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1 Introduction

Consider the electronic game ‘Lights Out’. The game consists of a 5 × 5 grid

of lights that can either be on or off. When the game starts, the lights in the

grid take on an initial configuration. A move consists of pressing any light in

the grid, after which the light itself and all of its adjacent lights will toggle their

state. The player is challenged with switching all lights off in as few moves as

possible. The game has been studied quite well and the effects of moves [1] and

conditions for when the game can be solved [2] are known.

On

Off

Select

Figure 1: An illustration of the game Lights Out showing two consecutive moves.

1.1 Lit-only σ-game

In this report, we will look at a derived game, oftentimes referred to as the lit-

only σ-game. Instead of a grid, the playing board is generalized to an undirected

graph of any finite size. Furthermore, the game follows slightly different rules:

lights can only be pressed when they are toggled on. When a light is pressed,

it will only toggle its adjacent lights, not itself. Notice that it is impossible to

turn off all lights when starting with a configuration that has a light turned on.

Therefore, we define a new goal for the game: turning all the lights on.

With this in mind, one can begin to ask some interesting questions:

� What are the effects of moves?

� How can we go from one configuration to another?

� Can every game be solved?

� What are the consequences of the properties of our graph?

While not all questions can be easily answered, there have been a number of

papers looking into different classes of graphs. A topic of particular interest is

estimating the minimum light number for a given graph [3][4]. For any initial

configuration, one can arrive at a configuration in which the number of lights
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that are on is no greater than this number. In this report however, we will not

go into depth about this. Instead we focus on how certain properties of the

graph influence the way the game is played. We find a result similar to one

found by Yoakun Wu (2009) [5], but through different means.

1.2 Overview

In Section 2 we give an introduction to some important concepts and lay out the

necessary definitions to analyze the game as a mathematical group, although it is

assumed that the reader is familiar with elementary concepts from linear algebra.

In Section 3 this group is better classified by relating it to a well-explored group.

Section 4 introduces a geometric tool for ‘translating’ the conditions under which

we can relate the symmetric group to our game. These conditions turn out to

be properties of the graph on which we play the game. Section 5 details ways

of recognizing these properties and describes an efficient algorithm to do so.

Finally, Section 6 is a conclusion of the results.

2 Basic concepts and definitions

Definition 2.1. An (undirected) graph is a pair Γ = (V, E), where V is a

finite set whose elements are called vertices or points, and E a set of paired

vertices, called edges. We assume the graph is simple, i.e. does not contain

loops.

Definition 2.2. A graph Γ = (V, E) is connected if and only if for each two

vertices u and v in V, there exists a sequence of edges {w1, w2}, {w2, w3},
. . . , {wn−1, wn} in E such that u = w1 and v = wn.

Definition 2.3. Let v ∈ V be a vertex. We refer to the set {u ∈ V | {u, v} ∈ E}
as the neighbours of v, or vertices adjacent to v. Note that v is never

adjacent to itself.

A playing board of the lit-only σ-game can be represented as a finite undirected

graph Γ = (V, E) with vertices V and edges E . Lights in the game form the set

of vertices V. The terms light, point and vertex will be used interchangeably.

Two lights u, v ∈ V are neighbours in the game if and only if there is an edge

between them in the graph Γ, i.e. {u, v} ∈ E .

Definition 2.4. The finite field of two elements {0, 1} is referred to as F2. In

this field we have 0 + 0 = 0, 0 + 1 = 1, but 1 + 1 = 0. Also 0 · 0 = 0, 0 · 1 = 0

and 1 · 1 = 1.

For reasons that will become evident, we construct a vector space on the set of

vertices in the game. Let V = FV2 be the vector space over F2, with lights V as

4



a basis. A light v ∈ V can now be represented as the vector v ∈ V . A set of

lights {v1, v2, . . .} ∈ V can be represented as the vector v1 + v2 + · · · ∈ V .

Definition 2.5. Given a vector space V over a field F , the dual space V ∗ is

defined as the set of all linear maps f : V → F . Notice that V ∗ forms a vector

space over F as well.

We can represent the state of a light with the field F2. We associate 0 with the

light being off and 1 with the light being on. We can encode the state of our

game with maps in the dual space V ∗ of V .

Definition 2.6. For each light v ∈ V, we define the function fv ∈ V ∗ by

fv(u) =

{
1 if u = v

0 if u 6= v
(1)

Remark. The vector space V ∗ has the set {fv | v ∈ V} as a basis.

Notation. If we are working with a indexed set of vertices, i.e. {v1, v2, . . . , vn},
sometimes the shorthand notation fi is used to mean fvi .

Definition 2.7. We refer to the state of the game on a graph Γ (i.e. which

lights are on or off ) as a configuration on Γ. Each configuration on Γ can be

represented by a vector f ∈ V ∗, where:

f =
∑
v∈Von

fv (2)

where Von ⊆ V is the subset of lights that are turned on.

We can test the state of a light v ∈ V in a configuration f ∈ V ∗ by applying the

map to it. f(v) = 1 if and only if v is on.

Definition 2.8. Let v ∈ V be a light and N ⊆ V be the set of lights adjacent

to v. We denote the vector in V ∗ corresponding to the set of lights adjacent to

v as Av. We have Av =
∑
u∈N fu.
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v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

Figure 2: A graph of five points on a line. The top figure shows a subset of

points indicated with the grey fill. The bottom figure shows a configuration on

the graph, with the yellow fill indicating that a light is on.

Example 2.9. Let Γ = (V, E) be a graph on 5 points as is shown in Fig. 2.

We represent the subset {v1, v2, v4} ∈ V of grey points in the top figure as the

vector v1 + v2 + v4 ∈ V . The configuration in the bottom figure is represented

as the map f = f2 + f3. Suppose we want to test whether v3 is turned on. We

compute f(v3) = f2(v3) + f3(v3) = 0 + 1 = 1, meaning it is on.

Also consider f(v2 + v3) = f(v2) + f(v3) = 1 + 1 = 0, which might go against

our initial intuition.

2.1 Moves

With the basic structure in place, we can now define moves in the game. These

can be seen as maps taking one configuration to another, depending on which

vertex is pressed and the state of that vertex. Pressing a light switches the state

of all adjacent lights in the graph.

Definition 2.10. A move on vertex v ∈ V is the linear map µv : V ∗ → V ∗

defined by

µv(f) = f + f(v)Av (3)

This way, only if the vertex v is turned on, f(v) gives 1, adding the vector of

adjacent lights to the configuration. Since we are working on F2, this turns

neighbours on that were previously off and vice versa.

Notation. If we are working with a indexed set of vertices, i.e. {v1, v2, . . . , vn},
sometimes the shorthand notation µi is used to mean µvi .
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v1 v2

v3

v4

v1 v2

v3

v4

Figure 3: The left figure shows an initial configuration. The right figure shows

the same graph after making a move on vertex v2.

Example 2.11. Let Γ = (V, E) be a graph as is shown in Fig. 3. We start with

an initial configuration f = f2 + f4 ∈ V and make a move µ2 on vertex v2.

µ2(f) = f + f(v2)Av2

Note that

f(v2) = [f2 + f4](v2)

= f2(v2) + f4(v2)

= 1 + 0 = 1

Also Av2 = f1 + f3 + f4. Thus the result becomes

µ2(f) = f2 + f4 + 1 · (f1 + f3 + f4)

= f1 + f2 + f3

as can be seen in the right figure.

2.2 Groups

Definition 2.12. Let G be a set and ∗ a binary operation on G. A tuple

(G, ∗ : G×G→ G, inv : G→ G, e ∈ G)

is a group if and only if it satisfies the following group axioms:

(G1) for all f, g, h ∈ G, (f ∗g)∗h = f ∗ (g ∗h). We call ∗ the group operation.

(G2) e is an identity element for ∗, such that for each g ∈ G, e∗g = g = g ∗e.

(G3) for each g ∈ G, inv(g) satisfies g ∗ inv(g) = e = inv(g) ∗ g. We call inv(g)

the inverse of g and inv the inverse map.

We will refer to the group as G if the group operation, inverse map and identity

element are clear from context.
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Definition 2.13. Let S be a set of elements from a group G. We say S gen-

erates G if any element in G can be expressed as a product of elements in S or

inverses of elements in S. So for any g ∈ G, we can write g = s1 ∗ s2 ∗ · · · ∗ sn,

where si or inv(si) is an element of S for i = 1 . . . n. We say G is generated

by S, and write G = 〈S〉.

Definition 2.14. Let Γ be a graph. We define DΓ = {µv | v ∈ V} to be the set

of moves on vertices in Γ. Let MΓ = 〈DΓ〉 be the group of moves generated

by DΓ under function composition. We write M if the graph on which the

moves are defined is clear from context. The group operation of M is function

composition, denoted with ◦. The inverse map is denoted with ·−1 and for a

move µ ∈ DΓ is simply µ−1 = µ, since making the same move twice does not

change the configuration. The identity element is the identity map denoted with

id.

For completeness, we show that M is in fact a group.

Lemma 2.15. M = 〈DΓ〉 is a group.

Proof. We check the group axioms (G1)-(G3):

(G1) For all µ, ρ, σ ∈ M, we have (µ ◦ ρ) ◦ σ = µ ◦ (ρ ◦ σ), since function

composition is associative.

(G2) id ∈ M is the identity element, since for any µ ∈ M, we have id ◦ µ =

µ = µ ◦ id, by definition of the identity map.

(G3) Remember that each element µ ∈ M can be expressed as a product of

elements or inverses of elements in DΓ. Let µ = ρ1 ◦ ρ2 ◦ · · · ◦ ρn be such

a product. Then ρ−1
i = ρi, and thus

µ ◦ µ−1 = (ρ1 ◦ ρ2 ◦ · · · ◦ ρn) ◦ (ρn ◦ ρn−1 ◦ · · · ◦ ρ1) = id = µ−1 ◦ µ

Notation. Let µ, ρ be elements fromM. We leave out the composition operator

and write ρµ instead of ρ ◦ µ for simplicity.

Now that we have created a group of moves, we can characterize how it interacts

with the vector space of configurations V ∗.

Definition 2.16. Let G be a group, and let S be a set. We say that G acts

on S via ρ if ρ is a map

ρ : G× S → S

(g, s) 7→ g · s
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such that

1. for every s ∈ S, we have that e · s = s.

2. for all s ∈ S and g, h ∈ G, we have that g · (h · s) = (g ∗ h) · s.

Definition 2.17. Let G be a group acting on a set S. Let s be an element of

S. We define the orbit of s as the set

Orb(s) = {s′ ∈ S | g · s = s′, for some g ∈ G}

Definition 2.18. Let G be a group acting on a vector space V . A subspace

W ≤ V is called an invariant subspace with respect to G if and only if

g(W ) ⊆W for all g ∈ G.

Remark. Note that {0} and V are always invariant subspaces of G.

Lemma 2.19. The group of movesM acts on the vector space of configurations

V ∗ with function application.

Proof. Function application of a move on a configuration is a mapM×V ∗ → V ∗

defined by (µ, f) 7→ µ(f). We check the necessary properties.

1. for every configuration f ∈ V ∗, we have id(f) = f , where id ∈ M is the

identity map.

2. for every configuration f ∈ V ∗ and group elements µ, ρ ∈ M, we have

that ρ(µ(f)) = (ρ ◦ µ)(f) by definition of function composition.

Notation. Let G be a group and g ∈ G an element. We write gk for some

integer k to mean g multiplied k times with itself. We have g0 = e, g1 = g,

g2 = g ∗ g, etc.

Definition 2.20. Let G be a group and g ∈ G an element. The order of g is

defined as the smallest integer k > 0, such that gk = e. We write |g| = k. If

such k does not exist, we say the order of g is infinite.

A move µv on a vertex v ∈ V has order 1 or 2, since making a move twice

effectively does nothing to the configuration of the game. But the product of

different moves, i.e. making one move after the other, can result in elements in

M of different order. In particular we have the following:

Lemma 2.21. Let Γ = (V, E) be a graph on which we play the game. For

any vertices u, v ∈ V, and corresponding moves µu, µv ∈ M, the order of the
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product of their moves is

|µvµu| =


1 if u = v

2 if {u, v} 6∈ E
3 if {u, v} ∈ E

(4)

Proof. For the first case, we know the order of a move is two, therefore if u = v,

we have |µvµu| = |µ2
v| = |id| = 1.

In the second case, take any u, v ∈ V, such that {u, v} 6∈ E . For all f ∈ V ∗

[µvµu](f) = µv(µu(f))

= µv(f + f(u)Au)

= f + f(u)Au + [f + f(u)Au](v)Av

= f + f(u)Au + f(v)Av + [f(u)Au](v)Av

= f + f(u)Au + f(v)Av

We can make the last step because {u, v} 6∈ E and therefore [Au](v) = 0 always.

Furthermore we make use of the fact that [Au](u) = 0 for any u ∈ V, giving

[(µvµu)2](f) =[µvµu](f + f(u)Au + f(v)Av)

=f + f(u)Au + f(v)Av+

[f + f(u)Au + f(v)Av](u)Au+

[f + f(u)Au + f(v)Av](v)Av

=f + f(u)Au + f(v)Av+

f(u)Au + f(v)Av

=f

Therefore (µvµu)2 = id and thus |µvµu| = 2.

In the last case, when {u, v} ∈ E , we still get [Au](u) = 0 for any u ∈ V. But

now, [Au](v) = 1 for any distinct u, v ∈ E . This gives

[µvµu](f) = f + f(u)Au + f(v)Av + [f(u)Au](v)Av

= f + f(u)Au + f(v)Av + f(u)Av

Now

[(µvµu)2](f) = [µvµu](f + f(u)Au + f(v)Av + f(u)Av)

= f + f(v)Au + f(u)Au + f(v)Av
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And finally

[(µvµu)3](f) = [µvµu](f + f(v)Au + f(u)Au + f(v)Av)

= f

Therefore (µvµu)3 = id and thus |µvµu| = 3.

We have now successfully translated the lit-only σ-game to the language of

groups. This way we can reason about properties of the game with results from

group theory. We have also explored some of the structure between different

elements inM in Lemma 2.21. To further determine what kind of groupM is,

some extra definitions are given.

Definition 2.22. A group-homomorphism, or homomorphism is a map

f : G→ G′ where (G, ∗, inv, e) and (G′, ∗′, inv′, e′) are groups such that

(H1) f(e) = e′.

(H2) for every a, b ∈ G, f(a ∗ b) = f(a) ∗′ f(b).

(H3) for every a ∈ G, f(inv(a)) = inv′(f(a)).

Definition 2.23. A group-isomorphism or isomorphism is a bijective ho-

momorphism. If there exists an isomorphism between groups G and G′, we

write G ∼= G′.

Definition 2.24. Let (G, ∗, inv, e) be a group. A subset H of G is called a

subgroup of G if and only if (H, ∗|H , inv|H , e) is a group. We denote this by

H ≤ G.

3 Transvections

Definition 3.1. Let W be a vector space over a field F . Let τ : W → W be

a linear map on W . τ is a transvection if and only if τ can be written in the

form

τ(x) = x+ α(x)w (5)

where w ∈W , α ∈W ∗, α(w) = 0 and where W ∗ denotes the dual space of W .

Lemma 3.2. Let Γ = (V, E) be a graph on which we play the game. For any

vertex v ∈ V, we have that the move on v, µv, is a transvection.

Proof. The move on vertex v is defined by Eq. (3) to be

µv(f) = f + f(v)Av
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Using definition Definition 3.1, we set W to be the vector space of configurations

V ∗. The dual of V ∗ is V ∗∗ = W ∗, the set of all linear maps φ : V ∗ → F2.

Applying the input configuration f ∈ V ∗ to the fixed vertex v ∈ V , can be seen

as a linear map φv : V ∗ → F2 defined by φv(f) = f(v) for any f ∈ V ∗. We have

that φv ∈ V ∗∗ and can identify v with φv. Furthermore, φv(Av) = Av(v) = 0,

since v is not a vertex adjacent to itself.

We conclude that µv is a transvection.

Definition 3.3. The special linear group SLn(F ) of degree n over a field F

is the set of n× n matrices with determinant 1.

Lemma 3.4. [6] The matrix representation of any transvection has determinant

1. Furthermore, the set of all transvections on a vector space V of dimension n

generates the special linear group SLn(F ) ∼= SL(V ).

Corollary 3.5. Let Γ be a graph with n vertices. The group of moves MΓ on

Γ induces a subgroup of SLn(F2) ∼= SL(V ∗).

Proof. All elements DΓ generatingMΓ are transvections of degree n and there-

fore elements of SLn(F2). Furthermore, SLn(F2) is closed under function com-

position (or matrix multiplication really), we have thatMΓ ⊆ SLn(F2) and thus

MΓ ≤ SLn(F2).

Lemma 3.6. Let τ be a transvection on a vector space W over F2. We can

uniquely identify τ with the pair (w,α), where w ∈ W is a point referred to as

the center and the kernel of α ∈W ∗ a hyperplane in W referred to as the axis.

We write τ = (w,α).

Proof. We write τ as τ(x) = x+ α(x)w, where w ∈ W , α ∈ W ∗ and α(w) = 0.

Since the image of α is {0, 1}, it has dimension 1. By the dimension formula

we know that dim(ker(α)) = dim(W ) − 1. This means that ker(α) forms a

hyperplane in W . Notice that w ∈ ker(α) always.

Lemma 3.7. Consider two transvections τ = (w,α) and τ ′ = (w′, α′). We can

have the following situations with corresponding orders of the product.

1. w = w′ and α = α′, then |τ ′τ | = 1

2. w = w′ and α 6= α′, then |τ ′τ | = 2

3. w 6= w′ and α = α′, then |τ ′τ | = 2

4. w 6= w′, α′(w) = 0, α(w′) = 0 and α 6= α, then |τ ′τ | = 2

5. w 6= w′, α′(w) = 0, α(w′) = 1 and α 6= α′, then |τ ′τ | = 4
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6. w 6= w′, α′(w) = 1, α(w′) = 0 and α 6= α′, then |τ ′τ | = 4

7. w 6= w′, α′(w) = 1, α(w′) = 1 and α 6= α′, then |τ ′τ | = 3

Proof. We first realize that there is a symmetry between W and its dual space

W ∗. A point in W ∗ gives a hyperplane in W and a point in W gives a hyperplane

in W ∗, following the same reasoning as in the proof of Lemma 3.2. With this,

we see that cases (2) and (3) are equivalent. Also (5) and (6) are equivalent.

(1) In this case, the transvections are identical. Applying the same transvec-

tion twice results in the identity map, since we are working over F2. We

get |τ ′τ | = 1.

For the following cases, we define X = ker(α) ∩ ker(α′) as a subspace of W .

We make use of the fact that X is fixed by both τ and τ ′, making it invariant.

Furthermore, if α 6= α′, then X has codimension 2 with W , otherwise it has

codimension 1.

(3) Let τ = (w,α) and τ = (w′, α). We know that X has codimension 1

with W . Since both transvections fix all points in X, we consider only

the set W\X. Let p ∈ (W\X). Then by repeatedly applying τ and τ ′ in

alternating order we get one of the following cycles

p
τ7−→ p+ w

τ ′

7−→ p+ w + w′
τ7−→ p+ w′

τ ′

7−→ p

p
τ ′

7−→ p+ w′
τ7−→ p+ w′ + w

τ ′

7−→ p+ w
τ7−→ p

From this it becomes clear that τ ′ττ ′τ = id and |τ ′τ | = 2.

(4) Let τ = (w,α) and τ = (w′, α′). We know X has codimension 2 with

W . Furthermore, 〈w,w′〉 ⊆ X. τ acts on any element p ∈ (ker(α′)\X)

with order 2. Similarly, τ ′ acts with order two on ker(α)\X. Let M =

{p + p′ | p ∈ ker(α) and p′ ∈ ker(α′)} be a hyperplane. Notice that

M ∪ ker(α) ∪ ker(α′) = W . Any p ∈ (M\X) gives rise to the same cycles

as case (3). We conclude that |τ ′τ | = 2.

(5) Let τ = (w,α) and τ = (w′, α′). We know X has codimension 2 with W .

Furthermore, w′ ∈ X. τ ′ acts on ker(α)\X with order 2. Take any point

p ∈ (ker(α′)\X). Applying the transvections in alternating order, starting

with τ , we get the following cycle:

p
τ7−→ p+ w

τ ′

7−→ p+ w + w′
τ7−→ p+ w′

τ ′

7−→ p+ w′

τ7−→ p+ w + w′
τ ′

7−→ p+ w
τ7−→ p

τ ′

7−→ p

Cycles of any p ∈ (W\ ker(α)) are of the same length. We conclude that

|τ ′τ | = 4.
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(7) Let τ = (w,α) and τ = (w′, α′). Again, X has codimension 2 with W .

This time, w,w′, w + w′ 6∈ X. We have that τ(w′) = w + w′ = τ ′(w).

Thus τ and τ ′ transpose w′ with w + w′ and w with w + w′ respectively.

The product τ ′τ is therefore at least of order 3. Notice that 〈w,w′〉 is

of dimension 2 and disjoint from the fixed subspace X. We conclude

|τ ′τ | = 3.

When we link this back to our game, we know by Lemma 2.21 that moves are

transvections and the product of two moves has order 1, 2 or 3.

Indeed, when we apply the same move twice, we have two transvections that

are identical, corresponding to case (1).

From Lemma 3.2, we know that a move on a vertex v ∈ V can be represented

as a tranvection µv = (Av, φv), where φv(f) = f(v). Note that the axis of this

transvection is ker(φv) = 〈fw | w ∈ V, w 6= v〉. Two moves on vertices v, w ∈ V
that are not adjacent to each other give a product of order 2. Indeed this

corresponds to case (2) if the vertices share the same neighbours, i.e. Av = Aw,

or case (4) in any other case. Case (3) does not correspond to a product of two

moves in our game, since having identical axes would mean the move is played

on the same vertex, but with different adjacent vertices.

The product of two moves on adjacent vertices v, w ∈ V corresponds with case

(7). We have that their adjacent vertices are not the same, so Av 6= Aw.

Furthermore, since v and w are adjacent, we have that Aw(v) = 1 and Av(w) =

1. Therefore φw(v) = 1 and φv(w) = 1.

Cases (5) and (6) cannot occur, since it would mean that the first vertex on

which we play a move is adjacent to the second vertex, but the second is not

adjacent to the first vertex.

3.1 Groups generated by transvections

We look closer at the group G generated by a set of transvections T on a vector

space V over F2. From Lemma 3.7, we know that for any distinct d, e ∈ T , we

have that |de| = 2, 3 or 4.

Definition 3.8. We define the diagram of a set of transvections T to be the

graph (T,E), such that for any τ, τ ′ ∈ T we have {τ, τ ′} ∈ E if and only if τ

and τ ′ do not commute and thus |τ ′τ | > 2.

For the following results it is assumed that the reader is familiar with the sym-

plectic group, orthogonal group and symmetric group.
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Definition 3.9. Let V be a vector space over a field F . We call a mapping

f : V × V → F a symplectic form if and only if

1. f is bilinear, i.e. linear in both arguments.

2. f(v, v) = 0 for all v ∈ V .

The symplectic form f is called nondegenerate if and only if the following is

satisfied: Let v ∈ V be arbitrary, then f(v, w) = 0 for all w ∈ V implies that

w = 0.

Since we are studying the group of moves generated by a set of transvections,

we assume from now on that the order of the product of two transvections is no

greater than 3. Let us now define a symplectic form on a set of transvections.

Definition 3.10. Let F2T be a vector space with basis T and let f : F2T ×
F2T → F2 be a bilinear mapping such that for any d, e ∈ T , we have:

f(d, e) =

{
0 if (de)2 = 1

1 if (de)3 = 1

Lemma 3.11. f is a symplectic form on F2T .

Proof. We check the properties of a symplectic form.

� f is bilinear because it is a linear extension of the definition on elements

in T .

� f is alternating, since for any d ∈ F2T we have (dd)2 = 1 and therefore

f(d, d) = 0.

Notice how the symplectic form f on F2T encodes the diagram of T . We have

that two transvections d, e ∈ T are connected in the diagram if and only if

f(d, e) = 1.

Definition 3.12. The action of a group G on V is called irreducible if and

only if there is no subspace W ≤ V that is invariant under G, except V and

{0}.

Lemma 3.13. Let G be a group generated by transvections on V . Then G is

irreducible on V if and only if:

1. The diagram of the transvections in G is connected.

2. The intersection of all axes in G is {0}.

3. The centers in G span V .
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Proof. Suppose the three conditions are met. Let W ≤ V be some invariant

subspace of the action of G on the vector space V . The intersection of all axes

in G is {0}. That means there is no vector in V , other than 0, that is fixed by

all transvections in G. Take any v ∈W , such that v 6= 0, and let τ = (w,α) ∈ G
be a transvection that does not fix v, i.e. α(v) 6= 0. Then τ(v) = v + w is also

an element of W , but v + (v + w) = w ∈W as well, since W is a subspace.

Let τ ′ = (w′, α′) ∈ G be a transvection different from τ . From Lemma 3.7 we

know that τ ′ doesn’t fix w if and only if τ and τ ′ don’t commute. Note that τ

and τ ′ don’t commute if and only if they are connected in the diagram of the

transvections. Suppose this is the case, then τ ′(w) = w + w′ and thus w′ ∈W .

That means that if a center of a transvection is in W , then the centers of all

adjacent transvections are in W as well. Because the diagram is connected, we

know that all centers are in W . Since these centers span V , we have W = V ,

meaning the action of G on V is irreducible.

Let G be generated by transvections. Suppose the group is irreducible on V ,

such that there is no invariant subspace other than {0} and V .

1. Let D1 and D2 be two components of the diagram of the transvections. Let

W1 and W2 be the subspaces of V spanned by the centers of transvections

in D1 and D2 respectively. Any vector w ∈ W1 is a sum of centers from

D1. We know that transvections from D1 commute with all transvections

in D2, so all centers in W1 are fixed by transvections in D2. Therefore, w

is fixed as well. Any transvection in D1 will either fix w or add a center

from W1 to it, keeping it in W1. We reach a contradiction, as we conclude

that W1 and W2 are two invariant subspaces, meaning G would not be

irreducible on V .

2. Suppose the intersection of the axes in G contains the vector v. Then

v is fixed by all elements of G and thus {0, v} would form an invariant

subspace, giving a contradiction.

3. Suppose the centers in G span a subspace W of V . Then any vector

w ∈ W is either fixed or is mapped to W by elements of G. We get that

W is an invariant subspace of V , making G reducible and thus giving a

contradiction.

With that we have proven the statement both ways.

Assuming the group generated by transvections is irreducible on some vector

space, we can further specify it using the following result from McLaughlin.

Theorem 3.14. [7] Let V be a vector space of dimension n ≥ 2 over F2 and

let G be a subgroup of SL(V ) generated by transvections and irreducible on V .
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Then n is even, n ≥ 4 and G is one of the following subgroups of Sp(V ):

� the symplectic group Sp(V ),

� n 6= 4; the orthogonal group O−(V ) or O+(V ),

� the symmetric group of degree n+ 1 or n+ 2.

To motivate the third option, we look at the action of the symplectic group on

a vector space. Let Ω = {1, 2, . . . , n}. Let V = F2Ω be a vector space with Ω

as a basis.

Definition 3.15. Let V be a vector space over a field F , with basis B. Let

v ∈ V be a vector. Then v can be written as

v =
∑
b∈B

xb · b

where xb is a scalar in F , dependent on b. The support of v is the set of

elements b ∈ B such that xb 6= 0, often denoted as supp(v). The weight of v is

the cardinality of the support of v.

As an example, consider the vector space V and basis Ω as described above.

Let v = 2 + 3 + 4 ∈ V . Then the support of v is supp(v) = {2, 3, 4}. The weight

of v is |supp(v)| = 3.

Consider the even-weight subspaceW ≤ V consisting of vectors of even weight,

e.g. 1 + 2, or 1 + 2 + 5 + 7. Notice that W is spanned by 〈a+ b | a, b ∈ Ω〉.

Lemma 3.16. The even-weight subspace W of V is an invariant subspace of

the action of the symmetric group Sym(Ω) on V .

Proof. First notice that 0 is in W and that the sum of two vectors with even

weight has, again, even weight. Let w ∈ W be a vector with even weight. All

permutations in Sym(Ω) keep the weight of vectors constant. An example would

be the vector 1 + 2 and the permutation (2 3). Applying the permutation to

the vector results in 1 + 3, which has the same weight as 1 + 2. Thus for all

σ ∈ Sym(Ω), we have that σ(w) ∈W , making W an invariant subspace.

It is clear that, because V is of dimension n, the subspace W is of dimension

n− 1. Adding a single vector to W , for example 1 ∈ V , would result in V .

Lemma 3.17. If n is odd, the group action restricted to W is irreducible.

Proof. To see this, we first observe that any vector of weight two is in orbit

with all other vectors of weight two. That means that any invariant subspace

containing a vector of weight two, contains all vectors of weight two. This, in
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turn, means that this invariant subspace must be W itself, as W is generated

by all vectors of weight two.

Now take any even-weight vector v ∈W . This vector has at most weight n− 1,

meaning there is always an element a ∈ Ω that is not in the support of v.

Furthermore, let b ∈ supp(v) and σ = (a b) ∈ Sym(Ω). Then v + σ(v) = a+ b,

which means that any invariant subspace containing v contains a vector of weight

2 and must therefore be W . We conclude that Sym(Ω) irreducible on W .

The argument does not hold in case n is even. We have the vector of weight n,

1 + 2 + · · ·+ n, in W . Any permutation in Sym(Ω) on this vector, maps to the

same vector. We get that X = 〈1 + 2 + · · ·+ n〉 forms an invariant subspace of

W .

Lemma 3.18. If n is even, the group action on W/X is irreducible.

Proof. For any v ∈W , we denote v = vX ∈W/X. We have that any invariant

subspace containing a vector of weight 2, must be the whole space W/X. Any

vector w ∈ W/X has weight ≤ n − 2 or w = 0. We can apply the same rea-

soning as in the proof of Lemma 3.17 and conclude that any invariant subspace

containing w must be the whole space W/X. Sym(Ω) is therefore irreducible

on W/X.

Notice that X has dimension 1 and W has dimension n − 1. Therefore W/X

has dimension n − 2. This supports the third option of Theorem 3.14. If a

symmetric group acts irreducibly on a vector space of dimension m, the group

is of degree m+ 1 odd, or m+ 2 even.

Lemma 3.19. For all distinct transvections d, e ∈ G on some vector space V ,

we have that |de| 6= 4 if and only if for any center w ∈ V there is at most one

axis H = ker(α) ∈ A for some α ∈ V ∗ such that (w,α) ∈ G.

Proof. Suppose we have two transvections τ = (w,α), τ ′ = (w′, α′) in G with a

product of order 4. From Lemma 3.7, we know that without loss of generality

w 6= w′, α 6= α′, α′(w) = 0 and α(w′) = 1. Now, (τ ′τ)2 = (w,α′) is also a

transvection in G, since α′(w) = 0. Therefore, center w has more than one axis

in T .

Now suppose that there are two transvections in G with identical centers but

different axes, τ = (w,α), τ ′ = (w,α′). We get that the product τ ′τ must be

of order two, according to Lemma 3.7. Furthermore, τ ′τ = (w,α′′) such that

α′′ 6= α, α′ and ker(α) ∪ ker(α′) ∪ ker(α′′) = V . Since all points in V are a

center, for each point there must be at least one axis. Take any p ∈ V such that
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p 6∈ ker(α) ∩ ker(α′) ∩ ker(α′′). We know σ = (p,R) ∈ G for some axis R and

let’s assume without loss of generality that p ∈ ker(α). We have two options:

� w ∈ R: in this case |τ ′σ| = 4 and |(τ ′τ)σ| = 4.

� w 6∈ R: in this case |τσ| = 4

Let Γ = (V, E) be a graph on which we play the game. Let V = F2V be a vector

space. We can define a bilinear form on V .

Definition 3.20. Let B : V ×V → F2 be a bilinear form defined for all u, v ∈ V
to be

B(u, v) =

{
0 if {u, v} ∈ E
1 else

It is clear that B extends to a symplectic form on V . Also notice how for

all u, v ∈ V, B(u, v) = f(µu, µv), where f is the symplectic form defined in

Definition 3.10

Lemma 3.21. B is nondegenerate if and only if Γ is nondegenerate

Proof. We choose an ordered basis for V . Let A be the adjacency matrix of Γ

with respect to this basis. We can write B(u, v) = u>Av. By definition, B is

nondegenerate if and only if A is nondegenerate. A is nondegenerate if and only

if Γ is nondegenerate.

We want to find a symplectic form on V ∗ that is preserved by the groupM(Γ).

Definition 2.8 of vector Av for some v ∈ V can be extended to a linear map

θ : V → V ∗, such that for v, w ∈ V, θ(v + w) = Av + Aw. Notice that for all

v, w ∈ V , θ(v)(w) = B(v, w). It is clear that θ is an isomorphism between V

and V ∗ if and only if Γ is nondegenerate.

Definition 3.22. Assuming Γ is nondegenerate, B induces a symplectic form

B∗ on V ∗ defined by

B∗(x, y) = B(θ−1(x), θ−1(y))

We have B∗(Av, Aw) = 1 if and only if {v, w} ∈ E . Notice that B∗(x, y) =

x(θ−1(y)) for all x, y ∈ V ∗.

Lemma 3.23. The group MΓ preserves B∗.
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Proof. Let µv ∈ M be a move on a vertex v ∈ V. Now for any x, y ∈ V ∗, we

have that

B∗(µv(x), µv(y))

= B∗(x+ x(v)θ(v), y + y(v)θ(v))

= B∗(x, y) + y(v)B∗(x, θ(v)) + x(v)B∗(y, θ(v)) + x(v)y(v)B∗(θ(v), θ(v))

But notice that B∗(x, θ(v)) = x(θ−1(θ(v))) = x(v). Furthermore, we have

B∗(θ(v), θ(v)) = 0. We get

= B∗(x, y) + y(v)x(v) + x(v)y(v)

= B∗(x, y)

This means that the moves on vertices preserve the symplectic form and thus

MΓ does as well.

Definition 3.24. Let V be a vector space over a field F . We call a mapping

q : V → F a quadratic form on V if and only if it satisfies q(u + v) =

q(u) + q(v) + f(u, v) for all u, v ∈ V , where f is a bilinear mapping. A mapping

ρ : V → V is called orthogonal if it preserves the quadratic form. That is,

q(ρ(v)) = q(v) for all v ∈ V .

Lemma 3.25. Let τ(x) = x+α(x)w be a transvection. Then τ is an orthogonal

mapping with respect to some quadratic form q if and only if q(w) = 1 and

f(w, y) = 0 for all y ∈ ker(α), where f is the bilinear component.

Proof. We check the definition for an orthogonal map, making use of the fact

that if x ∈ ker(α), then α(x) = 0, and if x 6∈ ker(α), then f(x,w) = 1

q(τ(x)) = q(x) + α(x)q(w) + α(x)f(x,w) = q(x)

With this in mind, we can define a map Q : V → F2, such that Q(v) = 1 for

all v ∈ V and Q(u+ v) = Q(u) +Q(v) +B(u, v) for all u, v ∈ V . Q extends to

a quadratic form on V . When Γ is nondegenerate, Q induces a quadratic form

on V ∗ defined by

Q∗(x) = Q(θ−1(x))

for all x ∈ V ∗.

Lemma 3.26. The group MΓ preserves Q∗.
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Proof. Let µv ∈MΓ be a move on vertex v ∈ V. We have µv(x) = x+x(v)θ(v).

The center of this transvection is θ(v), for which we have Q∗(θ(v)) = Q(v) = 1.

Furthermore, for all y ∈ V ∗ such that y(v) = 0, we have B∗(y, θ(v)) = y(v) = 0.

We conclude that the moves on vertices are orthogonal mappings. Hence, MΓ

preserves the quadratic form.

From Lemma 3.23 and Lemma 3.26 we can conclude that the group MΓ, with

Γ nondegenerate, is isomorphic to subgroups of the symplectic group and or-

thogonal group on V .

4 Partial linear spaces

Definition 4.1. Let P be a set of points and L a set of lines, where each line

is a subset of P. Π = (P,L) is an incidence structure on the points P and lines

L. Π is a partial linear space if the following axioms hold:

1. any line is incident with at least two points

2. any pair of distinct points is incident with at most one line

Definition 4.2. Let x, y be points in a partial linear space Π = (P,L). We say

that x and y are collinear, and write x ∼ y, if and only if there is some line

` ∈ L, such that {x, y} ⊆ `.

Definition 4.3. Π′ = (P ′,L′) is a subspace of Π = (P,L) if and only if:

� P ′ ⊆ P, L′ ⊆ L, and

� For any pair of points x, y ∈ P ′, we have that x and y are collinear in Π′

if and only if they are collinear in Π.

We write Π′ ≤ Π.

Definition 4.4. Let Π′ ≤ Π be a subspace. We call Π′ a clique of Π if and

only if all pairs of points in Π′ are collinear.

Definition 4.5. Let Π = (P,L) be a partial linear space. The smallest subspace

Π′ containing two intersecting lines `1, `2 ∈ L is called the plane spanned by `1
and `2. Let S be the set of subspaces of Π that contain `1 and `2:

S = {W ≤ Π | `1, `2 ∈ LW }

The plane spanned by `1 and `2 can be constructed as the intersection of all

subspaces in S:

Π′ =
⋂
W∈S

W
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4.1 The triangular space

Definition 4.6. Consider some set Ω of cardinality at least 2. We define the

triangular space T (Ω) to be a partial linear space where points are the 2-

subsets of Ω and in which there are three points on each line. Two points are

collinear if an only if they intersect by exactly one element from Ω. The third

point on the line going through two points is the symmetric difference of the

two. We observe that the unions of the points on each line form the 3-subsets

of Ω.

Theorem 4.7. Let Π = (P,L) be a partial linear space. Π is isomorphic to a

triangular space T (Ω) for some set Ω if and only if:

1. each line ` of L has three points on it,

2. for each point p 6∈ `, p is collinear with none or two points of `. In the

latter case, p and ` generate a plane isomorphic to a dual affine plane of

order 2.

3. for any plane Π′ = (P ′,L′) in Π and a point p such that p 6∈ Π′, p is

non-collinear to at least one line in L′.

Proof. We first prove that if Π is isomorphic to the triangular space T (Ω), then

conditions (1), (2) and (3) hold. We use the Fig. 4 for reference.

p = {a, c}

q = {a, d}

r = {c, d}

u = {b, c}
s = {a, b}

v = {b, d}

Figure 4: A plane in the triangular space spanned by three points. Each point

is labelled with a 2-subset from Ω

1. From the definition of a partial linear space we know that each line in

T (Ω) connects at least two points with one element in the intersection,

say {a, b} and {a, c}. Because the space is triangular, we also know that
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the symmetric difference of the two points, namely {b, c}, also lies on the

line. These three points are closed under the symmetric difference, hence

each line contains exactly three points.

2. Let s = {a, b} be a point and ` be a line in T (Ω), such that s 6∈ `. Let

p, q, r be distinct points on `. If s is collinear to p, they intersect in a point

a ∈ Ω. However, since q and r are 2-subsets of a 3-subset of Ω and are

distinct, one of them must also contain a. Without loss of generality, we

have that a ∈ q and therefore s ∼ q and s 6∼ r. We conclude that either s

is collinear to no points, or exactly two points of `.

3. Let Π′ = (P ′,L′) be a plane in T (Ω). Let Ω′ =
⋃
P ′, then |Ω′| = 4. A

point p not in Π′ contains at most one element from Ω′. Since the four

lines in L′ are made up of 3-subsets of Ω′, there must be exactly one line

which does not have a point containing a. Therefore, p is non-collinear to

at least one line in L′.

We now prove the equality the other way around. Assume we have a partial

linear space Π = (P,L) for which conditions (1), (2) and (3) hold.

Let p, q and r be points on a line in Π. We define

M = Mp,q = {s ∈ P | s ∼ p and s ∼ q and s 6= r}

and claim that M forms a clique.

p

q

r

u

s1

s2

v

Figure 5: Points collinear with p and q must form a clique.

Take any distinct s1, s2 ∈ M , now from (2) we have that s1 and the line p − r
form a plane as can be seen in Fig. 5. Suppose s2 is not collinear with s1 but

is collinear with a point in the plane, then by (3) s2 must be non-collinear with
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either line s1 − p or line s1 − q. But, since s2 ∈ M , we have that s2 ∼ p and

s2 ∼ q. Therefore, s2 must be collinear to s1 and thus M forms a clique.

Let Ω = {Mp,q | p, q ∈ P} be the collection of cliques in Π. A line ` consisting

of points p, q, r ∈ P generates three distinct cliques Mp,q,Mp,r and Mq,r. The

points on ` are each in exactly two of these. Suppose there is another clique

Mp,s for some s 6∈ `, containing p. Since s is collinear with a point in `, by (2),

s must also be collinear with either q or r. Without loss of generality, we say

s ∼ q and s 6∼ r. By definition, we get that q ∈ Mp,s and s ∈ Mp,q. Since

Mp,s is a clique, any point x ∈ Mp,s is collinear to q and thus in Mp,q, giving

Mp,s ⊆ Mp,q. Any point y ∈ Mp,q is collinear to s and thus in Mp,s, giving

Mp,q = Mp,s. We conclude that points can only be in exactly two cliques.

We label the collection of cliques as Ω = {C1, C2, . . .}. Each point p in Π, such

that p ∈ Ci and p ∈ Cj , can be mapped to a point {Ci, Cj} in T (Ω). Two

points p, q ∈ Π such that p ∼ q are both in the same clique Mp,q and therefore

their mapped points {Mp,r,Mp,q}, {Mq,r,Mp,q} respectively in T (Ω) intersect

by exactly one element (clique). The third point r collinear with p, q must be in

the cliques Mp,r and Mp,r and therefore is mapped to the symmetric difference

of p and q in T (Ω).

We get that Π must be isormorphic to T (Ω), completing our proof.

4.2 Partial linear space on transvections

By Lemma 3.19, we assume that each center has a unique corresponding axis

in G. We therefore identify each transvection uniquely by its center from now

on and write w instead τ = (w,α) ∈ T .

Let T be the set of transvections generating G. We have that for any d, e ∈ T ,

either (de)2 = 1 or (de)3 = 1.

Definition 4.8. We define a partial linear space ΠT = (T,L), where two

transvections d, e ∈ T are collinear if (de)3 = 1. The lines in ΠT are defined as

L = {{d, e, f} ⊆ T | d ∼ e and where ded = f}.

Let L be the space spanned by the summed lines in ΠT . In other words, L =

〈d+ e+ f | {d, e, f} ∈ L〉. Let N = 〈p+ q ∈ F2T | ∀s ∈ F2T : s ∼ p⇔ s ∼ q〉
be spanned by the sum of points with identical sets of collinear points.

Definition 4.9. Let f be a symplectic form on some vector space W over a

field F . We define the radical of f to be the set

Rad(f) = {v ∈W | f(v, w) = 0 for all w ∈W}
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We use the symplectic form f as defined in Definition 3.10. Consider the quo-

tient space V = F2T/Rad(f).

Notation. We denote d ∈ V to mean d + Rad(f) = {d + x | x ∈ Rad(f)} for

some d ∈ F2T .

Lemma 4.10. L ⊆ Rad(f) and N ⊆ Rad(f).

Proof. Take any {p, q, r} ∈ L and any point s ∈ F2T . Without loss of generality,

either f(p, s) = f(q, s) = 1 and f(r, s) = 0, or f(p, s) = f(q, s) = f(r, s) = 0. In

both cases f(p+ q + r, s) = 0 and therefore p+ q + r ∈ Rad(f).

Take any p + q ∈ N . For all s ∈ F2T , either f(p, s) = 1 or f(p, s) = 0. But

since p and q have the same collinear points, then also f(q, s) = 1 or f(q, s) = 0

respectively. In both cases f(p+ q, s) = 0 and thus p+ q ∈ Rad(f).

Definition 4.11. Partial linear space ΠT is called reduced if and only if N =

{0}, that is, no two points have the same sets of collinear points.

Lemma 4.12. Suppose V contains at least 2 collinear elements. Then V is

non-trivial.

Proof. Let d, e ∈ F2T , such that d and e are collinear. Suppose V is trivial and

thus d = e. Take any r such that r ∼ d, but r 6∼ e, and let s = drd. Now

d+ r = e+ r, but d+ r = s 6= e+ r since e, r and s are not on a line. Therefore

it must be that d 6= e and thus V is non-trivial.

Remark. It is clear that f on V is nondegenerate. From now on, we work

with the assumption that the symplectic form f is nondegenerate unless stated

otherwise.

With this form, we know that two intersecting lines in ΠT span a dual affine

plane and thus ΠT fulfills conditions (1) and (2) from Theorem 4.7.

For any p ∈ T , we can define the permutation δp of T defined as:

δp(q) =

{
q if p 6∼ q
p+ q = r if {p, q, r} ∈ L

Lemma 4.13. Let D = 〈δp | p ∈ T 〉. D ≤ Aut(ΠT ).

Proof. Take δx ∈ D. We show that p+ q + r = 0 if and only if δx(p) + δx(q) +

δx(r) = 0.

If p, q, r 6∼ x, then by definition δx(p)+δx(q)+δx(r) = p+q+r = 0. We assume,

without loss of generality, that p, q ∼ x and r 6∼ x. Now δx(p) = p + x = p′,
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δx(q) = q+x = q′ and δx(r) = r. We get δx(p)+δx(q)+δx(r) = p+x+q+x+r =

p+ q + r = 0.

Theorem 4.14. Assuming that ΠT also fulfills condition (3) from Theorem 4.7

and is thus triangular, then 〈T 〉 ∼= D ∼= FSym(Ω) for some Ω. Where FSym(Ω)

is the symmetric group generated by permutations with finite support.

Proof. With the assumption, we can construct cliques from the points in ΠT ,

similarly as in the proof of Theorem 4.7. For any p and q that are collinear,

with r = p+ q, we define:

Mp,q = {s ∈ T | s ∼ p and s ∼ q and s 6= r}

Consider the collection of cliques Ω = {Mp,q | p, q ∈ T and p ∼ q}, labelled as

Ω = {C1, C2, C3 . . .}. We know that any p ∈ T is in exactly two cliques, say Ci
and Cj . Notice how the permutation δp is an involution, i.e. of order 2. Also

notice that the support of δp is Ci ∪ Cj . Furthermore, δp(Ci) = {δp(x) | x ∈
Ci} = Cj and δp(Cj) = Ci. The map δp 7→ (Ci Cj) clearly gives an isomorphism

between D and FSym(Ω).

4.3 Consequences for the game

Going back to our game, we want to see under what conditions the group of

moves is isomorphic to the symmetric group. We translate the conditions im-

posed in the previous subsection to the moves on a graph Γ = (V, E). We have

already seen that a move µv on some vertex v ∈ V is a transvection in V ∗,

defined as

µv(f) = f + f(v)Av.

The center of the transvection is Av. The axis of the transvection is ker(f), the

subspace spanned by all vertices except v. Notice how the axis is a hyperplane

uniquely defined by v.

Theorem 4.15. If Γ is connected and nondegenerate, thenMΓ is generated by

transvections, irreducible on V ∗, and preserves a symplectic form B∗ as defined

in Definition 3.22.

Proof. We use the conditions in Lemma 3.13. Let T = {µv | v ∈ V} be the

transvections that generateMΓ. If Γ is connected, then the diagram of T must

be connected as well, since Γ and its diagram are clearly isomorphic.

The axis of the move on some vertex v is the subspace spanned by all vertices

except v. All vertices in V give rise to a move and are therefore excluded at

least once in some axis. Thus, the intersection of these axes can only be {0}.
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The centers of T span W = 〈Av | v ∈ V〉, i.e. the row/column space of the adja-

cency matrix of Γ. If Γ is nondegenerate then its adjacency matrix is invertible

and W = V ∗.

We assume Γ is connected and nondegenerate. We define the partial linear

space ΠT = (T,L) on the transvections generating MΓ the same way as in

Definition 4.8, equipped with the same nondegenerate symplectic form.

Theorem 4.16. MΓ is isomorphic to Sym(Ω) for some set Ω if and only if

Γ = (V, E) is a line graph of some graph ∆ , i.e. Γ = L(∆), where ∆ = (Ω,V).

Proof. By Theorem 4.14, we know that if ΠT is triangular then MΓ is isomor-

phic to Sym(Ω) for some Ω. If ΠT ⊆ T (Ω), then each vertex in V is isomorphic

to a move on that vertex, which in turn is isomorphic to a pair of elements

{a, b} ⊆ Ω. For sake of simplicity, we will consider vertices as pairs from Ω.

We can now construct a graph ∆ = (Ω,V), where V are the pairs in Ω repre-

senting vertices in Γ and edges in ∆. We check the property of a line graph:

{u, v} ∈ E if and only if u ∩ v 6= ∅. Indeed two vertices u, v ∈ V are connected

in Γ and in ΠT if and only if their respective pairs in Ω, say {a, b} and {c, d},
have an element in common. Therefore, Γ = L(∆).

Assume Γ = L(∆) = (V, E) for some ∆ = (Ω,V). We can map a move µv on

any vertex v ∈ V such that v = {a, b} ⊆ Ω to the transposition (a b) ∈ Sym(Ω)

giving an isomorphism between M(Γ) and Sym(Ω). It is clear that the partial

linear space on the pairs from Ω is triangular.

Definition 4.17. Let Γ = (V, E) be a line graph of some graph ∆ , i.e. Γ =

L(∆). We call ∆ the root graph of Γ.

4.4 Degeneracy

In the previous sections, we have worked under the assumption that the graph

on which the game is played is nondegenerate. We now know that if this graph

is a line graph, then the group of moves is isomorphic to the symmetric group

of some degree. Let us now look at cases in which the graph is degenerate.

Let Γ = (V, E) be a connected graph that is not degenerate. We consider the

standard symplectic form B on V = F2V as defined in Definition 3.20. Let

V = V/Rad(B) be a quotient space of V . Let B be the induced nondegenerate

symplectic form on V .

For any x ∈ V we define the transvection τx : V → V by

τx(y) = y +B(x, y)x
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For any x ∈ V , we write x to denote x+Rad(B) ∈ V . The transvection τx leaves

Rad(B) invariant and therefore acts on V as well by the induced transvection

τx(y) = y +B(x, y)x

Lemma 4.18. [8] Let G = 〈τx | x ∈ V〉 be a group generated by transvections.

Let G = 〈τx | x ∈ V〉 be the induced group acting on V . Then G is an irreducible

subgroup of GL(V ).

Notice that if x, y ∈ V have the same neighbours, i.e. B(x, z) = B(y, z) for all

z ∈ V , then also B(x+ y, z) = B(x, z) +B(y, z) = 0 for all z ∈ V . This means

that x + y ∈ Rad(B) and thus x = x + Rad(B) = y + Rad(B) = y. Therefore

the induced transvections of x and y are also identical, i.e. τx = τy. If x, y ∈ V
do not have the same neighbours, then x 6= y and thus τx 6= τy.

Definition 4.19. Let Γ = (V, E) be a connected graph. For any x, y we write

x ≈ y if and only if x and y have the same neighbours in Γ. It’s clear that ≈ is

an equivalence relation and we denote the equivalence class of x with x̃. Now

consider the graph Γ̃ = (Ṽ, Ẽ), where Ṽ = V/ ≈ and Ẽ = {{ũ, ṽ} | {u, v} ∈ E}.
We say Γ is reduced if and only if Γ̃ = Γ.

Again, notice that if x, y ∈ V have the same neighbours, then x̃ = ỹ and thus

these points are identified in Γ̃. If x and y do not have the same neighbours,

then x̃ 6= ỹ and are therefore distinct points in Γ̃. We can conclude that the

transvections in the induced group G are in one-to-one correspondence with

vertices of the reduced graph Γ̃.

Lemma 4.20. Let Γ = (V, E) be a connected graph. Let V = F2V and let

G = 〈τx | x ∈ V〉 be a group generated by transvections on V . ThenG ∼= Sym(Ω)

for some set Ω if and only if Γ̃ is a line graph.

Proof. Since there is a one-to-one correspondence between transvections in G

and vertices in Γ̃, we can apply Lemma 4.18 and Theorem 4.14 to come to a

similar conclusion as Theorem 4.16. However, Γ̃ is not necessarily nondegener-

ate and can therefore contain too many points, due to hidden relations. It is

important to note that unlike in the proof of Theorem 4.16, the isomorphism

between G and Sym(Ω) cannot be directly be constructed from the root graph

of Γ̃.

LetMΓ be the group of moves on Γ. Note how there is an isomorphism mapping

the transvection µv ∈ MΓ, the move on vertex v ∈ V, to τv ∈ G. Therefore

MΓ
∼= G. We also know that MΓ preserves some symplectic form B∗ : V ∗ ×

V ∗ → F2. Consider the induced group MΓ on V ∗ = V ∗/Rad(B∗) which is

irreducible. We have MΓ
∼= G.

28



a b c d e

Figure 6: A graph of five points on a line.

Example 4.21. Consider the graph Γ = (V, E) as shown in Fig. 6. It’s clear

that Γ is already reduced. The standard symplectic form B on V = F2V is

degenerate. In fact, Rad(B) = 〈a + c + e〉, meaning that dimV = 4. Let G =

〈τx | x ∈ V〉 be the group generated by transvections on V . Let V = V/Rad(B)

and let G be the induced group acting irreducibly on V . We have x 6= y and thus

τx 6= τy for all x, y ∈ V. But a = c+ e and thus τa = τc+e = τcτeτc. Γ is a line

graph and thus G ∼= Sn for some n ∈ N. We find the following isomorphism,

which is also shown in Fig. 7.

τa 7→ (1 2), τb 7→ (2 4), τc 7→ (2 3), τd 7→ (3 5), τe 7→ (1 3)

From this, we know that the group of moves, MΓ, induces a groupMΓ that acts

irreducibly on a 2-dimensional vector space and is isomorphic to S5.

(1 2) (2 4) (2 3) (3 5) (1 3)

Figure 7: A visualization of the the isomorphism between G and S5. The dotted

lines indicate the hidden relation between τa, τc and τe in Γ.

a b

c d

ã b̃

Figure 8: On the left, a graph Γ of four points in a square. On the right, the

reduced graph Γ̃.

Example 4.22. Consider the graph Γ = (V, E) as shown in Fig. 8. In this case

Rad(B) = 〈a + d, b + c〉, meaning that dimV = 2. Now, a = d and b = c and

thus τa = τd and τb = τc. As noted earlier, there is a one-to-one correspondence

between the transvections in G and the vertices in the reduced graph Γ̃, which
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is visualized in Fig. 8 as well. Since Γ̃ is a line graph then G ∼= Sn for some

n ∈ N. We find the following isomorphism.

τa 7→ (1 2), τb 7→ (2 3),

From this, we know that the group of moves, MΓ, induces a groupMΓ that acts

irreducibly on a 4-dimensional vector space and is isomorphic to S3.

5 Line graphs

Posing the condition that our game must be played on a line graph that is

connected and nondegenerate ensures that the group of moves is isomorphic to

the symmetric group. What is left is outlining a way to check this condition.

We look closer at triangular partial linear spaces. Considering a plane generated

by two lines, condition (3) from Theorem 4.7 states that a point outside of the

plane must be noncollinear with at least a line in the plane.

Figure 9: The only two possible situations (up to isomorphism) for an outside

point and a symplectic plane to commute. The points marked blue are non-

collinear with the outside point. The situation on the right fulfills condition (3)

from Theorem 4.7.

If condition (3) is not fulfilled, the only other possibility is that the point outside

of the plane is noncollinear with two points that are noncollinear with each

other, as can be seen on the left of Fig. 9. Suppose four vertices generated this

situation, one of which is the outside point, two of which are the two points

noncollinear with it and each other, and the last being an arbitrary point on

the plane. The arbitrary vertex is connected to the three vertices giving rise to

a claw K1,3. By excluding this situation from our graph, we can prevent the

partial linear space from breaking condition (3) and thus forms a condition for

the graph to be a line graph. In the next section, line graphs will be further

characterized.

5.1 Beineke

Definition 5.1. Let Γ = (V, E) be a graph. Let U ⊆ V be a subset of points.

The graph ΓU = (U , EU ), such that for all u, v ∈ U we have {u, v} ∈ E ⇔
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{u, v} ∈ EU , is an induced subgraph.

There are multiple characterizations of line graphs. One of these was found by

Beineke in 1970, giving a set of forbidden induced subgraphs. Part of his result

is the following.

Theorem 5.2. [9] A graph Γ is the line graph of some graph if and only if none

of the nine graphs in Fig. 10 is an induced subgraph of Γ.

Figure 10: The nine forbidden subgraphs as described by Beineke.

When tasked with deciding whether Γ = (V, E) is a line graph, we can naively

apply the results of Beineke. Take any six points of the graph U ⊆ V and let

ΓU be the induced subgraph. Although not straightforward, it can be checked

whether ΓU is isomorphic to any forbidden graph on six points, or has a for-

bidden graph on five or four points as an induced subgraph. We will refer to

the procedure as IsForbiddenSubgraph(ΓU ). Due to the bounded number of

graphs on six points, this procedure takes time O(1). For a graph on |V| points

we need to call IsForbiddenSubgraph(ΓU ) at most
(|V|

6

)
times to determine

whether Γ is a line graph.

This results in a time O
((|V|

6

))
= O(|V|6) for the algorithm. Although the

running time is polynomial, it can be done much quicker.
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5.2 Line graph recognition

Degiorgi & Simon [10] have described an algorithm and data structure that is

able to dynamically maintain an input graph Γ = (V, E) and, when Γ is a line

graph, its root graph ∆ = (Ω,V), such that Γ = L(∆). It does so with total

running time O(|E|). The algorithm makes use of the following theorem.

Theorem 5.3. [11] Let Γ and Γ′ be connected graphs with isomorphic line

graphs. Then G and G′ are isomorphic unless one is K3 and the other is K1,3.

Where K3 is the fully connected graph on three points. K1,3 is a claw on four

points, where one point is connected to the other three.

Definition 5.4. Let Γ = (V, E) be a graph and Γ′ = (V ′, E ′) a subgraph. Let

v ∈ V be a point in Γ such that v 6∈ V ′. Then

Γ′ + v = (V ′ ∪ {v}, E ′ ∪ {{v, w} | {v, w} ∈ E and w ∈ V ′})

Let e = {v, w} be an edge for some endpoints v, w that don’t necessarily need

to be in V. Then

Γ + e = (V ∪ e, E ∪ {e})

Given an input graph Γ, the algorithm builds an input graph Γ′ with root graph

∆′ by adding vertices e from Γ to it, one by one. This means that if Γ′ + e is a

line graph, then the root graph ∆′ has an edge added to it. In other words, if

Γ′ = L(∆′) and Γ′+e is a line graph, then Γ′+e = L(∆′+e) for some endpoints

of e.

The method used to determine the endpoints of e such that ∆′ + e is the root

graph of Γ′+e only works if ∆′ has five or more vertices. Therefore, if ∆′ contains

four or less points, the root graph ∆′ + e of Γ′ + v is determined by exhaustive

search in a procedure named SmallRoot(Γ′+v). The new root graph contains

at most 5 points and at most 6 edges. Since there is a bounded number of graphs

to check, we get that the procedure SmallRoot takes constant time O(1).

For our game, we work under the assumption that the graph on which the

game is played is connected. This simplifies the possibilities in the described

algorithm. To determine the root of Γ′+e a subgraph X(e) of ∆′ is constructed.

Definition 5.5. Let EX ⊆ V ′ be the points in Γ′ adjacent to the new vertex

e. Then EX is a subset of the vertices in ∆′. X(e) is defined as the induced

subgraph of ∆′ such that X(e) = (VX , EX).

What is left is determining a placement of e in X(e) to get the new root graph.

To do this, we define the following concept.

Definition 5.6. Let T be a subset of VX . T is an anchor if it fulfills:
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A1. The subgraph of E(x) induced by T contains no edges.

A2. Every edge in EX has one endpoint in T .

A3. Every edge not in EX has no endpoint in T

We assume Γ′ = (V ′, E ′) and ∆′ = (U ′,V ′) are connected, such that Γ′ = L(∆′)

and |U ′| ≥ 5. Without going too in-depth, we say an anchor T of X(e) is

‘correct’ for e under some conditions specified in the paper. In this case two

possibilities are left.

� |T | = {x, y} for some x, y ∈ U ′. In this case we set e = {x, y}.

� |T | = {x} for some x ∈ U ′. We now set e = {x, y} with y 6∈ U ′ some new

point.

We can now describe the step of termining the root of Γ′+ e with the following

two cases.

1. X(e) is connected. The unique correct anchor T for e is computed. If it

does not exist, then Γ′ + e is not a line graph. If it does, the placement

of e in ∆′ is determined as described above. We have ∆′ + e as the new

root graph.

2. X(e) is not connected. There are two connected components X1 and X2

of X(e). Now we either get an anchor T with elements in at most one of

the components, or an anchor T with one element in each component. In

both cases, we use the placement of e as described above. ∆′ + e is the

new root graph. If no anchor exists, then Γ′ + e is not a line graph.

The algorithm assumes Γ′ and ∆′ are represented as adjacency lists. By choosing

an efficient data structure it can be ensured that insertion in the graphs takes

time O(1). The algorithm works in steps, each of which consists of inserting

an edge in the input graph. For each inserted edge, only the neighbourhood of

the edge (X(e)) needs to be analyzed to determine a new root graph, which is

essentially constant. This makes the running time of the algorithm linear.

6 Conclusion

We have analyzed the lit-only σ-game by looking at the group of moves,MΓ, on

a certain graph Γ. We were interested in the cases where this group is isomorphic

to the symmetric group Sn for a certain n. To determine this, we first made the

observation that a move µv on a vertex v ∈ V is a transvection. By looking at

groups generated by transvections and determining their structure with the use

of partial linear spaces, we were able to compare their structure to that of the

symmetric group. To be more specific, we determined that a group generated
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by transvections is isomorphic to a symmetric group if and only if the partial

linear space on these transvections is triangular. With this, we were able to

conclude that the group of moves on a nondegenerate graph Γ is isomorphic

to a symmetric group if and only if Γ is a line graph. Furthermore, if Γ is

degenerate, then its reduced graph Γ̃ is a line graph if and only ifMΓ induces a

group acting irreducibly on some vector space and isomorphic to the symmetric

group. After that, we outlined an efficient method for determining whether or

not a given graph is a line graph, concluding the analysis of the game in this

report.
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