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Abstract

Without access to full quantum error correction, other kinds of measures have to be invoked to mitigate
error propagation in quantum computers, in order to build the bridge between few-qubit noisy quantum
computers, and full fault-tolerant quantum processors employing & 105 qubits and a full-fletched quantum
error correction code. This intermediate era, called the Noisy Intermediate-Scale Quantum (NISQ) era,
poses some demanding hurdles regarding how noise is sufficiently mitigated on a quantum computer.

Hybrid quantum computers, adopting both quantum computing and classical computing, are expected to
be at the center of the NISQ era. The Variational Quantum Eigensolver (VQE) algorithm has proven to
be an excellent choice for the benchmarking the performance of a hybrid quantum computer, establishing
a strong foundation to build up from. With the addition of post-measurement error mitigation techniques
that do not require additional overhead qubit resources, VQE can perform certain quantum chemistry
calculations within chemical accuracy, the universal agreed upon measure of accuracy in chemistry, up to
8 qubits.

Quantum simulators based on encoding qubit states in the state manifold of trapped ultracold Rydberg
atoms are explored. Their strong long range interactions, high degree of control and their high fidelities
(99%+) make them powerful candidates for the realisation of a quantum computer. They are shown to
span the universal set of quantum gates, when controlled by laser pulses, and they allow for many other
gate operations to be performed directly without a decomposition in this universal basis. Because of
their long range interactions, they are also favourable candidates for the implementation of multi-qubit
entanglement operations.

The viability of perfect state transfer (PST) as a robust mechanism to transfer quantum states with unit
fidelity is also investigated. It is shown that a system of Rydberg-dressed qubits interacting through
resonant dipolar interactions are able to facilitate PST, and exact solutions for the underlying conditions
are calculated for N = 2, 3 and 4 qubits.
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1 Introduction

Up until recently, Moore’s law has been able to predict the growth of the number of transistors that
fit in an integrated circuit to great accuracy [1]. This process of continuously scaling down transistors
is about to hit its physical limits, however, as the size of such a transistor approaches the wavelength
of the electrons inside. The number of bits stored inside a circuit therefore has a limit. A computer
whose elementary components are made of quantum objects and their interactions, is able to effectively
evade this problem. Such computers, referred to as quantum computers, and envisioned by Richard
Feynman [2], are expected to become of vital importance in many scientific areas in the future. The
most optimistic view is that eventually, quantum computers that employ millions of qubits in a robust
fashion, will completely outperform classical computers in many areas such as the simulation of the time
evolution of quantum systems [3][4], or finding the energy eigenstates of a certain quantum system, but
will also be able to solve more fine-tuned problems like the factorisation of large numbers into its prime
constituents, such as Shor’s algorithm, or the efficient search of an entry in a long list, such as Grover’s
algorithm [5][6].

Though, in the present, most quantum computing experiments are performed on small simulators. Modern
quantum computing calculations employ . 12 qubits to perform benchmarking experiments, so that
their performance can be compared to their classical counterparts [7][8][9][10]. Such benchmarks make a
trade-off between the complexity of the quantum model that is to be studied, and the computational
complexity. The inherent noise sensitive nature of quantum computers is a great challenge to tackle, and
despite many efforts to mitigate these errors, both theoretical and experimental, this erroneous behaviour
still renders most calculations inaccurate with respect to established measures such as chemical accuracy.
In the future, however, it is expected that a full Quantum Error Correction (QEC) code is available that
will make quantum computing with a high number of gates and qubits feasible, possibly employing on
the order of millions of qubits and gate operations [11].

The intermediate time period between few-qubit quantum computing and a fully fault-tolerant one is
coined the Noisy Intermediate-Scale Quantum (NISQ) era, popularised by John Preskill [12]. In the
early stages of this era, quantum computers employing . 100 qubits will outperform classical computers
at certain tasks, while for bigger system sizes, the errors that emerge during calculations can not be
mitigated to give reliable results yet [13]. Yet, quantum advantage will break down at certain noise scales
due to the sensitivity of quantum systems to decoherence effects. In later stages of the NISQ era, it may
even be possible to push the qubit register size to ∼ 105 qubits [14]. In figure 1.3, an overview is given of
the qubit number line that links each relevant quantum computing (QC) era to the approximate number
of qubits that is expected to be employed, thus also serving as a chronological order.

Figure 1.1: A logarithmically scaled qubit number line, indicating what qubit number regimes belong to
which quantum computing era [14].

NISQ era technology serves as a bridge to cross the virtual gap between the quantum computational era
of today and the future where full fault-tolerant quantum computing is expected to be available. It is
theorised that the first demonstrations of practical algorithms that provide a significant computational
supremacy over classical computers, will be calculations of fermionic problems on a hybrid quantum
computer. Such a computer separates an algorithm into a part that is efficiently calculated on a
classical computer, and a calculation that is efficiently performed on a quantum computer. This way, the
computational burden of an algorithm can be efficiently distributed, giving an advantage. The quantum
processing unit (QPU) endows the hybrid quantum computer with a quantum advantage that originates
from the specific properties of the research problem.
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Showcasing the computational superiority of a hybrid quantum computer over a classical computer is
done by running variational quantum algorithms such as the Variational Quantum Eigensolver (VQE) or
Quantum Approximate Optimisation Algorithms (QAOA), few of the key cornerstones that belong to the
NISQ era [15][16][17]. The former of the both, VQE, is a rich algorithm that employs the variational
principle in quantum mechanics by forming an ansatz of a wavefunction, encoded in qubits, and then
minimalising its corresponding eigenenergy with respect to some system Hamiltonian. For this, Hartree-
Fock (HF) theory is chosen, avoiding more computationally taxing theories such as Coupled Cluster (CC)
or Full Configuration Interaction (FCI) theory, while still providing an excellent framework in which
quantum chemistry can be understood and tested [18]. If the state of a quantum system is rigorously
mapped onto qubits, and its Hamiltonian or dynamics mapped to a series of unitary quantum gates, then
performing the VQE algorithm corresponds to finding the ground state eigenenergy of that system, as
well as its associated wavefunction[19][20]. A lot of useful information can be extracted from this, such as
chemical reaction rates [21]. The quantum phase space search that is efficient on a QPU, and the classical
optimisation that is efficiently performed on a classical computer, directly feed into each other, clearly
demonstrating the hybrid nature of the VQE algorithm. This principle is shown in figure 1.2.

Figure 1.2: A representation of the quantum phase space search and the classical optimisation algorithm
forming a feedback loop, showing the hybrid nature of the VQE algorithm [22][23].

This thesis focus on ultra-cold Rydberg atoms trapped in a lattice, which provide an excellent way of
implementing a quantum circuit. Not only are they, through laser interactions, able to directly simulate
condensed matter systems such as the quantum Ising model and lattices on which particles are trapped
with SU(N) degree of freedoms, serving as an analog quantum simulator [24], but they also span the set
of universal quantum operators, so that any quantum circuit can be decomposed by implementation of
precise Rydberg controls [25]. Additionally, on average, they have high initialisation and read-out fidelities,
and coherence times on par with other quantum computer types such as those based on superconducting
(SC) qubits or ion traps (IT) [26][27][28]. For certain qubit implementations, the fidelities and coherence
times actually far exceed even those of said SC or IT qubits [29][30].

Figure 1.3: Ultracold Rydberg atoms can be loaded onto a 2D array, carrying qubit states in their state
manifold. All qubit interactions can be experimentally controlled, and their role (ancilla/computational

qubit) can be assigned a priori [25].
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Instead of using single-qubit and two-qubit quantum gates only, it is compelling to also look at multi-qubit
entanglement operations that could provide a speed-up of the convergence of the VQE algorithm. Because
of the long range interactions between Rydberg atoms, generating long range entanglement and state
transfer is a natural option for Rydberg-based QPUs. One specific example is perfect state transfer
(PST), that allows the transfer of a quantum state along a one-dimensional qubit chain with unit fidelity.
Such dynamics are allowed under very specific conditions, such as those provided by the Krawtchouk
chain Hamiltonian. Engineering this Hamiltonian could provide unique insights in the transportation of
quantum states, such as multi-qubit entanglement, entanglement distribution, or the transportation of
states between different QPUs [31][32]. It could also boost the rate of convergence of the VQE algorithm
[33], for which certain simulations have already provided clues [34].

In section 2, the theory of the VQE algorithm is explained. Many variations of the implementation of the
algorithm exist, but the formalism that has been used in the recent largest quantum chemical experiment
up to date by the Google AI group is taken [9]. Section 3 introduces the concept of errors in the context of
quantum computing, and several quantities are discussed that can be used to quantify error propagation
and the preservation of a pure qubit state and entanglement. Several types of error mitigation are then
introduced in section 4, and their relation to the VQE algorithm is emphasised. In section 5, the physics
of ultracold Rydberg atoms trapped in an optical lattice is presented, and how these atoms can be used
to realise qubits and quantum gates. Then, in section 6, the theory behind PST is elaborated on. From
basic principles, requirements are constructed that are needed for PST to take place along a 1D qubit
chain. The results of several simple simulations of PST along small sized qubit chains is given in section
7, as well as the chain length specific conditions that have to be met. Section 8 presents an overview
of this thesis. Several conclusions are drawn about the viability of VQE and PST on a Rydberg-based
platform, and a future outlook is presented.
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2 Hartree-Fock through VQE

2.1 The VQE algorithm

2.1.1 Introduction to quantum chemistry

Hartree-Fock theory is a mean-field theory, used in quantum chemistry, that provides a framework to
find the stationary ground state wavefunction and its associated eigenenergy [35][36][37]. Central to
Hartree-Fock theory are molecular energy problems, such as finding the lowest eigenstate of a molecular
Hamiltonian, given in Hartree units by

H = −
∑
A

∇2
A

2mA
−
∑
i

∇2
i

2
−
∑
A

∑
i

ZA

|~ri − ~RA|
+

1

2

∑
A 6=B

ZAZB

|~RA − ~RB |
+

1

2

∑
i6=j

1

|~ri − ~rj |
. (2.1)

Here, capital letters denote nuclei and lowercase letters denote electrons. mA is the mass of nucleus A,
ZA is the charge of nucleus A, ~RA is the position vector of nucleus A and ~ri is the position vector of
electron i. Hartree-Fock employs the Born-Oppenheimer approximation, which assumes that the nuclei
are stationary and that the wavefunction Ψ of the molecule is separable:

Ψ = ΨelecΨnucl, (2.2)

such that Ψelec is the electronic wavefunction for a fixed nuclear configuration with wavefunction Ψnucl

[38]. As nuclei are heavier than electrons, the kinetic energy of the former can be neglected. Additionally,
the nuclei-nuclei repulsions are captivated into a single repulsion operator Vnn. The resulting Hamiltonian,
still in first quantisation, can be rewritten in the second quantisation formalism. This second quantised
molecular Hamiltonian is given by

H =
∑
ij

hija
†
iaj +

∑
pqrs

Vpqrsa
†
pa
†
qaras + Vnn. (2.3)

As per usual, the operators a†x and ax are creation and annihilation operators of fermionic modes, filling
and emptying spin-orbital x respectively. A filled orbital is referred to as occupied, while an empty orbital
is referred to as virtual. These operators satisfy the usual fermionic anti-commutation relationships

{ai, aj} = {a†i , a
†
j} = 0, (2.4)

{ai, a†j} = δij . (2.5)

The terms [h]ij = hij and [V]pqrs = Vpqrs are called the one-electron integrals and two-electron integrals
respectively. The former describe the electrons’ kinetic energy and their potential energy in the potential
landscape induced by the atomic nuclei. The latter describe the electron-electron repulsion energies.
These integrals are given by

hij =

∫
χ∗i (~r)

−∇2

2
−
∑
A

ZA

|~r − ~RA|

χj(~r) d~r, (2.6)

and

Vpqrs =
1

2

∫∫
χ∗p(~r1)χ∗q(~r2)χs(~r2)χr(~r1)

|~r1 − ~r2|
d~r1 d~r2, (2.7)

where the spin-orbitals χ are found by diagonalising the one-body integrals [h]ij , described in some basis.
Usually an STO-nG basis is taken, as their Gaußian forms alleviate some of the taxing computations.
The most common bases are STO-3G, STO-3G* and STO-6G [39][40].

2.1.2 The canonical approach to Hartree-Fock

One of the main pillars of Hartree-Fock theory is finding a solution to the time-independent Schrödinger
equation by enforcing an anti-symmetrised product state as an ansatz, as is required by fermionic rules.
Because of the nature of the mean field theory, this puts equal weight to every electron, each of which
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feels only the mean potential induced by all other electrons. Let {ϕi} be a set of orthogonal spatial
wavefunctions and let {χi} be a set of mixed spatial one-electron wavefunctions, formed from linear
superpositions of the old wavefunctions:

χi =
∑
j

cijϕj . (2.8)

Then, a state ansatz would be a Slater determinant type wavefunction formed from the anti-symmetrisation
of the new mixed wavefunctions. Thus, the wavefunction |ψ(r1, · · · , rn)〉 that is to be variationally
optimised, is given by

|ψ(r1, · · · , rn)〉 =
1√
n!
An
(
χ1(r1) · · ·χn(rn)

)
, (2.9)

where An(·) is the complete anti-symmetriser of dimension n. It is given by its tensor definition over a
discrete set of functions fk(x):

An(f1(x1) · · · fn(xn))
def
= εi1,··· ,inf1(xi1) · · · fn(xin), (2.10)

where ε·,·,· is the totally anti-symmetric permutation tensor, i1≤j≤n ∈ {1, 2, · · · , n − 1, n}, and where
Einstein summation over the indices ik is implied. Collapsing this state onto the position bra vector
reveals its more familiar form

〈r|ψ〉 = 〈r|
n∏
i=1

a†i |0〉 =
1√
n!

det



χ1(r1) · · · χ1(rn)

...
. . .

...
χn(r1) · · · χn(rn)


 . (2.11)

The representation of this antisymmetrised wavefunction as a determinant over the new basis functions
gives this wavefunction the name ’Slater determinant’. For the VQE algorithm, it is beneficial to
work with such Slater determinant type wavefunctions. In the context of scaling up hybrid algorithms
in preparation of the NISQ era, this offers simplifications to highlight the benchmark performance.
Advantages include:

1. For N qubits, the number of samples for energy estimation drops from O(N4) to O(N2).

2. Circuits can be contacenated into one circuit without changing the number of quantum gates.

3. The 1-RDM correlation functions 〈a†iai〉 for a Slater-type wavefunction, defined later in section
2.2.3, can be purified.

4. The gradient of the energy with respect to the variational parameter is directly accessible from the
1-RDM.

Suppose that N spatial molecular orbital functions ϕp(r) are uniquely encoded in N qubit states. Then
a quantum circuit can implement an orbital basis rotation according to (2.8) as follows:

ϕ̃p(r) =

N∑
q=1

[eκ]pqϕq(r). (2.12)

Here, κ is an N × N anti-Hermitian matrix that encodes the information about this basis rotation.
Anti-Hermiticity ensures that the rotation is unitary so that a quantum circuit can simulate this. To be
more precise, the circuit has to implement an SO(N)-type rotation among the core orbtitals rather than
an SU(N)-type, but since SU(N) ⊃ SO(N), this can be achieved nonetheless.

This basis rotation can be encoded by the exponentiation of free fermion dynamics, as a result of work
delivered by David Thouless [41]. For an initial state |η〉, the Slater determinant will then be given
by

|ψ(κ)〉 = exp

∑
pq

κpqa
†
paq

 |η〉 . (2.13)
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In order to illustrate why one-body fermionic operators generate a unitary operator that prepares this
Slater determinant, it must be noted that these operators form a closed Lie algebra with Lie bracket
relationships [

a†paq, a
†
ras

]
= δqra

†
pas − δpsa†raq. (2.14)

This is the adjoint representation of elements of the algebra κ. Its commutator with creation and
annihilation operators is given by [

κ, a†p

]
= a†qκpq,

[
κ, ap

]
= aqκ

∗
pq. (2.15)

These operators transform under this basis rotation to

eKa†pe
−K =

∑
q

a†q[e
κ]qp, eKape

−K =
∑
q

aq[e
κ]∗qp, (2.16)

according to the Baker-Campbell-Hausdorff (BCH) formula. Here, eK is a representation of eκ. Any
rotation in the new basis can be rewritten as a similarity transform of operators in the old basis, such

that any wavefunction |ψ〉 def
=
∏n
i=1 a

†
i |0〉 can be linked to a new wavefunction |φ(κ)〉 according to

|φ(κ)〉 = eKa†1e
−KeKa†2e

−K · · · eKa†ne−K |0〉 = eK |ψ〉 , (2.17)

where the identity e−KeK = I and the invariance of the vacuum state under basis rotations e−K |0〉 = |0〉
were used. This concludes the proof that a Slater determinant can be generated by implementing eK as a
series of quantum gates in the quantum circuit Q, with an initial computational basis state.

Unlike qubit operators, fermionic operators do not commute in general. Therefore one would expect

that the implementation of the unitary Uκ = exp
(∑

pq κpqa
†
paq

)
can only be achieved by methods such

as Trotterisation. This is not necessary, however, and it is possible to map this operator to a set of
two-qubit operators, the amount of which is determined solely by the system size and number of electrons
[42].

2.1.3 The variational principle

The variational principle of quantum mechanics suggests that one can find the ground state energy Egs
of a Hamiltonian H by guessing a wavefunction that depends on a set of variational parameters, then
finding for which parameter values this energy is globally minimised by some optimisation method. A
usual formulation is analogous to the minimisation of a cost function, in this case the ground state energy.
For any normalised wavefunction |Ψ〉, the variational principle states that

〈H〉|Ψ〉 = 〈Ψ|H |Ψ〉 ≥ Egs. (2.18)

The set of parameters that parameterise the quantum circuit Q can be updated through a classical feedback
loop. Many such algorithms exists, such as the simultaneous perturbation stochastic approximation
(SPSA) algorithm that has been employed by IBM for their largest quantum chemistry experiment up to
date [22]. In the next section, a more robust algorithm called Hessian optimisation is presented that does
not depend on a randomly generated walk through parameter space.

Another formulation of the variational principle is that the energy of a state is stationary with respect to
first order perturbations in that wavefunction:

〈δψ|H |ψ〉 = 0. (2.19)

Here, 〈δψ| is a first order change in the wavefunction 〈ψ| [9][43]. Given the complete set of orbital
functions, of which the ones used for the product wavefunction are labelled by {i} and the ones unused
by {a}, this change is expressed as

〈δψ| = 〈ψ| a†iaaζ, (2.20)

where ζ is the first order change to an orbital χi. This changes (2.19) into the condition

〈ψ| a†iaaH |ψ〉 = 0. (2.21)

Every term in (2.19) can be evaluated by Wick’s theorem given that the state |ψ〉 is a product state [44].
In Hartree-Fock theory, this equation naturally leads to a self-consistent field theory.
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2.1.4 Hessian optimisation

The stationarity condition of the variational principle states that small disturbances in the wavefunction
Ψ̃ should not lead to a change in energy to lowest order in the disturbance parameter. Following work by
W. Kutzelnigg [45], this can be reformulated so that the equality

δẼ = 〈Ψ̃|H |Ψ̃〉 = 0 (2.22)

holds with respect to a unitary basis rotation U = eR, where R is an anti-Hermitian generator. Using the
BCH formula, this stationarity condition can be rewritten in the following way: a variation in the energy
Ẽ is given by

Ẽ′ = Ẽ + 〈Ψ̃| [H, R] |Ψ̃〉+
1

2
〈Ψ̃| [[H, R], R] |Ψ̃〉+ · · · , (2.23)

where stationarity is implied by the vanishing of the first order correction:

〈Ψ̃| [H, R] |Ψ̃〉 = 0 ∀R = −R†. (2.24)

Suppose that a quantum circuit prepares a wavefunction Φ that does not satisfy (2.24) for some fixed
generator R, such that

AR
def
= 〈Φ| [H, R] |Φ〉 6= 0. (2.25)

The wavefunction Φ can then be updated, keeping R fixed, by the following transformation

Ξ = e−fRRΦ, (2.26)

for an associated scalar fR. The energy evaluation for this new wavefunction can be found to second
order according to the BCH expansion

EΞ = 〈Ξ|H |Ξ〉 = 〈Φ| efRRHe−fRR |Φ〉 = 〈Φ|
(
H+ fR[H, R] +

1

2
f2
R[[H, R], R] + · · ·

)
|Φ〉 . (2.27)

By stationarity, the derivative of the energy with respect to this update parameter fR should vanish to
first order. This is very similar to the Newton-Raphson optimisation process. Thus,

dEΞ

dfR
= 〈Φ|

(
[H, R] + fR[[H, R], R] + · · ·

)
|Φ〉 = 0. (2.28)

If one defines a new quantity,

BR
def
= 〈Φ| [[H, R], R] |Φ〉 , (2.29)

then the solution of (2.28) is

fR = −AR
BR

, (2.30)

which does not vanish, leaving the transformation (2.26) non-trivial, unless the right stationary ground
state wavefunction has been found.

It is easier, however, to consider updating the components of the generator R itself individually, because
this directly correlates to particular changes in the κ-matrix, which eventually determines the gate

rotations that have to be tuned experimentally. Let the generator R(0) def
=
∑
pq R

(0)
pq a†paq be the starting

point of the Hessian optimisation. Then for every iteration step k, every entry to this generator is updated
by adding a multiplicative factor of fpq. Let the gradient at step k be given by

g(k)
pq =

∂E

∂Rpq

∣∣∣∣∣
R(k)

, (2.31)

and let the Hessian matrix at step k be given by

H(k)
pqrs =

∂2E

∂Rpq∂Rrs

∣∣∣∣∣
R(k)

. (2.32)
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From equation (2.27), the gradient and Hessian can be rewritten in terms of quantities that depend on
the sampled terms that comprise the 1-RDM. Then, they can be written as

g(k)
pq = 〈Φ| [H, a†paq] |Φ〉 (2.33)

and
H(k)
pqrs = 〈Φ| [[H, a†paq], a†ras] |Φ〉 . (2.34)

The augmented Hessian equation, also known as the AH equation or the augmented Hessian Newton-
Raphson method, gives the solution for these update parameters [46][47]. It is given by the matrix
equation (

0 g(k)>

g(k) H(k)

)(
1
fpq

)
= ε

(
1
fpq

)
. (2.35)

The wavefunction update is regularised by imposing a maximum update constraint, characterised by a
small parameter γ. If the update parameters fpq are smaller than γ, they remain the same, but if they
are greater than γ, their influence will be decreased so that the solution convergence is controlled. The
true update is then given by

fpq,true =

{
fpq if fpq ≤ γ

γ
max fpq

fpq if fpq > γ
. (2.36)

2.2 The quantum circuit

2.2.1 Initialisation

The quantum circuit that has been used for this experiment is different from ones that have been used
before. Let N be the number of spatial orbital basis functions. Then this circuit uses N qubits to
encode these orbitals. First, the molecular Hamiltonian (2.3), without the electron-electron interactions,
is diagonalised. The influence of these interactions on the eigenenergy of the ground state re-enter the
Hartree-Fock calculations through the V terms in the energy estimation of the molecular Hamiltonian.
The eigenfunctions of this new diagonal Hamiltonian are the spatial orbitals that are uniquely mapped to
qubits. Typically, the orbitals are ordered by their energy eigenvalues, from lowest to highest. Then, each
qubit state will represent the occupancy number of the orbital that it represents, seen in figure 2.1. The
state |0〉 therefore represents an empty orbital, also called a virtual orbital, while the |1〉 state denotes a
filled orbital.

Figure 2.1: The quantum circuit that mixes the orbital states, for the artificial molecule H12. Variational
parameters control these mixing angles, and are variationally optimised to prepare the ground state

Slater determinant [9].

If the molecule contains 2η electrons, then the first η qubit states will be initialised to be equal to |1〉.
The remaining N − η qubit states will be initialised as |0〉. The reason why only half of all electrons need
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to be simulated is because HF theory is an effective mean field theory that does not refer to spin. It can
therefore be assumed that all electrons form singlet configurations in the new orbital states. Every pair
of spin-orbitals that share the same spatial orbitals can therefore be described by just a single qubit. If
the state of one electron is known, then the state of the other with which it shares a singlet state can be
deduced. If the electron states were mapped one-to-one onto qubit states, then half of all qubits would
contain redundant information.

Typically, electrically neutral molecules are simulated rather than ions, though the latter certainly have
interesting properties, so that η = N

2 . The initial state |init〉 is then given by

|init〉 = |1〉⊗η ⊗ |0〉⊗(N−η) def
= |η〉 . (2.37)

Here, the state |η〉 represents the initial state as a computational basis state. From this state vector, the

entire Hilbert space H = C⊗2N can be probed to find a suitable Slater determinant type wavefunction to
approximate the electronic ground state within the framework of Hartree-Fock.

2.2.2 The Givens rotation sequence

The principal goal of the quantum circuit is to mix the orbitals so that a Slater determinant is prepared
in the new basis. A set of Givens rotations is able to achieve such mixing.

Figure 2.2: The decomposition of a Givens rotation into a series of unitary quantum gates. The orange
gates θ represent a Z-rotation given by exp (−iθZ/2) [9].

The Givens rotation gate θ is given in figure 2.2. The matrix representation of
√
iSWAP gate is given

by

√
iSWAP =


1 0 0 0
0 1√

2
i√
2

0

0 i√
2

1√
2

0

0 0 0 1

 , (2.38)

and the matrix representation of the RZ(α) gate (orange box) is given by

RZ(α) = e−iαZ/2 =

(
e−iα/2 0

0 eiα/2

)
. (2.39)

The final I ⊗ RZ(π) operation ensures that the second
√
iSWAP gate is turned into its Hermitian

counterpart by the equality √
iSWAP

†
=
√
iSWAP

(
I⊗RZ(π)

)
. (2.40)

This results in a matrix representation for the Givens rotation θ:

θ =


−1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 −1

 , (2.41)

which is different from the ’usual representation’ given in literature by

θliterature =


1 0 0 0

0 cos θ̃ − sin θ̃ 0

0 sin θ̃ cos θ̃ 0
0 0 0 1

 . (2.42)
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The two are linked by an isomorphism θ̃ = π − θ, however, which leaves the physics unchanged. The
parameter space search algorithm for optimisation of the parameters does not care about isomorphisms
either, so both representations are equivalent.

The Givens rotation decomposition follows from Thouless’ theorem (2.13). This basis rotation can also
be written as the unitary operator

U(u) = exp

∑
pq

[log u]pq(a
†
paq − a†qap)

. (2.43)

This operator can be decomposed into N(N−1)
2 =

(
N
2

)
Givens rotations [42]. Because of the SU(2) and

U(1) symmetries of the molecular Hamiltonian (2.3), this number can be reduced to η(N − η) quantum
gates. For an electrically neutral molecule, this has the consequence that the number of gates is reduced

because the inequality N2

4 <
(
N
2

)
holds for N > 2. This gate number reduction can be deduced from the

fact that the set of operations that mix the orbitals contains redundant operations. Mixing between fully
occupied orbitals, or between fully virtual orbitals, are examples of such redundancies, as they will only
add a physically irrelevant global phase to the wavefunction.

Let ã
(†)
x denote the creation and annihilation operators of an electron occupying orbital x in the new

rotated basis, and let a
(†)
x be the creation and annihilation operators in the core orbital basis. Then a

Slater determinant wavefunction is given by

|ψ(κ)〉 =

η∏
i=1

ã†i |vac〉 =

η∏
i=1

eKa†ie
−K |vac〉 =

η∏
i=1

∑
j

[eκ]ij a
†
j |vac〉 , (2.44)

where |vac〉 def
= |0〉. Therefore, only the first η columns of the matrix eκ are relevant. Let V be an arbitrary

unitary operator, then it is true that

η∏
i=1

η∑
j=1

Vija
†
i |vac〉 = det [V ]

η∏
i=1

a†i |vac〉 . (2.45)

For every unitary operator V , its determinant can be written as eiθ for some θ ∈ [0, 2π), so that in (2.45),
a global phase is given to the wavefunction. The structure of V can then be chosen such that Givens
rotations can zero out the lower left triangle of the eκ matrix. This is possible because Givens rotations
aid in the QR-decomposition of u. Thus, the number of non-redundant two-qubit operations that remain
is equal to the number of virtual orbitals multiplied by the number of occupied orbitals: η(N − η).

Another property of Givens rotations is that the number of gates remains constant over many VQE
optimisation steps. This is because the group of unitaries generated by the exponentiation of κ-matrices
is closed and forms a homeomorphism [42]:

U(eκ) · U(eκ
′
) = U(eκ · eκ

′
). (2.46)

Suppose that U(eκ) prepares a Slater determinant type wavefunction that does not correspond to the
Hartree-Fock ground state |ΨHF 〉. In equation form, this means that U(eκ) |η〉 6= |ΨHF 〉 . Then, by
Hessian optimisation, one can update the parameters so that a new Slater determinant is prepared that
approximates the ground state better. Let U(eκ

′
) be the unitary that performs this update. Then,

U(eκ
′
)U(eκ) |η〉 is a better approximation than U(eκ) |η〉. For each iteration, a new circuit of η(N − η)

gates must be prepared. However, by the homeomorphism property, these circuits can be concatenated
into a single circuit preparing U(eκ

′ · eκ) |η〉.

2.2.3 Energy estimation

A useful quantity to describe the sampling of information about the molecular energy from this circuit
are the p-marginals called the reduced density matrices. In general terms, a quantum marginal of a
probability distribution is the partial trace over a subset of relevant variables so that only a small set of
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p variables is considered. For a p-local Hamiltonian, it has been observed that the set of marginals of
at most order p fully describe the system fully [48][49]. Their polynomial size make them an attractive
candidate for reconstructing the qubit wavefunction. As a molecular Hamiltonian is 2-local, that is, it
contains interaction terms between at most 2 interacting particles, only the one-particle reduced density
matrix (1-RDM) and the two-particle reduced density matrix (2-RDM) are relevant. The 1-RDM D1 is
given by its entries

[D1]ij = D1
ij = 〈a†iaj〉. (2.47)

The entries of the 2-RDM D2 are given by

[D2]pqrs = D2
pqrs = 〈a†pa†qasar〉. (2.48)

The energy estimation is given by the expectation value of the second quantised Hamiltonian (2.3), which
by the distributive law of expectation values yields

E = 〈H〉 =
∑
ij

hij 〈a†iaj〉+
∑
pqrs

Vpqrs 〈a†pa†qaras〉 =
∑
ij

hijD
1
ij +

∑
pqrs

VpqrsD
2
pqsr. (2.49)

An interesting property of Slater determinant type wavefunctions is that their 2-RDM terms can be
uniquely expressed as a function of 1-RDM terms only, as a consequence of the evaluation of each term in
Wick’s theorem [44]. This reduces the number of correlation functions that one must measure in order
to estimate the energy from O(N4) to O(N2). This connection between 1-RDM and 2-RDM terms is
expressed by

D2
pqrs = D1

prD
1
qs −D1

psD
1
qr. (2.50)

In conclusion, to estimate the energy of a molecule, one needs to

1. Sample all the 1-RDM terms to reconstruct D1.

2. Compute, from these 1-RDM matrix entries, the 2-RDM D2.

3. Evaluate equation (2.49).

2.2.4 Sampling the 1-RDM terms

All the necessary information that can be extracted from the quantum circuit are the entries of the
1-RDM. They can be categorised into three types: diagonal entries, one-off-diagonal entries and general
off-diagonal entries. Each one requires a different protocol.

(i) Diagonal entries

First of all, using the fermionic operator basis to define measurement in is awkward. The Jordan-Wigner
transformation transforms this basis into a Pauli basis, in which measurement is well-defined and well
understood [19]. It is given by

aj = I⊗j−1 ⊗ σ+ ⊗ Z⊗N−j , (2.51)

a†j = I⊗j−1 ⊗ σ− ⊗ Z⊗N−j , (2.52)

where I is the identity operator, and where the σ-matrices are given by

σ± =
X ± iY

2
. (2.53)

As usual, the set {I, X, Y, Z} is called the non-Abelian Pauli basis P with representations

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.54)

These operators are unitary, Hermitian and mutually orthogonal under the Hilbert-Schmidt inner product.
Throughout this thesis, they are sometimes also written as operators Î, σ̂x, σ̂y, σ̂z. Henceforth, the identity
operator shall be referred to as one of the Pauli operators.
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A diagonal entry, with no summation over the indices implied, is given by

[D1]ii = D1
ii = 〈a†iai〉. (2.55)

This is the expectation value of the number operator. This already implies that the trace of the 1-RDM
is fixed according to ∑

i

D1
ii =

∑
i

ni = η. (2.56)

If the 1-RDM is transformed to the Pauli basis under Jordan-Wigner, then the diagonal entries can be
written as

〈a†iai〉 =
1− 〈Zi〉

2

def
= Mi, (2.57)

where Mi is the probability to find orbital i in an occupied state. Simply by measuring the qubit states,
and averaging over many samples, one can find 〈Zi〉 and thus also the diagonal components.

(ii) One-off-diagonal entries

The one-off-diagonal entries are comprised of correlation functions of the form

[D1]i,i+1 = D1
i,i+1 = 〈a†iai+1〉. (2.58)

This results in awkward expressions after applying the Jordan-Wigner transform:

〈a†iai+1〉 =
1

4
〈(Xi − iYi)(iYi+1 +Xi+1)〉. (2.59)

In principle, it is possible to perform such measurements. There is a simpler way, however, to sample
the one-off-diagonal 1-RDM terms that requires less measurements. Because of the Hermiticity of the
1-RDM, it can be concluded that

〈a†iai+1〉 = 〈a†i+1ai〉
∗. (2.60)

Additionally, the 1-RDM does not contain any imaginary parts. This is because the circuit initialises
qubits that have a direct one-to-one mapping to real-valued orbital functions. The circuit then performs
an SO(N)-type orbital rotation, so that the new superpositions are linear combinations of the old basis
functions with the only phase differences between the orbitals being either 0 or π. This entails that only
the real part of the sum 〈a†iai+1 + a†i+1ai〉 is measured, which corresponds to 2Re〈a†iai+1〉. In the Pauli
basis, this corresponds to the cancellation of different terms, so that only

2Re〈a†iai+1〉 = 〈a†iai+1 + a†i+1ai〉 =
1

2
(〈XiXi+1〉+ 〈YiYi+1〉) (2.61)

is left, which is easier and more efficient to sample.

(iii) General off-diagonal entries

For general qubit architectures, it is not necessarily possible to apply two-qubit quantum gates between
two random qubits, because they may not be nearest neighbours. Virtual swapping of qubits is therefore
required to permute the qubit order so that their neighbours have changed. Then, the same procedure as
for the one-off-diagonal terms can be applied. This repeats for all new possible permutations of the order
of the qubits. Considering an arbitrary N -qubit quantum circuit, let {0, 1, 2, · · · , N − 2, N − 1} be the
set of fermionic modes in the abstract space F, and let (·, ·) be the operation that swaps the respective
fermionic modes according to

(m,n) : F→ F : {· · · , am, · · · , an, · · · } 7→ {· · · , an, · · · , am, · · · }. (2.62)

The numbers m,n in the swapping brackets do not refer to the values of am, an, but to their position,
starting from 0 (the first entry), going to N − 1. These fermionic swaps are generated by the FSWAP

operator, given by
FSWAP = a†paq + a†qap − a†pap − a†qaq. (2.63)

The corresponding unitary is exp
(
−iπFSWAP /2

)
.
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2.3 Neural networks

Interestingly, the development of VQE ties in well with the rise of artificial intelligence and machine
learning. Over the past years, the advantages and utility of a fusion between quantum computing and
machine learning has been debated. Especially within the fields of astrophysics, and particularly the
search for dark matter, and particle physics, such a fusion is desirable. Within those fields, physicists are
looking for clues of a deeper underlying theories without often knowing what those theories could look
like, something for which they could benefit from machine learning algorithms. Such quantum-classical
fusions have already happened for smaller algorithms, as certain classical machine learning algorithms
have already been transposed into the language of quantum computing. For example, kNN has already
been rewritten into a quantum algorithm called quantum-kNN that converges logarithmically faster than
its classical counterpart [50], begging the question if general machine learning algorithms can be written
down in the language of quantum computing. Clear analogies can be drawn between variational quantum
algorithms and classical neural networks, lending those types of algorithms the name of Quantum Neural
Network (QNN) at times [51].

An interesting parallel is that specifically of the VQE algorithm itself and classical neural networks, as
they share a very similar structure. Classically, machine learning works by minimising some cost function
that represents the accuracy of the task that the machine is supposed to perform. Quantum mechanically,
there exists a cost function L(~θ) that is clearly defined for VQE:

L(~θ) = 〈η|U(~θ)†HU(~θ) |η〉 , (2.64)

where ~θ is a vector of variational parameters, |η〉 is the initial ansatz, U(~θ) the set of unitaries parameterised

by ~θ, and H is the Hamiltonian of which the ground state energy is calculated. This form can be likened
to the ansatz of QNNs of N qubits, given by

U(~θ) =

N∏
l=1

V l
N⊗
j=1

U lj(θ
l
j), (2.65)

where Vl are parameter-independent unitaries such as those generated by multi-qubit entanglement
operators and U lj(θ

l
j) is a unitary applied to qubit j at depth l, parameterised by θlj ∈ ~θ [52]. This

decomposition is reminiscent of some VQE implementations, where U represents the Euler rotations,
and V represents the N -qubit entanglement [22]. The qubit number is tantamount to the number of
neural nodes, while the circuit depth is comparable to the neural network depth. This direct comparison
becomes clear from figure 2.3.

(a) The quantum circuit employed for
IBM’s quantum chemistry experiment [22].

(b) An archetypal depiction of a neural network [53].

Figure 2.3: The comparison between a quantum circuit that runs the VQE algorithm and a classical
neural network. Clear analogies can be drawn between qubit input ↔ input layer, entanglement ↔ node

connection, depth ↔ hidden layers, and qubit read-out ↔ output layer.
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Indeed, in some formulations of VQE, the quantum circuits that implement the algorithm have a very
similar structure to classical neural networks. Their architecture is very alike, and so is their self-
correcting nature. Where classical neural networks are able to teach themselves recognition patterns
through optimising their cost function optimisation parameters through many learning iterations, so can
the VQE algorithm variationally relax the parameters to find a ground state wavefunction of a quantum
system after many iterations, even averaging out coherent and certain decoherent noise effects.

Writing the unitaries as exponentiations of Hermitian generators g, which are expanded in the Pauli basis
Pk ∈ P, one obtains

U lj(θ
l
j) = e−iθ

l
jg
l
j , (2.66)

where

glj =

N∑
k=1

[Bk]
l
j Pk =

N∑
k=1

BlkjPk, (2.67)

is the expansion of those generators in the Pauli basis, with relevant coefficients Blkj . This allows for the
unitaries to be decomposed into a product of matrices with different dimensionalities:

U lj(θ
l
j) =

N∏
k=1

(
cos (θljB

l
kj)I− i sin (θljB

l
kj)Pk

)
, (2.68)

from which gradients are easily derived [52]. Then, analytical derivatives of the cost functions follow,
analogous to how classical neural networks aim to optimise their parameterisation.

Invoking machine learning in the sciences could indeed be a fruitful endeavour. This would have major
implications for the development of fields like data analysis in particle physics, like it has done so outside
the scope of science. Just like how chess AI engine AlphaZero could train itself to become the most
powerful chess entity on the planet in a matter of hours [54], machine learning can train itself to rapidly
develop the ability to predict new physics from a set of data, in such a fashion that is not immediately
obvious to man [55]. Whether an extension of VQE could render variational quantum algorithms even
stronger by fusing them with machine learning, remains to be seen.
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3 Coherent and decoherent noise

3.1 Noise on a QPU

In the NISQ era, one of the greatest challenges that quantum computers face is the suppression of
noise and the mitigation of error propagation. Because a quantum system can not be perfectly isolated
from its environment, there will always be a certain amount of noise present. Usually, in real quantum
computing experiments, a distinction is made between logical qubits and physical qubits. Logical qubits
are theoretical qubits, whose state is perfectly known at all points in the circuit, who are either not subject
to noise channels or subject to noise channels whose effects are deterministic and can be remodelled
perfectly, while physical qubits are real qubits employed in experiments, and therefore subject to the
imperfections of real life quantum processing units. For realistic experimental set-ups, it is common to
have & 1000 physical qubits for every logical qubit [56].

In VQE experiments, there is a pay-off between circuit depth and convergence rate. In principle, better
entanglement will lead to more accurate results or to a faster convergence. In erroneous circuits, however,
adding more depth may decrease the accuracy of the results, since errors have more time to accumulate. It
is therefore important to tackle this error propagation, as naively introducing more depth and entanglement
may actually decrease the VQE accuracy.

3.2 Fidelity in quantum computing

3.2.1 Mixed states and the density operator

Quantum algorithms deal theoretically with manipulating pure states to perform calculations. Envi-
ronmental noise is able to pollute quantum states, turning them into mixed states. When describing
erroneous quantum computing, it is necessary to go to the density operator formalism. The density
operator satisfies the following mathematical properties:

1. Trace-preservation: Tr(ρ) = 1,

2. Hermiticity: ρ† = ρ,

3. Positive semi-definiteness: 〈ψ| ρ |ψ〉 ≥ 0 ∀ |ψ〉.

To name an example of interactions of the circuit with the environment that will cause the pure states of
the qubit to transpose into mixed states, it may be useful to illustrate the necessity of using the density
operator formalism with a small showcase. Consider a general qubit state |ψ〉 = α |0〉+ βeiϕ |1〉. Then its
density operator is given by

ρ = |ψ〉 〈ψ| =
(
|α|2 αβ∗e−iϕ

α∗βeiϕ |β|2
)
. (3.1)

Suppose that by some process, such as scattering, the relative qubit phase is shifted, and suppose that
this process is random, such that the relative phase difference δϕ is uniformly distributed on the interval
[0, 2π). Then the average density operator after many scattering processes is given by

〈ρ〉ϕ =

(
|α|2 αβ∗ 〈e−iϕ〉ϕ

α∗β 〈eiϕ〉ϕ |β|2

)
=

(
|α|2 0

0 |β|2
)
, (3.2)

where the latter equality holds because in the complex plane,

〈eiϕ〉ϕ = lim
N→∞

1

N

N−1∑
n=0

e2πinϕ/N → 0. (3.3)

Clearly, there exists no pure wavefunction |ψ〉 such that it produces a density operator (3.2). Therefore,
instead of using individual qubit states to quantify the effect of errors on the quantum circuit, the density
operator is used. Error propagation manifests itself generally in the density matrix as the disturbance
or absence of off-diagonal terms. As the Pauli operators span the space of 2× 2 matrices, any density
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matrix can be decomposed into the Pauli tensor basis as follows:

ρ =
1

2N

I⊗N +
∑
s∈S

(rss)

 , (3.4)

where N is the number of qubits, S is the set of non-trivial Pauli tensor basis operators S = {I, X, Y, Z}⊗N\
I⊗N , and rs are the components of the Bloch sphere vector ~r =

∑
s∈S|N=1

rsês for each element s ∈ S,

subject to the constraint ||~r|| ≤ 1. The degree of admixture of a quantum state determines the norm of
this Bloch vector. Pure states lie on the sphere and have ||r|| = 1, while mixed states will lie within the
sphere. In the extreme case, thus for maximally mixed states, the Bloch vector satisfies ||r|| → 0.

3.2.2 Quantum fidelity

Because quantum computers are subject to noise, real quantum simulations will deviate from their ’perfect’
theoretical counterparts. Fidelity is a measure of the overlap of a certain density operator with another,
and it can estimate the amount of noise that has accumulated over a certain circuit depth. The quantum
fidelity F of a state |ψa〉, described by the density matrix ρa, with respect to some known state described
by ρb, is given by [57]

F (ρa, ρb) =

(
Tr

[√√
ρbρa
√
ρb

])2

. (3.5)

It satisfies certain mathematical properties:

1. Symmetry: F (ρa, ρb) = F (ρb, ρa).

2. Unit interval bounds: F (ρa, ρb) ∈ [0, 1] and F (ρa, ρb) = 1 if and only if ρa = ρb.

3. Invariance under unitary transformations: F (ρa, ρb) = F (UρaU
†, UρbU

†) for all unitary operations
U .

4. Monotonicity: F (ρa, ρb) ≤ F (Φ(ρa),Φ(ρb)) for all CPTP maps Φ(·).

3.2.3 The fidelity witness

It is possible to construct a lower bound on the fidelity called the fidelity witness, nearly similar to the
worst case fidelity (WCF). An observable W is called a fidelity witness for a density operator ρt, if for

FW(ρp)
def
= Tr

[
Wρp

]
, the following properties are satisfied:

1. FW(ρp) = 1 if and only if ρt = ρp,

2. F > FW(ρp) for all states ρp.

On an N -qubit quantum circuit, any state ρt can be written as

ρt = |ψt〉 〈ψt| (3.6)

where the wavefunction |ψt〉 is given by
|ψt〉 = U |ω〉 (3.7)

where U is a fermionic Gaußian unitary operator and |ω〉 = (ω1, · · · , ωN ) is an N -bit string, called the
initialisation vector. This ket is a Fock-basis state vector where ωj ∈ {0, 1} represents the excitation
number of the j-th fermionic modem so that

nj |ω〉 = ωj |ω〉 . (3.8)

Then one can also introduce a total excitation number operator n(ω) in a flipped basis where |ω〉 is the
null vector:

n(ω) =

N∑
i=1

[
(1− ωi)ni + ωi(I− ni)

]
, (3.9)
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such that n(ω) |ω〉 = 0. Any other basis state would then be an excited state with respect to the null vector
|ω〉 and the operator n(ω). With this operator at hand, it is possible to construct the observable

W = U
(
I− n(ω)

)
U†, (3.10)

which is proven to be a fidelity witness for the state ρt in work conducted by Gluza et al. for non-interacting
fermionic wavefunctions [58]. Knowledge of the RDM terms gives insight in this fidelity witness. Let D

be the matrix of expectation values 〈ρ, a†iaj〉 and let u = eκ be the generator of the circuit. Then the
identity

Tr
[
UρU†a†iaj

]
= [uDu†]ij (3.11)

holds. Using this, the fidelity witness can be rewritten as

FW(ρ) = 1−
N∑
j=1

(
[u†Du]jj + ωj − 2ωj [u

†Du]jj

)
. (3.12)

3.3 Quantification of high-fidelity propagation

3.3.1 Clifford gates

Clifford gates are a set of gates belonging to the Clifford group on N qubits

CN = {U |UPNU† = PN}, (3.13)

formally corresponding to the normaliser of the Pauli group [59]. It is known that the Hadamard
gate

H =
1√
2

(
1 1
1 −1

)
(3.14)

and the phase gate

S =

(
1 0
0 i

)
(3.15)

are elements of C1, while the CNOT gate is an element of C2. Together, they span a universal set of
quantum gates, and by extension, they span

⋃
k Ck. Let CL denote a string of L single-qubit Clifford gates.

Then an identity-proportional string, meaning CL → I, can be employed to gauge the error propagation
through an arbitrary N -qubit channel. For the single-qubit case, let an initial qubit state |0〉 be prepared,
and sent through this Clifford channel. Then, the average of the 0-state projector 〈Π0〉 is given by
[60]

〈Π0〉 =
∣∣∣〈0|CL |0〉∣∣∣2 . (3.16)

By tracking this quantity as a function of string length L, one can verify error propagation through any
N -qubit channel. Therefore, it serves as an excellent benchmark for the accuracy of the RDA algorithm,
introduced in section ??, as well as a good quantifier for error propagation in a certain type of quantum
computer.

3.3.2 Concurrence and n-tangles

Besides having a formal measure of the preservation of a pure quantum state under noise channels, it is
also valuable to have a measure of the degree of entanglement, called the concurrence. When transporting
entangled states through a qubit register, both fidelity and concurrence track how preserved this delicate
state is. Let the single-qubit state |ψ̃〉 be given by

|ψ̃〉 = iσy |ψ〉∗ , (3.17)

which formally corresponds to the time-reversal operation of a spin- 1
2 particle, which reverses the spin

orientation [61]. Here, |ψ〉∗ is the complex conjugation of the wavefunction in the standard basis. The
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factor i is convention, but the concurrence is blind to it. Then, this definition can be extended to two-qubit
wavefunctions:

|ψ̃〉 = −σy ⊗ σy |ψ〉∗ . (3.18)

The two-qubit concurrence is then given by the overlap [62]

C
(
|ψ〉
) def

=
∣∣∣〈ψ|ψ̃〉∣∣∣ . (3.19)

This quantity serves as a rigorous measure of degree of entanglement, and generates the entanglement

entropy S
[
C
(
|ψ〉
)]

.

The common denominator between concurrence and fidelity is that they are bounded in the interval
[0, 1], but the critical difference between them is that fidelity measures the overlap of two quantum states,
usually between a theoretical prediction and a real state that is prone to errors. Concurrence, on the other
hand, measures the self-overlap of a quantum state, fine-tuned to be a useful quantity when discussing
entanglement.

Generally, entanglement between qubits in a register is not restricted to nearest neighbours. Let ρ be the
density operator of the whole register, and let ρij be the density operator of the register, restricted to
qubits i and j:

ρij = Trk 6=i,j [ρ]. (3.20)

Between these qubits, the concurrence is defined as

Cij = C(ρij) = inf
pn,|ψn〉

∑
n

pnC
(
|ψn〉

)
, (3.21)

where the classical probabilities pn and states |ψn〉 are determined through the spectral decomposi-
tion

ρij =
∑
n

pn |ψn〉 〈ψn| . (3.22)

For three-qubit entanglement, one can define an analogy known as the three-tangle τ (3), given by
[63]

τ
(3)
i,j,k = T 2

jk − C2
ij − C2

ik, (3.23)

acting on qubits i, j and k, where

Tjk
def
=
√

2
(
1− Tr[ρjk]

)
. (3.24)

This discussion can be extended to the entanglement degree of an arbitrary number of qubits. Such a
measure is called the n-tangle, though it is not defined for odd n > 3 [64].

3.4 Coherent noise channels

In principle, noise on a quantum computer can be divided into two types: coherent noise and decoherent
noise. Errors arising from the former type, coherent errors, are systematic errors that arise in the quantum
computer through insufficient or incorrect knowledge about what drives the unitary gates. This ignorance
could manifest itself as an unknown part δH of a Hamiltonian that generates the evolution of the qubit
states. These errors can in theory be reconstructed deterministically and then compensated for with the
right measures. In general, they can be reversed by a unitary operator U .

An example of a coherent noise channel is the systematic phase error in some quantum gates. For example,
Google AI reports that their

√
iSWAP gate has a systematic |11〉 〈11| phase error of ∼ π/24 [9]. Another

example is the ’slow walk’ of a qubit state along the Bloch sphere. Where no operation is performed (I),
a very slow deviation through ignorance in the control dynamics may be expected instead, of the form
U = eiεX [65]. Arguably, these are the most common coherent error types, in the VQE formulation that
has been adhered to in this thesis.
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3.5 Decoherent noise channels

3.5.1 Decoherent noise

The other type of errors, decoherent errors, arise from stochastic interactions. They are probabilistic
in nature, and will cause the qubit array state to become mixed over time. They can not be described
by the coherent Schrödinger or von Neumann equations and must therefore be described by modified
theories, such as the Lindbladian equation or Markovian dynamics. Unlike coherent errors, they are
irreversible, which means that they can not be systematically removed from the system by compensation.
Other measures such as RDA must be invoked then.

3.5.2 Qubit relaxation and dephasing

Qubit relaxation and dephasing are two major decoherence processes that impose a constraint on the
coherence time of a quantum circuit. Relaxation refers to the process in which a qubit decays to its
ground state. This depends on the physical type of qubit that has been employed and the qubit mapping
that has been taken. This exponential decay is characterised by the relaxation time scale T1. Dephasing
refers to the process in which the relative phase of a qubit can vary over time, causing pure states to
transpose into mixed states. The energy difference between the |0〉 and |1〉 states are usually fixed. Small
perturbations, however, can induce small variations in this energy difference, causing the two qubit
basis states to evolve at different rates, manifesting itself as phase shifts. An example has already been
introduced in section 3.2.1, where the phase shifts of many scattering processes can lead to mixed states.
The characteristic timescale for dephasing is called T2. Often, in literature, a third timescale T ?2 exists,
caused by the combined effects of dephasing and the inhomogeneity of applied external fields [66].

(a) The relaxation of a qubit, where its state is
creeping towards the |0〉 state, the energetic

ground state.

(b) Dephasing of a qubit, where pure states become
mixed states.

Figure 3.1: The Bloch sphere representation of qubit relaxation and dephasing processes [67]. The blue
arrows represent the qubit state, while the red arrows show the trend of the state evolution. The green

dashed line shows the trajectory of the qubits.

These timescales impose a crucial constraint on the quantum circuit. For calculation times τ � T1, T2, the
system will preserve its coherence up to small perturbations. For calculation times τ & T1, T2, coherence
will mostly be lost, and the results will be rendered inaccurate.

3.5.3 Depolarisation channel

A depolarisation channel is a decoherent error channel that depends on a single noise parameter ξ. It
can be described by a CPTP map Pξ whose effect on a single-qubit density operator ρ1 and a two-qubit
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density operator ρ2 is given by

Pξ(ρ1) = (1− ξ)ρ1 +
ξ

3

∑
i=1,2,3

σiρ1σ
i (3.25)

and

Pξ(ρ2) = (1− ξ)ρ2 +
ξ

15

∑
i,j=0,1,2,3
{i,j}6={0,0}

σjl σ
i
mρ2σ

i
mσ

j
l (3.26)

respectively [68]. The indices {l,m} refer to a set of nearest neighbour qubits in the given connectivity of
the circuit architecture. The constants 3 and 15 are present to preserve the trace of the density operator.
This depolarisation channel can be used to gauge the strength of an entanglement operator versus the
strength of noise disrupting the VQE algorithm and increasing the energy estimate on average. From
simulations it then follows that there exists an optimal number of entanglement operations before the
VQE algorithm actually returns a higher energy estimate.

3.6 The Lindbladian

3.6.1 The von Neumann equation

In essence, the von Neumann equation is the equivalent of the time-dependent Schrödinger equation for
density operators ρ instead of wavefunctions |ψ〉 ∈ H. The latter is given by

i~
∂ |ψ〉
∂t

= H |ψ〉 , (3.27)

where H is the Hamiltonian. In the dual Hilbert space H∗, this equation reads

i~
∂ 〈ψ|
∂t

= 〈ψ|H. (3.28)

Then the time derivative of the density operator is given by

∂ρ

∂t
=
∂ |ψ〉 〈ψ|

∂t
=
∂ |ψ〉
∂t
〈ψ|+ |ψ〉 ∂ 〈ψ|

∂t
= − i

~
H |ψ〉 〈ψ| − i

~
|ψ〉 〈ψ|H, (3.29)

where in the last equation, the Schrödinger equations in the regular and dual Hilbert spaces were
substituted. Noting that on the right hand side, |ψ〉 〈ψ| = ρ returns the density operator, the von
Neumann equation is obtained:

∂ρ

∂t
= − i

~
[H, ρ] , (3.30)

where [·, ·] denotes commutator brackets [69].

3.6.2 The Born-Markov master equation

A master equation is an equation that follows the time evolution of a system that is in a probabilistic
combination of different states, where the dynamics are encoded in an intensity matrix. The qubit
interactions with the environment can be described by a system-bath type of interaction, where the qubits
in the quantum circuit constitute a system s with a Hamiltonian Hs and the environment constitutes a
bath b with a Hamiltonian Hb. Then the total Hamiltonian is given by

H = Hs ⊗ Ib + Is ⊗Hb + εHsb, (3.31)

where Ia denotes the identity operator on subsystem a, Hsb represents the interaction Hamiltonian and ε
characterises the strength of this interaction. Closely following C.A. Brasil et al. [70], it is convenient to
switch over to the interaction picture, where

H(t) = ei(Hs+Hb)tHsbe−i(Hs+Hb)t (3.32)
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and
ρ(t) = ei(Hs+Hb)tρsbe

−i(Hs+Hb)t, (3.33)

in which case the von Neumann equation reads

∂ρ(t)

∂t
= − i

~
ε
[
H(t), ρ(t)

]
. (3.34)

One can construct an iterative expansion of the right-hand side of equation (3.34), as the equation can be
integrated over, and the resulting expression of ρ(t) can be plugged back into the original equation. To
second order in ε, this yields

∂ρ(t)

∂t
= − i

~
ε
[
H(t), ρ(0)

]
− 1

~2
ε2
∫ t

0

[
H(t),

[
H(t′), ρ(t′)

]]
dt′. (3.35)

Under the tensor decomposition ρ(t) = ρs(t)⊗ ρb, it is possible to trace the bath degrees of freedom out
of equation (3.35), yielding

∂ρs(t)

∂t
= − i

~
εTrb

( [
H(t), ρ(0)

] )
− 1

~2
ε2Trb

(∫ t

0

[
H(t),

[
H(t′), ρ(t′)

]]
dt′
)
. (3.36)

One can define the interaction Hsb in such a way that the first time on the right-hand side vanishes.
Assuming a strong decay for timescales much greater than the characteristic correlation time in the bath
(t � τcorr), the boundary of the integral may be shifted over to infinity. Lastly, the density operator
inside the integral swaps variables t′ 7→ t because ρ varies slowly1. What remains is the Born-Markov
master equation

∂ρs(t)

∂t
= − 1

~2
ε2Trb

(∫ ∞
0

[
H(t),

[
H(t′), ρ(t)

]]
dt′
)
. (3.37)

3.6.3 The Lindblad equation

Consider an interaction between the system and the bath that is semi-separable, such that it can be
written as

Hsb = ~
(
SB† + S†B

)
, (3.38)

where S is an operator acting on the system, and B is an operator acting on the bath. If S commutes
with the system Hamiltonian,

[S,Hs] = 0, (3.39)

then this operator will remain time-independent in the interaction picture: S(t) = S. To derive the
Lindblad equation, some assumptions can be made. For one, the bath Hamiltonian can be written as a
bosonic bath according to

Hb = ~
∑
k

ωka
†
kak, (3.40)

where ωk are the specific angular frequencies of the bosonic modes k with momentum k and a†k, ak are
creation and annihilation operators respectively of such modes k. A bath operator that looks like

B(t) =
∑
k

g∗kake
−iωkt (3.41)

in the interaction picture represent a Jaynes-Cummings like model [71]. The initial bath density operator
is in a vacuum state over all modes:

ρb = |vac〉 〈vac| , (3.42)

where the vacuum state is given by

|vac〉 =

N⊗
n=1

|0〉 . (3.43)

1Consider a Taylor expansion of ρ like ε2ρ(t′) ≈ ε2
[
ρ(t) + (t′ − t)dρ(t)/dt+ · · ·

]
= ε2ρ(t) +O(ε4). Then any deviation

to this approximation is fourth order in the interaction parameter and may be discarded.
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With further assumptions, the Born-Markov equation with the full interactions turned on (ε → 1)
transforms into

∂ρs(t)

∂t
= γ

[
Sρs(t)S

† − 1

2
{S†S, ρs(t)}

]
, (3.44)

where the small parameter γ is given by the expression

γ = 2π

∫ ∞
0

∑
l

|gl|2δ(ω − ωl)

 δ(ω)dω, (3.45)

characterising the strength of the system-bath interactions [70]. Returning back to the original picture,
using

ρs = e−
i
~Hstρs(t)e

i
~Hst, (3.46)

equation (3.44) becomes
∂ρs
∂t

= − i
~

[Hs, ρs] + γ
[
SρsS

† − 1

2
{S†S, ρs}

]
. (3.47)

Most common, the right-hand side of this equation contains many such terms, a superposition of so-called
Lindblad operators Lj , such that the Lindblad equation is obtained:

∂ρs
∂t

= − i
~

[Hs, ρs] + γL(ρs), (3.48)

where the Lindbladian L(ρs) is given by [72]

L(ρs) =
∑
j

[
SjρsS

†
j −

1

2
{S†jSj , ρs}

]
. (3.49)

This Lindblad equation is linear in its argument, and contains a coherent part resulting from the
Schrödinger equation, and a decoherent part resulting from interactions of the quantum circuit with
a noisy environment. The former is called the Liouvillian and describes unitary evolution. The latter
contains a term where all degrees of freedom of the bath have been traced out, and only the Jaynes-
Cummings like interaction is present in the equation through the small interaction parameter γ. This
partial trace is non-unitary, and therefore this term describes the non-unitary evolution of the density
operator under decoherent noise.
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4 Error mitigation and quantification techniques

4.1 Introduction to partial QEC

Currently, there is not yet access to a full quantum error correction code that renders quantum computer
completely fault tolerant. However, major gains have been made during the past decades to come up
with (theoretical) measures to mitigate errors in a quantum circuit [65]. This is a non-trivial task, for
simply transposing classical ideas of error correction does not work for quantum computing. To illustrate
this with a brief example, in classical computers, one of the simplest error correction codes is the binary
repetition code. For instance, the bits 0 and 1 can be copied into 3-tuples, such that

0 7→ 000, 1 7→ 111. (4.1)

This mapping can tolerate 1 bit flip, and a majority decision decides what the original code used to be.
Then, a bit string of 001 is understood to originate from 000, thus it represents the state 0. But 110,
on the other hand, comes from 111, thus 1. Such a code can not be achieved in quantum computing by
virtue of the no-cloning theorem, which states that there exists no operation that maps a quantum state
|α〉 to |α〉⊗k for arbitrary natural numbers k ≥ 2 [73][74].

Full fault-tolerant error correction for & 105 qubits is not yet within the range of experimental possibilities.
A step towards this full QEC is partial QEC, where some form of error correction is used that mitigates
some errors by at most a few orders of magnitude. The central idea to partial QEC is the following: suppose
there exists some noise channel E acting on a density operator, given by its spectral decomposition

ρ =
∑
i

pi |wi〉 〈wi| , (4.2)

where |wi〉 are pure states that have a classical probability pi ∈ (0, 1] of occurring. Then, does there also
exist an error correction channel R such that for an arbitrary accuracy threshold,

||R ◦ E(ρ)− ρ|| < ε? (4.3)

4.2 Post-circuit error mitigation for VQE

4.2.1 Post-selection

Each Givens rotation commutes with the number operator. This ensure that, theoretically, the entire
quantum circuit as depicted in figure 2.1 must preserve the total electron number and therefore also the
qubit parity. For an electrically neutral system such as an unionised molecule, it is given that 〈Ztot〉 = 0.
Because of error propagation, there is a small probability that, for example, a bit flip occurs in one
of the qubit arrays. Sampling such qubit outputs will therefore not have the correct required physical
interpretation as chemically, electrons would have spontaneously been destroyed or created. Such results
must therefore be discarded: this process is known as post-selection.

A small problem arises when post-rotational gates are applied to the qubits after the Givens rotations so
that 〈XX〉 and 〈Y Y 〉 can be sampled. These Pauli operators do not commute with the total number
operator as they are not diagonalised, unlike the identity operator I and Z. Additional quantum hardware
must be invoked so that the X and Y operators can be transformed into something that allows them to
be sampled, but such that they do respect electron conservation. Only then will post-selection lead to
robust error mitigation.

Let the so-called T -gate be given by

T = RZ(π/4) =

(
e−iπ/8 0

0 eiπ/8

)
, (4.4)

and let the diagonaliser V be given by

V = (T ⊗ T †)
√
iSWAP. (4.5)
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Then, this unitary operator will diagonalise the 1
2 (XX + Y Y ) Hamiltonian according to

V


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

V † =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 . (4.6)

The right-hand side of equation (4.6) now commutes with the particle-number operator, while retaining
some of the character of the X and Y Pauli operators. Let the Hamiltonian act on nearest neighbour
qubits i, i+ 1, then the following equality can be identified [9]:〈

V
1

2
(XiXi+1 + YiYi+1)V †

〉
=

1

2
〈Zi − Zi+1〉 =

1

2
(Mi+1 −Mi). (4.7)

By this transformation, it is still possible to check for particle conservation. Instead of measuring
correlation functions, it is now sufficient to measure single-qubit states only. This method of post-selection
renders the VQE algorithm more robust because outputs that do not make physically sense2 can be
discarded by checking for the condition

〈Ztot〉 = 0. (4.8)

4.2.2 McWeeny purification

By repeatedly sampling the correlation functions 〈a†iaj〉, one can reconstruct the 1-RDM matrix. Because
of circuit errors, readout errors and the finite number of samples, this matrix will not replicate the true
1-RDM to infinite precision. The latter will always satisfy 3 conditions [48][75]:

1. Tr[D] = η: the trace of the 1-RDM gives the total number of electrons as implied by (2.56).

2. D2 = D: the 1-RDM is idempotent as a result of idempotency of the pure ground state density
matrix.

3. D � 0: the 1-RDM is positive semi-definite.

Because of errors, the reconstructed 1-RDM will generally not satisfy these conditions. The reconstructed
1-RDM lives in the space of N ×N matrices, MN . One can define a subset within this space, called the
idempotency manifold3, the set of all 1-RDMs that satisfy the three conditions mentioned above, onto
which the reconstructed 1-RDM can be projected. This process is known as purification. Let D̃ be this
projected 1-RDM in the idempotency manifold satisfying the minimization condition:

min
Tr[D̃]=η,D̃2=D̃,D̃�0

||D − D̃||m, (4.9)

where || · ||m is the matrix norm
||A||m = sup

||x||=1

||Ax||2, (4.10)

where || · ||2 is the linear algebraic 2-norm

||r||2 =

√∑
i

|ri|2. (4.11)

There exists a systematic way of projecting the sampled 1-RDM onto the manifold of idempotency. Let
D = D0 be the 0-th iteration of this process, then the following iterative process,

Dk+1 = 3D2
k − 2D3

k, (4.12)

called McWeeny purification, will eventually project D onto D̃ within an arbitrarily small radius of
convergence [76]. After each iteration, the eigenvalues will be moved closer to {0, 1}. This process is
given in figure 4.1.

2This depends on the type of quantum system to be studied with VQE. For quantum chemistry, electron conservation is
the condition that is referred to as making physically sense here.

3Though it is called the idempotency manifold, the 1-RDMs that comprise this manifold also satisfy properties 1 and 3.
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Figure 4.1: The McWeeny path through matrix space, projecting the measured 1-RDM onto the
idempotency surface.

Realistically, on the order of 105 samples are taken to perform accurate experiments. This leads to a
high number of significant numbers, and so the McWeeny purification process may not converge exactly
within a small time window. A cutoff can be established to ensure ’sufficient’ convergence. Typically, the
algorithm is finished at step m if

||Dm − D̃|| < ε (4.13)

for some small error margin ε. A priori, the projection D̃ of the 1-RDM onto the idempotency manifold
is not known, because if it were, the McWeeny purification process would be redundant. Equation (4.14)
is then replaced with

||D2
m −Dm|| < ε, (4.14)

where ε = 10−8 is chosen to be an arbitrary small bound for the GoogleAI experiment [77]. The energy
estimation (2.49) then uses these new purified 1-RDM entries rather than the measured ones.

Of course, this entire McWeeny procedure relies on the fact that in Hartree-Fock theory, one is interested
in a Slater determinant type wavefunction so that the 2-RDM components are uniquely determined by
the 1-RDM components. Further research has been conducted to see if this work can be generalised and
if a McWeeny purification procedure can also be constructed for the 2-RDM, though results are not clear
on if it is achievable in a meaningful way [78].

4.2.3 Countering gate/propagation imperfections

The coherent errors caused by gate imperfections or qubit propagation errors, mentioned in section 3.4,
can be countered by the following procedure. Let U denote the unitary operation to be implemented,
and let U(I + εδU) be the actual erroneous unitary operation, where ε is a small parameter introduced

for bookkeeping. Then, the unitary operator V
def
= V0(I + εδV ) is meant to counter the error term δU , to

second order in the error parameter ε. To find V , one can solve

U(I + εδU)V0(I + εδV ) = U +O(ε2). (4.15)

Separating each order of ε, this yields

UV0 + ε(UδUV0 + UV0δV ) +O(ε2) = U +O(ε2). (4.16)

This gives V0 = I and UδUV0 + UV0δV = UδU + UδV = 0. So, δV = −δU In conclusion, to counter a
small gate imperfection or propagation imperfections, one must first find the coherent error term δU , and
apply the unitary V = I− εδU . Of course, for an erroneous U that is still unitary, one can reverse its
effect by U†, but it is not always obvious for tiny errors (ε� 1), what this Hermitian conjugate is, so
that above procedure may find itself of more use.
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4.3 Richardson’s deferred approach to the limit

4.3.1 Richardson extrapolation

Suppose that A(h) is a distribution that gives a sequence of estimates, dependent on a disturbance
parameter h with the constraint that A? = limh→0A(h) is the disturbance-free limit of the distribution.
Then, Richardson extrapolation accelerates the convergence rate of this sequence [79][80]. Let the Taylor
expansion of this sequence around A? be given by

A(h) = A? + Chn +O(hn+1), (4.17)

where n is the lowest order to which the distribution can be expanded. Then the Richardson extrapolation
R(h, t) improves the accuracy of the estimates, defined by

R(h, t) =
tnA(h/t)−A(h)

tn − 1
. (4.18)

Here, t is an auxiliary parameter that introduces the splitting of disturbance scales h and h/t. An explicit
calculation would reveal that (4.18) gives

R(h, t) = A? +O(hn+1), (4.19)

which improves the rate of convergence. Because this works for arbitrary lowest order n, then by induction,
Richardson extrapolation can remove any number of k lowest orders. This approach is called RDA:
Richardson’s deferred approach to the limit, and it provides a consistent way of removing lowest order
corrections to a disturbed distribution.

4.3.2 The original proposal

Relating Richardson’s deferred approach to the limit to improving the accuracy of quantum computational
calculations, one can estimate the VQE expectation value of a quantum observable such as the energy
eigenvalue of a molecular system under noise, to arbitrary precision by cancelling the noise parameter to
arbitrary order in the expansion of the observable estimate. Using RDA, the density matrix of the noisy
quantum circuit ρ̃(T ), running for a time T , allows for the reconstruction of the noise-free density matrix
ρ(T ), rendering the solution more accurate.

Let Pα be the set of Pauli operators {I, X, Y, Z}⊗α acting on N qubits. Let
∑
α Pα represent, with slight

abuse of notation, the direct sum of all these sets of Pauli operators on different Hilbert spaces Hα, so
that ∑

α

Pα
def
=
⊕
α

Pα (4.20)

is the complete basis set of the Hilbert space H
def
=
⊕

α Hα. Then, a quantum circuit can be experimentally
realised by a drive Hamiltonian

K(t) =
∑
α

JPα(t)Pα, (4.21)

where JPα is the corresponding interaction parameter that may or may not be time-dependent.

The total evolution of the density matrix under decoherence is given by the modified Von Neumann
equation

∂ρ(t)

∂t
= −i[K(t), ρ(t)] + λL(ρ(t)). (4.22)

Here, λ is a noise parameter that quantifies the noise strength, while L(ρ(t)) is a linear function of ρ
that describes the noise generation. Dependent on its nature, λ could be the interaction strength of the
circuit with its environment (the bath), to name an example, in which case L(ρ(t)) would be the Lindblad
operator. Three constraints are tied to the use of this equation [81]:

1. The generator L(ρ(t)) is invariant under time scaling, and is independent of the Hamiltonian.

2. The noise parameter λ� 1 is small, so that perturbation theory can be applied.
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3. If ln = O(Nn) is at most a function of at least order n, then ||LI,t1 ◦ · · · ◦ LI,tn ||1 = ln, where
LI,ti = eiK(t)tiLe−iK(t)ti is the generator in the interaction picture, and where || · ||1 is the 1-norm
given by

||A||1 = max
i

∑
j

|Aij |. (4.23)

Let EK(λ) be the estimate of the quantum observable A under the drive Hamiltonian K(t) and noise λ,
given by Tr(Aρλ(T )). Expanding this estimate in terms of λ gives

EK(λ) = E? +

n∑
k=1

akλ
k +O(λn+1), (4.24)

where E? = Tr(Aρ0(T )) is the noise-free energy, and where ak are expansion parameters that depend
on the noise model, typically growing like ∼ (NT )k [60]. To be more precise, this expansion is around
the small parameter NTλ. As noise will cause disruptions in the measurement, one is only interested in
limλ→0EK(λ) = E?, but has only access to EK(λ), which will always have an offset of O(λ) to the true
solution. By application Richardson’s deferred approach to the limit, it is possible to cancel all orders of
λ to arbitrary convergence. The offset can then be reduced to O(λn+1).

Because of the nature of VQE, it is not possible to improve the ground state energy by averaging over all
samples because VQE always overestimates the energy. In general, noise will counter the tendency of
VQE to improve a wavefunction so that the energy is lowered. Therefore, a clever trick is needed that
extrapolates these noise-ridden energy estimates to a lower energy, but not below the true ground state
energy in the limit of λ → 0, as is forbidden by VQE. This principle is illustrated, and compared to
regular averaging, in figure 4.2.

Figure 4.2: A Gaußian distribution is centered around an average, with the standard deviation
determined by the error strength. Averaging over the energy estimates gives a good approximation to the

average. For VQE, there is no such centering, so that averaging does not work.

Suppose that n + 1 different quantum circuits run the same algorithm, each circuit labeled by j ∈
{0, 1, · · · , n− 1, n}, at different noise scales λj . Each noise scale can be represented as a scaled version of
the original noise such that λj = cjλ. Then there will be n+ 1 experimental estimates

ÊK(λj) = EK(λj) + ∆j . (4.25)

Here, ∆j is an error induced by the finite nature of the sampling process, as well as additional circuit
errors. It then holds true that the superposition of these energies given by

ÊnK(λ) =

n∑
j=0

γjÊK(λj) (4.26)

improves the approximation of E? to order O(λn+1). The linear factors γj satisfy the linear set of
equations

n∑
j=0

γjc
k
j = δk,0 ∀k ∈ {0, 1, · · · , n− 1, n}. (4.27)
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The solutions of these equations are found by Gaußian elimination, yielding the compact form

γj =
∏
j 6=m

cm
cm − cj

. (4.28)

Eventually, this leads to an upper bound to the error that is quantified by the inequality

|ÊnK(λ)− E?| ≤ Γn

(
max
j
|∆j |+ ||A||

ln+1(λT )n+1

(n+ 1)!

)
, (4.29)

where Γn =
∑n
j=0 |γj |c

n+1
j .

Figure 4.3: In the context of VQE, RDA imposes a band of convergence around the erroneous data and
extrapolates it to the noiseless limit [82]. Unlike VQE, this energy estimation can actually go below the

true ground state energy.

What this method effectively achieves, is enveloping the noise amplified energy estimations in a narrow
band, as seen in figure 4.3. The result becomes more accurate if there are more data points and if the
scaling factors cj are high enough. Extrapolation to c→ 0 yields an estimate for E? within an uncertainty
band of O(λn+1). In stark contrast to VQE, RDA is technically able to achieve an energy estimate that
lies below the true ground state energy. The higher the value of n, the stricter this uncertainty band
becomes, preventing the severity of such underestimations. Indeed, in the noise limit → 0, there is no
underestimation.

4.3.3 Application to VQE

In experiments, one cannot control certain types of decoherent noise. It is possible to mitigate noise-
induced errors, or to use technological advancements to make the system less susceptible to environmental
interactions or circuit imperfections, or to counter gate imperfections, to name a few example. But it is
impossible to have precise control over λ. By that argument, it is also impossible to scale the noise by
an exact amount given by the scaling parameters cj . To perform the n+ 1 experiments that are used
in Richardson extrapolation, one must therefore refer to different techniques. One such mathematical
trick exists: by rescaling the Hamiltonian and the total circuit time scale, the system can be effectively
cheated into simulating a system where it is only the noise that is scaled.

Let c0 = 0 and cj > 1 be the scaling parameters. Then, the new simulation time is scaled as Tj = cjT .
The rescaled Hamiltonian is given by [81]

Kj(t) =
∑
α

JPα,j(t)Pα, (4.30)

where

JPα,j(t) =
1

cj
JPα

(
t

cj

)
. (4.31)
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This inevitably leads to a rescaled density matrix as well: ρj(t) = ρ
(
t
cj

)
. As it turns out, this new

density matrix that is subject to a noisy system with noise parameter λ and time scale Tj , is equivalent
to the old density matrix being subject to a scaled noise cjλ for a time T :

ρj,λ(Tj) = ρλj (T ). (4.32)

If an experimentalist has full control over the circuit, they can modify the drive Hamiltonian to effectively
scale up the noise. The time scaling can be potentially problematic, though. If a single iteration of the
VQE algorithm runs for too long, beyond the relaxation and dephasing times, coherence will be lost.
Such results would be too inaccurate even for RDA to recover. Therefore, the additional constraint

Tj ≤ max{T1, T2, T
?
2 } ∀j (4.33)

must be imposed. For this reason, RDA is more beneficial for quantum computers of which qubits have
long coherence times.

34



5 Rydberg quantum circuits

5.1 Physics of Rydberg atoms

5.1.1 Introduction

Rydberg atoms are atoms where one of the electrons is excited to a state that has a high principle
quantum number n. Typically, n falls in the range & 20. The presence of an electron in such a state
gives the atom some extreme properties. The typical size of an atom scales like ∼ n2, so that Rydberg
atoms are typically of the µm size. They are also very sensitive to applications of external fields: their
polarisibility scales like ∼ n7. Rydberg atoms also have strong van der Waals interactions between them
whose interaction coefficient C6 scales like ∼ n11. They also have long lifetimes τ , scaling like ∼ n3 [83].
Such lifetimes are given by the rate of spontaneous emission with characteristic timescale τsp, and the
rate of stimulated emission over timescales τst, dependent on the temperature T [84]:

1

τ
=

1

τsp
+

1

τst(T )
. (5.1)

Because of recent advancements within the field of ultracold quantum physics, Rydberg atoms have
become a prominent candidate for the realisation of quantum computers because their high level of
experimental control allows an experimentalist to fine tune specific interactions [85][86]. A universal set
of quantum gates can be constructed from Rydberg atoms by employing their long-range interactions, but
also many types of multi-qubit entanglement operations are possible. Both analog and digital quantum
computing are within the realm of possibilities, as analog quantum computing with Rydberg atoms have
already been shown to be able to be effectively simulated. Analog quantum computers mimic a certain
quantum system of interest, or an entire family of systems, by either tuning the circuit Hamiltonian to
resemble the system’s or by finding an isomorphism between the two Hamiltonians. Digital quantum
computers perform computations by mapping the quantum system onto qubit and qubit operators.

Rydberg energy levels are represented by the quantum numbers n, the principal quantum number, l, s
and j. The latter three denote the orbital angular momentum, the spin angular momentum and the total
angular momentum quantum numbers respectively. The energy of such a level is given by

Enlj = − Ry

(n− δlj(n))2
, (5.2)

where Ry is the Rydberg constant and δlj(n) is the quantum defect: a correction to the energy that slowly
varies with n and corrects for hyperfine splittings and the phase shift for low energy electron-ion scattering
processes [85][87]. Ry is material-dependent, meaning it is slightly different for different atoms. For an
alkali metal such as Rubidium, this Rydberg constant equals ≈ 0.4999673250 [88]. The Rydberg-Ritz
formula allows for the calculation of the quantum defect according to its expansion

δnlj =

∞∑
k=0

δ2k
(n− δ0)2k

= δ0 +
δ2

(n− δ0)2
+

δ4
(n− δ0)4

+ · · · , (5.3)

where the coefficients δ0, δ2, δ4, · · · are experimentally measured and tabled [89]. They depend most
strongly on the azimuthal quantum number l.

The 4 quantum numbers that describe a Rydberg state are encapsuled into the state ket |e〉 = |n, l, j,mj〉.
These are eigenstates of the single-atom Hamiltonian, but not of the two-atom Hamiltonian, as their
dipolar interactions shift the eigenvectors.

5.1.2 Laser excitation

An electron can be excited to a Rydberg state through means of optical excitation. The dipole moment
of the Rydberg atom couples to laser light that is tuned to a frequency corresponding to certain atomic
transitions. This dipole moment ~µ is given by

~µ = −e~r, (5.4)
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where e is the elementary charge and ~r is the position vector of the displaced electron. The matrix elements
of this operator reveal whether two states are dipole coupled. That is, if the matrix element

〈n, l, j,mj | ~µ |n′, l′, j′,m′j〉 (5.5)

vanishes, then the two respective states are not dipole coupled. The conditions for when these matrix
elements vanish give rise to selection rules. This is evident from the separability of the dipole matrix

elements into a radial matrix element 〈r〉n
′l′j′

nlj and a matrix element Al
′j′m′j
ljmj

that takes the regular and

spin angular momenta into account. They are given by [83]

〈r〉n
′l′j′

nlj =

∫ ∞
0

Pnlj(r)rPn′l′j′(r)dr (5.6)

and

Al
′j′m′j
ljmj

= 〈ljmj |
(
êx + êy + êz

)
|l′j′m′j〉 . (5.7)

Here, the functions Pnlj(r) are reduced wavefunctions given by their relationship to the radial wavefunction
ψnlj(r) that solves the Schrödinger equation:

ψnlj(r) ∝
Pnlj(r)

r
. (5.8)

The position vector has been explicitly decomposed into its Cartesian basis vectors. Because photons,
being spin-1 bosons, drive these atomic transitions, it is more convenient to project these angular
momentum matrix elements, which themselves are 3-component vectors, onto a spin-1 polarisation basis.
Let this new basis {ei}i=1,2,3 be given by

e1 =
ex + iey√

2
, e2 =

ex − iey√
2

, e3 = ez, (5.9)

corresponding to σ+, σ− and linearly polarised light respectively. The matrix elements Al
′j′m′j
ljmj

can be
projected onto this new basis:

ei·A
l′j′m′j
ljmj

= (−1)j−mj+s+j
′+1
√

(2j + 1)(2j′ + 1)(2l + 1)(2l′ + 1)

{
j 1 j′

l′ s l

}(
j 1 j′

−mj µi m′j

)(
l 1 l′

0 0 0

)
,

(5.10)
where s = 1

2 is the electron spin, curly brackets denote Wigner-6j symbols, and curved brackets denote
Wigner-3j symbols, defined in Appendix A [90]. µi is the polarisation of light, so that µ1 = 1, µ2 =
−1, µ3 = 0. In most cases, these Wigner symbols vanish. Only for a specific combination of entries do
they give non-zero contributions, leading to selection rules for the transitions. It can be calculated that
the transition between the states |nljmj〉 and |n′l′j′m′j〉 can only be driven if the conditions

1. l′ = l ± 1,

2. |j − j′| ≤ 1,

3. mj −m′j = µi

are met [91]. Because of the existence of selection rules, it is impossible to dipole-couple two states with
like azimuthal angular momentum quantum numbers l through a laser-driven transition.

This dipole operator couples to laser light with an angular frequency ω and electric field vector ~E through
the interaction potential

HAL = −~µ ·
~E

~
. (5.11)

The electric dipole approximation has been employed, which assumes that the variation of the electric
field amplitude over the size of the atom is negligible.

The Rabi frequencies are defined as

Ωge = 〈g| ~µ ·
~E

~
|e〉 , Ωer = 〈e| ~µ ·

~E

~
|r〉 . (5.12)
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In many cases, the transition from one state to another is dipole forbidden, because it does not adhere to
the selection rules. In such a case, the transition from a state |g〉 to a Rydberg state |r〉 can be realised
by introducing an intermediate state |e〉 to the state manifold, which can be removed by a process known
as adiabatic elimination, in which the detuning δe of the intermediate state is made very large. Then, the
intermediate state is not significantly populated, and will serve only as a fast degree of freedom in the
system. The effective Rabi frequency of the transition is then given by

Ω =
ΩgeΩer

2δe
, (5.13)

while the effective detuning is given by

∆ = δr +
Ω2
ge − Ω2

er

4δe
, (5.14)

where δr denotes the detuning of the Rydberg state [92][93].

5.2 Rydberg interactions

5.2.1 Dipolar interactions

Dipole-dipole interactions are the primary mechanism through which Rydberg atoms interact with
one another. For interatomic distances of the order of millimeters, this interactions takes the classical
form4

Vdd(~R) =
1

4πε0

(
~µ1 · ~µ2

R3
− 3(~µ1 · ~R)(~µ2 · ~R)

R5

)
, (5.15)

where ~R is the inter-nuclear vector connecting the two interacting atoms, with R = |~R| [94].

Focusing solely on two-body systems, the new two-atom Hamiltonian H2 now contains single-body terms,
as well as the operator Vdd that dipole-couples the atoms. It is given by [95]

H2 = H1 ⊗ I + I⊗H1 + Vdd(~R), (5.16)

where H1 is the electronic Hamiltonian

H1 = −1

2
∇2 + Vcore(r) +

α2

r3
~L · ~S, (5.17)

where Vcore(r) is the effective potential that is felt by the outer electron in a high n Rydberg state, often
described by models, r is the distance from the nucleus to that electron, α is the fine structure constant,
~L is the angular momentum vector and ~S is the spin angular momentum vector. The last term therefore
describes spin-orbit coupling.

The presence of the Vdd term in equation (5.16) shifts the eigenstates of the original Hamiltonian H1. Let
|α〉 and |β〉 denote eigenstates of this single-atom Hamiltonian. Then the eigenstates of the interactionless
two-atom system are tensor products of these states |αβ〉 = |α〉 ⊗ |β〉 with an additive eigenenergy
Eαβ = Eα +Eβ . When the dipole-dipole interactions are turned on, instead of pure state kets |n, l, j,mj〉,
the new eigenstates will be a superposition of so-called pair states |n, l, j,mj〉 ⊗ |n′, l′, j′,m′j〉. The new
eigenenergies can be obtained from perturbation theory.

5.2.2 Van der Waals interactions

From perturbation theory, the eigenenergies of (5.16) can be obtained, revealing an interaction scaling
like ∼ 1

R6 for large separations, known as the van der Waals interaction. This scaling law can also be
retrieved from eigenenergies of the Hamiltonian of two dipole-coupled pair states at large separation
distances R.

A toy model is given by the interaction between pair states |nS〉⊗ |nS〉 and |n′P 〉⊗ |n′′P 〉. Let the energy
zero point be given by the eigenenergy of the first pair state, and let the energy difference between the

4Henceforth, units will be adopted where ~ = c = 1.

37



pair states be given by ∆E, called the Förster defect. Then, the Hamiltonian matrix in this basis is given
by [84]

Htoy =

(
0 V0/R

3

V0/R
3 ∆E

)
, (5.18)

where the potential V0 is given by [95]

V0 = R3 〈nSnS| Vdd |n′Pn′′P 〉 . (5.19)

The eigenvalues of Htoy are given by

E± =
1

2

(
∆E ±

√
∆E2 +

4V 2
0

R6

)
. (5.20)

In the resonant dipole regime, characterised by strong off-diagonal interaction energies V0

R3 � ∆E, the
energies follow the typical 1

R3 scaling law for dipole energies:

E± ' ±
V0

R3
. (5.21)

In the van der Waals regime, characterised by great separation distances V0

R3 � ∆E, the two eigenenergies
split as follows:

E− ' −
1

∆E

V 2
0

R6
, E+ ' ∆E +

1

∆E

V 2
0

R6
, (5.22)

where the typical 1
R6 behaviour is recovered. The van der Waals constant C6 is defined as

C6 =
V 2

0

∆E
, (5.23)

which can take either positive or negative values.

5.2.3 The Rydberg blockade effect

Because of the strength of Rydberg-Rydberg interactions at close distances, it is possible that the presence
of an electron in a high n-state will shift the nearby atoms out of resonance with their laser fields. This
effect is called the Rydberg blockade effect. Because the van der Waals potential drops off with increasing
distance, the characteristic distance below which this blockade effect works is called the Rydberg blockade
radius Rb. If the characteristic coupling strength of the van der Waals interaction is denoted by C6, and
the laser that excites a ground state to the Rydberg state has a Rabi frequency of Ω, then this blockade
radius is given by [96]

Rb =

(
C6

Ω

)1/6

. (5.24)

This blockade effect enables Rydberg atoms to be employed for controlled quantum gate operations. A
well-known example for two qubits is the CNOT gate, given by its matrix representation

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (5.25)

in the computational basis. A pulse scheme that achieves this gate operation is presented in figure 5.1.
Through the blockade effect, multiple qubits can be effectively made to communicate with one another,
creating entanglement in general.

Consider a system consisting of two atoms are in their respective ground states, so that the collective
wavefunction is given by |ψ〉 = |g〉 ⊗ |g〉. When one of the atoms is excited to a higher energy Rydberg
state |r〉, the wavefunction symmetrises to |ψ+〉 = 1√

2

(
|g〉 ⊗ |r〉+ |r〉 ⊗ |g〉

)
because both states have

degenerate eigenenergies. A resonant laser coupling with a modified Rabi frequency of

Ω =
√

2Ω1, (5.26)
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(a) If the control qubit is in the |0c〉
state, no Rydberg blockade happens.

The 2π-pulse will therefore give a
phase shift δϕ = π to the target

qubit.

(b) If the control qubit is in the |1c〉
state, the Rydberg state destroys the
resonance of the 2π-pulse, preventing

a phase shift of the target qubit.

Figure 5.1: An appliance of the Rydberg blockade effect: the CNOT operation, to add a controlled qubit
phase shift to a target qubit [85].

where Ω1 is the Rabi frequency of a single-atom laser driving the |g〉 ↔ |r〉 transition, now drives the
transition of |g〉 ⊗ |g〉 ↔ |ψ+〉. Excitation to such a coherent superposition within the Rydberg blockade
regime has been verified experimentally [97]. The coupling of the |ψ+〉 state to the doubly excited Rydberg
state |r〉 ⊗ |r〉 is now forbidden by the off-resonance of the laser, caused by the blockade effect. This
transition scheme is depicted in figure 5.2. The blockade effect itself has been experimentally verified,
lately with Rubidium atoms [98].

Figure 5.2: Within the blockade radius, R < Rb, only certain transitions are possible, with a modified
Rabi frequency given by (5.26) [96].

This discussion can be extended to an ensemble of an arbitrary number of Rydberg atoms. If a volume of
N particles is considered, it is possible to form the coherent superposition state

|WN 〉 =
1√
N

N∑
i=1

|g1〉 ⊗ |g2〉 ⊗ · · · ⊗ |ri〉 ⊗ · · · ⊗ |gN 〉 =
1√
N

N∑
i=1

|g1g2 · · · ri · · · gN 〉 , (5.27)

where the latter equality introduces a shorthand notation to unclutter the tensor product notation. Such
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a state shifts the single-atom Rabi frequency Ω1 to an enhanced Rabi frequency

Ω =

√√√√ N∑
i=1

Ω2
1 =
√
NΩ1. (5.28)

Sometimes also referred to as a superatomic state, these collective coherent many-body Rabi frequencies
have also been observed in experiment [99][100].

5.3 Quantum gate implementation

5.3.1 Rydberg-based QPUs

The NISQ era requires high fidelities for qubit initialisation, read-out and quantum gate operations.
Rydberg atoms are a very useful tool to be employed to construct a QPU that comprises the quantum
mechanical part of a hybrid quantum computer, in a high fidelity fashion. The qubit states can be
encoded within the state manifold {S} of a Rydberg atom, while quantum gates can be encoded in the
drive Hamiltonian and the natural strong Rydberg-Rydberg interactions. By trapping ultracold Rydberg
atoms in optical traps, one can create an entire lattice Λ of qubits whose interactions can be controlled.
The low temperature mitigates blackbody radiation losses as well as positional jitter that would introduce
position-dependent corrections to the potential.

(a) A visual representation of a lattice of
ultracold Rydberg atoms [25]. green spheres
denote regions within the Rydberg blockade

radius, and the red lobes denote lasers.

(b) A minimalistic representation of the
Sycamore quantum computer [9]. The
entire lattice Λ is the collection of all

nodes, while the sub-lattice ∂Λ is given by
black nodes only.

Figure 5.3: Two representations of a lattice of ultracold Rydberg atoms, on which quantum
computations can be performed.

Within the lattice, a certain sub-lattice chain ∂Λ can be chosen to represent an array of qubits. GoogleAI’s
Sycamore quantum computer has done the same for choosing their qubit register for performing their
largest quantum chemistry experiment [9]. In principle, this allows for a few options. A linear qubit
register can be chosen, so that each qubit has 2 nearest neighbours at equal distance, except for the
qubits at the ends of the chain. But the register can also wrap around, as seen in figure 5.3(b), so that
qubits at far ends of the chain are physically close, and therefore have stronger interactions.

5.3.2 Choice of qubits

Quantum computers based on Rydberg atoms allow for a whole range of choices for the allocation of
different atomic states to the qubit states |0〉 and |1〉. Because of the flexible nature of Rydberg atoms, it
is also possible to employ a different choice of qubits for quantum gates and entanglement operations.
The most prominent choices are [25]:

1. gg qubits, where both qubit states are mapped to ground states (low n). These can either be
hyperfine splittings of the electronic ground state or a combination of the electronic ground state
and a metastable excited state. Their long coherence times make them an attractive option, though
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their mutual interatomic interactions are weak. This can be resolved by adding an intermediate
Rybderg state to the state manifold, but not to the qubit manifold.

2. gr qubits, where one qubit state is assigned to a ground state and the other is assigned to a Rydberg
state. Typically, the g state is chosen to be the electronic ground state, though the metastable
first excited state is a common choice as well. Their lifetime is on the order of ∼ 100µs, limited by
spontaneous/simulated blackbody radiation and the decay of the unstable Rydberg level. This qubit
type is easily initialised, manipulated and measured, and it provides a high fidelity for entanglement
operations. However, their strong interactions of the form −C6

R6 |rr〉 〈rr| are always turned on,
making it difficult to perform single qubit operations without affecting nearby qubits.

3. rr qubits, where both qubit states are mapped to different Rydberg states |r〉 and |r′〉. For resonant
states, their on-resonant dipolar interactions of the form C3

R3

(
|rr′〉 〈r′r|+ |r′r〉 〈rr′|

)
are always

turned on. For this qubit type, it is harder to address individual qubits, and increasing the lifetime
beyond the coherence time is a technical challenge.

5.3.3 Single-qubit gates

From now on, a system of gg qubits is considered, where the qubit states |0〉 and |1〉 are assigned to two
low energy states of the outer electron. The single atom Hamiltonian for an atom j ∈ Λ is given by

Habj = −∆j |b〉j 〈b|j +

(
Ωj
2
eiλj |a〉j 〈b|j + h.c.

)
. (5.29)

Here, a and b refer to either the qubit states 0 and 1 or an auxiliary Rydberg state r that is not part of
the qubit state manifold. ∆j is the detuning of the coupling laser frequency and the atomic resonance
frequency of the b-state, which is usually 0 for the |1〉-state and non-zero for an |r〉-state. Ωj is the Rabi
frequency of the transition between the |a〉 and |b〉-states, and λj is the local phase generated by the
polarisation of the laser.

With this Hamiltonian, a family of single-qubit gates can be generated. A general prescription from
obtaining familiar gates such as the Pauli gates and the Hadamard gate can be retrieved from the general
Uxy operator given by

Uxy(θ, λ) = e−iH
01
j τg =

(
cos (θ/2) −i sin (θ/2)eiλ

−i sin (θ/2)e−iλ cos (θ/2).

)
(5.30)

The angle θ is given by θ = Ωτg, where τg is the gate time. The interpretation of this general unitary is a
rotation of θ radians around an axis that lies at an angle of λ radians in the x − y plane. By certain
parameterisation of the experimental parameters, one can reconstruct the 3 Pauli gates and the Hadamard
gate as follows:

1. From the Pauli matrix X, defined in 2.54, one can construct a rotation around the x-axis on the
Bloch sphere with Rx(θ) = e−i

θ
2X = Uxy(θ, 0).

2. Likewise, a rotation around the y-axis follows from Ry(θ) = e−i
θ
2Y = Uxy(θ,−π/2).

3. Since the unitary Uxy can only perform rotations around the x and y axes, in order to create a

rotation around the z-axis, 3 rotations must be applied to the Bloch sphere: Rz(θ) = e−i
θ
2Z =

Uxy(π/2, π/2)Uxy(θ, 0)Uxy(π/2,−π/2).

4. The Hadamard gate H follows, up to a global phase factor, from H = Uxy(π, 0)Uxy(π/2,−π/2).

5.3.4 Two-qubit gates

The two-atom Hamiltonian for atoms j ∈ Λ and k ∈ Λ, in the pair state basis, is given by

Hjk =

(
µacµbd
R3
jk

|ab〉 〈cd|+ h.c.

)
+ ∆F |cd〉 〈cd| , (5.31)
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where µac =
√

4πε0 〈a|µ |c〉, and ∆F = (Ed −Eb)− (Ea −Ec) is the Förster defect [25]. There now exist
two regimes, dependent on the strength of the Förster defect, that give either rise to a dipole-dipole
coupling Hamiltonian, or a van der Waals Hamiltonian. In this work, ∆F is solely determined by the
resonance of the interacting Rydberg states, though pair states can also be brought into resonance through
the application of an external electric field [101].

(I) Resonant interactions (∆F ≈ 0)

When the Rydberg-Rydberg interactions are resonant, they will take the form of a coherent state exchange
process with a characteristic scaling law ∼ 1

r3 . This Hamiltonian is denoted with 4 different Roman
superscript letters:

Habcdjk =
µacµbd
R3
jk

|ab〉 〈cd|+ h.c. (5.32)

with a potential Vjk = µacµbd
R3
jk

. This Hamiltonian is naturally realised if both atoms have the same

dipole-coupled states, for example a = d = nS and c = d = nP . The system can also be brought into
Förster resonance by application of an electrical field, but this will not be considered here. The flip-flop
term will dominate, and the system will dominantly interact through dipole-dipole couplings.

(II) Non-resonant interactions (∆F � |µacµbd|
R3
jk

)

When the states are not directly dipole-coupled, then the dipole interaction Hamiltonian can be treated
with second order perturbation theory, giving

Hababjk = − C6

R6
jk

|ab〉 〈ab| (5.33)

with a potential Vjk = − C6

R6
jk

and a van der Waals coefficient C6 = |µacµbd|2
∆F

. This Hamiltonian is a natural

result for atoms that are prepared in the very same Rydberg states (for example a = b = nS) or atoms in
different Rydberg states that are not directly dipole-coupled (for example a = nS, b = n′S).

Another gate that can be constructed is the controlled phase gate

CPHASE =


eiϕ00 0 0 0

0 eiϕ01 0 0
0 0 eiϕ10 0
0 0 0 eiϕ11

 , (5.34)

which is an entanglement operator provided that ϕ00−ϕ01−ϕ10 +ϕ11 6= 2kπ for integer values of k. From
this general gate, more specific gates such as the CZ gate can be retrieved by specific parameterisation.
The pulse scheme is given by

CZ = exp
[
−iHr1

c τ1

]
exp

[
−i
(
Hr1
t +Hrrrr

ct

)
τ2

]
exp

[
−iHr1

c τ1

]
, (5.35)

where ∆c = ∆t = 0, Ωc = Ωt = Ω, τ1 = π
Ω and τ2 = 2τ1 [25].

5.3.5 Multi-qubit gates

The CNOT gate, together with the single-qubit gates, constitute a set of universal operators. This
means that any quantum gate can be decomposed into these basis gates. For most gates, however, this
decomposition would slow down the quantum computation speed, because of an increase in resources.
Rydberg atoms allow for building a flexible quantum simulator where some gates can be directly
implemented in some fashion, meaning that no decomposition has to be taken. With their strong and
long-ranged dipole interactions, Rydberg atoms are a natural means of directly implementing multi-qubit
entanglement gates without having to resort to a decomposition into a numerous number of single-qubit
and two-qubit gates.

A few examples are given here, taken from the work by M. Morgado et al. [25]. References for the
implementations of the latter two gates can be found in there.
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The asymmetric blockade gate CkZ

One of the most well known multi-qubit gates is the natural extension of the CZ gate to an arbitrary
number of control qubits: the CkZ gate, where k is the number of control qubits. Its matrix representation
is given by

CkZ =

(
If(k) 0

0 Z

)
, (5.36)

where If(k) is the
(
2k+1 − 2

)
×
(
2k+1 − 2

)
identity operator on the subspace spanned by the first k qubits.

A pulse scheme that realises this gate is given by

CkZ = exp

−i∑
k

Hr0
k (λk = π)τ1

 exp

−i
Hr1

t (λt = 0) +
∑
k

Hrr′rr′

kt

 τ2

 exp

−i∑
k

Hr0
k (λk = 0)τ1

 ,
(5.37)

where Ωk = Ωc, τ1 = π
Ωc

and τ2 = 2π
Ωt

.

The multi-qubit Toffoli gate CkNOT

The CkNOT gate is a generalisation of the Rydberg blockade effect, given by

CkNOT =

(
If(k) 0

0 X

)
, (5.38)

where If(k) is again given by the
(
2k+1 − 2

)
×
(
2k+1 − 2

)
identity operator.

The multi-qubit fan-out gate CNOT k

CNOTk =

(
Ig(k) 0

0 Xg(k)

)
, (5.39)

where Ig(k) is the 2k × 2k identity operator, and where Xg(k) is the generalisation of the Pauli X-gate,

given by the anti-diagonal 2k-dimensional matrix with 1s on the anti-diagonal, and 0s otherwise.
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6 Multi-qubit entanglement through perfect state transfer

6.1 PST in the single excitation manifold Γ1

6.1.1 Introduction to PST

The most common quantum gates are single-qubit and two-qubit gates. It is an interesting research
question whether the VQE algorithm can be sped up by employing multi-qubit gates, that entangle the
states of multiple qubits at once without resorting to some decomposition into a universal set of quantum
gates. It is possible to bring distant qubits physically close together through a string of SWAP operations,
though this is very prone to error propagation and requires an active control [102]. It is preferable to
have a multi-qubit entanglement operation that requires no active control, and an example of this that
has been studied a lot is perfect state transfer (PST), where a quantum state is transfered from one qubit
site to another with unit fidelity.

In future quantum computer builds, it is expected that PST can play an important role in quantum
state transfer, entanglement distribution, as well as allowing communication between different QPUs and
perhaps even a fundamental building block of realising a universal quantum computer, as generating
large-scale entanglement is a core ingredient for scalable architectures [31].

There has been some mild criticism, however, on the utility of implementing PST in modern quantum
computers as their unit fidelity is too demanding in comparison to realistic fidelities of other quantum
operations. Despite this criticism, it is interesting to study PST as the theoretical results lead to some
profound concepts in the context of information transportation in quantum computing. Alternative
measures such as pretty good state transfer (PGST) have been proposed, where the fidelity of the
state transfer can be made arbitrarily close to unity, though they will not be considered in this thesis
[103].

The concept of state transfer was first researched by Bose, who used the Hamiltonian

HBose = J

N−1∑
n=1

(XnXn+1 + YnYn+1 + ZnZn+1), (6.1)

defined on some one-dimensional qubit chain of length N , to study its viability [104]. Here, J is a
parameter that characterises the coupling strength of the qubit interactions. His aim was to take an
initial state |ψ〉 |0〉⊗N−1

, and he hoped that after some time t? had elapsed, the system would find itself

in a state |0〉⊗N−1 |ψ〉, up to some global phase. It can be shown that PST is indeed possible on a qubit
chain that undergoes Bose Hamiltonian dynamics, but only for N = 2 and N = 3. For higher N , it is
proven that PST is impossible with this Hamiltonian. A sketch of this proof is given in Appendix B
[31][105].

Though the Bose Hamiltonian lead to weak results, it was later discovered that the modulation of the
coupling strength J into a position-dependent coupling Jn would indeed lead to PST for all chain lengths
[105][106]. To be more precise, an entire family of generalised Hamiltonians was found that would allow
PST dynamics, if and only if certain conditions were met. This will be discussed in the upcoming sections.
This general family of Hamiltonians is given by the generalised XY -Hamiltonian

H =
1

2

N−1∑
n=1

Jn (XnXn+1 + YnYn+1)−
N∑
n=1

BnZn, (6.2)

under the influence of a local external magnetic field Bn
5. When implemented using Rydberg dressed

atoms, this ’magnetic field’ is unavoidable, and has the interpretation of the light shift of the Rydberg
atom under laser couplings that are weak relative to their detunings. The couplings Jn and Bn are
real-valued parameters.

5Though not always a magnetic field, this name will henceforth be adopted.
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6.1.2 Hilbert space decomposition analysis

The most convenient aspect about this Hamiltonian family is that the analysis of PST along qubit chains
under the influence of such Hamiltonians is gravely reduced because its Hilbert space decomposes into
multiple subspaces that can all be uniquely described by just a single one of them. Let henceforth the
|0〉-state be referred to as the vacuum state, and |1〉 as an exciton, or excitation. It can be observed that
every Hamiltonian in the Hamiltonian family satisfies the commutation relation

[H, Sztot] = 0, (6.3)

where the total qubit isospin Sztot
def
=
∑N
n=1 Zn represents the total number of excitons6. This means

that under the action of H, the total Hilbert space H = C2N decomposes in decoupled subspaces as
follows:

H =

N⊕
k=0

Γk, (6.4)

where Γk denote the k-exciton subspaces given by the bases

Γ0 = {|00 · · · 00〉}, (6.5)

Γ1 = {|10 · · · 00〉 , |01 · · · 00〉 , · · · , |00 · · · 10〉 , |00 · · · 01〉}, (6.6)

Γ2 = {|11 · · · 00〉 , |101 · · · 00〉 , · · · , |00 · · · 11〉}, (6.7)

...

ΓN = {|11 · · · 11〉}. (6.8)

The dimension of each space is given by dim (Γk) =

(
N
k

)
. Suppose PΓk is the projector onto such a

subspace Γk, then it holds true that Tr(SztotPΓk) = k is the total number of excitations in said subspace
[107]. It should be noted that the Hamiltonian family that is discussed in this thesis is not unique, and
that other Hamiltonians that have the same Hilbert space structure can be employed succesfully for PST
[108][109][110], though possibly the most well-known and theory-rich PST Hamiltonian: the Krawtchouk
chain [111], is part of the family discussed here.

The last term is a constant energy shift that only affects the global phase, so it may be omitted. This
Hamiltonian has no local interaction terms, so that the interpretation that may be given to exciton
transport along a qubit chain undergoing PST is that excitons do not ’feel’ each others presence [112][? ].
This will also gravely reduce the complexity of PST analysis. Every higher order k-exciton subspace Γk
is comprised of k copies of the 1-exciton subspace Γ1, up to some extra phases that will be discussed
in section 6.2.4. A full analysis of dynamics within Γ1 will therefore also describe the dynamics of an
arbitrary number of excitons, and thus an arbitrary number of qubits.

Lemma 6.1. PST within Γ1 is equivalent to transporting an exciton from one end of a one-dimensional
qubit chain to the other.

Proof. Let ↪→ denote equality up to arbitrary accumulated phases, so that eiϕp |p〉+ eiϕq |q〉 ↪→ |p〉+ |q〉.
This tool allows for some uncluttering of the notation, and relevant phases can be restored after a
series of calculations is performed. Now the dynamics within Γ1 can be analysed. Suppose the transfer
|ψ〉 |0〉⊗N−1

↪→ |0〉⊗N−1 |ψ〉 is to be made, where |ψ〉 = α |0〉+ β |1〉. Because the N -qubit vacuum is an

eigenstate of the Hamiltonian H, it is preserved: |0〉⊗N under H
↪−−−−−→ |0〉⊗N . The task of PST is then reduced

to realising |1〉 |0〉⊗N−1
↪→ |0〉⊗N−1 |1〉 within Γ1.

6This is a direct result of the SU(2) invariance of Heisenberg-like interactions of the form XX + Y Y (+ZZ).
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Let the state |m〉 denote the single excitation |0〉⊗m−1 |1〉 |0〉N−m, and let |vac〉 def
= |0〉N In the basis

spanned by {|i〉 |1 ≤ i ≤ N}, the Hamiltonian H becomes the tridiagonal matrix

H1 =



B1 J1 0 · · · 0 0
J1 B2 J2 · · · 0 0
0 J1 B3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · BN−1 JN−1

0 0 0 · · · JN−1 BN


. (6.9)

6.1.3 The symmetry matching condition

Now the question arises what conditions the parameters Jn and Bn must meet in order to produce
PST. The following lemma can be issued, which holds for Γ1, but by extension for all qubit states in H
[32]:

Lemma 6.2 (Centrosymmetry). Within the space Γ1, exciton transfer from |1〉 to |N〉 along a one-
dimensional qubit chain under H with open boundary conditions, occurs if the coupling parameters are
centrosymmetric, that is symmetric around the center. This implies that J2

n = J2
N−n and Bn = BN+1−n.

Proof. Let the eigenvalues and eigenvectors of the one-exciton subspace Hamiltonian H1 be given by the
eigenvalue equation

H1 |λn〉 = λn |λn〉 . (6.10)

The qubits at the ends of the chains can then be expanded in this eigenbasis, such that

|1〉 =

N∑
n=1

αn |λn〉 , (6.11)

|N〉 =

N∑
n=1

βn |λn〉 . (6.12)

Suppose that there exists a time tPST after which perfect state transfer has occurred. Then it must link
the |1〉 and the |N〉 states through unitary time evolution:

e−iH1tPST |1〉 = eiϕ |N〉 ↪→ |N〉 , (6.13)

where ϕ is some accumulated phase. Returning to the eigenbasis and putting everything on the left-hand
side yields

N∑
n=1

[
e−iH1tPSTαn − eiϕβn

]
|λn〉 =

N∑
n=1

[
e−iλntPSTαn − eiϕβn

]
|λn〉 = 0. (6.14)

Then each component must individually vanish, giving the conditions

e−iλntPSTαn = eiϕβn ∀n ∈ {1, · · · , N}. (6.15)

This says that the coefficients are related through αn ↪→ βn, or to be more precise: |αn|2 = |βn|2. Since
this relates the front end of the qubit chain to the back end of the chain, one can iteratively solve the
equation

〈1| (H1)
k |1〉 =

N∑
n=1

λkn|αn|2 = 〈N | (H1)
k |N〉 (6.16)

for integer k, so that each equation produces a new equation relating Jn and Bn at the front and at the
back. Let [A];,j = a;,j denote the j-th column of the matrix A. It holds true that

(Ak);,j = Ak−1(A);,j = aj−1,j(A
k−1);,j−1 + aj,j(A

k−1);,j + aj+1,j(A
k−1);,j+1, (6.17)

proving that for tridiagonal matrices, every time the power k of the matrix increases by one, the number
of diagonals increases by one [113]. Plugging in k = 1 gives B1 = BN . Plugging in k = 2 gives
B2

1 + J2
1 = B2

N + J2
N1

, which yields J2
1 = J2

N−1. By systematically working through higher powers, one
finds that PST is possible for J2

n = J2
N+1n

and Bn = BN−n.
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Because of this centrosymmetry, the Hamiltonian commutes with the symmetry operator

S =

N∑
n=1

|n〉 〈N + 1− n| . (6.18)

Under the action of H1, the subspace Γ1 further decomposes into a symmetric (S) and an anti-symmetric
(A) subspace:

Γ1 = Γ1,S ⊕ Γ1,A. (6.19)

Within their respective subspace, the eigenvectors |λn〉 can be split into symmetric eigenvectors |λSn〉
and anti-symmetric ones |λAn 〉. The same labels S/A are attached to the eigenvalues. Then the following
lemma can be proposed [32]:

Lemma 6.3 (The symmetry matching condition). A necessary and sufficient condition for PST is that

there should exist a time tPST and an accumulative phase ϕ such that e−itPSTλ
S
n = eiϕ and e−itPSTλ

A
n =

−eiϕ for all eigenvectors |λn〉.

Proof. One can expand the |1〉 exciton in the basis set {|λn〉} = {|λSn〉} ∪ {|λAn 〉}:

|1〉 =
∑
n

(
αSn |λSn〉+ αAn |λAn 〉

)
, (6.20)

as well as the action of the symmetry operator on it:

S |1〉 = |N〉 =
∑
n

(
αSnS |λSn〉+ αAnS |λAn 〉

)
=
∑
n

(
αSn |λSn〉 − αAn |λAn 〉

)
. (6.21)

The action of H1 on the exciton reads

e−iH1tPST |1〉 =
∑
n

(
e−iλ

S
ntPSTαSn |λSn〉+ e−iλ

A
n tPSTαAn |λAn 〉

)
=
∑
n

(
eiϕαSn |λSn〉 − eiϕαAn |λAn 〉

)
= eiϕS |1〉 ,

(6.22)
which is precisely the necessary condition for PST.

6.1.4 The inverse eigenvalue problem

The usual procedure of studying a system is fixing the system parameters and then studying useful
quantities such as eigenvectors that are solutions to the system equations. It proves itself to be useful
however, to first fix the eigenvalues, and then work out what the system is supposed to look like to recreate
such eigenvalues. This is known as the Inverse Eigenvalue Problem (IEP), a well studied phenomenon that
appear in a lot of physical systems such as connected classical springs [114][115]. The natural question
arises why it is more useful to solve PST using the IEP. A lot of quantities such as transfer speed, time
uncertainty losses and the introduction of next-to-nearest couplings can all be studied by using the IEP
[32][116][117].

So far, no specification has been made beyond the centrosymmetry condition of lemma 6.2. This does not
always guarantee PST, however, as it is a minimal requirement. One last constraint must be added to
the set of eigenvalues to uniquely constraint PST to a specific set of parameters {Jn} and {Bn}. For
PST, solving the IEP is akin to fullfilling the eigenvalue spacing requirement (ESR):

Lemma 6.4 (Eigenvalue spacing requirement). The last condition for PST is that all eigenvalues λn,
sorted such that λn < λm for all n < m, are spaced by a certain amount:

λn − λn−1 = (2kn + 1)π/tPST , (6.23)

where kn is a non-negative integer that depends on n.

Proof. For N ×N tridiagonal matrices with negative off-diagonals, it has been shown that the number of
sign changes in the eigenvalue spectrum is equal to N − 1, showing that symmetric and anti-symmetric
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eigenvalues are alternatively succeeding each other [114]. Because of the symmetry matching condition,

the ratio e−itPSTλ
S
n/e−itPSTλ

A
n is given by

e−itPSTλ
S
n/e−itPSTλ

A
n = −eiϕ · e−iϕ = −1. (6.24)

Because of the alternative ordering of symmetric and anti-symmetric eigenvalues, one can order the
spectrum of eigenvalues such that λn < λm for all n < m. By assigning the labels λSn = λn and λAn = λn−1,
(6.24) reads

e−i(λn−λn−1)tPST = −1 (6.25)

for all n. Then, because of the periodicity of the complex exponent, it must hold true that

λn − λn−1 = (2kn + 1)π/tPST (6.26)

for all n, giving the eigenvalue spacing requirement (ESR). This also means that the ratio of consecutive
eigenvalues is always a rational number.

6.2 PST in higher order excitation manifolds

6.2.1 Independent fermion dynamics

As discussed before, the analysis in higher order excitation subspaces is closely related to the one made in
the single exciton subspace, making it easier to perform calculations [32].

Lemma 6.5 (Free fermion dynamics). Every Hamiltonian in the family encodes free fermion dynamics.
This is now formally proven.

Proof. This is most evident under the Jordan-Wigner transformation (2.51), (2.52). In terms of creation

and annihilation operators a
(†)
x of excitons on qubit site x, H now reads

HJW =

N−1∑
n=1

Jn(a†nan+1 + ana
†
n+1) +

N∑
n=1

Bna
†
nan −

1

2

N∑
n=1

BnIn. (6.27)

Another way of seeing this is by diagonalising the Hamiltonian in the complete Hilbert space basis. By
introducing a basis rotation

b(†)n =

N∑
n=1

λnma
(†)
m , (6.28)

where the λnm coefficients are defined by the reverse relation

|λn〉 =
∑
m

λnm |m〉 . (6.29)

By using the orthogonality relationships of these λnm’s,

〈vac| ama†k |vac〉 =

N∑
n=1

λnmλ
∗
nk = δmk, (6.30)

it is straightforward to show that HJW =
∑N
n=1 λnb

†
nbn, where λn are the single-fermion subspace

eigenvalues.

This proves that indeed, the transfer of multiple excitons is equal to the independent uncoupled transfer
of single excitons. Because they are fermions, though, they are still subject to anti-symmetrization. The
best mathematical tool to automatically incorporate this behaviour is the wedge product ∧ [118]. In
the following section, it is proven formally that mapping qubits onto wedge products of excitations is
mathematically legal, and that indeed this exchange factor arises naturally in fermionic PST.
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6.2.2 Graph vertex wedge product ∧

The study of quantum state transfer along a qubit chain is closely related to the mathematical study of
graphs, collections of vertices connected by edges. A brief introductory background to graph theory in
relation to quantum walks and state transfer is given in Appendix C [119][120]. A quantum register can
be thought of as a graph. Proving the validity of the wedge product is most convenient on such a graph,
and through the isomorphic property of the mapping between graphs and qubit register, it can be shown
that indeed fermionic exchange minus signs are to be expected throughout a PST process.

For simplicity, let the graph vertices be denoted by Roman letters. It is useful to define a wedge product
a∧ b over graph vertices to directly incorporate fermionic behaviour, as the wedge product satisfies

1. Anti-symmetry: a ∧ b = −b ∧ a,

2. Pauli exclusion principle: a ∧ a = 0.

These vertices themselves form vectors that live in an abstract Hilbert space HG of the graph G. Then,

the subspaces Γk can be directly related to exterior vector spaces
∧k

(HG) [121]. To be more precise,
they are isomorphic, shown in the following lemma [32][107]:

Lemma 6.6. Every subspace Γk is isomorphic to
∧k

(HG) .

Proof. For k = 0 and k = 1, they are defined as
∧0

(HG)
def
= C and

∧1
(HG) = HG respectively. For k ≥ 2,

it is defined as ∧k
(HG) =

k⊗
m=1

HG mod AG , (6.31)

where AG is the vector space that is spanned by all elements of the form |v1, · · · , vk〉 where vj = vj′ for
some j 6= j′. Here vj denotes vertices in G, while |vj〉 denote vectors in HG . In order to construct a basis
for the k + 1 exterior vector spaces, it is necessary to invoke the wedge product ∧, defined by

∧ :
k×

m=1

HG →
k⊗

m=1

HG , (6.32)

and whose action on graph vertices is given by

|v1 ∧ · · · ∧ vk〉 =
1

k!

∑
π∈Sk

ε(π) |vπ(1), · · · , vπ(k)〉 . (6.33)

Here, Sk is the permutation group of order k, and ε(π) is the sign of the permutation π. From (6.33) it also

becomes evident that the dimensions of the exterior vector spaces are given by dim
(∧k

(HG)
)

=

(
N
k

)
.

A natural choice for the basis of
∧k

(HG) is then given by the vectors |v1 ∧ · · · ∧ vN 〉 with vj ∈ V (G) and

an ordering vj > vi for all j > i. Because Γk and
∧k

(HG) are vector spaces with the same dimension,

over the same field C, it automatically follows that Γk ∼=
∧k

(HG).

Lemma 6.7 (Legitimacy of the wedge product). Multiple excitons of the form |n〉 can be mapped uniquely
and rigorously onto wedge products [107].

Proof. The notion of a wedge product can now be extended to the concept of a graph wedge product.
This is the wedge product defined over the entire graph, given by

∧k G with vertex set

V

 k∧
G

 = {(v0, v1, · · · , vk−1) | vj ∈ V (G), vk−1 > vk−2 > · · · > v1 > v0}. (6.34)

The vertices of
∧k G are written as

v0 ∧ v1 ∧ · · · ∧ vk−1. (6.35)
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It can be observed that the dimensions of the vectors spaces
∧k G and H∧k G are identical. As they act

over the same field C, it follows that

H∧k G ∼= ∧k
(HG) . (6.36)

By the transitive property of isomorphisms, the relation between wedge products and qubits reads

H∧k G ∼= Γk. (6.37)

This relation justifies rewriting qubit states as wedge products, because the Hilbert space of k copies of
the graph vertices (representing qubits on a graph), on which a wedge product is defined, is isomorphic
to the space of k excitons.

6.2.3 Qubit wedge product ∧

Suppose that there exist p excitations |ap〉 on a qubit register at sites ap. Then this can be directly

mapped through a bijection onto the state
∧
p |ap〉, as their respective spaces are isomorphic and share

the same dimension. Within
∧k

(HG), certain calculations are easier, and the results can be mapped back
to the Γk spaces.

To illustrate this with an example on an N = 6 qubit register: the state |2〉 would denote |010000〉,
while |1〉 ∧ |4〉 would denote |100100〉. Because of the anti-symmetry property of ∧, the order of notation
matters. In this thesis, the excitations are denoted from left to right. p excitations of the form |ap〉 are

therefore read as |a1〉 ∧ · · · ∧ |ap〉, where ai < aj for all i < j.

The wedge product preserves normalisation, as two arbitrary states |a〉 =
∑
m am |m〉 and |b〉 =

∑
n bn |n〉

give rise to a coherent excitation of the form

|a〉 ∧ |b〉 =
∑
m<n

(ambn − anbm) |m〉 ∧ |n〉 , (6.38)

with a normalisation constant [32]

1

2

∑
m,n

|ambn − anbm|2 = 1−
∣∣〈a|b〉∣∣2 =

{
1 if a ⊥ b
0 if a = b (PEP).

(6.39)

With this wedge product it can be proven that the action of the H Hamiltonian on multiple excitations is
given by the wedge product of single-excitation evolutions under the one-particle sub-Hamiltonian H1, so
that these evolutions are decoupled. Let {|λn}〉n denote the eigenstates of H with respective eigenvalues
λn, and let two arbitrary states be given by |a〉 =

∑
m am |λm〉 and |b〉 =

∑
n bn |λn〉. Then the total

evolution is given by

e−iHt |a〉 ∧ |b〉 = e−iHt
∑
m,n ambn |λm〉 ∧ |λn〉 =

∑
m,n ambne

−i(λm+λn)t |λm〉 ∧ |λn〉

=
∑
m,n

(
ame

−iλmt |λm〉
)
∧
(
bne
−iλnt |λn〉

)
=
(
e−iH1t |a〉

)
∧
(
e−iH1t |b〉

)
.

(6.40)

The eigenstates of the higher exciton subspaces are then also readily found from the wedge product. In Γ2,
they are evaluated from |λn〉 ∧ |λm〉, in Γ3, they are of the form |λn〉 ∧ |λm〉 ∧ |λl〉, et cetera [122].

It should be noted, however, that since qubits are distinguishable entities, this fermionic exchange factor
-1 is a construct in some sense. The Hamiltonian itself is blind to whether it is implemented by fermions,
or bosons. Therefore, the term ’free fermion dynamics’ ought to be taken lightly.

6.2.4 Local unitary corrections

Though the name suggests the perfect transfer of quantum states, just the action of the Hamiltonian H
alone does not lead to the perfect mirroring of a qubit register through its axis of inversion. In order to
achieve this, extra unitary operations must be applied to account for phase accumulations throughout
the time evolution, so far swept under the rug through the ′ ↪→′ notation. These three phases are the
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local magnetic phases ∼ e−iBtPST , the Krawtchouk phases ∼ iN−1 and the fermionic exchange phases
∼ (−1)π(q), where π(q) denotes the parity of the qubit state.

(i) Local magnetic phase

In the matrix representation of H, terms will appear that on the diagonal that are linear in the coefficients
Bn. Let o(q) of a computational basis state q denote the number of excitons, and let l denote the modified
magnetic field given by

l = B1tPST
J

π
. (6.41)

Then the corrector to the phases, induced by the magnetic field, is given by

Umagneticcorr = diag
(
eio(q1)lπ/J , eio(q2)lπ/J , · · · , eio(qN )lπ/J

)
. (6.42)

(ii) Krawtchouk phase

A typical property of the Hamiltonian H is that its unitary evolution introduces phase shifts. These
Krawtchouk phases are of the form iN−1 and are applied to the |1〉 states. Let the family of single-qubit
correctors be given by

Ck =

(
1 0
0 i−k

)
=

{
I =

(
1 0
0 1

)
, S† =

(
1 0
0 −i

)
, Z =

(
1 0
0 −1

)
, S =

(
1 0
0 i

)}
. (6.43)

Then, for k = N mod 4, the single-qubit correction that needs to be applied to every qubit is given by
the operator Ck. The total corrector UKrawtchoukcorr is then given by

UKrawtchoukcorr =

N⊗
n=1

Ck = Ck ⊗ · · · ⊗ Ck︸ ︷︷ ︸
N times

. (6.44)

(iii) Fermionic exchange phase

Let the parity π(q) of a computational basis state q be defined as the number of times two excitons swap
position during the PST process. If x denotes the number of |1〉 states in the state q, then this parity is
given by

π(q) =

x−1∑
k=1

k =
1

2
x(x− 1). (6.45)

The unitary corrector that keeps track of all the appropriate minus signs arising from the fermionic
exchange process, is then given by

Ufermioniccorr = diag
(

(−1)π(q1), (−1)π(q2), · · · , (−1)π(qN )
)
. (6.46)

After applying all these unitaries in the form

Ucorr = Ufermioniccorr UKrawtchoukcorr Umagneticcorr , (6.47)

every phase is perfectly accounted for.

6.3 Examples of PST-facilitating Hamiltonians

6.3.1 The Krawtchouk chain

A well-explored Hamiltonian that enables PST is the Krawtchouk chain Hamiltonian. Its structural
simplicity lends it to be possibly the easiest example, and the well-documented theory of its capabilities
makes it an attractive option for implementation on a real QPU. Combined with resonant driving, it can
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be used to employ cold atom qubits to form multi-qubit SWAPN entanglement operations [111]. The
Hamiltonian is given by

HK = −J
4

N−1∑
n=1

√
n(N − n) (XnXn+1 + YnYn+1) . (6.48)

This Hamiltonian is acquired by solving the IEP for the simplest conditions. First, no applied external
fields are present. Secondly, the eigenvalue spectrum satisfies the ESR where kn = 0 for all n = 1, · · · , N .
It has been noticed that such an eigenvalue spectrum is reminiscent of that of the Sx operator of a fictitious
spin-N−1

2 particle [105]. The structure of the Sx operator is known for arbitrary dimensions, so that the

form of the coupling − 1
2J
√
n(N − n) can be readily read off from the matrix representation.

The Krawtchouk chain can also be employed for the generation of maximally entangled states. It is
known, for instance, that the application of HK , combined with some other operations, on the |+〉⊗N
state gives the GHZ state

|GHZ〉 = e±iπ/4
[
e−iπ/4X

]⊗N
e−iπ/JH

K 1√
2

(
|0〉⊗N + |1〉⊗N

)
(6.49)

for odd N such that N = ±1 mod 4 [123]. Here, |+〉 is given by 1√
2

(
|0〉+ |1〉

)
.

6.3.2 XY -Hamiltonian with magnetic field

Another example is the XY -Hamiltonian with an applied external (magnetic) field. Usually, the
Krawtchouk coupling is selected for the XY -part of the Hamiltonian, while the magnetic field is subject
to the centrosymmetry and eigenvalue spacing requirements for PST. This Hamiltonian is given by

HB = HK +

N∑
n=1

BnZn. (6.50)

Such an external field would have a different physical origin depending on the implementation of qubits
and quantum gates. In the case of Rydberg-dressed atoms, for instance, the origin is the energy of the
Rydberg level in the rotated frame, with additional light-shifts. The existence of such a term relaxes the
conditions for a system to be able to facilitate PST, since many physical systems have a Hamiltonian
that contains a self-interaction term proportional to a†iai under the Jordan-Wigner mapping, caused by
self-interactions or kinetic energies, for instance.

6.4 Residual NNN couplings

The study of PST assumes that couplings between qubits can be chosen so that only nearest-neighbour
interactions are turned on. In most physical systems, however, this interaction potential decays over
distance, but never exactly to 0. Small residual next-to-nearest neighbour (NNN) interactions will be
present, as well as higher order interactions. The presence of such couplings will not affect the Hilbert
space decomposition H =

⊕N
k=0 Γk, rendering the discussion in this entire section relevant for this protocol

as well [124].

Assume that the N ×N one-exciton subspace Hamiltonian H1(~α) depends on N parameters encapsulated
into the vector ~α. Such parameters are expected to be able to be varied experimentally, such as control
parameters of lasers, distance between qubits, or coupling strengths. Then the protocol, closely following
Kay’s approach, assures that these parameters are chosen such that they will approach the desired
eigenvalues that are used to solve the IEP [124][125]. These eigenvalues are put on the diagonal of the
matrix Λ. Let the Hamiltonian H1 be diagonalised by the unitary operator U0, if an initial guess ~α0 is
plugged in. Then one can write the Hamiltonian as

H1(~α0) = U0Λ(IN + εE0)U†0 . (6.51)

Here, E0 is a diagonal matrix with all eigenenergy differences on the diagonal, and ε is a small parameter
that keeps count of what terms in the perturbation expansion are sufficiently small. This ε tracks the
parameterisation update according to

~α1 = ~α0 + εδ~α. (6.52)
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In a similar fashion, H1(~α1) is diagonalised by U1 such that

H1(~α1) = U1Λ(IN + εE1)U†1 . (6.53)

On its own turn, U1 can be written in terms of U0 through the relation

U1 = U0 ·
IN + iεQ

IN − iεQ
, (6.54)

where Q is a Hermitian matrix that contains information on the eigenvectors. Its exact form is unnecessary
to unfold as Q will drop out to first order in perturbation theory. Substituting (6.54) into (6.53), using
(6.52), one obtains to first order in perturbation theory:

ε
∑
i

δαiU
†
0

∂H
∂αi
|~α0U0 = ε

(
Λ(E1 − E0) + 2i [Q,Λ]

)
. (6.55)

The influence of the last term is nil for the IEP, proven in the following lemma:

Lemma 6.8. The commutator of a Hermitian matrix and a real diagonal matrix has a zero diagonal.

Proof. Let Q be a Hermitian matrix, and Λ a diagonal matrix with real entries. Then,

[Q,Λ]
†

= (QΛ)† − (ΛQ)† = Λ†Q† −Q†Λ† = ΛQ−QΛ = −[Q,Λ]. (6.56)

Here, Hermiticity (Q† = Q) was used, and the identity that a real diagonal matrix must be self-adjoint as
well. This proves that [Q,Λ] is anti-Hermitian, so that it must necessarily have a zero diagonal.

This proves that all the information on the eigenvalues is encapsulated in the Λ(E1 − E0). The objective
of choosing δ~α is to minimise E1, so this matrix can be chosen to be the null matrix. Then equation
(6.56) will carry two equations implicitly: one for the diagonal terms, carrying information about the
eigenvalues, and one for the off-diagonal terms, carrying information about the eigenvector shifts. The
former reads

K · δ~α = ~e. (6.57)

Here, the i-th column of K is given by

U†0
∂H
∂αi
|~α0U0, (6.58)

and the i-th entry of the ~e vector is given by

− (ΛE0)ii , (6.59)

with no summation over the indices implied. Such an algorithm can be efficiently performed on a classical
computer.

6.5 Erroneous PST dynamics

6.5.1 Uniform coupling perturbations

One model that attempts to describe error channels in PST assumes that all relevant coupling parameters
{Jn} and {Bn} are subject to a small disturbance

Jn/Bn 7→ Jn/Bn(1 + δ), (6.60)

where δ � 1 is a random small error parameter that is uniformly chosen from a predetermined interval
[−ε, ε]. Such errors may arise from stochastic environmental interactions, for instance. This has been
researched before for resonant coupling by C.J.M. Schoutens [111].
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6.5.2 Pulse time uncertainty

The unit fidelity of PST rests on the fact that the time tPST can be (experimentally) achieved to infinite
precision. Of course, bringing the discussion back to laser pulses interacting with Rydberg atoms, it is
to be expected that no single pulse will be exactly of length tPST . Let the erroneous time t be given
by

t = tPST + δt, (6.61)

where δt is a small deviation, subject to δt
tPST

� 1. How does the fidelity F (t) rank compared to the
perfect fidelity produced by PST? The propagation amplitude is given by [124]

fN1 = 〈N | e−iHt |1〉 ↪→ 1− iδt
∑
n

|an|2(λn − λ1)− 1

2
δt2
∑
n

|an|2(λn − λ1)2 +O(δt3). (6.62)

The mod square reveals the fidelity to be equal to

F (t) = F (tPST + δt) = 1− 1

2
δt2
∑
n

n−1∑
m=1

|an|2|am|2(λn − λ1)(λn − λm). (6.63)

Therefore, a lower bound on the fidelity is given by

F (t) > 1− 1− 1

2
δt2
∑
n

n−1∑
m=1

|an|2(λn − λ1)2. (6.64)

The eigenvalue spectrum that minimises this spread is the Krawtchouk Hamiltonian HK . Its spectrum is
sometimes also referred to as the SMS (spectrum of minimal spread).

6.5.3 Excitation relaxation

One of the noise channels that is most detrimental to PST is the qubit relaxation channel. For analytical
purposes, a model can be constructed where a spontaneous Z-operation occurs once at time 0 < τ < tPST
with probability p. Restricting the discussion to an initial state of the form

|Ψ〉 = |ψ〉 |0〉⊗N−1
, (6.65)

the output density operator can be written as

ρout =
N∑
k=0

∑
x∈basis(Γk)

(1− p)N−wxpwxZ ′x(τ) |Ψ〉 〈Ψ|Z ′x(τ)†, (6.66)

where basis(Γk) refers to the basis set of the k-exciton space, wx is the Hamming weight of the bit string x,
and Z ′x(τ) is the application of the Zx operator in the Heisenberg picture, incorporating the Hamiltonian
dynamics with an additional qubit relaxation at time τ [32]. It is given by

Z ′x(τ) = e−iH(tPST−τ)Zxe
−iHτ . (6.67)

This yields an average fidelity of

〈F 〉 = 1− 2

3
p(2− p) +

2

3
p(1− p)

N∑
n=1

|γn(t)|4. (6.68)

By using appropriate bounds for |γn(t)|, a lower and an upper bound can be found for the fidelity. This
yields

FW = 1− 2

3
p(2− p) +

2

3N
p(1− p) < 〈F 〉 < 1− 2

3
p, (6.69)

where FW is a fidelity witness for the relaxation channel.
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6.5.4 XX + Y Y system-bath interactions

Another possible noise channel is the leaking of quantum information from the main chain ∂Λ to
nearby inactive qubits [126]. The results can be generalised to any Hamiltonian that has an excitation-
preserving subspace structure of the form (6.4). Let the XY-Hamiltonian be referred to as the system
Hamiltonian

HS =
1

2

N−1∑
n=1

Jn(XnXn+1 + YnYn+1)−
N∑
n=1

BnZn, (6.70)

while the bath Hamiltonian is given by

H(n)
B =

1

2

Mn∑
n=1

g(n)
m (XnX(n,m) + YnY(n,m)), (6.71)

where g
(n)
m are the system-bath couplings, and (n,m) refer to the Mn amount of nearest bath neighbours

m of qubit n. The total interaction Hamiltonian would be given by

Hint =

N∑
n=1

H(n)
B , (6.72)

and the total system-bath Hamiltonian is given by

HSB = HS +Hint, (6.73)

acting on a larger Hilbert space H whose dimension is given by dim(H) =
(
2N
)1+M

. If an excitation is
present at site n, then it can leak into its own bath to generate excitations |l〉 of the form

|l〉 =
1

Gn

Mn∑
m=1

g(n)
m |(n,m)〉 , (6.74)

with the proper normalisation factor Gn =

√∑Mn

m=1

(
g

(n)
m

)2

[127]. It can be shown that the action of

this system-bath interaction can be reduced to the action of an interaction with just a single bath-isospin
within the single excitation manifold Γ1. Denoting this single bath-isospin as n′, this effective interaction
reads

H(n)
B
′ =

1

2
Gn (XnXn′ + YnYn′) . (6.75)

The eigenstates of HS are known, and given by

|λm〉 =

N∑
n=1

λmn |n〉 . (6.76)

This allows for a simple ansatz of the eigenstates |Λkm〉7 of the full interactive Hamiltonian:

|Λkm〉 =
1

2

N∑
n=1

λmn

(
|n〉+ (−1)k |n′〉

)
, (6.77)

motivated by the fact that the states 1
2

(
|n〉+ (−1)k |n′〉

)
are eigenstates of the interactive Hamilto-

nian H(n)
B with corresponding eigenenergies ±G. These new eigenstates satisfy the matrix element

relations

Mkl
mn = 〈Λkm|HSB |Λln〉 = δmn

(
(−1)kGδkl +

1

2
λn

)
. (6.78)

The structure of the matrix [M]
kl
mn is block diagonal, dividing it into blocks of 2 × 2 that can all be

diagonalised separately.

7This Λ has nothing to do with the symbol that denotes the lattice Λ of ultracold Rydberg atoms, or the qubit chain ∂Λ.
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The system-bath coupling knows two regimes: the weakly interacting regime and the strong coupling
regime, both of which generate different PST dynamics [126]:

(i) Weakly interacting regime GtPST � 1

In this regime, a perturbative expansion of the transfer rate can be made in the parameter GtPST (or to
be more precise Gt since t < tPST ). Let fnm(t) denote the transfer rate between spins n and m after a
time t, defined by

fnm(t)
def
= 〈n| e−iHSBt |m〉 . (6.79)

This can be expanded as

fnm(t) = f (0)
nm(t) +Gtf (1)

nm(t) +
1

2
(Gt)2f (2)

nm(t) + · · · =
∞∑
k=0

1

k!
(Gt)kf (k)

nm(t), (6.80)

where each f
(k)
nm(t) denotes a higher order expansion of the transfer rate. As it turns out, the first order

contribution f
(1)
nm(t) vanishes for PST, so that in the weakly interacting regime the corrections are very

small: fnm(t) = f
(0)
nm(t) +O(G2).

(ii) Strong coupling regime GtPST � 1

In this regime, the transfer rate for transfer between spins n and m is given by

fnm(t)→ cos (Gt)f (0)
nm(

t

2
). (6.81)

The PST is modulated by a factor cosGt that oscillates rapidly, while the transfer time doubles. This
means that despite the strong coupling of the qubit chain to its surroundings, it is still possible to have
PST. In general, unitarity of the state transfer is lost. This is to be expected as fnm describes the state
transfer within an open quantum system [128].
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7 Engineering PST for Rydberg QPUs

7.1 Natural Rydberg XX + Y Y interactions

7.1.1 Dipole-dipole flip-flop interactions

The Hamiltonian structure of the family H, without a position-dependent interaction parameter, is
naturally encapsulated in the dipole-dipole interactions of Rydberg interactions. If the Rydberg states
on which the Hamiltonian acts are selected such that they are dipole coupled, the Vdd operator can be
rewritten as a reduced operator on this new smaller basis. Naturally, this interaction term will reduce to
an XY -Hamiltonian.

By a change of basis from a Cartesian basis of operators ~d
def
= (dx, dy, dz) to a spherical basis, the structure

of (5.15) will reveal an XY -Hamiltonian term. Let the new axis of quantization coincide with the z-axis,

and let the angle between the z-axis and the ~R vector be equal to θ. Then the set of spherical dipole
operators is expressed in terms of Cartesian dipole operators like

d◦ = dz, d+ = −dx + idy√
2

, d− =
dx − idy√

2
. (7.1)

The magnetic quantum number mj is conserved by the operator d◦, but is changed by ±1 by d±.
The dipole-dipole interaction Vdd can then be totally rewritten in terms of spherical coordinates and
operators:

Vdd =
1

4πε0

1

R3
(V∆m=0 + V∆m=±1 + V∆m=±2) , (7.2)

where each index denotes the change in the total magnetic quantum number m = mj,1 +mj,2 of the terms
that are coupled by that term [129]. They are given by

V∆m=0 =
1

2
(1− 3 cos2 θ)(d1+d2− + d1−d2+ + 2d1◦d2◦), (7.3)

V∆m=±1 =
3√
2

sin θ cos θ(d1+d2◦ − d1−d2◦ + d1◦d2+ − d1◦d2−), (7.4)

and

V∆m=±2 = −3

2
sin2 θ(d1+d2+ + d1−d2−). (7.5)

Now, this operator acts on spin- 1
2 isospin states |↑〉 and |↓〉, denoting Rydberg states |n, l, j,mj〉 and

|n′, l′, j′,m′j〉 that are dipole coupled. In the two-atom basis {|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, the operator Vdd
couples ’like’ states to ’like’ states, |↑↑〉 to |↓↓〉, and ’unlike’ states to ’unlike’ states, |↑↓〉 to |↓↑〉. The
former pair of states has an energy difference on the order of GHz, and its energy contribution because of
flip-flops is negligible compared to the latter pair of states, which are degenerate and therefore resonant.
Because the difference in the magnetic quantum number is equal to 0, only the V∆m=0 term in (7.2) will
survive. In the isospin subspace spanned by {|↑↓〉 , |↓↑〉}, the dipole-dipole interaction reads

Vdd =
1

4πε0

1− 3 cos2 θ

2R3
(d1+d2− + d1−d2+ + 2d1◦d2◦) =

1

4πε0

1− 3 cos2 θ

R3

(
0 C̃3

C̃3 0

)
, (7.6)

where C̃3 is given by the matrix element

C̃3 =
1

2
〈↑↓| d1+d2− + d1−d2+ + 2d1◦d2◦ |↓↑〉 . (7.7)

Eventually, the XY -form is obtained by rewriting isospin operators in terms of Pauli operators. Adopting
the notation σ↑↓ = |↑〉 〈↓|, the dipole-dipole interaction is written as

Vdd =
C3(θ)

R3

(
σ

(1)
↑↓ σ

(2)
↓↑ + h.c.

)
. (7.8)
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Between each pair of Rydberg atoms, the dipole-dipole interaction has the form (7.8), so that the XY -part
of the Hamiltonian becomes

HXY =
∑
i 6=j

C3(θ)

r3
ij

(
XiXj + YiYj

)
. (7.9)

However, this Hamiltonian contains beyond nearest neighbour interactions. For the implementation of H,
this can be partially resolved by truncating the Hamiltonian (7.10) to first order, and encapsulate all
other orders into an error term ∂Γ that is presumed to be very small compared to the first order terms.
Then, one finds that

HdipXY =
∑
<i,j>

C3(θ)

R3

(
XiXj + YiYj

)
+ ∂Γ, (7.10)

where the error is given explicitly by

∂Γ =
∑
|i−j|≥2

C3(θ)

|i− j|3R3

(
XiXj + YiYj

)
. (7.11)

Assuming C3(θ) contribution that is equal for every pair of atoms on the lattice, this error term is quite
big. In fact, the average contribution as a fraction of the first order term is

∑∞
n=2 1/n3 ≈ 0.202, about

20% of the total result. This contribution is therefore not insignificant, and a more rapid decay of the
qubit interactions is required to mitigate beyond nearest neighbour effects.

7.1.2 Adiabatic elimination of van der Waals couplings

Instead of resonant states, one could also opt to use two non-resonant Rydberg states like |n1S〉 and
|n2S〉, such that their van der Waals interactions are stronger on short scales, and weaker over longer
distances. This will make the first order contribution to the XY -part of the Hamiltonian bigger, while
also making the higher order contributions smaller.

H(i) = −∆1σ
(i)
11 −∆2σ

(i)
22 +

∑
ab=01,02

(
Ωabσ

(i)
ab

)
(7.12)

Starting from the lattice Hamiltonian

HΛ =

N∑
i=1

H(i) +
∑
i=1
j 6=i

1

|~ri − ~rj |6

(
1

2
C11

6 σ
(i)
11 σ

(j)
11 +

1

2
C22

6 σ
(i)
22 σ

(j)
22 + C12

6 σ
(i)
11 σ

(j)
22 + +CS6 σ

(i)
12 σ

(j)
21

)
, (7.13)

where the constants {C11
6 , C22

6 , C12
6 , CS6 } are van der Waals constants that pertain to different types of

van der Waals interactions between the two Rydberg levels. The factors of 1
2 take over-counting into

account, because of symmetry arguments. This Hamiltonian can be turned into an XXZ-Hamiltonian
for the right set of parameters. The XY part of the Hamiltonian can then be extracted. This can be
done by mapping HΛ onto a spin- 1

2 isospin system of the two Rydberg states. For this, these states are
first mapped to |n1S〉 7→ |s = 1,m = 1〉 and |n2S〉 7→ |s = 1,m = −1〉. Then the ground state, which will
be adiabatically eliminated afterwards, will be mapped to a neutral spin state |g〉 7→ |s = 1,m = 0〉. The
projector operators can be written in terms of the spin-1 operators

Ĵx =
1√
2

0 1 0
1 0 1
0 1 0

 , Ĵy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , Ĵz =

1 0 0
0 0 0
0 0 −1

 , (7.14)

and the raising and lowering operators
Ĵ± = Ĵx ± Ĵy. (7.15)

Then the single-atom operator will become

H(i) = −∆−
2
Ĵ (i)
z −

∆+

2

(
Ĵ (i)
z

)2

+
Ω+

2
√

2
Ĵ (i)
x −

Ω−

2
√

2

(
Ĵ (i)
x Ĵ (i)

z + Ĵ (i)
z Ĵ (i)

x

)
, (7.16)
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where superscripts on the spin-1 operators denote the atom i ∈ Λ on which the operator acts. The
collective detunings are given by ∆± = ∆1 ± ∆2, and the collective Rabi frequencies are given by
Ω± = Ω01 ± Ω02. The last term in (7.13), denoting the Rydberg-Rydberg interactions, becomes

VRyd =

N−1∑
i=1

{
W−Ĵ (i)

z Ĵ (i+1)
z +W+

(
Ĵ (i)
z

)2 (
Ĵ (i+1)
z

)2

+D

[(
Ĵ (i)
z

)2

Ĵ (i+1)
z + Ĵ (i)

z

(
Ĵ (i+1)
z

)2
]

+SĴ (i)
s

}
+∂Γ,

(7.17)

where the interaction coefficients are given by W± =
C11

6 +C22
6 ±2C12

6

4a6 , D =
C11

6 −C
22
6

4a6 and S =
CS6
4a6 with a

the lattice constant. The spin-swapping operator Ĵ
(i)
s is given by

Ĵ (i)
s =

(
Ĵ

(i)
+

)2 (
Ĵ

(i+1)
−

)2

+
(
Ĵ

(i)
−

)2 (
Ĵ

(i+1)
+

)2

. (7.18)

Finally, the term ∂Γ contains boundary effects and higher order terms.

Now, when at least one of the detunings ∆1,2 is very large and positive, the ground state |g〉 will effectively
disappear from the state manifold. Its effects on the transitions, however, will remain, as the Rydberg
states are not directly dipole coupled, but they are coupled to second order in perturbation theory
through the virtual state |g〉 which has now become a fast degree of freedom of the system. Reducing
the spin-1 operators to spin- 1

2 operators is almost straightforward. For operators that do not couple the

Rydberg states to the ground state, such as Ĵz, certain rows and columns can be cut from the matrix
representation. Let � denote equality after cutting, a process that effectively8 removes all rows and
columns from a matrix representation that pertains to the state |g〉. Then,

Ĵz =

1 0 0
0 0 0
0 0 −1

 �
1 �0 0

�0 �0 �0
0 �0 −1

 =

(
1 0
0 −1

)
= σ̂z. (7.19)

Likewise, (
Ĵz

)2

=

1 0 0
0 0 0
0 0 1

 �
1 �0 0

�0 �0 �0
0 �0 1

 =

(
1 0
0 1

)
= Î. (7.20)

Operators that dó couple the Rydberg states to the ground state are not so trivially cut. Instead, the
formal process of adiabatic elimination must be invoked [92]. This results in

Ω+

2
√

2
Ĵ (i)
x −

Ω−

2
√

2

(
Ĵ (i)
x Ĵ (i)

z + Ĵ (i)
z Ĵ (i)

x

)
� 1

2
Ω?12σ̂

(i)
x , (7.21)

where Ω?12 is the effective coupling between the two Rydberg states through second order transitions [83].
Finally, the spin-swapping operator, after cutting, becomes the flip-flop term

Ĵ (i)
s �

(
σ̂(i)
x σ̂(i+1)

x + σ̂(i)
y σ̂(i+1)

y

)
. (7.22)

After eliminating the ground state from the state manifold, one obtains the Hamiltonian

HΛ =
1

2

N∑
i=1

{
[−∆− + 4D] σ̂(i)

z + Ω?12σ̂
(i)
x

}
+

N−1∑
i=1

{
W−σ̂(i)

z σ̂(i+1)
z + S

[
σ̂(i)
x σ̂(i+1)

x + σ̂(i)
y σ̂(i+1)

y

]}
+ ∂Γ′,

(7.23)
where ∂Γ′ is the new boundary term after cutting, given by

∂Γ′ = −D
(
σ̂(1)
z + σ̂(N)

z

)
+

∑
|i−j|≥2

1

|i− j|6

{
W−σ̂(i)

z σ̂(j)
z + S

[
σ̂(i)
x σ̂(j)

x + σ̂(i)
y σ̂(j)

y

]}
. (7.24)

Note that every term that is proportional to
⊗

i∈Λ Îi has been removed from the Hamiltonian because
those terms collectively lead to a constant energy shift that does not affect the dynamics of the system.

8The word ’effectively’ refers to the effective Hamiltonian approach where a subspace Hamiltonian is crafted from a
general superspace Hamiltonian.
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The first term of ∂Γ′ contains boundary effects which are relatively small for big systems. The second
term contains the higher order van der Waals interactions, which rapidly drop in interaction strength
after distance beyond the lattice constant. Ignoring the W− term, the resulting error arising from these
higher order flip-flop effects is then roughly equal to

∑∞
n=2 1/n6 ≈ 0.017, barely 2% of the first order

contribution.

By setting ∆− = 4D and Ω?12 → 0, the first term in (7.23) will disappear. By assuming neglibility of the
boundary term, what remains is a XXZ-Hamiltonian. If it is possible to get W− to zero, one obtains an
XY -Hamiltonian

HvdWXY =
∑
<i,j>

CS6
4a6

(
σ̂(i)
x σ̂(j)

x + σ̂(i)
y σ̂(j)

y

)
+ ∂Γ′ (7.25)

in contrast to (7.10). Such a Hamiltonian will therefore also allow XX+Y Y dynamics, but it suffers from
being heavily dependent on the fine-tuning of the system parameters, as opposed to the dipolar coupling
which naturally lead to a XX + Y Y -type interaction without fine-tuning. It begs the question whether it
is experimentally viable to create a setup that allows for this specific fine-tuning to be implemented.

7.2 Rydberg-dressing for PST

7.2.1 Rydberg-dressed atoms

It is also possible to create a spin exchange interaction through qubits based on Rydberg-dressed atoms.
These atoms have an outer electron in a ground state, yet allows for tiny admixture with a Rydberg
states. The wavefunction of such a qubit takes the form

|ψ〉 = N
(
|g〉+ β |r〉

)
, (7.26)

where N is a constant that normalises the wavefunction, |g〉 is an electronic ground state of the atom, |r〉
is a Rydberg state of the atom, and β is called the degree of dressing or the dressing parameter, given by
[130]

β =
Ω

2∆
. (7.27)

The term ’dressing’ is derived from the fact that |β| � 1 so that the population of the Rydberg state is
very small. As a consequence, the Rydberg decay rate γRyd is severely damped:

γ ∼
∣∣∣〈g| ~d |ψ〉∣∣∣2 ∼ β2γRyd. (7.28)

If the Rydberg coupling is off-resonant, the dressed atoms will interact through their mutual van der
Waals interactions. Then, the Hamiltonian that describes their dynamics is given by

Hdressed =
∑
i∈∂Λ

Ωi
2
σix +

∑
i∈∂Λ

∆iσ
i
rr +

∑
i<j

V (rij)σ
i
rrσ

j
rr (7.29)

with the potential V (rij) = C6/|ri − rj |6. From perturbation theory, it can be shown that this blockade
effect creates a softcore potential of the form

U(rij) =
C?6

R6
c + |ri − rj |6

, (7.30)

where C?6 = β4C6 is the shifted van der Waals coupling coefficient and Rc =
(
C6/2∆

)1/6
is the

characteristic blockade radius or critical radius [131]. The scaling law of C6 with respect to the dressing
parameter is to be expected: the admixture ratio of the doubly excited state scales like ∼ β2 [132], so
that the matrix element 〈rr| Vdd |rr〉 scales with ∼ β4 [130]. Inside the critical radius, excitation the
doubly excited state |rr〉 is greatly suppressed because of induced off-resonance of the Rydberg blockade
effect. The 1/r6-tail of the van der Waals potential is then only valid outside of this radius, while inside
the radius the potential levels off to a constant value.

60



7.2.2 Choice of qubit manifold

For the implementation of a PST-facilitating Hamiltonian, it is possible to opt for a different qubit manifold
than the one used for the regular one-qubit and two-qubit gates. While performing those operations, one
qubit system is adhered to. While performing PST, the qubit states are uniquely mapped onto a different
set of qubit states, on which PST is performed. In order to minimise ’Rydberg contamination’, where
interactions are turned on at unwanted moments, choosing a Rydberg-dressed qubit system for PST boils
down to choosing between either gg qubits or gr qubits. Both approaches have been investigated in the
context of state transfer for Rydberg dressed atoms, and two of these that appeared promising yet failed
to enable PST, are elaborated in section 7.3.

One system that does facilitate PST is one where both qubits are mapped to a state

|0/1〉 = N0/1

(
|g/h〉+ β0/1 |s/p〉

)
, (7.31)

where |g/h〉 def
= |g〉 ∨ |h〉 are electronic ground states, and |s/p〉 def

= |s〉 ∨ |p〉 are Rydberg excited states. β is
again the dressing parameter and N the normalisation constant. The subscript 0/1 pertains to which
qubit is chosen. If Ωs/p is the Rabi frequency of the laser that drives the |g〉 ↔ |s〉 / |h〉 ↔ |p〉, and ∆s/p

denotes the detuning of Rydberg state |s/p〉, then the dressing parameters read

β0/1 =
Ωs/p

2∆s/p

def
= β + s/p. (7.32)

In figure 7.1, the qubit system is depicted.

Figure 7.1: A qubit system where each qubit state is mapped to an s/p state pair containing a ground
state and a Rydberg dressed state [133]. The Rydberg states are resonantly coupled by the interaction
operator Udip, defined in (7.34). Radiative losses are indicated by wavy photon lines with spontaneous

decay rates γs/p.

In some systems, the qubit states are mapped to electronic states that are sparsely populated. Then, it is
not clear how one can relate PST along a chain to such a qubit system, as every qubit state population
should be accessible by an arbitrary amount. This is known as the qubit mapping problem, and it imposes
serious restrictions to what systems can be employed for PST. By taking a ground state combined with
its associated Rydberg state, the qubits can still communicate through their strong dipolar or van der
Waals interactions, but the states |0/1〉 can still have an arbitrary population number. Therefore, by
adopting such a system, a qubit mapping problem is evaded.
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The system Hamiltonian is similar to (7.29), and is given by

Hdressed =
∑
i∈∂Λ

Ωs,i
2
σix,s +

∑
i∈∂Λ

Ωp,i
2
σix,p +

∑
i∈∂Λ

∆s,iσ
i
ss +

∑
i∈∂Λ

∆p,iσ
i
pp +

∑
i<j

Udip(rij)σ
i
spσ

j
ps, (7.33)

where the van der Waals interactions has made place for the dipolar interaction

Udip(rij) = − µ2

|ri − rj |
, (7.34)

where µ is the transition dipole moment [133][134]. If the axis of quantisation is taken to be orthonormal
to the two-dimensional lattice Λ, then the angular dependence will drop out of the dipolar interactions,
as evident from the form of (7.34). Flip-flop interactions between |gh〉 and |hg〉 states are then caused by
the transition scheme

|gh〉 → |sp〉 → |ps〉 → |hg〉 , (7.35)

where the first and third transitions are driven by lasers, and the second transition is driven by the
natural resonant dipolar interaction between the Rydberg states.

7.2.3 Van Vleck perturbation theory

In order to introduce perturbation theory, one must first wonder which systems parameters are small
relative to what other parameters. For Rydberg dressed atoms, the β-parameter is very small, leading to
the inequality

Ωs/p,i � |∆s/p,i| ∀i ∈ ∂Λ. (7.36)

If the constraint of strong detuning is consistent with the Rydberg blockade effect, such that

Ωs/p,i � |∆s/p,i + U(rij)| ∀(i, j) ∈ ∂Λ, (7.37)

and if the detuning is allowed to vary slowly over the sub-lattice

|∆s/p,i −∆s/p,j | � |∆(s/p,i),(s/p,j)| ∀(i, j) ∈ ∂Λ, (7.38)

then the one-exciton subspace Γ1 contains solely elements that will have an energy that varies little.

Because the laser coupling is weak in accordance with the aforementioned inequalities, one can split
Hdressed in (7.33) in an unperturbed part H0, and an interaction part V ′ which weakly perturbs H0, so
that

Hdressed = H0 + V ′. (7.39)

Since V ′ pertains to the laser coupling, it is to be understood that

H0 =
∑
i∈∂Λ

∆s,iσ
i
ss +

∑
i∈∂Λ

∆p,iσ
i
pp +

∑
i<j

Udip(rij)σ
i
spσ

j
ps (7.40)

and

V ′ =
∑
i∈∂Λ

Ωs,i
2
σix,s +

∑
i∈∂Λ

Ωp,i
2
σix,p. (7.41)

In order to rewrite the system Hamiltonian, van Vleck perturbation theory has to be invoked [135]. While
initially introduced by John van Vleck, it was later modernised by I. Shavitt and L.T. Redmon [136].
This theory is concerned with perturbation theory within quasi-degenerate subspaces, i.e. subspaces
whose elements have energies E with variations δE smaller than the absolute value of the energies
themselves (|δE/E| � 1), therefore calculating the relevant couplings that replace {Jn} and {Bn} in the
Hamiltonian family (6.2). Van Vleck perturbation theory partitions the entire Hilbert space H of states
into 3 subspaces:

H = span P ⊕ span Q⊕ span S. (7.42)
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The spaces P,Q and S refer to the ground state manifolds, the single excitation manifolds, and the
doubly excited manifolds respectively, each of which is coupled through the perturbative Hamiltonian V ′

by
P ⇔ Q⇔ S. (7.43)

The space P contains the quasi-degenerate subspace of vectors

|πn〉
def
= |g1g2 · · ·hn · · · gN 〉 , (7.44)

where the n-th atom finds itself in the |h〉 state. These state compromise the relevant ground state
manifold in which perturbation theory applies. Without laser coupling (V ′ = 0), this would be an
eigenstate of the Hamiltonian H0. By introducing the weak coupling, however, the eigenstates shift to
|πn〉′ = |πn〉+O(βs/p)

[
|πn〉 |g→s + |πn〉 |h→p

]
. The states between brackets denote states like |πn〉, except

that one atom in the |g〉 state is now in the |s〉 state, or the |h〉 atom is now in the |p〉 state.

In a similar fashion, the Q space is made up of states like

|κn〉p
def
= |g1g2 · · · pn · · · gN 〉 & |κn〉s

def
= |h1h2 · · · sn · · ·hN 〉 . (7.45)

These states make up the single excitation manifold. Within these manifolds P and Q, a full calculation
within the van Vleck perturbation framework is given in the work conducted by Wüster et al. [133]. For a
constant qubit separation of R, the results are calculated to be the following: within the basis set {|πn〉′},
the matrix elements

Heff,ij = 〈πi|′Heff |πj〉′ (7.46)

of the effective Hamiltonian Heff read

Heff,ij = (L2 + L4)δij + Ũij(r), (7.47)

where L2/4 are coefficients called the light-shift, and appear in second and fourth order in perturbation

theory respectfully, and Ũij(r) is the modified potential dependent on qubit separation r. Indeed, this light
shift is the origin of the magnetic field in (6.2), and is caused by the laser induced coupling between |g/h〉
and |s/p〉 states. For global detuning and Rabi frequency profiles, they are given by the expressions

L2 = (N − 1)β2
s∆s + β2

p∆p, (7.48)

L4 = −
[
(N − 1)β4

s∆s + β4
p∆p + (N − 1)β2

sβ
2
p(∆s + ∆p)

]
. (7.49)

The reason why s terms carry a factor of N − 1, but not p terms, is because there are N − 1 |g〉 states in
every basis state |πn〉, which are coupled to the |s〉 states, but there is only one |h〉 state. The modified
potential is given by

Ũij(r) = β2
sβ

2
p

∑
k 6=j

1

1− Ū2
kj

 (∆s + ∆p)δij + β2
sβ

2
p

Uij
1− Ū2

ij

(1− δij), (7.50)

where

Ūij =
Uij

∆s + ∆p
. (7.51)

What immediately becomes clear from the form of Ũij(r), is that for large separation (r > R, r →∞),
one obtains rapid decay:

lim
r→∞

Ũij(r) = 0. (7.52)

This means that the nearest neighbour interactions are strong, while beyond nearest neighbour interactions
become rapidly weak. While not precisely 0, which is physically not viable, this allows for the NNN
protocol that has been elaborated on in section 6.4.

It is, of course, desirable to vary the detuning profile and the Rabi frequency profile, to obtain position-
dependent couplings {Jn} and {Bn}. Loosening this restriction yields a new effective Hamiltonian

Heff,ij = (L2,ij + L4,ij) + Ũij(r), (7.53)
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new light-shifts

L2,ij =

 ∑
m∈∂Λ
m6=i

β2
s,m∆s,m + β2

p,i∆p,i

 δij , (7.54)

L4,ij = −

 ∑
m∈∂Λ
m6=i

β4
s,m∆s,m + β4

p,i∆p,i +
∑
m∈∂Λ
m 6=i

β2
s,mβ

2
p,i(∆s,m + ∆p,i)

 δij , (7.55)

and a new modified potential

Ũij(r) = β2
s,iβ

2
p,i

∑
k 6=j

1

1− Ū2
kj

 (∆s,i + ∆p,i)δij + βs,iβp,iβs,jβp,j
Uij

1− Ū2
ij

(1− δij), (7.56)

with the same behaviour in the limit of large separation. The extension of global detuning/Rabi frequency
profiles to local ones is obtained from tracking which laser driven transitions drive which light shift.

In conclusion, this system does not suffer from the qubit mapping problem, and the coupling constants
go to 0 sufficiently rapidly. Then, by solving for the Rabi frequencies and detunings, it is possible to
get a PST-facilitating effective Hamiltonian, showing that PST is possible within the one-exciton state
manifold comprised of states |πn〉′.

7.2.4 Position-dependent coupling

The XY -Hamiltonians (7.10) and (7.25), formed from dipole-dipole interactions and van der Waals
interactions respectively, have the correct operator form to replicate the Krawtchouk Hamiltonian (6.48)
or the generalised XY -Hamiltonian with applied magnetic field (6.50), but their forefactors are position-
independent. By opting for a Rydberg-dressed qubit system, coupling constants emerge that depend on
the Rabi frequencies Ωi, detunings ∆i and the Rydberg-Rydberg interactions V (rij). The former two are
experimentally controllable (within realistic ranges), while the latter is fixed for a certain qubit system.

The Rabi frequency Ω that drives a certain transition is proportional to the electric field strength | ~E|,
which itself is proportional to the square root of the laser intensity

√
I. By changing the properties of the

laser, giving it a position-dependent profile, one can fine-tune those coupling constants to resemble the
Krawtchouk-like coupling Jn = − 1

2

√
n(N − n), and vary the magnetic field Bn so that the symmetry

matching condition and the ESR are fulfilled.

7.3 Alternative Rydberg-dressed systems

7.3.1 Two-photon gr-qubit system

The viability of PST in certain alternative Rydberg-dressed systems has been researched. This section is
dedicated two two examples that seemed fruitful, in their own right, but did not make the cut as they
eventually turned out to be unable to support PST.

One alternative Rydberg-dressed system maps the |0〉 state to a ground state |g〉, and the |1〉 state to a
Rydberg state |r〉. This qubit system is given in figure 7.2(b). Within the quasi-degenerate subspace
spanned by |Ψi〉 = {|g1g2 · · · ri · · · gN}〉, the Hamiltonian (7.29) can be rewritten to second order in
perturbation as [137]

Heff =
∑
i

(
∆i +

Ω2
i

2∆i

)
σirr +

∑
i 6=j

Iijσ
i
rrσ

j
gg + Jijσ

i
rgσ

j
gr, (7.57)

where

Iij =
Ω2
jV (rij)

4∆j(∆j + V (rij))
(7.58)
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and

Jij =
∑
β=i,j

ΩiΩjV (rij)

8∆β(∆β + V (rij))
. (7.59)

The σab projectors are given by the usual |a〉 〈b| operators. Such a Hamiltonian can be mapped onto
creation and annihilation operators through the mapping

σirg 7→ a†i , σigr 7→ ai, (7.60)

giving a tight binding like Hamiltonian

Heff =
∑
i

µia
†
iai +

∑
i<j

Jij

(
a†iaj + a†jai

)
, (7.61)

which is precisely a Hamiltonian that is able to facilitate PST. Here, µi = ∆i+
Ω2
i

2∆i
+
∑
j 6=i Iij . The origin

of this coupling Jij arises from the cancellation of two Raman paths, since the transition |gr〉 ↔ |rg〉 can
happen in two ways. This process is illustrated in figure 7.2(b).

(a) The qubit setup,
where |g〉 = |0〉 and
|1〉 = |r〉. A laser

couples these states,
while a strong van der

Waals interaction
couples the |r〉 states.

(b) All the possible transitions that are possible for 2 atoms in this qubit setup (left panel), and
the cancellation of two Raman paths (middle panel) to create a synthetic spin exchange coupling J

(right panel).

Figure 7.2: The two-photon gr qubit system that allows for the emergence of a coupling constant J to
realise a Krawtchouk-like coupling [138].

Such a model naturally gives rise to a PST-facilitating Hamiltonian, but only within this one-exciton
subspace, in which Van Vleck perturbation theory is valid. The qubit interpretation is then awkward:
|1〉 states are mapped to Rydberg dressed states which are poorly populated. In a general qubit array,
however, the ’population’ of the |1〉 state should possibly take any value in the interval [0, 1]. This is
the qubit mapping problem, and because of this severe restriction, the application possibility of this
system for PST in general qubit registers is poor. Though this system is useful and straightforward for
single-exciton transfer.

One last thing this system suffers from, is the over-restraining of the system parameters. If one wishes to
opt for identical qubits, such that βi = β, one finds that the number of equations that have to solved to
find the Rabi frequency profile/detuning profile, is equal to N − 1, but the number of free parameters is
equal to N

2 for an even number of qubits, and N+1
2 for an odd number of qubits. Therefore, the only

system sizes that allow for solutions are when N = 2, 3.

7.3.2 Fourth order photon process system

Several Rydberg-dressed systems have been proposed that employ fourth-order photon processes to enable
flipflop interactions over large distances [139]. One such system, analysed by Van Bijnen and Pohl, maps
the qubit states to ground states, defined as |↑〉 and |↑〉, in the Rydberg state manifold, and uses an
intermediate Rydberg state |e〉 to mediate long range interactions [140]. The coupling between two-qubit
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Figure 7.3: The four-photon processes that lead to two-qubit interactions, particularly the spin exchange
process (left panel). The transitions are driven by σ+ and σ− polarised light, depending on the total

angular momentum M = 0, 1 of the doubly excited Rydberg state |ee〉.

states is mediated through four-photon process, where circularly polarised light couples each state to 3
intermediate Rydberg states, portrayed in figure 7.3.

The matrix elements of a transition from |p〉 def
= |↑↓〉 to a state |p′〉 def

= |↓↑〉 is given by

〈p|Heff |p′〉
(4,D)

= −
∑
q,q′∈Q

∑
µ∈S

V Xpq′V
D
q′µV

D
µqV

X
qp′

E
(Q)
q′ E

(S)
µ E

(Q)
q

, (7.62)

where (4, D) denotes the fourth-order contribution, Q and S are the subspaces defined in section 7.2.3, V X

is the operator that couples the P to the Q space through photon interactions, V D is the operator that

couples the Q to the S space, and E
(Q,S)
q/µ is the energy of the level state q/µ in the rotated frame.

Though this system has appealing properties, such as the evasion of the qubit mapping problem by
mapping the qubit states to ground states that can be significantly populated, it suffers under the fact
that the associated coupling constant Jn,n+m does not sufficiently decay as a function of m. If worked
out in terms of Rabi frequencies, detunings and Rydberg-Rydberg couplings Vee, the matrix element
(7.62) takes the approximate form

〈p|Heff |p′〉 ∝
Ω4

∆2(2∆− Vee)
. (7.63)

In the case of distant qubit separation, Vee → 0, the matrix elements themselves do not vanish unlike the
case in sections 7.2.3 and 7.3.1. This is evident from the identity

Heff =
∑
p,p′∈P

|p〉 〈p|Heff |p′〉 〈p′| →
∑
i

µia
†
iai +

∑
i<j

Jij(a
†
iaj + a†jai), (7.64)

giving the relationship

J ∝ 〈p|Heff |p′〉
(4,D)

. (7.65)

Therefore, this system is unsuitable for implementing a Krawtchouk-like coupling Jn = − 1
2J
√
n(N − n)

that explicitly requires beyond-nearest neighbour interactions to vanish, or at least decay sufficiently
rapidly.
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8 Simulations for PST in small qubit registers

8.1 N = 2 qubit register

The simplest example in which PST can be demonstrated is a register of N = 2 qubits. Such a register
has a one-exciton Hamiltonian given by

H1 =

(
B −J2
−J2 B

)
, (8.1)

where B and J have been defined previously in section 6, particularly equation (6.2). Though not explicit,
the coupling still follows the implicit characteristic Krawtchouk square root behaviour. For N = 2, the
magnetic field must always be global in the one-exciton subspace: no variation can exist in accordance
with the symmetry matching condition. The eigenvalues of H1 readily read

λ(±) = B ± J

2
. (8.2)

The transfer time, for global magnetic field, is equal to that of the Krawtchouk chain [111], so that the
PST time must be equal to tPST = π

J . It then follows that this system automatically satisfies the ESR,

as λ(+) − λ(−) = (2m+ 1) π
tPST

= J for all m ∈ N ∪ {0}.

Several simulations have been performed to check the validity of the PST theory that has been discussed
in section 6. Most equations have been verified to be true, such as the free fermion dynamics proven
in (6.40), or the existence of accumulated phases like those mentioned in section 6.2.4. Every single
simulation was performed analytically, and the files can be obtained by request to the author [141]. For
all simulations, the units J = 1 and B = 1 were chosen. Such simulations clearly display state transfer
with unit fidelity. The probability p of the transition |01〉 ↔ |10〉 is shown in figure 8.1. The validity and
periodicity of the PST time can be observed.

Figure 8.1: The state transfer of a qubit chain prepared in the |01〉 state (orange line) to the |10〉 state
(blue line). This happens in the predicted (unitless) PST time tPST = π

J .

A small error model that can be added to the simulations is the stochastic error given by (6.60) in section
6.5.1. For the sake of clarity of the plots, the infidelity I was chosen to be the variable of interest. Its
relation to the fidelity is given by

I = 1− F. (8.3)

Where fidelity is a measure of the purity of a quantum state, infidelity is a measure of the error
accumulation in a quantum state, with respect to an error-free theoretical prediction. The model can be
further simplified by only varying the coupling constant J with a random stochastic error, since that is
the major driver of PST compared to the magnetic field components. The results are presented in figure
8.2.
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Figure 8.2: The infidelity of PST for N = 2 scales polynomially in the error term ε for ε . 1, and is
roughly constant beyond ε & 1. For each data point, ≈ 100 random data points were selected. The

plateau has an infidelity of I ≈ 0.45.

8.2 N = 3 qubit register

The first example where a varying magnetic field can still facilitate PST is for N = 3. The one-exciton
Hamiltonian H1 is given by

H1 =


b − J√

2
0

− J√
2

B − J√
2

0 − J√
2

b

 . (8.4)

Two options exist: either b = B so that the magnetic field is global, or b = B + 2
√

γ
1−γJ , where γ is

defined in Appendix D, where the entire derivation of the condition of a varying magnetic field is given.
Both of these options are equally valid solutions to the IEP, and therefore facilitate PST, though the
PST time for the latter case is modulated and becomes

tPST = (2m+ 1)
π

ε+
√
J2 + ε2

. (8.5)

Plots of the infidelity against error are presented in figure 8.3 for both the global and local magnetic field
scenarios. Similar curves are obtained, though the latter has a slope about twice as large as the former
for the small error regime ε . 1.

8.3 N = 4 qubit register

The first example that has a position-dependent coupling strength Jn is for N = 4 qubits. In Appendix
E, the IEP is shown to have no valid solutions for a varying magnetic field. Therefore, this system is
constrained to global magnetic fields only. In essence, the N = 2 case is quite similar to the N = 4 case
in that regard. Though no exact solution can be extracted from the set of ESR equations, it is possible
to approximate the solution to great accuracy. Such a solution would not facilitate PST, but it would
facilitate PGST with great fidelity > 99%. Although not perfectly equal to unity, in the NISQ era, such
fidelities are still excellent and comparable to the fidelities of other gate-based operations.

The scaling of the infidelity with respect to the error is plotted in figure 8.4. Surprisingly, the maximum
error that still tolerates fidelities of 90% and over is given by ε ≈ 0.22, and fidelities of 99% and over
are still found up until ε ≈ 0.07. For stochastic fluctuations of that magnitude, such fidelities are high.
For small qubit registers, it seems that PST is a very robust operation that tolerates high quality state
transfer.
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(a) PST results for a global magnetic field B = b. (b) PST results for a global magnetic field

B = b+ 2
√

γ
1−γ J .

Figure 8.3: The infidelity of PST for N = 3 scales polynomially in the error term ε for ε . 1, and is
roughly constant beyond ε & 1, for both scenarios. For each data point, ≈ 100 random data points were

selected. Both plateaux have an infidelity of I ≈ 0.87

Figure 8.4: The infidelity of PST for N = 4 scales polynomially in the error term ε for ε . 1, and is
roughly constant beyond ε & 1. For each data point, ≈ 100 random data points were selected. The

plateau has an infidelity of I ≈ 0.91.

8.4 Beyond N ≥ 5 qubits

It is desirable to extend the discussion in this section to qubit chains of arbitrary length. Unfortunately,
as of now, no analytic model has been found to analyse qubit register of 5 or more qubits. Solving
for the eigenvalues of H1 in the 5-qubit case is akin to analytically solving the roots of third degree
polynomials9. For more qubits, this degree eventually increases. Though theoretically, solution exist for
polynomials up to fourth degree, their solutions have convoluted forms, and solving the IEP for such
complex eigenvalues, such that the ratios of their differences are rational, appears to be an impossible task
unless some mathematical tool is devised that can find some structure in the solutions of the IEP.

While for most qubit chains, the IEP is still analytically unsolvable, the study of PST along smaller
qubit chains serves as an excellent benchmark for the feasibility of mirror inversion of qubit chains in
small quantum computers. Though for N = 2 and N = 3, the coupling Jn is invariant along the chain,
N = 4 serves as the first checkpoint for non-trivial PST implementation, as this is the first qubit length
after which PST demands a varying coupling constant. The experimental demonstration of PST along a
qubit chain of N = 4 would therefore serve as the first step towards realisation of PST in real quantum

9In the general case, this polynomial would be of degree 5, but the symmetries of the one-exciton Hamiltonian reduce
this degree to 3.
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computers, despite the invariance of the magnetic field.
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9 Conclusion and discussion

Quantum computing stands at a very important crossroad today. Simulators employing & 10 qubits
are becoming more viable for performing reliable calculations, yet taming error propagation in quantum
computers is still a difficult task beyond that qubit number. The quantum advantage that is obtained for
simulators with a small number of qubits, is simply lost beyond certain qubit register sizes and error scales.
As of now, the scalability of most quantum computers is poor. For this reason, variational quantum
algorithms operating on hybrid quantum computers seem to be a core part of quantum computing in
the NISQ era. By combining the unique strengths of quantum computing and classical computing,
certain algorithms can outperform classical computers without the need for a full-fletched fault tolerant
quantum computer which does not yet exist. The architecture and the inner workings of a quantum
circuit that runs the VQE algorithm is analogous to a classical neural network, and this machine learning
like behaviour allows VQE to variationally relax the variational parameters. Through this mechanism,
the system self-corrects certain errors, in some sense. Meanwhile, the classical computer efficiently runs
an optimisation algorithm. This combined effort allows for quantum systems to be simulated in a way
that should outperform classical calculations in the future.

Partial quantum error correction has proven itself to be of valuable use in the suppression of noise
propagation in the VQE algorithm. A handful of types of error mitigation techniques that have been
employed for the increase of accuracy of the Hartree-Fock solution, initiated for the VQE algorithm,
have been explored. These include post-selection, so that electron number reservation was respected,
McWeeny purification, so that the mathematical properties that a 1-RDM should satisfy are respected,
and variational relaxation of the parameters, which is an inherent self-correcting mechanism of VQE, that
counters coherent errors, and averages out some decoherent errors. The collection of these error correction
techniques allow for solutions to lie within chemical accuracy, in the context of quantum chemistry. In
general, the addition of these measures drops the energy estimate of the eigenenergy of molecules by
about an order of magnitude: a significant amount. Though this trend breaks down beyond a certain
qubit number, x ≈ 10 for the calculation of the pseudo-molecules Hx, it shows a promising and optimistic
trend that with additional error mitigation measures, one can achieve chemical accuracy for molecular
problems of greater dimensions in the future as well.

Besides quantum computers based on superconducting qubits and ion trap qubits, Rydberg-based quantum
computers are considered one of the main candidates for producing a relatively high fidelity hybrid
quantum computer. Plenty of active control can be exerted over Rydberg atoms which give them many
different choices to encode qubit states within their state manifold, and it allows them to reproduce a lot
of quantum gate operations. Their strong long range interactions allows them to communicate over great
distances of the order of µms, many lattice units apart, while the strong Rydberg blockade effect allows
for the generation of entanglement. Many experimental setups have proven high fidelities for the qubit
initialisation, read-out and propagation, particularly for gg qubits. Such a qubit system would therefore
be a favourable candidate for the implementation of a Rydberg-based simulator. Another point in their
favour, is that because only the Rydberg states mediate long range interactions, gg qubits have toggleable
interactions.

The possibilities of quantum state transfer has also been explored. Central to this study was PST, where
the fidelity of such an operation is equal to 1. With some additional unitary phase gates, PST has the
capability of performing mirror inversion of an arbitrary string of qubits in arbitrary qubit states. By
assuming the availability of a certain family of one-dimensional qubit chain Hamiltonians, the generalised
XY -Hamiltonian with an external applied magnetic field, and parameterised by a few number of coupling
constants, one can systematically deduct all necessary conditions for PST to arise along. These conditions,
the symmetry matching condition and the IEP, provide a framework from which the coupling constants
{Jn} and {Bn} can be derived. Such calculations have been performed for chains of 2 ≤ N ≤ 4 qubits,
and it has shown that each of them supports a unique set of parameters. The N = 3 chain has a constant
global coupling J , but allows for the variation of the magnetic field. The N = 4 chain has a varying
coupling J , but the magnetic field ought to be strictly constant over the entire chain length. For N ≥ 5,
chances are slim an analytic solution exists, as this is akin to solving third degree polynomials exactly
and performing complex algebraic manipulations with them. Most likely, numerical solutions must be
found, or a certain cohesive pattern must be found in the set of solutions.
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The viability of implementing PST on a quantum qubit that is based on Rydberg-dressed qubits has
been investigated. Certain systems had some attractive properties for such implementation, yet turned
out to be of shortcoming. The two-photon gr system has been shown to allow for one-exciton transport,
demonstrating the highly non-local correlated transport of states. For PST, it suffers from the qubit
mapping problem and the over-restraining of the system parameters under certain conditions. The
four-photon system has been shown to circumvent the qubit mapping problem by opting for gg qubits,
where both qubit states are mapped to non-interacting electronic ground states. However, the specific
transition scheme shown in figure 7.3, suffered from non-rapid decay of the coupling parameters Jn.
Therefore, it is not able to support a Krawtchouk-like coupling Jn = − 1

2

√
n(N − n). A scheme that

does support PST, however, is the scheme where each qubit state is mapped to the combined gr state,
where the Rydberg state allows for small admixture with the ground state, whose excited states have a
resonant dipolar interactions. The effective Hamiltonian of such a system is shown to decay sufficiently
rapid, and the mapping avoids the qubit mapping problem. With such a scheme, it should be possible to
experimentally verify PST of a general number of excitons.

If each qubit coupling is perturbed by some uncorrelated amount δ, chosen from a uniform distribution
[−ε, ε], PGST will occur instead with an infidelity that scales polynomially in the error, granted the error
is of lower order than the actual coupling itself. Up until N = 4 qubits, it can be shown that fidelities of
> 99% can still be achieved up to inaccuracies of ε ≈ 0.07. The most likely scenario is that the stochastic
error of the coupling constants is way smaller than the absolute value of the coupling constants itself,
showing that PST is robust for the case of small qubit registers. A general trend can then be obtained
from extrapolation, showing that for N ≤ 5, great fidelities (99%+) are still possible for errors up until
ε ≈ 0.05.

It remains an interesting topic of research to construct a rigorous notion of entanglement power in
the framework of VQE. Currently, only (numerical) simulations are available to test whether a certain
multi-qubit entanglement operation is suitable for speeding up the calculation of a certain problem within
VQE. Though such results may be valuable, they are not telling of how the convergence speed will
scale with qubit size beyond classically computable regimes, nor is the discussion of a specific problem
extendable to all problem. It is expected, namely, that certain entanglers are more tailored for certain
problems, and entanglement power should reflect this notion. It is more efficient and useful to know a
priori what kind of entanglement operations would provide a significant speed-up in analysing a certain
quantum system using VQE.

Lots of serious steps are being made every year to elevate quantum computers to a level where they can
outperform classical computers in computational complexity. Though no full quantum error correction
exists yet, many efforts have been made that have clearly been demonstrated in experiments to reduce
the error propagation inside the quantum simulator below set boundaries. With new theoretical work
being published every day, and new high-tech experimental set-ups being constructed, the NISQ era
serves as a hopeful step towards a fully fault-tolerant quantum computer in the future.
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Appendix A: Addition of angular momentum

The quantum mechanical representation of the angular momentum pseudovector is given by

L̂ = −i~ (r ×∇) , (A.1)

where r is the position vector. The square of the angular momentum is equal to

L̂
2

= −~2
(
r2∇2 − (r · ∇)(∇ · r)

)
. (A.2)

Then, the Laplacian is equal to

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L̂

2

~2r2
, (A.3)

where the latter term will now represent the centrifugal barrier in the Schrödinger equation. L̂ can be
decomposed into its Cartesian components

L̂ =

L̂xL̂y
L̂z

 , (A.4)

all of which satisfy, for {α, β, γ} ∈ {x, y, z}, the commutation relationships[
L̂α, L̂β

]
= i~εαβγL̂γ (A.5)

and [
L̂

2
, L̂α

]
= 0. (A.6)

This implies that a common set of eigenstates of the operators L̂
2

and L̂z exists. In spherical coordinates
{r, θ, ϕ}, they are given by

L̂
2

= −~2r2∇2 + ~2 ∂

∂r

(
r2 ∂

∂r

)
, (A.7)

L̂z = −i~ ∂

∂ϕ
. (A.8)

Their eigenfunctions are the complex-valued spherical harmonics Y ml (θ, ϕ), of degree l and order m, where
−l ≤ m ≤ l, given by

Y ml (θ, ϕ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ, (A.9)

where Pml (cos θ) are the phaseless associated Legendre polynomials. These spherical harmonics satisfy
the eigenvalue equations

L̂
2
Y ml (θ, ϕ) = ~2l(l + 1)Y ml (θ, ϕ), (A.10)

L̂zY
m
l (θ, ϕ) = ~mY ml (θ, ϕ). (A.11)

The Wigner 3j-symbol is defined as(
j1 j2 j3
m1 m2 m3

)
=

(−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j(−m)〉 , (A.12)

while the 6j-symbol is defined as{
j1 j2 j3
j4 j5 j6

}
=

∑
m1,··· ,m6

(−1)
∑
k jk−mk

(
j1 j2 j3
−m1 −m2 −m3

)
·(

j1 j5 j6
m1 −m5 m6

)
·
(
j4 j2 j6
m4 m2 −m6

)
·
(

j4 j5 j3
−m4 m5 m3

)
. (A.13)
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Appendix B: PST under Bose Hamiltonian dynamics

Recalling the Bose Hamiltonian as given in the main text,

HBose = J

N−1∑
i=1

(XiXi+1 + YiYi+1 + ZiZi+1), (B.14)

one can readily calculate the set of eigenstates {|k̃〉}, ordered from lowest eigenenergy Ek to highest, in
the basis of the single excitation manifold {|n〉} = {|1000 · · ·〉 , |0100 · · ·〉 , |0010 · · ·〉 , · · · } as

|k̃〉 =

√
2

N + 1

N∑
n=1

sin
πkn

N + 1
|n〉 (B.15)

with corresponding eigenenergies

Ek = −2 cos
kπ

N + 1
. (B.16)

Using the formal definition of state transfer fidelity,

F (t) = 〈1| e−iHBoset |N〉 , (B.17)

one can find that for the Bose Hamiltonian the fidelity is equal to

F (t) =
2

N + 1

N∑
k=1

sin
πk

N + 1
sin

πkN

N + 1
e−iEkt. (B.18)

For N = 2, the fidelity is

F (t)N=2 =
2

3

[
sin

π

3
sin

2π

3
eit + sin

2π

3
sin

4π

3
e−it

]
= −i sin t, (B.19)

while for N = 3, the fidelity reads

F (t)N=3 =
1

2

[
sin

π

4
sin

3π

4
ei
√

2t + 0 + sin
3π

4
sin

6π

4
e−i
√

2t

]
= −

[
sin

t√
2

]2

. (B.20)

There exist times t = tPST for which F (tPST ) = 1, so that PST occurs. For N ≥ 4, there do not exist
such times because the phase that is generated by the eigenenergies Ek can only cause constructive
interference to achieve unit fidelities, if there are only two terms present in the summation. This is
trivial for N = 2. For N = 3, the second term in the sum vanishes because sin 4π

4 = 0. For N ≥ 4, this
does not happen any more, and there are always at least 4 terms present in the summation that always
destructively interfere at all times, causing F (t) < 1 for all t.
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Appendix C: Graph theory and quantum walks

Let the N -qubit register Q be represented by a graph G with the set of vertices V (G) representing the
qubits and the set of edges E(G) representing pairs of qubits that mutually interact. It must be noted
that the degrees of freedom defined on a graph G are not enough so that the graph itself is isomorphic to

the full Hilbert space HQ = C2N . For this, copies of the graph must be made, and a special product must
be constructed to allow for isomorphism to be proven. This is the wedge product discussed in section
6.2.2.

On such a graph, the adjacency matrix is defined as the matrix of edges. Let the Roman indices i, j
denote vertices in the graph, then this adjacency matrix is given by

Aij =

{
1 if (i, j) ∈ E(G)

0 otherwise.
(C.21)

A time-continuous quantum walk on such a graph is given by the Schrödinger equation, where the
Hamiltonian has been replaced with this adjacency matrix, in the associated Hilbert space Ccard(V ),
where card(V ) is the cardinality of the vertex set. That is to say, a quantum state |ψ(0)〉 evolves in time
through

|ψ(t)〉 = e−itAG |ψ(0)〉 . (C.22)

The Hilbert space HG is defined as the vector space over C generated by the vertices v(G) ∈ V (G) with

the inner product (v|w) ≡ v · w def
= δvw.
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Appendix D: Eigenvalues of the N = 3 XY -Hamiltonian

In the main text, the N = 3 one-exciton Hamiltonian, with a local magnetic field, was given by

H1 =


b − J√

2
0

− J√
2

B − J√
2

0 − J√
2

b

 . (D.23)

Solving for |H1 − λnI3| = 0, the characteristic polynomial reads

(b− λn)2(B − λn)− (b− λn)J2 = 0. (D.24)

This gives the 3 eigenvalues
λn = b, (D.25)

λn =
1

2
(b+B)±

√
J2 +

(
b−B

2

)2

, (D.26)

In order to order these eigenvalues, the magnetic fields can be related to each other through

B
def
= b+ δ

def
= b+ 2ε. (D.27)

Then the eigenvalues read
λn = b, (D.28)

λn = b+
1

2
δ ±

√
J2 +

1

4
δ2 = b+ ε±

√
J2 + ε2. (D.29)

Since for all J > 0, it holds true that
√
J2 + ε2 > ε, so that the eigenvalues can be ordered as follows:

λ(+) = b+ ε+
√
J2 + ε2, (D.30)

λ(◦) = b, (D.31)

λ(−) = b+ ε−
√
J2 + ε2, (D.32)

where λ(+) > λ(◦) > λ(−). The ratio of differences between consecutive eigenvalues must be a ratio of
odd numbers, so

λ(+) − λ(◦)

λ(◦) − λ(−)
=

2m+ 1

2n+ 1
(D.33)

for m,n ∈ N ∪ {0}. Rewriting 2m+1
2n+1

def
= r, this gives

ε+
√
J2 + ε2

−ε+
√
J2 + ε2

= r. (D.34)

Solving for ε gives

ε =

√
γ

1− γ
J, (D.35)

where

γ =

(
r − 1

r + 1

)2

. (D.36)

In conclusion, PST will happen if and only if B = b+ 2γ
1−γJ , in a modulated time of

tPST = (2m+ 1)
π

ε+
√
J2 + ε2

. (D.37)

In the limit of ε→ 0, this gives the regular periodic PST time

tPST = (2m+ 1)
π

J
. (D.38)
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Appendix E: Eigenvalues of the N = 4 XY -Hamiltonian

In the main text, the N = 4 one-exciton Hamiltonian, with a local magnetic field, was given by

H1 =


b −J

√
3

2 0 0

−J
√

3
2 B −J 0

0 −J B −J
√

3
2

0 0 −J
√

3
2 b

 def
=


b −j 0 0
−j B −J 0
0 −J B −j
0 0 −j b

 . (E.39)

Solving for |H1 − λnI4| = 0, the characteristic polynomial reads

(j2 − (b− λn)(B + J − λn))(j2 + (b− λn)(−B + J + λn)) = 0. (E.40)

Then using (D.27), the eigenvalues read

λ(+,±) = b+ ε+
1

2
J ±

√
J2 + ε2 + εJ, (E.41)

λ(−,±) = b+ ε− 1

2
J ±

√
J2 + ε2 − εJ, (E.42)

ordered such that for all J > 0, one finds that λ(+,+) > λ(−,+) > λ(+,−) > λ(−,−). The first and third
inequality are trivial. The second inequality stems from the fact that

λ(−,+) − λ(+,−) = −J +
√
J2 + ε2 + εJ +

√
J2 + ε2 − εJ > 0, (E.43)

as −J +
√
J2 + ε2 + εJ > 0 and

√
J2 + ε2 − εJ > 0 for all J > 0. From the ESR, it follows that

λ(+,+) − λ(−,+)

λ(−,+) − λ(+,−)
=

2m+ 1

2n+ 1

def
= r (E.44)

and
λ(−,+) − λ(+,−)

λ(+,−) − λ(−,−)
=

2n+ 1

2k + 1

def
= R (E.45)

for some natural numbers m,n and k. Combined, this gives a new equation that is easier to solve:

λ(+,+) − λ(−,+)

λ(+,−) − λ(−,−)
=
λ(+,+) − λ(−,+)

λ(−,+) − λ(+,−)
· λ

(−,+) − λ(+,−)

λ(+,−) − λ(−,−)
=

2m+ 1

2n+ 1
· 2n+ 1

2k + 1
=

2m+ 1

2k + 1
. (E.46)

As these equations only depend on the ratio ε
J , it is convenient to perform a substitution ε

J

def
= µ.

Additionally, let the following shorthand notation be adopted:

S
def
=
√

1 + µ2 + µ−
√

1 + µ2 − µ. (E.47)

Then, equation (E.46) can be rewritten as

1 + S

1− S
= r ·R def

= ρ. (E.48)

Defining γ =
(
ρ−1
ρ+1

)2

, the solution can be verified to be equal to

µ =

√
γ − γ2

4

γ − 1
(E.49)

This is not the solution to the IEP, however, as µ must also satisfy either (E.44) or (E.45). Choosing
(E.44), this equation reads after some restructuring:

ρ

−1 + (ρ+ 1)
√

1 + µ2 − µ
=

2m+ 1

2n+ 1

def
= r, (E.50)
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where the identity S = ρ−1
ρ+1 was used, following from (E.48). Keeping in mind that ρ = r · R, one

obtains √
1 + µ2 − µ =

R+ 1

ρ+ 1

def
= T. (E.51)

The solutions to this equation are given by

µ =
1

2
±
√
T 2 − 3

4
. (E.52)

Linking the two solutions for µ, this yields the equation

1

2
±
√
T 2 − 3

4
=

√
γ − γ2

4

γ − 1
, (E.53)

giving the solution R(ρ):

R(ρ) = −1± 1

4

√
12− 3

ρ
− 4s(ρ) + ρ

(
46− 8s(ρ) + ρ

(
12− 3ρ− 4s(ρ)

))
, (E.54)

where

s(ρ) =

√
− (ρ− 1)2(3 + ρ)(1 + 3ρ)

ρ(1 + ρ)2
. (E.55)

R has to be real, but the only solution that returns a real R is ρ = 1, for which µ = 0. Another option is
to set the forefactor of s(ρ) under the squareroot in (E.54) equal to 0, yielding

− 4− 8ρ− 4ρ2 = 0, (E.56)

though this gives ρ = −1 which is forbidden under the ESR. Thus only the trivial solution seems to
support PST. The underlying assumption that had been made to arrive to this solution is that r and
R must be necessarily perfect fractions. Approximate solutions can be found, however, within certain
specified accuracy intervals, that support PGST to great fidelities (99%+). By relaxing the need for
perfect fractional solutions one can approximate µ at the cost of neglecting the ESR.
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