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Abstract

Industrial processes collect large amounts of data for the purpose of quality control. Often
this data is high-dimensional and highly correlated. Statistical process monitoring methods
are widely used to ensure product quality and to identify processing mistakes. They should
raise an alarm when a process is not in control anymore. The most common techniques are
control charts, but recently (distribution-free) machine learning methods have proved to be
successful in process monitoring. Here we will provide details of the Gaussian mixture model,
a neural network called the self-organizing map, a robust version of the one-class support
vector machine, a nearest neighbor approach, and the isolation forest for process monitoring.
Their performance on multinomial count data will be compared with the generalized p-
chart using simulation studies. Furthermore, a real case study is provided to compare these
methods in less ideal situations where the data is not from a multinomial distribution.

1 Introduction

Statistical process control (SPC) is a technique to monitor and control a process. Upon detection
of a special cause variation, corrective action can be taken such that the process operates within
normal operating conditions. A control chart is a tool for SPC which calculates and plots a
statistic together with control limits (CLs) over time. In combination with run rules it is able to
detect nonnormal behavior. Thus, it can indicate out-of-control situations [1]. The performance
of control charts is often evaluated using the average run length (ARL). The in-control ARL is
defined as the expected number of observations before the control chart incorrectly signals out-
of-control while the process is still in-control. The out-of-control ARL is defined as the expected
number of observations before the control chart recognizes that it is out-of-control given that it
is out-of-control. Hence, a well performing control chart has large in-control ARL and small out-
of-control ARL. The set-up of control charts is divided into two phases. In phase I, preliminary
control limits are determined using data from a processing period for which the process was
in-control. In phase II, the control chart is applied in routine processing.

The type of control chart which is used depends on multiple factors such as the distribution of
the data. For multivariate count data which follows a multinomial distribution, the generalized
p-chart, introduced in [2], is often used. Let p0 be a probabilities vector of a multinomial
distribution of dimension m. Then, for each observation xt = (xt(1), . . . , xt(m)), we can use the
Pearson goodness-of-fit statistic

Y 2
t =

m∑
i=1

(xt(i)− ntp0(i))2

ntp0(i)
(1)

where nt =
∑m
i=1 xt(i). This statistic is distributed as a χ2 distribution with m − 1 degrees

of freedom for multinomial data, so we can use the following upper control limit (UCL) for a
specific significance level α:

UCL = χ2
α,(m−1). (2)

If Y 2
i > UCL, then an alarm is raised for observation t.

However, in industrial processes, data is often high-dimensional, highly correlated, and therefore
it is difficult to fit a distribution. Machine learning (ML) methods have proved successful on
high dimensional data without a known distribution [3]. This is the reason that, in recent years,
research on ML approaches for SPC has gained in popularity. Weese et al. created an overview
of different machine learning methods used for multivariate SPC in which the methods proved
successful with highly non-normal data and high dimensional data. Zimek et al. described the
relation of process monitoring with machine learning in [4]. They concluded that process mon-
itoring is highly related to anomaly detection in the field of machine learning. Two types of
anomaly detection exist: novelty- and outlier detection. Novelty detection models are trained
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using solely in-control data and are, therefore, called semi-supervised methods. Notice the par-
allel with phase I of statistical control charts where the model uses in-control data to determine
the CLs. The model can then indicate whether new data is similar to the training data, thus
signalling out-of-control. If outliers are also present in the unlabelled training data, outlier de-
tection is used instead. Outlier detection methods use two properties of outliers. Namely, that
outliers occur rarely and that they are different from in-control observations. Without these two
properties, outlier detection becomes impossible. Although outlier detection is only done in one
phase to separate a dataset in a set of outliers and a set of normal observations, it can also be
applied to process monitoring. For every observation in phase II, the outlier detection method
can check whether it is an outlier with respect to the set of all phase I observations.

There have been several attempts at classifying different anomaly detection algorithms. We will
use the following classification made in [5]:

1. Probabilistic-based

2. Distance-based

3. Neighbor-based

4. Neural networks

5. Domain-based

6. Isolation-based

7. Information theory

One method from each class will be explained except for the information theory-based methods.
These information theoretic methods such as the ones in the paper by Filippone et al. [6] are not
related to ML. In [4], the probabilistic-, distance-, and neighbor-based methods are classified as a
single density-based category. The methods in these three categories have a different algorithmic
design dependent on probabilities, distances, and neighbors. However, all three are based on
density estimates. For example distances between the nearest neighbor indicates are higher
density estimates. However, we think that the methods within this one class are too diverse.
Hence, we will analyze a neighbor-based model and a probabilistic-based model.

The probabilistic-based method analyzed is the Gaussian mixture model (GMMs) [7–9]. This
method was chosen because it has been around for a very long time and, therefore, it is well
researched and known which makes it a good comparison to other approaches. It is the most
closely related to SPC and works by estimating the density as a mixture of multiple Gaussian
densities. The neighbor-based method analyzed is the Local Outlier Factor (LOF). It is applied
to process monitoring in [10–12]. It is neighbor-based since it creates an outlier score based on
the value of only its nearest neighbors. The third method from the neural network category is
the Kohonen Self-Organizing Map (SOM) which fits a map to the input data [13–15]. It is similar
to the adaptive resonance theory network in the sense that it outputs the distance to the neuron
closest by. We decided to investigate the SOM since it has been researched more extensively in
the field of process monitoring and is more popular in general. The fourth method is from the
domain-based category because it tries to demarcate a domain where observations are classified
as normal. It is called the One-Class Support Vector Machine (OC-SVM). We will investigate a
robust version of the OC-SVM which also works for outlier detection instead of only to novelty
detection as discussed in [16]. The OC-SVM was chosen because it is the most prevalent, if not
only, method in this category. The last method which will be explained is the Isolation Forest
(iForest) [17] which dominates the isolation-based category. It is a state-of-the-art method for
anomaly detection which separates itself from the other methods by isolating outliers instead of
attempting to profile normal points. A case study on a real industry dataset was done in [18]
and had promising results. The other category with information-theoretic approaches, such as
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the one discussed in [6], fall outside the scope of this research since these methods do not have
any relation with machine learning.

In Section 2, we start by introducing the aforementioned methods. This is followed by a discussion
and theoretical comparison of the methods. Then, a simulation will be performed on multinomial
data in Section 3. The methods’ performance will then be compared to the generalized p-chart
in addition to a comparison between the ML methods themselves. Lastly, Section 4 contains a
case study in which the methods are compared using an industry dataset. This will provide more
information on how the methods perform.

2 Methods

In this section, the methods already introduced in the introduction will be discussed. Firstly,
the model and algorithms are explained. Subsequently, the application of the method to process
monitoring will be explained.

2.1 Gaussian mixture models

The first method discussed is the oldest, and also the one most similar to traditional methods.
It tries to alleviate the problem that data might not be normally distributed by estimating the
density. Estimating such nonnormal densities is done by taking a, possibly infinite, mixture of
normal densities. This was done in [8] where the technique proved successful in certain cases.
Specifically, preprocessing with PCA was done first. We start by explaining the model and the
training procedure. Then we proceed to explain how this is used for process monitoring.

2.1.1 Theoretical model

We can create a nonnormal distribution

p(x) =

M∑
i=1

αiN(x | µi,Σi) with

M∑
i=1

αi = 1, (3)

where M is a parameter which determines the number of Gaussian densities and each αi ≥ 0.
This model is called the Gaussian mixture model. For each density i, αi is its weight, and µi,
Σi are the mean and covariance of the Gaussian density. From this, it becomes clear why this
model is called the Gaussian mixture model (GMM).

The following step is to find appropriate values for αi, µi,Σi. These values should be such that
a set of training data X could be sampled from this new density. Hence, we try to maximize the
log-likelihood function

`(α, µ,Σ;X) =
∑
x∈X

log(p(x)) (4)

over the variables αi, µi,Σi. Careful consideration must be made when choosing M such that the
objective can be large but no overfitting occurs. Overfitting is a common problem in machine
learning where your model works only on the data it is trained on but does not generalize well. So,
although Equation (4) can be optimized better for large M , this should not be set too high. We
proceed with using an expectation-maximization (EM) algorithm to maximize the log-likelihood
over the parameters. The EM algorithm will iteratively estimate latent variables, and use that
estimate to maximize the log-likelihood. In this case, the latent variables determine which
Gaussian density each x ∈ X belongs to. The algorithm is performed as shown in Algorithm 1.
It starts by an initial guess for the parameters αi, µi,Σi. Each mean is set to the value of
some observation and all variances are set to the variance of all phase I data. Furthermore,
αi = 1

M . An alternative method performs k-means clustering to find initial values for the means
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and Moody and Darken’s rule to estimate the covariance [19]. Choi et al. showed that this
provided faster convergence for their dataset [8]. This is mostly interesting for extremely large,
or high-dimensional datasets, when training is slow and will not be discussed further. After the
initialization, the expectation and maximization steps will be repeated until a constant number
of iterations T is performed.

In each expectation step, we have some αi, µi,Σi given. For each mixture i and each observation
x, we compute the probability that x belongs to mixture i:

ri(x) =
αiN(x;µi,Σi)∑
j αjN(x;µj ,Σj)

. (5)

Then, in the maximization step, we update αi, µi,Σi as follows

mi =
∑
i

ri(x),

αi =
mi

n
with n the total number of observations,

µi =
1

mi

∑
i

ri(x)x,

Σi =
1

mi

∑
i

ri(x)(x− µi)T (x− µi).

The complete procedure in shown in Algorithm 1.

Algorithm 1 Expectation maximization algorithm for Multivariate GMMs

Input: X = {x1, . . . , xn} - training data, M - number of mixture components, T - iteration
limit

1: Make initial guess for αi, µi,Σi with 1 ≤ i ≤M
2: for T iterations do
3: for each mixture component i do
4: for each observation x ∈ X do
5:

ri(x)← αiN(x;µi,Σi)∑
j αjN(x;µj ,Σj)

6: end for
7: mi ←

∑
x∈X ri(x)

8: αi ← mi

n
9: µi ← 1

mi

∑
x∈X ri(x)x

10: Σi ← 1
mi

∑
x∈X ri(x)(x− µi)T (x− µi)

11: end for
12: end for

2.1.2 Process monitoring

In the process monitoring situation, this EM algorithm will be applied on a training data set
to create a mixture model which fits the data. The training data should be in-control since the
method is not robust to outliers in the data. From this, we will create a control chart. This is
done by looking at which of the mixtures is most likely responsible for an observation. Then we
choose that mixture and apply the Hotelling’s T 2 chart for the decision of being out-of-control.
This approach is also explained in the paper by Choi et al. [8].

For each mixture component i, and observation x the test statistic is

T 2 = (x− µi)′Σ−1i (x− µi). (6)
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Observe that mi, as defined above, is the probability that an observation was sampled from
mixture component i. So, for an observation x, the T 2 test statistic will be the smallest for
mixture component i = argmaxi ri(x). Only the smallest test statistic will be used in the control
chart. Then, given m quality characteristics and n observations, the UCL is given by

UCL =
m(n+ 1)(n− 1)

n2 − nm
Fα,m,n−m (7)

where α denotes the probability of a type I error. When m > 100, this is well approximated by
the UCL given by

UCL =
m(n− 1)

m− p
Fα,m,n−m, (8)

as explained in [20]. The approach taken gets more complex if we include preprocessing using
PCA as explained in Section B. In addition to the control chart monitoring the T 2 statistic, an
additional control chart based on the Q statistic will be introduced to monitor the residual, the
part not modelled by PCA. Notice that PCA is only useful if data is high-dimensional or highly
correlated.

Statistic T 2. We will first compute the loading matrix Ps ∈ Rn×s of the training data X,
where s is the number of dimensions to reduce to. It is not specified how s should be chosen by
Choi et al. If out-of-control data is available, experiments can be done to find the best value.
s can also be set equal to m which will not perform any dimension reduction, but will remove
correlations. The columns of Ps are called loading vectors. Define Λ−1 as the diagonal matrix
with on its diagonal, the inverse of the eigenvalues obtained in Ps. Then we have the test statistic
defined as

T 2 = xPsΛ
−1PTs x

T . (9)

The UCL is the same as above except that there are now only s quality characteristics instead
of m.

Statistic Q. The portion not explained by the PCA model, the residual, will have a separate
control chart based on the Q statistic. The residual (I −PsPTs )x portion is not explained by the
PCA model. The test statistic will be

Q = xT (I − PsPTs )x. (10)

The UCL of this is

UCL = θ1

(
zα
√

2θ2h20
θ1

+ 1 +
θ2h0(h0 − 1)

θ21

)1/h0

. (11)

where zα is the normal distribution value with significance level α. In addition, we have

θj =

p∑
i=s+1

(λi)
j , (12)

h0 = 1− 2θ1θ3/3θ
2
2 (13)

where λi is the eigenvalue corresponding to the ith loading vector.

This method is extended to the GMM approach easily. The Q statistic remains identical and will
not be influenced by the GMM model. The GMM model will be trained using the preprocessed
data and the Hotelling’s T 2 chart will be based on the statistic from the mixture component
from which the observation most likely originates.
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2.2 Self-organizing map

The self-organizing map (SOM) is a neural network developed by Kohonen in 1982 for dimension-
ality reduction of data [21]. However, the network can also be used for classification and outlier
detection. The network consists of a 2-dimensional grid of neurons, which is fitted to the input
data and provides a representation of the input data. Each neuron corresponds to a weight with
dimension m equal to the dimension of the input data. In a training procedure, these weights are
updated such that the training data has values close to the values of the weights. We start by
explaining the principles of the self-organizing map and some of its variations. After this, some
extensive preprocessing will be discussed, as well as how to apply this to process monitoring as
explained by Yu et al. in [15].

2.2.1 Theoretical model

A lot of variations of the SOM exist. Here, the variant used during training in [15] is used. Note
that the SOM used on the training dataset was not explained fully, only a simpler variant. For
the complete variant the author refers to the paper [22]. We will explain the complete model and
we will assume settings that are not reported are kept at the default values. The method works by
creating k neurons. These neurons should be organized in a low-dimensional, often 2-dimensional,
grid. This allows us to compute a discrete neighborhood. This grid can be applied to a shape
such as a toroid or cylinder. An example grid is shown in Figure 1 where the most simple ‘sheet’
shape is used. This grid should then be fit to an in-control dataset X = (x1, . . . , xn). Prior to

2

0

1

Figure 1: Hexagonal lattice structure with discrete 0, 1, and 2-neighborhoods

this fitting process, normalization should be done on X since larger features would dominate the
process due to the use of the Euclidian distance. After this preprocessing step, each neuron i
is assigned a random weight wi with the same dimension as the training data. Other methods
to intialize the weights are discussed more in-depth in the weight intialization paragraph below
since multiple approaches are possible. The weights are then iteratively updated in the next
lines. This is done by selecting a sample x from the training data randomly. The best matching
unit (BMU) for x is then computed. This is the neuron with corresponding weight closest to x.
We will use c to denote the index of the BMU. The distance between the BMU and x is called
the minimum quantization error (MQE) of x. In the next steps, the MQE will be minimized by
updating the weights.

For all neurons in the neighborhood of neuron c, the weight will be updated using an update
rule which makes the weights closer to x. In this way, the weights will drift towards points where
most of the training data is. Therefore, the MQE of each observation of the training data will
reduce. This iterative process stops once an iteration limit T is reached. Each iteration is also
called an epoch.

The update rule uses a learning rate function α(t) and a neighborhood factor function hci. The
learning rate function is unclear from the paper. The paper states that a rough and a fine-tune
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phase is performed. This first phase, also called the ordering phase, uses a large α. In the fine-
tune phase this will be significantly lower. Concretely, one has to define the number of epochs
in the ordering phase T1 and α0, α1 to get

α(t) =

{
α0/(1 + 100t/T1),

α1/(1 + 100(t− T1)/T2),
(14)

where T2 = T − T1 is the number of iterations in the fine-tune phase. The hci(t) is defined
as

hci(t) = e−d
2
ci/2σ

2
t (15)

with dci is the Euclidian distance between neuron c and i.

Algorithm 2 Simple SOM Training algorithm

Input: X = (x1, . . . , xn) - training data, k - number of neurons, T - iteration limit

1: wi randomly initialized for 1 ≤ i ≤ k
2: for t from 1 to T do
3: select x ∈ X randomly
4: c← argmini d(wi, x)
5: for i = 1 to k do
6: wi ← wi + α(t)hci(x− wi))
7: end for
8: end for

The training process shown in pseudocode in Algorithm 2 uses input dataX = {x1, . . . , xn} where
xi = (xi(1), . . . xi(m)) is an m-dimensional data point. After randomly initializing weights and
iterative process starts. Each time an input vector x from the training data is randomly selected
for which the best matching unit with index c is computed. So, c is the index of the weight
vector closest to x.

Weight initialization. Having a good initialization of the neuron weights speeds up the train-
ing since fewer iterations are needed to converge. There are two popular methods possible for the
initialization of weights. The simplest one is to estimate the mean and variance of the dataset
using the maximum likelihood estimators giving µ̂, σ̂2. The weights can then be sampled from
the normal distribution N(µ̂, σ̂2). Another option is to initialize the weights with samples from
the subspace spanned by the first n principal components of the training data. These two meth-
ods are compared by Akinduko et al. [23], which concluded that for nonlinear data the random
initialization may work better. The approach we will use and which was also used in the paper
of Yu et al. is linear initialization which is the same as the PCA approach with 1 principal
component.

Batch training. The simple training algorithm trains sequentially by updating the neuron
weights to be closer to randomly selected observations. An alternative approach uses a batch
training algorithm which takes into account all training data before making an update. Algo-
rithm 2 can be altered to perform the batch training as explained in [22] by removing line 3 and
substituting lines 5,6, and 7 by the following:

for neuron i = 1 to k do
wi ←

∑n
i=1 hic(t)xj∑n
j=1 hic(t)

end for

2.2.2 Process monitoring

Before being fed as input data to the algorithm, some preprocessing on the time series data
X = (x1, . . . , xn) is needed. Since using the past results as well as the current result can improve
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performance, the algorithm takes into account the history. Traditionally, this is achieved by run
rules which often have the following form: raise an alarm if at least k of the last n statistics are
in an interval (a, b) [24]. Using these run rules the history of a statistic is taken into account.
For the SOM this is done by windowing the data. Let ω be the window size. Then we can define
a new data point x∗i as

(x′i, . . . , x
′
i+ω−1)′

for 1 ≤ i ≤ m − ω + 1. Notice that this reduces the data by ω − 1 observations. A study
from Hassan et al. [25] showed that better performance can be reached for SPC charts by using
statistical features instead of raw data. So, after windowing, we can compute several statistical
features (mean, standard deviation, skewness, mean-square, autocorrelation, and Cusum) as well
as the T 2 statistic of the last observation in the window. These statistical features were chosen
in the paper of Hassan et al. to represent the data as well as possible. Autocorrelation was
computed with lag 1. The Cusum statistic is the tabular Cusum as defined by Montgomery [20]
as

C+
i = max(0, xi − µ̂+ C+

i−1),

C−i = max(0, µ̂0 − xi + C−i−1).
(16)

with C−0 = C+
0 = 0. Only the last positive and negative Cusum values are taken as input

features. This preprocessing was also done in [15], except that they used the χ2 statistic which
approximates the T 2 statistic. However, for smaller datasets, the T 2 statistic is more appropri-
ate.

Normalization of the features of the data should be done afterward to ensure there is no bias
towards certain features. For multivariate data, each sample has m quality characteristics. Each
one can have a different mean and variance. Hence, a difference from the mean of a certain
size can be negligible for some characteristics and very important for others. To combat this,
data can be normalized to have the mean 0 and variance 1. By estimating the mean by x̄ and
covariance matrix by S and then transforming each data point to (x − x̄) � diag(S) where �
denotes element-wise division.

Simulations were done using the Matlab SOM Toolbox, version 5 [22]. The parameters were left
on the default values which are the following:

σ0 = k/4

σT = 1

α0 = 0.5

α1 = 0.05

T1 = 4k/n

T2 = 16k/n

T = 20k/n

(17)

The number of neurons k and the height (k1) and width (k2) of the grid are chosen such that
k1/k2 ≈ λ1/λ2 where λ1, λ2 are the largest eigenvalues of the data’s covariance matrix and the
number of neurons is set using a heuristic formula k = k1k2 ≈ 5n0.54321. This can only be done
approximately since k1, k2, k have to be integers. This method make sure sensible default values
are used.

Finally, when the algorithm is done, phase II can start. A control chart can be made by plotting
the MQE = |x−wbmu|. The control limit should be set manually. In the paper by Yu et al. this
was done by generating 1000 in-control observations and setting the UCL to the largest statistic
such that at most 1000α observations have an MQE that exceeds this statistic.
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2.3 Local outlier factor

The local outlier factor (LOF) algorithm was developed in 2000 by Breunig et al. [26] to assign a
degree of being an outlier to an observation instead of a binary classification. To perform process
monitoring the LOF is integrated with independent component analysis (ICA). This is a method
that transforms mixed signals into independent signals, minimizing Gaussianity. ICA can also
be performed without the LOF algorithm, but this assumes that the data is a mixture of solely
non-Gaussian distributions whereas the LOF integrated with ICA works well on data that is a
mixture of both non-Gaussian and Gaussian data.

2.3.1 Theoretical model

To compute the LOF we introduce some definitions. Let x ∈ X, then the k-distance of x is the
distance to the kth nearest observation in X \ {x} for parameter k ∈ N. Let kNN(x) be the set
of all observations in the k-distance neighborhood of x. So,

kNN(x) = {y ∈ X | d(x, y) ≤ k-distance(x)} (18)

with d(x, y) the Euclidian distance from x to y. Hence, |kNN(x)| ≥ k. Then we define the
reachability distance of x to an observation y ∈ X,

reach-distk(x, y) = max{k-distance(y), d(x, y)}. (19)

Although named as a distance, it is not symmetric. After this, we introduce the definition of the
local reachability density (lrd). This is defined as

lrdk(x) =
|kNN(x)|∑

y∈kNN(x) reach-distk(x, y)
. (20)

Observe that the lrd is large if the observations in kNN(x) are close to the points in their KNN
set. Since, if either the distance to x or the k−distance of an observation y ∈ kNN(x) is small,
then the reachability distance will also be small. Finally, the LOF is computed as

LOF(x) =

1
|kNN(x)|

∑
y∈kNN(x) lrdk(y)

lrdk(x)
. (21)

This is the ratio of the average density of the observations in kNN(x) to the density of x. Notice
that if LOF(x) ∼ 1 or LOF(x) < 1, the observation is not an outlier. But if the lrd of x is small,
so LOF(x) > 1, then x can be considered as an outlier.

2.3.2 Process monitoring

To use this in process monitoring, we will follow the paper of Lee et al. [10]. The data will
be preprocessed using independent component analysis (ICA). Furthermore, a method will be
explained to remove outliers. A method to determine the control limits will be explained as
well.

ICA is a preprocessing method explained in Appendix C and is performed without reducing the
dimensionality. After this, the LOF of each of the training data X will be computed. These
LOF values are from an unknown distribution. A kernel density estimator (KDE) is made to
define an upper 99.3% limit. To find a 1− α limit, we need to solve for u the equation∫ u

−∞
p(x)dx = 1− α, (22)

where p(x) is the kernel density estimator

p(x) =
1

nh

∑
i

K

(
x− xi
h

)
, (23)
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with smoothing parameter h. The kernel function chosen is the Gaussian kernel function since
this is common. In most literature, it is unspecified how this is solved. We will assume that
we are able to do this, and will provide more details in Section 3. The data points with LOF
above this limit are excluded and again ICA is performed and LOFs are computed. Then, a new
limit using the KDE can be made; this will be the UCL. Finally, in phase II, the LOF can be
computed for new observations after being processed by the ICA whitening and after applying
the demixing matrix. Observations with LOF > UCL will raise an alarm. The LOF’s parameter
k is set to 20 in the paper’s experiments where training was done with 200 data points. Notice
that a larger k might make the algorithm oversensitive. In addition, the training data set with
size n will determine how large k can be. Hence, experimentation to find suitable k should be
done.

The attentive reader might notice that the paper by Lee et al. has a different definition of the
LOF and the lrd than the definition in the original paper by Breunig. In both definitions, the
cardinality of kNN(x) is replaced by k. This will yield strange results when there are a lot of
duplicates such that this cardinality is larger than k. Hence, the definition from the paper of
Breunig is preferred. However, if the kNN function would return precisely k numbers, this would
make no difference. We will see in Section 3 that this is actually the case for the implementation
of the kNN we use.

2.4 Robust one-class SVM

This method is based on the one-class support vector machine (OC-SVM) proposed by Schölpkof
et al. in 1999 [27] which uses a hyperplane to separate normal data from outliers. It is often
referred to as the ν-SVM since ν is an important parameter, this will be clarified later on.
An alternative OC-SVM by Tax and Duin [28] exists which uses a hypersphere instead of a
hyperplane. This method has equivalent results and will not be analyzed in this work. The
robust OC-SVM was analyzed by Ma et al. in [11] for fault diagnosis on time series data.

Since the method is sensitive to outliers, Yin et al. proposed an adaptation that makes it robust
for outlier detection in [29]. The paper is specific for fault detection, so no analysis on ARLs was
done. However, the method can still be used for the computation of ARLs on time-series data by
using the found decision boundary on new data. The η OC-SVM developed in [16] outperformed
the robust OC-SVM with multiple datasets. It provides a method such that outliers are not
incorporated in computing the decision boundary. Although promising, the paper lacks the
connection with SPC, hence, the method will not be discussed here. Firstly, we will start by
explaining the original OC-SVM method. After that, the adaptation to make the method more
robust will be explained.

This method uses PCA just like the GMM method explained in Section 2.1 but only for decorrela-
tion. Hence, no dimensionality reduction is performed. Therefore, the residual part unexplained
by PCA and analyzed using the Q statistic does not exist.

2.4.1 Theoretical model

To understand the OC-SVM, we will use knowledge from the field of linear optimization. Al-
though concepts such as the dual, slack variables, and the Karush-Kuhn-Tucker (KKT) conditions
will be explained, some introductory knowledge will help, as well als knowledge of the original
basic SVM.

The OC-SVM uses a decision boundary, which separates the origin, being the zero vector in the
data’s feature space, from the data points X = (x1, . . . , xn). Data points residing on the same
side of the boundary as the origin are classified as outliers. The decision boundary will be given
by the function

g(x) = wTφ(x)− ρ (24)
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where ρ is the bias term and w a vector perpendicular to the decision boundary. φ(·) is a feature
mapping which maps the data into a higher-dimensional space which allows for a nonlinear
decision boundary. Hence, when g(x) < 0, x is classified as an outlier. We will discuss later how
we can get a test statistic instead of a binary result from the model.

The goal is to maximize separation between the data and the origin by choosing appropriate

w, ρ. Therefore, we want to maximize d(x) = |g(x)|
||w|| , the distance from a point x to the decision

boundary defined by g(x) = 0. Observe that the distance to the origin is |ρ|
||w|| . Notice that this

is equivalent to minimizing ||w||
2

2 − ρ. This is has to be done under the constraint that for all
x ∈ X, we have that

g(x) ≥ 0. (25)

This would mean all training points lay on the side which doe snot contain the origin. This model
is extended by using slack variables ξi ≥ 0 which make it possible for some points of the training
data to reside on the same side of the decision boundary as the origin. The original constraint
in Equation (25) is then replaced by g(x) ≥ −xi, and this is called a soft margin. Using a
regularization parameter ν ∈ (0, 1), we can control how much these outliers are penalized by
adding the term 1

nν

∑n
i=1 ξi to the original minimization objective, where n is the number of

data points. From now on, when i is used in a constraint, we assume the constraint should hold
for all i such that 1 ≤ i ≤ n. Observe that when ν = 0, the problem is the hard-margin problem
where no outliers are allowed. So, we get as the optimization problem

objective: min
w,ξ,ρ

||w||2

2
− ρ+

1

νn

n∑
i=1

ξi

subject to: wTφ(xi) ≥ ρ− ξi, ξi ≥ 0.

(26)

The goal of the method should now be clear. What follows is a derivation to get a quadratic op-
timization problem which is equivalent to the current problem but easier to solve algorithmically.
This is done by computing the dual of the problem which is a version of the problem where the
objective becomes a constraint, each constraint becomes part of an objective and minimization
becomes maximization or vice versa. The solution to this problem is equivalent if the solution
meets the KKT conditions which we will show to be the case. Notice that we can write the
constraints as

−wTφ(xi)− ξi + ρ ≤ 0, −ξi ≤ 0.

Firstly, we define the kernel function K(xi, xj) = φ(xi) · φ(xj) and the kernel matrix H with
each hij = K(xi, xj). To compute the dual, introduce Lagrange multipliers αi ≥ 0, βi ≥ 0 with
1 ≤ i ≤ n. Then we can create the Lagrange equation

L(w, ξ, ρ, α, β) =
||w||2

2
− ρ+

1

νn

n∑
i=1

ξi −

(
n∑
i=1

αi(w
Tφ(xi)− ρ+ ξi)

)
−

n∑
i=1

βiξi. (27)

A saddle point of the Lagrange equation is a solution to the original problem. We proceed by
setting the partial derivative of L with respect to w, ξ, ρ equal to zero to find the saddle points.
In this way, we get for w the following

w =

n∑
i=1

αiφ(xi)

αi =
1

nν
− βi =⇒ 0 ≤ αi ≤

1

νn
n∑
i=1

αi = 1

(28)
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The last two equations pose constraints, and substituting these three into the Lagrange equation
allows us to simplify the results excessively. Multiple variables will cancel each other out and we
get

L(w, ξ, ρ, α, β) =
1

2

n∑
i,j=1

αi(φ(xj))
Tφ(xi))αj =

1

2
αKαT . (29)

From this we get the following optimization problem:

objective: min
α

αTHα

2

subject to: 0 ≤ α ≤ 1

νn
,

n∑
i=1

αi = 1
(30)

Now we need to verify that the KKT conditions are satisfied. Indeed, the following conditions
are true for solution w,α, β:

∂

∂wi
L(w,α, β) = 0, i = 1, . . .m

∂

∂βi
L(w,α, β) = 0, i = 1, . . .m

αigi(w) = 0, i = 1, . . . n

gi(w) ≤ 0, i = 1, . . . n

α ≥ 0

(31)

If H is positive definite, the KKT conditions are satisfied, as well as the conditions for the dual
to be equal to the primal problem. To make sure H is positive definite, duplicates will have
to be removed from the training data. After this process, the kernel function ensures positive
definiteness and we come to a convex problem for which the solution of the dual is also the
solution of the primal problem. Since the found problem is convex, it can be solved using
quadratic programming (QP) software in polynomial time.

Notice that this allows us to calculate α, but we also need ρ to get a decision boundary. The
paper proposes to do this by computing ρ as

ρ =
1

ns

ns∑
i=1

n∑
j=1

αjK(xi, xj). (32)

with xi the support vectors which have slack variables ξi = 0 and ns the total number of such
vectors. The original paper suggests that any of the support vectors can be taken to come to a
ρ. However, taking the average is a good idea to get numerical stability, and this is also done in
the well-known implementation in LIBSVM as explained in their design document [30].

2.4.2 Robust OC-SVM

The main modification for the robust OC-SVM is modifying the slack variable such that its
penalization is proportional to the distance of the centroid of all data. Hence, points distant
from the center can have a large slack variable without influencing the decision boundary. In
the original OC-SVM, the variables ξi were used for this, together with the parameter ν which
controlled the level of penalization. Since the slack variables ideally are small, we again add a
term to the objective which penalizes large ξi. Only now, the constant parameter Θ is used to
control the harshness of this penalization instead of ν such that we get

objective: min
w,ξ,ρ

||w||2

2
− ρ+ Θ

n∑
i=1

d̂iξi

subject to: wTφ(xi) ≥ ρ− ξi, ξi ≥ 0.

(33)
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were d̂i, are the penalty factors determined by their distance to the centroid of the dataset. More
precisely we define

di = ||xi − C||2,

d̂i =
maxj dj
di

(34)

with C the centroid of the dataset. The total square loss center is used as a centroid due to its
robustness to outliers. This is given by

C =

n∑
i=1

kiφ(xi),

ki =
1√

q + 4||xi||2

/ n∑
j=1

1√
1 + 4||xj ||2

(35)

as proposed in the paper by Liu et al. [31]. Then we compute di using Equation (36).

di = Hii − 2

n∑
j=1

kjhij + kTHk (36)

Increasing Θ will result in the model penalizing large slack variables more. However, if Θ is
taken too high, the algorithm will not generalize well. The optimization problem can then be
formulized as follows:

objective: min
w,ρ

||w||2

2
− ρ,

subject to: wTφ(xi) ≥ ρ−Θd̂i.

(37)

Computation of the dual is similar to the computation of the normal OC-SVM dual and results
in

objective: min
α

αTHα

2
,

subject to: 0 ≤ αi ≤ Θd̂i,

n∑
i=1

αi = 1.
(38)

2.4.3 Process monitoring

For using the robust OC-SVM in process monitoring, a distance metric will be introduced which
can serve as a test statistic. Furthermore, a UCL for the metric needs to be given. In addition, the
kernel function and the parameter Θ need to be chosen. PCA is performed only for transforming
possibly correlated to new uncorrelated data. No dimensionality reduction is done. For the
kernel function, the radial basis function is chosen, given by

K(xi, xj) = e−||xi−xj ||2/2σ2

. (39)

Sometimes the radial basis function has a parameter γ instead of σ which is then equal to
1/2σ2. It was noted that this kernel can approximate most kernels. Furthermore, with only
one parameter it was stated that the kernel can be tuned to an appropriate value with relative
ease although no concrete method was given. In the paper, σ = 2 was chosen. However,
implementations such as the one in [32] use γ = 1

2σ2 = 1
m as the default. Lastly, the for the

parameter Θ, 0.004 resulted in good results. Hence, this was chosen. To have a continuous test
statistic instead of a binary classification, we compute the distance metric

F (x) = −
n∑
i=1

αiK(xi, x) + ρ. (40)
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Normally, x is classified as an outlier when F (x) < 0. In the paper, it was suggested that a
manually tuned threshold performs better since it is difficult to set the correct parameter values.
Due to this difficulty, the optimal threshold is often slightly above 0.

2.5 Isolation forest

The Isolation Forest (iForest) is an unsupervised outlier detection algorithm developed in 2008
in [17]. It is fundamentally different from existing outlier detection methods because it does not
try to profile normal points. Instead, it tries to isolate the outliers. This is done by creating an
ensemble of trees, which is called a forest. Each tree is a binary decision tree trained on a subset
of features and a subset of data. Now each tree should be made such that it has one of the
training observations as a leaf. Notice that, therefore, data points in dense regions correspond
to a leaf node of large height since lots of decisions have to be made to isolate that point from all
others. On the other hand, outliers will lay far away from the normal data and can be isolated
by few binary decisions. Hence, outliers will be at a leaf node with a small height. The method
has low memory usage and linear time complexity which makes it an excellent method for large
datasets.

2.5.1 Theoretical model

Algorithm 3 describes how an iForest is created. As input, the algorithm receives the training set,
the number of trees in a forest t and the size of a sample ψ. Firstly, an empty set called Forest
is made, and the height limit of an iTree is computed as dlog2 ψe. It then proceeds creating
an iTree t times for a random data sample of size ψ and adding that to the Forest set. This
set is then returned and can be used for classification. The iTree previously mentioned is made

Algorithm 3 iForest(X, t, ψ)

Input: X - training data, t - number of trees, ψ - subsampling size

1: Forest ← {}
2: l← dlog2 ψe
3: for i = 1 to t do
4: X ′ ←sample(X,ψ)
5: Forest ← Forest ∪{ iTree(X ′, 0, l)}
6: end for
7: return Forest

by Algorithm 4 which splits the data based on a random feature, and a random value. It then
recursively calls itself on each part of the split. The algorithm stops such that a leaf node is
generated when only one node is left or when the maximum tree height would be exceeded by
continuing. At each node, we save the feature on which to split in a variable SplitFeature and
the value where to split in a variable called SplitValue. At the leaf nodes, we save the number
of observations still in the node. Notice that this is a proper binary tree (i.e. all non-leaf nodes
have exactly two children). In addition, the tree is given a height limit of dlog2 ψe. Hence, since
the number of leaves is equal to ψ, the height limit is approximately the average tree height.
Furthermore, this structure is very similar to the structure of a binary search tree (BST). Notice
that the height for external node termination h(x) is the path length from the root to a leaf node
which is the same as the length of an unsuccessful search in a BST. The average path length of
unsuccessful search in a BST is given by

c(n) = 2H(n− 1)− (2(n− 1)/n), (41)

where the BST is fitted on a dataset of n instances and where H(i) denotes the harmonic number.
An estimate of the harmonic number is given by

H(i) = ln i+ ε where ε is Euler’s constant. (42)
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Algorithm 4 iTree(X, e, l)

Input: X - training data, e - current tree height, l - height limit

1: if e ≥ l or |X| ≤ 1 then
2: return exNode{Size ← |X|}
3: else
4: Select feature i with 1 ≤ i ≤ m randomly
5: Select p ∈ range{x(i) | x ∈ X} randomly
6: Xl ← {x | x ∈ X,x(i) < p}
7: Xr ← {x | x ∈ X,x(i) ≥ p}
8: return inNode{Left ← iTree(Xl, e+ 1, l), Right ← iTree(Xr, e+ 1, l), SplitFeature ← i,

SplitValue ← p}
9: end if

Since c(n) is the average of h(x), we can derive an anomaly score for an instance x by normalizing
h(x) by c(n). The score s is then defined as

s(x, n) = 2−
E(h(x))

c(n) . (43)

Here, E(h(x)) is the average of all h(x) for a set of isolation trees. Path length h(x) is computed
by Algorithm 5. This is not an exact computation. Since the tree height is limited, the final
part is estimated by taking the average height of a tree of certain size. To interpret the anomaly

Algorithm 5 PathLength(x, T, e)

Input: x - observation, T - an iTree, e - current path length (0 when first called)

1: if T is an external node then
2: return e+ c(T.size)
3: end if
4: q ← T.splitFeature
5: if xq < T.splitValue then
6: return Pathlength(x, T.left, e+ 1)
7: else
8: return Pathlength(x, T.rigth, e+ 1)
9: end if

score, we distinguish the following cases:

• E(h(x)) =⇒ c(n), s =⇒ 0.5,

• E(h(x)) =⇒ 0, s =⇒ 1,

• E(h(x)) =⇒ n− 1, s =⇒ 0.

Notice that longer path lengths lead to a lower anomaly score. Thus, scores tending to 0 indicate
normal observations, while scores tending to 1 indicate outliers.

2.5.2 Process monitoring

To use the method in process monitoring, we follow the paper of Susto et al. [18]. a control
chart is made by plotting s(x, ψ). The paper uses some preprocessing methods, but they are not
explained. Furthermore, they are very specialized for the precise data used. Hence, these will
not be adopted in this work. The paper uses a cross-validation approach to ensure an optimal
trade-off of type I and type II errors. However, this assumes you have labeled data and is,
therefore, not interesting for this work. Hence, the UCL should be determined differently such
as discussed earlier in Section 2.3 where the inverse cumulative density function of the KDE of
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the test statistics was used. The parameters ψ and t were chosen to be 256 and 100 respectively
as the guidelines in the original paper provided. Liu et al. found empirically that these values
perform well on a wide range of data.

In the original paper of the method, special attention is given to running times. We will not
discuss this since it falls outside the scope of this paper. A comparison was done with a univariate
Shewhart chart and with an angle-based outlier detection (ABOD) method [33]. The latter
is surprising since no research on process monitoring had been done with ABOD yet to our
knowledge.

2.6 Discussion

GMM SOM LOF SVM iForest

ARL reported Yes Yes No No No

Robustness to outliers No No Yes Yes Yes

Comparison method T 2, Q T 2,
MEMWA

I2, AO OC-SVM ABOD,
Shewhart
chart

Preprocessing methods PCA Windowing,
feature ex-
traction,
normaliza-
tion

ICA PCA -

Parameters M , s ω k UCL, Θ, σ UCL

Table 1: Summary table with information about the GMM, SOM, LOF, Robust OC-SVM, and
the iForest methods described in Section 2. For the GMM, preprocessing with PCA does both a
dimensionality reduction and decorrelation, although dimensionality reduction is only done when
needed. For the Robust OC-SVM, only decorrelation is done by the preprocessing method.

A comparison of the methods can be found in Table 1. Firstly, we note that only the GMM
and SOM papers report an ARL. The other papers are more focused on detecting a single fault.
Efficiency is then often reported with a confusion matrix or other metrics based on the confusion
matrix such as precision and recall which are defined as

precision =
TP

TP + FP
,

recall =
TP

TP + FN
.

(44)

Notice that the papers of the GMM and SOM are also the oldest, from 2004 and 2009 respectively.
In addition to this first difference, the methods, which did not report the ARL, are precisely those
that are robust to outliers in the training data. These are the LOF, robust OC-SVM, and the
iForest. Methods reporting an ARL and which are robust to outliers are not researched. This is
sensible because robustness to outliers can only be the case when faults are ‘few’ with respect to
the in-control observations present. The out-of-control ARL is most interesting when the fault
is persistent and, therefore, not ‘few’.

The GMM and SOM are compared with the Hotelling’s T 2 chart. This was the most popular
comparison. The Q statistic was used to test the part not explained by PCA. The SOM also
compares to the MEMWA chart, which is interesting since this method takes into account history.
The robust OC-SVM was compared to the non-robust version from [34]. It performed better,

Page 16 of 32



Eindhoven University of Technology

although it was only compared with training data containing outliers. The non-robust version
was compared to the T 2 and Q charts with the data preprocessed by PCA. Both the LOF and the
iForest were compared to a rectangular method, adjusted outlierness for the LOF, and univariate
Shewhart chart for the iForest. The LOF used the I2 statistic, common for data preprocessed
with ICA. The iForest used ABOD, a method not yet used for process monitoring.

For preprocessing, GMM, LOF, SVM, iForest keep it simple. PCA and ICA are used. Noticeable
is that the GMM is the only method that also creates the Q control chart. This is the case since
the LOF and SVM methods do not perform any dimensionality reduction when applying these
methods. Hence, no Q statistic is necessary. Contrary to these methods, the SOM does a
lot of preprocessing. It firstly windows the data which makes it the only method taking into
account history. Furthermore, a rather extensive feature extraction is done, which even includes
calculating the T 2 statistic of the last sample. After that, normalization is done.

Finally, we will discuss the parameters. Notice that the Robust OC-SVM, and iForest have a
UCL that must be set manually. The LOF has a clever trick using the kernel density estimator
to get a good UCL automatically. It would certainly be interesting to use this also for the Robust
OC-SVM, and iForest. The GMM must be given the number of Gaussians M and the dimension
to reduce to using PCA. The SOM usually has a lot of parameters but these were given defaults
based on the amount of input data. The LOF has only one paramter k. The Robust OC-SVM
needs Θ, a parameter controlling robustness, and σ, the parameter of the RBF kernel function.
The iForest has two parameters, the subsampling size ψ and the number of trees t. However,
these parameters have default values and do not have to be chosen. For none of the methods it
is explained how these parameters can be tuned without using out-of-control data.

All methods proved interesting in their respective paper. This is the case since the methods
were catered to their input data. For example, the Gaussian mixture model was tested on data
originating from a mixture of 5 Gaussians.

3 Simulation

The previously described methods will be tested for effectiveness on generated multinomial data.
Firstly, the data generation simulation setup will be explained. This is followed by Section 3.2 in
which the implementation details for all methods are discussed. After this the training process
is explained which includes choosing appropriate parameters and an appropriate UCL.

3.1 Simulation description

For generating the data we draw N from a negative binomial distribution NegBin(µnb, pnb).
Then we draw N i.i.d. samples Y1, . . . YN from a lognormal distribution LogNormal(µl, σ

2
l ). We

count for m intervals the number of samples Yi inside the interval. This results in the counts
X1, . . . Xm. This will be repeated n times to get the phase I data.

For, the simulation we will generate n = 1000 observations with each combination of µnb = 100
or µnb = 5000 and pnb = 0.25 or pnb = 0.75 for the m = 6 intervals

[0.5, 0.7), [0.7, 1.0), [1.0, 3.0), [3.0, 5.0), [5.0, 10.0), [10.0,∞).

The phase I data will be generated with µl = 0.5 and σ2
l = 0.75. This dataset will be the only

dataset used to train the model and to set all the parameters and the UCL. This is different from
most machine learning papers where out-of-control data is used to tune the model parameters.
It is also different from the SOM where a separate dataset was used to set the UCL. After the
training, we will investigate the ARL for the following situations:

1. µl = 0.5, σ2
l = 0.75 (in control)

2. µl = 0.45, σ2
l = 0.75
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3. µl = 0.55, σ2
l = 0.75

4. µl = 0.5, σ2
l = 0.5

5. µl = 0.5, σ2
l = 1.0

6. µl = 0.45, σ2
l = 1.0

The distributions according to these parameters are also shown in Figure 2.

Figure 2: Lognormal distribution for each shift.

3.2 Implementation details

The GMM was simulated using the Scikit-learn library [32] for the GMM algorithms. The PCA
module of Scikit-learn was not used since it does not have the features for easily computing the
Q statistic. Hence, our own implementation of PCA was used.

The SOM used the Matlab SOM Toolbox [22]. Implementations in other languages are scarce
and less feature-rich. To calculate the ARL for parameters µl, σ

2
l , we first create ω − 1 obser-

vations according to the distribution of the phase I data. Only then can this be appended by
data generated with the parameters µl, σ

2
l . Due to the windowing preprocessing step, the first

preprocessed observation will be from a window encompassing ω− 1 in-control observations and
1 observation generated with parameters µl, σ

2
l .

The LOF was simulated using the Scikit-learn library for both the LOF and the ICA algorithms.
Notice that the scores returned by this library are the opposite of the LOF scores. In addition, the
kNN(x) method will return a set of cardinality k. Hence, this is slightly different from the earlier
definition were the cardinality could be larger if there were multiple points at the k-distance
of x. The LOF method explained included in the training procedure a way to remove outliers
first, after which the method was retrained. This procedure was skipped since by removing the
outliers, the method became more sensitive which made the in-control ARL always significantly
shorter than wanted. Furthermore, ICA does not work when the data has zero eigenvalues. This
occurs when there are a lot of observations linearly dependent and the rank of the data matrix
is smaller than m. In this case, a dimensionality reduction is done. This happens more often if
the data is discrete with low variance. Tolerance and the maximum number of iterations used
in the FastICA algorithm also had to be increased to a tolerance of 0.01 and 5000 iterations
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for it to converge consequently. The computation of the inverse CDF of a Gaussian KDE was
conveniently left out by Lee et al. [10]. We implemented this by computing the CDF on a
discrete set of points. Then, we translate the CDF horizontally by 1−α where α is the required
significance level. On these points, we use the Scipy package to get a smoothing spline. The
Scipy package can then automatically find the roots of this spline using a root-finding algorithm.
Notice that since the approximation of the CDF is translated down by 1−α, the root found will
be the inverse of the CDF in 1− α.

The Robust OC-SVM only has an implemention for RapidMiner, a commercial application. This
application lacks the features for computation of ARL. Hence, it was chosen to implement this
in python using the module Quadprog to solve the quadratic programming problem. For the
computation of the RBF kernel, the Scikit-learn library was used. Duplicate input data was
removed such that the RBF kernel matrix is always positive definite. After this, due to floating-
point errors, it was necessary to add a small perturbation to the diagonal of H. This was done
by adding a diagonal matrix with as diagonal elements 0.01 ·mini,j hij . This ensured stability of
the algorithm while having minimal impact on the method.

The iForest was simulated using the Scikit-learn library. Again, the scores reported by Scikit-
learn are the opposite of the scores defined earlier in this work. We take the number of trees t =
100 and subsampling size ψ = 256 according to the guidelines of the Isolation Forest paper.

After implementing the methods all the parameters were optimized to deliver good performance.
Preferably each method has the same in-control ARL since this allows a better comparison. This
proved difficult to achieve through tuning all parameters.

3.3 Training procedure

In the training procedure all models need to be trained and their parameters need to be set.
Notice that the UCL of the OC-SVM and iForest need to be set manually as well. The generalized
p-chart, GMM, and LOF have a parameter α to set the UCL, the SOM also has a method for
setting the UCL for some α. Notice that the amount of times no alarm is raised in the in-
control situation follows a geometric distribution with parameter α. So we expect an ARL of
1
α . In this work, we will try to get an ARL of approximately 100. Hence, we take α = 0.01 for
these methods. The method for the SOM requires a new dataset to set the UCL according to
its procedure. The training set could be used but from experience this provides a far shorter
ARL, most likely because the model is slighty overfitted, and performs disproportionally well
on the exact training data. All these parameters could be tweaked best if out-of-control data
was available. Since this is typically not the case in process monitoring, we try to get the
parameters such that the model performs consistently. Unfortunately there is no method to
get the optimal results without out-of-control data. The methods do describe procedures which
include experimentation and tuning which requires out-of-control data. The SVM paper does
mention parameter tuning is difficult, but not too important since the UCL can be shifted to
get good results. Algorithm 6 describes the training procedure. model is the model used (e.g.
LOF). Model settings is a set containing all possible combinations of settings for the model. α
is the preferred false positive probability (e.g. 0.027 to get 350 ARL). Firstly, a set of 2-tuples
data splits of train and test sets is made. This is done similarly to the procedure for 10-fold
cross validation. Each fold is used once as the test set and the other 9 folds as the train set.
Then Fs,l is made, this is an array in which we store the estimated false positive probabilities
for each tuple in data splits using UCL l and settings s. After all these arrays are made, the s, l
are returned which had the most false positive probabilities in the range [0.0075, 0.0125] which is
close to α = 0.01. In practice it can be cumbersome to find a set with appropriate UCLs for the
algorithm to try. In this work the ucls set consisted of the UCLs which resulted in the desired
false positive rate for each of the test sets for each of the model settings. Hence, for each method
with a certain parameter configuration 10 UCLs were found.

Notice that this training procedure is rather extensive and time consuming. Although changing
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Algorithm 6 Model training algorithm

Input: model - the model to train, X - training data, ucls - set of ucls, model settings - set
with tuples containing different model settings

1: data splits is the set of 2-tuples containing training and test data according to 10-fold cross
validation

2: for s ∈ model settings do
3: for l ∈ ucls do
4: Fs,l ← []
5: for Xtrain, Xtest ∈ data splits do
6: model.train(Xtrain,model settings)
7: Fs,l.append(|{x ∈ Xtest | model.out control(x, l)}|/|Xtest|)
8: end for
9: end for

10: end for
11: return argmaxs,l |{x ∈ Fs,l | x ∈ [0.0075, 0.0125]}|

the UCL does not require retraining the model, changing other parameters does require retrain-
ing. In addition, for each fold the method is trained. So using this procedure each method will
perform training 10 · |model settings| times. To keep training times reasonable, we limited the
model settings for each method to the following combinations:

For the GMM:

• M = 2, s = 5

• M = 4, s = 5

• M = 2, s = 3

• M = 4, s = 3

For the SOM: ω = 3, 5, 10.

For the LOF: k = 8, 16.

For the OC-SVM:

• Θ = 0.04, σ = 2

• Θ = 0.004, σ = 2

• Θ = 0.04, σ = 1

• Θ = 0.004, σ = 1

3.4 Results

The results can be found in Tables 2, 3, 4, and 5. Each method was trained with the same
dataset of size n = 1000 using the previously described procedure. After the training, 1000
run lengths were simulated to find each ARL. The parameters chosen by the training procedure
are given under each table as well as the precise CLs. Prior to analyzing the results we will
discuss these parameters. For the GMM, most often M = 4 and s = 5 was chosen except for
µnb = 200, pnb = 0.75 where M = 2, s = 3. For the SOM, all models used the smallest option for
the window size ω = 3. Since each fold contains 1000 observations, the testing data consists of
100 observations. Preferably, exactly 1 of these is an outlier. A large window size would likely
result in no outliers or multiple outliers which is not desired. Hence, it is likely that the algorithm
prefers the smaller window size. The LOF used k = 16 for the simulations with µnb = 200. For
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the other simulations k = 8 and k = 4 were used. The SVM used Θ = 0.004 and σ = 2 in all
simulations, which are the same values as chosen in [29].

µl, σ
2
l Gen. p GMM SOM LOF SVM iForest

0.5, 0.75 75.84
(71.21, 80.47)

121.79
(114.39, 129.19)

72.99
(68.42, 77.55)

218.12
(204.85, 231.39)

154.68
(145.42, 163.94)

131.30
(122.47, 140.13)

0.45, 0.75 61.38
(57.49, 65.26)

72.22
(67.65, 76.80)

45.65
(42.84, 48.46)

184.16
(172.78, 195.54)

132.93
(124.93, 140.93)

138.38
(130.06, 146.70)

0.55, 0.75 28.57
(26.79, 30.35)

76.21
(70.98, 81.43)

26.35
(24.75, 27.95)

81.16
(75.94, 86.37)

71.41
(67.00, 75.83)

71.09
(66.65, 75.53)

0.5, 0.5 0.03
(0.02, 0.04)

0.09
(0.07, 0.11)

0.62
(0.59, 0.65)

0.12
(0.09, 0.14)

0.20
(0.17, 0.23)

0.84
(0.76, 0.93)

0.5, 1 0.13
(0.11, 0.16)

2.00
(1.84, 2.16)

0.45
(0.41, 0.48)

0.46
(0.41, 0.51)

0.42
(0.37, 0.46)

1.64
(1.52, 1.77)

0.45, 1 0.20
(0.17, 0.23)

2.57
(2.38, 2.76)

0.60
(0.56, 0.64)

0.79
(0.72, 0.87)

0.65
(0.59, 0.71)

2.51
(2.31, 2.70)

CLs 15.09 15.25

Qcl=1117.80

6.20 1.63 0.11 0.59

Parameters α=0.01 α = 0.01

M=4

s=5

ω=3 k=16

α = 0.01

Θ=0.004

σ=2

-

Table 2: Table with performance results rounded to 2 decimals, 95% confidence in-
tervals are given. Training data of size n = 1000 is generated with µnb =
200, pnb = 0.25. Robust OC-SVM is shortened to SVM. The intervals used are
[0.5, 0.7), [0.7, 0.1), [0.7, 1.0), [1.0, 3.0), [3.0, 5.0), [5.0, 10.0), [10.0,∞), smaller than 0.5 is dropped.

Firstly, it is necessary to examine the in-control average run lengths. Preferably these would be
as close to 100 as possible. For the generalized p, this is not the case when µnb = 200. This
is probably because there is a poor fit. Notice that the rule of thumb proposed by Cochran for
applying the χ2 statistic is not met [35]. The rule states that at least twenty percent of the
expected frequencies nipj must be above five and none under one. For the simulation we had
n0 = 187.77 and p0 = (0.074, 0.132, 0.567, 0.151, 0.066, 0.008)T . Hence, the expected frequencies
are (13.895, 24.786, 106.466, 28.353, 12.393, 1.502)T . The last component has a very low expected
frequency and is likely to be below one occasionally, which clashes with the rule of thumb.
The GMM has in-control ARLs closest to 100 overall. The other distributionless methods have
difficulties getting an accurate in-control run length. The OC-SVM performs best of these
methods although it has one high value in the first simulation. The SOM has an extremely low
in-control ARL in the fourth simulation. The iForest has an extremely high ARL in the third
simulation. The LOF has an extremely high ARL in the first simulation. It is interesting that
all methods behave very differently although they were trained on the same dataset.

We will also redo the simulation with µnb = 200, pnb = 0.25 but with a phase I data set of
size n = 5000 to investigate whether a larger phase I dataset will allow for better UCLs which
give in-control ARLs closer to the desired value. Prior to this, we will discuss the out-of-control
results by investigating Table 3 since this table has the in-control ARLs closest to 100. For the
change in mean, the SOM performs best and the GMM and SVM perform the worst. The SOM
has a window which is an advantage over the other methods which possibly explains the result.
However, the windowing also has a downside. This can be seen in the last three rows where the
SOM is one of the poorer methods. Only the GMM performs worse. This can be expected since
the window of the SOM contains only one outlier and two normal points when the first outlier
is presented. Only after three points, the SOM gets a window with solely outliers. When a
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µl, σ
2
l Gen. p GMM SOM LOF SVM iForest

0.5, 0.75 73.68
(69.35, 78.01)

112.84
(105.75, 119.93)

83.50
(78.15, 88.86)

84.49
(79.29, 89.70)

126.40
(118.35, 134.46)

96.63
(90.71, 102.55)

0.45, 0.75 57.52
(53.95, 61.09)

94.88
(89.40, 100.35)

37.17
(34.95, 39.40)

52.66
(49.26, 56.06)

94.02
(88.25, 99.79)

80.47
(75.42, 85.51)

0.55, 0.75 33.34
(31.25, 35.43)

62.44
(58.47, 66.40)

27.93
(26.12, 29.73)

43.23
(40.60, 45.86)

51.60
(48.33, 54.86)

44.70
(41.79, 47.61)

0.5, 0.5 0.02
(0.01, 0.03)

0.25
(0.22, 0.28)

0.37
(0.34, 0.40)

0.01
(0.00, 0.01)

0.05
(0.04, 0.07)

0.18
(0.15, 0.21)

0.5, 1 0.12
(0.10, 0.15)

5.65
(5.27, 6.03)

0.41
(0.37, 0.44)

0.29
(0.25, 0.33)

0.18
(0.15, 0.21)

0.23
(0.20, 0.26)

0.45, 1 0.20
(0.17, 0.23)

6.44
(6.03, 6.85)

0.62
(0.58, 0.66)

0.52
(0.47, 0.58)

0.32
(0.28, 0.36)

0.32
(0.28, 0.36)

CLs 15.09 11.44

Qcl=271.01

6.32 1.50 0.10 0.57

Parameters α=0.01 α=0.01

M=2

s=3

ω=3 k=16

α=0.01

Θ=0.004

σ=2

-

Table 3: Table with performance results rounded to 2 decimals, 95% confidence in-
tervals are given. Training data of size n = 1000 is generated with µnb =
200, pnb = 0.75. Robust OC-SVM is shortened to SVM. The intervals used are
[0.5, 0.7), [0.7, 0.1), [0.7, 1.0), [1.0, 3.0), [3.0, 5.0), [5.0, 10.0), [10.0,∞), smaller than 0.5 is dropped.

µl, σ
2
l Gen. p GMM SOM LOF SVM iForest

0.5, 0.75 96.96
(91.17, 102.75)

110.75
(103.76, 117.75)

57.18
(53.62, 60.74)

69.53
(65.24, 73.82)

112.22
(105.27, 119.16)

274.11
(257.63, 290.59)

0.45, 0.75 0.51
(0.46, 0.56)

0.84
(0.77, 0.92)

0.78
(0.75, 0.82)

0.95
(0.86, 1.03)

0.95
(0.87, 1.04)

3.09
(2.87, 3.31)

0.55, 0.75 0.49
(0.44, 0.55)

0.55
(0.49, 0.61)

0.75
(0.72, 0.79)

0.58
(0.52, 0.64)

0.63
(0.57, 0.69)

2.19
(2.02, 2.36)

0.5, 0.5 0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.5, 1 0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.45, 1 0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

CLs 15.09 15.25

Qcl=1291.27

5.90 1.53 0.10 0.60

Parameters α=0.01 α=0.01

M=4

s=5

ω=3 k=8

α = 0.01

Θ = 0.004

σ = 2

-

Table 4: Table with performance results rounded to 2 decimals, 95% confidence in-
tervals are given. Training data of size n = 1000 is generated with µnb =
5000, pnb = 0.25. Robust OC-SVM is shortened to SVM. The intervals used are
[0.5, 0.7), [0.7, 0.1), [0.7, 1.0), [1.0, 3.0), [3.0, 5.0), [5.0, 10.0), [10.0,∞), smaller than 0.5 is dropped.
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µl, σ
2
l Gen. p GMM SOM LOF SVM iForest

0.5, 0.75 100.29
(93.82, 106.77)

80.51
(75.49, 85.53)

29.14
(27.24, 31.04)

65.09
(60.90, 69.28)

86.15
(81.00, 91.30)

103.81
(97.68, 109.94)

0.45, 0.75 0.48
(0.42, 0.53)

0.58
(0.52, 0.64)

0.62
(0.58, 0.66)

1.70
(1.58, 1.83)

0.68
(0.61, 0.74)

1.14
(1.03, 1.24)

0.55, 0.75 0.52
(0.46, 0.57)

0.62
(0.56, 0.68)

0.57
(0.53, 0.60)

0.49
(0.44, 0.54)

0.44
(0.39, 0.49)

0.56
(0.50, 0.61)

0.5, 0.5 0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.5, 1 0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.45, 1 0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

0.00
(0.00, 0.00)

CLs 15.09 15.25

Qcl=1293.52

5.97 1.58 0.10 0.57

Parameters α=0.01 α=0.01

M=4

s=5

ω=3 k=4

α=0.01

Θ=0.004

σ=2

-

Table 5: Table with performance results rounded to 2 decimals, 95% confidence in-
tervals are given. Training data of size n = 1000 is generated with µnb =
5000, pnb = 0.75. Robust OC-SVM is shortened to SVM. The intervals used are
[0.5, 0.7), [0.7, 0.1), [0.7, 1.0), [1.0, 3.0), [3.0, 5.0), [5.0, 10.0), [10.0,∞), smaller than 0.5 is dropped.

large change happens and the ARL is rather small, methods without the window have a benefit
since they are handling one outlier while the SOM is handling several features of two normal
observations and one outlier. On the other hand, when the change is small, and ARLs are large,
the window only benefits the method.

Now, when redoing the simulation with a larger training set, we get the results in Table 6.
Again, the generalized p has in-control ARL which is too small. The other methods have ARLs
significantly closer to the desired value of 100, although the in-control ARL of the OC-SVM is
still rather small. Either the generalized p and the OC-SVM have smallest out-of-control ARL
in all situations except for the mean shift to µnb = 0.55 when the SOM performs better. Before
concluding that these are the best methods, one should consider that they also have the smallest
in-control ARL. From the other methods, the SOM and LOF performs best. Similar as earlier,
the SOM works best for the slightly larger ARLs and the LOF when the ARLs are very small.
The iForest and GMM are not competitive options, although the iForest is still better than the
SOM when ARLs small.
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µl, σ
2
l Gen. p GMM SOM LOF SVM iForest

0.5, 0.75 76.77
(72.09, 81.45)

105.37
(98.57, 112.17)

111.05
(103.98, 118.12)

87.16
(81.69, 92.62)

72.03
(67.42, 76.63)

91.39
(85.75, 97.02)

0.45, 0.75 56.16
(52.73, 59.60)

67.26
(63.03, 71.50)

48.42
(45.47, 51.37)

71.93
(67.47, 76.39)

44.03
(41.31, 46.75)

111.86
(104.63, 119.08)

0.55, 0.75 34.84
(32.66, 37.02)

60.17
(56.45, 63.88)

28.53
(26.70, 30.36)

42.55
(39.87, 45.23)

37.49
(35.16, 39.83)

47.11
(44.12, 50.10)

0.5, 0.5 0.03
(0.02, 0.04)

0.09
(0.07, 0.11)

0.66
(0.63, 0.69)

0.06
(0.04, 0.07)

0.02
(0.01, 0.03)

0.45
(0.40, 0.50)

0.5, 1 0.14
(0.12, 0.17)

1.51
(1.39, 1.63)

0.52
(0.48, 0.55)

0.22
(0.19, 0.25)

0.26
(0.22, 0.29)

0.50
(0.45, 0.56)

0.45, 1 0.23
(0.20, 0.27)

1.93
(1.79, 2.07)

0.72
(0.68, 0.77)

0.42
(0.38, 0.47)

0.40
(0.36, 0.45)

0.89
(0.81, 0.97)

CL 15.09 15.12

Qcl=593.48

6.05 1.46 0.03 0.59

Parameters α = 0.01 α = 0.01

M=4

s=5

ω=3 k=16

α=0.01

Θ=0.04

σ=2

-

Table 6: Table with performance results rounded to 2 decimals, 95% confidence in-
tervals are given. Training data of size n = 5000 is generated with µnb =
200, pnb = 0.25. Robust OC-SVM is shortened to SVM. The intervals used are
[0.5, 0.7), [0.7, 0.1), [0.7, 1.0), [1.0, 3.0), [3.0, 5.0), [5.0, 10.0), [10.0,∞), smaller than 0.5 is dropped.

4 Case study

In this section, a case study will be done on count data. More specifically particles are counted
and grouped by size in six classes creating a 6 dimensional vector for each observation. 1440
samples are given. Unfortunately, no out-of-control data is provided. Hence, we cannot compare
the performance of each method directly. We will focus on how methods differ between each
other.

The data, plotted in Figure 3, shows a lot of near-zero data. In total, we observe a few spikes. If
we take a closer look at the larger spikes between observations 350 and 500 depicted in Figure 3b,
we see that all counts rise quickly, after which they fade out. The peak at observation 370 is
followed by a peak at 380. We will test the methods on observations 1400-1440. These are
depicted in Figure 3c. Notice that it is similar to the observations between 370 and 400 although
the peaks are slightly less steep.

We will use the exact same training procedure as in Section 3. The training set will consist of
the first 1000 observations. In Figure 4, the control charts are depicted for the methods with
settings shown in Table 7. Observe that the GMM and SVM use parameter settings that were
not chosen in any of the previous simulations.

Notice that the SOM only starts after 2 observations due to its window size of 3. The training
data starts with a peak at observations 1415. For this peak, we see that all the distribution-free
methods stay under the UCL except for the SOM. Considering the window of the SOM, one would
expect a smooth curve. Although the window size is small, this is still the method with the most
variation. This suggests that a slightly larger window size would be beneficial. The LOF has
k = 4, so the score is only determined by looking at the 4 neighbors closest to the LOF. Since the
training data also had a peak of a similar size, the LOF remains rather low. If the peak consisted
of less than k observations, the method would likely raise an alarm. In this way, we have an
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(a) Complete data

(b) Observations 350 to 500 (c) Observations 1360 to 1440

Figure 3: Data of particle sensors measuring particles in 6 size classes.

Gen. p GMM SOM LOF SVM iForest

CL 15.09 15.25

Qcl=186.64

5.73 3.30 0.08 0.77

Parameters α=0.01 α=0.01

M=2

s=5

ω=3 k=4

α=0.01

Θ=0.04

σ=2

-

Table 7: Simulation settings for case study.
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Figure 4: Case study control charts for observations 1400 to 1440. Each model trained on
observations 1 to 1000. The UCL is given by the dotted red line. The blue vertical line at
observation 1415 indicates the place of the first peak in the test data.
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intuitive understanding of how the parameter k can control the method’s sensitivity to outliers.
Interestingly, the statistic of the Robust OC-SVM becomes smaller starting at observation 1415.
Notice that in the training set, there was a large peak. In demarcating the area, the boundary
can lay very close to 0 since no observations have values below 0. Hence, these points still get a
relatively high score compared to the observations which reside in the middle of the demarcated
area. The generalized p-chart seems to perform rather poorly. The training data which consisted
of a large amount of near-zero data obviously did not correspond to the assumption needed for
the generalized p-chart. The GMM performs similarly, although it is interesting to see it has an
out-of-control value before the peak in the training data. Lastly, the iForest has two peaks which
correspond to the peaks in the test data. However, they do stay under the UCL.

5 Conclusion and future work

In this work, the goal was to identify which machine learning approaches work best for count
data and whether that method performs better than a traditional method. Several methods were
explained and analysed in a simulation and in a case study. In this process, we came up with a
method for parameter tuning and UCL setting using only an in-control dataset. We chose a wide
range of ML models from different categories. This fills in a gap in previous literature, where
ML overviews are incomplete and the models are not compared against by means of a simulation
on the same dataset.

In the simulation, count data was generated and ARLs were computed for each of the methods.
From the results, we see that it is difficult to set the UCL such that the desired in-control ARL
is attained. None of the ML methods provided a way to tune its parameters other than to
use out-of-control data. In the simulation section, we also presented an algorithm which picks
parameters and sets a UCL such that consistent results are obtained. The generalized p also had
issues since the requirement for its usage was not met resulting in a small in-control ARL.

The GMM is the most statistical approach. It performed rather poorly since one of its assump-
tions, the data fitting a mixture of normal distributions, was not met. It did provide a good UCL
in almost all cases. The SOM method uses an extensive preprocessing method by computing 7
characteristics. Its preprocessing includes windowing. It did make the method insensitive which
resulted in larger ARLs when large variations occured. The LOF is a rather simple method,
which performed rather well. It proved interesting in the case study where the parameter k of
the LOF provided an intuitive way to reduce sensitivity for the large peaks in the training data.
The Robust one-class SVM did perform very well. However, it has a tendency to either have
very long or very short ARLs resulting in an undesired in-control ARL. This might be solved by
tuning the models parameters well but no information was given on how to do this. The final
method is the iForest, which had unremarkable performance. It can still be interesting in other
settings with larger datasets and more features since this method’s main benefit is its linear time
complexity and low memory requirement.

In the case study, rather different results were. The generalized p-chart became very sensitive
and raised alarms for almost all points. This shows the strength of the machine learning meth-
ods, which are distributionless and generalize better. The LOF and SVM did not raise alarms
even for the peeks. The SOM and GMM raised only few alarms. The LOF can be conve-
nient since its parameters are more intuitive to change in comparison to the SVM’s or GMM’s
parameters.

We conclude that when the data follows an multinomial distribution and we can use the method
according to the rule of thumb from Cochran, the gereralized p is better. However, when a slight
deviation from the multinomial distribution is present or the rule of thumb does not allow for
using the method, one of the ML approaches is likely better. If a reliable in-control ARL is
desired, the GMM can work although this comes at a sacrifice of performance. If the in-control
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ARL can deviate, the Robust OC-SVM performs well. When it is important to detect small
changes, the SOM is prefered.

For future work, analyzing the methods with the same preprocessing methods can be of interest.
Especially the SOM’s preprocessing by windowing the data seems to have a large impact. Com-
paring these to methods without windowing says very little about the method and more about
the preprocessing. In addition, a phase I with some outliers would be interesting to analyze.
The LOF, iForest, and Robust OC-SVM should perform better in those cases. Finally, future
research could focus on analyzing the impact of the training data’s size. In the simulation, we
set n = 1000 and n = 5000. However, for n = 10, 100, 10000 the results could be drastically
different. In the case that n = 10000, it would also be relevant to analyze the running times of
the algorithms to see if they can be run in a reasonable time.
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Appendices

A Fuzzy adaptive resonance theory

Grossberg and Carpenter developed adaptive resonance theory (ART), a theory that suggests an
adaptive, yet stable solution for learning systems [36]. In 1998, they developed the system called
Fuzzy ART which extends their original system ART1, which only allows binary inputs [37]. By
applying fuzzy set theory Fuzzy ART functions also with analog input variables.

In this section we will adopt fuzzy set theory notation. So the ∧ and ∨ operators denote minimum
and maximum respectively.

The algorithm to train the Fuzzy ART network is shown in Algorithm 7. The input data should
be normalized such that each x ∈ X has parts xi ∈ [0, 1]. This normalization is done by a coding
scheme dependent on a tunable parameter l > 0. It maps each xi to

0 xi < µi − l
1
2 (1 + xi−µ

l µi − l ≤ xi ≤ µi + l

1 xi > µi + l

Notice that extreme values will be mapped to 0, and 1. If l is smaller, more values will be mapped
to 0, 1. After this coding, another form of coding called complement coding is performed. Here
x = (x1, . . . , xM ) is mapped to xc = (x1, . . . , xn, 1 − x1, . . . , 1 − xm). Notice that |xc| = n for
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each x ∈ X with norm | · | defined as the l1-norm. Hence, no further normalization needs to be
done.

Then N categories are made. Each category j has a weight wj = (wj1, . . . , wjm) with 1 ≤ j ≤ N
initialized as 1. Each category starts out uncommitted. For each input x and category j, a choice
function can be defined as follows:

Tj(xi) =
x ∧ wj
α+ |x|

.

The algorithm will start iterating until a stopping condition is reached. Each iterations will
select an observation from the input data, say x ∈ X. Then resonance can occur or mismatch
reset can occur. Consider J = argmaxj Tj(x). Resonance occurs when the match function meets
the vigilance criterion

|x ∧ wJ |
|x|

≥ ρ.

If the criterion is not met, mismatch reset will occur, in which case category J will not be selected
anymore. This can be achieved by temporarily setting TJ(x) to −1. After this a new J is chosen
until the vigilance criteria is satisfied.

If the criterion is met, the algorithm can continue and weight vector wJ shall be updated as
follows:

wJ = β(x ∧ wJ) + (1− β)wJ

Notice that the algorithm pseudocode works slightly differently. It does not have a constant
number of categories but it creates a category and a weight when needed by appending to w.
So first w contains only the category of the x1 and if needed new categories are appended. This
alleviates the problem which occurs when no categories are uncommitted but the vigilance test
is not met for any of the categories.

Algorithm 7 Simple Fuzzy ART Training algorithm

Input: X = {x1, . . . , xn} - training data, α - choice parameter, β - learning rate, ρ - vigilance
parameter

1: xi ← xci = (xi, 1− xi) for each i
2: w ← x1
3: while Stop criteria does not hold do
4: for x in X do
5: if |x∧wi|

α+|x| < ρ for all i then

6: Append w with x
7: else
8: J ← argmaxi

|x∧wi|
α+|x|

9: wJ ← β(x ∧ w) + (1− β)w
10: end if
11: end for
12: end while

After the training of the model, new data should be normalized. A control signal should be
raised whenever wJ does not pass the vigilance test. Optionally, a control chart can be created
by plotting the value for wJ with UCL ρ.

B PCA for process monitoring

Principal component analysis is a technique which performs a change of basis and can be used
for dimensionality reduction of data. This, and the explanation on how to compute principal
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components, a subject which we will not discuss here is explained in [38]. A principal compo-
nent is a unit vector which maximizes the variance of the projected data onto the component.
Furthermore, the ith principal component must be orthogonal to all the j principal components
with j < i. Notice that the principal components with larger indices contribute less to vari-
ance in the data. Hence, they are less important, since they do not describe a lot about the
observations.

Let s be the dimensionality to which we reduce. Given n data points of dimension p, we can
create an n× p matrix X containing the data. We assume it is scaled to zero mean.

Now, we start with the model X = TP ′s+E. The columns of Ps, the loading matrix, are actually
the eigenvectors of the covariance matrix of X corresponding to the s eigenvalues in descending
order (λ1, . . . , λs). T is called the score matrix. E comprises of the residuals made using this
projection.

C ICA

Independent component analysis (ICA) is a statistical method which separates a multivariate sig-
nal into independent sub-parts, so called latent variables which are assumed to be non-Gaussian.
For the variables x, with latent variables s, there exists a matrix A such that x = As. So,
s = A−1x. We call W = A−1, the demixing matrix. Before the computation of W , whitening
needs to be performed. This is a preprocessing method which removes correlations in the data.
This is done by finding V such that for y = V x we have corr(yi, yi) = 1 and corr(yi, yj) = 0 for
i 6= j. This is done by choosing V = C−1/2 with C the correlation matrix of x. Computation of
W is then commonly performed by the FastICA algorithm [39].
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