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Estimation of ECH deposition profiles in DIII-D plasmas based on experimental
observations

by J. H. Slief

Electron Cyclotron Heating (ECH) is an important heating technique in nuclear fusion plasmas, in part
because of its highly spatially localized power deposition. The width of this deposition profile is therefore
an important parameter in e.g. neoclassical tearing mode (NTM) suppression. Typically, ECH deposition
profiles are estimated numerically through ray tracing codes. However, estimates of the deposition profile
based on experimental methods have shown that it may be up to three times broader than ray tracing
estimates. To investigate how large this discrepancy is and what causes it, five different estimation
methods based on experimental data are implemented and verified on simulated data before being applied
to electron temperature measurements from six different DIII-D discharges.

The simulations show that break-in-slope and FFT power deposition estimates are artificially broadened
in the presence of transport. The other three methods do not show artificially broadened profiles as they
simultaneously estimate transport and power deposition: they estimate simulated profiles well both in
the absence and presence of noise and for a variety of profile shapes. It is also shown that the accuracy
of estimated transport does not influence the accuracy of the power deposition estimate.

The estimation results for the six DIII-D discharges analyzed show power deposition profiles that are
between 1.0 and 6.2 times wider than TORAY-GA ray tracing profiles, with the majority of estimates
between 1.5 and 3.5 times. Across the six discharges, with different experimental conditions, the observed
broadening shows a positive correlation with deposition radius and a negative correlation with electron
pressure at the deposition location. These correlations are still preliminary but taken together with
evidence from literature could hint at a significant double-pass contribution to ECH absorption in the
discharges analyzed or a pressure-based physical process that contributes to the broadening.
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Chapter 1

Introduction

To feed a growing energy demand [5] under the pressing constraints of global warming, which includes a
drastic reduction in anthropogenic greenhouse gas (GHG) emissions [6], new, clean and renewable energy
sources must be, and are, developed and deployed.

Nuclear fusion is one such energy source currently under development. Its potential as a renewable energy
technology is great: virtually no GHG emissions, no intermittency issues, no dependence on environmental
conditions, no long-lived radioactive waste and no danger of explosive runaway reactions, fueled by the
most abundant element on earth, with the potential for large-output and compact reactors akin to modern
coal-fired and fission plants.

An important heating technique in nuclear fusion devices is electron cyclotron heating (ECH), injecting
electromagnetic radiation in the electron cyclotron (EC) frequency range [7, 8]. For many ECH applica-
tions, the highly spatially localized power deposition of the millimeter-wavelength EC waves is a crucial
feature [7–12]. This is true in particular for the stabilization of neoclassical tearing modes, a class of
instabilities in tokamaks with the potential to disrupt the fusion process and damage the reactor [13–16].

In the last two decades, however, observations in various experimental fusion devices have suggested
that the ECH deposition profile is significantly wider than previously thought [17–20]. Experimentally
observed broadening up to 2-3 times compared to theoretical estimates have been observed in the DIII-D
tokamak [21–26]. This discrepancy between theoretical estimations and experimental observation must
be resolved. To contribute to settling this issue, this research will target the following question:
How large is the discrepancy between theoretical and experimental estimates of the ECH
power deposition profile in DIII-D plasmas and what causes it?

This question will be answered by applying several different power deposition profile estimation methods
to time-resolved electron temperature measurements from perturbative ECH experiments done in DIII-D,
and comparing them to one another and to ray tracing estimates. The estimations based on experimental
methods that have historically been employed to determine deposition profiles neglect transport, which
can obscure the base deposition profile and artificially broaden its estimate in the presence of significant
levels of transport [27]. This work will compare these methods against recently developed methods that
simultaneously estimate power deposition and transport coefficients [27–32]. In this way, we hope to get an
accurate estimation of the physical deposition profile, use this to check whether ray tracing underestimates
deposition width, and, in what circumstances.

The structure of this thesis is as follows: in chapter 2, the terminology specific to nuclear fusion will be
elaborated on and the necessary theoretical background for understanding this work will be provided.
In chapter 3, the implementation of two estimation methods is detailed and in chapter 4, these and two
others are validated against simulations. In chapter 5, estimated deposition profiles will be presented for
various DIII-D discharges, as well as possible scalings of broadening. Chapter 6 contains a discussion of
all results and an outlook for future work and chapter 7 concludes.
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Chapter 2

Background: Nuclear Fusion, ECH and
Deposition Profile Estimation Techniques

Figure 2.1: The fusion reaction
(schematically depicted) between
deuterium (2H or D) and tritium
(3H or T) releases 17.6 MeV of en-
ergy, spread over a 3.5 MeV alpha
particle and a 14.1 MeV neutron.
Most nuclear fusion energy reac-
tor designs employ this reaction
because of its large cross-section,
large energy release, and one of
its products being charged allow-
ing for a self-sustained reaction.

This chapter collects all background information relevant to the sub-
sequent chapters in this thesis. Sections 2.1 - 2.3 will explain nuclear
fusion, tokamaks and their magnetic field configuration, and the details
of electron cyclotron heating and emission. Section 2.4 will discuss the
DIII-D tokamak and its diagnostics, section 2.5 will explain perturbative
experiments and the transport equation, and section 2.6 will present the
deposition profile estimation methods that will be employed throughout
the rest of the thesis.

For the reader with extensive knowledge of nuclear fusion, some sections
in this chapter may contain redundant information; they may wish to
skip these sections and start e.g. at sections 2.4, 2.5 or 2.6. Sections 2.1
- 2.3 will contain relevant information for the physicist without fusion
expertise, for whom this thesis is also written.

2.1 Nuclear Fusion

Nuclear fusion is the process in which atomic nuclei fuse together to form
new nuclei. This process occurs when the reacting nuclei are brought
together close enough for the coulomb barrier between the two to be
overcome and the strong nuclear force to bind the nuclei into a new nu-
cleus [33]. For light elements, this process releases astronomical amounts
of energy. Under the right conditions, this energy can be harnessed and
converted into electricity [34].

In the sun, which generates its energy through the fusion process, the
immense gravity in the core of the star provides much of the energy
needed to make the fusion process happen. On Earth, this gravitational
pressure cannot be utilized, and thus the energy needed for the reac-
tants to overcome the Coulomb barrier needs to be supplied through
other means. In the most promising reactor designs, this is done by heating the fuel, consisting of a
50/50 mixture of hydrogen isotopes deuterium (D) and tritium (T) to temperatures of approximately
160× 106 K, at which point the fuel is fully ionized (i.e. a plasma) and a significant fraction of the ions
have sufficient energy to tunnel through or overcome the Coulomb barrier and fuse to produce 17.6 MeV
of energy per reaction (figure 2.1). For reference, burning a single octane molecule (one of the main com-
bustible materials in gasoline) releases just under 50 eV of energy, a six orders of magnitude less than the
DT reaction [34]. The DT reaction is chosen in most reactor designs because it has the largest reaction
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rate at the lowest temperature; other fuels would need to be heated to even more extreme temperatures
while producing fewer reactions without compensating with a larger energy release per reaction [34].

Some the most promising candidate reactor designs for fusion energy production rely on magnetic confine-
ment of the plasma to balance its thermal pressure. The charged fusion products (alpha particles in the
case of DT fusion) are confined with the fuel and help to sustain the reaction by resupplying their energy
to the fuel, while the non-charged products (neutrons) escape the fuel for their energy to be harvested and
converted to electricity. Moreover, in the case of DT fusion, the escaping neutrons are not only harvested
for energy but also to generate new tritium to be used as fuel [34, 35]. The leading candidate design in
magnetic confinement fusion is the tokamak [36].

2.2 Tokamaks

The tokamak reactor has a toroidal reactor vessel from which it derives its name [37]. Large magnetic coils
surround the reactor vessel and a large central solenoid drives a current through the plasma in toroidal
direction. Together, the coils and the current generate the electric field needed to confine the plasma
inside the reactor vessel (figure 2.2).

Figure 2.2: The tokamak consists of three main sets of coils: the D-shaped toroidal field
coils (blue) that cause the toroidal magnetic field (blue arrow); the central solenoid (green)
that drives the plasma current (green arrow inside the pink plasma), which in turn produces
the poloidal magnetic field (green arrows around the pink plasma), which in combination
with the toroidal magnetic field results in a helical field (black arrows); and the poloidal

field coils used for plasma shaping and positioning [38].

In tokamaks, the toroidal component of the magnetic field is generated by the large D-shaped coils
(depicted in light blue in figure 2.2). Due to the toroidal geometry the the toroidal field coils are spaced
closer together on the inside of the torus and spaced further apart at the outside. This causes the
toroidal magnetic field strength Bφ and, because that is by about an order of magnitude the largest field
component, approximately the overall magnetic field strength B to decrease radially outward, inversely
proportional to the major radius R of the machine:

B ≈ Bφ = B0
R0

R
, (2.1)
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where B0 is the toroidal field strength at the location R = R0 (figure 2.3). R0 denotes the approximate
center of the vacuum vessel, the major radius of the device. It is also typically the approximate location
of the plasma magnetic axis.

Figure 2.3: The arrangement of toroidal field coils (schematically depicted in gray in the
top half of the figure) around a tokamak with the direction of its current I results in a

magnetic field inside the coil whose field decreases with a1/R dependence [34].

2.2.1 Magnetic field structure

The tokamak and its plasma are axisymmetric, so processes in the plasma tend to be independent of
toroidal angle and can be reduced to a two-dimensional description in the poloidal plane.

Due to the arrangement of coils and the plasma current in a tokamak, field lines arrange themselves
in a special topology: they lie on nested toroidal surfaces [39]. A visualization of these flux surfaces
is show in blue in figure 2.4 for the DIII-D tokamak. Because charged particles move freely along field
lines lying on these surfaces but not across them, many properties of the plasma (such as density and
temperature) rapidly equilibrate and are essentially constant over these surfaces. Therefore, the two-
dimensional treatment of plasma parameters can be reduced further to a single dimension: radially
outward from the magnetic axis. This one-dimensional coordinate is the flux surface label (figure 2.4),
defined such that it has value 0 at the magnetic axis and 1 at the last closed flux surface (LCFS). In
cylindrical geometry, this flux label is approximated by the normalized plasma minor radius:

ρ ≈ r

a
, (2.2)

with a the plasma minor radius in m and r the minor radius coordinate with its origin at major radius R0.
This parameter ρ is very important as it is the coordinate that will be used to describe spatial dependence
throughout this thesis.

2.2.2 Stabilization of Neoclassical Tearing Modes

The presence of the plasma current in tokamaks creates instabilities called neoclassical tearing modes
(NTMs) [41, 42]. These NTMs allow faster-than-usual radial transport to occur, causing serious degrada-
tion of plasma energy confinement and therefore fusion performance [43]. Moreover, if these instabilities
are allowed to grow in size they will eventually disrupt the fusion plasma, not only degrading but causing
full loss of confinement. This potentially releases a large fraction of the stored energy in the plasma into
the reactor wall, which can melt the wall and cause serious and costly damage [44]. As the energy stored
in fusion plasmas will only increase for commercial grade reactors compared to present day experimental
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Figure 2.4: Reconstructed equilibrium flux surfaces (in blue) of an upper-divertor magnetic
geometry in the DIII-D tokamak using the equilibrium solver EFIT [40], shown in the

poloidal plane. Major and (normalized) minor radii are indicated.

devices, stabilization of these tearing modes is critical to the success of nuclear fusion as an energy tech-
nology. Using ECH (or the related technique of electron cyclotron current drive, ECCD [17]) targeted at
the instability locations has been shown to stabilize them [45, 46]. Since this requires deposition of the
power in the center (’O-point’) of the instability, without heating surrounding plasma, knowing exactly
how much power is deposited where is crucial information to the success of this method.

2.3 Electron Cyclotron Heating and Emission

The main topic of this thesis deals with the related topics of electron cyclotron heating (ECH) and electron
cyclotron emission (ECE). In this section, the theory behind these concepts will be explained. While this
is not necessary to understand the rest of this thesis, it may provide some theoretical background for the
interested reader.

2.3.1 Electron gyromotion

The constituent particles of a fusion plasma, virtually all of them being ionized, gyrate around the
magnetic field lines confining the plasma due to the Lorentz force ~FL:

~FL = q
(
~E + ~v × ~B

)
, (2.3)

with q the charge of the particle, ~E and ~B the electric and magnetic fields, respectively, and ~v the particle’s
velocity. Note that, due to the ~v× ~B term, the velocity of the particle pointing along the direction of the
field v‖ does not contribute to the force. Charged particles are therefore free to move along magnetic field
lines. Any perpendicular velocity component v⊥ causes the particles to move in circular orbits (gyrate)
around the field lines. The radius of this gyration, the gyroradius ρg, is found by equating the Lorentz
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and centripetal forces:
mv2
⊥

ρg
= |q|v⊥B, (2.4)

leading to the expression for the gyroradius in terms of the mass m of the particle, perpendicular velocity
v⊥ and the strength of the magnetic field B:

ρg =
mv⊥
qB

. (2.5)

The gyrofrequency, more commonly referred to as the cyclotron frequency ωc, in rad s−1, is given by:

ωc =
qB

m
, (2.6)

for non-relativistic particle velocities [47]. For typical magnetic field strengths in present-day tokamaks
such as DIII-D, of 0.5-3 T [48], this cyclotron frequency lies in the range of 10-100 GHz.

Electrons in the high-energy tail of the velocity distribution in fusion plasmas can reach relativistic
velocities, so in some cases the relativistic mass needs to be taken into account in (2.6). This is done
simply by writing (2.6) as:

ωc =
qB

m0γ
, (2.7)

with m0 the particle’s rest mass, γ = 1√
1−v2/c2

, v the magnitude of the particle’s velocity and c the speed

of light.

Note that the direction of gyration is opposite for ions and electrons due to the charge dependence
(including its sign); electrons rotate in a right-handed manner while ions rotate in a left-handed way.
As can be seen in (2.6) and (2.7), the larger the magnetic field, the larger the particle charge and the
smaller the particle mass, the higher the gyrofrequency. At equal magnetic fields, electrons gyrate at
much higher (by mi/me) frequencies than ions, tritium ions gyrate at lower frequencies than deuterium
ions and doubly charged helium ions gyrate faster than tritium.

2.3.2 ECH

The gyromotion of electrons in fusion plasmas can be leveraged to change their energy in the process of
Electron Cyclotron Heating (ECH). In a simplified sense, a resonance will occur between a right-handed
wave oscillating at the electron cyclotron frequency and a gyrating electron, through which the electron
gains energy from the wave. Intuitively, this is because the electric field component of the wave rotates
at the exact frequency and in the same direction as the electron, which subsequently gets accelerated and
gains energy.

In reality, this intuitive picture is not enough to describe the full situation. Since ECH is often used for
localized heating, one needs to know exactly where the power will end up. This not only depends on
the spatial location of the cyclotron frequency as described in (2.7) (in combination with (2.1)) but also
on other plasma parameters, as well as injection geometry and the electromagnetic configuration of the
injected beam.

From (2.7), a simple resonance condition is fulfilled when the frequency of the injected wave ω = ωc.
This holds when the electron’s parallel velocity v‖ is zero; taking this parallel velocity into account, the
resonance condition becomes:

ω = nωc + k‖v‖, (2.8)

with harmonic number n (i.e. not only the fundamental cyclotron frequencies but integer multiples thereof
exhibit resonance) and parallel wavenumber k‖ [49]. Note that if the electron is relativistic, ωc depends on
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the total velocity v2 = v2
⊥+v2

‖ of the electron. The second term on the right hand side of (2.8) introduces
a longitudinal Doppler shift, which causes a line broadening of width

∆ω ≈ nωc
vt
c
|N cos θ| , (2.9)

with vt the thermal electron velocity (i.e. the width of the velocity distribution), N the refractive index
and θ the angle of incidence of the incoming wave vector ~k (with magnitude k = |~k|) with respect to the
direction of the magnetic field ~B

(
cos θ =

~k· ~B
kB

)
. Analogously, the relativistic line broadening, due to the

velocity dependence of the electron mass, is:

∆ω ≈ nωc
(vt
c

)2
. (2.10)

From this, it can be seen that for (almost) perpendicular ECH injection
(
|N cos θ| < vt

c

)
the relativistic

broadening dominates while for oblique injection (such as for ECCD), the longitudinal Doppler broadening
prevails. Other line broadening mechanisms (collisional, radiative) are negligibly small [49].

In general, the relation between the (angular) frequency ω of a wave propagating through any medium
and its wave vector ~k is nontrivial and described by a dispersion relation ω(~k). The exact relation depends
on the properties of the medium and for fusion plasmas; typically the cold-plasma dispersion relation is
used. The solution for the refractive index N is given by the Appleton-Hartree solution, which predicts
two wave modes: the ordinary (O-)mode and the extraordinary (X-)mode. They are described by:

(
N (X,O)

)2
= 1−

ω2
p

ω2

2
(
ω2 − ω2

p

)

2
(
ω2 − ω2

p

)
− ω2

c

(
sin2 θ ± ψ

) , (2.11)

with

ψ2 ≡ sin4 θ + 4 cos2 θ
ω2 − ω2

p

ωωc
, (2.12)

where ωp =
√

nee2

ε0me
is the plasma frequency with ne the electron density, e the elementary charge and ε0

the vacuum permittivity [50].

In this solution, the - sign in the ±ψ term denotes the O-mode, which at parallel propagation represents a
left-handed circularly polarized wave while the + sign represents the right handed polarized X-mode. Since
electrons exhibit right-handed gyromotion, generally the X-mode resonance will be stronger. However,
it is still possible to have a resonance and apply electron heating using the left-handed O-mode. At
perpendicular propagation, the O-mode is linearly polarized with its electric field component in the
direction of the magnetic field and the X-mode is eliptically polarized with its electric field component
perpendicular to the magnetic field.

As an example of how (2.11) is used, consider the case of perpendicular (i.e. θ = π/2) O-mode (i.e. −ψ)
injection. From (2.11):

(
NO
)2

= 1 − ω2
p

ω2 . This wave has no resonance. It does have a cut-off, however.
The plasma frequency depends on the density which for a typical tokamak discharge increases from edge
to center. The wave is injected at a frequency ω that exceeds ωp at the edge of the plasma. This means
that N has a real, finite value and the wave can propagate. However, as the density increases towards
the center, the wave encounters a surface where its frequency equals that of the plasma frequency. The
refractive index (N ≡ ck/ω) goes to zero so that the wavenumber goes to zero and the wave cannot
continue to propagate. Instead, it is reflected back whence it came. The X-mode does have a resonance
for perpendicular injection, namely when ω2 = ω2

p + ω2
c . At this frequency, the refractive index goes to

infinity and all power is absorbed. The X-mode also has a cut-off which will not be written down here
since it is a somewhat complicated and lengthy combination of ωc and ωp.
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With these solutions to the dispersion relation, knowledge of plasma parameters (i.e. measurements of
ne(ρ) to determine ωp(ρ), measurements of Te(ρ) and B(ρ) to determine ωc(ρ)) and knowledge of the
geometric layout of the system (i.e. the angle θ), one can determine at what location ECH waves with
frequency ω will be absorbed in the plasma. This is in fact what ray tracing codes do; by assuming
a dispersion relation and analytic descriptions for the resonance condition and absorption of power the
absorption location of a selection of rays (which approximates the distribution of the input beam as it exist
the antenna) is calculated, based on inputs of measured profiles and a magnetic equilibrium reconstruction.

2.3.3 ECE

Figure 2.5: The DIII-D tokamak [51] is a toroidal ma-
chine, about five meters across, with a D-shaped vacuum

vessel poloidal cross-section.

The resonance condition for ECH was given in
(2.8). This also describes the frequency at which
these gyrating electrons emit radiation in the pro-
cess of electron cyclotron emission (ECE). Any
charged particle emits radiation when accelerated,
and any object in a circular motion is constantly
accelerated; electrons in gyromotion therefore con-
tinuously emit radiation. Now, this would be a
serious loss mechanism for fusion plasmas, if not
for the fact that these plasmas are typically opti-
cally thick for the first and second ECE harmonics
[52]. This implies that (nearly) all radiation that
is emitted by the gyrating electrons is re-absorbed
in the same region of the plasma such that there is
a thermal equilibrium. This, in turn, means that
the plasma is a black-body radiator at the first two
ECE harmonics. For a black-body radiator, the in-
tensity I of emission is related to its frequency ω
and its temperature T , as described by Planck’s
law:

I(ω) =
h̄ω3

8π3c2

1

eh̄ω/T − 1
, (2.13)

with h̄ = h
2π , where h is Planck’s constant. At fusion-relevant temperatures and ECH frequencies, this is

very well approximated by the Rayleigh-Jeans law:

I(ω) =
ω2Te
8π3c2

, (2.14)

with Te the electron temperature. Therefore, by measuring the intensity of ECE radiation at a certain
frequency one can directly infer the temperature from the electrons that emitted this radiation. Then, by
knowing at what location in the plasma this frequency is resonant (i.e. by knowing the magnetic field as
a function of space, which is something well known in tokamaks - see (2.1)), ECE can be used to make
spatially resolved electron temperature measurements with a very high spatial resolution (the electron
cyclotron resonance is radially very narrow, typically only millimeters) and with a very high temporal
resolution (emission is continuous, so measurement is limited only by the sample frequency of the receiving
device). Moreover, the technique is non-invasive.

The first harmonic (28-56 GHz for B = 1-2 T) is often shielded by the plasma frequency (typically between
30-100 GHz for ne between 1019 and 1020 m−3), so the second harmonic X-mode is usually measured [53].
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A note on notation
It is customary within the nuclear fusion community to measure and write temperatures, symbol T ,
in units of (kilo)electronvolts. Typical temperatures encountered in fusion plasmas are on the order
of 107 − 108 K, which corresponds to average particle kinetic energies of several (tens of) keV. One
electronvolt corresponds to e/kB kelvin with elementary charge e and Boltzmann constant kB. This
same convention will be adopted throughout this thesis.

2.4 DIII-D

Figure 2.6: The ECH deposition location in
DIII-D is determined by the intersection be-
tween the beam paths from the different gy-
rotrons (denoted by the different colors with
their name in the top right) and the location of
the 2nd harmonic X-mode resonance (vertical
blue line), shown here for a particular DIII-D
discharge 154532, plotted over the EFIT equi-

librium reconstruction.

DIII-D (read: d-three-d) is the largest magnetic fusion de-
vice and largest tokamak in the US with a major radius of
1.7 m and a minor radius of 0.6 m, built and operated by
General Atomics for the US Department of Energy [48]. DIII-
D’s stated mission is to "establish the scientific basis for the
optimization of the tokamak approach to fusion energy pro-
duction" [54]. ECH perturbation experiments related to e.g.
NTM suppression and deposition profile estimation are a core
part of this stated mission. DIII-D experimental data there-
fore provides excellent subject material for this research.

The coil configuration of DIII-D in a poloidal cross-section of
the machine is shown in figure 2.4. This figure also shows the
equilibrium flux surfaces (surfaces of constant temperature
and density) inside the DIII-D plasma. It is these roughly
D-shaped surfaces that give DIII-D the last letter in its name
(with DIII short for Doublet III, the successor to the Doublet
II machine) [54].

2.4.1 ECH layout

DIII-D has six gyrotrons producing 110 GHz ECH radiation
[55]. Beams are co-injected at four outside dual launchers and
one top launcher. This system can deliver up to 3.6 MW of
ECH power for a maximum pulse duration of 5 seconds. Mov-
able mirrors allow the injected beams to be scanned toroidally,
or poloidally over an angle of 40 degrees. The beams pro-
duced by the gyrotrons have a Gaussian intensity profile1 [56].
Figure 2.6 shows the aimings of the gyrotrons and the ECH
resonance for a particular discharge (154532).

2.4.2 Diagnostics layout

An excellent overview of the more than 50 diagnostic systems
installed on DIII-D can be found in [57]. The data used in
this work are measured using Thomson scattering and ECE.

1Not related to the deposition profile, but the profile of the beams themselves.



Chapter 2. Background: Nuclear Fusion, ECH and Deposition Profile Estimation Techniques 10

Thomson scattering

A 40-channel Thomson scattering system is available for locally measuring electron temperature and
densities. This is done by firing 8 pulsed Nd:YAG lasers (10 ns pulses) into the plasma, at individual
rates of 20 Hz with the total system able to operate at 160 Hz continuously [58]. Bursts at rates over
10 kHz are possible for very short periods of time if the 8 lasers are fired in rapid succession, allowing
for brief sampling of fast phenomena [59]. The laser photons scatter off plasma electrons in a process
called Thomson scattering [60]; the number of electrons that are scattered and end up in the detector
(with sight line not in the direction of the laser) is proportional to the electron density while the Doppler
broadening of the wavelength of scattered light is proportional to the electron temperature. The lasers
are fired along the same path through the plasma, so the 40 measurement channels are defined by the
intersection between that path and the 40 lines of sight from two viewing locations (see figure 2.7).

Figure 2.7: The measurement locations for
the DIII-D Thomson Scattering system are
defined by the intersection between the laser
path (vertical solid line) and the lines of sight
originating from two viewing points, R0 and
R1, for a total of 40 measurement channels
[58]. An outline of the DIII-D vacuum vessel
and the flux surfaces of a typical equilibrium

are shown for reference.

Electron Cyclotron Emission

High time- and spatial resolution electron temperature mea-
surements are possible in DIII-D using the Electron Cy-
clotron Emission (ECE) diagnostic, consisting of a hetero-
dyne radiometer with 40 channels sampling the 83-130 GHz
range of ECE radiation, each with a 1 GHz bandwidth at a
rate of 100 kHz, at the plasma mid-plane [61]. The spatial
resolution depends on the central magnetic field strength,
the measurement location and the local electron tempera-
ture but is typically 1-3 cm (0.02 - 0.04 in normalized minor
radius ρ). The system contains a notch filter at 110 GHz
(the ECH frequency) to avoid potentially flooding the ECE
signal with reflected ECH power.

2.4.3 Confinement modes

The DIII-D tokamak hosts a variety of confinement modes.
It contains both a limiter and a divertor, allowing for both
limited and diverted L-mode plasmas as well as H-mode
plasmas. The latter is characterized by an edge pressure
pedestal [62] (figure 2.8).

In addition to the classic L- and H-mode plasmas, negative
triangularity (L-mode) plasmas in DIII-D have been shown
to exhibit H-mode-like confinement properties without the
presence of ELMs [63].

Finally, the quiescent H-mode, also denoted as QH-mode,
is a special case of H-mode characterized by a distinctive lack of ELMs [64] and discovered in DIII-D [65,
66], later also observed in AUG [67].

2.5 The transport equation and perturbative experiments

Perturbative experiments are a type of experiments widely used in nuclear fusion, to study transport
phenomena [12, 68, 69]. In nuclear fusion, perturbative experiments refer to experiments where the
parameters of a steady-state plasma (typically electron or ion temperature or density) are perturbed
by some source (of heat, particles, ...). In this thesis, perturbative experiments refer in particular to
experiments where an ECH source is modulated, i.e. varied in strength over time, such that the electron
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temperature fluctuates periodically around a steady-state value. Measuring these temperature fluctuations
allows the spatial deposition profile of the perturbing source to be estimated, as will be explained in
subsequent sections.

To understand how the measurement of electron temperature fluctuations relate to the spatial profile of
the source, the electron energy transport equation is used. Generally, it is written as [12]:

3

2

∂

∂t
(neTe) = −∇ ·

(
qe +

5

2
TeΓe

)
+ Γe ·

∇ (neTe)

ne
+ S, (2.15)

with density ne, temperature Te, heat flux qe, particle flux Γe, source S and the subscript e for electron.
The source term S contains all heat sources and sinks. In principle, all quantities in (2.15) are both space-
and time dependent, so the explicit dependencies are left out for the sake of brevity. A diffusive-convective
model is assumed for the heat flux that depends on the diffusivity D and convective velocity U in the
following way:

qe = −neD∇Te − neUTe. (2.16)

Plugging (2.16) into (2.15), assuming one-dimensional cylindrical geometry (so that ∇f = ∂f
∂ρ and ∇·A =

1
ρ
∂
∂ρ (ρA), with (2.2) defining ρ), and with some re-writing, one arrives at the following [28]:

3

2

∂

∂t
(neTe) =

1

ρ

∂

∂ρ

(
ρneD

∂Te
∂ρ

+ ρneV Te

)
+ neKTe + S, (2.17)

where convectivity V = U+ 7
2

Γe
ne
, reactivity (sometimes referred to as damping) K = 1

ne

(
∂Γe
∂ρ − 1

ne

∂ne
∂ρ Γe

)
,

where Γe is a scalar denoting the magnitude of the particle flux Γe and where its sign denotes the direction
(positive for towards increasing ρ and negative for towards decreasing ρ). The source term S contains
all sources and sinks of heat that keep the plasma in steady state, as well as the modulated ECH source
SMECH : S = Sin − Sout + SMECH . The modulated ECH source SMECH consists of a spatial power
deposition profile P (ρ) and a modulation in time Ũ(t): SMECH = P (ρ)Ũ(t). This modulation Ũ causes
a perturbation of the electron temperature Te, such that Te = T0 + T̃e where T0 is the steady-state
temperature and T̃e represents the temperature perturbation around T0.
Two big assumptions are made (which are often made in literature, e.g. [12, 27, 28]), namely that the
density ne is not perturbed by the modulated ECH source such that ñe = 0, and that the perturbation
is sufficiently small such that T̃e is only a first-order term and the thus the response may be assumed to
be linear2. The validation of these assumptions is discussed in section 5.2. These two assumptions allows
writing (2.17) only in terms of the temperature perturbation T̃e, the modulated source P (ρ)Ũ(t) and the
steady-state density ne:

3

2
ne
∂T̃e
∂t

=
1

ρ

∂

∂ρ

(
ρneD

∂T̃e
∂ρ

+ ρneV T̃e

)
+ neKT̃e + PŨ, (2.18)

where all quantities except Ũ depend on ρ and only the quantities with a tilde depend on time. The
spatial power deposition profile P (ρ) can be estimated using (2.18) based on measurements of ne(ρ) and
T̃e(ρ, t). The same holds for the other spatially dependent parameters D,V,K. This can be done in
different ways, five of which are discussed in the following sections and applied in subsequent chapters
of this thesis. Note that in the nuclear fusion literature, a distinction is made between perturbative or
heat pulse transport parameter estimates and so-called ’power balance’ estimates, obtained by assuming

2Linearity in the sense that it follows the superposition principle: increase the power by a factor x and the temperature
perturbation amplitude will be x times larger; add a second perturbing source and the temperature perturbation will be the
sum of the responses to each source individually.
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steady state (i.e. setting the left-hand side of (2.18) to zero) [12, 70]. In (2.18) and in this thesis, we
consider only the former.

2.6 Deposition profile estimation methods

Figure 2.8: The H-mode plasma
pressure profile shows a characteristic
pedestal near the plasma edge, that
forms a transport barrier, leading to
much better performance than L-mode
plasmas without such a barrier [71].

As stated in the previous section, (2.18) can be used to estimate
the ECH deposition profile P (ρ). There are different ways to solve
(2.18) for P (ρ), using different approaches to e.g. boundary con-
ditions, leading to different estimation methods. The five methods
that are applied to DIII-D measurement data to obtain the results
in this thesis are described in this section.

2.6.1 Break-in-slope

To use the break-in-slope method [22, 72], the source modula-
tion Ũ(t) should be a step or a square wave. That is, there
should be a change in power level applied to the plasma on a time
scale τP much faster than the characteristic diffusive or convective
timescales. From experience, the DIII-D ECH source can switch
on a time scale τP = O

(
10−4

)
seconds. The diffusive time scale

τD ∝ a2/D = O (0.5) s, for a = 0.67 m (DIII-D) and a typical
value of D ≈ 1 m2/s, dominates transport [34]. For time scales
shorter than τD, then, the fast change in power level must be di-
rectly reflected in a discontinuous (compared to τD) slope of the
temperature signal ∂T̃e∂t , i.e. a break in the slope. The difference in
power that was deposited during the step can be determined from
difference in slope of the temperature the instant before (t−) and
the instant after (t+) the step in power:

P (ρ) = PMECH(ρ, t = t+)− PMECH(ρ, t = t−)

=
3

2
ne(ρ)

(
∂T̃e
∂t

(ρ, t = t+)− ∂T̃e
∂t

(ρ, t = t−)

)
,

(2.19)

again, assuming ∇ · q̃e(ρ, t = t+) −∇ · q̃e(ρ, t = t−) = 0. Note that this method fails in the presence of
highly elevated transport (e.g. high diffusion and/or significant convection) or when the source cannot
switch power level fast enough, such that τP � τD,V does not hold.

The break-in-slope method requires the evaluation of the slope of the temperature signal ∂T̃e
∂t on the

timescale of τP which, in practice, is difficult due to the presence of noise. Therefore, a function is fit to
the T̃e signal before and after the break in slope, from which an analytic derivative can be calculated and
evaluated at t− or t+.

2.6.2 Fast Fourier transform

The Fast Fourier Transform (FFT) method circumvents the issue of having to determine time derivatives
by transforming the time domain signal to the frequency domain through a discrete Fourier transform
(DFT) of a time-domain signal [73]. Note that, while the FFT algorithm is a specific implementation
of the Fourier transform, the use of the FFT to compute discrete Fourier transforms has become so
widespread that the FFT has practically become synonymous with the discrete Fourier transform in
general. In literature one speaks generally of the FFT method rather than simply the Fourier transform
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or FT method, e.g. [72]. In accordance to literature, this method will therefore be called the FFT method
rather than the FT method.

The Fourier transform is a unitary operator (Parseval’s theorem), such that the FT of (2.18) may be
taken without loss of information, and reads:

3

2
neiωΘ̃ =

1

ρ

∂

∂ρ

(
ρneD

∂Θ̃

∂ρ
+ ρneV Θ̃

)
+ neKΘ̃ + P Υ̃, (2.20)

where Θ̃(ω, ρ) = F{T̃ (ρ, t)} and Υ̃(ω) = F{Ũ(t)}, with F{} the Fourier transform. By simply assuming
the transport terms (related to D,V,K) are negligible compared to the power deposition term P , P (ρ)
can be directly computed from (2.20):

P (ρ) =
3

2
neiω

Θ̃(ρ, ω)

Υ̃(ω)
. (2.21)

Note that this assumption holds true when ω →∞ [28, 29]. Whether or not it this assumption holds for
the analysis of DIII-D data is discussed in section 4.1.1.
Note also that while (2.20) is defined based on the continuous Fourier transform, in reality only the
discrete FFT is used to transform the measured T̃ (ρ, tk) signal to Θ̃(ωk, ρ) at discrete frequency bins
ωk ≤ 2πFN with FN the Nyquist frequency. Implicitly it is assumed that an anti-aliasing filter is applied
in a pre-processing step to generate the measured data T̃ (ρ, tk), which is almost always the case. With
this in mind, for the sake of simplicity of notation we stick to the continuous Fourier transform derivation
of (2.20) (and subsequent frequency-domain equations).

2.6.3 Maximum likelihood estimator

The sample maximum likelihood estimator (MLE) is, as the name suggests, a method to estimate the
parameters D,V,K, P in (2.20) by maximizing the likelihood function between (2.20) with estimated
parameters D̂, V̂ , K̂ and P̂ and the set of measured Θ̃(ρ, ω) [28, 29, 31]. Maximizing the likelihood
function is analogous to finding D̂, V̂ , K̂ and P̂ that maximize the probability of ’drawing’ the measured
Θ̃(ρ, ω) from a random population according to some probability function [74].

The MLE as used in this thesis assumes that parameters D,V,K and P are constant on three-point
sub-domains, where the most likely parameter values are estimated for the center measurement point in
these three-point domains based on an estimate of the uncertainty in the temperature measurements.
By sliding the three-point window over the entire measurement domain and estimating the parameters
D,V,K and P separately for each central point, spatially varying profiles can be estimated in a point-wise
manner. The MLE improves over the break-in-slope and FFT methods in that it can estimate transport
parameters and power deposition simultaneously, does not rely on fitting functions to determine the slope
and that it takes some measure of uncertainty into account. Below, a more detailed overview of the
method is given.

Like the FFT method, the MLE uses (2.20) rather than (2.18) since it circumvents the issue of time
derivatives. Moreover, (2.20) is a partial differential equation (PDE), which are notoriously difficult to
solve. Rather, (2.20) is a complex-valued ordinary differential equation (ODE), for which solutions can
be more easily computed. The ODE in (2.20) is independent for each frequency ω and requires boundary
conditions to solve, which are highly context dependent and therefore not known in general. The MLE
as implemented in this thesis solves this issue using the three-point sub-domain: given that there are N
spatial measurement points, i.e. sensor locations, the MLE solves (2.20) for each spatial measurement
point ρi ∈ [ρ1+n, ..., ρN−n] where the temperature measurements Θ̃(ρi−n, ω) and Θ̃(ρi+n, ω) are used as
boundary conditions (figure 2.9).
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Figure 2.9: A three-point subdomain, consisting of Fourier transformed temperature mea-
surements at three spatial locations, can be used to solve a one-dimensional differential
equation on a spatial grid (line), by using the extremum measurements Θ(ρi+n) as bound-

ary conditions to solve for the parameters of interest in the middle point.

Using this, the transfer functions from Θ̃(ρi±n, ω) to Θ̃(ρi, ω) are (numerically) computed, from which the
likelihood function can be constructed for the parameters D,V,K and P . See [28] or [29] for the exact
definitions of the transfer- and likelihood functions. Again, maximum of the likelihood function represents
the set of D,V,K, P that is most likely to explain the measurements Θ̃(ρ, ω), given the uncertainty in
those measurements. The MLE therefore requires an estimate of that uncertainty, which is given by
the covariance σ2(ω, ρi, ρj) between temperature measurements at sensor locations ρi and ρj at a given
frequency ω. This covariance can be computed by comparing the Fourier coefficients from the Fourier
transform of each individual period in the temperature signal to the average over all periods, and is given
by:

σ̂2
j,i(ω, ρj , ρi) =

1

M(M − 1)

M∑

m=1

(
Θ̃[m](ω, ρj)− Θ̂(ω, ρj)

)(
Θ̃[m](ω, ρi)− Θ̂(ω, ρi)

)
, (2.22)

where M is the number of periods in the signal, Θ̃[m](ω, ρj) is the Fourier coefficient of period m at
frequency ω and sensor location ρj , Θ̂(ω, ρj) is the mean of Fourier coefficients from all M periods at
frequency ω and sensor location ρj , and the overbar denotes the complex conjugate. In this way, the
MLE takes into account the measurement uncertainty on the temperature based on the variation between
periods. The likelihood function is currently optimized using a gradient-based interative solver.

2.6.4 Frequency domain least squares estimator

The Frequency Domain Least Squares estimator (abbreviated FDLS) [32], like the MLE, estimates the
parameters D,V,K and P in (2.20), i.e. in the frequency domain. In contrast to the MLE, however, there
is no assumption of locally constant parameters; rather spatially varying parameters D(ρ), V (ρ),K(ρ)
and P (ρ) are estimated by fitting continuous functions. In addition, the spatially varying density ne(ρ)
and its gradient is taken into account. This has the advantage over the MLE of being less sensitive to
local signal-to-noise ratios (SNRs) but comes at the cost of potential spatial aliasing.

Like the MLE method, the FDLS method solves (2.20). Including all spatial and frequency dependencies,
it reads:

3

2
ne(ρ)iωΘ̃(ρ, ω) =

1

ρ

∂

∂ρ

(
ρD(ρ)ne(ρ)

∂Θ̃

∂ρ
(ρ, ω)− ρV (ρ)ne(ρ)Θ̃(ρ, ω)

)
+ ne(ρ)K(ρ)Θ̃(ρ, ω) + P (ρ)Υ̃(ω).

(2.23)
The boundary conditions for this equation are, similar to the MLE method, given by measurement points.
Since the FDLS method fits functions through the entire domain, the outer two points of the domain ρ1

and ρN are taken as boundary conditions.
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To solve (2.23), the unknown γ = col (D(ρ), V (ρ),K(ρ), P (ρ)) are written as a sum of R basis functions
Br(ρ) = diag

(
BD
r (ρ), BV

r (ρ), BK
r (ρ), BP

r (ρ)
)
which are linear in their coefficients θ:

γ(ρ, θ) =

R∑

r=1

Br(ρ)θr, (2.24)

with BX
r (ρ) the rth basis function describing parameter X as a function of ρ. These basis functions

can be e.g. polynomials of order R − 1 and θr the corresponding coefficients, so that
∑R

r=1Br(ρ) =
1 +ρ+ρ2 + ...+ρR−1 and θr = col

(
θDr , θ

V
r , θ

K
r , θ

P
r

)
contain the coefficients for ρr−1 term. However, these

basis functions need not be polynomials but can be B-splines, Fourier series coefficients or any other basis
functions, as long as they have well defined first and second derivatives. In this way, the problem reduces
to estimating the coefficients θ = col (θ1, ..., θR), from which γ can be computed.

After the parametrization of the parameters, (2.23) is discretized using a central finite difference scheme
for the spatial derivatives and by considering a specific (excited) frequency ωk and cast into state-space
form:

iωkΘ(ωk) = A(θ)Θ(ωk) +B(θ)Υ(ωk)

Y (ωk) = CΘ(ωk),
(2.25)

with the state vector Θ(k) = col (Θ(ρ2, ωk), ...,Θ(ρN−1, ωk)) and the extended input vector Υ(ωk) =

col
(

Υ̃(ωk), Y (ρ1, ωk), Y (ρN , ωk)
)
. A(θ) and B(θ) contain the coefficients to be estimated; they are linear

in those coefficients and they result from the finite difference scheme and the boundary conditions. See
[32] for a detailed description of their structure. The matrix C maps the states to the outputs. To find
the optimal solution for the coefficients in θ, the equation error is defined:

νee(θ) =
∑

k

∣∣∣
∣∣∣iωkΘ̃k −

(
A(θ)Θ̃k +B(θ)Υ(ωk)

)∣∣∣
∣∣∣
2
, (2.26)

which is a least-squares estimation problem that is fully linear in the coefficients θ. This has the following
closed-form solution [32]:

θ̂ =
((
Ā+ B̄

)H (
Ā+ B̄

))−1 (
Ā+ B̄

)H
Ῡ, (2.27)

with Hermitian transpose H and the column concatenations Â
(

Θ̂(ωk)
)
, B̂
(

Θ̂(ωk)
)
and iωkΘ̂(ωk) denoted

by Ā, B̄ and Ȳ , respectively. This closed-form solution is unique and extremely rapidly computable since
it requires no iteration or optimization to solve, merely direct evaluation.

2.6.5 Flux fit

This method is an adaptation of the method used by Brookman et al., described in [27]. The original
method relies on a strictly Gaussian parametrization of the source profile P (ρ) with a single degree of
freedom (the Gaussian width). For this work, the number of parameters in P (ρ) is extended from one to
four, including a shift, scale and skew parameter to provide the necessary freedom to more accurately be
able to estimate P (ρ). At the time of writing this thesis, publication is being written on this extension
to the method in [27]. This publication is contained, verbatim, in section 3.3.
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Units of D and V estimations
All parameter estimations described in this section concern estimation of spatial profiles involving
spatial derivatives over a normalized spatial coordinate ρ, which is, by virtue of being normalized,
dimensionless. This implies that estimations of diffusion D and convection V are estimated in units
of s−1. To convert these to physical units of m2/s and m/s, D and V are multiplied by a2 and a,
respectively, with a the plasma minor radius in m. This can be verified by substituting r ≈ aρ, with
r and a both in m into e.g. (2.20).

2.6.6 Ray tracing methods

Several types of codes exist to numerically compute propagation and absorption of waves through fu-
sion plasmas based on theoretical models, broadly separated into four categories: full-wave, ray-tracing,
Gaussian beam and quasi-optical codes [75]. Full wave simulations are computationally expensive and
are therefore mostly substituted with one of the latter three. Ray tracing codes, e.g. TORAY, start by
assuming a narrow Gaussian power distribution of the input beam. They select a small number of rays,
typically 30-100, to describe this distribution. Each of these rays is subsequently propagated individually
without interaction and absorption is calculated for each ray separately. This may lead to deposition
profiles different than the initial beam profile. Since there is no interaction between the rays, ray tracing
codes do not take wave-optical effects such as diffraction and interference into account.

Gaussian beam codes (e.g. TORBEAM) do take such wave-optical effects into account by propagating
a beam with Gaussian intensity profile and maintaining this profile along propagation. Imagine, for
instance, a focused beam. In a ray tracing simulation, rays may cross each other in a single point, while
a Gaussian beam code would maintain a finite waist size. This is an improvement over ray tracing codes
in situations where diffraction and/or interference are significant, but misses freedom in determining the
deposition profile which may cause this type of code to miss important deposition physics. Deposition is
calculated by assuming all the power is in the central ’ray’ of the beam. Whenever some fraction of that
central power is absorbed, that deposited power is spread over the cross-section of the beam. This means
that absorption away from the beam center is not calculated, it is assumed the beam stays Gaussian in
profile. This discrepancy is especially important in beams with large divergence or injection at oblique
angles (when the beam approaches the resonance from a small angle), so in these cases it might be better
not to deploy a Gaussian beam code.

Finally, quasi-optical codes (e.g. GRAY) work similarly to ray-tracing codes, with the inclusion of inter-
actions between the rays. Quasi-optical codes are therefore able to take wave behavior (diffraction and
interference) into account without forcing the profile of the beam.

All codes use a dispersion relation to calculate propagation of the beam and some resonance and absorption
model. The dispersion relations used are typically the cold plasma or sometimes the relativistic dispersion
relation. Resonance is usually weakly or fully relativistic, and absorption is modeled through various
descriptions including Fokker-Planck and (weakly) relativistic ones. The choice of dispersion relation and
absorption models is independent of the type of beam code used and can vary between versions of the
same code (e.g. TORAY-FOM and TORAY-GA use different absorption models) [75]. The version used
in this thesis is TORAY-GA[75], with a weakly relativistic absorption mode, which will sometimes be
denoted simply as TORAY.
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Chapter 3

Data processing and estimation method
implementation

The work in this thesis encompasses analyzing experimental data, which makes data processing a crucial
part of the process. This chapter will discuss the approach that is taken to process the experimental data.
Moreover, only two out of five power deposition estimation methods have readily available numerical
implementations: the Maximum Likelihood Estimator (MLE) and the Frequency Domain Least Squares
estimator (FDLS). The other three, the break-in-slope (BIS), fast Fourier transform (FFT) and flux fit
(FF) methods, are implemented separately. The FFT method is a implemented directly based on (2.21),
but the implementation of the remaining two methods (BIS and FF) are discussed in this chapter after
the data processing.

3.1 Data processing

Figure 3.1: Data in this thesis is processing in the following way, as indicated by this
flowchart: raw electron temperature measurements are windowed, transformed to the Fourier
domain, then either the excited harmonics are selected and transformed back to the time
domain before being analyzed using the BIS method (section 2.6.1), or the LPM is applied.
After the LPM either the FDLS and/or FF methods can be applied directly, or using the

covariance estimate from the LPM the MLE mehtod is used.

The data processing for this work consists of a number of steps, shown schematically in figure 3.1. The
raw ECE measurements are windowed such that the signal is cut to an integer number of periods. This
is important for the Fourier transform, which is the next step, and will be explained in more detail in
section 3.1.1. For the break-in-slope method all non-excited frequency components are removed before
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inverse transforming the spectrum back to the time domain, such that the resulting signal contains only
the harmonic content directly originating from the perturbative source. For the other methods, the local
polynomial method (LPM, section 3.1.3) is applied to remove any trends in the signal that persist at the
excited frequencies. From here, either the FDLS and/or FF estimation methods are directly applied, or
the covariance estimate from the LPM output is combined with spectral information from the LPM such
that the MLE can be applied.

3.1.1 Fourier transform

The majority of the work in this thesis relies on analyzing time-series measurements in the frequency
domain. A well implemented DFT is therefore essential, which refers in particular to minimizing spectral
leakage, an effect whereby excited frequencies in the spectrum do not neatly fall into the frequency bins
set by the DFT algorithm and therefore are spread out over neighboring frequency bins [76]. This effect
is minimized by truncating the periodic signal to an integer number of periods. In the ideal case, the
fundamental frequency of the signal f0 and the sample frequency Fs are chosen such that the number of
samples in one period Ns = Fs/f0 is an integer. In this case, the signal can be truncated at any integer
multiple of Ns samples and no spectral leakage will occur. In the next best case, Ns is not an integer
but there exists a number of periods Np such that Np ·Ns is an integer and is less than the total number
of samples in the signal. The effect of spectral leakage will be minimized in this case. In all other cases,
the signal should be truncated at a number of periods Np such that Np · Ns is as close to an integer as
possible. Figure 3.2b shows a case where the signal is truncated at Np ·Ns samples with Np ·Ns an integer
number of samples and Np > 1. In contrast, figure 3.2a shows the spectrum of a periodic signal that
was not truncated at an integer number of periods. This extra fraction of a period in the DFT increases
artifacts in the spectrum that are not actually present in the signal and causes a shift in the frequency
bins. As a result, the spectrum is distorted and the estimated excited frequencies, denoted by the orange
crosses, are not at the amplitudes they are expected to be.

(a) (b)

Figure 3.2: The importance of correctly truncating a periodic signal when computing a
Discrete Fourier Transform (DFT) spectrum, as showcased by the distortion of the spectrum
(A) due to spectral leakage on the left when leaving a fraction of a period in the signal before
applying the DFT. In (B), the spectrum is truncated at an integer number of periods such

that its inherent shape is resolved.

3.1.2 FFT filtering for BIS

The break-in-slope method requires fitting noisy time domain signals, so the optimal implementation
includes noise filtering. For this work, a Fourier transform-based noise filter was implemented, to simul-
taneously reduce noise, correct for transients and to recover the intrinsic signal shape. The modulated
ECH waveform and thereby its harmonic content is very well known. For a square wave, for instance,
like that in figure 3.3, only the odd harmonics of the fundamental (modulation) frequency (50 Hz in the
figure) contribute to the signal. Only these frequencies should therefore contribute to the temperature
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Figure 3.3: Fourier spectrum of a 3 MW ECH source modulated between 10 and 100 %
power at 50 Hz with an approximately square waveform.

signals resulting directly from the source modulation and all other frequencies present in the temperature
signals are either noise or from other sources unrelated to the modulated source perturbation.

Figure 3.4: Applying an FFT filter (i.e. Fourier trans-
forming a periodic time-domain signal resulting from a
periodic source, removing any frequencies not present in
the source and inverse Fourier transforming back to the
time domain) to a raw ECE electron temperature mea-
surement (in gray) yields the filtered signal in black, with

significant noise and trend reduction.

Based on this principle, a great way to filter sig-
nals resulting from a source with known harmonic
components is to numerically Fourier transform
the time-domain signals, e.g. using an FFT al-
gorithm, setting all of the resulting Fourier coeffi-
cients not corresponding to the frequencies present
in the source to zero, and inverse transforming the
resulting signal back to the time domain. An illus-
trative example of this filter, applied to a Te time
trace from DIII-D discharge 165078 is shown in fig-
ure 3.4. The filtered signal (in black) is virtually
noise-free, contains no trends or other fluctuations,
and clearly shows the intrinsic signal shape result-
ing from the modulated source. Note that the FFT
is taken over the entire time trace, so that all peri-
ods in the filtered signal are exactly the same since
the FFT taken over multiple periods averages the
coefficients over those periods. This has the added
benefit that the break-in-slope procedure only has
to be applied once, to an arbitrary period in the
signal, since any other period will yield the exact
same result.

This filter, henceforth referred to as the FFT filter,
is implemented for the break-in-slope method used
in this work.

3.1.3 Transient removal using the Local Polynomial Method

Transients due to initial conditions or drift effects influence estimation results by burying underlying
processes and therefore need to be filtered. This can be done both in time and in frequency domain.
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Typically, transients are filtered in the time domain by fitting and subtracting high (5th or 6th) order
polynomials to the data (e.g. [27]). This ensures that the most significant baseline trends are removed.
A more reliable and robust method that can be used for frequency domain estimation techniques is the
Local Polynomial Method (LPM) [77, 78]. This method assumes that drifts and transients in time domain
behave like smooth (polynomial) functions in frequency domain, particularly at low frequencies. Using
this assumption, it fits low (usually 2nd) order polynomials to the Fourier coefficients in the complex
plane. The fit is made very locally, so that the fit order does not need to be very high. In this way,
frequency components that are expected to be visible in the spectrum (multiples of the modulation
frequency/frequencies) but are obscured by transients at low frequencies can be recovered. Using the fit
residuals, the (co)variance of the measurements in can be estimated [79], which can thereafter be used in
e.g. the MLE method. Figure 3.5 shows the improved accuracy of the LPM over traditional time-domain
fitting methods.

Figure 3.5: A traditional method of time-domain polynomial detrending (orange dashes)
performs well in resolving the analytic solution (pink circles) in the amplitude spectrum of
a simulated spectrum that contains a large trend (green line) burying most of the excited
frequencies, but it introduces time delays which manifest themselves in the phase spectrum.
The Local Polynomial Method [77, 78] (blue crosses) accurately resolves the analytic solution
from the spectrum with trend in both the amplitude and phase parts of the spectrum, up

to the 7th harmonic in this particular case.

3.2 Break-in-slope implementation

The details of the break-in-slope method are described in section 2.6.1; the method fits a function to a
temperature signal just before and just after a "break-point" in the signal, caused by the (near) instant
turn-on or turn-off of the source. The slope of the temperature at the instants before and after the
break-point is determined from the fits and compared to find the amount of power deposited. Accurate
and robust implementation of this method requires accurate and robust determination of (the slope of)
the fit function, which typically requires extensive noise filtering on the signal to recover its intrinsic
characteristic shape, and the break-points, which in turn also requires noise removal. Noise removal was
discussed in section 3.1.2, so this section will focus on break-point detection and function fitting.
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3.2.1 Break-point detection

Figure 3.6: Break-point detection of a periodic tem-
perature signal (in black) is done based on finding the
location where the mean (shown in blue dash-dot) of the
signal slope (calculated using finite difference, shown in
gray dashes) varies most significantly between both sides
of the break point (vertical line). Based on this break-
point, linear fits of the signal (shown in red) can be made
on both sides to determine the difference in slope of the

signal between before and after the break-point.

Typically, the instants in time where the source-
induced break-points in the temperature sig-
nals occur for each position in the plasma
are simply assumed to correspond exactly to
the time instances where the source is instan-
taneously modulated in power level. How-
ever, this is not necessarily a good assump-
tion. There may be (non-)physical time dif-
ferences between the ECH signal and the mea-
sured temperature signals due to poor time
calibration, fast transport that quickly redis-
tributes power radially or in the case of minor-
ity heating such as measuring the electron re-
sponse to ion cyclotron heating (or vice versa)
[72]. A more robust break-in-slope routine
therefore detects the break-points in each tem-
perature signal rather than rely on the source
signal switching instances. For this work, a
break-point detection algorithm was developed
and implemented based on the most statisti-
cally significant change in the slope of the sig-
nal. Figure 3.6 shows an illustrative exam-
ple.

In the figure, a single period of an FFT filtered
temperature signal is shown in black. The slope
(in gray dashes) is determined using a finite cen-
tral difference scheme. The signal is split in two,
and the mean of each side (shown in blue dashes) of the signal is determined. The location of the divide is
then moved along the signal, and the location where the mean on both sides of the split is most significant
is determined to be the break-point (indicated with the vertical dash-dotted line). This method circum-
vents problems with simple peak detection, as evident from this example, where the peak left of the peak
associated with the detected break-point would have been selected, or determining where the derivative
of the signal goes through zero, which happens in multiple locations besides the correct break-point due
to imperfect filtering.

3.2.2 Fit function

In section 2.6.1 it is mentioned that a function is fit to the temperature signal in order to evaluate the
slope at the break point. In this work, a simple linear fit is chosen due to its ease of implementation and
relative robustness to fluctuations that remain in the signal, such as can be seen in figure 3.6. Sometimes
in other works (e.g. [22]) exponential fits are implemented, but often these are fit by hand on a case by
case basis. In this work, the fitting procedure is automated to be able to quickly, flexibly and reliably
analyze large amounts of data. For multi-parameter, nonlinear fits such as the exponential fit in [22], this
requires iterative optimization which strict upper and lower bounds on the fit parameters which vary on
a case-by-case basis, to avoid bad fits due to local minima in the cost function. In practice, therefore, the
simple linear fit has proven the most reliable and robust method in this work.
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3.3 Flux fit implementation

As stated at the beginning of chapter 3, the remainder of this chapter contains, verbatim, the contents
of a publication (in the making at the time of writing this thesis) on the extensions that are made to
the method as described in [27] for estimating ECH deposition profiles based on perturbative electron
temperature measurements. Symbols and conventions may therefore deviate from those in other sections
of this thesis. Note that the publication is still a work in progress; the final published version may differ
from the version included here.



Extension of the flux fit method

Extension of the flux fit method for estimating power deposition and heat
transport

J.H. Slief,1, 2 M. van Berkel,1 M.W. Brookman,3 and R.J.R. van Kampen1, 4
1)DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven,
the Netherlands
2)Science and Technology of Nuclear Fusion, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
3)General Atomics, 3550 General Atomics Ct, San Diego, California 90005, USA
4)Control Systems Technology, Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands

(*Electronic mail: J.H.Slief@differ.nl)

(Dated: 5 July 2021)

I. INTRODUCTION

Radio frequency (RF) electromagnetic waves couple to
charged particles in a plasma through resonant processes1.
These resonances occur at specific values in plasma param-
eters, allowing a wave launched from a distance to couple
into the core of a plasma confinement device, such as a toka-
mak. This coupling can impart not just energy, but momen-
tum, altering the distribution function of electrons and/or ions,
thereby driving currents. The application of RF power in the
electron cyclotron (EC) range of frequencies results in partic-
ularly localized resonance, with high power EC waves sta-
bilizing plasma instabilities in tokamaks such as neoclassi-
cal tearing modes by driving current within magnetic island
structures as small as a few centimeters wide2. Recent studies
have demonstrated that interactions between the propagating
wave and plasma turbulence before it reaches any resonance
can have a significant impact on the deposition profiles of the
RF wave3, but resolving this effect from plasma processes is
a significant challenge. Fast transport in response to applied
heating power can obscure the width of the power deposition
profile4. Determining the full deposition profile therefore re-
quires self-consistent treatment of applied power and the re-
sulting transport5,6. To this end, Brookman et al. developed
a method to self-consistently estimate power deposition and
transport profiles from temperature measurements in response
to a modulated RF heating source, denoted here as the ’flux-fit
method’7.

This letter presents a set of tools which improve on this
method by addressing limitations and assumptions, which in-
clude limited freedom in the deposition profile estimation.
One key assumption in7 is that of a strictly Gaussian depo-
sition profile with a fixed central deposition location deter-
mined by ray tracing, with only a variable width for fitting
to the measured data. However, RF power deposition pro-
files need not, in general, be strictly Gaussian8. Reasons
for this include misalignment of steering system or defor-
mation of mirror due to extreme heat load9; modification of
the original Gaussian beam shape due to local absorption,
non-local redistribution of energy by resonant particles along
the magnetic field line or intense focusing and strong wave
interference9; or strong plasma inhomogeneity inside power
deposition region10. Moreover, although ray tracing meth-

ods and experimental power deposition estimations generally
agree well on the deposition location11, in practice this is not
always the case. Therefore, to accommodate for these devi-
ations from a pure Gaussian profile with variable width only,
extensions to the fitting model are required to increase the ac-
curacy of the power deposition estimations using the flux-fit
method. These extensions, in turn, require a different opti-
mization procedure. In this letter, we present extensions to
the flux-fit method as well as the new optimization procedure
and we show how this improves the accuracy of the method.

II. ORIGINAL METHOD

In this section, we re-visit the flux fit method presented in7

on which our extension is built. The original method, and our
extended method, are based on the use of:

1. spatially and temporally resolved temperature pertur-
bation measurements T̃ (ρ, t) resulting from a known
modulated heat source Ũ(t),

2. a Gaussian parametrization of the expected source de-
position profile P(ρ),

with time t, ρ =
√ψN the square root of normalized toroidal

flux (often referred to as ’normalized minor radius’ and typi-
cally well approximated by ρ ≈ r

a , with plasma minor radius
a and r the distance from the magnetic axis).

The main difference between the work presented in this
letter and in7 is the freedom in the source profile parametriza-
tion, which also has consequences for the optimization.

In7, the structure of the deposition profile is taken as a
Gaussian fit of the TORAY-GA12 ray-tracing code output, de-
scribed by:

P(ρ) = Aexp

(
−
(

ρ−µTORAY

σTORAY

)2
)
, (1)

with estimated central deposition location µTORAY and width
σTORAY. The resulting profile is convoluted with a Gaussian
filter of width σF which results in a Gaussian profile at the
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same peak location that is broadened by a (variable) factor b
defined as:

b =

√
σ2

TORAY +σ2
F

σTORAY
. (2)

This factor b is taken as a free parameter that is varied to
determine the deposition profile P(ρ,b). To determine the
best fit for b, an iterative two-step procedure is used which
involves calculating the perturbed heat-flux q̃.

Computing q̃ is based on the reduced one-dimensional heat
transport equation, linearized around the quantities perturbed
by the source (denoted with a tilde)13:

3
2

∂
∂ t

(
n(ρ)T̃ (ρ, t)

)
=−∇ρ q̃(ρ, t)+P(ρ)Ũ(t), (3)

where density n(ρ) is assumed to be time-invariant and un-
affected by the source perturbation but allowed to vary spa-
tially. To circumvent having to compute the time derivative of
measured temperature data in (3), which can introduce large
errors, (3) is transformed into the frequency domain and re-
expressed in terms of the perturbed heat flux, resulting in:

Q̃(ρ,ω) =
1
ρ

∫ 1

0
ρ ′
(

3i
2

ωn(ρ ′)Θ̃(ρ ′,ω)

−P(ρ ′,b)ϒ̃(ω)
)

dρ ′,
(4)

in cylindrical geometry4,14, where Θ̃(ω,ρ) = F{T̃ (ρ, t)}
is the Fourier transform of the measured T̃ (ρ, t), ϒ̃(ω) =
F{Ũ(t)} and Q̃(ρ,ω) the resulting (perturbed) heat flux in
the frequency domain. Note that due to the linearity of
(3), Θ̃(ρ,ω) is independent for every perturbed frequency ω .
Hence, Q̃(ω,ρ) can be computed independently for every fre-
quency for a measured Θ̃(ρ,ω) and a given P(ρ,b).

In the next step, Q̃(ω,ρ), acquired using (4), is fit to a
diffusive-convective model plus a coupled transport term de-
pendent on the density modulation ν̃(ρ,ω) = F{ñ(ρ, t)}:

Q̃(ω)/n =−DM∇ρ Θ̃(ω)+VMΘ̃(ω)+ξ (ω), (5)

where only the ω-dependency is made explicit since for the
sake of concise notation, since all terms in 4 are dependent
on ρ .

Consequently, given a certain b a Q̃(ω,ρ) can be found.
Then, using the calculated Q̃(ω,ρ), (modulated) transport pa-
rameters DM,VM and ξ are fit across frequencies ω to find the
best match to Q̃(ω,ρ). This procedure is repeated for multiple
b, i.e., different broadened profiles, where the b are selected
based on a grid. The χ2 fit residuals for the various b are
compared and the fit with minimal residual is selected as the
best estimate for both the power deposition and transport pro-
files. Given that only one parameter needs to be optimized,
b, this optimization approach is feasible. However, the use
of a single free parameter in (1) places a severe restriction
on the shape of profiles that can be estimated. Therefore, we

propose an extension of the number of free parameters. With
this, the total parameter space to be covered quickly explodes,
such that a new optimization procedure is needed. The next
section explains both the added free parameters and the new
optimization procedure.

III. EXTENDED METHOD

The original flux fit method, as described in section II, is
based on a Gaussian parametrization of the source deposition
profile P(ρ) using a single free parameter b. This severely
restricts the freedom in the estimation of P(ρ) and, therefore,
we propose an extension to the number of free parameters,
which will be explained in this section. Additionally, a new
optimization procedure is needed to accommodate for the
increased number of free parameters, which we will also
explain here.

The new source profile parametrization is defined as:

P(ρ,b,ς ,A,α) = R(ρ,b,ς ,A)S(ρ,α), (6)

which is comprised of the product of two functions R and S
and contains four free parameters (b,ς ,A,α). R is an exten-
sion of (1) and is given by:

R(ρ,b,ς ,A) = Aexp

(
−
(

ρ− (µTORAY− ς)
bσTORAY

)2
)
, (7)

which, like (1) is a Gaussian with a variable width (described
by b) but with the additional freedom in peak position (de-
scribed by ς ) as well as a variable peak height A. In this way,
the definition of broadening factor b in (8) is altered to a sim-
ple scaling of the TORAY width:

b =
σF

σTORAY
, (8)

where σF is the width of R.
To account for non-symmetric profiles (see e.g.8,15), R is

multiplied by a skew function S with parameter α , given by:

S(ρ,α) = 1+ erf


α


 ρ−µ√

2σ2
F




 , (9)

where erf denotes the error function and µ = µTORAY− ς .

The new parametrization, P(ρ,b,ς ,A,α), replaces P(ρ,b)
in (4):

Q̃(ρ,ω,b,ς ,A,α) =
1
ρ

∫ 1

0
ρ ′
(

3i
2

ωn(ρ ′)Θ̃(ρ ′,ω)

−P(ρ ′,b,ς ,A,α)ϒ̃(ω)
)

dρ ′,
(10)

which is, again, fit to the right-hand side of (5). To find the
optimal fit, however, we no longer make use of the two-step
approach, since there are too many combinations of four fit
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parameters to pick them from a grid of possible values. In-
stead, we use an iterative nonlinear least squares approach
that fits DM(ρ),VM(ρ) and ξ (ρ), parametrized either by poly-
nomials of arbitrary order or third-degree B-splines, to the
parametrization of the perturbed heat flux Q̃(ρ,ω,b,ς ,A,α):

[x,y] = min
x,y

∣∣∣∣Q̃(ρ,ω,x)− y[∇ρ Θ̃(ρ,ω),Θ̃(ρ,ω),1]T
∣∣∣∣2 ,

(11)

where x= [b,ς ,A,α] and y= [DM(ρ),VM(ρ),ξ (ρ)]. The non-
linear optimization (11) is performed using the trust-region-
reflective algorithm16,17.

IV. SIMULATION RESULTS

In this section, we validate the extended estimation method,
described in section III, by applying it to a set of simulated
data and comparing with the original method with only a sin-
gle free parameter in the source profile, b. The results are
presented in this section.

A set of temperature perturbation data was generated using
the models (4), (5) and artificial profiles for power deposition,
diffusivity and convectivity (fig. 1). The P profile is a skewed,
non-Gaussian function consisting of the positive part of a sine
wave plus an exponential decay (see caption of fig. 1). The
diffusivity and convectivity profiles are third order polynomi-
als.

The estimation results for the original and extended meth-
ods are, respectively, shown in red dash-dot and blue dots.
The D and V profiles estimated with the original method
quite clearly deviate substantially from the simulated profiles,
as they are trying to compensate for the large discrepancy
between the estimated and simulated power deposition pro-
files. The extended method approximates the simulated pro-
files quite well, except in the region where significant power
deposition occurs, where a deviation in D and V arises. Again,
this is because there is a discrepancy between the estimated
and simulated profiles (the latter non-Gaussian, the former a
modified Gaussian) which needs to be compensated for in the
fits of D and V . Moreover, due to the spatial integral definition
of the flux that is fit (equation 4), discrepancies between the
estimated and intrinsic deposition profiles also get integrated
and the deviation of the transport estimates from the intrin-
sic profiles grows with radius. Due to this effect, it is hard to
accurately estimate diffusivity and convectivity profiles with
this method.

This, however, is found to be largely inconsequential to ac-
curate source profile estimations. To support this, the sum of
squared errors (SSE) between the estimated source profile us-
ing the extended flux fit method and the simulated profile was
plotted against the SSE between the estimated diffusivity and
the simulated profile, for polynomial orders of the estimated
diffusivity profile ranging between 0 (constant over the entire
domain) and 7. The SSE is defined by:

SSE(X̂Flux f it) =
n

∑
i

(
Xsim(ρi)− X̂Flux f it(ρi)

)2
, (12)

FIG. 1. Estimation of power deposition, diffusivity and con-
vectivity profiles from a simulation (shown in black) of (3)
with q̃(ρ, t) = −D(ρ)∇ρ T̃ (ρ, t) + V (ρ)T̃ (ρ, t), where D(ρ) =

−3(ρ − 0.5)3 + 1, V (ρ) = 30(ρ − 0.5)3 and P(ρ) = 52 ∗
max(sin(0.5π (ρ−0.7)) ,0)e(−20(ρ−0.7)+0.05), comparing the re-
sulting estimates from the original flux fit method7 (denoted by
FF,orig and shown in red dashes) to the extended flux fit method pre-
sented in this letter (denoted by FF,ext and shown in blue dots). The
original flux fit implementation compensates for the skewed power
deposition profile with a diffusivity and convectivity deviating sub-
stantially from the simulated profiles. The extended flux fit method is
successful at estimating the correct diffusivity and convectivity pro-
files up to ρ ≈ 0.7, where significant power is deposited.

where Xsim is the simulated profile, i.e. Dsim or Psim, X̂Flux f it is
the flux fit estimation of that same profile, n is the total num-
ber of spatial points and ρi is the ith spatial point.
The result, shown in fig. 2, shows that regardless the accuracy
of the source (P) estimation is independent of the accuracy of
the diffusivity (D) estimation. This implies that, provided we
have sufficient freedom in the estimation of P, we can accu-
rately estimate the deposition profile. However, errors made in
the estimation thereof are compensated through the transport
estimation, i.e., affect the estimated D and V . This supports
the findings in18,19. Hence, the estimated D and V profiles
will not necessarily reflect the intrinsic transport profiles and
have little influence on the estimated deposition profile. In-
versely, this implies that large errors made in the estimation
of D and V reflect errors made in the estimation of P. With
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FIG. 2. Sum of squared errors (SSE) as defined by (12) of the ex-
tended flux fit power deposition estimation compared to a simulated
profile like that of fig. 1, as a function of the diffusivity SSE for
polynomial D estimations of order varying between 0 and 7. The
simulated and esitmated D profiles are shown in the top right of the
figure. The residual error between the estimated and simulated power
deposition profiles is small and nearly independent of the accuracy
of the diffusivity estimation.

prior knowledge of intrinsic transport profiles, any discrep-
ancy between them and the estimated profiles might provide
a hint that the estimated deposition profile might deviate from
the intrinsic one. Without any such prior knowledge, large
values (say, D & 1 m2/s and |V | & 10 m/s in a DIII-D-sized
tokamak) might provide the same.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Here, the extended flux fit method is applied to real
experimental data. We apply it to two datasets from DIII-D:
shots 154532 (limited L-mode, Bt = 2.0 T, Ip = 1.2 MA,
ne,0 = 4.2× 1019 m−3, Pin j,mod = 3.0 MW and fmod = 50
Hz) and 165078 (diverted L-mode, Bt = 2.0 T, Ip = 1.0 MA
ne,0 = 2.9×1019 m−3, Pin j,mod = 1.0 MW and fmod = 70 Hz),
both analyzed in the original publication7). The modulated
injected power Pin j,mod is applied to the plasma by Electron
Cyclotron Heating (ECH) and is modulated between 10 and
100% power. Fast Electron Cyclotron Emission (ECE) data
(sampled at 500 kHz) is used to measure the resulting electron
temperature perturbations through 40 channels corresponding
to different spatial locations. Electron density measurements
are provided by the DIII-D Thomson scattering diagnostic.

We apply and compare the following four power deposition
estimation methods to the above shots:

• TORAY-GA12,

• The extended flux fit method as presented in this letter
(denoted by FF extended),

• The flux fit method where only b is varied (denoted by
FF broadening only), to mimic the method as imple-
mented by Brookman et al. in7

• Break-in-slope20, as a reference for the two flux fit
methods.

For shot 154532 the first 5 and for shot 165078 the first 3
harmonics of the modulation frequency were used in the flux
fit estimations, corresponding to a signal-to-noise ratio (SNR)
of ≥ 10 dB. Full width at half maximum (FWHM)21.

These two shots are selected as illustrative examples of the
importance of the added fit parameters in the extended flux
fit method source function. Figure 3, for instance, shows the
importance of allowing the freedom of peak location. The
broadening-only method (denoted by the squares) is fixed in
its peak location and can therefore only compensate for an
apparent shift in peak power deposition location in the mea-
surement data with respect to the TORAY estimation by sub-
stantial broadening to account for the measurement data. This
shift could arise due to a variety of reasons, including devia-
tions from local power absorption conditions in TORAY due
to the power levels injected, plasma edge events temporarily
shifting the TORAY estimated peak at the timestamp the pro-
file was computed or inaccuracies in the mapping of temper-
ature measurements to ρ . We define the broadening factor
β as the ratio of full width at half maximum21 (FWHM) of
the flux fit estimate to the FWHM of the TORAY estimate
(FWHMMTORAY):

β = FWHM/FWMHTORAY, (13)

such that the broadening factor β = 1 when both curves are
equally broad, β > 1 when the flux fit estimate is broader than
the TORAY estimate and β < 1 when the flux fit estimate is
less broad. Note that the FWHM of a Gaussian curve is pro-
portional to its standard deviation σ , such that b in (8) and β
in (13) are the same for Gaussian profiles.

The broadening-only estimate shows a broadening of β =
2.7 over TORAY due to its fixed peak position. The extended
method (denoted by asterisks) finds a peak position shifted
about 0.06 in ρ to the right (corresponding to about 4 cm
in DIII-D). This peak position coincides with the peak esti-
mated by the break-in-slope method (shown for reference as
the dashed line), which is a method independent of any ini-
tial estimate of the profile. With the shift in peak position, the
broadening with respect to the TORAY estimate is still signifi-
cant (as observed by Brookman et al.7) but drastically reduced
from β = 2.7 to 1.6.

The importance of including the skew parameter α is
clearly illustrated in figure 4. In this particular case, allowing
for a non-symmetric profile significantly reduces the broaden-
ing needed to fit the measurement data. Again, the broadening
with respect to the ray tracing estimate observed in this shot
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FIG. 3. Estimation of the power density deposited by modulated
Electron Cyclotron Heating (ECH) as a function of normalized mi-
nor radius ρ ≈ a/r in DIII-D shot 154532. The broadening-only
implementation of the flux fit method (FF broadening only) shows a
broadened deposition profile with respect to the TORAY-GA12 ray
tracing estimate. The extended flux fit method (FF extended), pre-
sented in this work, shows a less severe broadening by allowing for
freedom in the peak location. A break-in-slope (BIS) estimate is
shown for comparison.

in previous work7 remains, yet is considerably reduced from
β = 4.0 when only the broadening is allowed to be varied to
β = 1.5 in the extended method with all four parameters.

Note that Brookman et al. report a broadening of 2.2 ac-
cording to the definition in (8) for this shot, which devi-
ates from the 4.0 broadening factor for the broadening-only
method in figure 4. Most likely, this is due to the differences in
implementation between the implementation presented in this
work and that of Brookman et al.7. Moreover, the raw data
stems from the same shot but was processed independently.
Despite this difference, the significant reduction in observed
broadening when allowing for a skewed profile estimation re-
mains.
For completeness, we also want to note that there are alterna-
tive (exotic) explanations for a broadening effect due to fast
non-local transport mechanisms. This would (also) lead to
a broadening of the deposition profile as estimated using the
methodologies presented here14.

VI. CONCLUSION

This work presents an extension to the ’flux fit’ method7

for estimating power deposition profiles and spatially vary-
ing modulated heat transport coefficients (diffusivity and con-
vectivity) based on temperature measurements from a period-
ically perturbed source and a parametrization of its expected

FIG. 4. Estimation of the power density deposited by modulated
Electron Cyclotron Heating (ECH) as a function of normalized mi-
nor radius ρ ≈ a/r in DIII-D shot 165078. The broadening-only
implementation of the flux fit method (FF broadening only) shows a
broadened deposition profile with respect to the TORAY-GA12 ray
tracing estimate. The extended flux fit method (FF extended), pre-
sented in this work, shows a less severe broadening by allowing for a
skewed Gaussian profile. A break-in-slope (BIS) estimate is shown
for comparison.

spatial profile. The original work considered strictly Gaussian
power deposition profiles, with a variable width (standard de-
viation) used for fitting.

A purely Gaussian profile with its width the only free pa-
rameter provides insufficient freedom to accurately estimate
source deposition profiles in all cases. Therefore, in this work,
the number of parameters available for fitting of the source
function is extended to include a variable peak location, peak
height, and a skewness parameter. With this extension, the
original orthogonal distance regression procedure for finding
the optimal fit for the free parameter, consisting of a grid
search-like approach, is no longer suitable. The optimization
procedure is therefore changed to a nonlinear least squares
optimization.

This method is applied to two of the discharges used in the
original publication to show that the inclusion of these extra
degrees of freedom has a significant impact on the resulting
source profile estimate. In both cases, a broadening compared
to ray tracing estimates is observed (1.6 and 1.5 times for shots
154532 and 165078, respectively) but to a lesser extent than
previously estimated (respectively 2.7 and 2.2 times7).

It is shown that, in the method presented in this work, the
quality of the estimated deposition profile is key to the accu-
racy of diffusivity and convectivity estimates, but, inversely,
the estimated transport parameters hardly affect the quality
of the power deposition estimate. We therefore conclude the
extended method presented in this work is suitable for power
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deposition estimates irrespective of the estimated transport pa-
rameters, but unsuitable for accurate estimation of the latter.

DATA AVAILABILITY STATEMENT

Raw data were generated at the DIII-D large scale facility.
Derived data supporting the findings of this study are available
from the corresponding author upon reasonable request.
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Chapter 4

Numerical validation of estimation methods

Prior to application on experimental data, the implementation of the different estimation methods should
be tested and validated. Hence, data sets are simulated with different simulated power deposition and
diffusivity profiles to which the different estimation methods are applied. This allows comparison of the
estimated and simulated profiles to evaluate the accuracy of the estimation methods and under which
conditions they perform well. This chapter presents the estimation results and the implications that these
have for the estimations on real measurement data.

4.1 Simulated test data

Figure 4.1: Surface plot of simulated electron temperature Te(ρ, t) from solving (2.18)
with a constant diffusion coefficient profile, modulated power source with Gaussian profile
centered at ρ = 0.25, mixed Neumann-Dirichlet boundary conditions and additive time-

domain white Gaussian noise.

To validate the estimation methods, they are applied to simulated test data. This data is generated by
solving (2.18) with V = K = 0 and D constant over ρ (its value will differ per case, see section 4.1.1).
Moreover, the electron density ne is assumed constant in time and space so that it can be easily factored
out. U(t) is a block wave varying between 1 (full power) and 0 (no power) with frequency f0, equal to
25 cycles per unit time. The boundary conditions are ∂T̃e(ρ=0,t)

∂t = 0 and T̃e(ρ = 1, t) = 0. Filtering and
processing is done according to section 3.1. Normally distributed white noise is added to both T̃e and Ũ in
the time domain to simulate real measurements. The resulting solution for the temperature perturbation
in time and space is shown in figure 4.1. The bottom window shows Ũ .
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A typical spectrum for a perturbative experiment is shown in figure 4.2, showing the simulated amplitude
and phase of the complex temperature perturbation Fourier coefficients Θ, of the first four excited har-
monics. The input signal, a block wave, excites only odd harmonics of the fundamental frequency, at 25
Hz. A peak in amplitude is visible at the power deposition location (ρ = 0.25) as well as the subsequent
drop-off of magnitude with increasing steepness for increasing frequencies, until the noise floor is reached.

Figure 4.2: The spatial profile of the magnitude of Fourier coefficients for the first four
excited frequencies, shows how at the deposition location (ρ = 0.25) the magnitude peaks
and then drops off with a constant slope that becomes steeper with increasing frequency.
The phase converges to the same value at the deposition location. All frequencies, in both
magnitude and phase, become increasingly erratic further away from the source, due to a

low signal-to-noise ratio.

4.1.1 Deposition profile estimation

In this section, deposition profile estimations for three methods are shown for three different cases, based
on the simulated data described above. The estimation methods are the FFT method, the break-in-slope
method and the MLE method, the three oldest methods used in this thesis. After this, simulations
including the state-of-the-art methods (FDLS, flux fit) will be presented.

All cases have a narrow (σ = 0.05) Gaussian deposition profile centered either at ρ = 0.5 (figures 4.4
and 4.3) or 0.1 (figure 4.5). The level of diffusion is either high (D = 8 m2/s) or low (D = 1 m2/s).
On the left, the figures show the simulated deposition profile in black and estimations from the three
different techniques in different colors and marker shapes. In the break-in-slope case, the confidence
bounds indicated are the sum of squared error (SSE) values from the fits that are made to determine the
slope at the break points. The FFT and MLE confidence bounds are given by two standard deviations.
The right figures show the simulated diffusion coefficient (dashed black line) and the diffusion coefficient
as estimated by the MLE in red.

For small diffusion coefficient values, the break-in-slope and MLE methods agree and estimate the depo-
sition profile well, barring large MLE uncertainties at the edges of the domain. When diffusion is large,
however, the break-in-slope estimation is artificially broadened by the fast dissipation of heat the moment
it is deposited. In contrast, the MLE still estimates very accurately since it simultaneously estimates the
diffusion coefficient and corrects for the broadening effect. This is seen also when deposition is moved close
to the inner domain boundary. The MLE estimates the points on the deposition profile well compared to
the break-in-slope, in which the effects of the Neumann boundary condition at ρ = 0 can be seen. The
FFT method clearly performs the poorest out of the three under these circumstances. It does well at
estimating the peak location of deposition, but not its height or width. This is unsurprising given the
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Figure 4.3: On the left: at transport levels expected in current-day tokamaks (here,
diffusivity D = 1 m2/s) the BIS (blue crosses) and MLE (red crosses) methods estimate
very well the simulated deposition profile (black). The FFT method (pink diamonds) does
not perform well, showing significant broadening with respect to the simulated profile. On

the right: the diffusivity profile is estimated poorly by the MLE method.

assumptions behind the FFT method; it is reliable for high modulation frequencies, when transport can
be neglected compared to the source (section 3.1.1). Clearly the simulated modulation frequency of 25
Hz is not high enough to fulfill this assumption.

It is also concluded that the MLE performs the best in estimating power deposition between the three
methods, followed by the break-in-slope method which performs well when diffusion is not larger than
approximately 2 m2/s. A last conclusion that can be drawn from these simulations is that diffusivity
is not well estimated by the MLE method. Rather, the diffusivity compensates for errors made in the
estimation of P , allowing for a good power deposition estimate but simultaneously causing large error
bars and fluctuations in the diffusivity estimate.

Due to the poor performance of the FFT method in the context of the simulations presented here, which
have been set up so as to mimic as closely as possible the experimental conditions of DIII-D discharges
presented in chapter 5, the FFT method has been left out in subsequent chapters in favor of the two
state-of-the art estimation techniques: the FDLS and flux fit methods. These methods, two relatively old
ones in the MLE and BIS and two very new ones, are compared for a rather extreme case in figure 4.6, a
case with a distinctly non-Gaussian and heavily skewed deposition profile and with the inclusion of white
noise on the data. The three newest methods (MLE, FDLS and FF) still estimate the profile very well,
but the BIS is broadened. This is expected from the simulation results shown just prior. The FF method
shows significant error bars in the heavily skewed section of the deposition profile, which is due to the
implementation of the error estimate for this method; uncertainties are assumed to be independent for
each of the four estimated parameters in the FF deposition profile and therefore added when, in reality,
these uncertainties are not independent. This leads to an overestimation of the uncertainty bounds. A
proper handling of these uncertainties will be implemented in the future.

4.1.2 Effect of transport estimations on deposition estimation

In figure 2, section 3.3, it was shown that, for the flux fit method, there is little influence of the estimated
transport parameters on the accuracy of the power deposition estimate. This was done by estimating
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Figure 4.4: The FFT (pink diamonds) and BIS (blue crosses) methods perform relatively
poorly in estimating the simulated deposition profile (black) at elevated levels of transport
(here, D(ρ) = 8 m2/s over the entire domain) (left figure). In contrast, the MLE estimate
(red crosses) estimates power deposition well even in the presence of high transport. This

comes at the cost of great uncertainty in the diffusivity estimate (right figure).

D and P , where D was simulated using a cubic polynomial while the estimation of D was done using
polynomials of order varying between 0 and 7. The same has also been done for the FDLS method; the
result is shown in figure 4.7. It can be seen that the error in the estimated D profile for the FLDS method
varies even more than the flux fit D estimate, yet there is even fewer variance in the FDLS P estimate,
indicating that the FDLS power deposition estimation is even less sensitive to the estimated transport
than the flux fit method. This corresponds well with the findings in [80], which shows similarly for the
MLE method that the estimation of P is by far the most accurate and reliable.
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Figure 4.5: On the left: the simulated deposition profile (in black) close to the edge of the
domain is poorly estimated by both BIS (blue crosses) and FFT (pink diamonds) methods,
but well by the MLE method (red crosses). On the right: the diffusivity estimate by the

MLE method is uncertain, inaccurate and imprecise.

Figure 4.6: The MLE, FDLS and FF methods estimate this non-Gaussian, heavily skewed
simulated deposition profile (black) well based on simulated temperature data with added
normally distributed white noise. The break-in-slope estimate is broadened towards the

skewed side of the profile.
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Figure 4.7: The accuracy of the FDLS and FF estimations of the power deposition profile
P̂ is small compared to the peak deposited power (here 1.5 W/cm3) and independent of
the accuracy in the diffusivity profile D̂, as measured by the sum of squared errors (SSE)
between the estimated and simulated profiles, since the total error in the power deposition
estimate SSE(P̂ ) does not vary significantly with the error in the diffusivity SSE(D̂). D
is simulated using a third order polynomial while it is estimated using polynomials or order
varying between 0 and 7. The simulated and estimated D profiles are shown in the top right

of the figure.
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Chapter 5

Experimental deposition profile estimation
results

In this chapter, the results of applying the methods detailed in section 2.6 to temperature measurements
from various DIII-D discharges is presented. Before the results, the data is introduced and a brief note
on the assumptions of non-perturbed density and linearity is made.

5.1 DIII-D data

Figure 5.1 shows a typical example of measurement data used in this work. It shows a surface plot of
calibrated ECE measurement data for a particular discharge (154532 [27]) over time and mapped to the
dimensionless minor radius coordinate ρ. The ECE system measures the electron temperature through 48
channels. This discharge is a limited L-mode discharge without significant sawtoothing 1. 3 MW of ECH
power is injected near ρ = 0.5, modulated between full power and 10% power at 50 Hz with a 50% duty
cycle. Typically in modulated DIII-D discharges, injected power lies between 0.5 and 3 MW, deposited
between ρ = 0.2 and 0.7, modulated between 25 and 100 Hz.

Figure 5.1: Calibrated electron temperature data of DIII-D discharge no. 154532 (Limited
L-mode, BT = 2.0 T, Ip = 1.2 MA, ne,0 = 4.2×1019 m−3 [27]) as a function of time t and
flux surface label ρ. The injected modulated ECH power Pech(t) is shown in the bottom

plot.

1The sawtooth instability is an instability found in the core of tokamak plasmas where the temperature signal measured
at a certain location looks like a sawtooth; i.e. (semi-)periodic build up of temperature followed by a crash [81].
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5.2 Validation of assumptions

The estimation methods that are used to obtain the results that are presented in this chapter, described
in section 2.6, are based on a number of assumptions. Validating that these assumptions hold true gives
confidence in their outcomes. Two of the most important assumptions are that the temperature pertur-
bation caused by the modulated ECH source is linear and that the electron density remains unperturbed.
Checking these assumptions requires specific experimental conditions that are not present in all discharges,
making them difficult to check in general. Nevertheless, they are present in two specific discharges that
are therefore used to validate these assumptions. The results are discussed in this section.

5.2.1 Assumption of non-perturbed density

All experimental estimation methods presented and applied in this work assume that ECH modulation
applied to the plasma induces a temperature perturbation but does not significantly perturb the density,
which in a steady-state plasma is therefore constant in time. Checking the assumption requires 1) time-
resolved electron density measurements with a sample frequency that is large enough compared to the
modulation frequency and 2) the ECH power deposition location within the spatial measurement range
of the diagnostic. This combination of conditions was found for a single discharge out of those analyzed,
number 174673. The Thomson scattering density and amplitude spectra for this discharge are shown side
by side in figure 5.2. In figure 5.2b, a clear temperature perturbation is seen at the ECH modulation
frequency. In contrast, no clear density perturbation is seen at the same frequency, or, in fact, at any
frequency, in figure 5.2a. This confirms the assumption that the electron density is not affected by the ECH
modulation for this discharge. This gives some confidence that this will hold true for other discharges.

(a) (b)

Figure 5.2: Evidence for the assumption that density is not perturbed by the modulated
ECH source in this discharge (174673), as can be see from the significant fluctuation ampli-
tude in the electron temperature (B) at the ECH modulation frequency (black dotted line)
but not at surrounding frequencies, across the plasma, while the same significant fluctua-
tion amplitude is not seen in the density spectrum (A). Both are measured using Thomson

scattering.
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Figure 5.3: The electron temperature amplitude spectrum from DIII-D discharge 157136
at ρ = 0.84 indicates that the perturbations caused by the two perturbing frequencies, f1
and f2, is linear to a good approximation, since the sum and difference frequencies (f1 and

f2) are not visible.

5.2.2 Assumption of linearity

All estimation methods in this thesis rely on the linearization of the transport equation, under the as-
sumption that the perturbation caused by the source is sufficiently small so that the response is linear.
The easiest test to this assumption is to increase the strength of the perturbing source by some factor and
see if the temperature perturbation amplitude is multiplied by the same factor. Unfortunately, no single
discharge was found where, within the same discharge, this was done.

A slightly more involved way to test this assumption is using the so-called two-tone test. A nonlinear
system excited by two frequencies f1 and f2 will produce a response at sum and difference frequencies
f1 ± f2, too. A linear system, in contrast, will not. For one particular discharge, number 157136, two
gyrotrons were modulated with two different frequencies at the same plasma location. Therefore, it is
possible to check the linearity assumption using the two-tone test for this discharge.

The temperature amplitude spectrum for one particular location in discharge 157136 is shown in figure
5.3. Note that this was done for all ρ between 0 and 1, so the below argument holds even though only a
single illustrative location is shown.
A special implementation of the LPM (section 3.1.3) that was adapted to handle this type of dual per-
turbation frequency spectrum, the two-tone LPM [79], was applied to the spectrum, shown by the orange
crosses. The two perturbing frequencies, f1 and f2, are clearly visible in the spectrum while there are no
peaks visible at f1 ± f2. Either these are not excited or their excitation is weak enough to be buried in
noise; either way, the assumption of linearity seems to hold in this discharge at least for the first harmonics
of both frequencies.

5.3 Estimation results

Six total discharges are analyzed; the estimations for their power deposition profiles are presented in
this section. Five of these discharges (154532, 157131, 165078, 165146 and 166192) are chosen based on
[27], wherein their broadening with respect to TORAY-GA is analyzed. These discharges are selected
as typical examples of different discharge modes in DIII-D: a limited L-mode (154532), diverted L-mode
(165078), QH-mode (157131), ELMy H-mode (165146) and a negative triangularity (166192) discharge.
One additional dicsharge (174673), another QH-mode, is analyzed.
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5.3.1 Defining broadening

In [27] the Gaussian filter-based broadening factor bGF is defined as:

bGF =

√
σ2
F + σ2

TORAY

σTORAY
, (5.1)

with σTORAY the standard deviation of a Gaussian fit of the TORAY estimate of the power deposition
profile and σF the width of a power conserving Gaussian filter that is convolved with the TORAY estimate
to obtain profile that is broadened but still Gaussian. In this work, neither the TORAY profiles nor the
experimental ones are assumed to be Gaussian, so the broadening factor b is defined as the ratio of Full
Width at Half Maximum (FWHM) [82] of the experimental estimate to that of the TORAY estimate:

b = FWHM/FWHMTORAY . (5.2)

For a Gaussian profile, FWHM = 2
√

2 ln 2σ [83]. For Gaussian profiles, therefore, (5.2) may be equiv-
alently written as the ratio of the standard deviation (SD) of the filter and TORAY profiles as they are
defined in [27]:

bSD = σF /σTORAY . (5.3)

This definition is equivalent to (5.1):

bSD =
√
b2GF − 1. (5.4)

In [27], the broadening factors observed for the five discharges range between bGF = 1.5 - 3, or, equivalently,
bSD = 1.1 - 2.8. Here, the same discharges are found to have broadening factors b between 1.0 (for 165146)
and 6.2 (for 157131). The final discharge (174673) lies within that range at b between 1.8 and 2.9 for
the different estimates. The estimates for all discharges are shown in figure 5.4, with the FWHM of
the TORAY estimate shown in terms of ρ ≈ r/a with a ≈ 0.67 m. The dashed line shows the electron
temperature spatial amplitude profile of the first perturbed harmonic for reference. While these results
speak for themselves, the most interesting observations will be highlighted below. A full overview of the
results from figure 5.4 is presented in table 5.1 for completeness. A summary of the results is foud in
table 5.2.

Table 5.1: Summary of the results in figure 5.4 with b according to (5.2) and bSD according
to (5.3) for those discharges analyzed in Brookman et al. [27].

b
(MLE - FF - FDLS - BIS) bSD [27] Ptot [MW]

(TORAY - MLE - FF - FDLS - BIS)
Limited L-mode (154532) 1.7 - 1.6 - 1.6 - 1.8 2.72 2.7 - 3.1 - 2.9 - 2.6 - 2.8
Diverted L-mode (165078) 1.5 - 1.6 - 1.4 - 1.6 2.24 1.0 - 0.7 - 0.9 - 0.8 - 0.9

QH-mode (157131) - 4.4 - - 6.2 2.00 0.5 - 0.3 - 0.5 - 0.3 - 0.5
QH-mode (174673) 2.4 - 1.8 - 2.5 - 2.9 - 0.5 - 0.7 - 0.8 - 0.7 - 0.9

ELMy H-mode (165146) 1.4 - 1.0 - 1.3 - 2.0 1.67 2.9 - 4.4 - 3.5 - 3.6 - 4.3
-δ L-mode (166192) 3.3 - 3.3 - 2.6 - 3.6 1.30 0.6 - 0.6 - 0.7 - 0.6 - 0.7

5.3.2 Results

Looking at figure 5.4, in general, all four estimation methods (MLE, FF, FDLS and BIS) agree quite
well in their profile estimations. The biggest deviations occur in the BIS estimations, which tends to be
slightly broader than the other methods, with somewhat underestimated peak power levels. This falls
within the expectation for this method. Other than that, there is some discrepancy in discharges 174673
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(a) DIII-D discharge 154532 (limited L-mode, BT = 2.0
T, Ip = 1.2 MA, ne,0 = 4.2×1019 m−3, PmECH = 2.7

MW)

(b) DIII-D discharge 165078 (diverted L-mode, BT =
2.0 T, Ip = 1.0 MA, ne,0 = 2.9×1019 m−3, PmECH =

1.0 MW)

(c) DIII-D discharge 157131 (QH-mode, BT = 1.9 T, Ip
= 1.1 MA, ne,0 = 1.7×1019 m−3, PmECH = 0.5 MW)

(d) DIII-D discharge 165146 (ELMy H-mode, BT =
2.0 T, Ip = 1.0 MA, ne,0 = 3.2×1019 m−3, PmECH

= 2.9 MW)

(e) DIII-D discharge 166192 (negative triangularity L-
mode, BT = 2.0 T, Ip = 0.9 MA, ne,0 = 3.0×1019 m−3,

PmECH = 0.6 MW)

(f) DIII-D discharge 174673 (QH-mode, BT = 2.0 T, Ip
= 1.1 MA, ne,0 = 3.2×1019 m−3, PmECH = 0.6 MW)

Figure 5.4: Power deposition estimates
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Table 5.2: Summary of table 5.1, indicating for each discharge the FWHM of the TORAY-
GA estimate (in the dimensionless coordinate ρ), the range of broadening according to
(5.2) resulting from the four other estimation methods (MLE, FDLS, FF, MLE), the total
deposited power according to the TORAY-GA estimate and the injected power from the

four other estimation methods.

FWHM TORAY [-] b (min - max) Ptot TORAY [MW] Ptot other (min - max) [MW]
Limited L-mode (154532) 0.10 1.6-1.8 2.7 2.6-3.1
Diverted L-mode (165078) 0.05 1.4-1.6 1.0 0.7-0.9
QH-mode (157131) 0.05 4.4-6.2 0.5 0.3-0.5
QH-mode (174673) 0.06 1.8-2.9 0.5 0.7-0.9
ELMy H-mode (165146) 0.06 1.0-2.0 2.9 3.5-4.4
-δ L-mode (166192) 0.04 2.6-3.6 0.6 0.6-0.7

and 165146 in the deposition peaks, but even in those discharges the other points of the profiles agree
quite well.

The broadening factor b agrees well among the methods for the limited and diverted L-mode discharges,
while in the other discharges three out of four methods tend to agree well with one deviating somewhat.
Comparing with b from [27], only some agreement is found for the ELMy H-mode discharge, while all
other discharges find values for b that differ significantly. For two discharges, the broadening is observed
here is less than in [27], likely due to the added freedom in peak location and/or profile shape in the
methods used in this work (see section 3.3). In discharges 157131 and 166192, the broadening b reported
here is significantly larger than in [27]. The reason for this is unclear. It could be that different EFIT
and/or TORAY versions have been used, which (from experience) can vary quite significantly. The low
power densities in 157131 are not unexpected given the low level of injected power and the proximity of
deposition to the edge, where the flux tubes envelop a large volume.

The total injected power Ptot is computed through a (cylindrical) integral of the estimated deposition
profiles, including the TORAY-GA one. Given the coarse spacing between the estimation points, this
introduces some significant errors in the estimation of Ptot. This is likely why some discrepancies between
the TORAY Ptot and the other estimation methods is seen, up to roughly 30%, though most estimations
agree to a better degree than that. A notable exception is discharge 165146, with deviations in total
absorbed power up to 50 %, though this is likely still attributable to the coarse integration grid as the
profiles do not differ that significantly from the TORAY profile in this discharge. The non-TORAY
estimations have only two points in the peak, so any deviations in those points lead to large deviations
in the estimate of total injected power. Despite this, in absence of uncertainty estimates, the generally
good agreement of total absorbed power between methods is a good indication that the estimations are
reliable.

5.4 Scaling of broadening

The a priori plan for this work was to postulate a broadening mechanism and to experimentally test this
hypothesis in a controlled experiment where a single variable is changed and the effect of this parameter on
the resulting broadening is tested. Given, however, that what is available for analysis consists of a limited
set of discharges that spans different regimes (i.e. different confinement modes, steady-state densities and
temperatures etc.), it is nevertheless chosen to look for trends. This is done by comparing the observed
broadening to the available set of parameters, which includes peak power location (in ρ), and the electron
density and temperature for each discharge as a function of ρ.

Figure 5.5 shows the broadening factor b as defined in (5.2) as a function of the peak deposition location
in ρ, for each of the 6 analyzed discharges and for each of the 4 estimation methods per discharge, with the
exception of discharge 157131, for which for two of the methods it was not possible to define a broadening
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factor. These are recognized as the rightmost two points in the figure.

Figure 5.5: The ECH power deposition
broadening as defined in (5.2) shows a positive
correlation with peak power deposition radius
in ρ for DIII-D discharges (from left to right):
165146, 154532, 165078, 166192, 174673 and
157131, for four different estimation methods
per discharge. Discharge 157131 has only two
points since for two estimations it was not pos-
sible to define a FWHM, others have three

where points overlap.

First, it can be seen that the break-in-slope method
systematically shows the most broadening out of the
four methods. Second, the FDLS and MLE meth-
ods lie very close to each other in their estima-
tions, which is somewhat surprising given their dif-
ferent assumptions (locally-constant parameters versus
continuous functions). Third, the figure hints at
an approximately linear correlation between broaden-
ing and increasing radius. If true, this would im-
ply that power deposited near the plasma edge (either
at the high- or low-field side of the plasma, some-
thing that cannot be discerned from figure 5.5) tends
to get broadened more than power deposited near the
core.

Three other possible scalings are investigated, based on avail-
able measurement data: electron temperature Te(ρ) and elec-
tron density ne(ρ), measured with ECE and Thomson scat-
tering. No clear relation is observed between broadening and
either temperature or density at the peak power deposition
location. The same is not true for their product; figure 5.6
shows the broadening factor b as defined in 5.2 as a function of
1/neTe at the location of peak power deposition. The figure
hints at a negative correlation between the observed broad-
ening and the electron pressure at the peak power deposition
location. This could indicate a possible pressure-induced or pressure-related physical process that plays
a role in the broadening.
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Figure 5.6: The ECH power deposition broadening as defined in (5.2) shows a weak nega-
tive correlation with electron pressure (proportional to the product of electron temperature
Te and density ne) at the peak deposition location, indicated by the dashed line, across
DIII-D discharges with different experimental conditions. Discharge numbers are indicated
in the figure. The different points (stacked horizontally) indicate the different estimation

methods per discharge.



43

Chapter 6

Summary, Discussion and Outlook

In this chapter, a summary of the work presented in all preceding chapters will be given, before discussing
the results from those chapters. The discussion will revolve around the simulation results, the observed
correlations and uncertainty analysis.

6.1 Summary

In summary, the ECH power deposition profile is estimated using five different estimation methods based
on electron temperature and density measurements from DIII-D perturbative experiments, and compared
to ray tracing profiles for a set of six discharges with different confinement modes and experimental
conditions. Two of these methods, the maximum likelihood estimator (MLE) and the frequency domain
least squares (FDLS) estimator, have readily available implementations. The other three, namely the Fast
Fourier Transform (FFT), the break-in-slope (BIS), and flux fit (FF) methods, are implemented in this
work based on the available literature. The flux fit method is adapted from the method presented in [27].
It is shown that the original flux fit method in [27], with a single parameter describing the deposition
profile, does not contain enough freedom to accurately estimate the deposition profile in all cases. The
adapted method, presented in this thesis, increases the number of parameters describing the deposition
profile to four, increasing the freedom and the accuracy in the deposition profile estimation.
As a validation step, the methods are applied to simulations of perturbative experiments, before being
applied to measurement data from six DIII-D discharges to estimate the power deposition profile and
quantify the broadening of the resulting profiles compared to TORAY-GA estimates for each of these
discharges. The assumptions of non-perturbed density and linearity are discussed based on two specific
discharges with the right experimental conditions. Finally, the observed broadening from the six different
discharges with different regimes is plotted against deposition radius and electron pressure to investigate
possible scalings of broadening across the different discharges.

6.2 Simulations

From simulations of perturbative experiments it was concluded that the MLE, FF and FDLS methods
perform the best in estimating the power deposition profile, especially in noisy conditions. It was found
(not shown) that FF and FDLS methods, specifically, generally performed the best. This is not surprising
given that both of those methods estimate smooth profiles where smooth profiles were simulated. Real
effects like e.g. wall-reflections, potentially causing significant absorption in unexpected regions of the
plasma, were not taken into account. In such circumstances, the MLE with its local, point-wise parameter
estimation might perform better than e.g. the FF method.

It was also found that the FFT and BIS estimates were broadened under the chosen circumstances, which
relates to the chosen levels of transport and the modulation frequency. While these conclusions are valid
within the context of this work, since these parameters were chosen to be close to the circumstances in
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the DIII-D discharges that were subsequently analyzed, that does not mean that the FFT and BIS are
not great tools in different circumstances such as when transport is intrinsically low or when modulation
frequencies are much higher.

6.3 Measurement channel spacing

The spacing for the DIII-D ECE channels determines the spacing for the deposition profile estimations.
From the results in figure 5.4 it can be seen that, especially for certain discharges like 165146 and 157131,
the spacing is too course to really obtain accurate profiles. This leads to uncertainty in the estimated
broadening factor (as well as in the estimate of total absorbed power). Since it is not know what type of
interpolation between the estimated points in the deposition profiles fits best, a simple linear interpola-
tion is used for the curves in figure 5.4 which introduces errors in the determination of the FWHM of the
curves. Fitting e.g. a Gaussian curve through the estimation points could reduce the observed broadening
somewhat (like for the FF estimation in 165146) but this is not a justified assumption, merely a practical
consideration. A better solution to this problem could be to fit splines through the estimated points,
which leads to a smoother profile than linear interpolation but does not assume a predefined curve shape
to the extent that a Gaussian fit would. Implementing this will be a good extension to the present work.

Another solution would be to perform new perturbative experiments with tighter spaced, variable location
ECE channels [53, 84] that have been installed in the DIII-D tokamak after the discharges analyzed in
this work were made. In new experiments, the variable location channels, which can be spaced together
as closely as 0.6-0.8 cm [53] in contrast to the current 1-3 cm spacing, could be centered as tightly as
possible around the deposition region to obtain estimated profiles with a finer spatial resolution. This, in
turn, could lead to more precise broadening estimates and reduce to some extent the uncertainty due to
the current linear interpolation.

6.4 Scaling with edge density fluctuation amplitude

In literature, it has been shown that rapid plasma edge density fluctuations can scatter ECH beams,
resulting in a broadened deposition profile [18, 22, 26, 85, 86]. In [27] a scaling of broadening with edge
density fluctuation amplitude was proposed. The latter was measured using Doppler Back Scattering
(DBS), obliquely launching radiation into the plasma edge and measuring the Doppler broadening of the
scattered radiation. While the same discharges were analyzed in this work and in [27], access to the DBS
data could not be obtained. Hence, it has not yet been possible to test that scaling using the methods
presented in this thesis, which differ from those in [27]. Recreating the scaling proposed in [27], either
by obtaining access to the DBS measurements for the discharges analyzed in [27] and in this thesis or by
analyzing a new set of discharges and including DBS measurements, will be one of the most important
next steps for this research.

6.5 Scaling of broadening with radius and pressure

No sources were found in literature that analyze ECH deposition broadening as a function of deposition
radius. The results in figure 5.5 can therefore not directly be compared. However, these results seem
counter to the edge density scattering hypothesis in e.g. [27], based on the following: given the injection
geometry and the low-field side ECH resonance location (figure 2.6), and assuming predominantly single-
pass absorption, it would seem that deposition further away from the source of scattering (the edge), i.e.
closer to ρ = 0, would lead to more significant broadening. This is exactly the opposite of what figure 5.5
shows. While it is possible that, purely coincidentally, the peak deposition location happens to coincide
with edge density fluctuation amplitude across the discharges in figure 5.5 (which could not be checked,
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see section 6.4), it is also possible that the observed correlation is an indication of significant double-pass
absorption or some other absorption-related effect.

In addition to the above, evidence is presented in figure 5.6 for a negative correlation between ECH
beam broadening and electron pressure. Admittedly, the evidence presented is weak; uncertainties on
the broadening nor on temperature nor on density are taken into account, not all data points fit the
linear trend well (discharge 165078 is a notable exception) and the data points from discharge 157131 are
somewhat of an outlier. If the latter points are removed the trend becomes much less clear. Moreover,
the data points in the figure stem from discharges with very different experimental conditions, so other
parameters that have not been investigated may explain the broadening. In addition to performing a
full uncertainty analysis and adding uncertainty bounds to figure 5.6 (see next section), the following
is proposed to verify the results in figure 5.6 in the hypothetical scenario that this research could be
extended by several months and that it will include the opportunity to perform a set of discharges in e.g.
DIII-D:

Perform a number of discharges with power deposited evenly spaced in ρ spanning most of the range
between core and edge (e.g. five discharges with deposition at ρ ≈ 0.2, 0.35, 0.5, 0.65, 0.8), and do this
separately for two different confinement modes. Preferably these modes differ as much as possible, espe-
cially in edge density fluctuation amplitude, e.g. a limited or diverted L-mode and a negative triangularity
L-mode or QH-mode (see [27]). Make sure the power level is significant (> 1 MW, preferably closer to 3
MW) and the modulation rate f0 is relatively slow (≤ 40 Hz, but larger than the reciprocal energy con-
finement time 1/τE) so as to be able to access time-resolved density measurements using either Thomson
scattering or reflectrometry or both. This would allow the testing of the non-perturbed density assumption
for every discharge in the experiment. Make sure that the modulation period 1/f0 is an integer multiple
of both the ECE sample period 1/fs,ECE and the ECH modulation sample period 1/fs,MECH . It might
even be possible to change the injected power level (while keeping the modulation frequency constant) by
some constant factor sometime during each discharge, if this is technologically possible, to allow checking
the linearity assumption for every discharge. It is imperative to make sure that all gyrotron settings
(injected power, modulation frequencies) are kept constant over all ten discharges with the exception of
the approximate deposition location and potentially the step in power level, which should be the same
at the same time for each discharge. Enable the DBS diagnostic to measure edge density fluctuation
amplitude. All of this, taken together, would allow:

• Recreation of figure 5.5 at five different plasma locations spanning the plasma between core and
edge, independent of plasma confinement mode, for two different confinement modes, which moreover
correspond to the highest and lowest DBS fluctuation amplitudes ñe,DBS .

• In the same way a recreation of figure 5.6, and potentially the creation of a similar result for b vs.
ñe,DBS .

• Checking the non-perturbed density and linearity assumptions for each discharge analyzed.

6.6 Uncertainty

A good check of the estimated profiles, in absence of error bars, is the estimate of total power injected.
This should at any rate not be larger than what is injected, and not significantly lower, either. Comparing
the four different methods again offers a sanity check to filter out unreliable estimates. However, purely
based on the assumed uncertainties in Te and ρ and the coarse grid spacing, it is not unreasonable to
expect uncertainties on the order of up to 30 % in the total estimated power.

The uncertainty analysis that was performed in the work, such as seen in the simulation estimations in
section 4.1.1, is mostly based on fitting errors. The FDLS method method estimates a fitting error for
each spatial point in the estimated power deposition profile based on the fit residual. The BIS method



Chapter 6. Summary, Discussion and Outlook 46

does the same using the fit residuals of the slope fits at each spatial location. The FF method uses the
fit residual for the four fit parameters in the parametrization of the deposition profile. It is assumed that
the uncertainties in each of these parameters are independent of each other, and therefore simply added,
when in reality they are non-linearly dependent on each other. For example, since the parametrization is
based on a Gaussian, uncertainties in the width and height of the overall profile both result in a similar
uncertainty on the power deposited at a single spatial estimation location. In the future, these dependent
uncertainties will be handled using nonlinear propagation of uncertainty, i.e. by Taylor expanding the fit
function to first order in the fit parameters and thereby defining the uncertainty in the overall function
based on the uncertainties in the estimated parameters [87].

Only the MLE takes a measure of uncertainty on the measurement data (specifically, Te) into account
by estimating the variance of that data over multiple periods. This is done based on the assumption of
normal complex circular distributed (NCCD) noise [28]. None of these methods, however, are currently
able to take the systematic measurement uncertainties (e.g. calibration errors) on the measured quantities
(Te and ne) into account. Hence, it was decided that error bars based only on fitting errors do not paint
an accurate enough picture of the true uncertainty in the estimates (unlike the simulated cases where
there is no uncertainty on the "measurements") and therefore it was chosen to present the results without
uncertainty bounds. While the magnitude of the systematic and calibration errors in ECE and Thomson
scattering measurements of Te and ne are known (e.g. for ECE measurements the error is assumed to be
on the order of 5 % based on experience with the set-up), one would also like to know the distribution of
the errors (Gaussian, uniform, ...) in order to be accurately incorporated in the estimation. In absence of
this information, at least the estimated systematic uncertainty in the measured quantities can be taken
into account by implementing e.g. Total Least Squares (TLS) or Orthogonal Distance Regression (ODR)
to replace the (non)linear least square methods used currently in the fitting procedure in the FDLS, FF
and BIS methods.

An even more complete uncertainty analysis could include the horizontal uncertainty in ρ, which is typi-
cally assumed to be on the order of 2-3 %. The mapping of measurements to ρ involves equilibrium recon-
struction based on a complex interplay of diagnostic information, so the precise uncertainty is unknown.
Quantifying this uncertainty is possible through a sensitivity analysis of the equilibrium reconstruction
routine used, in this case EFIT. Taking the uncertainty in ρ into account without drastically overestimat-
ing the total uncertainty is complicated, however, by the fact that its uncertainty is not independent of the
uncertainty in the measured quantities (Te and ne), so this would again require a nonlinear propagation
of uncertainty approach to correctly take the interdependency of the measurements and ρ into account. If
not done carefully, this could lead to an unrealistically large uncertainty estimate, which would diminish
the ability to conclude from any obtained results.

6.7 Impact on NTM stabilization

One of the most important applications for the injection of electron cyclotron (EC) waves into tokamak
plasmas is the stabilization of neoclassical tearing modes (NTMs), especially in large, future devices like
ITER [16, 88–90]. In a 2015 study by Poli et al. [91], it was found that the EC power installed in ITER
will be sufficient to stabilize NTMs if absorption profiles follow the predictions by ray tracing. Assuming
a marginal island width (the width at which the NTM magnetic island self-stabilizes, i.e. stops growing)
of 1-2 cm, it was found that this will still be the case up to a deposition broadening compared to ray
tracing of two. If the deposition is broadened by more than that, continuous ECCD will not be sufficient
to stop islands of that size from growing.
Given the level of broadening reported in this work, depending on how the experimental conditions in
the DIII-D discharge that were analyzed compare to those in ITER, this may have implications for the
ITER NTM stabilization system. In case the ITER conditions will be similar to e.g. DIII-D discharge
154532, 165078 or 165146, where the reported broadening is below 2, nothing will change in the ITER
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design. In the cases of discharges 166192 and 174673, with broadening between 2 and 3.5 times, NTM
stabilization in ITER may require pulsed ECCD, rather than continuous operation. Alternatively, the
injection angle may be decreased to increase current drive efficiency, at the cost of reaching deeper layers
of the plasma. If the broadening in ITER will be as severe as in DIII-D discharge 157131, there may
simply not be enough EC power in ITER to stabilize NTMs based on the findings in [91]. Given that the
positive correlation between broadening and deposition radius reported in this thesis, and that EC power
deposition for NTM suppression in ITER will be located close to the edge (ρ > 0.7)[91], the latter scenario
might be the case. However, if the negative correlation with pressure dominates the broadening effect, the
higher temperatures and densities in ITER compared to DIII-D [92] might negate the broadening effect.
It must therefore be investigated how the results in this thesis translate to ITER.
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Chapter 7

Conclusion

Five different methods for estimating ECH power deposition profiles based on experimental data are tested
on simulated data before being applied to DIII-D measurement data and compared to TORAY estimates
to resolve the discrepancy that has been previously observed between experimental and theoretical (ray
tracing) power deposition estimates. From this, the following is concluded:

1) The BIS and FFT methods are not the most suitable power deposition profile estimation methods for
the conditions such as they are found in the DIII-D discharges that were analyzed (i.e. diffusivity < 10
m2/s and modulation frequency < 100 Hz), based on the simulations that were performed. In contrast, the
MLE, FDLS and FF methods perform well in estimating the deposition profile in the simulated conditions.
Additionally, based on the same simulations, in noisy conditions such as they are always found in real
experiments, the diffusivity cannot be accurately estimated using the methods used. However, this does
not influence the accuracy of the power deposition estimates

2) Based on the analysis of DIII-D discharges, it was concluded that the deposition profiles estimated
using the experimental methods presented in this thesis are significantly broadened with respect to the
TORAY-GA estimates, by between one and six times depending on the discharge and the method (but
mostly between one-and-a-half to three times).

3) Finally, there is preliminary evidence that the observed broadening scales positively with deposition
radius and negatively with electron pressure at the deposition location. This should be further investigated
in future work.
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