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1 Introduction

1.1 Motivation

Our current society is often called a networked society because of the many networks that surround
us. Examples of those networks are things like traffic networks and the internet. On these networks,
many processes are able to spread such as computer viruses, news on Facebook, retweeting on
Twitter, viral videos and many more. In many contexts, finding the source is very important:
finding the designer of a computer virus, the source of fake news and finding patient zero, a topic
that has shown to be useful during the start of the COVID-19 pandemic in the beginning of 2020.
The information known in these source localization problems normally consists of the infection
time of a small subset of the network. The metric dimension is a notion in combinatorics first
defined in 1975 by Slater [17] and a year later independently by Harary and Melter [4]. The
metric dimension models the spreading in networks as graphs where the source spreads along
edges starting at a source vertex and the information is given by the distances between sensor
vertices and the source vertex. Recently, it has been connected to the deterministic version of
the source-localization problem [23]. While spreading in most networks is not a deterministic
problem, the metric dimension can still be used to give estimates of the number of sensor vertices
required in some settings. Ever since its introduction, the metric dimension has been studied
extensively [3, 16, 22]. Ever since, the metric dimension has had real life applications such as
the representation of chemical compounds [8], fire protection [6] and the navigation of robots
in networks [9]. Moreover, several other variants of the metric dimension have been researched
such as the k-metric dimension [21], strong metric dimension [14] and local metric dimension[15].
There is also the topic of this thesis, the threshold-k metric dimension. The threshold-k metric
dimension is a variant of the metric dimension where sensor vertices can only tell their distance to
the source vertex if they are within a distance of k to it, where k is a positive integer. This topic
is of interest for processes that mutate or change over time such as viruses and gossip. Most of
the focus on this topic is on the locating-dominating code, where the maximal distance the sensor
vertices can be from the source vertex is equal to one. The notion of the locating-dominating code
was first introduced by Slater [19], who showed that it was a linear problem and found a lower
bound [18], which was later improved by Blidia et al. [1] and later again by Slater [20]. A different
kind of topic on networks is the source obfuscation problem. In this problem, the goal is to spread
something along a network in such a way that a few spy vertices cannot detect the source vertex.
Examples of the applications of this problem are in the anonymization of transactions of Bitcoin.
Similarly to the source localization problem there are also uses of the metric dimension in the
source obfuscation problem as it states the number of spy vertices required such that detection
of the source vertex is guaranteed. For example, a recent paper [12] found that the addition of
connections in the network has the ability to significantly increase the metric dimension, implying
that the spy vertices will likely have more difficulty finding the source vertex.

1.2 Algorithmic Aspect

It is well-known that finding the metric dimension of arbitrary graphs is an NP-hard problem
[10] and only approximable up to log(n) [5], meaning that it becomes impossibly hard to find the
metric dimension on very large graphs. As such studies usually focus on certain types of graphs
where the metric dimension is easier to find, such as wheels [2] and circulant graphs [7]. A big
focus is also on trees, for which it has been shown that the metric dimension is linear to calculate
[10]. There is also research on the asymptotic behaviour of certain trees, such as uniform random
trees [13] critical Galton-Watson trees and linear preferential attachment trees [11].

1.3 Our contribution

For the threshold-k metric dimension in trees, most of the research is focused on the threshold-1
metric dimension and the threshold-∞ metric dimension, referred to as the locating-dominating
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code and metric dimension respectively. However, not much is known about the threshold-k metric
dimension of trees for other values other than that it has to be somewhere between the metric
dimension [10] and the lower bound of the locating-dominating code [20]v of the tree. In this
thesis we study these threshold-k metric dimensions for which not much is known in more detail.
We start by finding the largest possible trees that have a certain threshold-k metric dimension.
After we have done this, we use the size of these graphs to find the sharp lower bound that works
for arbitrary k, and later we further develop this lower bound for k = 2.

1.4 Methodology

To find the lower bound of the threshold-k metric dimension for arbitrary k we first find the
largest trees that have a certain threshold-k metric dimension. We do this by finding a ’skeleton’
of the tree, characteristics that this tree must have. These characteristics are found by showing
that trees that do not follow these characteristics can be transformed in certain ways such that
the threshold-k metric dimension does not increase, while the number of vertices increases. The
first transformation moves the vertices that are only measured by a single sensor vertex to be
connected only to that sensor vertex, which allows us to do the other transformations. The first
of these other transformations moves sensor vertices with certain properties between them closer
together. This cause these sensor vertices to get close enough to each other so that the second
transformation can be done. This transformation adds an additional vertex to the tree. After
these transformations the sensor vertices can still determine the source vertex, proving that the
tree was not the largest tree possible with that threshold-k metric dimension.
Once we have done this and reach the optimal ’skeleton’ we can calculate the largest number of
vertices this skeleton can have, and then we use this to calculate the lower bound of the threshold-k
metric dimension. We then further develop this lower bound for the threshold-2 metric dimension
to take into account the structure of less optimal trees by decomposing the tree into a skeleton
with dangling ends. These dangling ends need additional sensors. We calculate the number of
additional sensors needed, which allows us to find this lower bound by simply adding the number
of additional sensors to the number of sensors the skeleton needs, which follows the original lower
bound.

2 Preliminaries

In this section, we will mathematically define most of the terms used in the rest of this thesis.
A graph G is a set of points called vertices combined with a set of edges, denoted by G = (V,E).
Each element in the set of edges consists of two vertices that the edge connects. A trail is a route
along vertices by way of distinct edges. The length of a trail is the number of edges in the trail.
A path is a trail in which every vertex is distinct. A cycle is a trail in which the only repeating
vertices are the first and the last vertex. The distance between two vertices v and w, denoted by
d(v, w) is the number of edges in the shortest path between the vertices. The degree of a vertex is
the number of edges containing that vertex. A vertex of degree one is called a leaf. A leaf path is
a path of at least two vertices of which the last vertex is a leaf, and every other vertex except the
first one is of degree two. We denote the vertex set V combined with an extra vertex v by V ∪{v}
and V \{v} corresponds to the set V without the vertex v. Similarly, adding a set of vertices S
to V is indicated by V ∪ S and removing S from V by V \S. The addition of edge (v, w) to E
is denoted by E ∪ (v, w) and the removal of (v, w) from E by E\(v, w). A connected graph is a
graph where for any two vertices there is at least one path between them. A tree is a connected
graph that does not have any cycles. We can now define the main topic of this thesis:

Definition 2.1. Let G = (V,E) be an arbitrary graph. A vertex z resolves a pair of vertices x,y in
V if d(x, z) 6= d(y, z) and if at least one of the conditions d(x, z) ≤ k and d(y, z) ≤ k are satisfied.
A subset S of V such that for every pair of vertices x,y in V there is some vertex z in S such that
z resolves x, y is called a threshold-k resolving set for G. The threshold-k metric dimension of G,
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denoted by Tmdk(G),is the smallest integer n such that there exists a threshold-k resolving S for
G with |S| = n.

Lastly, a vertex s is called a sensor if s ∈ S where S is a threshold-k resolving set, and we say
that the sensor s measures the vertex x if d(x, s) ≤ k. This allows us to make the last definitions
of this section.

Definition 2.2. In a tree, the path between two sensors is called a sensor path if it does not
contain any other sensors. It is called a strong sensor path if the distance between the sensors is
less than k + 1.

Definition 2.3. In a tree, the vertex v is said to be identified by the sensor path between sensors
w and y if:
1. The path between v and y does not contain w.
2. The path between v and w does not contain y.
3. v is measured by both w and y.
5. At least one of the conditions d(v, w) 6= d(x,w), d(v, y) 6= d(x, y) are satisfied for any x ∈ V.

3 Lower bound for the threshold-k metric dimension

In the last section the threshold-k metric dimension was defined. In this section we will find the
largest possible tree with a certain threshold-k metric dimension and use this to get a sharp lower
bound for the threshold-k metric dimension of a tree on n vertices. Let Gp be the set of trees such
that Gp ∈ Gp if Tmdk(Gp) = p. Let G∗p be the set of trees such that G∗p ∈ G∗p if G∗p ∈ Gp and
|G∗P | = maxG∈Gp(|G|). We start by stating the following theorem about the lower bound of the
threshold-1 metric dimension, proven by Slater [18].

Theorem 3.1 (Lower bound of the threshold-1 metric dimension). Let T be a tree on n vertices,
then a lower bound for its threshold-1 metric dimension is (n+1)/3. This lower bound is attainable
if it is an integer.

We will now state the main theorem of this section, which we will prove later. This is followed
by Corollary 3.3 where we expand Theorem 3.1 to work for the threshold-k metric dimension for
arbitrary k, which we will prove immediately.

Theorem 3.2. Let G ∈ G∗p , then |G| = (k + 1)p + (p − 1)(k2 + k + 1)/3 if k mod 3 = 1 and
|G| = (k + 1)p + (p− 1)(k2 + k)/3 otherwise.

Corollary 3.3 (Lower bound of the threshold-k metric dimension for arbitrary k). Let T be a tree
on n vertices. A lower bound for its threshold-k metric dimension is (3n+k2 +k+1)/(k2 +4k+4)
if k mod 3 = 1 and (3n + k2 + k)/(k2 + 4k + 3) otherwise. This lower bound is attainable if it is
an integer.

Proof. Let Tmdk(T ) = p. Take G′ ∈ G∗p . G′ attains the lower bound, and T cannot have more
vertices than G′ by definition of G′. As such the lower bound must also hold for T

Remark 3.4. The ceiling of this lower bound is sharp and attainable.

To prove Theorem 3.2 we first introduce two definitions and prove a lemma.

Definition 3.5. Let G be a graph with threshold-k resolving set S. The subset of sensors S′ ⊆ S
with S′ = {s1, . . . , sn} is said to uniquely measure a vertex x if d(si, x) ≤ k, for i = 1, . . . , n,
d(x, sj) 6= d(x, si) + d(si, sj) for i, j = 1, . . . , n, i 6= j and for every y measured by the same set of
sensors there is some si that resolves x and y.

Definition 3.6. Let G be a graph with threshold-k resolving set S. The 1-attraction of a sensor
s ∈ S, denoted by A1(s), is the set of vertices uniquely measured by s, excluding s itself.
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Lemma 3.7. Let T = (V,E) be a tree. S is a threshold-k resolving set for T if every vertex in V
can be uniquely measured by a subset of S.

Proof. Let x,y be an arbitrary pair of vertices in V and let x be uniquely measured by S1 ⊆ S. If
y is also uniquely measured by S1 then there is some si ∈ S1 that resolves x and y by definition. If
y is not uniquely measured by S1 then there are two possibilities. The first possibility is that there
is some s ∈ S1 such that d(y, s) > k, so s resolves x and y as d(x, s) ≤ k by definition. The second
possibility is that there exist s, w ∈ S1 such that d(w, y) = d(w, s)+d(s, y) which tells us that either
s or w resolves x and y as otherwise we have d(w, x) = d(w, y) = d(w, s)+d(s, y) = d(w, s)+d(s, x)
which contradicts that s, w ∈ S1. This completes the proof of the Lemma.

To prove Theorem 3.2, we first show in Lemma 3.8 that for every tree there exists another tree
with the same vertex set and threshold-k resolving set, such that every sensor has its 1-attraction
contained in a leaf path starting from itself. We then show in Lemma 3.9 that every sensor path
in any G∗p ∈ G∗p is disjoint, using the fact that if there are sensor paths that share vertices, we
can transform the graph in certain ways, resulting in a graph larger than G∗p that can still be
measured by the same set of sensors, which is a contradiction. In Lemma 3.10 we find the number
of sensor paths G∗p has, and in Lemma 3.11 we determine the maximal number of vertices that
can be identified by a sensor path, which allows us to prove Theorem 3.2.

Lemma 3.8. Let G = (V,E) be a tree on n vertices with threshold-k resolving set S. Let s ∈ S
and let A1(s) = {s1, . . . , su}. Then there exists a tree G′ = (V,E′), that also has threshold-k
resolving set S, such that A1(s) is contained in a leaf path from s to su.

Proof. We first define the edge set E1 ⊆ E, and the new edge sets E2 and E3. Let E1 be a set of
edges with (x, y) ∈ E1 if (x, y) ∈ E and at least one of x,y ∈ A1(s). Let E2 = {(s, s1) ∪ (s1, s2) ∪
· · · ∪ (su−1, su)}. Lastly, let E3 be a set of edges with (x, y) ∈ E3 if x,y /∈ A1(s), the path from
s to x is contained in the path from s to y and all vertices on the path from x to y excluding x
and y itself are contained in A1(s). Note that it is possible for (x, y) to be in E3 with x = s, as
can be seen in Figure 2. Let G′ = (V,E′) with E′ = (E\E1) ∪ E2 ∪ E3. We claim that if S is a
threshold-k resolving set for G, then S is also a threshold-k resolving set for G′ . Figure 2 shows
an example of the difference between G and G′.
To prove this we can already see that every vertex in A1(s) is still uniquely measured by s, since
these vertices are the only vertices uniquely measured by s, and they all have a different distance
to s. We prove the rest by contradiction. Assume there is a pair x, y ∈ V \A1(s) that is not
resolved by any sensors in G′ but that is resolved by some sensor in G. We know that the moved
vertices were only measured by s, which allows us to show that d(s∗, v) is the same in both G
and G′ or d(s∗, v) > k in both G and G′ for any sensor s∗ 6= s and any vertex v ∈ V . This can
easily be shown as if d(s∗, v) ≤ k in G, s∗ measures every vertex on the path between s∗ and v
too, meaning that none of these vertices move so d(s∗, v) is the same in G′, and if d(s∗, v) > k
there are at least k vertices between s∗ and v, of which the first k are measured by s∗ and as such
do not move, so we have d(s∗, v) > k in G′ too. As a result of this we know that if s∗ cannot
resolve x and y in G′ then s∗ cannot resolve x and y in G either as if d(x, s∗) = d(y, s∗) in G′,
then d(x, s∗) = d(y, s∗) in G too and if both d(x, s∗) > k and d(y, s∗) > k in G′ then d(x, s∗) > k
and d(y, s∗) > k in G too.
Now all that is left is to show that s cannot resolve x and y in G, if there is no sensor that
can resolve x and y in G′. Since s cannot resolve x and y in G′, d(x, s) = d(y, s) in G′. If
d(x, s) 6= d(y, s) in G, then some vertex si was moved during the transformation to G′ that is on
the path from s to x and not on the path from s to y or on the path from s to y and not on the
path from s to x. As G is a tree, this means that si is on the path from x to y. As x /∈ A1(s) we
know there is at least one other sensor s′ that also measures x. As si is on the path from x to y,
and si is only measured by s, y cannot be measured by s′ meaning that s′ resolves x and y, which
is a contradiction. As such we know that d(x, s) = d(y, s) in G. We have now shown that if there
is no sensor s ∈ S that resolves x and y in G′ then neither is there a sensor s ∈ S that resolves
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x and y in G. This completes our proof, as this contradicts our initial assumption that there is
a sensor that resolves x and y in G but no sensor that resolves x and y in G′. As such we know
that since S is a threshold-k resolving set of G, it is also a threshold-k resolving set of G′, proving
the Lemma.

Figure 2: An example of Lemma 3.8 with k = 4. The red vertices are in A1(s) and as such the red
edges are in E1 and the green edges are in E2. As s, y /∈ A1(s), the path from s to s is contained
in the path from s to y and every vertex on the path from s to y except for s and y are in A1(s),
the purple edge (s, y) is in E3. The blue vertices are sensors and are able to uniquely measure
every vertex in both graphs.

Lemma 3.9. Let G be a graph on n vertices with threshold-k resolving set S. If G ∈ G∗p then, af-
ter applying Lemma 3.8 on every sensor in S, every sensor path is disjoint except for their sensors.

Proof. We prove this by contradiction. We show that if G has sensor paths that are not disjoint,
we can change the graph in such a way that we end up with a different graph on more than n
vertices that still has threshold-k resolving set S using two kinds of transformations, which we will
now show.
For transformation A we require that there is at least one pair of strong sensor paths that starts
at the same sensor and share vertices. Take the shortest of these sensor paths and the second
shortest sensor path that starts at either of the sensors of the first sensor path. Denote the sensors
in these sensor paths by s, v and w such that d(s, v) ≤ d(s, w) ≤ d(w, v) and let the sensor paths
be V = (s, v1, . . . , vp, v) and W = (s, w1, . . . , wu, w). Because G is a tree, there is some i ∈ N such
that V ∩W = (s, w1, . . . , wi). We define X = {x1, . . . , xn} to be the set of vertices such that x ∈ X
if for any sensor si ∈ S that measures x the path from si to x goes through the vertex wi. We
now define the new edge sets E− = ((x, y)|y is on the path from wi to x, x ∈ X and (x, y) ∈ E)
and E+ = {(wi, x1), (x1, x2), . . . , (xn−1, xn)}. We now transform G into G1 = (V1, E1) with
V1 = V ∪ {t} where t is a new vertex, and E1 = E\E− ∪ (wi+1, t) ∪ (t, s) ∪ E2\(wi, wi+1). An
example of this transformation can be seen in Figure 3.

Figure 3: An example of transformation A with k = 4. As you can see x1, x2 and x3 are only
measured by s and v and the path from s and v to these vertices crosses wi, hence these vertices
are in X. Because of this the red edges are in E− and the green edges in E+. The blue vertices
are sensors, and they are able to uniquely measure each vertex in the graph both before and after
the transformation.
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For every pair x, y ∈ V we have some si ∈ S that resolves them in G, meaning that d(si, x) 6=
d(si, y) and at least one of the conditions d(si, x) < k + 1 and d(si, y) < k + 1 hold true. We can
then also find a sensor in G1 that resolves x and y. We will now go through all the possible cases.
If either x or y are in X then the pair is resolved as each vertex in X is uniquely measured. This
is because each sensor that measured vertices in X in G is still able to measure this set of vertices,
because the path of the sensors to the sensors still goes through wi in G1. The pair x and y is also
resolved if both vertices are in X as each vertex in X is at a different distance from each sensor
that measures them. As such we know that the pair x and y is resolved if one or both is in X,
and we can assume that neither x nor y is a vertex in X for the other cases.
If neither path from si to x and y crosses the edge (wi, wi+1) in G then d(si, x) 6= d(si, y) in G1,
so si resolves x and y.
If the paths from si to x and y both cross the edge (wi, wi+1) from wi in G then d(wi+1, x) 6=
d(wi+1, y) in G1 so d(s, x) = d(s, wi+1) + d(wi+1, x) 6= d(s, wi+1) + d(wi+1, y) = d(s, y) holds in
G1. d(s, wi) = 2 in G1, d(si, wi) ≥ 2 in G and d(wi, x) and d(wi, y) are the same in both G and
G1. This tells us that s is at least as close to x and y in G1 as si is in G. This proves that
d(s, x) ≤ k and d(s, y) ≤ k which means that s measures both x and y in G1 which allows us to
conclude that s resolves x, y.
If the paths from si to x and y both cross the edge (wi, wi+1) from wi+1 in G then d(wi, x) 6=
d(wi, y) in G1 then at least one of d(s, x) = d(s, wi) + d(wi, x) 6= d(s, wi) + d(wi, y) = d(s, y) and
d(v, x) = d(v, wi) + d(wi, x) 6= d(v, wi) + d(wi, y) = d(v, y) holds. s and v are the closest sensors
to wi and since si crosses from wi+1 si 6= v and si 6= s. Because s and v are the closest sensors
to wi we know that s and v are closer to wi than si, and as such closer to x and y. Because of
this we know that d(s, x) ≤ k, d(s, y) ≤ k, d(v, x) ≤ k and d(v, y) ≤ k in G, which since the paths
from s and v to x and y are the same in G1 as they are in G tells us that s and v both measure
x and y allowing us to conclude that at least one of s and v resolves x and y.
If the path from si to x crosses the edge (wi, wi+1) from wi in G but the path from si to y does
not cross this edge then we know that x /∈ A1(s) as the path from s to x does not cross the edge
(wi, wi+1). This means that x is measured by another sensor that is not s, and as we have earlier
proven that we can assume that x /∈ X, there is some sensor sj that measures x in G1. As the
path from sj to y crosses the edge (s, t) in G1, which tells us that d(sj , y) = d(sj , s) + d(s, y). As
such we require that either d(s, x) 6= d(s, y) or d(sj , x) 6= d(sj , y) because if neither holds then
d(sj , x) = d(si, y) = d(sj , s) + d(s, y) = d(sj , s) + d(s, x), which means that the path from sj to x
crosses the vertex s, which also means that the path from sj to x crosses the edge (wi, wi+1) in
G which is a contradiction. We know that sj measures x in G1 and that s can measure y, hence
this shows that either s or si resolves x and y.
If the path from si to x crosses the edge (wi, wi+1) from wi+1 in G but the path from si to y does
not cross this edge. As x crosses the edge (wi, wi+1) from wi+1 in G it crosses the edge (s, t) in
G1, which tells us that d(si, x) = d(si, s) + d(s, x). As such we require that either d(s, x) 6= d(s, y)
or d(si, x) 6= d(si, y) because if neither holds then d(si, y) = d(si, x) = d(si, s)+d(s, x) = d(si, s)+
d(s, y), which means that the path from si to y crosses the vertex s, which also means that the
path from si to y crosses the edge (wi, wi+1) in G which is a contradiction. We know that si
measures y in G1 and we have shown previously that s can measure x, hence this shows that
either s or si resolves x and y. As such we have proven that S also resolves every pair of vertices
in G1, finishing the proof that transformation A works.
For transformation B we require that the assumptions for transformation A do not hold, meaning
that there is no pair of strong sensor paths that starts at the same sensor and share vertices.
Let S1 = {s1, s2, . . . , su} be a set of sensors that all have sensor paths between them, w.l.o.g.
let d(s1, s2) = max(d(si, sj)). Let t1 be the vertex on the sensor path between s1 and s2 such
that (s1, t1) ∈ E, and let T = {t1, . . . , tu} be the set of vertices that are uniquely measured by
the same set S2 = {s1, s∗} that uniquely measures t1. There are only two sensors in this set
as each sensor in this set has to be able to measure vertex t1, which means that every sensor
in the set except s1 has a strong sensor path with s1, which means that if there were more
than two sensors in the set, transformation A would be possible. The ti’s are all connected,
as if vertex ti and vertex tj are not connected, then there is some vertex v between ti and
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tj that is also uniquely measured by some set S3 such that there is some sensor sr ∈ S3 but
sr /∈ S2. This gives us that either d(sr, s2) = d(sr, ti) + d(ti, s2) > d(s1, ti) + d(ti, s2) = d(s1, s2)
or d(sr, s2) = d(sr, tj) + d(tj , s2) > d(s1, tj) + d(tj , s2) = d(s1, s2), depending on which side s2
is on. In both cases, this contradicts d(s1, s2) = max(d(si, sj)), which proves that the ti’s are
all connected. We also know that s∗ is connected to some ti as otherwise the second vertex in
the path from s∗ to s1 would have to be measured by some sensor sr which would mean that
the sensor paths between s∗ and sr and between s∗ and s1 would both be strong sensor paths,
giving the contradiction that transformation A would be possible. We now transform G = (V,E)
to G1 = (V, (E\E−) ∪ E+)) with E− = ((v, w)|(v, w) ∈ E and v ∈ T and w /∈ S2 ∪ T ) and
E+ = ((v, s1)|(v, t) ∈ E− for some t ∈ T ). After this transformation S still resolves G. Let x
be any vertex in V and let S4 ∈ S be the set of sensors that uniquely measures x in G. Then x
is uniquely measured in G1 by either S4 or S4 ∪ (s1)\(s∗). This is because if x is one of the ti
then the distance of every ti to s1 and s∗ is unchanged, meaning that x is still uniquely measured
by S2, and if x 6= ti then every vertex measured by the same set of sensors as x in G1 has the
same distance to every sensor in this set except if s1 is in this set, whose distance has decreased
a constant number when compared to d(s1, x) or d(s∗, x) in G, because the changes of the edges
means that the distance is unchanged except that the path from s1 to x no longer contains the ti
vertices that the path from s1 or s2 to x used to have.

Figure 4: An example of transformation B with k = 4. The yellow vertices are in T , the red edges
are in E− and the green edges in E+. The blue vertices are sensor and are able to measure the
entire graph both before and after the transformation

As a result of using transformation B, the distance between s1 and s2 has decreased. Let u
be the first vertex in the path from s2 to s1, u has to be measured by some sensor s ∈ S1\S2

because Lemma 3.8 implies u has to be uniquely measured by at least two sensors, and this second
sensor cannot be in S2 as otherwise this sensor would have a strong sensor path with both s1
and s2 which would contradict with the requirement to do transformation B. As such, after doing
transformation B we still have three sensors that have non-disjoint sensor paths. This means
that we are now either able to do transformation A, or we can repeat transformation B. Every
time we do transformation B, the distance between the two sensors that have the longest sensor
path between them decreases, so we will eventually be able to do transformation A if we repeat
transformation B enough times. As transformation A increases the number of vertices in the
graph, this proves the Lemma.

Lemma 3.10. Let G ∈ G∗p and let S be a threshold-k resolving set of G. Then G has p− 1 sensor
paths.

Proof. We renormalise the tree: we contract every sensor path to be a single edge and delete
all vertices that are not sensors. This gives us H = (V2, E2) with V2 = S and (s1, s2) ∈ E2 if
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s1, s2 ∈ S and there is a sensor path between s1 and s2 in G.
We now prove that H is a tree. H is connected, as if there were any s1, s2 in H with no path
between them, then there would also not be a path between s1, s2 in G∗p, which contradicts with
G being a tree. Then, assume H has cycle (s1, s2, . . . sn, s1). Then the union of the sensor paths
between these si’s would form a cycle in G, as these sensor paths were proven to be disjoint in
Lemma 3.9. But G having a cycle contradicts with G being a tree, so H cannot have a cycle. As
such H is a tree as it is a connected graph without cycles. As H is a tree on n vertices, it has
p − 1 edges, which by the way edges in H were defined, means that there are p − 1 sensor paths
in G.

We have now proven that any graph G ∈ G∗p has p− 1 sensor paths, so now we need to optimize
the number of vertices that can be identified by a sensor path.

Lemma 3.11. In any tree G ∈ G∗p , the maximal number of vertices that can be identified by a
sensor path is (k2 + k + 1)/3 if k mod 3 = 1 and (k2 + k)/3 otherwise.

Proof. By Lemma 3.8 and Lemma 3.9 we know that all sensor paths in G are disjoint Each vertex
on a sensor path can be of at most degree 3, and the other vertices connected to the path can be
at most of degree 2, because otherwise two of the vertices connected to the vertex for which this
does not hold will have the same distance to every sensor, as illustrated by Figure 5.

Figure 5: The blue vertices are the sensors and they are unable to differentiate between the red
vertices in both graphs.

Denote the number of vertices between the sensors of the sensor path by m, so the distance be-
tween the sensors is m+1. Let one of the vertices on this sensor path have distance i to one sensor,
then it has distance m− i+1 to the other sensor, so a leaf path of length min(k− i, k− (m− i+1))
can be connected to this vertex, and all of the vertices on it will be identified by the sensor path.
This holds for every vertex between the sensors, so the maximum number of vertices identified by
the sensor path is m +

∑m
i=1 min(k − i, k − (m− i + 1)) vertices. This can be simplified, namely

if m is even we have:

m +

m∑
i=1

min(k − i, k − (m− i + 1)) = m + 2

m/2∑
i=1

k − (m− i + 1)

=
−3m2

4
+ mk +

m

2

(1)

And if m is odd we have:

m +

m∑
i=1

min(k − i, k − (m− i + 1)) = m + (k − m + 1

2
) + 2

(m−1)/2∑
i=1

(k − (m− i + 1))

=
−3m2

4
+ mk +

m

2
+

1

4

(2)

Because these functions of m are both concave parabolas, to find the maximal value we sim-
ply differentiate with respect to m and set the result equal to 0. In both cases this results in
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m = (2k + 1)/3. Because the formulas are quadratic, the maximal integer value of the formula is
found by rounding (2k + 1)/3 to the closest integer and plugging this into the formula.
We can now calculate the maximal number of vertices that can be identified by a single sensor
path by looking at the three cases separately.

1. If k mod 3 = 0, then the closest integer to (2k + 1)/3 is 2k/3. This value is always even, so
we plug m = 2k/3 into −3m2/4 + mk + m/2, which gives (k2 + k)/3.

2. If k mod 3 = 1, then the closest integer to (2k + 1)/3 is (2k + 1)/3. This value is always
odd, so we plug m = (2k + 1)/3 into −3m2/4 +mk +m/2 + 1/4, which gives (k2 + k + 1)/3.

3. If k mod 3 = 2, then the closest integer to (2k + 1)/3 is (2k + 2)/3. This value is always
even, so we plug m = (2k + 2)/3 into (−3m2)/4 + mk + m/2, which gives (k2 + k)/3.

We can now prove Theorem 3.2.

Proof of Theorem 3.2. any G ∈ G∗p has p sensors that can each uniquely measure k + 1 vertices,
namely their 1-attraction and the sensor itself. G also has p−1 sensor paths, each with (k2+k+1)/3
vertices being identified by them if k mod 3 = 1 and (k2 + k)/3 otherwise. In total this means
|G| = (k + 1)p + (p − 1)(k2 + k + 1)/3 if k mod 3 = 1 and |G| = (k + 1)p + (p − 1)(k2 + k)/3
otherwise.

4 Improved lower bound for k = 2

From the previous section we know that a lower bound for the threshold-2 metric dimension of
a tree on n vertices is (n + 2)/5, which is a sharp lower bound if (n + 2)/5 is an integer. In
this section we will further develop this lower bound that also takes the structure of the tree into
account. First, we find parts of trees that requires sensors at places that are not fully optimal
(in other words, are used to measure less than 5 vertices). Then we determine how many vertices
are measured by these additional sensors, leading to a lower bound that more accurately reflects
the threshold-2 metric dimension for trees that are less optimal. For this section we exclude line
graphs of length less than 7, which have a threshold-2 metric dimension of one if their length is
less than 3 and of two otherwise.
Let T = (V,E) be a tree with threshold-2 resolving set S, let L be the set of leaves in T and let
Supp(T ) be the set of vertices that have a distance of less than four to two or more leaves that
they are connected to by leaf paths. For readability, when we mention ”a short leaf path” we are
referring to one of these leaf paths with a length of less than four that starts in some s ∈ Supp(T ).
Let Suppi(T ), i = 2, 3 be subsets of Supp(T ) such that v ∈ Suppi(T ) if and only if v ∈ Supp(T )
and the minimal length of the short leaf paths of v is of length i. Now, let Supp1(T ) be the subset
of Supp(T ) such that s ∈ Supp1(T ) if s is adjacent to multiple leaves or adjacent to one leaf and
connected by at least two short leaf paths to other leaves. In Figure 6 you can see examples of the
vertices in Suppi(T ). Supp1(T ) does not include the vertices in Supp(T ) that are adjacent to only
one leaf and connected by a single short leaf path to a different leaf, because in that case the tree
requires one additional sensor that can be used to measure five vertices. This means this sensor
measures the same number of vertices that a sensor in the optimal tree can measure, meaning
that this does not affect the lower bound, hence this case is not included. Recall that L is the
set of leaves in T . Let Li, i = 1, 2, 3 be subsets of L such that l ∈ Li if l ∈ L and there is a
s ∈ Suppj(T ), j = 1, 2, 3 such that there is a short leaf path from s to l of length i.
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Figure 6: The red vertices are examples of the vertices in Suppi(T ), i = 1, 2, 3. Note that there
are two examples of Supp1(T ) as there are two different requirements that vertices in Supp1(T )
can have.

Using the following lemmas we prove that graphs with these short leaf paths graphs require extra
sensors, followed by where we can optimally place these additional sensors, and lastly we will see
how many vertices are measured by these sensors which gives us an improved lower bound for the
threshold-2 metric dimension of an arbitrary tree.

Lemma 4.1. Let T be a tree and let s ∈ Supp(T ) then for any threshold-2 resolving set S of T
either all or all but one of the short leaf paths that start at s require a sensor.

Proof. We argue by contradiction. Suppose that more than one short leaf path that starts at s has
no sensor. Let v and w be the first vertices on two of the short leaf paths without a sensor starting
in s. Since neither path has a sensor, for any sensor x we have d(x, v) = d(x, s) + 1 = d(x,w)
which contradicts with S being a threshold-2 resolving set of T .

Lemma 4.2. Let T be a tree and let s ∈ Suppi(T ), then there exists a threshold-2 resolving set
of T such that every short leaf path of s has a sensor except possibly one of length i.

Proof. By Lemma 4.1 we know that for any threshold-2 resolving set S for each s ∈ Suppi(T ) at
least all but one of the short leaf paths starting in s need a sensor. Let P1, P2, . . . be the sets of
vertices in the leaf paths starting in s. As can be seen in Figure 7, if there is a sensor in Pi\s, then
Pi\s is uniquely measured as long as (T\(P1 ∪ P2 ∪ . . . )) ∪ (s) is uniquely measured too. As such
placing the sensors in the longest of these short leaf paths that s has measures the most possible
vertices per sensor. As such we can say that all short leaf paths of s have a sensor except possibly
one of length i, the length of the shortest leaf path that starts in s, depending on how the rest of
the graph is uniquely measured.

Figure 7: The sensors in the short leaf paths measure the entire short leaf path as long as the red
vertices are uniquely measured.
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Theorem 4.3. A lower bound for the threshold-2 metric dimension of a tree on n vertices is

Tmd2(T ) ≥ n + 2 + 2(|L3|−|Supp3(T )|) + 3(|L2|−|Supp2(T )|) + 4|L1|−7|Supp1(T )|
5

.

This lower bound is attainable if it is an integer.

Proof. We know by Lemma 4.2 that for every s ∈ Suppi(T ) with i = 1, 2, 3 all but possibly one
short leaf path of length i needs a sensor. This means that every short leaf path ending in a
vertex in L3 needs a sensor except for one starting at every Supp3(T ), which means there is are
|L3|−|Supp2(T )| sensors needed for these paths that uniquely measure three vertices each. For
the same reason we need |L2|−|Supp2(T )| sensors that uniquely measure two vertices each and
|L1|−|Supp1(T )| sensors that uniquely measure one vertex each. However, because the sensors in
the short leaf paths of each s ∈ Supp1(T ) are able to measure the vertex in the short leaf path
without a sensor, as the this short leaf path is a leaf adjacent to s. As such, these sensors are able
to measure more vertices. This is not possible for any s ∈ Supp2(T ) or s ∈ Supp3(T ), because the
sensors in the short leaf paths cannot reach every vertex in the short leaf path without the sensor.
As such for each s ∈ Supp1(T ) the sensors in the other short leaf paths can measure additional
vertices, which allows us to remove s, the vertex in the short leaf path, and one more vertex
from the number the rest of the sensors need to measure by themselves, as these vertices can be
uniquely measured with help from an extra sensor outside these short leaf paths. We remove this
last vertex, because the neighbours of s that remain if we remove all short leaf paths of s could be
uniquely measured as well without requiring additional sensors, as illustrated by Figure 8. Though
it is possible that no additional vertex is saved by doing this, if for example s only has neighbours
that are also in Supp1(T ), we remove this vertex from the total as it is possible to save this vertex
as can be seen in Figure 8.

Figure 8: An example of why we remove three vertices per vertex in Supp1(T ). The blue vertices
are sensors, and the red vertices are uniquely measured thanks to the left-most sensor in the short
leaf path.

As such we can remove three from the number of vertices that needs to be measured for each vertex
in Supp1(T ). We now know that the graph requires |L3|−|Supp3(T )|+|L2|−|Supp2(T )|+|L1|−|Supp1(T )|
additional sensors that are able to measure up to 3||−3|Supp3(T )|+2|L2|−2|Supp2(T )|+1|L1|+2|Supp1(T )|
vertices uniquely, as long as the rest of the graph is measured uniquely. For the remaining
n− (3|L3|−3|Supp3(T )|+2|L2|−2|Supp2(T )|+|L1|−2|Supp1(T )|) vertices the original lower bound
still applies, which allows us to calculate the final lower bound. An example of this lower bound
can be seen in Figure 9.

Tmd2(T ) ≥ n− (3|L3|−3|Supp3(T )|+2|L2|−2|Supp2(T )|+|L1|+2|Supp1(T )|) + 2

5
+ |L3|−|Supp3(T )|+|L2|−|Supp2(T )|+|L1|−|Supp1(T )|

=
n + 2(|L3|−|Supp3(T )|) + 3(|L2|−|Supp2(T )|) + 4|L1|−7|Supp1(T )|

5

(3)
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Figure 9: An example where the lower bound of Theorem 4.3 is sharp and each term in the formula
for the lower bound is non-zero. Each li ∈ Li and each si ∈ Suppi(T ).
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