equation, using Γeff

Figure 5.14: Radial and azimuthal velocity according to the simulations and geostrophic bulk mode
(eq. (5.4)) for Γ and Γeff . The circle indicates the boundary between the bulk and wall region, based
on uzRMS-dip, the dashed circle indicates the first zero crossing of the simualtion results of uθ and
is displayed in the other figures as reference.
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6 Conclusion and Outlook

6.1 Conclusion

In this work simulations are performed with Ek = 10−7, Pr = 5.2 and varying Ra as an
extension of the study of De Wit et al. [2020]. The newly obtained results are in line with
the previous results found by De Wit et al. [2020].

The new simulations with larger Rayleigh number show the conservation of the wall mode far
in the geostrophic turbulence regime. The amplitude of the wall mode is relatively large for
low Ra and decreases to a constant relative amplitude for Ra > 2.1 × 1011. The wall mode
precess in the retrograde direction, opposite to the background rotation, with a Ra dependent
precession speed for Ra ≤ 6.0 × 1011: ωsc = (2.4 × 10−9) · Ra0.64±0.12. For Ra ≥ 6.0 × 1011

a constant precession speed is found of ωsc = 0.079. Note that a Ek dependence is not
investigated.

The thickness of the wall mode is measured using the uzRMS-dip definition and show a
wall thickness of δ = ((7± 2)× 10−5) ·Ra0.21±0.02. The thicknesses based on the TRMS and
〈uθ〉 = 0 show a kink in thickness around Ra = 1.4× 1011, which is a hint of a change in flow
behavior around this Ra.

The coherence (R2) of the wall mode is analyzed using a sinusoidal fit. The wall mode coher-
ence decreases as a function of Ra for Ra ≤ 1.4× 1011, after which is increase to a constant
value. The fluctuations in the degree of coherence of the wall mode in time are compared
with the Nusselt number (heat transport) fluctuations in time in the wall mode region. These
graphs show large degrees of similarity: large Nu when the wall mode is coherent and low Nu
when the wall mode is not coherent. Cross-correlation calculations show that the Nu-signal
has a 5 ± 3 time units delay compared to the coherence (R2) signal, saying that a coherent
wall mode is necessary to facilitate large heat transport.

The overall Nusselt number is calculated and is in line with the simulation results of De Wit
et al. [2020] and the experimental results of Cheng et al. [2015]. The local Nusselt number
of the wall and bulk region are calculated using the uzRMS-dip and 〈uθ〉 = 0 definitions as
boundaries between both regions. For Ra ≥ 1.4 × 1011, the local Nu of the bulk coincides
with the Nu of periodic simulations. The 〈uθ〉 = 0 definition results in local Nu which are
larger for both the bulk and wall region, indicating that this definition underestimates the
thickness of the wall region. Underestimation of the sidewall boundary layer thickness results
in the separation between bulk and wall inside the wall mode, resulting in an, on average,
larger Nu for both the bulk and the wall region. The power-law fitting of the Nusselt number
shows a Rayleigh number dependence that agrees with previous studies.

For low Ra, a constant Nu value is observed in the wall region, whereas a strong increase of
heat transport in the bulk is observed. For Ra ≥ 1.4 × 1011, both the Nu of the wall and
the bulk increase. This change of behavior is related to the radial transport in the top and
bottom Ekman boundary layer. For Ra ≤ 1.4 × 1011 a negative radial velocity is observed,
i.e. fluid is subtracted from the wall regions and through the top and bottom Ekman layer
pumped into the bulk, resulting in the strong increase of Nubulk.

The velocity structures close to the sidewall boundary are fitted using a sinusoidal func-
tion, damped radially inward. The fitting parameters show a constant wall mode amplitude
and damping factor for Ra ≤ 1.4 × 1011. The amplitude and damping both increase for
Ra ≥ 1.4×1011. The same fitting is applied for the isolated wall mode in the azimuthal direc-
tion, showing the same behavior, with a change in parameter relation around Ra = 1.4×1011.
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In this study also results of simulations with stress-free sidewall boundaries are discussed.
For low Ra, the results show the same behavior, except for the narrower sidewall boundary
layer, due to the stress-free sidewall condition. For large Ra the wall mode precesses in
the opposite direction, with a double ringlike flow structure in azimuthal direction. Because
just two simulations with stress-free sidewall conditions are performed, these results are only
evaluated qualitatively.

The radial and azimuthal velocity fields in the bulk also show a change in flow behavior,
around Ra = 2.1 × 1011. Below this Ra, the radial velocity field consists out of two local
inward jets which are affected by rotation. For larger Ra, both the azimuthal and radial
flow structures have a sinusoidal character. The flow profiles of the bulk are compared with
theoretical geostrophic bulk modes and show the largest degree of similarity when the effec-
tive aspect ratio of the bulk is used. The fitting of the bulk mode using sinusoidal functions
showed, except the amplitude, no large Ra dependence on the parameters, indicating that
the bulk mode structure is Ra independent.

In this study several changes in the flow dynamics are observed around Ra = 1.4 × 1011:
the radial velocity in the Ekman boundary layer changes sign (fig. 4.9), the power-law of the
inner Nu dependence on Ra changes (fig. 4.11), the wall mode amplitude starts increasing
(fig. 4.14a) and the bulk mode has a periodic character for Ra > 1.4×1011 (fig. 5.1). Besides
that, the simulations with stress-free sidewall boundaries show different character forRa being
larger or smaller than Ra = 1.4 × 1011 (section 4.2). These transitions of behavior coincide
with the change from columnar flow structures to plumes, which takes, in our parameter
space, place around RaCP ≈ 1.1×1011 (eq. (2.26)), suggesting the changes mark the changes
from the columnar regime to plumes.

6.2 Outlook

Although giving a better insight into the process of Rotating Rayleigh-Bénard Convection in
a slender cylinder, this research leaves issues unanswered and raises even more questions.

The research on the precession speed shows a precession frequency which is dependent on
the Ra until a maximum velocity is reached (fig. 4.3), which can be explained by making
use of a force balance, suggesting a dependence of the maximum velocity on the aspect ratio
Γ. This dependence should further be researched. What should be taken into account is the
fact that by increasing Ra the thermal forcing becomes more and more dominant over the
rotation forces (Ek), ending finally in the regime of non-rotating convection (section 2.5).
Further, there is the interplay of the wall with the bulk, which could influence the maximum
precession velocity.

In this research two simulations with stress-free sidewall conditions are performed, which
show different flow structures: different uθ profile and wall modes precessing in the opposite
direction (section 4.2). Further research could be focused on this change in uθ and locate the
Rayleigh number at which the transition from flow structure takes place, which could be the
same Ra at which the transition in flow behavior takes place for no-slip sidewall conditions.
In the continuation of the research on the effect of the wall conditions, a stress-free top and
bottom boundary can be used, which probably will have a significant effect on the Ekman
boundaries and so on the wall mode.

For all Ra a prominent wall mode is observed, whereas the bulk mode is only observed for
large Ra. For large Ra the wall mode amplitude increases with increasing Ra. An unan-
swered question is if the wall mode causes the bulk mode or vice versa.

The two-lobe structure in the wall mode could be the source of the bulk mode: the locations
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where the positive and negative parts of the wall come together are the locations of the radial
inward velocity field, which could be a remnant of the jet, which was observed for low Ra.
Another explanation for the bulk mode is that the four-lobe structure in the bulk flow is a
stable quadropolar structure. To check which principle drives the bulk flow, new simulations
can be performed with a larger aspect ratio Γ. This larger Γ results in a larger azimuthal
wavenumber, e.g. a four-lobe structure in the wall mode. If the azimuthal wavenumber of
the bulk does not increase with the azimuthal wavenumber of the bulk, the bulk mode is
more likely to be a stable quadrapole instead of an effect of the wall mode. Γ could also
be further increased, which should finally result in the same results as observed for periodic
simulations.
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Appendices

A Fitting parameters of velocity profiles

(a) Wall mode amplitude (Az) as function of Ra. (b) Radial wavenumber (Bz) as function of Ra.

(c) Damping (Dz) as a function of Ra.

Figure A.1: Fitting parameters of the vertical velocity profile as function of Ra at z = 0.25, 0.50
and 0.75.

Ra Ar,0.50 (×103) Br,0.50 Dr,0.50 Ar,av (×103) Br,av Dr,av

2.1× 1011 1.5 33.9 7.3 1.5 33.6 6.4
3.2× 1011 2.5 34.3 7.7 2.5 33.8 6.6
4.3× 1011 4.7 34.8 11.0 4.9 34.2 11.1
6.0× 1011 4.8 34.4 12.0 4.7 33.9 10.4
9.5× 1011 5.4 34.6 10.5 5.2 34.1 8.5
1.5× 1012 8.5 35.1 12.8 8.5 34.3 10.8

Table A.1: Amplitude (A), radial wavenumber (B) and damping (D) of the radial velocity profile
at z = 0.50 and the average of z = 0.25 and z = 0.75 (Ar,av, Br,av and Dr,av).
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B Root mean square of velocity profiles

(a) uθRMS at z = 0.25 (b) urRMS at z = 0.25

Figure B.1: Root mean squares of the azimuthal and radial velocity for different Rayleigh numbers
at z = 0.25.

C Nusselt numbers

C.1 Nusselt number calculation

The Nusselt numbers are calculated using 5 different Nu definitions (section 2.4) and aver-
aged. This is done by calculation the standard deviation σNu of each Nu definition. The
auto-correlation is calculated, to find the decorrelation time and the number of decorrelation
times (Ndecor). The number of decorrelation times is used as the amount of independent mea-
surements, from which the uncertainty of the individual Nusselt numbers can be calculated
using Taylor [1997]:

∆Nu ≡ σNu√
Ndecor

. (C.1)

Using ∆Nu the weighted average Nu and its uncertainty ∆Nu are calculated using

Nu ≡
∑
i wiNui∑
i wi

, ∆Nu ≡ 1√∑
i wi

, (C.2)

with wi ≡ 1
∆Nu2

i
being the weight corresponding to Nusselt number Nui. This method is not

totally correct, because the Nusselt numbers are, strictly speaking, not mutually independent.
Nonetheless, this method is used, as being the best approximation for the average Nusselt
number and its uncertainty. The uncertainty of the Nusselt number of the bulk is determined
in the same way, where only one Nusselt number is evaluated.
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C.2 Nusselt numbers: no-slip sidewall boundaries

Ra Nu σNu Ndecor ∆Nu Nu ∆Nu
Volume Average

Wall z = 0
Wall z = 1

Viscous dissipation
Thermal dissipation

9.9× 1010

104.9
106.6
106.9
104.2
105.1

17.7
8.2
9.5
17.2
10.5

17.0
18.1
15.9
17.0
17.2

4.3
1.9
2.4
4.2
2.5

106.0 1.2

Volume Average
Wall z = 0
Wall z = 1

Viscous dissipation
Thermal dissipation

2.1× 1011

195.4
196.5
198.3
193.4
192.2

49.0
15.8
17.9
46.8
25.3

26.1
11.4
10.8
25.9
26.7

9.6
4.7
5.4
9.2
4.9

195.3 2.6

Volume Average
Wall z = 0
Wall z = 1

Viscous dissipation
Thermal dissipation

6.0× 1011

387.1
377.5
379.1
384.1
371.6

110.0
16.5
18.3
98.8
39.2

23.0
15.9
7.9
21.8
22.2

22.9
4.1
6.5
21.1
8.3

377.4 3.2

Volume Average
Wall z = 0
Wall z = 1

Viscous dissipation
Thermal dissipation

9.5× 1011

426.3
434.4
434.8
419.8
416.8

113.9
19.8
15.5
101.4
38.2

11.8
7.3
4.6
11.9
12.0

33.2
7.3
7.2
29.4
11.0

431.0 4.5

Volume Average
Wall z = 0
Wall z = 1

Viscous dissipation
Thermal dissipation

1.5× 1012

559.0
553.9
555.8
551.6
533.3

133.8
17.6
18.0
111.1
39.1

11.3
11.6
7.3
11.0
11.0

39.8
5.2
6.6
33.5
11.8

552.3 3.8

Table C.1: Nusselt numbers and uncertainties of the different simulations with no-slip sidewall
conditions.

Ra Nuinner σNuinner Ndecor ∆Nuinner
9.9× 1010 57.1 12.2 10.8 3.7
2.1× 1011 123.9 41.0 21.3 8.9
6.0× 1011 168.8 72.2 37.5 11.8
9.5× 1011 209.2 88.6 19.7 20.0
1.5× 1012 236.6 118.6 197.5 8.4

Table C.2: Inner Nusselt numbers and uncertainties for no-slip sidewall conditions.

53



C.3 Nusselt numbers: stress-free sidewall boundaries

Ra Nu σNu Ndecor ∆Nu Nu ∆Nu
Volume Average

Wall z = 0
Wall z = 1

Viscous dissipation
Thermal dissipation

5.0× 1010

59.2
60.1
59.4
59.5
59.0

4.5
3.0
2.7
4.5
3.4

11.9
11.2
26.4
11.9
21.1

1.3
0.9
0.5
1.3
0.7

59.5 0.2

Volume Average
Wall z = 0
Wall z = 1

Viscous dissipation
Thermal dissipation

3.2× 1011

321.7
315.7
313.0
314.7
307.1

55.4
13.2
11.8
49.3
17.7

35.6
8.8
4.7
33.3
24.6

9.3
4.4
5.4
8.5
3.6

313.0 2.3

Table C.3: Nusselt numbers and uncertainties of the different simulations with stress-free sidewall
conditions.

Ra Nuinner σNuinner Ndecor ∆Nuinner
5.0× 1010 15.0 2.4 7.5 0.9
3.2× 1011 72.3 30.3 11.4 10.1

Table C.4: Inner Nusselt numbers and uncertainties for stress-free sidewall conditions.
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D Rotation averaged velocity profiles

D.1 Rotation averaged velocity profiles: no-slip

Ra= 5.0× 1010

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.1: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 5.0× 1010.
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Ra= 7.0× 1010

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.2: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 7.0× 1010.
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Ra= 9.9× 1010

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.3: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 9.9× 1010.
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Ra= 1.4× 1011

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.4: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 1.4× 1011.
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Ra= 2.1× 1011

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.5: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 2.1× 1011.
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Ra= 3.2× 1011

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.6: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 3.2× 1011.

60



Ra= 4.3× 1011

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.7: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 4.3× 1011.
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Ra= 6.0× 1011

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.8: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 6.0× 1011.
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Ra= 9.5× 1011

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.9: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 9.5× 1011.
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Ra= 1.5× 1012

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.10: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 1.5× 1012.
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D.2 Rotation averaged velocity profiles: stress-free

Ra= 5.0× 1010 Stress-free

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.11: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 5.0× 1010 with stress-free sidewall conditions.
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Ra= 3.2× 1011 Stress-free

(a) z = 0.25, uz (b) z = 0.25, ur (c) z = 0.25, uθ

(d) z = 0.50, uz (e) z = 0.50, ur (f) z = 0.50, uθ

(g) z = 0.75, uz (h) z = 0.75, ur (i) z = 0.75, uθ

Figure D.12: Rotation averages velocity profiles for the velocities in vertical (column 1), radial
(column 2) and azimuthal (column 3) direction at z = 0.25 (row 1), z = 0.50 (row 2) and z = 0.75
(row 3) for Ra = 3.2× 1010 with stress-free sidewall conditions.
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