
 Eindhoven University of Technology

BACHELOR

Vector Addition Chains

Leder, Sam B.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/729f94fc-67a7-4787-bf41-8a7706acf252

Vector Addition Chains

Sam Leder 1360442

Bachelor Final Project Applied Mathematics

Eindhoven University of Technology

Supervisor: Benne de Weger

June 2021

Contents

1 Introduction 2

2 Integer addition chains 3
2.1 Link with exponentiation . 3
2.2 Double-and-add . 4

3 Vector addition chains 6
3.1 Link with multi-exponentiation 6

4 Shamir’s algorithm 7
4.1 Extended basis vectors . 8

5 De Rooij (1995) 12

6 A new algorithm 18
6.1 LLL lattice basis reduction . 18
6.2 LLL-based vector addition chains 20

7 Comparisons 23
7.1 Shamir and De Rooij . 23
7.2 De Rooij and LLL . 24

8 Various problems 26
8.1 Addition chain with given basis 26
8.2 Addition chain with intermediate stop 26
8.3 Addition chains and graphs . 27
8.4 Link between integer and vector addition chains 28

1

1 Introduction

For many cryptographic purposes the user has to compute one or multiple ex-
ponentiations. Because many users have to do this many times, it is useful to
have an efficient method to do these computations quickly. If we need to com-
pute xk for a fixed k and many different values of x (as is the case in the RSA
cryptosystem), addition chains are a helpful tool to greatly reduce the number
of calculations needed.
If instead a multi-exponentiation (a product of multiple exponentiations) has to
be computed, we can use vector addition chains to speed up this process.

In this report, we briefly look at integer addition chains before focusing on vec-
tor addition chains. For this we will consider the existing algorithms by Shamir
[Elgamal, 1985] and De Rooij [de Rooij, 1995] and look at their performance.
Next we look to create a new algorithm for finding addition chains. As a start-
ing point we use the LLL algorithm for lattice reduction [Lenstra et al., 1982]
and modify it to compute addition chains. By choosing a specific starting basis
we end up with a vector in the reduced basis such that the steps taken precisely
form an addition chain. Then we compare these three algorithms to each other
to see which perform best under different circumstances.
After that we look at two general problems regarding addition chains and dis-
cuss two interesting papers on specific parts of addition chains.

2

2 Integer addition chains

Before we consider vector addition chains, let us look at simple integral addition
chains. These are sequences that reach a target integer t by adding numbers
previously in the chain together, starting at 1. Formally, it is a sequence v =
(v0, v1, . . . , vs) such that

v0 = 1, vs = t and

for all 1 ≤ k ≤ s there are 0 ≤ i, j < k such that vk = vi + vj .

Here s is the length of the chain. Note that we do not count v0 = 1 in the
length, as this element is always given at the start of any chain.
For example, a chain for t = 25 could be (1, 2, 3, 6, 7, 9, 18, 16, 32, 25), where

1 + 1 = 2,

2 + 1 = 3,

3 + 3 = 6,

6 + 1 = 7,

7 + 2 = 9,

9 + 9 = 18,

9 + 7 = 16,

16 + 16 = 32,

16 + 9 = 25.

Two things stand out in this example: the 18 and 32 are not used to make
any other numbers and 32 is even larger than the target. These numbers can
be deleted as they do not add anything useful. This brings two new rules for
addition chains: every element (other than the target) has to be used to create
at least one other element, and no element may be larger than the target.
A better chain would therefore be (1, 2, 3, 6, 7, 9, 16, 25). Note that an addition
chain is always ordered, so switching two elements around would also make it
invalid.
While it is not difficult to find addition chains, we would like an algorithm that
finds short chains efficiently.

2.1 Link with exponentiation

As mentioned, addition chains are very useful for exponentiation. If one wants
to compute the power xk for some x (which does not need to be an integer,
it can be anything that can be raised to a power) and k ∈ N, they can use
any addition chain to do this, since multiplying powers comes down to adding
exponents together, i.e. xa · xb = xa+b.
For example, if we want to compute x25, we could calculate x·x = x2, x2 ·x = x3,
up to x24 · x = x25. However, this is clearly very inefficient. Instead, using the
addition chain for 25 we just found is much faster: x · x = x2, x · x2 = x3,

3

x3 · x3 = x6, up to x9 · x16 = x25. This only takes 7 multiplications instead of
24, which is an improvement.

2.2 Double-and-add

Double-and-add (also known as square-and-multiply when used for exponentia-
tions) is a method to obtain short integer addition chains. As its name suggests,
it consists of doubling and adding numbers in a particular order. The algorithm
makes use of the binary representation of the target and simply doubles the
result every step and adds 1 for each 1 in the binary representation. The algo-
rithm formulated below is more specifically called left-to-right double-and-add,
because it parses the binary representation of t from left to right (i.e. from the
most significant bit to the least). There is also right-to-left double-and-add, but
this is not as useful in the rest of this report.

Algorithm 1: Left-to-right double-and-add

Input: t = [tk−1 . . . t0]2 binary representation of t ∈ N, t1 = 1
Output: v addition chain for t
v ← {1};
s← 1;
for i from k − 2 down to 0 do

s← 2 · s;
append s to v;
if ti = 1 then

s← s+ 1;
append s to v;

end

end
return v

As an example, let again t = 25 which is 11001 in binary. We start with s = 1
and double it to 2. Then because t2 = 1 we increment it to 3. Both next bits
are 0 so we double twice to find 6 and 12. Finally we double and add to get 24
and 25. We get the chain {1, 2, 3, 6, 12, 24, 25} of length 6.
In the remainder of the report we will use this approach to produce addition
chains for integers and refer with DA(t) to the addition chain for t created by
this algorithm.

One might ask if this algorithm always finds the shortest chain possible, but
this is not the case. The minimal counterexample is t = 15, for which the
double-and-add chain is {1, 2, 3, 6, 7, 14, 15} of length 6, while {1, 2, 3, 5, 10, 15}
only has length 5.
More generally, if ν(t) denotes the Hamming weight of t (the number of ones in
its binary representation), the double-and-add addition chain has length exactly

L = blog2(t)c+ ν(t)− 1.

4

Moreover, since ν(t) ≤ blog2(t)c trivially holds, we have the bounds

blog2(t)c − 1 ≤ L ≤ 2 · blog2(t)c − 1,

which does not depend on the exact bits of t, only its size.
While shorter chains exist for most targets, there is no known efficient way to
find them, so double-and-add is very useful in that regard.

5

3 Vector addition chains

A more general problem is that of vector addition chains: instead of an integer
we have a target vector t = (t1, t2, . . . , tn), ti ∈ N and instead of starting with
1 we start with the standard basis vectors of Rn. A vector addition chain is a
sequence v such that

v−n+1 = (1, 0, . . . , 0)

v−n+2 = (0, 1, . . . , 0)

...

v0 = (0, 0, . . . , 1)

...

vs = t and

for all 1 ≤ k ≤ s there are − n+ 1 ≤ i, j < k such that vk = vi + vj .

Note again that the first element v1 is the result of the first addition, so the
basis vectors have nonpositive indices.
While we could of course create integer addition chains for each ti and then
add them together, there are far more efficient approaches. We will look at an
existing algorithm and then formulate a new algorithm.

3.1 Link with multi-exponentiation

Similarly to integer addition chains, we can use vector addition chains to more
quickly compute multi-exponentiations, i.e. calculations of the form xk1

1 ·x
k2
2 · · ·xkn

n ,
where n, xi, ki ∈ N. For example, if we want to compute x8·y5, we could compute
x8 and y5 separately and multiply them together, which takes 7 calculations:

x2, x4, x8, y2, y4, y5, x8 · y5,

but we can also create the following addition chain for (8, 5) with only 5 calcu-
lations:

{(1, 0), (0, 1), (1, 1), (2, 1), (4, 2), (8, 4), (8, 5)}

In this case, (1, 0) represents x, (0, 1) represents y, (4, 2) represents x4 · y2
and so on. Hence adding (8, 4) + (0, 1) = (8, 5) is equivalent to computing
(x8 · y4) · y = x8 · y5.

6

4 Shamir’s algorithm

We introduce an algorithm for computing short vector addition chains, due
to Shamir [Elgamal, 1985]. This algorithm can be seen as a generalization of
double-and-add for integers described in Section 2, only for vectors.
See below a basic version of the algorithm, which does not produce full addition
chains but is a good place to start. Therefore we call the output v′ a pseudo
addition chain.

Algorithm 2: Shamir’s basic algorithm

Input: Target t = (t1, . . . , tn) ∈ Nn, ti = [ti,k−1 . . . ti,0]2 for 1 ≤ i ≤ n
Output: Pseudo addition chain v′ for t
v′ ← {};
s← (t1,1, . . . , tn,1);
E ← {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)};
for j from k − 2 down to 0 do

s← 2 · s;
append s to v′;
a← (t1,j , . . . , tn,j);
if a 6∈ E and a 6= 0 then

append a to E;
end
s← s+ a;
append s to v′;

end
return v′, E

While the double subscript notation for t might look confusing, it is easily
cleared up by an example. Let t = (9, 6, 5) = (1001, 0110, 0101), then s gets
initialised as (1, 0, 0) (by taking the most significant bit of the coordinates of t).
After doubling s, we have a = (0, 1, 1) (the second bit of t’s coordinates) and
we continue this for every bit in t to find the pseudo chain

v′ = {(2, 0, 0), (2, 1, 1), (4, 2, 2), (4, 3, 2), (8, 6, 4), (9, 6, 5)},

and E = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)}.

However, we are not done here. As seen in the example above, (2, 1, 1) is not
the sum of two preceding vectors as is required. Instead it is the sum of one
previous vector and another vector a. It is clear that the latter always exists
exclusively of zeroes and ones. We call these vectors a ∈ {0, 1}n = {(b1, . . . , bn) :
bi ∈ {0, 1}, 1 ≤ i ≤ n} extended basis vectors. While we could just add these
vectors to the chain as soon as they occur, this is very inefficient considering
there are only 2n − n − 1 such vectors (not counting basis vectors and the
zero vector), so we can do much better in most cases. Furthermore, we can-
not even add a vector (0, 1, 1) immediately, since we first have to take the step

7

(0, 1, 1) = (0, 1, 0) + (0, 0, 1).
This problem is further discussed in the next section, where we will use the set
E to create proper addition chains. For now, we assume that every extended
basis vector has been precomputed, so we can use them in our addition chains
without issue.

The theoretical value of this approach is quite simple. Let t be the target of
dimension n and size b bits, i.e. the largest coordinate of t has b bits in its
binary representation. Every adding step and doubling step together cover one
bit, so it takes 2b steps to reach the target. However, if all bits in a are 0, we do
not need to add it, which saves a step. This occurs with probability 1

2n if the
numbers are arbitrary, so it might save a few steps if t is large in comparison to n.
The number of steps is simply bounded above by 2b or equivalently 2·blog2(tmax)c.

4.1 Extended basis vectors

As we saw in Shamir’s algorithm, we have to incorporate extended basis vectors
in our addition chains. An approach to do so is discussed here.
We collect all used extended basis vectors in a set E (which does not contain
duplicates) and use the following algorithm to “complete” the set. A complete
set in this context means that every vector is either a regular basis vector or
the sum of two other vectors in the set. This completed set can then be added
to the start of the chain given in Algorithm 2 to make a proper addition chain.
Here the Hamming weight is the number of ones in a vector, so this is equal to
the sum of its coordinates. Also, “Break” means moving on to the next element
c ∈ C in the outer loop, as a sum for the current element has already been found.

8

Algorithm 3: Completion algorithm

Input: Set E containing distinct extended basis vectors
Output: Complete set C
C ← E;
Sort C by decreasing Hamming weight;
for c in C do

z ← ();
M ←∞;
for a in C do

b← c− a;
if b ∈ C then

Break
end
if bi ≥ 0 for all 1 ≤ i ≤ n then

if HammingWeight(b) < M then
z ← b;
M ← HammingWeight(b);

end

end

end
insert z into C according to its Hamming weight;

end
reverse C;
return C

We can now define Shamir’s algorithm in full. It is very simple, as it only
combines the two parts that were created in the previous two algorithms. Recall
that an addition chain is an ordered sequence, so we have to put the extended
basis before the rest of the chain, as C also already contains the standard basis.
This is also why we have to reverse C above to get it sorted by increasing
Hamming weight.

Algorithm 4: Shamir’s algorithm

Input: Target t ∈ Nn

Output: Addition chain v for t
v′, E ← ShamirBasicAlgorithm(t);
C ← CompletionAlgorithm(E);
v ← C concatenate v′;
return v

9

As an example, let

E = {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1), (1, 1, 1, 1, 1), (0, 0, 0, 1, 1), (1, 0, 1, 1, 0)}.

First it is sorted into

C = {(1, 1, 1, 1, 1), (1, 0, 1, 1, 0), (0, 0, 0, 1, 1), (0, 0, 0, 0, 1),

(0, 0, 0, 1, 0), (0, 0, 1, 0, 0), (0, 1, 0, 0, 0), (1, 0, 0, 0, 0)}.

Then the first element c = (1, 1, 1, 1, 1) is selected. For a = (1, 0, 1, 1, 0) the
Hamming weight of b = (0, 1, 0, 0, 1) is 2, so b and 2 get stored in the vari-
ables z and M respectively. Actually M will not be lowered after this, so
(0, 1, 0, 0, 1) gets inserted into C behind (0, 0, 0, 1, 1). This process is repeated
for c = (1, 0, 1, 1, 0) = (1, 0, 0, 0, 0) + (0, 0, 1, 1, 0) and (0, 0, 1, 1, 0) gets inserted.
Then follow (0, 0, 0, 1, 1), (0, 1, 0, 0, 1) and (0, 0, 1, 1, 0) which are all sums of
elements of C, so we end up with the completed set

C = {(1, 0, 0,0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1), (0, 0, 1, 1, 0), (0, 1, 0, 0, 1),

(0, 0, 0, 1, 1), (1, 0, 1, 1, 0), (1, 1, 1, 1, 1)}.

To answer the question how many extended basis vectors we need to compute on
average for an addition chain of given length, we apply some probability theory.
This question is equivalent to “What is the expected number of distinct items
Y when drawing with replacement m items from a pool of N equally probable
items?”
Let for each item 1 ≤ i ≤ N the indicator be given by

Xi = 1{drawing i at least once},

so that

Y =

N∑
i=1

Xi.

Then we can use the rules for the expected value to see

E[Y] =

N∑
i=1

E[Xi]

and for arbitrary 1 ≤ i ≤ N it holds that

E[Xi] = P{drawing i at least once}

= 1− P{not drawing i}

10

= 1−
(
N − 1

N

)m

,

so we find

E[Y] =

N∑
i=1

E[Xi] = N · E[X1] = N

(
1−

(
N − 1

N

)m)
.

Going back to the situation of addition chains, N = 2n−n− 1 is the number of
extended basis vectors (not counting the standard basis or zero vector) and m
is the number of times such a vector gets selected in Algorithm 2 (i.e. k times).
Then Y is the number such vectors that get added to E in the algorithm (so
not counting duplicates). We would rather say something about the size of C
instead of E, but this is beyond the scope.
For example if again n = 5, we get N = 26. If then the target t has k =
HammingWeight(tmax) equal to m, we would like to predict the size of E. The
expected value of Y = |E| is shown in Figure 1 and is obviously bounded above
by N . We see that E[Y] grows close to N , but never reaches it.

Figure 1: Expected value of the size of E, n = 5

11

5 De Rooij (1995)

The next useful algorithm for vector addition chains is due to De Rooij [de Rooij, 1995].
While the paper is about efficient exponentiation and the main algorithm is de-
scribed in terms of exponentiations, we slightly adapt this algorithm to make
addition chains instead. In this report we will refer to the adapted algorithm
for addition chains simply as “De Rooij’s algorithm”.
The algorithm looks at the two largest coordinates in t and reduces them simi-
larly to Euclid’s algorithm.
See the algorithm below. Here max and next are the indices corresponding to
the largest coordinates of t, i.e.

tmax ≥ tnext ≥ ti for all i 6= max, next.

Note that these indices are not necessarily unique, e.g. when t = (3, 5, 3) we
have a choice between next = 1 and next = 3, but this does not matter for the
performance of the algorithm. These indices get updated after every step. Also,
DA refers to the double-and-added method discussed in Section 2.

Algorithm 5: De Rooij’s algorithm

Input: Target t ∈ Nn

Output: Addition chain v for t
v ← {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)};
u← ((1, 0, . . . , 0), . . . , (0, 0, . . . , 1));
while tnext > 0 do

q ← tmax div tnext;
tmax ← tmax mod tnext;
for i in DA(q) do

append i · umax to v;
end
unext ← q · umax + unext;
append unext to v;
update indices max and next;

end
for i in DA(tnext) do

append i · umax to v;
end
return v

Note that at every point the equality

t1u1 + t2u2 + · · ·+ tnun = t

holds, where t is the initial target vector but the ti denote the coefficients that
get changed throughout the algorithm. We can see this is true as follows.
In the initial state we have

t1 · (1, 0, . . . , 0) + t2 · (0, 1, . . . , 0) + · · ·+ tn · (0, 0, . . . , 1) = t,

12

which is trivially true. Then in every step there are some 1 ≤ i, j ≤ n such that

ti ← ti − q · tj and uj ← uj + q · ui,

so the new value of tiui + tjuj is

(ti − q · tj)ui + tj(uj + q · ui)

= tiui − q · tjui + tjuj + q · tjui
= tiui + tjuj .

We see that this value does not change, and since the values of tk and uk
(k 6∈ {i, j}) do not change either, the equality

t1u1 + t2u2 + · · ·+ tnun = t

still holds true after every step. So eventually we reach the situation where
tmax = 1 and every other ti is zero, so

0 · u1 + 0 · u2 + · · ·+ 1 · umax + · · ·+ 0 · un = t

and umax must be equal to t. This is where the algorithm terminates.

Let us look at an example. If t = (22, 18, 3) we get the following results.

Step u1 u2 u3 t1 t2 t3 q

1 (1, 0, 0) (0, 1, 0) (0, 0, 1) 22 18 3 1

2 (1, 0, 0) (1, 1, 0) (0, 0, 1) 4 18 3 4

3 (5, 4, 0) (1, 1, 0) (0, 0, 1) 4 2 3 1

4 (5, 4, 0) (1, 1, 0) (5, 4, 1) 1 2 3 1

5 (5, 4, 0) (6, 5, 1) (5, 4, 1) 1 2 1 2

6 (5, 4, 0) (6, 5, 1) (17, 14, 3) 1 0 1 1

7 (5, 4, 0) (6, 5, 1) (22, 18, 3) 0 0 1

In every step tmax is underlined twice and tnext is underlined once. We see that
the indices max and next get updated after every step. In every step we check
how often tnext goes into tmax, which we call q, and then subtract tnext q times
from tmax and add umax q times to unext.
To make it into a proper addition chain, we need to create an integer addition
chain for q and multiply it with the correct vector. For example in step 2 we
need to add 4 ·u2 to u1. We have the simple addition chain {1, 2, 4} for q, so we
add {(1, 1, 0), (2, 2, 0), (4, 4, 0)} to our chain before we can add (5, 4, 0) as well.
We find this chain of length 9:

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (2, 2, 0), (4, 4, 0),

(5, 4, 0), (5, 4, 1), (6, 5, 1), (12, 10, 2), (17, 14, 3), (22, 18, 3)}.

13

Now that we know how the algorithm works, we will discuss its performance
in terms of t. This will depend on n, the dimension of t, and tmax, the largest
coordinate of t (not to be confused with the variable in the algorithm).
If we fix the dimension to an arbitrary integer, say n = 5, we can graph the
chain length against tmax for a large number of random targets, see Figure 2.
For this 1000 random vectors have been generated, for which an addition chain
and its length have been calculated.

Figure 2: De Rooij, n = 5

Note that the x-axis has a logarithmic scale and the values of tmax range from 0
to 264. Also plotted is the best fit line, and we see that this relation is strongly
linear. The slope of the line in this case is 2.18.
Graphs for other values of n give a very similar picture, so we have that

L = αn log2(tmax),

where L is the length of the addition chain. We have that α5 = 2.18, but
we might be interested to see more of these values. In Figure 3 we plot the
experimental values for αn for n up to 250.

14

Figure 3: Values for αn, n ≤ 250

While the graph may look slightly linear again, this is definitely not the case:
it significantly bends. It is an interesting problem to find a formula for αn and
therefore a function for L in terms of t, and to this end we will now consider a
specific target t ∈ Nn in order to find a theoretical approximation.

Let 1 < τ < 2 such that τn − τn−1 − 1 = 0. It is clear that such a τ ex-
ists and is unique for any n ≥ 2, because

1n − 1n−1 − 1 = −1 and 2n − 2n−1 = 2n−1 − 1 > 1

and fn(x) = xn−xn−1−1 is continuous and f ′n(x) = nxn−1−(n−1)xn−2 > 0 for
x ≥ 1, so the existence follows from the Mean Value Theorem and the unique-
ness from the fact that fn is increasing on (1, 2).

Now let t = (τp, τp−1, . . . , τp−n+1) for some p > n, which has a special property.
The algorithm will go as follows:

q = τp div τp−1 = bτc = 1

and τp − τp−1 = τp−n by the definition of τ,

so t becomes (τp−1, τp−2, . . . , τp−n), which is the same as it was but with a
decremented exponent. This process continues for p steps until the algorithm
terminates. We see that q = 1 in every step of the algorithm, which is unique
for this choice of t and causes the addition chain to be relatively long.
One thing to note is that powers of τ are not integers, so they will have to be

15

rounded, but the effect is still the same.

We have fn(x) = xn − xn−1 − 1 = (x− 1)xn−1 − 1 and fn(τn) = 0.

We claim that τn ≈ 1 + log(n)
n with the following argument:

Let τn = 1 + cn ·
log(n)

n

log

(
1 + cn ·

log(n)

n

)n

= n log

(
1 + cn ·

log(n)

n

)
≈ n · cn ·

log(n)

n
= cn log(n) = log (ncn)

Now

0 = fn(τn) = (τn − 1)τn · 1

τ
− 1

≈ cn ·
log(n)

n
· ncn · 1

1 + cn · log(n)n

− 1 =
cn · log(n) · ncn−1

1 + cn · log(n)n

− 1

Now, if cn < 1 this expression becomes negative and if cn > 1 it becomes posi-
tive. Since the expression is zero, we conclude that cn ≈ 1.

The addition chain for (τp, τp−1, . . . , τp−n+1) has length p, so

p ≈ αn log2((τn)p)

=⇒ αn ≈
1

log2(τn)
≈ 1

log2(1 + log2(n)
n)

≈ 1(
log2(n)

n

) =
n

log2(n)
.

In Figure 4, we see a comparison between the theoretical values described above
and some randomly generated values for n = 5. In this case τ ≈ 1.325, and
the length of the addition chains of (τp, τp−1, . . . , τp−n+1) is shown for 2 ≤
p ≤ 160, as well as addition chains some randomly generated targets. These
theoretical values are on the high side, but do not form an upper bound for this
algorithm. Furthermore, we see that these values curve down at the end of the
graph, however this is most likely due to an implementation issue than actual
performance of the algorithm.

16

Figure 4: Theoretical values compared to experimental values, n = 5

A further interesting question is the following. The algorithm always subtracts
the second largest coordinate from the largest, but we could instead subtract a
smaller coordinate from the largest one, which would give smaller remainders
and therefore presumably finish quicker. However, in practice this does not seem
to be the case. It is beyond the scope of this report to find out and properly
explain why this is true.

17

6 A new algorithm

6.1 LLL lattice basis reduction

In 1982 Lenstra, Lenstra and Lovász created an algorithm to quickly reduce a
lattice basis [Lenstra et al., 1982]. A lattice that has a basis b = {b1, . . . , bn}
(where bi ∈ Rn for 1 ≤ i ≤ n) can be written as the set

L =

{
n∑

i=0

λibi : λi ∈ Z

}
.

If for the basis b the Gram-Schmidt basis is b∗ = {b∗1, . . . , b∗n} and its Gram-
Schmidt coefficients are

µi,j =
〈bi, b∗j 〉
〈b∗j , b∗j 〉

for all 1 ≤ j < i ≤ n,

then b is called LLL-reduced if it satisfies

1. |µi,j | ≤
1

2
for all 1 ≤ j < i ≤ n,

2.
3

4
||b∗k−1||2 ≤ ||b∗k||2 + µ2

k,k−1||b∗k−1||2 for all 2 ≤ k ≤ n.

The second condition is called the Lovász condition. In words, these conditions
demand that the vectors are relatively short and nearly orthogonal.
Below is a formulation the algorithm, based on [Hoffstein, 2008].

18

Algorithm 6: LLL algorithm

Input: Basis b of a lattice
Output: Reduced basis b of the same lattice
b∗ ← GramSchmidt(b) = {b∗1, . . . , b∗n} (without normalization);
k ← 2;

µi,j ←
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

for all 1 ≤ j < i ≤ n;

while k ≤ n do
for j from k to 1 do

if |µk,j | > 1
2 then

bk ← bk − round(µk,j) · bj ;
b∗ ← GramSchmidt(b) = {b∗1, . . . , b∗n};

end

end

if 3
4 ||b
∗
k−1||2 ≤ ||b∗k||2 + µ2

k,k−1||b∗k−1||2 then

k ← k + 1;
else

bk−1, bk ← bk, bk−1;
b∗k−1, b

∗
k ← b∗k, b

∗
k−1;

k ← max{k − 1, 2};
end

end
return b

As an example, consider the basis b = {(9, 5, 1), (3, 5, 2), (7, 7, 8)}. To reduce b,
we go through the algorithm.
First, µ2,1 = 0.505 which gets rounded to 1, so we get b2 = (3, 5, 2)− (9, 5, 1) =
(−6, 0, 1). The Lovász condition is not satisfied, so we swap b1 and b2.
Now µ2,1 = −1.43, so b2 = (9, 5, 1) + (−6, 0, 1) = (3, 5, 2) and the Lovász
condition is satisfied, so we move on to µ3,2 = 1.84 and b3 = (7, 7, 8) − 2 ·
(3, 5, 2) = (1,−3, 4). We have ended up with b = {(−6, 0, 1), (3, 5, 2), (1,−3, 4)},
which is an LLL-reduced basis.

19

6.2 LLL-based vector addition chains

Now that we have seen an addition chain algorithm and the lattice reduction
algorithm, we propose a new approach which uses the LLL algorithm to find
vector addition chains in reasonable time. By choosing a basis that has a specific
vector as one of the shortest vectors in the lattice, we are almost guaranteed to
find an addition chain for t by reducing the basis. Concretely, if t = (t1, . . . , tn)
is our target, let the basis be given by

Bt =



1 Kt2 0 0 . . . 0 0
0 −Kt1 Kt3 0 . . . 0 0
0 0 −Kt2 Kt4 . . . 0 0
...
0 0 0 0 . . . −Ktn−2 Ktn
0 0 0 0 . . . 0 −Ktn−1



where K > 0 is a constant to be determined and bi denotes the ith row of B
and these rows form a basis of Rn. Now

s := tB =

n∑
i=1

tibi = (t1, 0, 0, . . . , 0)

is a short vector. Denote the operations on B in the LLL algorithm by the
matrix U so that UB = B∗ is the reduced basis. If s is indeed the first reduced
basis vector (the first row of B∗), we have that t is the first row of U and we
can find an addition chain for t.

Next we come to the choice of K. We have

det(Bt) = (−1)n−1Kn−1
n−1∏
i=1

ti ≈ (Ktmax)n−1.

Since the length of the reduced basis vectors is approximately

(det(Bt))
1
n ≈ (Ktmax)

n−1
n ,

we expect that (t1, 0, . . . , 0) is in the reduced basis if

tmax � (Ktmax)
n−1
n

(tmax)n � (Ktmax)n−1

tmax � Kn−1

K � (tmax)
1

n−1 .

20

See below the algorithm. Here Bt denotes the basis described above.

Algorithm 7: LLL-based addition chain

Input: Target t ∈ Nn

Output: Addition chain v for t
v ← {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)};
u← ((1, 0, . . . , 0), . . . , (0, 0, . . . , 1));
b← Bt;
b∗ ← GramSchmidt(b) = {b∗1, . . . , b∗n} (without normalization);
k ← 2;

µi,j ←
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

for all 1 ≤ j < i ≤ n;

while k ≤ n do
for j from k to 1 do

if |µk,j | > 1
2 then

for i in DA(−round(µk,j)) do
append i · uj to v;

end
bk ← bk − round(µk,j) · bj ;
append uk − round(µk,j) · uj to v;
b∗ ← GramSchmidt(b) = {b∗1, . . . , b∗n};

end

end

if 3
4 ||b
∗
k−1||2 ≤ ||b∗k||2 + µ2

k,k−1||b∗k−1||2 then

k ← k + 1;
else

bk−1, bk ← bk, bk−1;
b∗k−1, b

∗
k ← b∗k, b

∗
k−1;

uk−1, uk ← uk, uk−1;
k ← max{k − 1, 2};

end

end
return v

Let us now consider the same example as we did for De Rooij’s algorithm,
t = (22, 18, 3).
The basis we use is b = {(1, 792, 0), (0,−968, 132), (0, 0,−792)} where we choose
K = 44. By reducing this basis and saving the adding and swapping steps we
get the addition chain

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (2, 2, 0), (3, 3, 0),

(4, 3, 0), (4, 3, 1), (6, 5, 1), (12, 10, 2), (18, 15, 3), (22, 18, 3)}.

21

A problem of the algorithm is that it does not always work. The LLL algorithm
stops when the Lovász condition is satisfied, which is always the case when we
reach the vector s, but sometimes it is satisfied earlier. This means that the
algorithm stops before the addition chain has reached its target t. This is the
case even when we take K high enough.
Furthermore, the LLL algorithm allows negative numbers, which addition chains
do not. This means we end up with an addition-subtraction chain, which can
be useful in some situations but are also impractical in others. One solution
is to always round down coefficients instead of rounding to the nearest integer,
which results in only positive numbers. However, this causes the algorithm to
stop too early even more often. Therefore we try to balance these two options
with a custom rounding method: Choose a constant α ∈ [0.5, 1) (we will use
α = 0.9) and only round up if the decimal part of a number is larger than α.

To illustrate this, we generate 1000 random targets up to ten million and calcu-
late the addition chain for each of them. When simply rounding to the closest
integer, in 3% of cases the target was not reached and in 12% there were neg-
ative numbers included. On the other hand, if we use custom rounding, 13%
does not reach the target and 11% uses negative numbers. We conclude that
the custom method performs slightly better in terms of negative number, but
is much worse in reaching the target. Hence it is not an improvement on the
previous method, which we will keep using in the following.

22

7 Comparisons

7.1 Shamir and De Rooij

First we come to the comparison of the two existing algorithms. We compare
them twice: once with precomputations and once without.
If we allow extended basis vectors to be precomputed as in Algorithm 2, Shamir’s
algorithm as an advantage. In Figure 5 we see that both algorithms have a strong
logarithmic relation to the size of the target, but they differ in performance.
While De Rooij does slightly better for n = 2 and n = 3, Shamir is better for
every dimension n ≥ 5, with the gap between the two growing bigger for larger
n.

Figure 5: Comparison between De Rooij and Shamir (with precomputations)

In Figure 6 we see a somewhat similar picture. The only difference is that the
extended basis vectors have not been precomputed, so they have to be added
to the addition chain as well, which worsens the performance of Shamir’s algo-
rithm. The values for De Rooij do not change.

23

Where the plots followed a straight line above, there is a distinguishable down-
wards curve now. This can be explained by the probability theory described in
Section 4. Initially the algorithm takes an additional step each time to add an
extended basis vector, but as the chain grows longer the probability of having
had the particular extended basis vector grows, so it does not take an extra
step.
This means that while the algorithms are now closer together for small targets,
the results for longer targets is almost the same as before, so that Shamir still
outperforms De Rooij.

Figure 6: Comparison between De Rooij and Shamir (without precomputations)

7.2 De Rooij and LLL

Now we move on to comparing our own LLL algorithm against that of De Rooij.
In Figure 7, we see a comparison between the two algorithms. The results for
De Rooij are the same as in Figure 2, with the LLL results added as well.

24

Figure 7: Comparison between De Rooij and LLL, n = 5

It is clear that De Rooij performs much better and on top of that has less
variance in its length. We saw that the slope for De Rooij was 2.18, while for
LLL it is 3.34. This is about half more, which is quite a lot. From this we can
conclude that the LLL algorithm is not a useful way to find addition chains.
We might also ask what the relation is between the dimension and the slope of
the graph (5 and 3.34 respectively in this case), similarly to the considerations
we had for De Rooij’s algorithm. However, this algorithm is more complex to
predict and so we will not treat this here.

25

8 Various problems

8.1 Addition chain with given basis

Let the basis {b1, ..., bn} and the target t ∈ Nn be given. The goal is to construct
an addition chain for t starting from the given basis instead of the standard ba-
sis {(1, 0, . . . , 0), . . . , (0, 0, . . . , 1)}.

To achieve this, solve the system

a1 · b1 + ...+ an · bn = t

for ai > 0. The solution set of this equation forms a cone in Rn, so there might
or might not be a solution. If there is a solution t (or equivalently if t is in the
cone) an addition chain is possible; otherwise it is not.
If it is, we make an addition chain with the bi, this is the same as an addition
chain for (a1, ..., an) with the standard base.

For example, let t = (7, 1, 10), b = {(1, 1, 1), (2, 0, 3), (0, 1, 0)}.
Then we find

t = (7, 1, 10) = 1 · (1, 1, 1) + 3 · (2, 0, 3) + 2 · (0, 1, 0).

With this, we can use De Rooij’s algorithm to make an addition chain:
{(1, 1, 1), (2, 0, 3), (0, 1, 0), (2, 1, 3), (4, 2, 6), (6, 2, 9), (7, 3, 10)}.
Note that this follows the same steps as a “normal” addition chain for (1, 3, 2):
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (0, 2, 2), (0, 3, 2), (1, 3, 2)}.

8.2 Addition chain with intermediate stop

Given targets s and t, find an addition chain through s to t.

For this, first make a “normal” addition chain for s.
Try using the last n vectors of this chain as a basis and try to make a chain for
t as before.
If this is not possible, replace one of the vectors by an earlier vector from the
chain and try again. By doing this we enumerate over all n-tuples in the chain.
In this way we find the largest n independent vectors in the chain.
An important fact to note here is that we do not have to use multiples for this.
That is, the addition chain for s will have different multiples of the same vector,
like (4, 1, 2), (8, 2, 4), (12, 3, 6). These cannot be used in the same basis, since
they are not linearly independent. This means we can skip these multiples to
greatly speed up the process.
Repeat this step until a valid basis is found. This always succeeds, because
eventually one arrives at the standard basis again, as the chain for s starts here.

26

For example, let s = (4, 3, 1), t = (7, 6, 4).
An addition chain for s is

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (2, 2, 0), (3, 3, 0), (4, 3, 0), (4, 3, 1)}.

Then we try to find a valid basis that can form an addition chain for t, and we
find {(4, 3, 1), (3, 3, 0), (0, 0, 1)}. This addition chain becomes

{(4, 3, 1), (3, 3, 0), (0, 0, 1), (0, 0, 2), (0, 0, 3), (4, 3, 4), (7, 6, 4)}.

8.3 Addition chains and graphs

In his 2011 paper Calculating optimal addition chains, Clift describes how inte-
ger addition chains can be expressed in terms of graphs and shows some useful
properties [Clift, 2011]. We will now look at a similar approach for vector ad-
dition chains.

The graphs are created by making a node for every element of the addition chain
and indicating with two directed edges which elements were added together to
create this element.

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(2, 0, 0) (2, 1, 0) (4, 2, 0) (4, 2, 1) (6, 3, 1)

Above is an example of a chain for t = (6, 3, 1):

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (2, 1, 0), (4, 2, 0), (4, 2, 1), (6, 3, 1)},

where we can clearly see how the chain was created.

It is clear that every node (except the starting nodes) has indegree 2, since every
element is created by adding exactly two other elements together. Also, every
node except the ending node has an outdegree of at least one, since otherwise
it would not be used in the addition chain and should be removed. The origi-
nal paper goes into more depth on properties of these graphs, but we will not
consider this further.

27

8.4 Link between integer and vector addition chains

In the 2021 paper Addition chains, vector chains, and efficient computation,
Thurber and Clift describe an interesting link between integer addition chains
and their vector counterparts [Thurber and Clift, 2021].
This is perhaps best illustrated by an example. Consider the following addition
chain for t = 177:

{1, 2, 3, 5, 10, 20, 40, 43, 86, 172, 177}.

We can “unwind” the chain as follows, where the vector denotes the current
coefficients:

177 = 177, [1]

= 5 + 172, [1, 1]

= 5 + 2 · 86, [1, 2]

= 5 + 4 · 43, [1, 4]

= 5 + 4 · (3 + 40) = 5 + 4 · 3 + 4 · 40, [1, 4, 4]

= 5 + 4 · 3 + 4 · (2 · 20) = 5 + 4 · 3 + 8 · 20, [1, 4, 8]

= 5 + 4 · 3 + 8 · (2 · 10) = 5 + 4 · 3 + 16 · 10, [1, 4, 16]

= 5 + 4 · 3 + 16 · (2 · 5) = 4 · 3 + 33 · 5, [4, 33]

= 4 · 3 + 33 · (3 + 2) = 33 · 2 + 37 · 3, [33, 37]

= 33 · 2 + 37 · (2 + 1) = 70 · 2 + 37, [70, 37]

= 70 · (2 · 1) + 37 = 177, [177]

We see for example that 177 = 5 + 4 · 3 + 4 · 40 corresponds to the vector
[1, 4, 4], so computing 177 from this point is equivalent (follows the same steps)
as computing [1, 4, 4]. [1, 0, 0] = 5, [0, 1, 0] = 3, [0, 0, 1] = 40, [0, 1, 1] = 43,
[0, 2, 2] = 86, [0, 4, 4] = 172 and [1, 4, 4] = 177.

28

References

[Clift, 2011] Clift, N. M. (2011). Calculating optimal addition chains. Comput-
ing (Vienna/New York), 91:265–284.

[de Rooij, 1995] de Rooij, P. (1995). Efficient exponentiation using precompu-
tation and vector addition chains. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 950:389–399.

[Elgamal, 1985] Elgamal, T. (1985). A Public Key Cryptosystem and a Signa-
ture Scheme Based on Discrete Logarithms. IEEE Transactions on Informa-
tion Theory, 31(4):469–472.

[Hoffstein, 2008] Hoffstein, J. (2008). An Introduction to Mathematical Cryp-
tography, chapter Lattices and Cryptography. Springer, New York, NY.

[Lenstra et al., 1982] Lenstra, A. K., Lenstra, H. W., and Lovász, L. (1982).
Factoring polynomials with rational coefficients. Mathematische Annalen,
261(4):515–534.

[Thurber and Clift, 2021] Thurber, E. G. and Clift, N. M. (2021). Addition
chains, vector chains, and efficient computation. Discrete Mathematics,
344(2):1–15.

29

	Introduction
	Integer addition chains
	Link with exponentiation
	Double-and-add

	Vector addition chains
	Link with multi-exponentiation

	Shamir's algorithm
	Extended basis vectors

	De Rooij (1995)
	A new algorithm
	LLL lattice basis reduction
	LLL-based vector addition chains

	Comparisons
	Shamir and De Rooij
	De Rooij and LLL

	Various problems
	Addition chain with given basis
	Addition chain with intermediate stop
	Addition chains and graphs
	Link between integer and vector addition chains

