
 Eindhoven University of Technology

MASTER

A study on the properties of droplets in dense emulsion simulations

van Woensel, Jean-Paul

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2dab24b4-f601-4416-9053-153cd8c069d2


A study on the properties
of droplets in dense
emulsion simulations

Master Thesis

Jean-Paul van Woensel

Department of Applied Physics

Supervisors:
Prof.dr. F. (Federico) Toschi

Committee members:

Prof.dr. F. (Federico) Toschi
Prof.dr. L.P.J. (Leon) Kamp

Prof.dr. J.G.M. (Hans) Kuerten

Final version

Eindhoven, August 2021

R-2087-A





Abstract

The chaotic dynamics of stabilized dense emulsions are challenging due to the complexity of
the physics involved that tightly couples microscopic and macroscopic dynamics. While explor-
ing emulsion phenomenology experimentally is rather difficult, mostly due to their opacity, fully
resolved numerical simulations provide today a valuable tool to acquire basic fundamental inform-
ation at individual droplet level. As a matter of fact, there is still much to be understand on
the flow of dense binary emulsions. The aim of this thesis is to study the properties of stabilised
emulsions via fully resolved direct numerical simulations modelled via a the multi-component Lat-
tice Boltzmann method. The results of this thesis may contribute towards a better understanding
of complex dense emulsion flows. In order to study the details of the microscopic dynamics in
dense emulsions, we first introduce an algorithm to accurately track individual droplets in the
dispersed phase. This tracking algorithm allows to further analyze the trajectories of single or
multiple droplets. In particular, we discuss single droplet statistics such as velocity and accel-
eration PDFs, absolute and relative dispersion and the droplet (velocity) Lagrangian structure
function. Finally, we discuss how to employ droplet trajectories to reconstruct information on the
underlying gradients of the velocity field.

Keywords: Dense Emulsions, Droplet Tracking, Lattice Boltzmann
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Chapter 1

Introduction

Binary emulsions frequently appear in daily life, in industrial processes and in the food industry,
for example surrounding dairy products such as milk and mayonnaise [1], but also in enhanced oil
production [2] and chemical engineering [3]. Despite how common emulsions are, many aspects of
their physics are not yet well understood. This is especially true for dense emulsions, for which
the dispersed phase, i.e. the droplets in the emulsion, takes up more than half of the total volume.

In this thesis, simulations on a dense binary emulsion undergoing chaotic laminar flow are
analysed by tracking the dispersed phase as individual droplets in time.

The physics of this type of flows is rich and complex, exhibiting effects from small scales dom-
inated by viscosity and surface tension to the large scale dominated by inertia. The importance
of these different effects depends on many factors, such as the relative concentration of the com-
ponents that make up the emulsion, the applied stirring force and the properties of the fluids
themselves. Because of this complexity, it is difficult to experimentally study these kinds of flow
and, in particular, it is challenging to track the individual droplets in an emulsion.

1.1 Research goals

The aim of this research is twofold:

• we aim at developing an effective droplet tracking algorithm to study dense emulsions;

• we aim at using this algorithm to gain insights into the physical behaviour of droplets in
dense emulsions.

Simulations such as the ones used in this thesis can aid in the improving the fundamental
understanding of these flows. In particular, the fully resolved simulations provided by the 3D
Lattice Boltzmann code (LBE3D) that will be used allows us, in principle, to study the creation,
breakup and coalescence of droplets in the dispersed phase of dense emulsions. The raw data from
these simulations is also well suited for applying to a tracking algorithm, which will form the focus
of this thesis. This is because these simulations are highly optimised [4], giving us access to large
amounts of data from relatively long running simulations with different parameters after relatively
short CPU time per simulation. A visual example of what these simulations look like is given in
Figure 1.1.

These simulations allow us to study the flow field for varying volume fractions and stirring
forces, two of the parameters that can be freely chosen. These analyses will be done by only
considering the dispersed phase, i.e. the droplets in an emulsion, as opposed to measuring the
Eulerian velocity field at each individual point in space. By using appropriate statistics obtained
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CHAPTER 1. INTRODUCTION

Figure 1.1: Example of a dense emulsion produced by the LBE3D simulations at a high volume
fraction of 77%. For clarity, only the dispersed phase is made visible here. Figure adapted from
the work of I. Girotto [4]. The full video from which this snapshot was taken can be accessed
online [5].

from the individual droplets, we can describe the flow field even without directly measuring the
continuous phase.

1.2 Thesis outline

The outline of this thesis is as follows. In chapter 2, we discuss the basic physics necessary
to understand what is laid out in this thesis. The physics discussed there cannot, however, be
directly applied to a numerical simulation. Therefore, the methodology used to model real world
physics through fluid simulations is explained in chapter 3. At the end of the chapter, the method
for building up the dense emulsions to be studied is explained. Chapter 4 explains the tracking
algorithm that was developed to study the aforementioned simulations. The algorithm is then
applied to the simulations, the resulting data of which is analysed in Chapter 5, followed by the
conclusions we can draw from our findings.
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Chapter 2

The physics of dense emulsions

The motion of fluids is typically described via continuous fields, as their internal structure allows
molecules that make up a fluid to have a large freedom in their movement. Indeed, contrary to
solids, there is no rigid structure prohibiting the movement of individual molecules with respect
to one another, allowing for fluids to flow. In this chapter, the relevant fluid mechanics will be
briefly introduced to provide a reference frame for the reader and to establish the notations and
conventions that will be used. More specifically, we provide of an overview of the physics relevant
to the phenomenology of dense emulsions alongside resources for further reading. There is a focus
on the liquid-liquid interfaces that occur at the boundaries of fluid between the two phases of an
emulsion.

2.1 Navier-Stokes equations

Different kinds of fluids behave differently when forces are applied to them. In order to derive
the velocity field of a fluid, the Navier-Stokes equations can be used, but these equations are
not generally applicable due to the assumptions required to derive them. Before we explain the
equations themselves, it is therefore necessary to understand these assumptions. We will start by
considering how fluids can deform, as the way fluids deform differs based on the characteristics of
the particular fluid.

Forces that act on the surface of an object that are aligned parallel to the surface of the object
are called shearing forces. This idea can also be applied to fluid parcels, rather than solid objects.
The question, then, is how strongly a shearing force causes a fluid parcel to deform. The ratio of
shear stress and the rate of shear strain is called the dynamic viscosity µ:

µ =
shear stress

shear strain
. (2.1)

In simpler terms, µ is the ratio of the applied shearing force to the deformation of a fluid parcel.
The higher the viscosity, the lower the distance the liquid parcel will deform due to an applied
shearing force. Honey and syrup are examples of fluids with a high viscosity compared to water,
with the former both having a viscosity of the order of 103 mPa · s [6] and the latter having a
viscosity of 1.002 mPa · s [7] at room temperature.

In the ideal case where the viscosity stays constant, regardless of the strength of the applied
forcing, the fluid is referred to as a Newtonian fluid. While no fluid is completely Newtonian,
many common fluids such as air and water very closely match the linear relationship between
shear stress and the rate of shear strain, making the simple Newtonian model a useful and power-
ful approximation. We will immediately make use of this, as the Navier-Stokes equations are only
valid for Newtonian fluids.
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CHAPTER 2. THE PHYSICS OF DENSE EMULSIONS

A similar observation can be made for the normal stresses on a fluid parcel, i.e. forces that act
perpendicularly to a surface as opposed to parallel to a surface, though the derivation for this is
more difficult to express in terms of µ [8].

Now that both shear stresses and normal stresses have been covered, we can move on to
the mathematical expressions of the Navier-Stokes equations. They are essentially expressions of
Newton’s second law in all three spatial dimensions. These equations alone do not suffice to allow
for the full flow behaviour to be described analytically, however, due to the non-linear behaviour
described by them. For each Cartesian coordinate of the velocity, the Navier-Stokes equations are
given by

ρ
Dvi
Dt

= ρgi −
∂P

∂xi
− ∂

∂xi

(
2

3
µ∇ · v + ∇ ·

(
µ
∂v

∂xi

)
+ ∇ · (µ∇vi)

)
+ Fext (2.2)

where i = x, y or z.

These equations are valid for both compressible and incompressible flows. The systems that
we will consider are deemed to be incompressible, as the density in each fluid component stays
nearly constant and the velocities are relatively low (i.e., the Mach number is much smaller than
unity). As such, the divergence is zero, i.e. ∇ · v = 0. Additionally, gravity is not considered in
the simulations, so the above equations can be simplified to

ρ
Dvi
Dt

= −∇pi + µ∇2vi + Fext. (2.3)

Each of the four terms of this equation have an intuitive physical meaning. The first term,
ρDviDt can also be written as ρ( ∂∂t + vx

∂
∂x + vy

∂
∂y + vz

∂
∂z )vi. This term gives the rate of change

of the velocity of a particle in a fluid as it travels along its trajectory, as opposed to the rate of
change at a fixed point in space given by ∂vi

∂t . The given formulation as Dvi
Dt is a convention for

writing this convective or material derivative.
The next two terms on the right hand side of the equation represent the effect of pressure

gradients and viscous diffusion, respectively. This means that the behaviour of flow of this type
will be determined by the ratio of pressure gradients to diffusion. Finally, the last term represents
the external forcing per unit of volume. For this thesis, we will see this term back as the stirring
force used in the simulations, which is described when discussing the setup of the simulation in
section 3.3.

Note that the Navier-Stokes equations give no mention of laminar or turbulent flow: both
laminar and turbulent flow are described by the equations 2.3. In practice, it is often useful to
characterise how strongly a flow is affected by inertial forces versus the viscous forces in order to
compare flows with similar characteristics. The Reynolds number is a useful metric for this, and
it is defined as

Re =
ρUL

µ
=
UL

ν
. (2.4)

The Reynolds number can interpreted as the ratio of inertial forces, represented by the character-
istic velocity U and the characteristic length scale L, and the viscous forces in terms of the viscosity
µ. The use of the so-called kinematic viscosity, ν, defined as ν = µ

ρ , is a common convention in
fluid mechanics, combining the fluid properties of viscosity and density.

2.2 Shear flow

In fluids, shear flow is the type of flow characterised by a gradient in the velocity field, as a gradient
in the velocity creates a shear by definition. The simplest example would be Couette flow, which
describes the motion of a fluid moving between two plates. One of the plates remains at rest
whereas the other one moves at a constant speed, causing a shear to form inside the fluid.
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CHAPTER 2. THE PHYSICS OF DENSE EMULSIONS

Figure 2.1: Illustration showing a Kelvin-Helmholtz instability in a shear induced by a velocity
difference in the two layers of fluid.

Another way shear can appear in fluid flow is in the two-dimensional interaction of either two
different types of fluids or a velocity shear in a single fluid. In both cases, slight perturbations
can occur on the surface interface. Depending on the density differences, gravity, the wavelength
of the perturbations and the velocity differences, the flow can undergo a hydrodynamic instability
that the interface. Small perturbations then grow, causing more small perturbations to form at
the surface, eventually leading to turbulent mixing of both fluids. This phenomenon is known as
Kelvin-Helmholtz instability. Note that the size of these perturbations depends on the viscosity, as
more viscous fluids will show less small scale motion and thus smaller perturbations. This does not
mean that more viscous fluids are necessarily more stable, as the wavelength of the perturbations
determines the stability of the system, not their amplitude.

2.3 Turbulence

Turbulence is an important aspect of fluid mechanics that is present in many types of flow. The
flow in pipes, heat exchangers and in the wakes of aircraft are common examples. In particular,
turbulence is important when considering an object or fluid in motion with respect to another
fluid. As such, turbulence is an important property of flow when studying emulsion flow as well.

Turbulent flow is characterised by its chaotic nature compared to laminar flow, though ordered
structures can still be seen in the form of vortex-like swirls called eddies. Despite this, turbulence is
not governed by different physics from laminar flow. In principle, the Navier-Stokes equations are
just as valid for turbulent flows but the difference lies in the fact that turbulent flows are chaotic
and unpredictable. Small uncertainties or inaccuracies in the initial conditions of turbulent flows
grow exponentially in time.

This is where laminar flow differs from turbulent flow: for a dynamical system to be considered
predictable, the condition is that small changes to the initial conditions of a given system result
in small changes in the phase space trajectories in time. Since all measurements have a finite
accuracy, it is not possible to exactly predict the flow profile of a turbulent flow because the char-
acteristics of these flows can change drastically under small changes of their initial conditions.

In practice, the Reynolds number discussed earlier gives a useful notion to determine whether
a flow will show turbulent behaviour or not. Though the Reynolds numbers at which flow will be
turbulent also depend on the flow geometry, the transition between laminar and turbulent flow
typically occurs in the range of 103 to 104, with flow being laminar for Reynolds numbers below
this range and turbulence occurring above this range. For the well-studied case of pipe flow, this
critical Reynolds number is Re ≈ 2300. Note that these critical values are not exact, as the
Reynolds number is a tool to help describe flow behaviour, not a constant of nature.

Characteristic of turbulent flow is that dissipation of energy occurs only at the smaller scales.
Given enough time, all the kinetic energy in a turbulent flow will eventually dissipate, typically
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CHAPTER 2. THE PHYSICS OF DENSE EMULSIONS

into heat. This can readily be observed when looking at any turbulent flow: unless there is an
external force to support the turbulent motion, flow will eventually stop. For example, Kelvin-
Helmholtz instability will only continue for as long as there is a velocity shear or two different
fluids with a surface interface. Once all fluid is mixed, as a result of the instability, there is no
longer a means to sustain the rotational motion caused by the process. This is because the source
of the instability, a fluid-fluid interface, is no longer there.

One important result of turbulence theory, the Kolmogorov relation, states that the total
kinetic energy, e, of a turbulent flow, scaling with U2, dissipates as follows:

de

dt
= −εout, εin ∝

U3

L
, (2.5)

where ε is the energy flux per unit of time, with the energy flux εout transferring from larger
to smaller scales. A full derivation can, for example, be found in the work of F. Nieuwstadt et
al. [9]. On average, these two energy fluxes are equal, though they differ locally based on the
local velocity, as by definition the velocity and thus the kinetic energy in a turbulent flow varies in
space. The energy is passed on from the macroscale, the scale of the largest eddies in a turbulent
flow, to the microscale, the smallest scale in which molecular diffusion becomes relevant. Eq. 2.5
shows that the rate at which energy is transferred from the macroscale to the microscale depends
solely on the macroscale properties of the system, i.e. U and L. This corresponds with a timescale
of T = L

U for energy to be transferred to smaller and smaller eddies. This process repeats itself
until viscous friction transforms the kinetic energy of the small eddies into heat. The associated
quantaties for length, time and velocity respectively at the dissipative Kolmogorov microscale are:

η =

(
ν3

ε

) 1
4

, τ =
(ν
ε

) 1
2

, v = (νε)
1
4 . (2.6)

Here, η is known as the Kolmogorov scale. This scale is small enough for viscosity to dominate,
as at this scale, molecular diffusion becomes relevant. The large-scale parameters U and L do not
directly influence these quantities, and the behaviour no longer depends on the geometry of these
system. Only the viscosity ν and the amount of energy dissipated to the small scale, ε, matter at
the microscale, leading to the expressions in Eq. 2.6.

2.4 Fluid-fluid interfaces

In order to explain the properties of binary emulsions, it is important to discuss the physics at the
fluid-fluid interfaces between them. A binary emulsion will typically consist of a dispersed phase
and a continuous phase, with the former forming structures inside the bulk of the continuous
phase.
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Figure 2.2: Example of an oil-in-water emulsion after stirring with a tablespoon. The droplets
can be seen to be nearly spherical and do not immediately coalesce despite nearly touching one
another due to the inertia still present in the system at the time this picture was taken.

Due to the fluid-fluid interfaces that occur in emulsions, surface effects play an important role.
One such property is surface tension, which explains why it is energetically favorable for liquids
to minimize their surface area. This can readily be seen from the so-called Laplace tension:

∆p = γ

(
1

R1
+

1

R2

)
(2.7)

This equation gives the pressure across a fluid-fluid interface. The surface energy density γ de-
scribes the energy per unit of a surface of the liquid, and is a material property for the two materials
on each side of the interface. The radii R1 and R2 are the two principle radii of curvature, each
mutually perpendicular to the liquid surface and to each other. This explains why the structures
found in emulsions are typically spherical, as spheres have the lowest ratio of surface area to
volume of any shape.

For the practical case of spherical curvature, the right hand side of Eq. 3.8 simplifies to 2γ
R

which, by itself, is also called the capillary pressure and corresponds to the pressure discontinuity
in the direction perpendicular to the liquid surface. This implies that the internal pressure inside
a spherical droplet of liquid is higher than the internal pressure inside the volume of a completely
flat body of water. It should be noted that this equation is not generally applicable, as it assumed
a fully uniform density within droplets and assumes that fluid-fluid surfaces are sharp, which is
inaccurate when considering phase transitions, for instance.

Eq. 3.8 does, however, provide a useful first insight into fluid-fluid surface interactions, as it
explains why a spherical droplet of fluid is an energetically favourable state with a higher pressure
compared to the outside of the droplet.

A practical example of this is adding a small amount of oil to water. As oil is insoluble in
water, it forms a layer on top of the water due to oil having a lower density than water. Mixing
the oil and water suspension will result in an unstable emulsion where the oil forms spherical
bubbles inside of water. In this example, oil would be the dispersed phase and water would be
the continuous phase. Note that these emulsions are, generally speaking, not stable. In the case
of oil and water, the emulsion will revert to the original state, where the oil forms a layer on top
of the water. An example of this can be seen in Fig. 2.2.
In the following, we disregard gravity, but even without gravity coarsening would occur
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Beyond surface tension, hydrostatic, i.e. gravity-induced, contributions are typically the
largest, but as for the Navier-Stokes equation, gravitational effects are not considered here. The
remaining surface interactions contributing to the pressure at the surface are called the disjoining
pressure. It consists a combination of Van der Waals forces, electrostatic interactions, osmotic
effects and structural effects. This means that the disjoining pressure is strongly material depend-
ent. The disjoining pressure is an important part of the methodology to model emulsions which is
explained in section 3.3, where the emulsion is made stable through a negative disjoining pressure,
preventing droplets from coalescing into one whole as with the aforementioned example of oil in
water. A real-world example of this would be an emulsifier or soap, which typically have one
hydrophilic and one hydrophobic end. These prevent droplets from coalescing and thus stabilizing
the emulsion.

2.5 Droplet formation

The formation, coalescence and breakup of droplets are key processes that determine the stability
of an emulsion. In the simulations that we analyse, a statistical balance between coalescence and
breakup events occurs, making the emulsion statistically stationary for the given parameters.

In our system, the formation of droplets is a stochastic process that must take place in order
to transform a suspension into an emulsion. An example is the stirring of a glass of water and
oil, which causes droplets of one liquid to be produced and thus temporarily form an emulsion.
The volume fraction is defined as the fraction of the total liquid volume occupied by the dispersed
phase. Attempting to add too much material of the dispersed phase to the system causes phase
inversion, a process in which the dispersed phase switches roles with the continuous phase. This
is analogous to adding so much oil to an oil-in-water emulsion that the system turns into a water-
in-oil emulsion, with water droplets inside of the oil.

As explained under section 2.4, fluid-fluid interfaces give rise to surface tension which causes
spherical droplets to form. In an unstable emulsion, such as Fig. 2.2, droplets initially form due
to the applied stirring force. The initial bulk of oil on top of the water can be interpreted as one
large ’droplet’ that breaks up into many small droplets due to the inertial stirring force acting on
it, breaking up the surface tension. As time goes on, these droplets eventually start coalescing
without the stirring force acting on them. Eventually, all the oil will have coalesced, resting on
top of the water due to buoyancy. Note that this would not happen in our system, as we disregard
gravity: instead, we would see a single large droplet surrounded by water.

There is, however, a secondary effect that also destabilises the emulsion. As two oil droplets are
near one another, the effective attractive force caused by surface tension can cause these droplets
to coalesce into a single, larger droplet. This can intuitively be understood from Eq. 2.7, as a
single large droplet will always have a smaller surface area. This, in turn, means that there is a
smaller liquid-liquid interface area, and thus forming a larger droplet is energetically favourable.

This process explains why emulsions are typically not stable. In order to make them stable, a
force keeping two droplets apart is needed, as mentioned under the disjoining pressure in section
2.4. An example of this are surfactants, also appropriately called emulsifiers in this context. In
the case of oil and water, this surfactant can be a material that is hydrophobic on one end and
hydrophilic on the other. This is how the oil and water emulsion present in mayonnaise is sta-
bilised, where several proteins present in egg yolk act as surfactants. This mayonnaise analogy
will be expanded on later, as making a dense emulsion computationally is conceptually similar to
making mayonnaise at home.

8 A study on the properties of droplets in dense emulsion simulations



Chapter 3

The modelling of a dense emulsion

Due to the complexity and opacity of binary emulsions, it is extremely difficult or just not feasible
to study the physical behaviour of each individual droplet experimentally, nor can the Navier-
Stokes equations readily be simulated. In this chapter, the methodology for modelling a binary
emulsion is explained, from the computational methods used, to the process of formation of the
emulsion itself.

3.1 Methodology

In order to aid the reader in understanding the analyses that will be discussed, we provide here
a brief overview of the steps that were taken to perform a statistical analysis of the dispersed phase.

We begin by taking the raw density data from a numerical simulation of a dense emulsion.
The relevant details of this simulation are laid out in sections 3.2 through 3.4. The raw data from
these simulations are density fields. At the end of this chapter, we discuss the parameters that
were varied for the simulations we studied in section 3.5.

This density field is then used to mark the droplets making up the dispersed phase in section
4.1. This, in turn, forms the basis that allows us to track the droplets in time as seen in section
4.2, including any breakup and coalescence events. It is this tracking algorithm that allows us to
the analyses we show in chapter 5.

3.2 Lattice Boltzmann Method

The Boltzmann equation describes the dynamics of a gas in terms of probabilities. Since the
Navier-Stokes equations are a limit case of the Boltzmann equation, it can be used to describe
fluids as well. We discuss it here as it is central to the Lattice Boltzmann Method (LBM) that is
used to model the binary emulsions, as a computationally viable alternative to a direct discretiza-
tion of the Navier-Stokes equations. Two of the main advantages of this method are that the LBM
method lends itself well to be parallellized, as is the case for the LBE3D code that is used, and
the lack of need to implement a phase-field model. This latter point in particular makes emulsions
easier to model, as they naturally contain many fluid-fluid interactions which are more difficult
to apply to the Navier-Stokes equations, as there is no collision or interaction term for the small
scale interactions of droplets in them.

The idea behind the Boltzmann equation is not to analyse the individual properties of each
molecule or particle in a system, but rather do this through the use of probability distribution
functions. The macroscopic velocity and density fields can be obtained through local averages,
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CHAPTER 3. THE MODELLING OF A DENSE EMULSION

which is possible due to the individual particles exhibiting Brownian motion (see Eq. 3.5).
The probability distribution function f(r,v, t) for particles in the six-dimensional space given by
the three-dimensional positions r and velocities v is given by

f(r,v, t) = Ndrdv (3.1)

where N is the number of particles in the volume given by drdv. The Liouville theorem in classical
mechanics shows that this distribution is conserved along flowlines:

f(r + dr,v + dv, t+ dt) = f(r,v, t), (3.2)

without considering possible collisions. To account for collisions between particles, we can write

f(t+ dt, r + dr,v + dv)− f(t, r,v) = dt

(
∂f

∂t

)
coll

, (3.3)

with a yet undefined collision operator that is a function of f . This can be written in terms of dt,
dr and dv as

dt

(
∂f

∂t

)
+ dr · ∇rf + dv · ∇vf = dt

(
∂f

∂t

)
coll

. (3.4)

With the acceleration dv
dt written as α and dividing by dt, we then get

∂f

∂t
+ v · ∇rf +α · ∇vf =

(
∂f

∂t

)
coll

, (3.5)

which is known as the Boltzmann equation. Here, the term v·∇rf represents the effect of transport
on the probability distribution and the term α · ∇vf represents the effect of the applied forcing
(as α = F

m ). In the used lattice Boltzmann method, the BGK collision operator is implemented
[10]. This commonly used operator introduces a relaxation time τ to interpret the collision term(
∂f
∂t

)
coll

, and is defined as (
∂f

∂t

)
coll

= −f − f0
τ

, (3.6)

where f0 is the equilibrium distribution function corresponding to f , described by the Maxwell-
Boltzmann distribution function (not elaborated on here). The right-hand side of Eq. 3.6 states
that collisions are treated as a relaxation process towards the equilibrium f0. Since we are dealing
with binary emulsions, however, we must also take into account the interaction forces acting on
both components of the fluid:

∂fσ
∂t

+ v · ∇vfσ =

(
∂fσ
∂t

)
coll

+ Fσ(r, t). (3.7)

Note that this equation applies to each fluid component separately: the subscript σ represents the
component of the fluid, i.e. either the continuous or the disperse phase of the binary emulsion.

3.3 Modelling binary emulsions

The Lattice Boltzmann Method (LBM) is a relatively new [11] method for doing fluid simulations.
Other methods to discretize the Navier-Stokes equations include the finite volume method and the
finite element method. The LBM in particular is a flexible and computationally efficient method
that has proven to be well-suited to model the flow behaviour of multiphase systems, and 3D
systems in particular [11]. The LBE3D code is a parallel implementation of the LBM method [12],
which in particular is able to model surface effects like surface tension and the disjoining pressure
[4][13][14] due to its implementation of the forcing term Fσ in Eq. 3.7.
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CHAPTER 3. THE MODELLING OF A DENSE EMULSION

In the case of this study, the goal is to analyse the physical phenomena that relate to the
macroscopic interactions between two phases of an emulsion in a fairly simple, triple periodic
geometry. The boundaries of this geometry are continuous: the geometry consists of a cube of
512 grid points in all three spatial directions (i.e. each face of this cube connects to the face at
the other end of the cube). As such, fluids are considered to be a continuum, disregarding the
interactions that occur at a molecular level.

However, in order to model droplets in an emulsion, it is necessary to include a model for
surface tension and the disjoining pressure in the simulation model, which appear as two inter-
particle forces, in contrast to the above. This is because both of these microscopic effects greatly
influence the macroscopic behaviour. The surface tension comes from a repulsive force between
the two phases of the emulsion in the LBE3D method that was used [4]. This model was based
on the Shan-Chen pseudo-potential approach for multiphase flows [15], such as the ones we study
here. It is given by:

F (r)
σ (x) = −GABϕσ(x; t)

∑
a,σ′ 6=σ

waϕσ′(x+ ca; t)ca (3.8)

where the phase separation occurs due to the potential ϕσ being taken equal to the density ρσ,
which differs for both components. Note that this forcing only applies to all its directly neigh-
bouring particles. Here, GAB is the magnitude of the forcing, wa is a set of weights for the applied
LBM scheme and ca are the streaming velocities, a parameter in the probability distribution in the
LBM scheme alongside the position x that represents the velocity a particle would have without
collisions or other interactions.

With just this additional forcing term alone, however, droplets that form due to surface tension
would not be stable due to the dominant attractive forces for fluid of the same component. To
account for this, a disjoining pressure term was also introduced that applies also to the second
neighbours, i.e. including the neighbours of the neighbours of a particle. This creates a balance
with the above force to prevent the whole system from coalescing. This introduces a repulsive
force between particles of the same component:

F (F )
σ (x) = −Gσσ,1ψσ(x; t)

∑
a∈NN

waψσ(x+ ca)ca − Gσσ,2ψσ(x; t)
∑

a∈NNN
waψσ(x+ ca)ca (3.9)

where NN represents a particle’s neighbours, and NNN represents both its neighbours and
its second neighbours. This way of modelling surface tension and disjoining pressure was adapted
from the work of Benzi et al. [16], and proven to be valid for the mesoscopic simulations that we
consider here (see, for example, the work of Benzi et al. [17]). In the model, the sum of these two
forces form the forcing term Fσ in Eq. 3.7.

In addition to these two interaction forces, an external stirring force is applied to the emulsion
in order to mix the two fluids. The stronger an inertial force like this is, the smaller the droplets
that will be formed due to inertial forces beating out the surface tension that keeps a droplet
together. To ensure an isotropic forcing field for random mixing, the stirring force has the shape
of a sum of sine waves with small wavenumbers. For each spatial direction i, the stirring force Fα

is given by:

Fαi (x, t) = Aρα
∑
j 6=i

[sin(kjxj + Φ
(j)
k (t))], (3.10)

where i, j = 1, 2, 3, A is a parameter controlling the amplitude of the forcing and the wave-vector

components kj are chosen such that k2 = k21+k22+k23 ≤ 2. The phases Φ
(j)
k come from independent

Ornstein-Uhlenbeck processes, a random process similar to a random walk.
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3.4 Making the emulsion

The initial setup for every simulation is a flat interface of the two fluid components. The emulsific-
ation process proceeds thanks to the applied stirring force of Eq. 3.10, which causes this interface
to break. The fluids will subsequently split into a continuous phase and a dispersed phase. The
latter can be tracked as individual droplets and forms the focus of this research.

However, this process is complicated when making dense emulsions, where the volume fraction
of the dispersed phase is more than 50%, i.e. there is more fluid of the dispersed phase than
there is of the continuous phase. Creating a dense emulsion is difficult because of phase inversion.
This is why making mayonnaise is difficult: in this process, oil needs to be added evenly while
mixing. In the simulations, this process of increasing the volume fraction of the dispersed phase
is done similarly, in that the methodology ensures that the added volume of dispersed phase is
distributed evenly to prevent phase inversion, a process where the continuous and disperse phases
swap. During each LBM time step, material of the dispersed phase (denoted with a subscript
1) is added uniformly to each droplet. In order to maintain incompressibility, it is necessary to
simultaneously remove fluid from the continuous phase (denoted with a subscript 2), which is
also done uniformly in accordance to the amount that was added for the dispersed phase. If the
total volume of the system is given by V = M1ρ1 +M2ρ2, then the addition and removal of both
respective components should be such that M1ρ1 +M2ρ2 = αM1ρ1 + βM2ρ2, where α and β are
defined as

α = 1 + δβ = 1−
(
M1

M2

)
δ, (3.11)

to ensure the total volume remains constant. The free parameter δ determines how rapidly this
process of increasing the volume fraction takes place. Unless mentioned otherwise, all simulations
in this thesis used a value of δ = 1.25 ·10−6 for a varying number of time steps. From here on, this
process will be referred to as pumping. The desired volume fractions were reached by starting from
a flat interface with an initial volume fraction of 30% for all simulations. This volume fraction
thus gradually increases for a number of timesteps Tpump that is set as a parameter to reach the
different volume fractions given in section 3.5.

After this period of pumping, the system is left to rest, during which the number of droplets
drastically decreases. During this time, most droplets coalesce, as the surface tension becomes
more significant than the inertia that would prevent droplets from coalescing. This happens
independently of the initial conditions of the system, which include changing the volume fraction
of the phases of the emulsion and changing the applied initial forcing strength. After enough
droplets have coalesced, the number of droplets stays roughly constant for an extended period of
time, and few coalescence and breakup events occur during this stage. Due to the fact the number
of droplets stays roughly constant in this state, it is ideal to use for studying the behaviour of the
dispersed state. It should be noted, however, that this does not necessarily mean few breakup and
coalescence events happen; in fact, many such events happen for the high volume fraction cases,
but these events average out. This whole process is illustrated in Fig. 3.1.
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Figure 3.1: Graph of the number of droplets in time for simulations with different volume fractions.
The initial period of pumping can be seen, after which the amount of droplets decreases based on
the volume fraction reached, with the higher volume fractions resulting in fewer, larger droplets.

3.5 Simulation parameters

Now that the process of setting up the binary emulsion is explained, we can now discuss the choice
of parameters for the simulations. By changing only one property for each simulation, the overall
effect that that property has on the physics of the system can be looked at. In particular, five
simulations with a varying volume fraction and five simulations with a varying stirring force will
be considered in the following. All other parameters not explicitly mentioned are the same within
these two sets of simulations. The relevant parameters are laid out in Table 3.1 and Table 3.2.

As explained above, however, the system does not immediately reach the desired state. Es-
pecially for the high volume fraction cases, it takes time for the system to reach a semi-stable
state that can be analysed with good statistics. Depending on the chosen initial conditions of
the system, this state is either fully stable, or the system eventually undergoes a phase inversion,
in which the continuous and dispersed phases switch. This phase inversion is not elaborated on

Volume fraction L δ · 10−6 Tpump A ·10−6 〈NDroplets〉
38% 512 1.25 114900 0.485 3283
49% 512 1.25 289900 0.485 3061
63% 512 1.25 439900 0.485 2356
70% 512 1.25 504900 0.485 1573
77% 512 1.25 559900 0.485 800

Table 3.1: Table showing the parameters in the simulations with varying volume fraction. The
grid size L, the pumping strength δ, as described in section 3.4 and the strength of the stirring
force A (see Eq. 3.10) were kept constant. In order to achieve the various volume fractions, only
the time step at which the pumping is stopped, Tpump, was changed. 〈NDroplets〉 shows the average
number of droplets over the time period between 2-3 M time steps, during which the number of
droplets stays roughly constant, as can be seen in Fig. 3.1.

A study on the properties of droplets in dense emulsion simulations 13



CHAPTER 3. THE MODELLING OF A DENSE EMULSION

Volume fraction L δ · 10−6 Tpump A ·10−6 〈NDroplets〉
77% 512 1.25 559900 0.405 967
77% 512 1.25 559900 0.425 911
77% 512 1.25 559900 0.455 861
77% 512 1.25 559900 0.485 800
77% 512 1.25 559900 0.505 761

Table 3.2: Table showing the parameters in the simulations with varying stirring force strength.
The grid size L, the pumping strength δ, as described in section 3.4 and the time at which the
pumping is stopped, Tpump, were kept constant. Only the stirring force strength was changed here,
resulting in slightly fewer droplets on average for the cases with a stronger forcing. 〈NDroplets〉
shows the average number of droplets over the time period between 2-3 M time steps, during
which the number of droplets stays roughly constant. The case with a stirring force of 0.485 ·10−6

is shown as the 77% volume fraction case in Fig. 3.1; the others are not shown here, but look
virtually the same.

here, but it is why the given forcing strengths in Table 3.2 were chosen, as these values are around
the point where this phase inversion occurs. Unless stated otherwise, the time range used for the
following analysis takes place in this semi-stable state, in practice between t = 106 and t = 3 · 106.
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Chapter 4

Tracking algorithm

4.1 Marking the droplets for tracking

The raw data from the simulation results is a density field for each time step. At each position
in the grid, the density information from the simulation was used to distinguish both phases of
the emulsion. In practice, there is always a slight overlap between the low and high densities
corresponding to each component. A cut-off value for the density of 0.68 was chosen, between
the densities of each component of 0.18 and 1.18, respectively for the continuous and dispersed
phases. (The viscosity of both phases were taken to be equal, making the density the only material
difference between the two phases.) This value of 0.68 corresponds to the edge of the droplets,
which are considered to be sharp boundaries. Droplets are thus defined as clusters of points with
a density close to the bulk value. All of these droplets are then assigned a unique number via a
colouring algorithm to distinguish them from one another.

The next step is to make sure that this assignment of names for each droplet stays consistent
in time. This allows for proper tracking of the droplets, allowing for individually following them
over time. Additionally, the number of droplets present in each time step does not stay constant.
Droplets can breakup into two or more droplets and, conversely, they can also coalesce. Due to
the large amount of data involved, however, the density information was not dumped at every
simulation time step, but rather once every 100 time steps. In the following, ’one dump step’
refers to 100 simulation time steps.

For many of the statistics given in the results, it proved useful to also define the ’neighbours’ of
each droplet at every point in time. To do this, a Voronoi decomposition was done using the centre
of mass of each droplet. Each Voronoi cell that borders a droplet’s own cell is then considered to
be a neighbour for that time step. Note that the choice to do the Voronoi decomposition from the
centre of mass of each droplet is not perfect, as it implicitly assumes all droplets are spherical,
which is not true. However, this has no bearing on the statistics that we use the centre of mass
for.

4.2 Tracking

After labelling the droplets at each time step, a tracking algorithm is applied. The basic idea of
the tracking is to compare the overlap between the volume of a droplet at a given time step with
the volumes of droplets in the next dump step, as in Eq. 4.7. This overlap is computed by first
rearranging the density data to 1s and 0s, with the 1s corresponding to the dispersed phase and
the 0s corresponding to the continuous phase. The volume of a droplet can now be measured as
points in a grid with density 1, that is to say Vdroplet = Ngridpoints. In most cases, the grid points
that make up a droplet should be nearly the same in the following time step, as the velocities are
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small relative to the grid size. The first step of the tracking algorithm is to compute an overlap
matrix, where the grid points from a droplet at one time step are compared to the grid points
from all droplets in the next time step. For clarity, the droplet that is being compared with at a
given time step is called the ’reference droplet’, and the droplets that possibly overlap with it in
the following time step are called ’candidate droplets’. In a formula,

Voverlap(t) = Vreference(t) ∩ Vcandidate(t+ 1). (4.1)

In most cases, a single candidate droplet will have a large overlap with the reference droplet, in
which case the droplet is consolidated, meaning that we can now label the candidate droplet as
being one and the same as the reference droplet. A two-dimensional sketch of this process is given
in Fig. 4.1.

The choice of the cut-off for what is considered a large enough overlap to ensure a droplet is
being tracked correctly is based on the possible inaccuracies in this process. There are three reas-
ons the tracking cannot perfectly match the volumes in between time steps: first of all, droplets
will move with their velocity over the course of a time step, causing a slight discrepancy in the
overlap volume. Secondly, the droplet itself can slightly deform due to the forces working on it or
collisions with nearby droplets. Finally, due to the discrete grid points used, the measured volume
itself varies slightly. Even a perfectly spherical droplet moving only in one Cartesian direction
would have a slightly oscillating volume, as the amount of grid points that overlap with it varies
slightly in time. All three of these effects can be seen in Fig. 4.1.

The first of these three issues can largely be fixed by applying a Kalman filter. Since we know
the velocities of the grid points through the LBM method, we can estimate the velocity of the
center of mass of droplets at any time step by averaging the velocity of all the points within its
volume. This allows us to increase the accuracy of the overlap matrix by extrapolating the grid
points to be compared with by this velocity value. This is shown in Fig. 4.2.

This approach is not perfectly accurate, as the centre of mass of candidate droplets will never
exactly overlap with the predicted value using the velocity of the reference droplet. In practice,
there are two checks to ensure that a droplet is being tracked correctly. The first of these is
checking the percentage of the largest overlap. For most droplets, the volumes of several droplets
will make up the grid positions at the original time step. The first check makes sure that the
largest of these overlaps is at least 20% and then only considers this droplet of largest overlap as
a candidate for the consolidation. While this value may seem very low, the second check makes
sure that the correct droplet is checked, both to reduce errors and reduce the computational time
required.

Voverlap(t)

Vreference(t)
≥ 20% (4.2)

|Vcandidate(t+ 1)− Vreference(t)|
Vreference(t)

≤ 10% ∨ |Vcandidate(t+ 1)− Vreference(t)| ≤ 200. (4.3)

The second check looks at the actual volume that the candidate droplet’s volume is either within
10% of the volume of the droplet at the initial time step, or within 200 grid units. This number of
200 is very small compared to the total number of grid points, which equals 5123 = 1.34 ·108. The
latter check was implemented to ensure that very small droplets can also be tracked properly, as
in practice, very small droplets with a volume of around 100 grid points could have their volume
fluctuate for more than 10% over the course of one dump step due to the three effects mentioned
above. Different cut-off points were tested and do influence the outcome of the tracking. Choosing
the cut-off percentage too strictly, for example by enforcing the volume to be accurate within 1%,
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Simulation 〈Ntrackeddroplets〉 〈Ndroplets〉 Avg. error (absolute) Avg. error (%) σ (absolute) σ(%)
I512V38 3283.71 3283.71 0 0 0 0
I512V49 3063.48 3063.48 0 0 0 0
I512V63 2372.86 2372.87 0.01 2.19 ·10−4% 0.09 0.004%
I512V70 1591.12 1591.15 0.03 1.97 ·10−3% 0.21 0.013%
I512V77 806.21 806.38 0.21 2.59 ·10−2% 0.54 0.067%

Table 4.1: Error rate of the volume fraction simulations. The real number of droplets here is given
by the marking of the droplets described in section 4.1.

Figure 4.1: 2D sketch of a tracking event of a droplet, in the simplest case of a consolidation. The
left image shows a droplet at an initial time step. One time step later, it moves slightly according
to its velocity and changes shape based on the forces acting on it. This is shown in the middle
image. The final image shows the overlap between these two images, which gives a large overlap
between the two.

causes some droplets to not be tracked properly due to the inherent limitations mentioned, whereas
choosing the cut-off percentage too widely causes droplets to be tracked erroneously. It is possible
to know how effective the tracking is because we already can know the exact number of droplets
that exist on each time step from the earlier marking of the droplets. The chosen values produce
very few errors, as can be seen in Table 4.1. Despite this good result, however, it should be noted
that this error does add up. For instance, for the most extreme case of a 77% volume fraction,
the average error per time step of 0.21 means that there are around 2000 instances where droplets
are not tracked properly over the course of 1M time steps (as the tracking algorithm checks only
once per time dump step).

During the tracking process, there will be cases where no candidate droplet that passes both
the checks is found. In these cases, the reference droplet in question must either coalesce with
another nearby droplet into a single bigger one, or it breaks up into two smaller droplets over
the course of this time step. Should the aforementioned conditions for consolidation of a single
droplet fail, the tracking algorithm then checks to see if the same conditions are fulfilled for either
a coalescence or a breakup event.

For coalescence to occur, both the reference droplet and the neighbour at the same time step
with the biggest volume need to individually pass the first check. This does not matter for most
coalescence events, but it is crucial for very small droplets to be able to coalesce with big droplets,
as the droplets use their own volume for the first check with a threshold of 20%. For example, in
the case where two droplets of volumes 9900 and 100 coalesce, the volumes of the droplets at the
initial time step, 9900 and 100, is used instead of the total volume of 10000 for the first check.
After this check, the second check is performed by comparing the sum of the two volumes at the
initial time step to that of the candidate droplet in the next time step.
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Figure 4.2: 2D sketch of a consolidation event of a droplet with the Kalman filter applied. The left
image shows a droplet at an initial time step. In order to better overlap the volume, the velocity
of the center of mass of the droplet is added to each grid point, shown in the second image. One
time step later, the droplet moves slightly according to its velocity and changes shape based on the
forces acting on it. This is shown in the third image. The final image shows the overlap between
the initial droplet with the Kalman filter applied and the droplet in the next time, which gives a
much better overlap compared to 4.1, causing the algorithm to check if this overlap is significant
enough to be considered a consolidation.

Figure 4.3: Sketch of the way the tracking algorithm handles a coalescence event. The image on
the left shows two droplets nearby at one time step in green and orange. The middle image shows
that a larger droplet is at roughly the same position in the next time step. The image on the
right shows what the tracking does in this case: it overlaps the original green and orange droplets
and finds significant overlap with the red droplet of the new time step. This overlap is coloured
in dark blue for the green droplet, and light blue for the orange droplet.

Conditions for coalescence:

Voverlap(t)

Vreference(t)
≥ 20% ∧ Voverlap(t)

Vneighbour(t)
≥ 20%, (4.4)

|Vcandidate(t+ 1)− (Vreference(t) + Vneighbour(t))|
Vreference(t) + Vneighbour(t)

≤ 10% (4.5)

or

|Vcandidate(t+ 1)− (Vreference(t) + Vneighbour(t))| ≤ 200. (4.6)

This process is essentially reversed for breakup events. For the first check, the sum of the
volume of the two candidate droplets with the largest overlap is used. Contrary to the coalescence
case, their sum should be larger than 20%, similar to the consolidation case. For the second check,
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Figure 4.4: Sketch of the way the tracking algorithm handles a breakup event. The image on the
left shows an example droplet in green. The middle image shows the next time step, where this
droplet breaks up into two smaller droplets coloured red and purple. The final image overlaps the
previous two, showing the areas of overlap with the red and purple droplets respectively in dark
and light blue.

the sum of volumes of the two candidate droplets is compared to the volume of the reference
droplet.

Voverlap(t) = Vreference(t) ∩ Vcandidate1(t+ 1) + Vcandidate2(t+ 1). (4.7)

Conditions for breakup:
Voverlap(t)

Vreference(t)
≥ 20%, (4.8)

|(Vcandidate1(t+ 1) + Vcandidate2(t+ 1))− Vreference(t)|
Vreference(t)

≤ 10% (4.9)

or

|(Vcandidate(t+ 1) + Vcandidate2(t+ 1))− Vreference(t)| ≤ 200. (4.10)

This process is repeated for each time step. Droplets are labeled as the same number as long
as they continue to consolidate. Once a coalescence or breakup event happens, that number will
no longer be used by any droplet for the rest of the tracking, and instead the ’new’ droplets are
given new numbers, incrementing from the highest current number used. The data that is output
comes in two forms, Lagrangian and Eulerian. The Lagrangian data contains all the information
per individual droplet for all time dump steps and the Eulerian data instead contains all the in-
formation per time dump step for all individual droplets that exist at that time dump step. This
makes the data very flexible, and it is relatively easy to do different kinds of analyses on the data,
as will be shown in chapter 5.

One limitation of this tracking strategy is that it is impossible to tell if a coalescence or breakup
event involves only two droplets. Especially for breakup events, it seems reasonable to think that
there are events where droplets split up into three or more droplets at once, though rare. This is
why the tracking happens separately from the colouring: the colouring gives us the information of
the existence of each droplet at every time step, and thus, it is possible to check if the coalescence
and breakup events the tracking procedure finds is correct. Even with this limitation, however,
4.1 shows that the tracking is very accurate as is.
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Chapter 5

Statistics of droplet dynamics

Using the procedure described in Chapter 3 on the simulations described in section 3.5, we have a
lot of data on the droplets in both a Eulerian and a Lagrangian format. In this chapter, this data
is used to analyse the behaviour of the droplets. Many different types of analysis are possible on
this large data set. In this thesis, a few options were chosen in order to characterise the flow and
learn about how the behaviour of the droplet differs for especially high volume fractions compared
to less dense emulsions. It should be noted, though, that much more is possible with the data as is.

We first look at the trajectories of the droplets in section 5.1. Visualising these trajectories
helps to identify features in the geometry where droplets move or accelerate in certain directions.
This allows us to see if the motion is truly laminar for high volume fractions, if they exhibit tur-
bulent motion in some way, or if some unexpected behaviour occurs.

The large amount of data also allows us to get statistics on the dynamics of droplets. The most
basic of these is a probability distribution of the velocities and accelerations of droplets, which is
reported in section 5.2. Compared to similar cases, the probability distributions differ significantly
from a normal distribution. We further discuss why this is likely caused by an anisotropy in the
stirring force.

As we have information of the positions of droplets at all time dump steps, we can compute
statistics on the rate at which a droplet’s position is no longer correlated with its position at an
earlier time. Since we also have information on the neighbours of each individual droplet, we can
track and compare them to see the time scale at which a droplet moves away from its neighbours
as well. Both of these points are discussed in section 5.3. A similar analysis on the velocity of
droplets, the Lagrangian structure function, is discussed in section 5.4.

Finally, the data was used to implement a statistical framework from a paper [18] in section
5.5.

By using the distances between two neighbouring droplets, a velocity gradient field was com-
puted and visualized. This approach, shown in section 5.5, closely follows the statistical framework
from the work of Graner et al. [18]. While this is but a small part of what is suggested in the
aforementioned paper, it shows that this framework can be applied for the used methodology for
studying dense emulsions.

5.1 Trajectories

The trajectories of droplets represent the path along which their centers of mass travel in time.
By looking at the way individual droplets move and accelerate, we can see to what kind of motion
they exhibit qualitatively. Since the stirring force given by Eq. 3.10 was designed to be random
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Figure 5.1: Example trajectory of droplet 1737 for the 38% volume fraction simulation for its
entire lifespan.

and isotropic, the trajectories can give a first insight in the flow behaviour of the droplets. The
expectation here is that droplets show a combination of Brownian motion, possibly in addition to
an advective translating motion of clusters of droplets.

The trajectories are computed by taking the position of any single droplet for many different
time dump steps of the Lagrangian data and plotting those points. An example is given in Fig.
5.1. All the trajectories are continuous due to periodic boundary conditions, hence the cubic shape
of the graph. This also means that droplets can be correlated with positions they were earlier at,
but one or more box lengths away in any direction.

Trajectories such as the one given in Fig. 5.1 all show circular patterns of around half the box
size, suggesting that the droplet flow is following a zero average flow field. Given the supposed
anisotropic nature of the only external force, Eq. 3.10, this is unexpected. This is covered in detail
in section 5.2.

Figure 5.2 shows the spread of droplets in time, illustrating the trajectories of many droplets
at once. It also shows the longevity of droplets before they breakup or coalesce: as mentioned in
4.2, droplets are given a new identifying number whenever they undergo breakup or coalescence,
causing them to disappear from this graph. For the low volume fraction case, very few breakup
and coalescence events happen throughout the chosen time range of 1-2M time steps, causing
almost all of the droplets to remain visible for the entire duration. The opposite is true for the
high volume fraction case, where only a few droplets will not have broken up or coalesced in this
time frame.
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(a) Volume fraction 38% (b) Volume fraction 77%

Figure 5.2: Example of the x-coordinate as a function of time for all droplets that existed at
t = 2 ·106 for two of the volume fraction cases. The time range given is between 2-3 M time steps.
Droplets that undergo either coalescence or breakup are no longer considered from the time step
the event happens.

5.2 PDFs

The Eulerian data can be used to characterise the velocity field of the fluid as a whole, especially
by averaging over many time steps. The velocity distribution can be computed by taking a histo-
gram of this velocity data. Normalizing the histogram to 1 then gives the probability distributions
of the velocity. These probability density functions (PDFs) give a quantitative representation of
the velocities in the simulations. Looking at these PDFs is useful to see the effect of the volume
fraction on the velocity distribution of droplets, and the flow of the system as a whole. We expect
to see a Gaussian distribution, corresponding to the random motions induced by the applied for-
cing. For larger volume fractions, however, the system becomes increasingly crowded, which could
impact the velocity distribution.

The PDF for the velocity in the x-direction of droplets for various volume fractions is given
in Figure 5.4. Note that the root mean square velocities were used for this figure to emphasize
the similar structure of the PDFs, regardless of volume fraction. The PDFs resemble a Gaussian
distribution for smaller velocities, but all volume fractions show a steeper slope for high velocities
than would be expected for a normal distribution. The higher volume fractions in particular show
a strong falloff in probability for around velocities of around 2 ·vrms. In the context of the result of
the relative dispersion graph (see Fig. 5.4), the lack of space for droplets to move around seems to
decrease the probability of high velocities, which would explain the skewed nature of the velocity
PDFs. This could explain why this behaviour is more defined for high volume fractions.

The 77% volume fraction case was fit using a triple Gaussian, with one peak at v = 0 and the
two other peaks at this apparent falloff point in both directions:

Pfit(v) = A1e
−σ1( v

vrms
)
2

+A2e
−σ2(( v

vrms
)−µ)2 +A2e

−σ2(( v
vrms

)+µ)2 , (5.1)

with the amplitudes A, standard deviations σ and the falloff point µ as fit parameters given in
the appendix, see Fig. A.1.

One possible explanation for this triple Gaussian could lie in the way droplets move away from
their neighbours for the high volume fraction case. Due to the lack of mobility, droplets could
exhibit a sort of caging effect, where droplets are trapped by their neighbours until a strong enough
force causes them to eject away from their ’cage’. This idea is sketched in Figure 5.3. This caging
effect would also suggest the standard deviation of the velocity would be higher for higher volume
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Figure 5.3: Sketch of the possible caging effect, where the idea is that a droplet may get pushed
out with a high acceleration by its neighbours. Note that in the actual simulations, the droplets
are much more closely packed than in this sketch.

fractions, however, and this is not the case. As such, it cannot be confirmed that this caging effect
strongly affects the shape of the PDF or if it happens at all.

Figure 5.4: Normalised plot of the probability distribution of the velocity of droplets for the
simulations with varying volume fractions. The time intervals used were between 1-3 M time steps,
which corresponds to the statistically stable period (see Fig. 3.1). The integral is normalised to
one, and the velocity is divided by the root mean square velocity of the droplets given in 5.1.

Another potential cause of the deviation from a normal distribution lies in the fraction of
droplets of which the velocity aligns with the diagonal vector (1,1,1) in both directions, as found
in the discussed trajectories. This prevalence can be exemplified by considering the solid angle,
which shows that this difference occurs for all droplets in the same fashion. This was done by
calculating the angle difference between the vector (1,1,1) and the velocity vectors and making
a histogram of the result, in a similar fashion to the PDFs of the velocity. The result for one
specific simulation is given in Figure 5.5 alongside similar histograms for two vectors mutually
perpendicular to (1,1,1). This was done for all volume fraction simulations, the simulations vary-

ing the stirring force and an additional test case where the phases term Φ
(j)
k (t) from Eq. 3.10 was
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Volume fraction 38% 49% 63% 70% 77%
vrms · 10−2 2.83 2.52 2.14 1.87 1.72

Table 5.1: Values of the root mean square velocity for the simulations where the volume fraction
was varied (see Table 3.1).

Volume fraction 38% 49% 63% 70% 77%
arms · 10−4 8.12 6.45 4.94 3.97 3.46

Table 5.2: Values of the root mean square acceleration for the simulations where the volume
fraction was varied (see Table 3.1).

set to zero, and it showed the same general shape for all cases. This was done to prove that the
parametrization of the sinoid part of 3.10 is what causes this behaviour.

This prevalence is a result of the applied forcing on the system given by Eq. 3.10. A check
was done to verify this using a test simulation where the phases term in the stirring force was set
to zero, which gave virtually the same result for the PDFs. This means that there was a mistake
in the parametrization the initial conditions of the simulations. The wave numbers k in the sine
in this equation did not produce a completely isotropic force field as was intended.

The corresponding PDFs for the acceleration, shown in Fig. 5.6 fit well using a stretched
exponential distribution of the form:

P (a) = C · e
− ( a

arms )
2

(1+| aβ
armsσ

|γ )·σ2 . (5.2)

Compared to the other volume fractions, the 77% case stands out for having a higher probability
for higher accelerations.
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Figure 5.5: Normalised plot of the distribution of velocity vectors of droplets using the solid angle
with different bases for the 70% volume fraction case. Here, 0 degrees corresponds to vectors
perpendicular to the used basis, whereas 90 and -90 degrees correspond to the vector itself or its
reverse, respectively.
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Figure 5.6: Normalised plot of the probability distribution of the acceleration of droplets for the
simulations with varying volume fractions. The time intervals used was between 1-3 M time steps,
and the acceleration is divided by the root mean square acceleration of the droplets given in 5.2.
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5.3 Dispersion

Looking at the position of droplets relative to their position at an earlier time step is another way
to learn more about the transport due to the flow field. This allows us to know the time scales at
which the droplets are correlated with their past positions. Additionally, we will know what kind
of forces drive the motion of a droplet by looking at the slope of the dispersion relation. Since we
also have data on what neighbours a droplet has at any time step, we can also define a relative
dispersion, showing when a droplet is fully decorrelated from its neighbours. We expect droplets
to be fully decorrelated around a time scale of τ = L

vrms
, where L is the box size and vrms is the

root mean square velocity. This would be of the order of 105 time steps. Furthermore, we expect
the slope to decrease after this decorrelation time, showing a transition from ballistic motion to
dispersive motion, as is typical for the Brownian motion we expect droplets to move around with;
examples can be found in the work of Calderó et al. [19] and De Anna et al. [20]. This will be
expanded on in the discussion of the graphs below.

Starting with the absolute dispersion, it can be computed by taking the position difference
between a droplet’s position in time and its position at a given time step t0 averaged over all
droplets. The absolute dispersion is thus defined as

Rp(t) = 〈|x(t0 + t)− x(t0)|2〉, (5.3)

where t0 is the chosen initial time step and t determines the time step that is being compared
with.

The relative dispersion instead compares a droplets position to the positions of its neighbours
at the chosen time t0 by taking the averaged position of their relative distances. It is given by

Rp(t− t0; t0) = 〈|xj(t)− xk(t)|2〉j,k,t0 , (5.4)

where j is the reference droplet and the droplets k are its neighbours at the initial time step
t0. This dispersion is expected to stay nearly constant for small t, as the neighbouring droplets
k have a similar velocity to the droplet j for small time scales, meaning that they will stay close
together for a short time. Following this, it is expected that the slope will change more slowly
compared to the absolute dispersion after this initial period as well for the same reason.

The slope of the absolute dispersion indicates if a droplet is moving ballistically or diffusing.
This can be seen in Fig. 5.7. By plotting this on a log-log scale, a slope of 2 is present for each
volume fraction, corresponding to ballistic movement of the droplets at shorter times. In others

Figure 5.7: Absolute dispersion for different volume fractions.

A study on the properties of droplets in dense emulsion simulations 27



CHAPTER 5. STATISTICS OF DROPLET DYNAMICS

Volume fraction 38% 49% 63% 70% 77%
Time scale t1 · 103 3.63 4.12 5.09 5.93 7.85
Time scale t2 · 104 7.45 8.82 10.4 11.0 12.5

Table 5.3: Table with the fit parameters resulting from applying Eq. 5.5 to the simulations with
varying volume fraction.

words, the droplets initially move away from their initial position in a straight line. Mathemat-
ically, this slope of 2 comes from the order 2 of the dispersion that was used: rewriting Eq. 5.3
readily shows that a slope of 2 corresponds with the droplets moving as x = v · t on average. This
ballistic motion continues until the slope reduces to 1 around t ≈ 103, corresponding to diffusive
motion, as diffusive motion is characterized by a dependence on

√
t. This means that this time

scale corresponds to the time it takes for a droplet to be completely uncorrelated with its past
trajectory. In other words, it takes an average of around 103 time steps for a droplet to have its
trajectory influenced by interactions with other droplets to the point where its trajectory from
then on is completely uncorrelated with the position it had at t0.

While the above is also true for the relative dispersion, as can be seen in Fig. 5.8, a secondary
time scale of order O(t) = 102 can be seen for the relative dispersion. This denotes the time it
takes for a droplet j to decorrelate from the neighbouring droplets k. In order to estimate the two
time scales, the following piecewise function was used:

Rfit(t) =

{
d
√

1 + t2

t21
t < t2

d
t1

√
t2t t ≥ t2

(5.5)

This function was chosen because of a few characteristics that were expected to be relevant.
The distance d is the relative dispersion at t0, which is essentially the average droplet neighbour
distance at that time. For small values of t, the relative dispersion can be approximated by d,
hence the factor 1 under the square root in the first equation. For larger t, the first equation can be
approximated by Rfit(t) ≈ d

t1
·t, corresponding to ballistic motion indicated by a linear dependence

on t as with the absolute dispersion. Similarly, for t ≥ t2, the second equation of 5.5 corresponds
to diffusive motion, indicated by the dependence on

√
t. The resulting values are given in Table ??.

Furthermore, it can be seen in Fig. 5.8 that the relative dispersion for low t is higher for high
volume fractions. This is due to the fact that droplets are larger and fewer in number for high
volume fractions (as can be seen in Fig. A.1). All the positions x in Eq. 5.4 are given as the
centre of mass, causing the larger droplets to naturally have a larger dispersion for low t. As
time increases past the aforementioned time scale, this relation reverses, with the lower volume
fractions dispersing more quickly. In time, the larger droplets present at high volume fractions do
not move away from their neighbours as quickly because of their size, as the lack of space to move
around causes the droplets to stay close to their neighbours for longer. It should be noted that
this happens to the bulk of the fluid: groups of droplets move as a whole with a certain velocity
that is not much lower than the velocities seen for the lower volume fraction cases. This can be
seen in Table 5.1.
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Figure 5.8: Relative dispersion for different volume fractions.

5.4 Lagrangian Structure Functions

As the droplets move around, their velocities change based on their interactions with their neigh-
bours and, depending on the particular simulation, the applied stirring force.

Next to the dispersion in space, one can also analyse the correlation a Lagrangian particle,
such as the droplets, have with themselves in terms of velocity. Taking the ensemble average for
all droplets in time, we get the relation

S2(τ) = 〈|vk(t+ τ)− vk(t)|2〉k,t, (5.6)

which is known as the Lagrangian structure function of order 2, where k is any droplet that
exists at time t. Lagrangian structure functions are often used in the Lagrangian description of
turbulence, see for example the work of Toschi Bodenschatz[21] and Benzi et al. [22]. While
the system being studied here is not turbulent, the Lagrangian data we have makes for a good
comparison to studies on Lagrangian turbulence. Kolmogorov theory on turbulence predicts that
the slope of this quantity scales as a power law of r. In the inertial range, i.e. before diffusion
becomes dominant, the slope of this quantity is expected be 1 [23].

Computing this for different volume fractions shows that the velocity is decorrelated after
10000-20000 time steps, though especially for lower volume fractions there is a distinguishable
waveform on top of the constant value that is seen for high t. This is likely due to the afore-
mentioned circular trajectories: because a significant amount of droplets move back to the same
position after completing one cycle of this motion, their velocity naturally will also correlate more
strongly with the velocity they had at the initial time t. Since droplets move around more freely
for the lower volume fractions, there are less collisions and interactions with other droplets (see
for example Figure 5.2), and hence the droplets will more readily follow the flow profile with their
lower inertia. This could explain why the lower volume fractions show this waveform more strongly
than higher volume fractions.

It should be noted that the statistics decrease for longer times t, as shown by the graph at
the bottom-right of Fig. 5.9. In time, some droplets undergo breakup or coalescence events,
which dramatically influences the velocities of the droplets, and hence they were not used for the
statistics. This explains the high amount of noise for higher times t, as only a few dozen droplets
were used for the statistics near the end of the graph. Note that this especially affects the higher
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Figure 5.9: Second order velocity Lagrangian structure function for different volume fractions
between 1-2 M time steps. In the bottom right, the amount of droplets used for this statistic
is given, as in time, some droplets have breakup or coalescence events, making them unfit to be
included in the statistics.

volume fractions, which undergo coalescence and breakup events much more frequently compared
to the lower volume fraction cases.

5.5 Velocity gradient

In the work of Graner et al. [18], a framework of statistical tools for comparing two- or three-
dimensional patterns is proposed. In this section, this framework is briefly explained and then
applied to the Eulerian data we obtained, showing that the data is suitable for this type of analysis.
The central ideas of this paper will be discussed, and we will show one of the derived quantities
also shown in the paper, namely the velocity gradient.

The basis of this framework is to consider links, defined as a vector of the distances between
the centre of mass a droplet and one of its neighbours, i.e.

l = r1 − r2. (5.7)

Droplets in binary emulsions are one example of the patterns than can be modelled this way: for
our data, the positions r above are simply the centre of masses for two neighbouring droplets, i.e.
l(X,Y, Z) = (x1−x2, y1−y2, z1−z2). The framework has no other requirements or dependencies:
it is independent of any stresses, masses or forces. Most of the statistics are then performed on
the link matrix, defined as

M =

 〈X2〉 〈XY 〉 〈XZ〉
〈XY 〉 〈Y 2〉 〈Y Z〉
〈XZ〉 〈Y Z〉 〈Z2〉

 , (5.8)

where the averages denoted by the brackets 〈〉 are taken over all of a droplet’s neighbours. This
definition for M contains information on the relative position but also the square length by taking
its trace and, for consecutive time steps, changes in angle. After introducing this quantity M , the
paper then follows by introducing a number of quantities which are computed through through
ensemble averages of this link matrix, one for each droplet.

The description given by M is still discrete, as it depends on the locations of the droplets. In
order to give a continuous description, the statistical velocity gradient W has a dimension of a
strain rate (s−1). This velocity gradient is continuous and independent of the droplets themselves.
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It is given by

W = 〈l ⊗ l〉−1〈l ⊗ dl

dt
〉. (5.9)

It is given here for completeness; a thorough overview of why this function describes a velocity
gradient is given in appendix C of the work of Graner et al. [18].

This gradient vector field can be used to study systems like the ones in this thesis. The results
are included here to show that the framework as presented in the paper can be applied with the
LBE3D simulations on binary emulsions, similar to an example study from the same authors [24].
This can be done because the framework does not rely on the morphology of the droplets, which
is important as the data we have only lists the position of the centre of mass. The details of the
method can be found in these two papers [18] [24].

An example is given in Fig. 5.10, which shows the velocity gradients of each droplet. These
are calculated by taking the eigenvalues and their corresponding eigenvectors of the symmetric
part of the matrix W . These are then visualized as ellipsoids with the longest bases pointing in
the direction of the strongest gradient. Much like could be inferred from the trajectories seen in
section 5.1, these gradient suggest a clear anisotropy in the velocity gradients.

This framework can be applied for studying dense binary emulsions, and could be expanded
on in the future in order to, for instance, give information on the viscosity and the strain rates
present in the system, as was done in the original paper assuming a steady system.
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Figure 5.10: Velocity gradient for the 60% volume fraction case, made using the velocity gradient
W as defined by links from [18]. The ellipsoids represent the velocity gradients of each droplet at
time step 2800000. The longest base of the ellipsoids represent the direction in which the velocity
gradient is the largest. Note that in order to visualise this, the symmetrical part of W was used,
i.e. W+W t

2
.
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5.6 Summary

This chapter gave the results of a preliminary analysis done using the tracking algorithm. We
discussed the trajectories and the PDFs of the velocity and acceleration. From this, an isotropy
in the velocities of the droplets was noted, likely caused by an error in parametrization of the
stirring force. The dispersion showed the predicted behaviour, transitioning to a diffusive regime
for later time steps. The relative dispersion took longer to decorrelate compared to the absolute
dispersion, giving two different time scales. The Lagrangian structure functions were comparable
to the absolute dispersion, save for a noticeable periodic structure which was attributed to the
vortex-like motions that can be seen in the trajectories. Finally, we looked at a framework from a
paper to show it can be used to analyse dense emulsions with the methodology described in this
thesis, and compared a continuous velocity gradient we obtained from it with a velocity gradient
that was interpolated directly from the data.
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Chapter 6

Conclusions

In this thesis, we studied the flow of dense emulsions through fully developed numerical simula-
tions made with the LBE3D code. We did this by developing a tracking algorithm that allows
us to study the statistics of the dispersed phase. We also used the obtained data to look at the
trajectories of individual droplets, derive statistics in the form of PDFs and dispersion graphs,
and applying the data to the framework of the work of Graner et al. [18].
We were able to accurately track the droplets, which cannot be done at this scale experimentally.
Additionally, we can know how often the tracking fails due to droplets being marked prior to the
tracking itself, which showed a low error rate that is negligible for all but the largest volume frac-
tion case. The data obtained through the tracking is flexible by being available in both Lagrangian
and Eulerian formats, which aids in the ease of analysing the large amounts of data that were
used.
During the analysis, it was noted that the stirring force was not anisotropic as it was intended,
causing patterns to occur in the trajectories and the other statistics. This did not, however,
significantly impact the dispersion and the Lagrangian structure functions, which did show the
expected behaviour of transitioning from a ballistic regime to a diffusive one.
One unexpected result did occur for the high volume fraction cases, as which the PDFs fit well
to a triple Gaussian. Two explanations for this were given, one being a possible caging effect, in
which a droplet can achieve a high velocity if it gets stuck between surrounding droplets moving
in on it from different directions. The other explanation lies in the aforementioned fault in the
stirring force, which could have an impact the statistics.
Finally, the framework given in the work of Graner et al. [18] was successfully implemented, and
a novel way of visualising the velocity gradient was given.
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Figure A.1: 2D histogram of the radius of droplets for varying velocities. The velocities are given
in terms of vrms. The top image was done for a low volume fraction of 38%, whereas the bottom
image was done for a high volume fraction of 77%, both over a period of 2 · 106 time steps.
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