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Abstract

This Bachelor Final Project is concerned with a moving boundary problem of Hele-Shaw type in
three dimensions. It is a Robin boundary problem for the Laplacian in an exterior domain. It
models the flow of a bubble in Hele-Shaw flow with a kinetic undercooling boundary condition
as well as electric streamer discharges. We look for travelling-wave solutions and find trivial
spherical ones. While discussing the concepts and theories of spherical harmonics, Sobolev
spaces and the Fréchet derivative, we turn this problem into a nonlinear operator equation for
nontrivial domains that are radial perturbations of the unit sphere. This is done by identifying
such a domain with a positive function u, defined on the unit sphere and introducing an operator
that solves the Robin boundary problem for the Laplacian. We linearize this operator equation
and by using a spherical harmonics expansion we discover the existence of a unique nontrivial
traveling wave solution of this linearized problem for each velocity near the trivial one. The
smoothness of the domain describing functions u is determined by the order of the Sobolev space
on the unit sphere they are in. This order is found to be bounded above by a value which is
dependent on a regularizing parameter present in the boundary condition.
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1 Introduction

The problem this bachelor final project is concerned with is a so called moving boundary problem.
This is a partial differential equation that needs to be solved for an unknown function and on
a moving domain which is a priori also unknown. Finding (the boundary of) this domain is
part of the desired solution. To be able to find this complete solution set, the PDE is not only
accompanied by the usual boundary condition(s), but also by a kinetic condition set at the
boundary to describe the movement of this boundary. Examples of processes in nature that are
modelled by moving boundary problems are the melting of ice, the growth of tumors and the
winning of oil [19].

One of the classes of these moving boundary problems consists of so called Hele-Shaw flows on
which our problem is also based. In 1898 Henry Selby Hele-Shaw studied the flow of liquids
in a cell that would carry his name, introducing the Hele-Shaw model. He created this cell by
placing a fluid layer between two parallel horizontal plates that are so close together that one
can view the flow as essentially in two dimensions. By adding one or more driving mechanisms,
this fluid layer moves. The pressure p and velocity ~v of this fluid layer are related by Darcy’s law;
~v = −∇p and because the fluid is assumed to be incompressible we have 0 = div ~v = −∆p [19].
Therefore the partial differential equation in Hele-Shaw flows is Laplace’s equation and can be
accompanied with several boundary conditions. To complete the description of Hele-Shaw flow
the kinetic condition is based on the assumption that the boundary moves with the particles.
Therefore we have on the boundary that Vn = ~v · n, where Vn is the normal velocity of the
moving boundary and n denotes the normal vector field [19].

Besides the two-dimensional flow in a Hele-Shaw cell there are also other applications of Hele-
Shaw flow. In three dimensions, for example, Hele-Shaw flow describes the flow in porous media,
like groundwater flow [19]. In variations of the model it describes the growth of tumors [4]
and the process of viscous fingering in two-fluid flow, in which so called fingers emerge in the
Hele-Shaw cell when a pressure gradient is applied and the fluids start to move [6, 13]. When
this movement occurs, in some cases the less viscous fluid pushes the more viscous fluid away
at the interface between the fluids, making it an unstable interface. It is an unstable interface
because some fronts push further into the more viscous fluid and the so called fingers arise. The
prediction of the width of the fingers is the main focus of such a problem [13].

The problem considered in this thesis is a three dimensional extension of a generalisation of this
viscous fingering problem [13]. This generalization is a variation on this two-fluid flow in the
sense that we consider a small (air) bubble with unknown shape in a liquid (water), instead of
the two fluids next to each other. On the liquid domain Laplace’s equation should hold and
we have Hele-Shaw’s kinetic condition. The model that mirrors the original two dimensional
Hele-Shaw cell with such a bubble was already considered in [11, 17]. In this project we expand
on these works by considering it in three dimensions, having applications which one would be
more likely to encounter in nature. The original modelling setting of a Hele-Shaw cell is however
not valid any more in three dimensions, but one can theoretically think about such a cell in
three dimensions.

The main example of an encounter with a situation that is modelled by the problem we discuss
is electric streamer discharges. Again, up to now research into this has mainly be done in
a two dimensional setting to use conformal mapping techniques [6, 13], but a more intuitive
three dimensional approach will be used here. Electrical streamers are observed for example
as precursors of lightning. Ebert et al. in [6] justify why they are modelled by the problem we
discuss; ”During the initial ’streamer’ phase of spark formation, a weakly ionized region extends
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in a strong externally applied electric field. As the ionized cloud is electrically conducting, it
screens the electric field from its interior by forming a thin surface charge layer. This charged
layer moves by electron drift within the local electric field and creates additional ionization, i.e.,
additional electron–ion–pairs, by collisions of fast electrons with neutral molecules. We here
approximate the ionized and hence conducting bulk of the streamer as equipotential. In the
non-ionized and hence electrically neutral region outside the streamer, the electric field obeys
the Laplace equation. The thin surface charge layer can be approximated as an interface which
moves according to the electric field extrapolated from the neutral region onto the interface.”
When comparing this to the setting of the bubble in the liquid we see that the streamer doubles
for the bubble, the exterior of the streamer doubles for the liquid, the electric field, ~E doubles
for ~v and the electric potential, Φ, doubles for p. In this setting, the same relation holds between
~E and Φ as between ~v and p; ~E = −∇Φ.

The condition that we impose on the boundary is a Robin boundary condition. This means that
it is a condition on a linear combination of the function and its (directional) derivative(s). In our
case this is a so called kinetic undercooling boundary condition for the pressure p; p− γ∂np = 0
or for the electric potential Φ; Φ− γ∂nΦ = 0 on the boundary. Here n denotes the outer unit
vector normal to the boundary of the bubble or streamer and γ is a nonnegative constant. In the
streamer model one can consider the boundary between the ionized and non-ionized region to
be an interface and γ is an indication on the thickness of this interface. This specific boundary
condition results from analysis of the variation of the potential across this interface [6]. The
name kinetic undercooling comes from the Stefan problem, a moving boundary problem related
to the melting of ice, that is also a variation of the Hele-Shaw model [17]. Furthermore we have
an asymptotic condition, that says that the motion of the domain is driven by a velocity field
that is uniform like e3 far away in the bubble case. In the setting of the streamer, this represents
the assumption that the electric field becomes homogeneous far away from the streamer. We
have the strong asymptotic condition (1.1)3 to guarantee uniqueness of the solution, to see a
proof of this fact see the Appendix. Figure 1 displays a two dimensional representation of the
streamer problem. All in all, when using the substitution f = −p or f = −Φ, the following
summarises the problem to be solved.

Figure 1: Two dimensional sketch of the 3D streamer moving boundary problem.
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We seek a family of bounded moving domains t 7→ Ω(t) ⊂ R3, t ≥ 0 with outer normal n = n(t)
and a boundary Γ(t) and functions f = f(·, t) defined on R3 \ Ω(t) such that

∆f = 0 in R3 \ Ω(t),
f − γ∂nf = 0 on Γ(t),
∇f − ~e3 = o(|x|−2) for |x| → ∞,

Vn = ∂nf.

 (1.1)

Here ∂n denotes the directional derivative of f in the direction of the normal. In other words;
∂nf = n · ∇f . Moreover, ~e3 denotes the unit vector in the x3 direction and Vn is the normal
velocity of the moving boundary Γ(t). We consider a nonnegative constant γ and the initial
domain Ω0 is given.

The structure of the thesis is as follows. In Section 2 we adapt (1.1) to account for removing the
inhomogeneous term at infinity and for introducing a moving coordinate system to accompany the
traveling-wave solutions we will look for. Moreover, we establish the properties of translational
en scaling invariance of this altered system (2.2). Also a trivial solution of spheres moving in
~e3-direction will be determined. In Section 3 an introduction of the concept of Sobolev spaces is
given and the spherical harmonics and some of their properties are considered. Then a Sobolev
space on the unit sphere in terms of coefficients of a spherical harmonics expansion will be
constructed. In Section 4 our problem will be rewritten into an operator equation for an unknown
function u which represents radial perturbations of the unit sphere. Section 5 gives an overview
on the Fréchet derivative and specific results for the Fréchet derivative of operators defined on
Sobolev spaces on the unit sphere. In Section 6 the operator equation is linearized around the
trivial solution in terms of the Fréchet derivative. Recurrence relations are established for the
spherical harmonics that will be used to get to the main result of solutions of the linearized
problem. We conclude that for a small change from the trivial velocity there is a function that
describes a unique perturbation of the unit sphere. This function has a spherical harmonics
expansion and is such that velocity and function solve the linearized problem. Illustrations of
the shape of certain solutions will be displayed and a discussion on the order of the Sobolev
space a solution part u can be in and on the problem’s invariances is given.
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2 Properties and adaption of the problem

In this section we adapt the results from [11] to the 3D setting. Here we discuss some properties
of (1.1) and transform it to be able to solve it. Firstly, we observe that the evolution of Ω(t)
over time is volume preserving as we have

d

dt

∫
Ω(t)

dx =

∫
Γ(t)

Vnds =

∫
Γ(t)

∂nfds = 0.

The verification of this fact can be found in the Appendix.

To remove the inhomogeneous term at infinity we write f = g + x3 and see that

∆f = ∆(g + x3) = ∆g + ∆x3 = ∆g,
f − γ∂nf = g + x3 − γ∂n(g + x3) = g + x3 − γ∂ng − γn3,
∇f − ~e3 = ∇(g + x3)− ~e3 = ∇g +∇x3 − ~e3 = ∇g + ~e3 − ~e3 = ∇g,

Vn = ∂nf = ∂n(g + x3) = ∂ng + n · ∇x3 = ∂ng + n3.

This results in the new system:

∆g = 0 in R3 \ Ω(t),
g − γ∂ng = γn3 − x3 on Γ(t),

∇g = o(|x|−2) for |x| → ∞,
Vn = ∂ng + n3.

 (2.1)

We look for so called ”travelling-wave solutions”, which are solutions of the type Ω(t) = Ω0 + ~vt
where ~v = (v1, v2, v3) ∈ R3 is the a priori unknown velocity of the travelling wave. We introduce
a corresponding moving coordinate system and find a stationary free boundary problem:

∆g = 0 in R3 \ Ω,
g − γ∂ng = γn3 − x3 on Γ := ∂Ω,

∇g = o(|x|−2) for |x| → ∞,
∂ng + (~e3 − ~v) · n = 0 on Γ,

 (2.2)

of which the shape of Ω of the moving domain and of its boundary Γ are a priori unknown. (2.2)4

arises from (2.1)4 as the normal velocity of the moving boundary in the stationary coordinate
system (2.1), Vn, corresponds with the velocity of the travelling wave in the normal direction;
~v · n. Combining this with n3 = ~e3 · n on the boundary gives (2.2)4.

2.1 Invariance properties of (2.2)

There exist invariance properties of (2.2) for fixed velocity ~v. When (Ω, g, γ) is a solution of
(2.2), then we have:

• Translational invariance: For any a ∈ R3, (Ω + a, Tag, γ) is also a solution. Here

Ω + {a} := {x+ a | x ∈ Ω}, Tag(x) := g(x− a).

This is easily verified. When ∆g(x) = 0 holds for all x ∈ R3 \ Ω, ∆g(x − a) = 0 holds
precisely for those x ∈ R3 \ Ω + a. As the shape and size of Ω + a is not different than
that of Ω, the normal n is similar and by the same argument as before (2.2)2 and (2.2)4

hold. Obviously (2.2)3 still holds.
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• Scaling invariance: For any R > 0, (RΩ, SRg,Rγ) is a solution to (2.2), where

RΩ := {Rx | x ∈ Ω}, SRg(x) := Rg(x/R).

Proof. We introduce x̃ = Rx and see that

∆SRg(x̃) =
3∑
i=1

∂2SRg(x̃)

∂x̃2
i

=
3∑
i=1

∂2Rg(x)

∂x̃2
i

= R
3∑
i=1

∂2g(x)

∂x2
i

(
dxi
dx̃i

)2 +
∂g(x)

∂xi

d2xi
dx̃2

i

= R(
∂2g(x)

∂x2
1

1

R2
+ 0 +

∂2g(x)

∂x2
2

1

R2
+ 0 +

∂2g(x)

∂x2
3

1

R2
+ 0)

=
1

R
∆g(x) = 0.

This last equation holds for x ∈ R3 \Ω or equivalently for those x̃ ∈ R3 \RΩ. We compute
the gradient of SRg with the use of the chain rule:

∇SRg(x) = R

3∑
i=1

∂g(x1R ,
x2
R ,

x3
R )

∂xi
~ei = R

3∑
i=1

∂g(x̂1, x̂2, x̂3)

∂x̂i

∂
(
xi
R

)
∂xi

~ei

= R
3∑
i=1

∂g(x̂)

∂x̂i

1

R
~ei = ∇g(x̂) = ∇g(

x

R
).

Here we have denoted x̂ = x
R and we easily see that (2.2)3 still holds. Moreover, because

the shape of region Ω is invariant under scaling, so is its outer normal on the boundary Γ.
In other words, the outer normal on RΓ := ∂RΩ at point x̃, ñ(x̃), equals the corresponding
outer normal on Γ at x, i.e. ñ(x̃) = n(x). Now we see that

SRg(x̃)− (Rγ)∂ñ(x̃)SRg(x̃) = Rg(x)−Rγn(x) · ∇g(x)

= R
(
g(x)− γ∂n(x)g(x)

)
∗
= R(γn3(x)− x3)

= Rγñ3(x̃)− x̃3,

∂ñ(x̃)SRg(x̃) + (~e3 − ~v) · ñ(x̃) = (∇g(x) + ~e3 − ~v) · n(x)
∗
= 0.

Here the equations marked with the asterisk hold for x ∈ Γ, such that we see that SRg
fulfils (2.2)2 and (2.2)4 for exactly those x̃ ∈ RΓ = ∂RΩ, completing the proof.

2.2 Trivial solution of traveling unit spheres

Our first result is the existence of a trivial solution of (2.2).

Result 2.1. (2.2) has trivial solutions for γ ≥ 0 given by unit spheres moving in ~e3-direction
with constant velocity ~v = 3

1+2γ ~e3. The solution set is

Ω = B1(0) = {x ∈ R3 | |x| =
√
x2

1 + x2
2 + x2

3 < 1}, ~v = ~v0 = 3
1+2γ ~e3, g(x) = γ−1

1+2γ
x3
|x|3 .

(2.3)
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Proof. We begin by computing the gradient of g:

∇g =
∂g

∂x1
~e1 +

∂g

∂x2
~e2 +

∂g

∂x3
~e3

=
γ − 1

1 + 2γ

(
−3x1x3

|x|5
~e1 −

3x2x3

|x|5
~e2 +

|x|3 − 3x2
3|x|

|x|6
~e3

)
=

γ − 1

1 + 2γ

(
−3x1x3

|x|5
~e1 −

3x2x3

|x|5
~e2 +

x2
1 + x2

2 − 2x2
3

|x|5
~e3

)
.

From this we see that ∇g = o(|x|−2) for |x| → ∞, making g fulfill (2.2)3. Moreover, on
Γ = ∂Ω = {x ∈ R3 | |x| = 1} = S2 the unit normal pointing outwards is n = x1 ~e1 + x2 ~e2 + x3 ~e3.
So on Γ we have (taking into account |x| = 1)

∂ng = n · ∇g =
γ − 1

1 + 2γ

(
−3x2

1x3

|x|5
− 3x2

2x3

|x|5
+

(x2
1 + x2

2 − 2x2
3)x3

|x|5

)
=

γ − 1

1 + 2γ

(
−3x2

1x3 − 3x2
2x3 + (x2

1 + x2
2 − 2x2

3)x3

)
=

γ − 1

1 + 2γ
((−2x2

1 − 2x2
2 − 2x2

3)x3) = −2
γ − 1

1 + 2γ
x3.

This way (2.2)2 and (2.2)4 are easily checked. On Γ we namely have

g − γ∂ng =
γ − 1

1 + 2γ

x3

|x|3
+ 2γ

γ − 1

1 + 2γ
x3 =

γ − 1

1 + 2γ
x3(1 + 2γ) = (γ − 1)x3 = γn3 − x3,

∂ng + (~e3 − ~v) · n = −2
γ − 1

1 + 2γ
x3 + ((1− 3

1 + 2γ
)~e3) · (x1 ~e1 + x2 ~e2 + x3 ~e3)

=
2− 2γ

1 + 2γ
x3 +

2γ − 2

1 + 2γ
x3 = 0.

We are now only left with checking the Laplacian of g:

∆g = div (∇g) = div

(
γ − 1

1 + 2γ

(
−3x1x3

|x|5
~e1 −

3x2x3

|x|5
~e2 +

x2
1 + x2

2 − 2x2
3

|x|5
~e3

))
=

γ − 1

1 + 2γ

(
− ∂

∂x1
(
3x1x3

|x|5
)− ∂

∂x2
(
3x2x3

|x|5
) +

∂

∂x3
(
x2

1 + x2
2 − 2x2

3

|x|5
)

)
=

γ − 1

1 + 2γ

(
x3(12x2

1 − 3x2
2 − 3x2

3)

|x|7
+
x3(−3x2

1 + 12x2
2 − 3x2

3)

|x|7
+
x3(−9x2

1 − 9x2
2 + 6x2

3)

|x|7

)
= 0.

Note that because of the domain specified for g, we stay away from the origin and therefore
never ”divide by 0”. We see that (2.3) indeed satisfies (2.2).

Result 2.2. Because of the scaling and translation invariance properties of the problem from
Section 2.1, (2.3) is part of the family of solutions (for fixed γ)

Ω = BR(a) = {x ∈ R3 | |x− a| < R}, ~v = ~v0 = 3R
R+2γ ~e3, g = R3 γ−R

R+2γ
x3−a3
|x−a|3 , R > 0, a ∈ R3.

(2.4)

In our further analysis we exclude the corresponding degrees of freedom by demanding that Ω
has volume equal to that of the unit sphere and has the origin as its geometric centre;∫

Ω
dξ =

4π

3
,

∫
Ω
ξ dξ = 0. (2.5)
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3 Sobolev spaces

In the sequel we make use of so called Sobolev spaces. These function spaces were introduced by
the Russian mathematician Sergei L. Sobolev in the late thirties of the last century. Sobolev
spaces are vector spaces of functions that are equipped with a norm that is a combination of the
Lp-norms of the function and its derivatives up to a given order (see Definition 3.2) [21]. Here
we consider derivatives in a weak sense as to complete the space and making it a Banach space.
Because we will use Sobolev spaces based on L2-norms, as is common, we will give a definition
of the L2-space of a general region and for two regions important in this report.

Definition 3.1. A L2-space for Ω, denoted with L2(Ω), are those functions for which there
L2-norm is finite:

L2(Ω) :=

{
u : Ω→ C : ||u||2L2(Ω) = 〈u, u〉L2(Ω) :=

∫
Ω
uu dΩ =

∫
Ω
|u|2 dΩ <∞

}
.

In particular, the L2-spaces for the unit circle, S1 ⊂ R2, and unit sphere, S2 ⊂ R3 are defined
as follows:

L2(S1) :=

{
u : S1 → C : ||u||2L2(S1) = 〈u, u〉L2(S1) :=

∫ 2π

0
|u(θ)|2 dθ <∞

}
,

L2(S2) :=

{
u : S2 → C : ||u||2L2(S2) = 〈u, u〉L2(S2) :=

∫ 2π

0

∫ π

0
|u(θ, φ)|2 sin θ dθ dφ <∞

}
.

As we have now (re)familiarized ourselves with (a specific case of) Lp-spaces and -norms, we are
in the position to define a Sobolev space for a given region.

Definition 3.2. [12] Assume that Ω is an open subset of Rn. The Sobolev space W s,p(Ω), of
order s ∈ N, consists of functions u ∈ Lp(Ω) such that for every multi-index α with |α| ≤ s, the
weak derivative Dαu exists and Dαu ∈ Lp(Ω). Thus

W s,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ s}.

We define its norm by

||u||W s,p(Ω) :=
( ∑
|α|≤s

∫
Ω
|Dαu|p dx

)1/p
for 1 ≤ p <∞,

and ||u||W s,∞(Ω) :=
∑
|α|≤s

ess sup
Ω
|Dαu| for p =∞.

As mentioned an important case in this definition is when p = 2. This specific Sobolev space
has gotten its own notation. The Sobolev space of order s with p = 2 is denoted with Hs(Ω).
It has gotten this H, because it makes for a Hilbert space when the following inner product is
defined for arbitrary u, v ∈ Hs(Ω):

〈u, v〉Hs(Ω) :=
∑
|α|≤s

∫
Ω
DαuDαv dx, such that ||u||2Hs(Ω) = 〈u, u〉Hs(Ω).

This is particularly useful for the Sobolev space of order s > 0 defined on the unit circle S1,
Hs(S1) = Hs[0, 2π]. Here we can use the coefficients of the Fourier series of any u ∈ Hs[0, 2π].
Namely [9]

Hs[0, 2π] := {u ∈ L2[0, 2π] :
∞∑
n=0

(1 + n2)s|ak|2 +
∞∑
n=1

(1 + n2)s|bk|2 <∞}, (3.1)
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〈u, v〉Hs[0,2π] :=
∞∑
n=0

(1 + n2)anαn +
∞∑
n=1

(1 + n2)bnβn,

where {an}, {bn} and {αn}, {βn} are the Fourier coefficients of u and v, respectively. Here we
have used the convention that a0 = 1

2π

∫ 2π
0 u(x) dx, an = 1

π

∫ 2π
0 u(x) cosnx dx (for n = 1, 2, 3, ...)

and bn = 1
π

∫ 2π
0 u(x) sinnx dx (for n = 0, 1, 2, ...) are the Fourier coefficients of u. It is useful

that the Fourier coefficients turn up in this particular definition and the details as to why can
be found in [9].

Analogous to what the Fourier series is for functions defined on a circle, there is a counterpart
for functions defined on a sphere. This is an expansion with respect to the so called spherical
harmonics. These are the homogeneous polynomials in R3 restricted to the unit sphere, whereas
the cosnx and sinnx are the homogeneous polynomials in R2 restricted to the unit circle. In
the subsequent sections we will see that we can define a Sobolev space on the unit sphere in
terms of a condition on the coefficients of such an expansion in the same way as in (3.1). Now,
let us first introduce where we encounter the spherical harmonics.

3.1 Spherical harmonics

The spherical harmonics arise when solving Laplace’s equation (∆f = 0) in spherical coordinates
by means of separation of variables [15]. Firstly, we use the convention that
x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ with r ∈ R+

0 , 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. Now
Laplace’s equation becomes

0 = ∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
=:

1

r2

(
∂

∂r

(
r2∂f

∂r

)
+ ∆S2f

)
.

Here we denote with ∆S2 the Laplace-Beltrami operator. Because this operator is defined only
in terms of of derivatives with respect to the angles and excluding r, one can view this as being
on the unit sphere, explaining the S2 in its definition.
Now separating the r variable only, i.e. assuming f(r, θ, φ) = R(r) · Y (θ, φ), we get

Y (θ, φ) · d
dr

(
r2dR(r)

dr

)
+R(r) ·∆S2Y (θ, φ) = 0 and after division by R(r) · Y (θ, φ);

1

R(r)

d

dr

(
r2dR(r)

dr

)
= − 1

Y (θ, φ) sin θ

∂

∂θ

(
sin θ

∂Y (θ, φ)

∂θ

)
− 1

Y (θ, φ) sin2 θ

∂2Y (θ, φ)

∂φ2
(= λ)

= − 1

Y (θ, φ)
∆S2Y (θ, φ) (= λ) . (3.2)

Both sides of the equation are constant, i.e. equal to some separation constant λ ∈ Z, as the
left-hand side is only dependent on r and the right-hand side is only dependent on the angles,
θ, φ. We now have the following equation for R:

d2R(r)

dr2
+

2

r

dR(r)

dr
− λ

r2
R(r) =

1

r2

d

dr

(
r2dR(r)

dr

)
− λ

r2
R(r) = 0. (3.3)

We now again perform a separation of variables for the angle function Y, i.e. we assume
Y (θ, φ) = p(θ)q(φ). As a result of changing to spherical coordinates this comes with set of
conditions for Y , which translates into conditions for p and q. These are that Y is periodic in
φ with period 2π, which implies q periodic (period 2π) and that Y is regular at the poles. It
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follows from (3.2), by substituting Y (θ, φ) = p(θ)q(φ) and multiplying by − sin2 θ, that

sin θ

p(θ)q(φ)
q(φ)

d

dθ

(
sin θ

dp(θ)

dθ

)
+

1

p(θ)q(φ)
p(θ)

d2q(φ)

dφ2
= −λ sin2 θ,

1

p(θ)
sin θ

d

dθ

(
sin θ

dp

dθ

)
+ λ sin2 θ = − 1

q(φ)

d2q

dφ2
(= α) .

Both sides of the last equation are constant (equal to α) because they are only dependent on
one of the angles, similarly as before.
The equation for q, keeping in mind that q is periodic, is readily solved. The eigenfunctions for
this problem are (constant multiples of) q(φ) = eimφ and only for α = m2, with m ∈ Z, because
of periodicity of q. The equation for p, with α = m2 and after dividing by sin2 θ is

(d/dθ)[sin θ(dp(θ)/dθ]

sin θ
+ p(θ) · [λ− m2

sin θ2
] = 0.

This equation - with the boundary condition that q is finite at θ = 0, π - changes into the
associated Legendre equation after introducing a new variable s = cos θ. Using the power series
method, we find that this equation, combined with the boundary condition that p is finite at
s = ±1, has (any constant times) the associated Legendre polynomials, Pml , as eigenfunctions.
Here the eigenvalues are λ = l(l+ 1), where l is an integer with l ≥ |m|. The associated Legendre
polynomials are given by

P
|m|
l (s) =

(−1)|m|

2ll!
(1− s2)|m|/2

dl+|m|

dsl+|m|
[(s2 − 1)l]. (3.4)

This expression shows that the function is nonzero only for the indicated indices corresponding to
the eigenvalues; l ∈ N,m ∈ Z with |m| ≤ l. If m would be bigger in absolute value than l, then
by definition, we would be differentiating a degree 2l polynomial more than 2l times, resulting
in the zero function. Also note that, for odd m’s, the Legendre polynomials are not actually
polynomials in s. They are polynomials in sin θ and cos θ after the substitution s = cos θ though.
This is commonly done, also in this our applications.

We put the eigenfunction-solutions for Y together and get the so called spherical harmonics:

Definition 3.3 (Spherical harmonics). [15] The functions Y m
l : S2 → C given by Y m

l (θ, φ) =

P
|m|
l (cos θ) eimφ are the (non-normalized) spherical harmonics of degree l and order m. Here
θ ∈ [0, π] is the colatitude/polar angle/angle with the x3-axis, so at θ = 0 we are at the north pole

and φ ∈ [0, 2π] is the longtitude/azimuth/angle with the x1-axis. The functions P
|m|
l : [−1, 1]→ R

are the aforementioned associated Legendre polynomials. The ranges of the integer indices for
nonzero functions are −l ≤ m ≤ l, 0 ≤ l <∞.

Importantly, because these are the eigenfunctions of the Laplace-Beltrami operator (see rightmost
equation of (3.2)) corresponding to the eigenvalue λ = l(l + 1), all spherical harmonics satisfy
the following relation:

−∆S2Y m
l (θ, φ) = l(l + 1)Y m

l (θ, φ). (3.5)

11



We compute some of these spherical harmonics:

Y 0
0 (θ, φ) = P 0

0 (cos θ)ei∗0∗φ =
(−1)0

200!
(1− s2)0/2 d

0+0

ds0+0
[(s2 − 1)0]

∣∣∣
s=cos θ

= 1,

Y 0
1 (θ, φ) = P 0

1 (cos θ)ei∗0∗φ =
(−1)0

211!
(1− s2)0/2 d

1+0

ds1+0
[(s2 − 1)1]

∣∣∣
s=cos θ

=
1

2
2s
∣∣∣
s=cos θ

= cos θ,

Y ±1
1 (θ, φ) = P 1

1 (cos θ)e±iφ =
(−1)1

211!
(1− s2)1/2 d

1+1

ds1+1
[(s2 − 1)1]

∣∣∣
s=cos θ

e±iφ

= −1

2
(sin2 θ)1/22e±iφ = − sin θe±iφ.

Explicit spherical harmonics of higher degree and order can be found in tables, such as in
[16].

Lemma 3.4. The spherical harmonics are mutually orthogonal, i.e. Y m
l ⊥ Y n

k if and only if
(m, l) 6= (n, k), with respect to the L2-inner product. Therefore the set of spherical harmonics,
{Y m

l | l ∈ N0,m ∈ Z : |m| ≤ l} is linearly independent.

Proof. This follows from the fact that spherical harmonics are eigenfunctions of the Laplace-
Beltrami operator. For a worked out computation we let l, k ∈ N ∪ {0} and m,n integers such
that −l ≤ m ≤ l and −k ≤ n ≤ k. Now

〈Y m
l , Y n

k 〉L2(S2) =

∫ 2π

0

∫ π

0
Y m
l (θ, φ)Y n

k (θ, φ) sin θ dθdφ

=

∫ π

0
P
|m|
l (cos θ)P

|n|
k (cos θ) sin θ dθ

∫ 2π

0
e(m−n)iφ dφ

= −2πδmn

∫ −1

1
P
|m|
l (s)P

|n|
k (s) ds

= 2πδmn

∫ 1

−1
P
|m|
l (s)P

|m|
k (s) ds

= 2πδmn
2

2l + 1

(l + |m|)!
(l − |m|)!

δlk,

where the orthogonality of the associated Legendre polynomials in the last step follows from the
fact that these are eigenfunctions as shown before and can also be found in Section 10.3 of [15].
Eigenfunctions of any Hermitian (differential) operator namely are mutually orthogonal (see
Section 1.1 of [18]). For a worked out computation of the last step, see [14] or Section 25.5 of
[18].

So we see that ||Y m
l ||L2(S2) =

√
〈Y m
l , Y m

l 〉L2(S2) =
√

4π
2l+1

(l+|m|)!
(l−|m|)! .

Lemma 3.5. The set of normalized spherical harmonics form an orthonormal and complete
basis for Hilbert space L2

C(S2). This set is given by

{Ỹ m
l | Ỹ m

l :=
Y m
l

||Y m
l ||

=

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

Y m
l , l ∈ N0, m ∈ Z : |m| ≤ l}.

Proof. The orthonormality is clear and the completeness is out of the scope of this project. For
a justification see Section 9.4 of [20].
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As a result of this and known Hilbert space theory, we have the following important theo-
rem.

Theorem 3.6. Every function, f : S2 → C, defined on the unit sphere that is square-integrable
(is in L2) can be expanded in a series of normalized spherical harmonics Ỹ m

l .

i.e. f(θ, φ) =
∑∞

l=0

∑l
m=−l f

m
l Ỹ

m
l (θ, φ), where constants fml can be computed by integral:

fml = 〈f, Ỹ m
l 〉L2(S2) =

∫ 2π

0

∫ π

0
f(θ, φ)Ỹ m

l (θ, φ) sin θ dθ dφ

=

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

∫ 2π

0

∫ π

0
f(θ, φ)P

|m|
l (cos θ)e−miφ sin θ dθ dφ.

3.2 Sobolev space on the unit sphere

Similarly as in the two dimensional case, where a Sobolev space on the unit circle was defined in
terms of a condition on the Fourier coefficients of functions on the circle (see (3.1)), we are now
in the position to define a Sobolev space on the unit sphere.

Definition 3.7 A. The Sobolev space on the unit sphere of even order s ∈ N0 (based on the
L2-norm), is defined by Hs(S2) = Hs([0, 2π]× [0, π]) := {f ∈ L2(S2) : (I −∆S2)s/2f ∈ L2(S2)}.
Here we denote with ∆S2 the Laplace-Beltrami operator as defined before.

The Laplace-Beltrami operator is the equivalent of the Laplace operator on the sphere and
it takes the role of second derivatives. So we want that H2(S2) includes up to the ”second
derivatives”, which it does in this definition. Note that H0(S2) = L2(S2).

We have seen in Theorem 3.6 that every square integrable function defined on the unit sphere
can be expanded in a series of spherical harmonics. Assume we have such an expansion,
i.e. f(θ, φ) =

∑∞
l=0

∑l
m=−l〈f, Ỹ m

l 〉L2(S2) Ỹ
m
l (θ, φ) =

∑∞
l=0

∑l
m=−l f

m
l Ỹ

m
l (θ, φ) and consider the

differential operator L = I −∆S2 . Now, keeping in mind (3.5), one has

Lf = L(
∞∑
l=0

l∑
m=−l

fml Ỹ
m
l ) =

∞∑
l=0

l∑
m=−l

(1 + l(l + 1))fml Ỹ
m
l .

More generally, for all s ∈ N0

Lsf =
∞∑
l=0

l∑
m=−l

(1 + l(l + 1))sfml Ỹ
m
l .

Because of what was previously discussed, in Lemma 3.5 and Theorem 3.6 specifically, with the
help of Parseval’s identity for Hilbert spaces, a norm in terms of the coefficients of a spherical
harmonics expansion can be determined. For f ∈ L2(S2) with spherical harmonics expansion∑∞

l=0

∑l
m=−l f

m
l Ỹ

m
l (θ, φ), we have

||f ||2L2(S2) =
∞∑
l=0

l∑
m=−l

∣∣〈f, Y m
l 〉L2(S2)

∣∣2 =
∞∑
l=0

l∑
m=−l

|fml |2.

So now that this has been established, we see that

||Lsf ||2L2(S2) =
∞∑
l=0

l∑
m=−l

|(1 + l(l + 1))sfml |2 =
∞∑
l=0

l∑
m=−l

(1 + l(l + 1))2s|fml |2.
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We can now extend Definition 3.7 A to include all positive orders in terms of the coefficients of a
spherical harmonics expansion in such a way that in coincides with Definition 3.7 A for the even
positive orders:

Definition 3.7 B. For any f ∈ L2(S2), let its spherical harmonics expansion be denoted by∑∞
l=0

∑l
m=−l f

m
l Ỹ

m
l (θ, φ). The Sobolev space on the unit sphere of order s > 0 (based on the

L2-norm) is defined by

Hs(S2) =

{
f ∈ L2(S2) : ||Ls/2f ||2L2(S2) =

∞∑
l=0

l∑
m=−l

(1 + l(l + 1))s|fml |2 <∞

}
(3.6)

=

{
f ∈ L2(S2) : ||f ||2Hs(S2) :=

∞∑
l=0

l∑
m=−l

(1 + l2)s|fml |2 <∞

}
. (3.7)

The newly defined Hs(S2)-norm was used for ease of computation and to resemble the norm used
in the two dimensional case, see (3.1). The equivalence of the Hs(S2)-norm and the L2(S2)-based
norm used in (3.6) needs to be shown. Therefore we show that there exist constants c0, c1 ∈ R
such that for any f ∈ L2(S2), we have that

c0 · ||Ls/2f ||2L2(S2) ≤ ||f ||
2
Hs(S2) ≤ c1 · ||Ls/2f ||2L2(S2).

Proof. Let s > 0 be arbitrary and let f ∈ L2(S2), with spherical harmonics expansion∑∞
l=0

∑l
m=−l f

m
l Ỹ

m
l (θ, φ). We have for all l ∈ N0 that 1 + l2 ≤ 1 + l(l + 1), such that clearly

||f ||2Hs(S2) ≤ ||L
s/2f ||2L2(S2).

On the other hand we have that l2 + 1 ≥ l for all l ∈ N0. From this we have that for all
l ∈ N0, 2(1 + l2) ≥ 1 + l(l + 1) and

2s · ||f ||2Hs(S2) =
∑
l,m

(2(1 + l2))s|fml |2 ≥
∑
l,m

(1 + l(l + 1))s|fml |2 = ||Ls/2f ||2L2(S2).

So we see that 2−s · ||Ls/2f ||2L2(S2) ≤ ||f ||
2
Hs(S2). So taking c0 = 2−s, c1 = 1 completes the

proof.

This now ensures that for all f ∈ L2(S2) with finite ||Ls/2f ||2L2(S2), also ||f ||2Hs(S2) <∞ and vice

versa. This implies equality between (3.6) and (3.7).
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4 Operator problem

In the sequel, let us denote by er, eθ, eφ the spherical unit vectors. Expressed in the Cartesian
unit vectors ~e1, ~e2, ~e3 they are:

er = sin θ cosφ ~e1 + sin θ sinφ ~e2 + cos θ ~e3,

eθ = cos θ cosφ ~e1 + cos θ sinφ ~e2 − sin θ ~e3,

eφ = − sinφ ~e1 + cosφ ~e2.

Moreover, we will use a shorthand notation for partial derivatives in the sequel; for example the
partial derivative of a function f with respect to r will be denoted by fr := ∂f

∂r .

4.1 Operator equation

Now we have established the Sobolev space on the unit sphere, we turn back to the problem at
hand, i.e. (2.2). We will continue with this in the same way as in [11]. We restrict ourselves to
domains that are star-shaped with respect to the origin. We want to transform our problem,
(2.2), to a non-linear operator problem defined on the unit sphere, S2. To shorten notations,
we will identify functions defined on the unit sphere, e.g. u(x) = u(x1, x2, x3) with functions
u(θ, φ) = u(sin θ cosφ, sin θ sinφ, cos θ), θ, φ ∈ R, which are π-periodic in θ and 2π-periodic in φ.
Now define for positive functions defined on the unit sphere u : S2 → R+

Ωu :=
{
x ∈ R3 : 0 ≤ |x| < u(x/|x|)

}
, Γu = ∂Ωu. (4.1)

We denote with x(u)(θ, φ) = u(θ, φ)(sin θ cosφ, sin θ sinφ, cos θ) = u(θ, φ) er, θ ∈ [0, π], φ ∈
[0, 2π] a parameterization of Γu and the exterior unit normal to Ωu in the point x(u)(θ, φ) ∈ Γu
with n(u)(θ, φ). We have that

n(u) =
x(u)θ × x(u)φ
|x(u)θ × x(u)φ|

=
(uθ er)× (uφ er) + (u eθ)× (uφ er) + (uθ er)× (u sin θ eφ) + (u eθ)× (u sin θ eφ)

|(uθ er)× (uφ er) + (u eθ)× (uφ er) + (uθ er)× (u sin θ eφ) + (u eθ)× (u sin θ eφ)|

=
−uuφ eφ − uuθ sin θ eθ + u2 sin θ er√

(uuφ)2 + (uuθ sin θ)2 + (u2 sin θ)2

= (u2
φ + sin2 θ(u2

θ + u2))−
1
2 [u sin θ er − uθ sin θ eθ − uφ eφ] . (4.2)

Let us define the operator Aγ(u) which acts on sufficiently smooth f : S2 → R and is given by
Aγ(u)f = g ◦ x(u), where g : R3 \ Ωu → R is the solution to the exterior Robin problem

∆g = 0 in R3 \ Ωu,
g − γ∂n(u)g = f ◦ x(u)−1 on Γu,

∇g = o(|x|−2) for |x| → ∞.

 (4.3)

Notice that Aγ(u) is a linear operator. This operator is introduced such that it resembles (2.2)1−3

for the right function f . Now we can namely turn our problem into an operator problem. We
take f := γn3−x3, just as in (2.2) and now take g such that Aγ(u)f = g ◦x(u). g fulfills (2.2)1−3

on R3 \ Ωu. We also want it to fulfill (2.2)4 on Γu and we can rewrite (4.3)2 to obtain

g =γ∂n(u)g + f ◦ x(u)−1

(2.2)4
= γ(~v − ~e3) · (n(u) ◦ x(u)−1) + (γn3 − x3) ◦ x(u)−1
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on Γu and after composing with x(u), we have Aγ(u)[γn3(u)− x3(u)] = γ~v · n(u)− γ ~e3 · n(u) +
γn3(u)− x3(u) on S2. So we have our operator problem;

F (u,~v) := x3(u)− γ~v · n(u) +Aγ(u)[γn3(u)− x3(u)] = 0 on S2. (4.4)

We can now also rewrite (2.5), by changing to spherical coordinates and considering that∫
Ωu
ξ dξ = 0 implies that

∫
Ωu
xi dxi = 0 for i = 1, 2, 3. We obtain∫ π

0

∫ 2π

0
u3(θ, φ) sin θ dφ dθ = 4π,

∫ π

0

∫ 2π

0
u4(θ, φ) sin2 θ cosφdφ dθ =∫ π

0

∫ 2π

0
u4(θ, φ) sin2 θ sinφdφ dθ =

∫ π

0

∫ 2π

0
u4(θ, φ) cos θ sin θ dφ dθ = 0. (4.5)

Now we can represent our problem as looking for an u ∈ Hs
+(S2) := {v ∈ Hs(S2)|v > 0}, with a

sufficiently high s and corresponding vector ~v ∈ R3 that represents the velocity of the travelling
wave that solve

F (u,~v) = 0 on S2,
〈u3,1〉L2(S2) = 4π,

〈u4, sin θ cosφ〉L2(S2) = 〈u4, sin θ sinφ〉L2(S2) = 〈u4, cos θ〉L2(S2) = 0.
(4.6)

Here we have abused notation by specifying the argument for the cos and sin functions, for
clarity. For solving this system ultimately we need the following result:

Result 4.1. For u = 1 on S2 and f(θ, φ) =
∑∞

l=0

∑l
m=−l f

m
l Ỹ

m
l (θ, φ) we have that

(Aγ(1)f)(θ, φ) = f0
0 Ỹ

0
0 (θ, φ) +

∞∑
l=1

l∑
m=−l

fml
(1 + l)γ + 1

Ỹ m
l (θ, φ).

Proof. Firstly, u = 1 on S2 implies that Ω1 = B1(0), Γ1 = S2, so r = 1 on Γ1 and also x(1) = er,
n(1) = er. We have seen in Section 3.1, that solving the the Laplace equation in spherical
coordinates by means of separation of variables gives rise to the spherical harmonics. We also
solve (3.3) to have a full solution of (4.3)1. We solve r2R′′(r) + 2rR′(r)− λR(r) = 0, which is a
Cauchy-Euler equation. Here we have found when solving the associated Legendre equation that
λ = l(l + 1) with l ∈ N0 are the eigenvalues that we consider.

Now, by trying a solution of the form R(r) = ra, we find that for l ∈ N0, Rl(r) = c+
l r

l+c−l r
−(l+1).

Here c±l ∈ C are constants. We have already found that the other part, concerning the angles,

gives rise to constant multiples of spherical harmonics as solution; Y m
l (θ, φ) = yml Ỹ

m
l (θ, φ), with

yml ∈ C constants. So we have that g(r, θ, φ) =
∑∞

l=0

∑l
m=−lRl(r)Y

m
l (θ, φ).

To make this g fulfill (2.2)3, we need to compute the partial derivatives of its summands;

d

dr
Rl(r) = lc+

l r
l−1 − (l + 1)c−l r

−(l+2),

∂

∂θ
Y m
l (θ, φ) = yml

(
dml

sin θ
Ỹ m
l+1(θ, φ) +

eml
sin θ

Ỹ m
l−1(θ, φ)

)
=: V m

l (θ, φ),

∂

∂φ
Y m
l (θ, φ) = im yml Ỹ

m
l (θ, φ) =: Wm

l (θ, φ).

Here dml and eml are coefficients dependent on m and l only, as computed in (6.8). We see that
for l = 0 (and therefore also m = 0), most terms vanish. We have the derivatives with respect to
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θ, φ equal to zero and for the derivative with respect to r the term corresponding to the constant,
r0, also equals zero, leaving only d

drR0(r) = −c−0 r−2. For arbitrary bigger l, we see that because
of the boundedness of the Y,W, V ’s that the behavior of ∇g is only dependent on the r-part;

r2∇g(r, θ, φ) =r2

(
gr er +

1

r
gθ eθ +

1

r sin θ
gφ eφ

)
=− c−0 er +

∞∑
l=1

l∑
m=−l

(lc+
l r

l+1 − (l + 1)c−l r
−l)Y m

l (θ, φ) er

+
∞∑
l=1

l∑
m=−l

(c+
l r

l+1 + c−l r
−l)

(
V m
l (θ, φ) eθ +

Wm
l (θ, φ)

sin θ
eφ

)
.

We need this to go to zero as r → ∞ for ∇g = o(|x|−2) and because r−l does this and rl+1

does not (for l ∈ N+), we have to have c−0 = 0 and c+
l = 0 for l ∈ N+. We conclude that

g(r, θ, φ) = g0
0Y

0
0 (θ, φ) +

∑∞
l=1

∑l
m=−l g

m
l r
−(l+1)Ỹ m

l (θ, φ), where g0
0 = c+

0 y
0
0 and gml = c−l y

m
l .

Next, we compute ∂n(1)g = n(1) · ∇g = er · (gr er + 1
rgθ eθ + 1

r sin θgφ eφ) = gr on Γ1. We can now
also incorporate (4.3)2, with r = 1, and get

0 = g(1, θ, φ)− γ∂n(1)g − f(θ, φ)

= g(1, θ, φ)− γgr(1, θ, φ)−
∞∑
l=0

l∑
m=−l

fml Ỹ
m
l (θ, φ)

=

∞∑
l=0

l∑
m=−l

gml Ỹ
m
l (θ, φ) + γ

∞∑
l=1

l∑
m=−l

(l + 1)gml Ỹ
m
l (θ, φ)−

∞∑
l=0

l∑
m=−l

fml Ỹ
m
l (θ, φ)

=
∞∑
l=1

l∑
m=−l

((γl + γ + 1)gml − fml )Ỹ m
l (θ, φ) + (g0

0 − f0
0 )Ỹ 0

0 (θ, φ).

The orthogonality of the spherical harmonics gives us that for all l ∈ N+ and every integer

|m| ≤ l, gml =
fml

γ(l+1)+1 and that g0
0 = f0

0 , such that indeed Aγ(1)[f ](θ, φ) = g(1, θ, φ) =

f0
0 Ỹ

0
0 (θ, φ) +

∑∞
l=1

∑l
m=−l f

m
l Ỹ

m
l (θ, φ)/((1 + l)γ + 1).

Quite obviously u = 1, ~v = ~v0 is a solution to (4.4), (4.5) according to (2.3), so it nicely solves
(4.6). Moreover we see that the volume preservation reappears as∫

Γu

F (u,~v)(θ, φ)|x(u)θ × x(u)φ| dθ dφ =

∫
Γu

F (u,~v)(θ, φ)(u2
φ + sin2 θ(u2

θ + u2))
1
2 dθ dφ = 0.
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5 Fréchet derivative

In the sequel we will make use of the so called Fréchet derivative. It is named after the French
mathematician Maurice Fréchet (1878-1973) and it is a generalisation of the derivative known
for (real-valued) functions for operators on Banach spaces. Commonly the derivative of a real
valued function f : R → R at a point x0 is interpreted as the slope of the tangent line of the
graph of f at point x0. The idea that the Fréchet derivative is based on is that one can see this
slope f ′(x0) as a linear mapping, in the way that for x ”close to” x0, f ′(x0) ≈ f(x)−f(x0)

x−x0 , which
gives us that f(x) ≈ f(x0) + (x− x0)f ′(x0). By generalizing this idea to operators on Banach
spaces, one gets the Fréchet derivative.

This section is based on Section 4 of a similar Bachelor Final Project [17] and follows the same
structure while referring to the proofs given in it, as rewriting them here would be superfluous.
We will discuss elementary definitions and theorems of the Fréchet derivative, based on [1].

Definition 5.1 (Fréchet derivative). Let X,Y be Banach spaces and U ⊂ X be open. The a
function f : U → Y is called Fréchet differentiable at x0 ∈ U if there exists a linear mapping
Df(x0) : X → Y (called the Fréchet derivative at x0) such that for every ε > 0 there exists a
δ > 0 such that whenever 0 < ||x− x0||X < δ we have that

||f(x)− f(x0)−Df(x0)[x− x0]||Y
||x− x0||X

< ε. (5.1)

Here the norms have a subscript indicating the space on which the norm is defined. This
definition is equivalent to saying that lim||x−x0||X→0

||f(x)−f(x0)−Df(x0)[x−x0]||Y
||x−x0||X = 0. Yet another

way is saying that lim||h||X→0
||f(x0+h)−f(x0)−Df(x0)[h]||Y

||h||X = 0. This last definition containing the

h will be used in this report and proofs in [17]. Now we see that this derivative really is a (linear)
mapping from U to Y that maps an h ∈ U ⊂ X to Df(x0)[h] = f(x0 + h)− f(x0) + o(h).

5.1 Theorems on the Fréchet derivative

We begin our discussion of theorems on the Fréchet derivative with the uniqueness of it.

Theorem 5.2 (Uniqueness of Fréchet derivative). For a given function f : U ⊂ X → Y , there
can be at most one such a linear mapping described in Definition 5.1 at a given point x0.

Because of this we can speak of the Fréchet derivative Df : X → L(X,Y ) of a function
f : X → Y that is Fréchet differentiable at all points x0 ∈ X. Here L(X,Y ) denotes the space
of bounded linear operators from X to Y .

When both X = Y = R and we consider the derivative of a function f : R → R at a point
x ∈ R in the Fréchet way, we have that Df(x)[h] = f ′(x)h. This can be seen when realising that

limh→0
f(x+h)−f(x)

h − f ′(x) = 0. We will use this specific and well known example to illustrate
the different theorems we will mention.

Firstly if a function f ∈ L(X,Y ) itself, then it is Fréchet differentiable.

Theorem 5.3 (Fréchet derivative of linear operator). If f : X → Y is a bounded linear operator,
then f is Fréchet differentiable with Fréchet derivative Df ≡ f . In other words, the derivative
Df at x0 ∈ X is given by X 3 h 7→ Df(x0)[h] = f(h).

So for f : [a, b]→ R given by f(x) = αx, we have that Df(x)[h] = f(h) = αh = f ′(x)h.
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The known rules for differentiating real functions, also hold true for the Fréchet derivative, in a
more general sense. To start with the derivative operator is linear.

Theorem 5.4 (Linearity of Fréchet derivative). Let f, g : U ⊂ X → Y be differentiable mappings
and α, β be scalars. Now the mapping αf+βg is differentiable with Fréchet derivative αDf+βDg,
such that D(αf + βg)(h) = αDf [h] + βDg[h].

Also, the chain rule also applies in this more general setting.

Theorem 5.5 (Chain rule). Suppose f : U ⊂ X → V ⊂ Y , g : V → Z are Fréchet differentiable
on their domains (U, V open), then g◦f is differentiable, with derivative D(g◦f) = (Dg◦f)◦Df .
So the Fréchet derivative at x ∈ U is given by Dg(f(x))[h] = Dg(y)[h]|y=f(x),h=Df(x)[h].

For f, g : R → R, we know the regular chain rule: d
dxg(f(x)) = g′(f(x))f ′(x). This coincides

with this theorem as D(g(y))[h] = g′(y)h and D(f(x))[h] = f ′(x)h, such that D(g(f(x))[h] =
g′(f(x))f ′(x)h = d

dxg(f(x))h.

Before we state the product rule for the Fréchet derivative, we first introduce the concept of a
Banach algebra.

Definition 5.6 ((Banach) algebra). A vector space X over a field F is called an algebra, if
there exists an unique product xy ∈ X for all x, y ∈ X such that it has the following properties:

(Associativity) (xy)z = x(yz) x, y, z ∈ X,
(Distributivity) (x+ y)z = xz + yz x, y, z ∈ X,

x(y + z) = xy + xz x, y, z ∈ X,
(Scalar multiplication) αxy = (αx)y = x(αy) x, y ∈ X, r ∈ F.

(5.2)

Here the field F is usually the real or complex numbers. If X also contains an element e, called
the identity, such that for all x ∈ X we have that xe = ex = x, it is called an algebra with
identity. If X is a Banach space and also an algebra it is called an Banach algebra if there exists
a positive constant c such that for all x, y ∈ X, ||xy||X ≤ c||x||X ||y||X .

The real numbers are an example of (Banach) algebra (with identity), with the norm being the
absolute value. We are now in the position to state the product rule for functions defined on
Banach algebra.

Theorem 5.7 (Product rule). Let f, g : U ⊂ X → Y be Fréchet differentiable on the open U
and X is Banach algebra then the product fg : U → Y given by fg(x) = f(x)g(x) is Fréchet
differentiable with Fréchet derivative at x ∈ U is given by

D(fg)(x)[h] = Df(x)[h]g(x) +Dg(x)[h]f(x).

These resembles the product rule we know from real functions, i.e. for f, g : R → R we have
that D(fg)(x)[h] = Df(x)[h]g(x) +Dg(x)[h]f(x) = f ′(x)hg(x) + g′(x)hf(x) = (fg)′(x)h. Now
we have discussed the differentiation rules for the Fréchet derivative we move on to the Fréchet
derivative for functions taking values in a Cartesian product of Banach spaces.

Theorem 5.8 (Cartesian product). Let fi : U ⊂ X → Yi (i = 1, ..., n), be Fréchet differentiable.
Now the function defined as the Cartesian product of these mappings f is Fréchet differentiable.
Here f1 × ...× fn := f : U → Yi × ...× Yn is given by f(x) = (f1(x), ..., fn(x)) and its Fréchet
derivative is the Cartesian product of the Fréchet derivatives of the component functions fi. In
other words Df(x)[h] = (Df1(x)[h], ..., Dfn(x)[h]).
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When we consider a function the that has a domain that is the Cartesian product of Banach
spaces we encounter the concept of a partial Fréchet derivative.

Definition 5.9 (Partial Fréchet derivative). Let X,Y, Z be Banach spaces, f : X × Y ⊃ U → Z
and (x0, y0) ∈ U . Then if the mappings X 3 x 7→ f(x, y0) and Y 3 y 7→ f(x0, y) are Fréchet
differentiable at x0 and y0 respectively, then the Fréchet derivative of these mappings are called
the partial Fréchet derivatives of f at (x0, y0) and are denoted with Dxf(x0, y0) ∈ L(X,Z) and
Dyf(x0, y0) ∈ L(Y,Z).

One can thus interpret a partial Fréchet derivative with respect to one variable, as the Fréchet
derivative of the function of which the other variable is fixed, as is also the case in for example
functions like f : R2 → R. When keeping this interpretation in mind, one sees that the rules for
and the properties of a partial Fréchet derivative equal that of the Fréchet derivative previously
discussed. One can naturally extend this definition (and the theorem following) to the case of a
function having an n−fold Cartesian product as domain, but for the purpose of simplicity and
because in this project we only consider functions with domain being a Cartesian product of
at most two Banach spaces, we refrain from doing so here. There exist relations between the
Fréchet derivative of a function and its partial Fréchet derivatives.

Theorem 5.10. Let f : X × Y ⊃ U → Z be differentiable with U open. Then the partial
derivatives at a point (x0, y0) ∈ U exist and are given by Dxf(x0, y0)[h] = Df(x0, y0)[h, 0] and
Dyf(x0, y0)[k] = Df(x0, y0)[0, k], where h ∈ X and k ∈ Y . From this we also see that

Df(x0, y0)[h, k] = Df(x0, y0)[h, 0] +Df(x0, y0)[0, k] = Dxf(x0, y0)[h] +Dyf(x0, y0)[k].

Proof. For a proof we refer to [1] Proposition 2.4.12.

Now that we have a notion of partial Fréchet differentiation for functions between Banach spaces,
we can state an important theorem that we know from multivariable calculus. We again restrict
ourselves to only a Cartesian product of two Banach spaces as domain, as it is easily expanded
to a product of more spaces.

Theorem 5.11 (Implicit Function Theorem). Let X,Y, Z be Banach spaces, U ⊂ X,V ⊂ Y be
open, with x0 ∈ U, y0 ∈ V and let f : U × V → Z be Fréchet differentiable, with f(x0, y0) = 0. If
Dyf(x0, y0) : Y → Z is an isomorphism, then there exist neighbourhoods U0 3 x0 and V0 3 y0

and a unique Fréchet differentiable map g : U0 → V0 that satisfies f(x, g(x)) = 0 and f(x, y) = 0
if and only if y = g(x) for all (x, y) ∈ U0 × V0.

Proof. See [7] for a proof.

5.2 Fréchet derivative for operators on Hs(S2)

We will later use and apply the knowledge of the previous section on the operator F defined in
(4.4). As the domain of this operator is the Cartesian product of R3 and Hs

+(S2) (for a certain
s > 0), we need to verify that the latter is a Banach algebra, such that we can also apply the
product rule when Fréchet differentiating with respect to u ∈ Hs(S2). Proving this fact here
explicitly would be too involved and beyond the scope of this project, so we will point out the
way along which one would prove this.

The multiplication in this functions space is pointwise multiplication, i.e. for u, v ∈ Hs(S2)
its multiplication is given by uv(θ, φ) = u(θ, φ)v(θ, φ) for θ ∈ [0, π], φ ∈ [0, 2π]. It also has an
identity element, the 1-function and a norm discussed in Section 3, especially in (3.7). To help
prove that this together is an Banach algebra we need the notion of the cone condition.
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Definition 5.12 (Cone condition). [3] A region Ω satisfies the cone condition if there exists
a finite cone C such that each x ∈ Ω is the vertex of a finite cone Cx contained in Ω that is
congruent to C.

As we have defined our Sobolev space on the manifold S2, we can not directly apply Theorem
4.39 of [3] However, after choosing suitable charts we get from this theorem:

Theorem 5.13. If s > 1, there exists a constant K, dependent on s such that for u, v ∈ Hs(S2)
the product uv, defined pointwise, satisfies

||uv||Hs(S2) ≤ K||u||Hs(S2)||v||Hs(S2),

making Hs(S2) a communtative Banach algebra for s > 1.

So in the sequel, whenever using the product rule on a function u ∈ Hs(S2), we implicitly
assume s > 1. Now we are in the position to define some specific operators on Hs(S2) we will
encounter in the sequel and give their Fréchet derivatives. Remember that we have denoted with
Hs

+(S2) = {u ∈ Hs(S2)|u > 0} the positive functions in Hs(S2).

Theorem 5.14. Let An : Hs(S2)→ Hs(S2) be given by

Hs(S2) 3 u 7→ An(u) = un such that An(u(θ, φ)) = (u(θ, φ))n.

Also let R,S : Hs
+(S2)→ Hs

+(S2) given by

Hs
+(S2) 3 u 7→ R(u) =

1

u
such that R(u(θ, φ)) =

1

u(θ, φ)

and Hs
+(S2) 3 u 7→ S(u) =

√
u such that S(u(θ, φ)) =

√
u(θ, φ).

Then the operators An, R, S are Fréchet differentiable on their domains with Fréchet derivatives:

DAn(u(θ, φ))[h] = nAn−1(u(θ, φ))h = n(u(θ, φ))n−1h,

DR(u(θ, φ)[h] = − 1

u(θ, φ)2
h,

DS(u(θ, φ)[h] =
1

2
√
u(θ, φ)

h.

Proof. For a proof we refer to [17], as there are no meaningful differences between the two
dimensional setting there and the three dimensional setting here, Hs(S1) versus Hs(S2).
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6 Linearization

As finding solutions to (4.6) is outside the scope of this project, we linearize this system around
the trivial solution with u = 1, ~v = ~v0 and look for solutions to this linearized system close to
this trivial solution. This will give us an indication on the solutions of the non-linear problem
near the trivial one. One can view this in the following way: assume that the solutions to (4.6)
form a manifold M in Hs

+(S2)×R3, such that M := {(u,~v) ∈ Hs
+(S2)×R3 : (u,~v) solves (4.6)},

now by linearizing around (1, ~v0) ∈ M we look for combinations of u and ~v that are in the
tangent space to M at (1, ~v0), denoted by T(1, ~v0)M . This is visually represented in Figure 2 and
one can see that in the neighbourhood of the trivial solution the solutions in the tangent space,
and thus solutions of the linearized system, approximate solutions in M . Linearizing in this
context means taking the Fréchet derivative at (~v0,1). We will see how a small change of ~v from
~v0 will influence u and vice versa, while still satisfying the linearized equation and therefore
resembling a solution of (4.6).

Taking the Fréchet derivative of (4.4) at (1, ~v0) according to Theorem 5.10 gives us

0 = DF (1, ~v0) = D~vF (1, ~v0) +DuF (1, ~v0) on S2.

Computing the Fréchet derivative of F with respect to ~v is relatively straightforward as F only
contains one term with ~v. At (1, ~v0) it is given by:

D~vF (1, ~v0)[k] = γk · n(u)
∣∣
u=1,~v= ~v0

= γ(k1 ~e1 + k2 ~e2 + k3 ~e3) · er
= γ(k1 sin θ cosφ+ k2 sin θ sinφ+ k3 cos θ),

with k1, k2, k3 ∈ R. The Fréchet derivative with respect to u is a bit more involved and will be
computed in the subsequent section, where we will denote it by L̂h := DuF (1, ~v0)[h].

We see that the conditions in (4.5) are independent of ~v, such that only the Fréchet derivative
with respect to u plays a part. Computing these derivatives we see that these conditions turn
into

〈u2h,1〉L2(S2) = 〈u3h, sin θ cosφ〉L2(S2) = 〈u3h, sin θ sinφ〉L2(S2) = 〈u3h, cos θ〉L2(S2) = 0. (6.1)

Figure 2: Visualization of the tangent space of M at (~v0,1).
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Now writing k = ~v − ~v0 and h = u− 1 the linearization of (4.6) around (1, ~v0) is

γ(~v − ~v0) · (sin θ cosφ, sin θ sinφ, cos θ) + L̂(u− 1) = 0,
〈u− 1,1〉L2(S2) = 〈u− 1, sin θ cosφ〉L2(S2) = 0,

〈u− 1, cos θ〉L2(S2) = 〈u− 1, sin θ sinφ〉L2(S2) = 0.

 (6.2)

In the sequel, we will only consider this system and will find solutions, u ∈ Hs
+(S2) for sufficiently

high s and corresponding ~v ∈ R3, to this linearized system only.

6.1 Fréchet derivative of F with respect to u

For the Fréchet derivative of F around u = 1, ~v = ~v0 we have that

L̂h := DuF (1, ~v0)[h] = Du(x3(u)− γ~v · n(u) +Aγ(u)[γn3(u)− x3(u)])[h]
∣∣∣
u=1,~v= ~v0

.

By linearity of the Fréchet derivative (Theorem 5.3), we can compute component-wise;
L̂h = x′3(u)[h] − γ~v · n′(u)[h] + Du(Aγ(u)[γn3(u) − x3(u)])[h]. Here again the apostrophe ′

indicates the Fréchet derivative with respect to u. Firstly, as x(u) = u er, we have that

x′(u)(θ, φ)[h] = x′(1)[h] = h er and x′3(u)(θ, φ)[h] = x′3(1)(θ, φ)[h] = h cos θ.

The computation of the Fréchet derivative of the unit normal n(u) exploits several properties
of this derivative mentioned in Section 5, such as Theorems 5.3, 5.7 and 5.8 and comes down
to

n′(u)(θ, φ)[h] = −(u2
φ + sin2 θ(u2

θ + u2))−
3
2 (uφhφ + sin2 θ(uθhθ + uh))

[u sin θ er − uθ sin θ eθ − uφ eφ]

+ (u2
φ + sin2 θ(u2

θ + u2))−
1
2 [h sin θ er − hθ sin θ eθ − hφ eφ] .

With u = 1 we have that

n′(1)(θ, φ)[h] = −hθ eθ −
1

sin θ
hφ eφ and

n′3(1)(θ, φ)[h] = hθ sin θ.

Now because

Du(Aγ(u)[γn3(u)− x3(u)][h]) = Aγ(u)[γn′3(u)[h]− x′3(u)[h]] +A′γ(u){h}[γn3(u)− x3(u)],

we need an expression for A′γ(u){h}f for an arbitrary f : S2 → R. We find this in [11], specifically
in Lemma 2.1. It states that

A′γ(u){h}f = Aγ(u)[−∂rg ◦ x(u))h+ γ(∂r∂ng ◦ x(u))h+ (∇g ◦ x(u)) · n′(u){h})] + ∂rg ◦ x(u))h,

where g = Aγ(u)f ◦ x(u)−1. This can be verified by ”variation of the domain” of (4.3) as
described in [11] and explicitly written out in [17]. A formal proof in a slightly different situation
that does not influence the validity of the proof in this case can be found in [10]. In this case,
with u = 1, we have that f = γn3− x3 = (γ− 1)x3 and that Ω1 = B1(0). This corresponds with
the system (2.2), such that, according to Result 2.1

g = Aγ(1)[γn3 − x3] ◦ x(u)−1 =
γ − 1

1 + 2γ

x3

|x|3
=

γ − 1

1 + 2γ

cos θ

r2
.
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As we are now working on S2, things simplify somewhat as x(1) is the identity and ∂r = ∂n. We
compute the necessary (directional) derivatives.

We first compute the gradient of g in spherical coordinates and compute ∇g · n′(1){h} and ∂ng
on Γ1 = S2 (r = 1) and see that the latter coincides with the computation of Result 2.1.

∇g =
γ − 1

1 + 2γ

(
−2 cos θ

r3
er −

sin θ

r3
eθ

)
,

∂rg = ∂ng = n(1) · ∇g
∣∣∣
r=1

= −2
γ − 1

1 + 2γ
cos θ = 2

1− γ
1 + 2γ

x3,

∇g · n′(1){h}
∣∣∣
r=1

=
γ − 1

1 + 2γ
(sin θ hθ).

On S2, we have that ∂2
n(1)g = ∂2

rg
∣∣
r=1

= 6 γ−1
1+2γ cos θ. Also when computing in Cartesian

coordinates we can use ∂2
n(1)g = n(1)THn(1), where H is the Hessian matrix of g. We use

that n(1) = x1 e1 + x2 e2 + x3 e3 on S2. Indeed we have that ∂2
n(1)g

∣∣
|x|=1

= 6 γ−1
1+2γx3 =

6 γ−1
1+2γ cos θ.

So we now see that

A′γ(1){h}[γn3(1)− x3(1)](θ, φ) = Aγ(1)
[
−h∂ng + γ(h∂2

ng + (∇g) · n′(1){h})
]

+ h∂ng

=
γ − 1

1 + 2γ
(Aγ(1)[2h cos θ + γ(6h cos θ + sin θ hθ)]− 2h cos θ)

=
γ − 1

1 + 2γ
(Aγ(1)[(2 + 6γ)h cos θ + γ sin θ hθ]− 2h cos θ) .

All together we have that

L̂h(θ, φ) = h cos θ − γ 3

1 + 2γ
sin θ hθ +Aγ(1)[γ sin θhθ − h cos θ]

+
γ − 1

1 + 2γ
(Aγ(1)[(2 + 6γ)h cos θ + γ sin θ hθ]− 2h cos θ)

=
1

1 + 2γ

(
(1 + 2γ − 2(γ − 1))h cos θ − 3γ sin θ hθ

+Aγ(1)[(1 + 2γ + γ − 1)γ sin θhθ + (−1− 2γ + (γ − 1)(2 + 6γ))h cos θ]
)

=
3

1 + 2γ

(
h cos θ − γ sin θ hθ +Aγ(1)[γ2 sin θhθ + (−1− 2γ + 2γ2)h cos θ]

)
. (6.3)

6.2 Spherical harmonics expansion

Our goal is to solve (6.2) with the help of (6.3). As the perturbations h of the trivial solution
are defined on S2, we can exploit the properties discussed in Section 3, especially expanding h
with respect to the spherical harmonics, i.e. h =

∑∞
l=0

∑l
m=−l h

m
l Ỹ

m
l .

However we first note that due to conditions imposed (4.5) and linearized in (6.1) the zeroth and
first degree of such an expansion vanish. Let us show why this is. When h ∈ Hs(S2) satisfies
(6.1) at u = 1 and has such an expansion, due to the orthogonality/orthonormality (Lemma 3.5)
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of the spherical harmonics we for example have:

0 = 〈h,1〉L2(S2)

=

〈 ∞∑
l=0

l∑
m=−l

hml Ỹ
m
l , 2
√
πỸ 0

0

〉
L2(S2)

= 2
√
π

∞∑
l=0

l∑
m=−l

hml

〈
Ỹ m
l , Ỹ 0

0

〉
L2(S2)

= 2
√
πh0

0 =⇒ h0
0 = 0.

Similarly the second and third linearized conditions together in (6.1) at u = 1 give that
h1

1 = h−1
1 = 0 and the fourth condition gives h0

1 = 0.

We conclude that because of the conditions we have imposed to exclude degrees of freedom, that
a spherical harmonics expansion of the perturbations h of the trivial solution that solve (6.2)
lacks the zeroth and first degree coefficients and therefore is given by

h(θ, φ) =

∞∑
l=2

l∑
m=−l

hml Ỹ
m
l (θ, φ). (6.4)

6.3 Recurrence relations spherical harmonics

To be able to solve (6.2) we see that we need expressions for cos θh and sin θhθ in (6.3). When
h is a spherical harmonic this can be done as there exist recurrence relations for these precisely
operators on the associated Legendre polynomials in terms of associated Legendre polynomials of
different degrees and by extension the same holds for the spherical harmonics. These recurrence
relations are found in tables such as in [2] and proven in [22] with the help of the generating
function for the associated Legendre polynomials. Because of the way we have defined these, see
(3.4), the generating function for an order m, call it jm, is given by

jm(s, t) = (−1)|m|(2|m| − 1)!!
(1− s2)

|m|
2 t|m|

(1− 2st+ t2)|m|+
1
2

=
∑
l

P
|m|
l (s)tl.

Here we denote with n!! the double factorial of a natural number n, i.e. the product of the
natural numbers smaller or equal to n with the same parity as n.
To get a recurrence relation for the first operator, cos θY m

l , we follow the approach of [22] which
uses the generating function. We differentiate the generating function with respect to t, rewrite
to get jm on one side and equate coefficients of equal powers of t and we get a similar recurrence
relation; for l ∈ N \ {0}

sP
|m|
l (s) =

(l + |m|)P |m|l−1(s) + (l − |m|+ 1)P
|m|
l+1(s)

2l + 1
. (6.5)
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When we now substitute s = cos θ, multiply with eimφ to get the spherical harmonics and
normalize, we get the recurrence relation for the normalized spherical harmonics:

cos θỸ m
l (θ, φ) =

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

cos θP
|m|
l (cos θ)eimφ

=

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

(l + |m|)Y m
l−1(θ, φ) + (l − |m|+ 1)Y m

l+1(θ, φ)

2l + 1

=
(l + |m|)

√
2l+1
2l−1

l−|m|
l+|m| Ỹ

m
l−1(θ, φ) + (l − |m|+ 1)

√
2l+1
2l+3

l+1+|m|
l+1−|m| Ỹ

m
l+1(θ, φ)

2l + 1

=

√
(l−|m|)(l+|m|)

2l−1 Ỹ m
l−1(θ, φ) +

√
(l+1−|m|)(l+1+|m|)

2l+3 Ỹ m
l+1(θ, φ)

√
2l + 1

=
1√

2l + 1

[√
l2 −m2

2l − 1
Ỹ m
l−1(θ, φ) +

√
(l + 1)2 −m2

2l + 3
Ỹ m
l+1(θ, φ)

]
. (6.6)

For a worked out derivation of (6.5), see Appendix.

Next, we look at ∂θh, for h = Ỹ m
l a spherical harmonic of degree l and order m. For this we

need the derivative of the associated Legendre polynomials, again recursively represented in
associated Legendre polynomials (of different degrees or orders). We start by simply applying
the product rule and recognizing associated Legendre polynomials;

d

ds
P
|m|
l (s) =

d

ds

[
(−1)|m|

2ll!
(1− s2)|m|/2

dl+|m|

dsl+|m|
[(s2 − 1)l]

]

=− (−1)|m|

2ll!
|m|s(1− s2)|m|/2−1 d

l+|m|

dsl+|m|
[(s2 − 1)l]

− 1

(1− s2)1/2

(−1)|m|+1

2ll!
(1− s2)(|m|+1)/2 d

l+|m|+1

dsl+|m|+1
[(s2 − 1)l]

=− |m|s(1− s2)−1P
|m|
l (s)− (1− s2)−1/2P

|m|+1
l (s).

We see that we can write the derivative in terms of the original polynomial. We ultimately want

to compute sin θ∂θP
|m|
l (cos θ) = −(1− s2) ddsP

|m|
l (s)

∣∣
s=cos θ

and so we see that we are interested

in rewriting sP
|m|
l (s) and (1− s2)1/2P

|m|+1
l (s). For the former we can use (6.5) or (6.6) and the

following, (6.7), for the latter; for l ≥ 1:√
1− s2P

|m|+1
l (s) =

1

2l + 1

[
(l − |m|)(l − |m|+ 1)P

|m|
l+1(s)− (l + |m|)(l + |m|+ 1)P

|m|
l−1(s)

]
.

(6.7)
For a worked out derivation of this recurrence relation see the Appendix. Now putting everything
together we get, for l ≥ 1,
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sin θ
d

dθ
P
|m|
l (cos θ) =− (1− s2)

d

ds
P
|m|
l (s)

∣∣
s=cos θ

=
[
|m|sP |m|l (s) + (1− s2)

1
2P
|m|+1
l (s)

]
s=cos θ

=
1

2l + 1

[
|m|

(
(l + |m|)P |m|l−1(s) + (l − |m|+ 1))P

|m|
l+1(s)

)
+
(

(l − |m|)(l − |m|+ 1)P
|m|
l+1(s)− (l + |m|)(l + |m|+ 1)P

|m|
l−1(s)

) ]
s=cos θ

=
1

2l + 1

[
l(l − |m|+ 1))P

|m|
l+1(cos θ)− (l + 1)(l + |m|)P |m|l−1(cos θ)

]
.

We multiply with eimφ and normalize to get the ultimate expression for sin θhθ we were looking
for, in the same way as done in (6.6), for l ≥ 1,

sin θhθ = sin θ∂θ[Ỹ
m
l (θ, φ)] = sin θ

∂

∂θ

[√
2l + 1

4π

(l − |m|)!
(l + |m|)!

P
|m|
l (cos θ)eimφ

]

=

√
2l + 1

4π

(l − |m|)!
(l + |m|)!

eimφ
1

2l + 1

[
l(l − |m|+ 1))P

|m|
l+1(cos θ)− (l + 1)(l + |m|)P |m|l−1(cos θ)

]
=

1√
2l + 1

[
l

√
(l + 1)2 −m2

2l + 3
Ỹ m
l+1(θ, φ)− (l + 1)

√
l2 −m2

2l − 1
Ỹ m
l−1(θ, φ)

]
. (6.8)

Note that in both (6.6) and (6.8) the operators operating on the spherical harmonics are
recursively represented by a linear combination of spherical harmonics of one degree higher and
of one degree lower, but with constant order. Furthermore, note that the recurrence relations
hold for l ≥ 1. This is no obstacle in our computations however as in our expansion (6.4) we
only consider spherical harmonics of degree 2 and larger. Lastly, one should keep in mind that

for |m| = l, expressions such as P
|m|+1
l and P

|m|
l−1 are zero by definition and by extension the

same holds for the respective spherical harmonics. One also sees that precisely those terms have
a coefficient (containing l2 −m2) equal to zero in (6.6) and (6.8), such that it is also apparent
from their coefficients that precisely those terms do not contribute to the recurrence relation. In
the prior computation steps one should keep this fact in mind however.
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6.4 Main results and illustrations

Now that we have a way to represent the the operators on the spherical harmonics present in
(6.3), we can actually compute L̂h for h being a spherical harmonic.

Result 6.1. Let us denote with (cml )+ =
√

(l+1)2−m2

2l+3 and (cml )− =
√

l2−m2

2l−1 , the coefficients

present in front of Ỹ m
l+1 and Ỹ m

l−1 in the recurrence relations found before respectively. Now we
see that for l ∈ N \ {0, 1} and m ∈ Z with |m| ≤ l, we have that

L̂Ỹ m
l (θ, φ) =

3

1 + 2γ

(
cos θỸ m

l (θ, φ)− γ sin θ ∂θỸ
m
l (θ, φ)

+Aγ(1)
[
γ2 sin θ ∂θỸ

m
l (θ, φ) + (−1− 2γ + 2γ2) cos θỸ m

l (θ, φ)
] )

(1)
=

3

(1 + 2γ)
√

2l + 1

( [
(cml )−Ỹ m

l−1(θ, φ) + (cml )+Ỹ m
l+1(θ, φ)

]
− γ

[
l(cml )+Ỹ m

l+1(θ, φ)− (l + 1)(cml )−Ỹ m
l−1(θ, φ)

]
+Aγ(1)

[
γ2
[
l(cml )+Ỹ m

l+1(θ, φ)− (l + 1)(cml )−Ỹ m
l−1(θ, φ)

]
+ (−1− 2γ + 2γ2)

[
(cml )−Ỹ m

l−1(θ, φ) + (cml )+Ỹ m
l+1(θ, φ)

] ])
(2)
=

3

(1 + 2γ)
√

2l + 1

(
(1− γl)(cml )+Ỹ m

l+1(θ, φ) + (γ(l + 1) + 1)(cml )−Ỹ m
l−1(θ, φ)

+Aγ(1)
[
− (1 + 2γ + (l − 1)γ2)(cml )−Ỹ m

l−1(θ, φ)

+ (−1− 2γ + (2 + l)γ2)(cml )+Ỹ m
l+1(θ, φ)

])
(3)
=

3

(1 + 2γ)
√

2l + 1

(
(1− γl)(cml )+Ỹ m

l+1(θ, φ) + (γ(l + 1) + 1)(cml )−Ỹ m
l−1(θ, φ)

− 1 + 2γ + (l − 1)γ2

lγ + 1
(cml )−Ỹ m

l−1(θ, φ)− 1 + 2γ − (2 + l)γ2

(2 + l)γ + 1
(cml )+Ỹ m

l+1(θ, φ)
)

(4)
=

3γ

(1 + 2γ)
√

2l + 1

(−1 + γ + 2l + γl2

lγ + 1
(cml )−Ỹ m

l−1(θ, φ) +
γ(2− l − l2)

(2 + l)γ + 1
(cml )+Ỹ m

l+1(θ, φ)
)
.

In this computation we have filled in the recurrence relations (6.6) and (6.8) in (1), took terms
of Y m

l−1 and Y m
l+1 together in (2), applied Result 4.1 in (3) and again took terms of Y m

l−1 and Y m
l+1

together, while moving the common factor γ in front of the brackets in (4). Note again that
(cml )− = 0 for |m| = l. All in all we now have the following result:

Result 6.2. When the perturbations h of the trivial solution are expanded with respect to the
spherical harmonics, i.e. h =

∑∞
l=2

∑l
m=−l h

m
l Ỹ

m
l , then L̂h is given by the following expression:

L̂h(θ, φ) =
3γ

1 + 2γ

∞∑
l=2

l∑
m=−l

aml h
m
l Ỹ

m
l−1(θ, φ) + bml h

m
l Ỹ

m
l+1(θ, φ), (6.9)

28



in which the coefficients aml and bml are given by

aml =
−1 + γ + 2l + γl2

lγ + 1

√
l2 −m2

4l2 − 1
,

bml = γ
2− l − l2

(2 + l)γ + 1

√
(l + 1)2 −m2

4(l + 1)2 − 1

= (l − 1)

(
1

(2 + l)γ + 1
− 1

)√
(l + 1)2 −m2

4(l + 1)2 − 1
.

Again note that the coefficient in front of a spherical harmonic that would be zero anyway; a±ll ,
equals zero as well. In this way one has to essentially only look at the coefficients.

By grouping terms we can give the Fréchet derivative of F with respect to u at (1, ~v0) a spherical
harmonics representation.

Result 6.3. When the perturbations h of the trivial solution are expanded with respect to
spherical harmonics, i.e. h =

∑∞
l=2

∑l
m=−l h

m
l Ỹ

m
l , then L̂h also can be expanded with respect to

the spherical harmonics, i.e. it is given by L̂h(θ, φ) = 3γ
1+2γ

∑∞
l=1

∑l
m=−l k

m
l (h)Ỹ m

l (θ, φ). In this
case the coefficients kml (h) are dependent on h and are given by

kml (h) =


am2 h

m
2 for l = 1,m = −1, 0, 1,

am3 h
m
3 for l = 2,m = −2, ..., 2,

aml+1h
m
l+1 + bml−1h

m
l−1 for l ≥ 3, |m| < l,

aml+1h
m
l+1 for l ≥ 3, |m| = l.

(6.10)

Here we have just collected terms of the same spherical harmonics. For l = 1, 2 there is only one
term to consider, but for l ≥ 3 there are two. Note however that for |m| = l, bml−1 = 0, such that
for these orders this part is absent. With these results at hand we can now get a good view of
how a solution to the linearized system (6.2) looks like. The leftmost term in (6.2)1 is a linear
combination of the spherical harmonics of degree 1, see (6.13). Therefore we need the following
result.

Theorem 6.4. The equation L̂h =
∑1

m=−1 α
mỸ m

1 = α−1Ỹ −1
1 + α0Ỹ 0

1 + α1Ỹ 1
1 , where αm are

constants, has a unique solution given by

h(θ, φ) =
1 + 2γ

3γ

∞∑
l=1

1∑
m=−1

αmcml Y
m

2l (θ, φ), (6.11)

with the coefficients given by

cm1 =
1

am2
, cml = (−1)l+1 b

m
2 ...b

m
2l−2

am2 ...a
m
2l

(l ≥ 2). (6.12)

Here the coefficients aml and bml are the those from Result 6.2.

Proof. The perturbations h is a spherical harmonics expansion, which we can write in the
conventional way as in (6.4), with hm2l = 1+2γ

3γ αmcml for l ∈ N+, m = −1, 0, 1 and hml = 0
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otherwise. Now using this and Result 6.3 we find that

L̂h
I
=

3γ

1 + 2γ

∞∑
l=1

l∑
m=−l

kml (h)Ỹ m
l

II
=

3γ

1 + 2γ

(
1∑

m=−1

am2 h
m
2 Ỹ

m
1 +

1∑
m=−1

am3 h
m
3 Ỹ

m
2 +

∞∑
l=3

1∑
m=−1

(aml+1h
m
l+1 + bml−1h

m
l−1)Ỹ m

l

)

III
=

1∑
m=−1

αmam2 c
m
1 Ỹ

m
1 +

3γ

1 + 2γ

 1∑
m=−1

am3 hm3︸︷︷︸
=0

Ỹ m
2 +

∞∑
l=1

1∑
m=−1

(am2l+2h
m
2l+2 + bm2lh

m
2l)Ỹ

m
2l+1


IV
=

1∑
m=−1

αmỸ m
1 +

∞∑
l=1

1∑
m=−1

αm(am2l+2c
m
l+1 + bm2lc

m
l )Ỹ m

2l+1

V
=

1∑
m=−1

αmỸ m
1 +

∞∑
l=1

1∑
m=−1

αm(−1)l+1(−am2l+2

bm2 ...b
m
2l

am2 ...a
m
2l+2

+ bm2l
bm2 ...b

m
2l−2

am2 ...a
m
2l

)Ỹ m
2l+1

V I
=

1∑
m=−1

αmỸ m
1 .

Here the following steps were taken in the marked equations:

I Result 6.3 was applied, here the coefficients kml (h) are the coefficients present in this result.

II Here the expressions for the coefficients kml (h) were filled in and the case distinction in
(6.10) was taken into account by splitting the summation. Realizing that only for |m| ≤ 1
the coefficients are nonzero, the summation was restricted to include only these.

III The expressions for hm2l were filled in and for higher values of l it was recognized that the
terms for even l’s do not contribute as the h-coefficients are zero then. A change of index
was made in the summation to only have an expansion of odd degree spherical harmonics.

IV The expression for the h-coefficients were filled in, i.e. hm2l = 1+2γ
3γ αmcml .

V The expressions for the c-coefficients were filled in according to (6.12).

VI The coefficients for the higher degree spherical harmonics in the summation are all zero,
leaving us with what we wanted to prove.

With this last result we can solve the linearized system, (6.2), around (1, ~v0). Namely;

L̂h = α−1Ỹ −1
1 + α0Ỹ 0

1 + α1Ỹ 1
1

= −α−1 1

2

√
3

2π
sin θe−iφ + α0 1

2

√
3

π
cos θ − α1 1

2

√
3

2π
sin θeiφ

= −1

2

√
3

2π
sin θ

(
α−1(cosφ− i sinφ) + α1(cosφ+ i sinφ)

)
+ α0 1

2

√
3

π
cos θ

= −1

2

√
3

2π
(α−1 + α1, i(α1 − α−1),−

√
2α0) · (sin θ cosφ, sin θ sinφ, cos θ). (6.13)
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So now we can relate the velocity of the traveling wave ~v (near ~v0) with the shape of the domain
Ωu via the function u (near 1) with Theorem 6.4 in the following way:

u(θ, φ) = 1 + h(θ, φ) = 1 +
1 + 2γ

3γ

∞∑
l=1

1∑
m=−1

αmcml Y
m

2l (θ, φ).

Here the cml are from (6.12) and the αml are chosen in such a way that (6.13) equals the
first equation in the linearized system (6.2). In other words, the αml solve the system of
equations

1

2

√
3

2π
(α−1 + α1, i(α1 − α−1),−

√
2α0) = γ(~v − ~v0). (6.14)

To illustrate this, Figure 3, displays the different shapes of the regions Ωu that correspond with a
small change of the trivial solution (±0.1 in each of the three Cartesian directions). To get a good
insight in the way the shape deforms from the trivial shape, the unit sphere, when perturbing
the velocity ~v slightly, the value of γ was fixed at γ = 1

2 and the values of the α-coefficients
solving the corresponding system (6.14) are shown in Table 1. One can see that the domains
deform from the unit sphere, being lopsided in the direction of the perturbation of the velocity
corresponding to the trivial solution (2.3) and in the ~e3-direction. This is to be expected as the
velocity ~v now has a component in both directions, as ~v0 is solely in the ~e3-direction. When these
two directions coincide, as in Figure 3e and 3f, one only sees this lobsideness as a stretching or
compressing of the unit sphere in the ~e3-direction. For γ = 1

2 , |~v0| = 3
2 and one sees that making

a relatively small change to the velocity changes the shape quite drastically. The Mathematica
code written to generate the plots of Figure 3 can be found in the Appendix, there one can
see that the function in (6.11) is used. However, the index l only runs to 10 instead to infinity,
which would obviously be impossible to implement in Mathematica. The limit 10 was chosen
because of the rapid decay of the cml ’s (see Section 6.5), for higher orders the contribution would
be so minor that it would not visible on the plots and drive up the execution time of the script
unnecessarily.

~v − ~v0 α−1 α0 α1 α−1Ỹ −1
1 + α0Ỹ 0

1 + α1Ỹ 1
1

±0.1~e1 ± 1
20

√
2π
3 0 ± 1

20

√
2π
3 ∓ 1

20 sin θ cosφ

±0.1~e2 ± i
20

√
2π
3 0 ∓ i

20

√
2π
3 ∓ 1

20 sin θ sinφ

±0.1~e3 0 ∓ 1
10

√
π
3 0 ∓ 1

20 cos θ

Table 1: Values for the α-coefficients for the visualizations of the solutions shown in Figure 3,
with γ = 1

2 .
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(a) ~v − ~v0 = −0.1 e1 (b) ~v − ~v0 = 0.1 e1

(c) ~v − ~v0 = −0.1 e2 (d) ~v − ~v0 = 0.1 e2

(e) ~v − ~v0 = −0.1 e3

(f) ~v − ~v0 = 0.1 e3

Figure 3: Domains corresponding to solutions of (6.2), with γ = 1
2 and perturbations of the

velocity corresponding to the trivial solution (2.3).
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6.5 Smoothness of domain describing function

To assist in computing the cml and with it visualizing the bubble domains, it might be useful to
know that for l ≥ 2 they can be recursively represented in the following way:

cml+1 = (−1)l+1+1 bm2 ...b
m
2l

am2 ...a
m
2l+2

= −(−1)l+1 b
m
2 ...b

m
2l−2

am2 ...a
m
2l

bm2l
am2l+2

= −
bm2l
am2l+2

cml .

This recursion is also helpful in determining for which value of s the second component of a
solution of (6.2), u(= h+ 1), is in Hs

+(S2) and with that determine the smoothness of u. This
is based on Theorem 6.4 and in this section we will lay out how this is done.

For this we use the gamma function and one of its asymptotic approximations. The gamma
function, Γ : C \ Z−0 → C, is defined such that Γ(1) = 1 and Γ(x+ 1) = xΓ(x) for any positive
real number x. This factorial behavior is also what we will exploit. First we compute the above
recurrence relation for the nonzero entries it has, i.e. for m = 0,±1;

c0
l+1 =

(l − 1
2)(l + 1

2)

(l +
1+2γ+

√
1+γ−γ2

2γ )(l +
1+2γ−

√
1+γ−γ2

2γ )

√
l + 5

4

l + 1
4

c0
l , (6.15)

c±1
l+1 =

(l + 1)(l − 1
2)

4(l +
1+2γ+

√
1+γ−γ2

2γ )(l +
1+2γ−

√
1+γ−γ2

2γ )

√
l(l + 1)(l + 5

4)

(l + 1
4)(l + 1

2)(l + 3
2)
c±1
l .

One should realize that we can continuously use this recursion (on cml , cml−1, etcetera) until cml+1

is expressed in terms of cm2 (l ≥ 2). We will prove this for m = 0;

Proof. We will denote with D(γ) a constant dependent on γ that is given

D(γ) =
Γ(2 +

1+2γ+
√

1+γ−γ2
2γ )Γ(2 +

1+2γ−
√

1+γ−γ2
2γ )

Γ(3
2)Γ(5

2)

√
Γ(9

4)

Γ(13
4 )

= 8
Γ(2 +

1+2γ+
√

1+γ−γ2
2γ )Γ(2 +

1+2γ−
√

1+γ−γ2
2γ )

3π

√
Γ(9

4)

Γ(13
4 )

≈ 0.56589Γ(2 +
1 + 2γ +

√
1 + γ − γ2

2γ
)Γ(2 +

1 + 2γ −
√

1 + γ − γ2

2γ
)

and prove by induction that

c0
l = D(γ)

Γ(l − 1
2)Γ(l + 1

2)

Γ(l +
1+2γ+

√
1+γ−γ2

2γ )Γ(l +
1+2γ−

√
1+γ−γ2

2γ )

√
Γ(l + 5

4)

Γ(l + 1
4)
c0

2 (6.16)

for l ≥ 2. Let us start with the base case l = 2. It is clear that when filling in l = 2 in (6.16)
that all terms with the gamma function cancel with those present in D(γ), leaving only c0

2. Now
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for the induction step, we assume that (6.16) holds for a certain n ≥ 2. Then, by applying the
recurrence relation (6.15), we have

c0
n+1 =

(n− 1
2)(n+ 1

2)

(n+
1+2γ+

√
1+γ−γ2

2γ )(n+
1+2γ−

√
1+γ−γ2

2γ )

√
n+ 5

4

n+ 1
4

c0
n

(IH)
= D(γ)

(n− 1
2)Γ(n− 1

2)(n+ 1
2)Γ(n+ 1

2)

√
(n+ 5

4
)Γ(n+ 5

4
)

(n+ 1
4

)Γ(n+ 1
4

)
c2

0

(n+
1+2γ+

√
1+γ−γ2

2γ )Γ(n+
1+2γ+

√
1+γ−γ2

2γ )(n+
1+2γ−

√
1+γ−γ2

2γ )Γ(n+
1+2γ−

√
1+γ−γ2

2γ )

=D(γ)
Γ(n+ 1− 1

2)Γ(n+ 1 + 1
2)

Γ(n+ 1 +
1+2γ+

√
1+γ−γ2

2γ )Γ(n+ 1 +
1+2γ−

√
1+γ−γ2

2γ )

√
Γ(n+ 1 + 5

4)

Γ(n+ 1 + 1
4)
c0

2.

Here we have applied the induction hypothesis in the equality marked with (IH) and then have
used the defining property of the gamma function, xΓ(x) = Γ(x+ 1), in the consequent equality.
We see that (6.16) also holds for l = n+ 1, concluding the proof.

Now we have represented the coefficients c0
l as quotients of gamma functions we can use an

asymptotic property of the gamma function one can get from well known Sterling’s formula. This

property says that Γ(x+α)
Γ(x+β) ∼ x

α−β for x→∞ [8]. With this we can conclude that c0
l ∼ l

−( 3
2

+ 1
γ

)

for l → ∞. As a±1
l , b±1

l are only slightly different from a0
l , b

0
l respectively, we see the same

asymptotic behavior for c±1
l as for c0

l , i.e. c±1
l ∼ l

−( 3
2

+ 1
γ

)
for l→∞. One could prove that in a

similar way as done before with

c±1
l = E(γ)

Γ(l)Γ(l − 3
2)

4Γ(l +
1+
√

1+γ−γ2
2γ )Γ(l +

1−
√

1+γ−γ2
2γ )

√
Γ(l − 1)Γ(l)Γ(l + 1

4)

Γ(l − 3
4)Γ(l − 1

2)Γ(l + 1
2)
c±1

2 , where

E(γ) =
4Γ(2 +

1+
√

1+γ−γ2
2γ )Γ(2 +

1−
√

1+γ−γ2
2γ )

Γ(2)Γ(1
2)

√
Γ(5

4)Γ(3
2)Γ(5

2)

Γ(1)Γ(2)Γ(9
4)
.

We conclude that |cml |2 ∼ l
−(3+ 2

γ
)

for big enough l. Now to find out for which s, u is in Hs
+(S2)

we need to have ||u||2Hs(S2) <∞, as per Definition 3.7 B. Because u is a linear combination of

only the even spherical harmonics, we are interested in the behavior of (1 + (2l)2)s|cml |2. Note
that (for big l) this quantity is independent of m and that for the convergence of ||u||2Hs(S2) only

these are important. Let us denote with K(γ) some finite value that represents the contribution
of the lower degree contributions to the norm. Then we have

||u||2Hs(S2) = K(γ) +

∞∑
l=l0

1∑
m=−1

(1 + (2l)2)s|cml |2 ∼ K(γ) + 3

∞∑
l=l0

l2sl
−(3+ 2

γ
)
,

for some l0 big enough. For this sum to be convergent we need 2s − 3 − 2
γ < −1 and thus

we conclude that u ∈ Hs
+(S2) for s < 1 + 1

γ . As we have used the product rule prior in the
computation, we also have the the condition that s > 1. This is based on Theorem 5.13, as for
these values Hs

+(S2) is a Banach algebra. So s ∈ (1, 1/γ) is (formally) the reasonable interval to
consider the linearized problem.
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6.6 Problem’s invariances on level of linearization

As we have now established our result, we will take a look at how the invariances of our problem,
as discussed in Section 2.1, translate themselves when changing to the linearized operator
problem. These properties should also be present in some way in the linearization. It turns out
that they express themselves when computing L̂Ỹ m

l for degrees not covered in Result 6.1, i.e.
for l = 0, 1. We namely have that

L̂Ỹ 0
0 =

3γ2

(1 + 2γ)2
√
π

cos θ =
2
√

3γ2

(1 + 2γ)2
Ỹ 0

1 , L̂Ỹ ±1
1 = L̂Ỹ 0

1 = 0.

In this section we will point out how the translational invariance expresses itself in the latter
equalities on the level of the linearization. We introduce a small translation of our trivial domain;
Ωua = B1(a), where a ∈ B1(0) ⊂ R3. We can have only a small translation (i.e. a ∈ B1(0))
to make sure that Ωua still is a star-shaped domain with respect to the origin. This is not a
problem however, as we will differentiate at a = 0 anyway. Here this function ua : S2 → R
should describe the domain Ωua as in (4.1). Therefore it should satisfy ua(

x+a
|x+a|) = |x+ a| and

u0 = 1. Then because of the translational invariance we must have that F (~v0, ua) = 0 on S2.
As we have linearized this equation around (~v0,1), we should take the Fréchet derivative of this
equation with respect to a at a = 0. We have, by the chain rule (Theorem 5.5), that for all
h ∈ R3

0 = Da(0)[h] =DaF (v0, ua)
∣∣
a=0

[h] = DuF (v0, ua)[Daua(x)[h]]
∣∣
a=0

= L̂[Daua(x)[h]]
∣∣
a=0

.

To compute this Fréchet derivative with respect to a of ua(x) at a = 0, we first consider the
derivative of u0 with respect to x ∈ S2, which obviously is zero. This can also be seen in the
following way; Dxu0(x)[z] = d

dt(u0 ◦ ψ)(t)
∣∣
t=0

= d
dt1
∣∣
t=0

= 0. Here ψ is a curve on S2 with

ψ′(0) = z. Next we define for any x0 ∈ S2 the operator Qx0 given by Qx0(a) = x0+a
|x0+a| such that

ua(Qx0(a)) = |x0 + a|. Note that Qx0(0) = x0.

We will differentiate ua(
x+a
|x+a|) = |x+ a| with respect to a at a = 0. For the left-hand side we use

Q and the chain rule; for h ∈ R3 we have

Daua(Qx(a)))
∣∣
a=0

[h] = Daua{h}(Qx(a))
∣∣
a=0

+DQua(Qx(a))[DaQx(a)[h]]
∣∣
a=0

= Daua(x)
∣∣
a=0

[h] +DQu0(x)︸ ︷︷ ︸
=0

[DaQx(a)
∣∣
a=0

]

= Daua(x)
∣∣
a=0

[h].

Here we have indicated the use of the fact we have just established that the derivative of u0

with respect to any x ∈ S2 is zero. As Qx(a) ∈ S2, also the highlighted term yields zero.

The right-hand side is quite straightforward as the Frechét derivative of such a finite dimensional
is the usual derivative. Particularly, the coordinates of the Jacobian matrix, J, represent it and
as the right-hand side is a function R3 → R it is will just be the gradient.
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We have for x ∈ S2, h ∈ R3

Da|x+ a|
∣∣
a=0

[h] = Da((
3∑
i=1

(xi + ai)
2)1/2)

∣∣
a=0

[h]

= J((

3∑
i=1

(xi + ai)
2)1/2)

∣∣
a=0
· h

=

3∑
j=1

∂

∂aj
((

3∑
i=1

(xi + ai)
2)1/2)

∣∣
a=0

hj

=
3∑
j=1

(
1

2
(

3∑
i=1

(xi + ai)
2)−1/22(xj + aj))

∣∣
a=0

hj

=

3∑
j=1

((

3∑
i=1

x2
i )
−1/2xj)hj

=
x

|x|
· h = x · h.

From this we can conclude that Daua(x)
∣∣
a=0

[h] = x · h and ultimately L̂[x · h] = 0 for all h ∈ R3

and x ∈ S2. With this result we can now see how the translational invariance expresses itself
on the linearization level. Let therefore x = sin θ cosφ e1 + sin θ sinφ e2 + cos θ e3 ∈ S2 for some
θ ∈ [0, π], φ ∈ [0, 2π]. Now

L̂[Ỹ 0
1 ] = L̂[x · 1

2

√
3

π
e3] = 0,

L̂[Ỹ ±1
1 ] = −1

2

√
3

2π
L̂[sin θe±iφ] = −1

2

√
3

2π

(
L̂[sin θ cosφ]± iL̂[sin θ sinφ]

)
= −1

2

√
3

2π

(
L̂[x · e1]± iL̂[x · e2]

)
= 0

and we have the proposed expression of the translational invariance at linearization level. Note
that this explanation works for Sn−1 ⊂ Rn for a general n ∈ N+, but for the purposes of clear
application to our situation, we have only shown it for n = 3.

A similar approach can be taken to verify that the scaling invariance of our problem translate

into L̂[Y 0
0 ] = 2

√
3γ2

(1+2γ)2
Ỹ 0

1 . We have only detailed the explanation for the translational invariance

because this gives the most insight and during this project a lot of time and effort went into
verifying this fact. In an earlier stage of this project the translational invariance in ~e3-direction
did not show on the linearization level due to an asymptotic condition that was not strong
enough (to grant uniformity). After a lot of checking this was rectified and this explanation
remains to show the understanding gathered from this different and new way of looking at the
problem.
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7 Conclusion

All in all, we conclude that the linearized version of our moving boundary problem is uniquely
solvable around the trivial solution (1, ~v0). We have found that for ~v ∈ R3 close to ~v0, we can
find a bubble/streamer domain described by u ∈ Hs

+(S2) for s < 1 + 1
γ , with γ > 0. No upper

bound on the value of γ has been found, while the two dimensional discussion of this (linearized)
problem [11] does have a rather tight upper bound and this suggests a similar behavior here.
This might result in the chosen value of γ = 1

2 for the visualizations to fall outside of this
bound (it would do in the 2D-case). However, this value was chosen such in the visualizations
the perturbations of the unit sphere were clearly visible, as this was not the case for lower
values.

Not only can further research focus on the nonlinear problem (as done in 2D in [11]), but one
can also consider different boundaries conditions such as surface tension or a combination of
surface tension and kinetic undercooling. This has been done on the level of the linearization in
2D in [17], with a negative result considering the existence of solutions to the linearized problem,
which makes for a similar expectation in 3D.
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Appendix

Uniqueness

To make sure we have a unique solution to (1.1) we need to verify that φ ≡ 0 is only solution to
the following system:

∆f = 0 in R3 \ Ω(t),
f − γ∂nf = 0 on Γ(t),

∇f = o(|x|−2) for |x| → ∞.

 (7.1)

Proof. Let us fix a t ≥ 0. Troughout this proof we will make use of a region we denote with
WR. We namely consider balls BR(0) with R big enough such that Γ(t) is completely in the
interior. Now WR is the region enclosed by ∂BR(0) ∪ Γ(t). These are compact regions with
smooth boundary.

Because f is continuous it is bounded on such a region WR. Now because of (7.1)3, we have
that |∇f x2| < 1 for all x ∈ R3 \BR0(0), where R0 > 1 is big enough. We consider the curve K
which is the radial line segment connecting the x ∈ R3 and R0

x
|x| ∈ ∂BR0(0). We see that

f(x)− f(R0
x

|x|
) =

∫
K
∇f · Tds ≤ |x−R0

x

|x|
|max

K
|∇f | < 1,

from which we conclude that f is bounded on R3 \ Ω(t). Let us say that |f(x)| ≤ M on this
domain, for M ∈ R+. Next, we consider the following integral:∫

WR

|∇f |2dx (1)
=

∫
WR

∇f ∇fdx+

∫
WR

∆f fdx

(2)
=

∫
WR

div(∇f f) dx

(3)
= −

∫
Γ
f∇f · nds+

∫
∂BR(0)

f∇f · nds

(4)

≤ −
∫

Γ
f∂nf ds+ 4πR2 max

∂BR(0)
|f∇f |

(5)

≤ −γ
∫

Γ
∂nf∂nf ds+ 4πR2M max

∂BR(0)
|∇f |

(6)

≤ 4πR2M max
∂BR(0)

|∇f | → 0 as R = |x| → ∞.

Here we have added a zero term in (1), as f is harmonic in WR because of (7.1)1. Then in (2) we
have realized that the two integrals together form one. In (3) we applied the divergence theorem.
Notice that the normal n points into WR on Γ(t), explaining the minus sign. In (4) we estimate
the last integral and in (5) use the boundedness of f . Also we use (7.1)2 on the first integral in
(5) and see that this whole term will contribute something nonpositive in (6). We conclude with
(7.1)3 that the estimation goes to zero and therefore we have that

∫
R3\Ω |∇f |

2dx = 0 and we

need to have ∇f = 0 on R3 \ Ω, implying that f is constant. Now because of (7.1)2 we see we
can only have f ≡ 0 and this proves the uniqueness of (1.1).

Volume preservation

Here we provide a proof for the volume preserving property of the evolution of Ω(t) of (1.1). It is
the proof provided in [17] and slightly modified to account for the fact here a three dimensional
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problem is discussed, as in [17] only two dimensions are considered. First we prove the following
lemma:

Lemma 7.1. Let Γ(t) be a smooth, closed surface in R3 that varies smoothly with t and bounds
a domain Ω(t). Denote with N(x, t) and V (x, t) the unit normal on Γ(t) pointing outward and
the velocity vector at point x respectively, at time t. Let f : R3 × R≥0 → R be a smooth function
with function values f(x, t). Then

d

dt

∫
Ω(t)

f dx =

∫
Ω(t)

∂f

∂t
dx+

∫
Γ(t)

fVn ds.

Proof. We transform the integral from the time dependent domain Ω(t) back to a fixed domain Ω0

with a transformation x = η(x, t). Here η should be a solution to the ordinary differential equation
dη
dt = V (η(x, t), t), with initial condition η(x, 0) = x. We denote the Jacobian determinant of the
transformation with detJ = detJ(t) and g(x, t) = f(η(x, t), t). We have

d

dt

∫
Ω(t)

f(x, t) dx =
d

dt

∫
Ω0

g(x, t)detJ dx =

∫
Ω0

∂g(x, t)

∂t
detJ + g(x, t)

d detJ

dt
dx

We observe that d detJ
dt = J(V ) · J, by differentiating the ODE with respect to x. Now we see

that the matrix valued function J satisfies dJ
dt = A · J, for some real matrix A = A(t). Then,

according to Liouville’s Theorem [5], d detJdt = Tr(A)detJ. So in this case d detJ
dt = Tr(J(V ))detJ =

(∇ · V )detJ. Now, by the chain rule and transforming back;

d

dt

∫
Ω(t)

f(x, t) dx =

∫
Ω0

∂g(x, t)

∂t
detJ + g(x, t)

d detJ

dt
dx =

∫
Ω(t)

∂f

∂t
+∇f · V + f(∇ · V ) dx

=

∫
Ω(t)

∂f

∂t
+∇(fV ) dx =

∫
Ω(t)

∂f

∂t
dx+

∫
Γ(t)

fVn ds.

Here the last step is due to the divergence theorem and the lemma is proven.

Now for a fixed t, let R be big enough such that Ω(t) is contained in the ball of radius R, BR(0).
Now Γ(t) and ∂BR(0) form the (piecewise smooth) boundary of a region in R3, let us call it
W ⊂ R3. Observe that W ⊂ R3 \ Ω(t), such that ∆f = 0 in W . By the divergence theorem we
have

0 =

∫
W

∆f dx =

∫
∂BR(0)

∂nf ds−
∫

Γ(t)
∂nf ds.

We see that
∫
∂BR(0) ∂nf ds =

∫
Γ(t) ∂nf ds and that these integrals are independent of R. As

∇f − ~e3 = o(R−2) for R→∞ we have∫
∂BR(0)

∂nf ds =

∫
∂BR(0)

∇f · nds =

∫
∂BR(0)

n3 ds+

∫
∂BR(0)

(∇(f − x3)) · nds

=

∫
∂BR(0)

(∇f − ~e3) · nds

≤ 4πR2 max |∇f − ~e3|
R→∞−−−−→ 0.

We conclude that
∫
∂B(R) ∂nf ds = 0, so when we apply the lemma of this section with f ≡ 1 we

get
d

dt

∫
Ω(t)

dx =

∫
Γ(t)

Vn ds =

∫
Γ(t)

∂nf ds =

∫
∂BR(0)

∂nf ds = 0,

proving the volume preserving property of the evolution of Ω(t) of (1.1) over time.
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Proofs for recurrence relations associated Legendre polynomials

Because of the somewhat irregular way of defining the associated Legendre polynomials part
of the spherical harmonics, sources for recurrence relations for these polynomials are hard to
be found. In this part of the Appendix we slightly modify the proofs given in [22] to give
justification for using them, without unnecessarily filling the main body of text with proofs that
essentially have been done previously. We start with proving the recurrence relation (6.5), which
holds for l ≥ 1 and is given below:

sP
|m|
l (s) =

(|m|+ l)P
|m|
l−1(s) + (l − |m|+ 1)P

|m|
l+1(s)

2l + 1
.

Proof. Firstly, for simplicity we will write n := |m|. We will differentiate the generating function
for the associated Legendre polynomials, jn, as found before, with respect to t. The generating
function is given by

jn(s, t) = (−1)n(2n− 1)!!
(1− s2)

n
2 tn

(1− 2st+ t2)n+ 1
2

=:
cnt

n

(1− 2st+ t2)n+ 1
2

=
∞∑
l=0

Pnl (s)tl.

Note that in comparison to [22], we have an extra factor (−1)n, making our results slightly
different. We have defined cn := (−1)n(2n− 1)!!(1− s2)

n
2 , as this is independent of t and thus

invariant when differentiate with respect to t. We move tn to the right hand side and differentiate
with respect to t, recognise jn in the left hand side and rewrite:

∂

∂t

[
cn

(1− 2st+ t2)n+ 1
2

=

∞∑
l=0

Pnl (s)tl−n

]

=⇒ cn(n+
1

2
)(2s− 2t)(1− 2st+ t2)−(n+ 3

2
) =

∞∑
l=0

(l − n)tl−n−1Pnl (s)

=⇒
∞∑
l=0

{(2n+ 1)(s− t)tl − [1− 2st+ t2](l − n)tl−1}Pnl (s) = 0

Now by shifting indices, we make sure all terms have equal power of t and obtain:

∞∑
l=0

(2n+ 1)sPnl (s)tl −
∞∑
l=1

(2n+ 1)Pnl−1(s)tl −
∞∑

l=−1

(l + 1− n)Pnl+1(s)tl

+
∞∑
l=0

2(l − n)sPnl (s)tl −
∞∑
l=1

(l − 1− n)Pnl−1(s)tl = 0

And by the identity theorem for power series we now have the following relations:

For l = −1 nPn0 = 0, which holds for only option n = 0

For l = 0 sPn0 (s) + (n− 1)Pn1 (s) = 0, for only option n = 0 results in P 0
1 (s) = sP 0

0 (s) = s,

For l ≥ 1 (2l + 1)sPnl (s) = (l + n)Pnl−1(s) + (l + 1− n)Pnl+1(s).

Substituting n = |m| back and the proof is complete.

Next we prove the recurrence relation (6.7) for l ≥ 1, which is given by:√
1− s2P

|m|+1
l (s) =

1

2l + 1

[
(l − |m|)(l − |m|+ 1)P

|m|
l+1(s)− (l + |m|)(l + |m|+ 1)P

|m|
l−1(s)

]
.
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Proof. Therefore we again denote n := |m|. We will start with differentiating the generating
function jn with respect to t. As seen before we get

(2n+ 1)cn(s− t)
(1− 2st+ t2)n+3/2

=

∞∑
l=0

(l − n)tl−n−1Pnl (s) =⇒

(2n+ 1)cn(s− t)
(1− 2st+ t2)1/2

= (1− 2st+ t2)n+1
∞∑
l=0

(l − n)tl−n−1Pnl (s).

Now we do another differentiation on both sides with respect to t. For the left hand side we get:

∂

∂t

[
(2n+ 1)cn(s− t)
(1− 2st+ t2)1/2

]
=
−(2n+ 1)cn(1− s2)

(1− 2st+ t2)3/2
=

cn+1

√
1− s2

(1− 2st+ t2)3/2
.

Here we have noticed that −(2n+ 1)(1− s2)cn = −(2n+ 1)(1− s2)(−1)n(2n− 1)!!(1− s2)
n
2 =

(1− s2)
1
2 (−1)n+1(2(n+ 1)− 1)!!(1− s2)

n+1
2 =

√
1− s2cn+1. Differentiation on the right hand

side yields

∂

∂t

[
(1− 2st+ t2)n+1

∞∑
l=0

(l − n)tl−n−1Pnl (s)

]
=

t−n−1[1− 2st+ t2]n
∞∑
l=0

(l − n){(l − n− 1)[1− 2st+ t2]tl−1 + 2(n+ 1)(t− s)tl}Pnl (s).

Equating both sides, moving and grouping of terms and recognizing the generating function of
Pn+1
l (s) gives us

√
1− s2cn+1t

n+1

(1− 2st+ t2)n+1+ 1
2

=
√

1− s2

∞∑
l=0

Pn+1
l (s)tl =

∞∑
l=0

(l − n){(l − n− 1)tl−1 − 2lstl + (l + n+ 1)tl+1}Pnl (s)

∞∑
l=−1

(l + 1− n)(l − n)Pnl+1(s)tl −
∞∑
l=0

2l(l − n)sPnl (s)tl +

∞∑
l=1

(l − n− 1)(l + n)tlPnl−1(s).

We now compare coefficients of tl and get as a result of the identity theorem for power series
that for l ≥ 1√

1− s2Pn+1
l (s) =(l + 1− n)(l − n)Pnl+1(s)− 2l(l − n)sPnl (s) + (l − 1− n)(l + n)Pnl−1(s)

(6.5)
= (l + 1− n)(l − n)Pnl+1(s)

− 2l(l − n)
1

2l + 1
[(l + n)Pnl−1(s) + (l + 1− n)Pnl+1(s)]

+ (l − 1− n)(l + n)Pnl−1(s)

=
1

2l + 1
[−(l + n)(l + 1 + n)Pnl−1(s) + (l − n)(l − n+ 1)Pnl+1(s)].

Here in the equation marked with (6.5), we used the recurrence relation we found earlier.
Substituting n = |m| back gives us the recurrence relation we wished to prove.
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Mathematica script

In[1]:= gamma = 1  2;

In[2]:= (*Generating the coefficients in Result 5*)

In[3]:= a[m_, l_] :=
-1 + gamma + 2 l + gamma l^2

l gamma + 1
* Sqrt

l^2 - m^2

4 * l * l - 1


In[4]:= b[m_, l_] := gamma *
2 - l - l^2

2 + l * gamma + 1
* Sqrt

l + 1^2 - m^2

4 * l + 1^2 - 1


In[5]:= (*Generating the coefficients in Theorem 6.1*)

In[6]:= c[m_, l_] := -1^l + 1 Productb[m, 2 j]  a[m, 2 j], {j, 1, l - 1}  a[m, 2 l]

In[7]:= abs[l_, m_, s_] := Sqrt
2 l + 1 * l - Abs[m]!

4 * Pi * l + Abs[m]!


-1^Abs[m]

2l * l!
* 1 - s^2^Abs[m]  2 * Ds^2 - 1^l, {s, l + Abs[m]}

(*Defining the associated Legendre polynomials according to 3.4*)

In[8]:= Y[m_, l_, theta_, phi_] := abs[l, m, Cos[theta]] *

ⅇ^m ⅈ phi(*Defining the Spherical harmonics according to Definition 3.3*)

In[9]:= h[theta_, phi_, alphamin1_, alpha0_, alphaplus1_] =
1 + 2 gamma

3 gamma

Sum[alphamin1 * c[-1, l] * Y[-1, 2 l, theta, phi] + alpha0 * c[0, l] * Y[0, 2 l, theta, phi] +

alphaplus1 * c[1, l] * Y[1, 2 l, theta, phi], {l, 1, 10}];

(*Defining the h-function, where the alpha coefficients solve the system 6.14*)

In[10]:= (* Making the plots for different bubble domains

corresponding to variation of +- 0.1 in each Cartesian direction,

name indicates which. Remove semicolon to remove surpressing of

plot. Two of six plots shown to show procedure*)

In[11]:= Plote2plus = ParametricPlot3D

 htheta, phi,
ⅈ

20
Sqrt

2 Pi

3
, 0, -

ⅈ

20
Sqrt

2 Pi

3
 + 1 * Sin[theta] Cos[phi],

htheta, phi,
ⅈ

20
Sqrt

2 Pi

3
, 0, -

ⅈ

20
Sqrt

2 Pi

3
 + 1 * Sin[theta] Sin[phi],

htheta, phi,
ⅈ

20
Sqrt

2 Pi

3
, 0, -

ⅈ

20
Sqrt

2 Pi

3
 + 1 * Cos[theta],

{theta, 0, Pi}, {phi, 0, 2 Pi}, AxesLabel → {x1, x2, x3}, ViewPoint → {-10, -10, 5};

In[12]:= Plote3plus = ParametricPlot3D htheta, phi, 0,
-1

10
Sqrt

Pi

3
, 0 + 1 * Sin[theta] Cos[phi],

htheta, phi, 0, -
1

10
Sqrt

Pi

3
, 0 + 1 * Sin[theta] Sin[phi],

htheta, phi, 0,
-1

10
Sqrt

2 Pi

3
, 0 + 1 * Cos[theta], {theta, 0, Pi},

{phi, 0, 2 Pi}, AxesLabel → {x1, x2, x3}, ViewPoint → {-10, -10, 5};

Printed by Wolfram Mathematica Student Edition

Figure 4: The Mathematica script used to produce the plots in Figure 3.
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