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Abstract

In the past few decades, significant progress has been made in several areas of computational
number theory and algebra. These developments have made it possible for computers to solve a
variety of difficult problems, which was previously impractical. One problem which has received
a lot of attention is the problem of factoring polynomials with coefficients in finite fields. This
thesis focuses on root finding, a specific instance of this more general polynomial factorization
problem. We discuss several algorithms for this task, propose implementations and optimizations
and demonstrate their effectiveness in practice. We show an application in secure multiparty
computation with the recently proposed Secure Shuffle protocol and demonstrate its use in practice
using the MPyC Python library.



Contents

Contents 1

Notation 3

1 Introduction 4
1.1 Polynomial Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Secure Multiparty Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Finite Fields 7
2.1 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Polynomial operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Polynomial evaluation and interpolation . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Polynomial rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Finding non-residues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Modular roots 10
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Adleman-Manders-Miller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Square roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Special cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Peralta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Primitive Roots 18
4.1 Least primitive root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Bounded collections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Polynomial Factorization 21
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Berlekamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 Probabilistic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 Deterministic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Moenck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.1 Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Primitive roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Root Finding over Finite Fields for Secure Multiparty Computation 1



CONTENTS

6 Application: Secure shuffle 36
6.1 Random permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2 Shuffling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 39
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Root Finding over Finite Fields for Secure Multiparty Computation 2



Notation

Fpk Finite field of cardinality pk

M(n) Field operations used to multiply two polynomials of degree at most n

S(n) Largest prime factor of an integer n

ω(n) Number of distinct prime factors of an integer n

νr(n) Exponent of r in the prime factorization of n

D(f) Formal derivative of a polynomial f

χ(a) Quadratic character in Fp
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Chapter 1

Introduction

In this thesis we present a variety of methods for dealing with the computational problem of
factoring polynomials over finite fields. Polynomial factorization has many use cases in mathem-
atics and computer science, for instance in cryptography or in digital error correction techniques.
This thesis will be concerned with the former category, focusing specifically on applications in
secure multiparty computation. The polynomial factorization problem is related to various other
computational problems, such as finding (non)residues or finding primitive roots in finite fields,
both of which are also treated in this thesis.

1.1 Polynomial Factorization

In the late 1970s, the incredibly influential RSA cryptosystem was developed by Ron Rivest, Adi
Shamir and Leonard Adleman. RSA provides methods for encrypting information and producing
(and also verifying) digital signatures. In the present day, RSA is used in a variety of applications,
such as securing connections on the world-wide-web, for digital signatures on documents and
supporting secure email. The security of RSA is essentially based on the fact that in general,
given an integer n ∈ N, it is computationally very expensive to compute the complete prime
factorization of n, i.e.

n = pe11 p
e2
2 . . . pekk

where p1, ..., pk are distinct primes. Currently, no efficient algorithms for solving this computa-
tional problem are known, which is why RSA is considered secure.

In computational algebra, many similarities exist between integers and polynomials, so much
so that many influential works in literature treat both at the same time. However, one aspect
in which the two can be seen to be different is the computational problem of factoring. While
no efficient algorithms are known for computing the prime factorization of a number, numerous
effective methods have been discovered and applied to the problem of polynomial factorization.
Moreover, polynomial factorization has been used in the construction of various other algorithms,
for instance in cryptography and digital communication. One application is secure multiparty
computation, which is the application we will focus on.

In this thesis, we will be concerned with factoring polynomials over finite fields of the form:

f = (X − r1)(X − r2) . . . (X − rl) (1.1)

The focus on polynomial factorization techniques of this form is motivated by the secure multi-
party computation (MPC) protocols recently presented in [Vre20], specifically the protocols for
generating random permutations and for securely shuffling a list of secret values. In order to
generate a random permutation of l elements, the protocol involves computing the polynomial
factorization of a degree l polynomial as one of its core steps. This parameter l can be arbitrarily
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CHAPTER 1. INTRODUCTION

large, further motivating the need for efficient factorization algorithms. These MPC protocols are
discussed in Chapter 6.

The focus of the current work will be on finite fields Fp where p > 2 is prime. The motiv-
ating applications in secure multiparty computation also use such prime fields, and this helps in
presenting the main algorithmic ideas that can used for polynomial factorization. With a little
effort, many of these results can be generalized to deal with general fields Fpk . Alternatively,
[Ber70] presents a deterministic polynomial-time reduction from the problem of factoring general
polynomials over finite fields Fpk , to that of factoring polynomials of the form (1.1) over a prime
field Fp. The methods presented in the current work could therefore potentially also be relevant
for polynomial factorization in general.

Finally, observe that the case p = 2 is also excluded from consideration. This case often
requires special attention, and the motivating applications in secure multiparty computation use
significantly larger primes. Methods that deal exclusively with finite fields of the form F2k have
been presented in the literature, see for instance [ZG02] for the specific case k = 1 and [KS97] for
general k.

1.2 Secure Multiparty Computation

Secure multiparty computation is a branch of cryptography that provides techniques for multiple
parties to evaluate a mathematical function over its secret inputs. Often, these inputs are distrib-
uted among participants through some form of secret sharing, in which each participant possesses
a share of the input yet no individual participant is able to reconstruct the complete input without
collaborating with the other parties. A scheme which is commonly used for this purpose is Shamir
secret sharing [Sha79].

An illustrative example in secure multiparty computation is the so-called Yao’s Millionaire’s
Problem, which will be briefly described here. Suppose that Alice and Bob are two millionaires
that would like to determine which of them is richer, without disclosing their holdings to anyone
(i.e. not to each other, and not to any external party). If A denotes the wealth of Alice and B
denotes the wealth of Bob, they essentially wish to evaluate the logical statement

A ≥ B

In his original paper [Yao82], Yao provides a solution to this problem in the form of a protocol
that should be followed by Alice and Bob. While this example is perhaps mostly of academic
interest, secure multiparty computation techniques can be used for real-world applications of
high importance, such as electronic voting and digital auctioning [Bog+09]. In the current work,
the focus is on the secure shuffle MPC protocols recently presented in [Vre20] which internally
require polynomial factorization over finite fields. The secure shuffle protocol allows a group of
participants to shuffle a list of secret-shared values, which could find real-world use in applications
such as online card games.

In recent years, multiparty computation techniques have become more accessible for developers
through the availability of dedicated libraries. An example of this is the MPyC library [Sch18],
which will be used to implement the secure shuffle protocols from [Vre20].

1.3 Outline

Chapter 2 provides some of the preliminaries for finite fields that will be used throughout the
report. A brief summary is provided for some of the computational primitives for polynomials
over finite fields, such as polynomial multiplication, polynomial gcds, multi-point evaluation and
interpolation and finally a polynomial translation operation. This chapter also includes some
important results regarding residues and non-residues in finite fields, such as (a generalization of)
Ankeny’s Theorem [Ank52].
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CHAPTER 1. INTRODUCTION

In Chapter 3, we focus on the problem of computing modular roots in Fp in general. This is a
particular instance of the polynomial factorization problem, where the polynomial in question is
of the form

Xr − c (1.2)

where r | p−1 and where c is some rth power residue. The cases r = 2 and r = 3 are of particular
interest since algorithms that address these cases can be used to directly factor polynomials of a
low degree. For polynomials of degree 2, the familiar quadratic formula (also commonly known
as the ’ABC formula’ in Dutch) can be used, assuming that one is able to compute square roots.
In a similar manner, the cubic and quartic formulas can be used to factor polynomials of degree 3
and 4 respectively. All of these formulas can be expressed in terms of square roots and cube roots.
It is well-known that no formulas of this form exist for polynomials of higher degrees [Ros95].

Chapter 4 provides techniques for finding primitive roots in finite fields. For general prime
fields Fp, finding such primitive roots can be rather difficult (the prime factorization of p − 1
is not necessarily known), but using the approach described in Section 4.2, we can construct in
deterministic polynomial time a set of elements which is guaranteed to contain a primitive root.
The size of this set is also bounded by a polynomial.

In Chapter 5, several algorithms are presented for factoring polynomials of the form (1.1)
over finite fields. Most of these algorithms are based on existing methods from the literature,
although one of these has only received limited attention in the past. One of these factorization
algorithms is probabilistic in nature, in the sense that it requires random elements from Fp during
the factorization process. The remaining algorithms are deterministic, which may be desirable in
certain situations.

Chapter 6 is dedicated to the secure shuffle protocol and its use of polynomial factorization
techniques. The current implementation of the protocol relies on the external NTL C++ library
for a variety of operations. An implementation written entirely using Python and MPyC [Sch18]
is provided, along with experimental results for running the protocol in practice.
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Chapter 2

Finite Fields

The algorithms introduced in later sections rely on various computational primitives for finite
fields, such as polynomial multiplication and techniques for finding (non-)residues. This chapter
aims to provide a brief summary on known results and techniques on these topics. In general,
proofs have been omitted although references to literature in which these results are discussed are
provided.

First, Section 2.1 is concerned with various aspects and techniques for computing with poly-
nomials in Fp[X], such as for polynomial multiplication, division, gcds and finally also a type of
translation that can be performed on polynomials. Section 2.2 presents results on and techniques
for finding (non-)residues in finite fields. Some of the results presented in this chapter rely on
unproven but well-known conjectures such as the extended riemann hypothesis. These results are
marked as such throughout the thesis.

2.1 Computational aspects

Throughout this thesis, algorithms will be analyzed according to the computational model and
the notation used in [Sho09]. The asymptotic behaviour of algorithms is expressed in terms
of field operations over Fp (i.e. additions, multiplications and divisions) using standard ”Big-
Oh” notation. This is consistent with [Sho09] (see Chapter 3) and [VG13] (see Chapter 25),
two comprehensive books on the topic of computational algebra. In literature, one often also
encounters the ”Soft-Oh” notation Õ in which logarithmic factors are swallowed as well. However,
this would not allow us to distinguish the asymptotic behaviour of some algorithms later on and
is therefore not used.

An algorithm is said to run in polynomial-time if the asymptotic running time is bounded
by some polynomial in the input size. For instance, throughout this report, polynomials are
represented by coefficient lists [a0, ..., al] and thus such an algorithm is polynomial-time if it is
polynomial in l and log(p). In the literature this sometimes also includes S(p − 1), the largest
prime factor of p− 1, of which an example is [Gat87].

2.1.1 Polynomial operations

Throughout this report, let M(l) denote the number of operations necessary to compute the
product (that is, the coefficient representation) of two polynomials f, g ∈ Fp[X] with deg(f),deg(g) ≤
l. Using a fairly basic approach, this can be achieved using O(l2) operations. In [CK87] and shortly
after in [CK91], general algorithms for multiplying such polynomials using O(l log(l) log log(l)) op-
erations are presented. These advanced algorithms make use of fast fourier transforms in various
ways, although discussing this further is beyond the scope of the current work. We will make the
common assumption that M(a)/a ≤ M(b)/b for 0 < a ≤ b, which will allow us to express the
asymptotic behaviour of algorithms in terms of general M(l) later on.

Root Finding over Finite Fields for Secure Multiparty Computation 7



CHAPTER 2. FINITE FIELDS

Similar to the problem of multiplication, division with remainder of a polynomial f ∈ Fp[X] by
another polynomial g ∈ Fp[X] can be performed in O(deg(g) deg(q)) operations using the standard
approach, where f = qg + r with deg(r) < deg(g) [Sho09] (see Chapter 17). Alternatively, using
the methods presented in [AH74] (see Chapter 8), polynomial division with two polynomials with
deg(f),deg(g) ≤ l can be performed in O(M(l)) operations. The polynomial gcd of two such poly-
nomials can be computed using O(l2) operations using the euclidean algorithm, or O(M(l) log(l))
operations using a recursive Half-GCD approach as presented in [AH74] (see Chapter 8).

2.1.2 Polynomial evaluation and interpolation

Let f ∈ Fp[X] be an arbitrary polynomial of degree l > 0. Using the well-known Horner’s Method,
f can be evaluated at a point u ∈ Fp[X] using O(l) operations, and in a straightforward manner, f
can thus also be evaluated at the points u1, u2, ..., uk ∈ Fp using O(kl) operations. If k ≤ l, using
fast multi-point evaluation this can be further improved to O(M(l) log(l)) operations [VG13] (see
Chapter 10). Similarly the reverse operation of polynomial interpolation using l distinct points
can be performed using O(M(l) log(l)) operations as well [VG13] (see Chapter 10). The following
result is a simple consequence:

Proposition 2.1.1. Consider the finite field Fp, let f ∈ Fp[X] be a polynomial of degree l > 0

with p ≥ l and let α ∈ Fp be arbitrary. The polynomial translation f̂ = f(X +α) can be computed
using O(M(l) log(l)) field operations in Fp.

Proof. Let u1, u2, ..., ul ∈ Fp be arbitrary. Using fast multipoint evaluation, f can be evaluated

in u1 + α, u2 + α, ..., ul + α using O(M(l) log(l)) field operations. Thus f̂(u1), f̂(u2), ..., f̂(ul)

are known, and using fast polynomial interpolation, the coefficients of f̂ can be computed using
O(M(l) log(l)) field operations. �

This result will be useful in one of the factorization algorithm later on, although the construc-
tion used in the proof of Proposition 2.1.1 is mainly of theoretical significance. More efficient
algorithms for this task could be constructed, although this is beyond the scope of the current
work. In the literature, the polynomial f(X+α) has occasionally also been referred to as a Taylor
shift.

2.1.3 Polynomial rings

Finally, this section contains some general results regarding Fp[X], which will be used later on in
the factorization algorithms. More details can be found in [Ber70].

Lemma 2.1.1. Consider the polynomial ring Fp[X]. It is the case that

Xp −X =
∏
r∈Fp

(X − r)

Lemma 2.1.2. Let f ∈ Fp[X] be a monic polynomial, and let (gi) be a family of pairwise relatively
prime polynomials in Fp[X]. If f |

∏
i gi, then

f =
∏
i

gcd (f, gi)

2.2 Residues

Consider once more the finite field Fp, and let r | p−1 be some integer. An element a ∈ Fp is called
an rth power residue if there exists a b ∈ Fp such that br ≡ a. If an element is not an rth power
residue, it is called an rth power non-residue. The following relatively well-known proposition
provides a simple yet effective method of checking the residuosity of an element [Leh59].

Root Finding over Finite Fields for Secure Multiparty Computation 8



CHAPTER 2. FINITE FIELDS

Proposition 2.2.1 (Euler’s criterion). Consider the finite field Fp, and let r | p− 1. An element

a ∈ F ∗p is an rth power residue if and only if a
p−1
r ≡ 1.

This result allows one to check the residuosity of an element using one exponentiation, which
can be done in O(log(p)) multiplications in Fp by using fast modular exponentiation techniques.
Algorithms that perform faster in practice also exist, such as those based on the quadratic reci-
procity law for the case r = 2, but for the current work Euler’s criterion will suffice.

2.2.1 Finding non-residues

Many algorithms in algebra and number theory rely on the availability of non-residues. Significant
examples include computing modular roots and finding primitive roots. In Chapters 3 and 4, rth
power non-residues with r | p− 1 prime will be necessary for a variety of algorithms, and thus this
section is dedicated to finding such non-residues.

If r is large enough, then one expects non-residues to be abundant within F ∗p . Indeed, one

can show that p−1
r elements are rth power residues, while the remainder are non-residues. The

probability that a uniformly distributed a ∈ F ∗p is an rth power non-residue is approximately 1
r ,

and since residuosity can be tested rather quickly using O(log(p)) operations, this provides an
effective probabilistic method of finding non-residues. Trying random elements a ∈ F ∗p is expected
to succeed within O(1) tries, leading to an algorithm that uses an expected O(log(p)) operations.

While finding non-residues in a probabilistic manner is fairly easy, at this time no unconditional
deterministic polynomial-time methods for finding non-residues in F ∗p are known. However, assum-
ing the extended riemann hypothesis, the following results can be used to construct a conditional
algorithm [Bac90b]:

Theorem 2.2.1 (Assuming ERH). Consider the finite field Fp and let G be a proper multiplicative
subgroup of F ∗p such that a ∈ G for all a < b. Then b < 2(log(p))2

Corollary 2.2.1 (Assuming ERH). Consider the finite field Fp, and let r | p− 1 be some divisor.
The least rth power non-residue b satisfies b ≤ 2(log p)2

This can be seen as a generalization of Ankeny’s Theorem, which applies to quadratic residues
[Ank52]. Using these results, one can consider the elements 1, 2, 3, ..., 2(log p)2 and check for
residuosity using Proposition 2.2.1. This leads to a deterministic algorithm that uses O((log p)3)
field operations at most.

Root Finding over Finite Fields for Secure Multiparty Computation 9



Chapter 3

Modular roots

3.1 Overview

This chapter is concerned with determining solutions to equations of the form

Xr ≡ c (3.1)

where r ≥ 2 is some prime and c ∈ Fp. We can make a distinction between the following cases:

1. gcd(r, p− 1) = 1

2. r | p− 1

In case (1), there exists a d ∈ N such that rd ≡ 1 (mod p−1) and cd is the unique rth root of c as
a result of Euler’s totient theorem. In case (2), solutions to equation (3.1) only exist if c is an rth
power residue. This case is significantly more difficult to solve in general, and the only algorithms
that are known to solve this efficiently without relying on unproven conjectures are probabilistic
in nature. If certain elements (e.g. rth non-residues) are given beforehand, the problem can be
solved efficiently in a deterministic manner, but presently, it is unclear whether the problem can
be solved efficiently through an unconditional deterministic algorithm that works in general. For
the rest of this section, we will assume that p− 1 = rst, where s ≥ 1 and gcd (r, t) = 1 = αr + βt
are all known.

The problem of solving equation (3.1) is a very specific instance of the broader polynomial
factorization problem, which might occur in certain applications. In addition, the quadratic,
cubic and quartic formulas for computing the roots of polynomials of degree 2, 3 and 4 can be
expressed in terms of square roots and cube roots, which will become relevant in Chapter 5.

The remainder of this chapter is divided into 4 sections. Section 3.2 is dedicated to the
Adleman-Manders-Miller algorithm, along with a full derivation and complexity analysis. Section
3.3 is concerned with problem of computing square roots specifically. First, several special cases
are handled (e.g. p ≡ 5 (mod 8)) and later in Section 3.3.2 an algorithm that works for all p ≡ 1
(mod 4) is presented. This algorithm was proposed in [Per86] and was briefly analyzed in [Bac90a]
although appears to have received only limited attention in the literature. Still, the experimental
results in Section 3.4 demonstrate that the algorithm is competitive with more common algorithms
such as Cipolla.

3.2 Adleman-Manders-Miller

A commonly used algorithm for computing modular square roots is the Tonelli-Shanks algorithm,
originally discovered by A. Tonelli in 1891 and later rediscovered by D.Shanks in 1973. This
algorithm is once more discussed in [AMM77], in which authors also provide notes on how this
method could potentially be generalized to compute rth roots in general. In this section, the

Root Finding over Finite Fields for Secure Multiparty Computation 10



CHAPTER 3. MODULAR ROOTS

resulting algorithm is presented, along with a full derivation and complexity analysis. Although
the presentation is slightly different, the underlying ideas are the same as those used in [AMM77].
The algorithm is essentially based on the following two propositions:

Proposition 3.2.1. Let a ∈ Fp be such that r - ordp(a). Then aα is an rth root of a in Fp.

Proof. Since r - ordp(a), it must be the case that ordp(a) | t. Therefore

(aα)r ≡ a · (aαr−1) ≡ a · a−βt ≡ a

�

Proposition 3.2.2. Let g ∈ Fp be an rth power non-residue and let a ∈ Fp be arbitrary. If

0 < j < s such that ar
jt ≡ 1 and ar

j−1t 6= 1, then there exists a λ ∈ {1, ..., r − 1} such that

(agλr
s−j

)r
j−1t ≡ 1

Proof. Consider the equation

Xr ≡ 1 (3.2)

For convenience, define u = gr
s−1t. It is clear that u is a solution to equation (3.2), and by

Proposition 2.2.1:

u = gr
s−1t = g(p−1)/r 6= 1

Therefore ordp(u) = r and u is in fact a primitive rth root of unity. The multiplicative subgroup
S = 〈u〉 = {ui | i = 0, ..., r − 1} generated by u contains r distinct elements, which are also
solutions to equation (3.2). By the fundamental theorem of algebra, these are all solutions of the

equation. Finally, observe that since it is given that ar
jt ≡ 1, the element ar

j−1t is also a solution
to (3.2), which implies that there exists a ξ ∈ {0, ..., r − 1} such that

ar
j−1t = uξ (3.3)

Note that ξ 6= 0 since ar
j−1t 6= 1. Then λ = r − ξ is as required �

As a result of this proposition, as long as ordp(a) contains a factor r, there exist λ and j such

that ordp(ag
λrs−j

) has less factors r in its prime factorization. This is the essential idea behind
the modular root algorithm.

Let g be an rth power non-residue and consider once more the rth power residue c from equation
(3.1). If r - ordp(c), we immediately find an r root of c through Proposition 3.2.1. Therefore,

assume that r | ordp(c) and let j = νr(ordp(c)) > 0 such that cr
jt ≡ 1 and cr

j−1t 6= 1. As a
consequence of Proposition 3.2.2, there exists a λ1 such that

1 ≡ (cgλ1r
s−j

)r
j−1t ≡ cr

j−1tgλ1r
s−1

If j > 1, we may continue the process with c2 = cgλ1r
s−j

. For the sake of describing the main
algorithmic ideas, assume that νr(ordp(c2)) = j − 1, i.e. the order decreases by one in each
application of Proposition 3.2.2. The Algorithm given in Section 3.2.1 will make use of larger
jumps whenever possible to improve efficiency in practice. Apply Proposition 3.2.2 on c2, to
obtain a λ2 such that

1 ≡ (cgλ1r
s−j

gλ2r
s−(j−1)

)r
j−2t ≡ cr

j−2tgλ1r
s−2tgλ2r

s−1t

Root Finding over Finite Fields for Secure Multiparty Computation 11
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By repeatedly applying Proposition 3.2.2 in this manner, we obtain a sequence λ1, ..., λk such that

1 ≡ ctgt(λ1r
s−j+λ2r

s−j+1+...+λjr
s−1)

It follows that

(cαg−βt(λ1r
s−j−1+λ2r

s−j+...+λjr
s−2))r ≡ c · cαr−1g−βt(λ1r

s−j+λ2r
s−j+1+...+λjr

s−1)

≡ c · (ctgt(λ1r
s−j+λ2r

s−j+1+...+λjr
s−1))−β

≡ c

and thus cαg−βt
∑j

i=1 λir
s−j−2+i

is an rth root of c as desired.

3.2.1 Algorithm

Proposition 3.2.2 itself does not necessarily provide any means of determining the λ that are
necessary in the algorithm. However, the corresponding proof does present some insight. In
particular, if we define u = gr

s−1t as in the proof, we are essentially looking for a ξ ∈ {1, ..., r− 1}
such that

ar
j−1t = uξ (3.4)

Equivalently, ξ = logu(ar
j−1t), and we are computing a discrete logarithm in the subgroup 〈u〉 =

{1, u, u2, ..., ur−1}. Computing discrete logarithms in Fp is typically seen as a difficult problem
and currently no polynomial-time algorithms are known to exist that work in general on classical
computers (although using a quantum computer it is possible, see [Sho99]). However, in this case
we only need to compute a discrete logarithm in the smaller subgroup 〈u〉. In applications where
r << p, a brute-force search might become feasible, which is the solution suggested in [AMM77].

Alternatively, one could pre-compute the powers u2, u3, ..., ur−1 and store these in a table
sorted based on the canonical representatives in {0, ..., p− 1}. In this way, ξ can be found rapidly
through a binary search algorithm using O(log(r)) comparisons. This approach can be seen in

[Van05]. Similarly, the powers gt, grt, gr
2t, ..., gr

s−1t can be computed and stored in a table at the
beginning of the algorithm, and this idea of using tables to improve the algorithm can already
be seen in [Ber01]. This avoids performing unnecessary operations, effectively trading storage for
efficiency. The complete algorithm is now as follows:

Algorithm 1: Adleman-Manders-Miller

Input : prime field Fp, prime r with r | p− 1, rth power residue c, rth power
non-residue b

Output: element x ∈ Fp such that xr = c

1 Let s, t be such that p− 1 = rst, with gcd (r, t) = 1. Also, let α, β ∈ N such that
αr + βt = 1.

2 Set g ← bt, compute the powers gr, gr
2

, gr
3

, ..., gr
s−1

and store these in table G.

3 Set u← gr
s−1

, compute the powers u2, u3, ..., ur−1 and store these in a sorted table U .

4 Set L← 1 and C ← ct

5 while j > 0 do

6 Find j ∈ {1, ..., s− 1} such that Cr
j ≡ 1.

7 Find ξ ∈ {1, ..., r − 1} such that Cr
j−1 ≡ uξ using table U . Set λ = r − ξ

8 Set C ← Cgλr
s−j

using table G

9 Set L← gλr
s−j−1

using table G

10 end

11 Compute and return cαL−β
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Proposition 3.2.3. Algorithm 1 runs using at most O(r + log p+ s2 log r) operations in Fp and
storage for O(r + s) elements of Fp.

Proof. It is assumed that s, t and α, β are provided beforehand. Next, g · bt can be computed
using O(log t) operations through the usual square-and-multiply exponentiation techniques. The

powers gr, gr
2

, ..., grs−1 can be computed in O(s log r) ⊆ O(log p) operations through repeated
exponentiation by r. The powers u2, u3, ..., ur−1 are computed using O(r) multiplications, and
finally C can be computed using O(log t) operations.

In each iteration of the for-loop, j can be found using a brute-force approach, computing
Cr, Cr

2

, ..., Cr
j−1

until eventually Cr
j

= 1. This can be done using O(s log r) operations through
repeated exponentiation by r. Next, ξ can be found using binary search in O(log r) comparisons.

Using table G, the elements Cgλr
s−j

and gλr
s−j−1

can be computed using O(log r) operations (ob-
serve that λ ≤ r). Thus overall, one iteration of the for-loop uses O(s log r) operations, for a total
cost of O(s2 log r) operations. Finally, cα and Lβ can be computed using O(log(p)) operations
(observe that we may take α, β (mod p− 1)). �

This result shows that if one has access to an rth power non-residue, modular roots can be
computed efficiently in deterministic polynomial-time. However, as can be seen in Proposition
3.2.3, the complexity of Algorithm 1 is dependent on the size of s. If s is small, this provides
a highly effective method of computing modular roots. However, if s is large, more efficient
algorithms exist, especially for specific r. This is the subject of the next few sections.

Several parts of Algorithm 1 could potentially be pre-computed when using the algorithm in
practice. In particular, g, u and the tables G and U are data-independent and only depend on
the rth power non-residue b. At the cost of storing O(r + s) elements, the resulting algorithm
would become more efficient in practice, although asymptotically the result from Proposition 3.2.3
remains the same.

3.3 Square roots

The algorithm presented in the previous section is applicable to general r and can be effective
in practice. However as indicated before, several algorithms exist that perform better when r is
known beforehand. In this section, we focus on the case r = 2, computing square roots.

3.3.1 Special cases

Let c ∈ Fp be a quadratic residue. If p ≡ 3 (mod 4), it is relatively well-known that c(p+1)/4

is a square root of c, which essentially follows from Proposition 2.2.1. On the other hand, if
p ≡ 1 (mod 4), the situation becomes slightly more involved. In the case that p ≡ 5 (mod 8),
the method presented in [Atk92] can be used to obtain square roots with little effort. In [Mül04],
this procedure is further extended to the case p ≡ 9 (mod 16). The method for p ≡ 5 (mod 8) is
briefly described below.

If p ≡ 5 (mod 8), the 2 ∈ Fp is a quadratic non-residue in Fp and thus also 2c is a quadratic
non-residue. If we define ξ = (2c)(p−5)/8 and ζ = 2cξ2, it follows that

ζ2 ≡ (2c)(p−5)/4 · 2c ≡ (2c)(p−1)/4 ≡ −1

It follows directly that (ζ − 1)2 ≡ −2ζ ≡ −4c · ξ2, which implies

(c(ζ − 1)ξ)2 ≡ c2(ζ − 1)2ξ2

≡ −4c3 · (2c)(p−5)/2

≡ −c · (2c)(p−1)/2

≡ c
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Note that ξ can be computed using O(log(p)) operations through the usual square-and-multiply ex-
ponentiation techniques. Thus if p ≡ 5 (mod 8), we can compute square roots using a O(log(p))
algorithm and with modest constants within the Big-Oh notation. This approach is uncondi-
tionally deterministic, as opposed to Algorithm 1 which relies on the availability of a quadratic
non-residue in this case.

3.3.2 Peralta

In [Per86], two probabilistic algorithms are presented for computing square roots. Similar to
the commonly used Cipolla algorithm, these algorithms are based on extension field arithmetic.
Although the presentation is quite different, the first algorithm turns out to be equivalent to
the Berlekamp root finding method described in Section 5.2 as noted in [Bac90a]. The second
algorithm provides a new method for computing square roots, although once more it turns out
that this method had been discovered earlier in 1917 by Pocklington. This algorithm has received
only limited attention in the literature, but in Section 3.4 we demonstrate that this algorithm is in
fact competitive with the more common Cipolla-Lehmer and Adleman-Manders-Miller algorithms.

If p = 3 (mod 4), square roots can readily be computed as noted in Section 3.3.1 and thus
assume that p = 1 (mod 4). The algorithm is essentially based on the following proposition:

Proposition 3.3.1. Consider the finite field Fp and let b ∈ Fp and (Y + b)t = γY + ρ with
γ, ρ 6= 0. There exists an 0 < i < s such that

(Y + b)t2
i

= αY (mod Y 2 + c)

for some α ∈ Fp.

Proof. Let l be the smallest value such that

(Y + b)t2
l

≡ 0Y + a

for some for some a ∈ Fp. Since (Y + b)t2
s

= (Y + b)p−1 ≡ 1, it is the case that l ≤ s. Also, l > 0
since γ 6= 0. Suppose α, β ∈ Fp are such that

(Y + b)t2
l−1

≡ αY + β (mod Y 2 + c)

Then 0Y + a ≡ (αY + β)2 ≡ 2αβY + β2 − α2c, and thus αβ = 0. This implies that β = 0, since
α = 0 would contradict minimality of l. Also, l − 1 > 0 since it was assumed that ρ 6= 0.�

Now suppose that we have found 0 < i < s such that (Y + b)t2
i

= wY (mod Y 2 + c) for some

w ∈ Fp. If we let u, v ∈ Fp such that (Y + b)t2
i−1

= uY + v (mod Y 2 + c), then

v2 − u2c+ 2uvY ≡ v2 + u2Y 2 + 2uvY ≡ (uY + v)2 ≡ wY

which implies v2 − u2c ≡ 0 (mod p). Hence vu−1 is a square root of c, as desired. This method
requires an element b ∈ Fp such that v+uY = (Y + b)t with u, v 6= 0. The following result, which
is Theorem 4 from [Per86], shows that such elements are in fact abundant:

Proposition 3.3.2. The probability that a random b ∈ F ∗p yields (Y + b)t = v+uY with both u, v

distinct from 0 is 1− 1
2s−1

This suggests that trying random elements b ∈ F ∗p is a feasible strategy, with the probability
of success increasing as s increases. This is also demonstrated by experimental results in Section
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3.4. The algorithm is now given as following.

Algorithm 2: Peralta

Input : prime field Fp with p = 1 (mod 4), quadratic residue c
Output: A square root of c

1 Set A = Fp[Y ]/(Y 2 + c);
2 Try random b ∈ F ∗p until (Y + b)t = u0Y + v0 in A, with u0, v0 6= 0;

3 i← 0;
4 while vi 6= 0 do
5 Compute ui+1, vi+1 such that ui+1Y + vi+1 = (uiX + vi)

2 in A;
6 i← i+ 1;

7 end

8 return vi · u−1i ;

Proposition 3.3.3 (Expected complexity). Algorithm 2 runs in O(log p) expected operations in
Fp

Proof. As a consequence of Proposition 3.3.2, we expect the initial search for b to succeed within
O(1) attempts. Each attempt uses O(log(t)) field operations. Each iteration of the main while-
loop uses O(1) field operations, and by Proposition 3.3.1 the number of iterations is bounded from
above by s iterations. �

The asymptotic complexity of Algorithm 2 can be seen to match that of the more commonly
used Cipolla algorithm. Notably, s does not influence the efficiency of Algorithm 2 asymptotically,
although in practice the algorithm performs better when s is large as a consequence of Proposition
3.3.2. This is the opposite of the Adleman-Manders-Miller algorithm, which performs significantly
worse as s increases. As a final note, observe that the element b required by the algorithm is
dependent on the input c, as opposed to the arbitrary non-residue used in the Adleman-Manders-
Miller algorithm.

3.4 Experimental Results

In this section, experimental results are presented for some of the algorithms discussed in this
chapter. These have been implemented in Python using the MPyC library for secure multiparty
computation [Sch18]. In order to measure the computational speed of these algorithms, a fixed
number of random residues is first sampled on which the algorithm in question will be applied. The
average time necessary for the algorithm to complete is then reported as the average measurement
over these random residues.
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Figure 3.1: Comparison between Adleman-Manders-Miller (with pre-computations), Peralta and Cipolla algorithms
for 256-bit primes with varying s

s→ 4 20 40 60 80 100 120 140 160 180 200
AMM 0.11 0.34 0.99 2.08 3.51 5.37 7.86 10.62 13.69 17.34 21.04
Peralta 2.55 2.14 2.18 2.16 2.10 2.11 2.11 2.15 2.17 2.17 2.16
Cipolla 2.38 2.30 2.24 2.15 2.01 2.04 1.96 1.98 1.93 1.89 1.76

Table 3.1: Computing square roots for 256-bit primes with varying s. Entries indicate time in milliseconds needed
to compute one square root, averaged over d = 2500 random quadratic residues

In Figure 3.1 and Table 3.1, the computation time used by the Python implementations of the
Adleman-Manders-Miller, Peralta and Cipolla algorithms is shown for varying s. The implement-
ation of the Cipolla algorithm is based on [BS96] (Chapter 7). All results were obtained with a
desktop system equipped with an Intel i5-4670K processor and 32GB of memory. No optimizations
were made to the algorithms beyond the ones mentioned in this chapter.

Figure 3.1 demonstrates that for small s, the Adleman-Manders-Miller algorithm is highly ef-
fective and outperforms the competing algorithms. On the other hand, as s increases, the perform-
ance of the Adleman-Manders-Miller algorithm rapidly drops and instead the Peralta and Cipolla
algorithms perform significantly better. This matches our expectation from the earlier complexity
analysis of the Adleman-Manders-Miller algorithm in Proposition 3.2.3. Figure 3.1 suggests that
a scheme using a combination of Adleman-Manders-Miller and one of Peralta, Cipolla, could be
very effective for computing square roots. In such a scheme, based on the given finite field Fp
the optimal regime could be determined (i.e. the underlying square root algorithm). Note how-
ever that this breaking point at which the regime should be changed depends on the particular
implementation. Figure 3.1 also shows that the Peralta algorithm can be effective in practice as
an algorithm for computing square roots. The implementation of the Cipolla algorithm is slightly
more efficient, although this could potentially change if further implementation-level optimizations
are made to the Peralta algorithm.
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Figure 3.2: Adleman-Manders-Miller (with and without pre-computations) for 386-bit primes p, with s = 16 and
s = 32 and with the horizontal axis spanning the prime numbers between 2 and 250

Next, we turn our attention to the Adleman-Manders-Miller algorithm specifically, which works
for general r. Figure 3.2 shows the time needed by the Adleman-Manders-Miller algorithm for
increasing r and for s ∈ {16, 32}. The pre-computations suggested in Section 3.2 can be seen
to be effective in reducing the practical computation times used by the algorithm. Moreover,
the results match the complexity analysis in Proposition 3.2.3 in that the computation times of
Adleman-Manders-Miller increase roughly linearly as r increases.
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Chapter 4

Primitive Roots

For a finite field Fp, a primitive root is an element that generates the entire multiplicative group F ∗p .
Some the polynomial factorization algorithms discussed in the next chapter rely on the availability
of such a primitive root, but finding primitive roots is often rather non-trivial. In fact, testing
whether a given element g ∈ F ∗p is a primitive root is in many cases already very difficult.

If the complete prime factorization of p−1 = qe11 . . . qekk is known, one can easily check whether
an element g is a primitive root. The generate-and-test approach for finding a primitive root would
therefore become feasible. Thus, if the prime factorization of p − 1 is known, primitive roots are
readily available. However, this is not necessarily the case in all applications, and the problem of
computing a prime factorization is considered to be very hard. Still, using the methods described
in the next few sections, one can often still use primitive roots in practice.

4.1 Least primitive root

While the problem of pinpointing a primitive root remains difficult, there are methods of con-
structing small collections which are guaranteed to contain a primitive root. In [Sho90b], it is
shown that assuming the extended riemann hypothesis, the least primitive root in Fp is bounded
as following:

Theorem 4.1.1 (Assuming ERH). Consider the prime field Fp. The least primitive root in Fp is
in O((r log(r))4(log p)2), where r = ω(p− 1).

This can be combined with the following result from [HW79] (see Chapter 22):

Theorem 4.1.2. Let ω(n) denote the number of distinct prime factors of an integer n. Then
ω(n) ∈ O( logn

log logn )

Combining these two results, it follows that the smallest primitive root is in O((log p)6) and
one may thus consider the elements 1, 2, ..., up to some polynomial. Since testing whether an
element is a primitive root is hard, it is in general not possible to pinpoint which of these elements
is a primitive root efficiently. Nevertheless, even if it turns out that a candidate primitive root g is
not actually a primitive root, the various factorization algorithms will still terminate. Thus, one
can run the algorithm in question using increasing candidate primitive roots, which is guaranteed
to succeed at some point as a consequence of Theorem 4.1.1.

4.2 Bounded collections

While the previous section provides a feasible deterministic method for using primitive roots, the
idea can be significantly improved. In [Bac97], a method is described that allows one to construct a
set of O(log(p)4(log log(p))−3) elements, which under the ERH is guaranteed to contain a primitive
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root. Moreover, it can be shown that this set can be constructed in a number of operations
polynomial in log(p). The method is essentially based on the following result:

Proposition 4.2.1 (Assuming ERH). Consider the prime field Fp, and let B ≥ 1 such that
B log(B) = 30 log(p). Let T denote the set of prime divisors of p − 1 exceeding B. If T is
non-empty, there exists a prime b with

b ≤ 5
(log(p))4

(log log(p))2

such that for all q ∈ T , b is a qth power non-residue in Fp.

Proof. This is a special case of Lemma 2.4 in [Bac97]. �

Now let B ∈ R as in proposition, and suppose that the all prime factors of p − 1 less than B
are known, i.e.

p− 1 = qe11 q
e2
2 . . . qerr · t

where q1, q2, .., qr < B are distinct primes and t does not have any prime factors smaller than B.
Additionally, suppose that for each qi, we have access to a qith power non-residue bi. If we define
a as

a =

r∏
i=1

b
(p−1)/qeii
i

then a has order qe11 q
e2
2 . . . qerr = (p − 1)/t. If t = 1, we have found a primitive root and we are

done. If t > 1, then by Proposition 4.2.1 there exists a prime b with

b ≤ 5
(log(p))4

(log log(p))2

which is a qth non-residue for all prime divisors q | t. This impplies that that b(p−1)/t has order t,
and thus ab(p−1)/t has order p− 1 as desired.

In this construction, a trade-off is made in picking the parameter B. If B satisfies B log(B) =
30 log(p), then any B̂ > B will in fact also work for Proposition 4.2.1. However, this comes at
the cost of having to compute a larger portion of the prime factorization of p − 1. In general,
an appropriate B can be found by applying a numerical root finding algorithm (e.g. Brent’s
Algorithm [Bre13]) to the function x 7→ (x log(x)− 30 log(p)). In algorithmic form, the procedure
is as following:

Algorithm 3: Generate-Primitive-Root-Set

Input : prime field Fp, parameter B ∈ R with B log(B) = 30 log(p)
Output: Set S containing a primitive root

1 Compute the partial prime factorization p− 1 = qe11 q
e2
2 . . . qerr · t of primes qi < B.;

2 for i← 1 to r do
3 Try bi = 1, 2, ... until a qith power non-residue is found;
4 end

5 a←
∏r
i=1 b

(p−1)/qeii
i ;

6 S ← {ab(p−1)/t | b ∧ b ≤ 5 (log p)4

(log log p)2 };
7 return S;

The correctness of the algorithm follows from the preceding discussion. Since this method relies
on Proposition 4.2.1, correctness is actually conditional on the ERH. Note that in the construction
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of S, also non-prime b are used, which is essentially for computational purposes. If we were to
restrict S to use only prime numbers b, the prime number theorem would imply that

|S| ≤ π
(

5
(log p)4

(log log p)2

)
≈

5 (log p)4

(log log p)2

log(5 (log p)4

(log log p)2 )
∈ O

(
(log p)4

(log log p)3

)

Thus, the size of S can potentially be reduced by a factor log log(p), although this would come at

the cost of 5 (log p)4

(log log p)2 primality tests.

Proposition 4.2.2 (Assuming ERH, Worst-case complexity). Algorithm 3 runs using at most

O( (log p))5

(log log p)2 ) operations in Fp

Proof. The prime factors q1, q2, ..., qr of p−1 can be found by trial division using O(B) ⊆ O(log(p))
divisions. In the for-loop, residuosity of an element can be checked using Euler’s criterion in
O(log(p)) field operations, and combined with Theorem (2.2.1), one iteration of the for-loop uses
O((log p)3) operations. As for the number of iterations, observe that by construction B log(B) =
30 log(p). Fairly quickly B < 30 log(p), and by the prime number theorem:

r ≤ π(B) ≤ π(30 log(p)) ∈ O
(

log p

log log(p)

)
For 1 ≤ i ≤ r, the element b

(p−1)/qeii
i can be computed in O(log(p)) operations, and thus a can

be computed in O(r log(p)) ⊆ O( (log p)2

log log p ) operations. Finally, each element ab(p−1)/t of S can

be computed using O(log(p)) operations and thus overall S can be constructed in O
(

(log p))5

(log log p)2

)
operations. �
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Chapter 5

Polynomial Factorization

5.1 Overview

In this chapter, the problem of computing the factorization of a class of polynomials over prime
fields is discussed. Specifically, it is assumed that the polynomial f ∈ Fp[X] to be factored is
square-free and completely splits over Fp. That is, if deg(f) = l > 0, f can be written as

f = (X − r1)(X − r2) . . . (X − rl) (5.1)

where r1, r2, ..., rl ∈ Fp are distinct non-zero roots. The assumption that f is square-free does
not pose a problem, since repeated factors can be extracted easily by considering gcd(D(f), f),
where D(f) denotes the formal derivative of f . Moreover, in [Ber70], it is shown that the problem
of factoring arbitrary polynomials over general finite fields Fpk can be reduced in deterministic
polynomial time to factoring polynomials of the form (5.1).

Significant effort has been spent in the past few decades on developing methods for the
problem of polynomial factorization. Two particularly influential contributions are [Ber70] and
[CZ81], which both describe probabilistic techniques for factoring general polynomials in expected
polynomial-time. In recent years, most of the algorithms that are used in practice are based on
the structure of the Cantor-Zassenhaus algorithm introduced in the second work. Typically, the
factorization process is divided into three distinct steps:

• Square-free Factorization: the polynomial to be factored is split into square-free factors as
described before.

• Distinct Degree Factorization: the square-free input polynomial is split into factors hi for
i = 1, ..., l, such that each hi is the product of irreducible factors of degree i.

• Equal Degree Factorization: the irreducible factors of degree i of each of the hi are computed.

For polynomials of the form (5.1), the third line of algorithms is clearly applicable with i = 1.
Significant past contributions to the Cantor-Zassenhaus line of algorithms were made in [VS92],
[KS98] and recently in [KU11].

The remainder of this chapter is divided into 3 sections. Section 5.2 is dedicated to factoring
methods based on the techniques pioneered and popularized in [Ber67] [Ber70] by Berlekamp,
which essentially rely on splitting polynomials on the quadratic residuosity of the roots. Using
these methods, we can construct two simple yet effective algorithms for factoring polynomials over
general prime fields Fp. The first algorithm is probabilistic of the Las-Vegas variety and runs
in expected polynomial-time, while the second algorithm is deterministic and has a polynomial
average-case running time. Presently, it appears out of reach to obtain a sub-exponential bound for
the worst-case running time, although an analysis of the average-case running time and empirical
results in Section 5.4 suggest that in practice the two algorithms have similar performance.
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In Section 5.3, the methods introduced in Section 5.2 are generalized to split polynomials
based on 2ith residuosity of roots. These methods have been studied in [Moe77] and subsequently
generalized even further in [Rón89] to arbitrary residues. Through these methods, a deterministic
algorithm can be constructed that runs in polynomial time when p − 1 is highly divisible by 2.
This algorithm relies on the availability of a primitive root, for which the techniques from Chapter
4 can be applied. In [Gat87], a generalization of this basic construction is used to prove theoretical
results regarding polynomial factorization and primitive roots.

All of the algorithms discussed in this chapter have been implemented in Python using the
MPyC library [Sch18]. Section 5.4 contains various experimental results demonstrating the prac-
tical applicability of the algorithms.

5.2 Berlekamp

Let f ∈ Fp[X] be a polynomial of degree l of the form (5.1) and let α ∈ Fp. It is easy to see that
the polynomial translation f(X − α) can be written as

f(X − α) =

l∏
i=1

(X − (α+ ri))

Moreover, as a consequence of Lemma 2.1.1:

f(X − α) | Xp −X = X(X
p−1
2 + 1)(X

p−1
2 − 1)

The polynomial X
p−1
2 + 1 is the product of those linear factors (X − r) where r is a quadratic

non-residue, and similarly X
p−1
2 − 1 is the product of those linear factors (X − r) such that r is a

quadratic residue. Now since X - f , Lemma 2.1.2 provides a factorization of f(X − α) as

f(X − α) = gcd (f(X − α), X
p−1
2 + 1) · gcd (f(X − α), X

p−1
2 − 1) (5.2)

Hence, f(X − α) is split based on the quadratic character of r1 + α, r2 + α, ..., rl + α. This idea
will be the common basis of the algorithms discussed in the next few sections.

5.2.1 Probabilistic Algorithm

In the previous section, an arbitrary α ∈ Fp was used to decompose f(X−α) into two factors: one
containing the α+ri such that χ(α+ri) = 1, and one containing those α+ri with χ(α+ri) = −1. If
α is drawn from a uniform distribution over Fp, one would expect these splits to be approximately
balanced. In the worst case, α+ r1, α+ r2, ..., α+ rl all have the same quadratic residuosity and
no non-trivial splits are produced, but the chance of this happening is quite slim, as can be seen
in the following proposition

Proposition 5.2.1. Let x, y ∈ Fp with x 6= y be given, and let α be uniformly distributed over
Fp. Then

P(χ(x+ α) 6= χ(y + α)) ≥ 1

2

Proof. Let x, y be given, and consider the set S ⊆ Fp defined as

S = {α ∈ Fp : χ(x+ α) = χ(y + α)}

Observe that χ(x + α) = 0 if and only if α = −x, and since by assumption x 6= y, this implies
χ(y + α) 6= 0. Similarly χ(y + α) = 0 implies α = −y and χ(x + α) 6= 0. Combined with Euler’s
criterion, α ∈ S if and only if

1 = χ((x+ α)(y + α)) = ((x+ α)(y + α))
p−1
2 (5.3)
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This equation has at most p−1
2 solutions, and thus |S| ≤ p−1

2 <
|Fp|
2 . �

Using these methods, the main idea behind this algorithm is to split f into two factors h1, h2
of potentially lower degree, and apply the same method recursively. As a consequence of Propos-
ition 5.2.1, all roots of f are expected to be recovered eventually. Up until now, the polynomial
translation f(X − α) has been used to compute

gcd (f(X − α), X(p−1)/2 − 1)

and subsequently decompose f . Using Proposition 2.1.1, this translation could be computed in
O(M(l) log(l)) field operations, which is asymptotically the same as the cost of computing the
gcd. However, this translation step can be eliminated by instead considering

gcd (f, (X + α)(p−1)/2 − 1)

which will result in an algorithm which is slightly simpler and faster in practice. Considering all
of the above, the following Las-Vegas type algorithm can be constructed:

Algorithm 4: Factor-Berlekamp-Probabilistic

Input : prime field Fp, monic completely splitting square-free polynomial f ∈ Fp[X]
Output: Set of distinct linear factors fi

1 H ← {f};
2 F ← ∅;
3 while |H| > 0 do
4 Pick α ∈ Fp at random;
5 for h ∈ H do
6 d← gcd (h, (X + α)(p−1)/2 − 1);
7 if d 6= 1 ∧ d 6= h then
8 Remove h from H;

9 if deg (d) = 1 then F ← F ∪ {d};
10 else H ← H ∪ {d};

11 if deg ( dh ) = 1 then F ← F ∪ { dh};
12 else H ← H ∪ { dh};
13 end

14 end

15 end
16 return F ;

Proposition 5.2.2 (Expected cost). Algorithm 4 runs using an expected O(M(l) log(l) log(p))
operations and O(log(l)) random elements in Fp.

Proof. First consider the inner for-loop. Let h ∈ H, and for convenience denote k = deg(h). Using
fast modular exponentiation, a representative of (X + α)(p−1)/2 − 1 modulo h can be computed
using O(M(k) log(p)) operations, after which the gcd can be computed using O(M(k) log(k)) ⊆
O(M(k) log(p)) operations. Thus, overall one iteration of the inner for-loop uses O(M(k) log(p))
operations.

In Section 2.1, we introduced the assumption on M(.) that M(a)/a ≤M(b)/b when 0 < a ≤ b.
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Define n =
∑
h∈H deg(h), and observe that∑

h∈H

M(deg(h)) log(p) = log(p)
∑
h∈H

deg(h)
M(deg(h))

deg(h)

≤ log(p)
M(n)

n

∑
h∈H

deg(h)

= log(p)M(n)

≤ log(p)M(l)

Therefore one iteration of the main while-loop uses O(M(l) log(p)) operations in Fp.
Let I be the random variable denoting the total number of iterations of the outer while-loop,

and for 1 ≤ i ≤ I, let Hi denote the set H at the beginning of the ith iteration. Let the random
variables Ia,b denote the last iteration in which the factors (X − ra) and (X − rb) were not split
apart yet, i.e.

Ia,b = max{i ≥ 1 : (X − ra) | h ∧ (X − rb) | h for some h ∈ Hi}

for 1 ≤ a, b ≤ l. In any iteration, if two factors (X − ra) and (X − rb) have not been split yet, as
a consequence of Proposition 5.2.1, they will be split in the next iteration with a probability ≥ 1

2 ,
which implies that

P(Ia,b ≥ i) ≤
1

2i−1

for 1 ≤ i ≤ I. This implies that

P(I ≥ i) ≤
∑

1≤a<b≤l

P (Ia,b ≥ i)

≤
∑

1≤a<b≤l

1

2i−1

≤ l2 1

2i−1

Now to prove the proposition, we are interested in E[I]. Since I takes values in {1, 2, 3, ...}, it is
the case that

E[I] =

∞∑
i=1

P(I ≥ i)

=

log(l2)∑
i=1

P(I ≥ i) +

∞∑
i=log(l2)+1

P(I ≥ i)

≤ log(l2) + l2
∞∑

i=log(l2)

1

2i

= 2 log(l) + l2 · 2

l2
∈ O(log(l))

This completes the proof. �

To conclude, the methods described in this section provides a simple yet highly effective fac-
torization method that works well for general prime fields Fp. The complexity of Algorithm 4 as
shown in Proposition 5.2.2 matches that of the fastest known polynomial factorization algorithms.
As a final note, observe that the underlying method for splitting polynomials naturally provides
a highly effective method of finding just a single root. If one is not interested in the complete set
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of roots, but only a single root, then every time a non-trivial split f = h1h2 is produced one may
simply recurse on the smaller factor. This idea for finding roots is also explored in [Rab80] and
[Ben81]. Due to Proposition 5.2.1, such non-trivial splits occur after O(1) steps. The degree is
at least halved in each such step, using O(log(l)) steps overall in expection. Similar to before, a
polynomial f can be split using O(M(deg(f)) log(p)) operations, and

log(l)∑
i=0

M(
l

2i
) log(p) = log(p)

log(l)∑
i=0

l

2i
M( l

2i )
l
2i

≤ log(p)
M(l)

l

log(l)∑
i=0

l

2i
≤ 2 log(p)M(l)

Therefore, using this method, a single root of f can be found using an expected O(M(l) log(p))
field operations. In practice, the method might produce roots even faster since not all splits will
be even.

5.2.2 Deterministic Algorithm

The only aspect of Algorithm 4 which is probabilistic is the choice of random α ∈ Fp. In order
to construct a deterministic variant, we may instead start at α = 1 and increment it by one
every time. This is also briefly suggested in [Ber70], although details are limited. In the previous
section, Proposition 5.2.1 could be used to establish an effective upper bound on the expected
running time of the algorithm. Unfortunately, no such results are available for the deterministic
case at this time, and thus analyzing the deterministic variant of the algorithm requires more work.
Nevertheless, the following results due to [Sho90a] do provide a means of establishing reasonable
bounds on the running time:

Lemma 5.2.1. Let x, y ∈ Fp with x 6= y be given, and suppose that for N ∈ N

χp(xy) = χp((x+ 1)(y + 1)) = ... = χp((x+N)(y +N)) = 1

Then N < p1/2 log(p).

Lemma 5.2.2. Consider the finite field Fp. The number of pairs (x, y) ∈ Fp × Fp such that

χp(x+ i) = χp(y + i)

for i = 0, ..., log(p)− 1 is bounded from above by p log(p)2.
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Algorithm 5: Factor-Berlekamp-Deterministic

Input : prime field Fp, monic completely splitting square-free polynomial f ∈ Fp[X]
Output: Set of distinct linear factors fi

1 H ← {f};
2 F ← ∅;
3 α← 0;
4 while |H| > 0 do
5 for h ∈ H do
6 d← gcd (h, (X + α)(p−1)/2 − 1);
7 if d 6= 1 ∧ d 6= h then
8 Remove h from H;

9 if deg (d) = 1 then F ← F ∪ {d};
10 else H ← H ∪ {d};

11 if deg ( dh ) = 1 then F ← F ∪ { dh};
12 else H ← H ∪ { dh};
13 end

14 end
15 α← α+ 1

16 end
17 return F ;

Proposition 5.2.3 (Worst-case cost). Algorithm 5 runs using at most O(M(l)p1/2 log(p)2) oper-
ations in Fp.

Proof. Using the same arguments as in the proof of Proposition 5.2.2, one iteration of the outer
while-loop of Algorithm 5 uses O(M(l) log(p)) operations in Fp. Now, suppose that the outer
while-loop requires N + 2 iterations, such that in the end the element α = N + 1 produced a split.
This implies that there exist two factors (X− ra) and (X− rb) of f such that α = 1, 2, ..., N failed
to produce a split. This implies that

χ(rarb) = χ((ra + 1)(rb + 1)) = ... = χ((ra +N)(rb +N)) = 1

and the result follows from Lemma 5.2.1 �

This only establishes an exponential bound on the running time of the algorithm, but un-
fortunately no sub-exponential bounds for the worst-case cost appear to be within reach at the
moment. The problem is further discussed in [BKS15]. Nevertheless, in the next result it can be
seen that Algorithm 5 behaves well on average and should be effective in practice. This is further
confirmed by the experimental results provided in Section 5.4.

Proposition 5.2.4 (Average-case cost). Let f be uniformly distributed over the monic polynomials
of degree l with l non-zero distinct roots. Algorithm 5 runs using an expected O(M(l) log(p)(log(p)+
l2(log(p))3)

p1/2
)) operations in Fp.

Proof. Let N be a random variable denoting the total number of iterations of the outer while-loop.
From Lemma 5.2.2, it follows that if ra, rb ∈ Fp are random, the probability that (X − ra) and

(X − rb) take more than log(p) iterations to split is bounded from above by log(p)2

p . The input f
has l such factors and thus

P(N > log(p)) ≤ l2 log(p)2

p
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Moreover, N < p1/2 log(p) as a consequence of Lemma 5.2.1. Since N takes value in {1, 2, 3, ...},
it is the case that

E[N ] =

∞∑
i=1

P(N ≥ i)

=

log(p)∑
i=1

P(N ≥ i) +

∞∑
i=log(p)+1

P(N ≥ i)

≤ log(p) +

p1/2 log(p)∑
i=log(p)+1

l2 log(p)2

p
∈ O(log(p) + l2

log(p)3
√
p

)

which completes the proof. �

5.3 Moenck

The factorization method of the previous section is essentially based on splitting a polynomial
based on quadratic residuosity. This can be generalized to splitting based on 2ith residuosity,
which is suggested in [Moe77]. Let s, t be such that p − 1 = 2st, with t odd. For 0 ≤ i ≤ s, the
polynomial ci ∈ Fp[X] defined as

ci = X(p−1)/2i − 1

is the product of those linear factors X − r such that r is an 2ith power residue as a consequence
of Proposition 2.2.1. The main idea is to use this family of polynomials (ci) to split a polynomial
f .

5.3.1 Reduction

Let 0 ≤ i < s, and suppose that h ∈ Fp[X] is some polynomial with the property that all of its
roots are 2ith residues. Define ui ∈ Fp[X] as:

ui = gcd(h, ci+1)

This polynomial contains those roots that are also 2i+1th power residues. On the other hand,
the polynomial vi = h

ui
contains those roots of h that are 2ith power residues but 2i+1th power

non-residues. Now if g is a primitive root, this means that vi can be written as

vi =
∏

(X − gj2
i

)

where the j are odd. Now consider the polynomial v̂i, defined as vi with all of its roots multiplied
by g2

i

, i.e.

v̂i =
∏

(X − g(j+1)2i) =
∏
j odd

(X − g2
i+1(j+1)/2) (5.4)

The roots of v̂i are all 2i+1th power residues, and moreover, if we find a root of v̂i, then we
also obtain a root of vi by dividing out the factor g2

i

. Overall, we have reduced the problem of
factoring a polynomial h with roots that are 2ith power residues, to the problem of factoring two
polynomials with roots that are 2i+1th power residues. This procedure can be applied repeatedly,
until eventually we need to factor polynomials where all roots are 2sth residues. This collection
of elements is generated by g(p−1)/t and consists of t elements. If t is small, say t ∈ O(log(p)), a
brute-force approach becomes a feasible approach for this last step. Alternatively, the algorithmic
ideas presented in [Rón89] could be used to obtain a more efficient yet more complex method for
this last step.
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5.3.2 Algorithm

An important step of the method described in the previous section is the construction of the
polynomial v̂i based on vi. While the relation (5.4) is expressed in terms of the roots, this
transformation can in fact be performed when vi is represented as a coefficient list as a consequence
of the following proposition:

Proposition 5.3.1. Let v ∈ Fp[X] be a monic polynomial of degree k represented as v =∑k
j=0X

jaj, and let α ∈ F ∗p be arbitrary. Suppose that v has k distinct roots in Fp. If we
define the polynomial v̂ ∈ Fp[X] as

v̂ =

k∑
j=0

Xjαk−jaj

then v̂ has k distinct roots, and these roots r̂j are related to the roots rj of v as r̂j = αrj for
j = 0, ..., k − 1.

Proof. This follows directly from Vieta’s formulas relating the coefficients and roots of a polyno-
mial. �

The method described in the previous section, combined with Proposition 5.3.1, would lend
itself well to a recursive implementation. Nevertheless, for the sake of comparison with earlier
factorization algorithms and also to ease analysis of later experimental results, an iterative version
of the algorithm is presented here. For the time being, we will assume that a primitive root g is
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simply provided to the algorithm. This will be addressed in the next section.

Algorithm 6: Moenck

Input : prime field Fp, monic completely splitting square-free polynomial f ∈ Fp[X],
primitive root g ∈ Fp

Output: Set of distinct linear factors fi

1 Let s, t be such that p− 1 = rst, with gcd (r, t) = 1.

2 H ← {(f, 1)};
3 F ′ ← ∅;

4 Compute the powers g2, g2
3

, ..., g2
s

and store these in a table G.;

5 Set ξ ← g2
s

, compute ξ2, ξ3, ..., ξt−1 and store these in table T ;
6 for i← 0 to s− 1 do
7 for (h, d) ∈ H do

8 u← gcd (h,X(p−1)/2i+1 − 1);

9 Compute v ← h
u , and construct v̂ by multiplying all of the roots of by g2

i

using
Proposition 5.3.1

10 Remove (h, j) from H;
11 if deg(u) = 1 then F ′ ← F ′ ∪ {(u, d)};
12 else if deg(u) > 1 then H ← H ∪ {(u, d)};
13 if deg(v) = 1 then F ′ ← F ′ ∪ {(v, d · gi)};
14 else if deg(v) > 1 then H ← H ∪ {(v̂, d · gi)};
15 end

16 end
17 for (h, d) ∈ H do
18 Find all linear factors of h by trying elements of T , and insert these together with d

into F ′.
19 end
20 F ← ∅;
21 for (X − r, d) ∈ F ′ do
22 F ← F ∪ {X − r

d}
23 end
24 return F ;

Proposition 5.3.2 (Worst-case complexity). Algorithm 6 runs using at most O(lt+M(l) log(p)s)
field operations in Fp.

Proof. It is assumed that the decomposition p−1 = rs · t is given. The powers of g for table G can
be computed using O(s) squarings. Next, the powers of ξ for table T can be then be computed
using O(t) multiplications.

In each iteration of the inner for-loop, one can first computeX(p−1)/2i+1

modulo h inO(M(deg(h)) log(p))
operations using fast modular exponentation. Next, the GCD can be computed inO(M(deg(h)) log(deg(h))
operations, while v can be computed in O(M(deg(h)) operations. Based on v, one can compute
v̂ using Proposition 5.3.1 in O(deg(v)) ⊆ O(deg(h)) operations. Finally, observe that d · gi can
be computed in O(1) multiplication by using table G. Overall, one iteration of the inner for-loop
uses O(M(deg(h)) log(p)) operations. Through a similar argument as was used in the proof of
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Proposition 5.2.2, we find∑
h∈H

M(deg(h)) log(p) = log(p)
∑
h∈H

deg(h)
M(deg(h))

deg(h)

≤ log(p)
M(n)

n

∑
h∈H

deg(h)

= log(p)M(n)

≤ log(p)M(l)

and thus one iteration of the first outer for-loop usesO(M(l) log(p)) operations, andO(sM(l) log(p))
for the first outer for-loop overall. For the second for-loop, observe that a polynomial h can be
evaluated at a point using O(deg(h)) operations using Horner’s method such that one iteration
uses O(deg(h)t) operations. Moreover∑

h∈H

deg(h)t = t
∑
h∈H

deg(h) ≤ t · l

and therefore in this way, overall the second for-loop uses O(lt) operations. Finally, the last for-
loop uses O(l) operations to transform the roots. �

This result shows that the particular prime p being used has a significant impact on the effi-
ciency of Algorithm 6. If t large, the exponential-time exhaustive search approach could potentially
make the algorithm infeasible to use. However, for certain fields, for instance when t ∈ O(log(p)),
the algorithm provides an effective deterministic polynomial-time option for factoring polynomials.
Proposition 5.3.2 also shows that Algorithm 6 becomes faster as s increases and thus t decreases.
However, notably the exact opposite is true for the Adleman-Manders-Miller algorithm discussed
in Section 3.2, which requires small s in order to be competitive.

If a primitive root g is given, Algorithm 6 could be optimized by performing several pre-
computations. Specifically, tables G and T could be pre-computed beforehand. This could improve
the practical speed of the algorithm, although asymptotically the result from Proposition 5.3.2
remains unchanged. In addition, the exhaustive search procedure could be replaced by using the
efficient multipoint evaluation techniques described in Section 2.1. This way, the O(lt) term in
Proposition 5.3.2 would be changed to O(M(n) log(n)) where n = max{l, t}.

5.3.3 Primitive roots

In the previous section, a primitive root in Fp was assumed to be available for the factorization
method. If t is small, say t ∈ O(log(p), the complete prime factorization of p− 1 can be computed
quickly and primitive roots are readily available. On the other hand, if p− 1 contains large prime
factors, fully factoring p − 1 becomes infeasible and instead the methods described in Chapter 4
can be used, which is explored in this section.

First, consider the case in which t is small. Using Algorithm 6 as a substep the following
algorithm can fully factor polynomials in Fp[X] without requiring any given elements.

Algorithm 7: Factor-Moenck-1

Input : prime field Fp, monic completely splitting square-free polynomial f ∈ Fp[X]
Output: Set of distinct linear factors fi

1 Compute the prime factorization p− 1 = qe11 · . . . q
ek
k ;

2 a← 1 for i = 1 to k do
3 Try bi = 1, 2, ... until a qith power non-residue is found;

4 a← ab
(p−1)/qeii
i

5 end
6 return MOENCK(f, a)
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As a consequence of Proposition 2.2.1, the search for a bith power non-residue will succeed
after at most 2(log p)2 attempts. In each attempt, Euler’s criterion could be used to test for non-
residuosity in O(log p) operations. Combined with Proposition 5.3.2, it is clear that Algorithm
7 uses at most O((log p)3 + lt + M(l) log(p)s) field operations and therefore, if t ∈ O(l + log p),
polynomials can be factored in deterministic polynomial time. This is an improvement as compared
to the result obtained for Algorithm 5, which could only be shown to be polynomial-time when
considering the average over all polynomials.

Through the methods for obtaining primitive root candidates described in Section 4, this
algorithm can be extended to deal with finite fields in general. One may repeatedly compute a
candidate primitive root and attempt the factorization. This strategy is given in Algorithm 8.

Algorithm 8: Factor-Moenck-2

Input : prime field Fp, monic completely splitting square-free polynomial f ∈ Fp[X]
Output: Set of distinct linear factors fi

1 Let a be computed as in Algorithm 3
2 F ← ∅
3 h← f
4 b← 1
5 while h 6= 1 do
6 L← MOENCK(f, ab(p−1)/t)
7 F ← F ∪ L
8 h← h/

∏
l∈L l

9 b← b+ 1

10 end
11 return F ;

While this algorithm does work for all finite fields Fp, the exhaustive search approach used
in Algorithm 6 can potentially incur a significant computational cost if t is large, which is un-
acceptable in certain situations. However, as will be demonstrated in the experimental results
in the next section, many polynomials can be completely factored through the first component
of Algorithm 6, avoiding this costly step entirely. In certain applications, one could even opt to
remove the final exhaustive search and return a ”Failure” result, attempting factorization with
some other algorithm such as for instance Algorithm 5.

Finally, it should be noted that the method described in this section allows for several future
improvements. Specifically, both Algorithm 7 and Algorithm 8 compute several prime factors
q1, q2, ..., qk of p−1 beyond 2. Instead of immediately opting for an exhaustive search near the end
of Algorithm 6, one could instead refine the existing factorization even further by splitting roots
based on qith residuosity for i = 1, ..., k. This could further increase the practical effectiveness of
Algorithm 8, although polynomials will remain for which an exhaustive search is unavoidable.

5.4 Experimental Results

In this section, experimental results are presented for the algorithms discussed in Sections 5.3 and
5.2. These have been implemented in Python using the MPyC library [Sch18]. In order to measure
the computational speed of these algorithms, a collection of random monic polynomials of degree l
is first generated. The various factorization algorithms are used on this collection and the average
computation times are reported. All results were obtained with a desktop system equipped with
an Intel i5-4670K processor and 32GB of memory.
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Figure 5.1: Computation times in milliseconds needed to factor polynomials for the prime p =
34803817920319193089 with p− 1 = 256 · 483. The horizontal axis denotes the degree l of the input polynomials.

20 40 60 80 100 120 140 160 180 200
Berl-Prob
Time (ms) 34.53 117.02 245.05 420.68 664.68 914.83 1203.17 1578.11 1973.43 2445.16
# steps 8.94 11.24 12.18 13.11 13.6 14.16 14.47 14.74 15.14 15.71
Berl-Det
Time (ms) 35.11 116.32 244.80 416.60 662.66 928.76 1220.73 1567.23 1971.29 2456.49
# steps 9.07 10.95 11.95 13.05 13.51 14.06 14.74 14.83 15.15 15.64
Moenck-1
Time (ms) 35.56 114.16 239.99 406.72 639.89 899.89 1182.91 1535.88 1947.61 2411.29
# steps 9.1 11.13 12.08 13.05 13.75 14.07 14.46 15.26 15.41 15.43

Table 5.1: Computation times in milliseconds and number of steps needed to factor polynomials for the prime
p = 34803817920319193089 with p− 1 = 256 · 483.

Figure 5.1 and Table 5.1 suggest that when s is large, such that the first variant of the Moenck
algorithm is applicable, all of the factorization algorithms behave in a similar manner in terms of
computation speed. Note that the polynomial arithmetic implemented in MPyC is of the order
M(l) ∈ Θ(l2), which explains the quadratic curve visible in Figure 5.1. While for large s, the
Moenck algorithm appears to perform as well as the Berlekamp algorithms, further analysis of
the experimental results reveals that the exhaustive search step included in the algorithm is never
actually invoked. On probabilistic grounds, one would indeed expect the three algorithms to
behave similarly in this case. In particular, they are all expected to produce fairly balanced splits
such that the number of steps needed is approximately O(log(l)). If s is small, the exhaustive
search starts to contribute significantly the computation time of the Moenck algorithm, which can
be seen in Figure 5.2. Note that the measurements for the Moenck shown in Figure 5.2 do not
include the cost of computing the prime factorization of p− 1, in order to demonstrate the effect
of the exhaustive search procedure.
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Figure 5.2: Computation times in milliseconds needed to factor polynomials for the prime p = 6753281 with
p − 1 = 210 · 6595. The horizontal axis denotes the degree l of the input polynomials. The time needed to fully
factor p− 1 is not included for the Moenck algorithm.

Figure 5.3: Computation times in milliseconds needed to factor polynomials for the prime p =
18630133447762378753 with p − 1 = 233 · 2168832981. The horizontal axis denotes the degree l of the input
polynomials.

The results in Figure 5.3 and Table 5.2 demonstrate that even when t is larger, the factorization
method based on Moenck can still be effective when combined with a proper scheme for generating
primitive root candidates. In this case, computing the complete prime factorization of p − 1 is
infeasible and thus the Moenck-2 algorithm should be used instead of Moenck-1. Note however
that similar to the results shown in Figure 5.1, the exhaustive search procedure is never invoked.
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20 40 60 80 100 120 140 160 180 200
Berl-Prob
Time (ms) 38.07 126.81 262.63 444.47 673.16 949.63 1269.25 1642.30 2126.71 2563.72
# steps 9.17 10.9 12.26 12.72 13.89 13.93 14.37 15.01 15.05 15.59
Berl-Det
Time (ms) 37.26 126.75 260.78 443.40 670.65 950.17 1283.38 1642.22 2108.38 2574.23
# steps 8.72 11.02 11.8 12.57 13.6 14.21 14.57 14.69 15.23 15.32
Moenck-2
Time (ms) 36.94 124.54 257.40 435.85 659.16 930.96 1242.33 1607.33 2073.03 2539.52
# attempts 1 1 1 1 1 1 1 1 1 1

Table 5.2: Computation times in milliseconds and number of steps or attempts needed to factor polynomials for
the prime p with p− 1 = 18630133447762378753 = 233 · 2168832981. Averaged over 100 random polynomials.

The results in Table 5.2 also show that in practice, the two variants of the Berlekamp algorithm
have similar behaviour with respect to the number of steps needed. While currently the best
known bound on the worst-case complexity of the deterministic Berlekamp variant is exponential,
these results show that the algorithm is effective in practice.

The factorization methods discussed in this chapter all essentially use divide and conquer
approach. In each step, the factorization is further refined until at last only linear factors remain.
Most of the factors in the last few steps many of the remaining factors will be of a low degree, e.g.
2, 3 or 4, and thus one potential improvement could be to handle such cases using the quadratic,
cubic and quartic formulas to directly compute the roots. These can be expressed in terms of
square roots and cube roots, which can in turn be computed using the techniques and algorithms
from Chapter 3.

Figure 5.4: Computation times in milliseconds needed to factor polynomials for the prime p =
34997513354692853761 with p − 1 = 21632 · 5 · 11867103866473. The horizontal axis denotes the degree l of
the input polynomials.

Figure 5.4 shows the effect of incorporating the quadratic, cubic and quartic formulas into
the probabilistic Berlekamp algorithm. Square roots and cube roots are computed using the
Adleman-Manders-Miller algorithm. Figure 5.4 suggests that the direct formulas can contribute
to improving the efficiency of practical factorization methods, albeit only slightly.

Root Finding over Finite Fields for Secure Multiparty Computation 34



CHAPTER 5. POLYNOMIAL FACTORIZATION

Finally, note that these formulas could also be used in the Moenck factorization algorithms,
including the exhaustive search procedure. However, one should take care to choose the appropri-
ate algorithms for computing square roots and cube roots. The complexity analysis and exper-
imental results presented in Chapter 3 for the Adleman-Manders-Miller algorithm indicate that
the algorithm performs significantly worse as s increases. This is the opposite of the Moenck-1 al-
gorithm, which requires a sizeable s to function properly. Instead, the Peralta algorithm discussed
in Section 3.3 could be used for square roots, along with an appropriate cube root algorithm. For
instance, the Padró-Sáez algorithm introduced in [PS02] and later refined in [Heo+14] could be
used for this purpose. This is generalization of the Peralta algorithm for the case of cube roots.
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Chapter 6

Application: Secure shuffle

In this chapter, we discuss an interesting application of polynomial factorization in secure multi-
party computation (MPC). In [Vre20], the author presents MPC protocols for a variety of tasks,
such as shuffling a list of secret-shared values and sorting a list of secret-shared values. The former
task can in fact be divided into two independent subtasks, which are of interest in their own right
as well:

• Generating a random, secret-shared permutation

• Rearranging a list of secret-shared values according to a secret-shared permutation

In [Vre20] the author also suggests applications for the secure shuffle protocol, such as in online card
games. We will briefly describe both of these protocols and their use of polynomial factorization.
The conventions and notations from [Vre20] are used, with JxK denoting a secret-shared variable
x and reveal(JxK) denoting the act of revealing the value of x to all involved participants. We will
assume that basic MPC primitives, such as multiplying or adding two secret-shared numbers, are
given.

6.1 Random permutations

Let N > 0 be some integer, and let Jr̂K be a list of N distinct, secret-shared elements in Fp. Define
the secret-shared polynomial f ∈ Fp[X] as

f =

N∏
i=1

(X − r̂i)

Since multiplication in Fp[X] is commutative, revealing f to all parties does not reveal any in-
formation about the original order of the secret-shared elements JriK. If all participants fully
factor f , they obtain a new list r = [rij ] containing the same values but with the original order
lost. By mandating a common ordering of r between participants, the pair (r, JrK) establishes a
random secret-shared permutation. This is the main idea behind the protocol, which is provided
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in algorithmic form in Algorithm 9:

Algorithm 9: Random-Permutation

Input : Integer N > 0
Output: list r of length N , secret-shared list Jr̂K of length N

1 Generate N secret-shared random values, and store these in a list Jr̂K

2 JT K←
∏N
i=1(X − Jr̂iK)

3 f ← reveal(JT K)
4 r ← Find-Roots(f)

5 if r[i] = r[j] for any i 6= j then
6 return ”Failure”
7 else
8 return (r, Jr̂K)
9 end

Here Find-Roots() denotes any suitable algorithm for determining the roots of a monic poly-
nomial, such as those presented in Chapter 5. In order for Algorithm 9 to function correctly,
the involved parties need to ensure that their lists r are matching, i.e. have the same order. In
[Vre20], the author indicates that any arbitrary order will work and proposes that at the end of
the protocol, participants locally sort r through a regular sorting algorithm. Using results from
Chapter 5, an alternative solution which would avoid this last step would be to use the determ-
inistic factorization algorithm presented in Section 5.2.2 for obtaining r. Although this algorithm
has an exponential worst-case complexity, the average-case complexity is comparable to that of
existing probabilistic algorithms which is further supported by the experimental results in Section
5.4. This eliminates the need for a dedicated sorting step (which typically runs using O(N log(N))
comparisons), since all participants necessarily obtain the same order. The resulting protocol is
faster in practice, although asymptotically the computational complexity is still dominated by the
factorization step.

During the execution of Algorithm 9, the same work on factoring the polynomial f is effectively
repeated by all of the participants. A potential optimization to the protocol would therefore be
to assign the work to one of these participants, which could share the resulting roots with the
remaining participants when finished. If necessary, all of the participants can also easily verify
this received factorization, which is significantly more efficient than computing the complete prime
factorization.

6.2 Shuffling

The remaining components of the Secure Shuffle protocol are provided below (see [Vre20], Chapter
3 for an in-depth derivation and analysis).

Suppose a list JvK of N secret-shared values is given. By generating a random permutation
through Algorithm 9 and applying the following algorithm for rearranging JvK according to this
permutation, we can securely shuffle JvK.

Algorithm 10: Rearrange

Input : Secret-shared list JvK of length N , secret-shared permutation (r, Jr̂K) of size N
Output: Secret-shared rearranged list

1 JfK← Interpolate(r, JvK)
2 return Eval(JfK, Jr̂K)

Here, Interpolate() refers to a polynomial interpolation algorithm, such as those mentioned
in Chapter 2, and similarly Eval() to a regular multi-point evaluation algorithm. The complete
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shuffling algorithm is now as following:

Algorithm 11: Shuffle

Input : Secret-shared list JvK of length N
Output: Secret-shared shuffled list

1 (r, Jr̂K)← Random-permutation(N)
2 return Rearrange(JvK, (r, Jr̂K))

Previously, implementations provided by the author of [Vre20] relied on components written
using the NTL C++ library [Sho+01], using the FindRoots function from NTL for the factorization
step. Using the factorization algorithms previously described in Chapter 5, the complete Secure
Shuffle protocol has been implemented in Python using the MPyC library [Sch18]. Below, several
experimental results are provided for the speed of this implementation when using the probabilistic
Berlekamp factorization method. Here N denotes the size of the list to be shuffled, while M
denotes the number of participants in the protocol. These results have been obtained on a desktop
computer equipped with Intel i5-4670K processor and 32GB of memory, where multiple parties
are simulated with communication running over local tcp connections.

N → 5 10 15 20 25 30 35
M=2 0.26 0.45 0.98 2.07 4.31 6.62 9.73
M=5 0.51 1.32 3.16 7.44 14.76 27.86 45.45
M=10 2.23 3.52 9.26 23.79 50.43 90.25 131.50

Table 6.1: Running the Secure Shuffle protocol for varying N , and with a varying number of participants. Entries
indicate time in seconds needed for the protocol to complete. This implementation uses basic non-optimized
Lagrange interpolation methods for Algorithm 10, and similarly, Horner’s Rule is used to evaluate JfK in each root.
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Chapter 7

Conclusion

In this thesis we discussed several algorithms that can be used for the computational problem of
polynomial factorization and more specifically root finding. The modular root algorithms discussed
in Chapter 3 are shown to be very effective in practice, even on low-cost computer systems.

Using probabilistic algorithms, polynomials can be factored over arbitrary finite fields efficiently
in expected polynomial time. In particular, the Berlekamp algorithm discussed in Chapter 5
runs using O(M(l) log l log p) expected field operations, which matches the bounds of the most
efficient known factorization methods. By making some very minor changes, this algorithm can
be converted into a deterministic algorithm. Presently, proving a sub-exponential bound on the
worst-case running time of this deterministic algorithm appears to be out of reach, although the
method is shown to be effective when the average over all polynomials is considered. A sub-
exponential upper bound would have a significant impact, since this would allow us to construct
deterministic polynomial-time solutions for a variety of computational problems for which the only
known efficient methods are currently probabilistic, or rely on unproven conjectures.

We propose two variants of the Moenck factorization method introduced in [Moe77]. Through
the first algorithm, polynomials over certain finite fields can be factored in deterministic polyno-
mial time. Using the techniques for determining primitive root candidates presented in Chapter
4, this method is extended to deal with more general finite fields. Although this algorithm is not
guaranteed to be efficient for all polynomials, experimental results demonstrate that the resulting
algorithm can still be effective in practice. Finally, we present an interesting application in secure
multiparty computation with the recently proposed Secure Shuffle protocol, along with experi-
mental results using the MPyC library [Sch18]. These demonstrate that the protocol can be run
even on low-cost computers, although optimizations to the implementation are likely necessary in
order for the protocol to be effective in real-world applications such as card games.

7.1 Future work

This thesis presents several possibilities for future research. A few ideas are listed below:

• The factorization algorithms discussed in Chapter 5 use a divide-and-conquer approach and
could potentially be parallelized. This would be particularly interesting in secure multi-
party computation applications as it could be set up as to divide up the work among the
participants. If the deterministic methods from Section 5.2 or Section 5.3 are used, commu-
nication between participants could be minimized.

• As part of Algorithm 8, the partial prime factorization of p − 1 is computed in order to
find proper primitive root candidates. Using these prime divisors qi, the algorithm could be
generalized to also split polynomials based on qith residuosity, since a (candidate)primitive
root is already given. In addition, the exhaustive search procedure could be significantly
improved by using the direct root formulas for degree 2, 3 and 4 polynomials.
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