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1 Abstract

A standard problem in insurance is the management of the amount of capital to prevent
bankruptcy. In ruin theory, the Cramer-Lundberg model is used to describe a claim process at an
insurance company. In the Cramer-Lundberg model the inter-arrival time and claim size are
independent of each other but this is not realistic. In this thesis we analyze the Cramer-Lundberg
model, in the case when there is dependence between inter-arrival time and the claim size. To do
so, we use the theory of copulas to introduce and analyze various types of dependence. We derive
expressions for the cumulative distribution function and the moment generating function of the
bivariate distributions with exponential marginals. The distributions that we will consider are the
convex combinations of countermonotonic, independent and comonotonic copula, the
Farlie-Gumbel-Morgenstern copula, the Ali-Mikhail-Haq copula, the Moran-Downton
distribution, and the Bladt-Nielsen distribution. After these derivations, we analyze the ruin
probability via numerical approximations and simulations. We use two numerical approximation
methods to find an approximation for the adjustment coefficient: Lagrange-Bürmann inversion
and Findroot built-in function of Mathematica (Newton’s method). Next to finding the adjustment
coefficient we present a simulation study to analyze the ruin probability and average deficit at
ruin.

The results for the methods consist of an analysis of the adjustment coefficient, ruin probability,
and average deficit at ruin. We vary the dependence for each distribution such that the exponential
marginals and all other parameters are fixed. We will compare the result of each distribution by
using the Pearson correlation coefficient. We find that Lagrange-Bürmann inversion does not give
a satisfactory result, due to numerical issues that need further research. The Findroot method and
simulation give satisfactory results. The main finding for our distributions is that a more negative
Pearson correlation coefficient increases the ruin probability and the average deficit at the ruin,
however, it decreases the adjustment coefficient.
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2 Introduction

An insurance company takes over the risk of its clients in exchange for a premium. Just like its
clients the insurance company does not want to go bankrupt. Naturally, an insurance company
wants to know how much risk it is exposed to and if the amount of capital it possesses is enough to
pay for future claims. An approach for getting insight into this is modeling the amount of capital
that the insurance company has.

A model that can be used for this is the Cramer-Lundberg model as described in the book of Kaas
et al. [1]. In the Cramer-Lundberg model, an insurance company starts with an initial capital and
receives a premium per time unit. Also, the insurance company needs to pay all the claims that
arrive. The claim amount is the amount of money the insurer needs to pay when a claim comes
in, and the inter-arrival time is the time between the arrival of the previous claim and the current
claim. An important risk measure for the Cramer-Lundberg model is the ruin probability, which is
the probability that the amount of capital or money the insurance company has, becomes less than
zero.

In the Cramer-Lundberg model, the random variables of the claim and the corresponding inter-
arrival time are independent, in other words, they do not influence each other. But in reality, there
can be dependence between the two. For example, consider an insurance company which has an
infinite pile of claims, all those claims need to be checked by an investigator. The investigator
checks the claims one at the time. We assume that a longer investigation gives rise to a lower pay
out. In other words a longer inter-arrival time corresponds to a smaller claim size. The Bladt-
Nielsen distribution is a way to model this process. Another argument for dependence is that
claims arrive in groups. In the time between the previous group and the next group, claims are
added to the group. Then a larger inter-arrival time means that more claims can arrive during
that time, which makes the change of a larger total claim of the group higher. So in this case there
would be positive dependence. The Moran-Downton bivariate distribution is a way to model this
process.

In this thesis, we investigate what happens when the claim size and inter-arrival time are
dependent on each other and how this influences the ruin probability. The main tool that is used
to create dependence is the so-called ”copula” which means ”link” in Latin. A copula links two or
more marginal distributions together to create a joint probability distribution. Thus the copula
fully describes the dependence between two or more random variables. In our case the copulas
link the claim size and inter-arrival distribution together, this results in a bivariate distribution.
The book ”An Introduction to Copulas” by Nelsen is a great start to the subject [2]. There are two
reasons why we choose our distributions: they can be easily modeled and/or they have a real-life
meaning. Therefore, we also investigate two bivariate distributions which have a real-life
interpretation for which we do not know the copula.

The goal of the thesis is to give an overview of possible bivariate distributions that can be used
to introduce dependence and investigate how a certain distribution influences the ruin probability.
These influences are analyzed with a nummerical approximation and a simulation study.

The thesis will be structured in the following way: In Chapter 3 we describe the Cramer-Lundberg
model and copulas and give useful properties that will be used in the thesis. In Chapter 4
bivariate distributions with exponential marginals are introduced and analyzed, this concludes
the theoretical part of the thesis. In the simulation part of the thesis, and Chapters 5 and 6, the ruin
probability, adjustment coefficient and average deficit at ruin are investigated. We end with a
discussion and conclusion in Chapters 7 and 8.
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Figure 1: Illustration of the Cramer-Lundberg model from Kaas et al. [1]

3 Prerequisites

In this chapter, we introduce definitions of concepts and results that we use in this thesis. This
chapter is divided into three subsections, namely insurance, copulas and, dependence and
correlation. For the insurance part, most results rely on the book of Kaas et al. [1] and for the
copula part, most results rely on the book of Nelsen [2].

3.1 Insurance

In actuarial science, the Cramer-Lundberg model is used to describe the amount of capital an
insurance company has at a certain moment in time. We assume that the insurance company starts
with an initial capital and gets a premium income per unit of time. The inter-arrival times and the
claim sizes follow a certain distribution and are both independent identically distributed or short
i.i.d. distributed. The definition of the Cramer-Lundberg is as follows.

Definition 3.1 (Cramer-Lundberg Model)

U(t) = u + ct− S(t) , t ≥ 0, (1)

where
U(t) = the insurer’s capital at time t;
u = U(0) = the initial capital;
c = the (constant) premium income per unit of time;
S(t) = X1 + X2 + ... + XN(t),
N(t) ∼ Poi(λt) with
N(t) = the number of claims up to time t, and
Xi = the size of the i-th claim, assumed non-negative.

We refer to the book of Kaas for more details [1]. In (1) we can verify by setting t = 0 that the
initial capital is indeed u. Also in (1) we can see the units of money earned at time t is ct. A
realization of the Cramer-Lundberg model is given in Figure 1, where Ti are the random variables
for the inter-arrival and the jumps downward are caused by the claims Xi. Since the assumptions
of independence between the claim size and the inter-arrival times (Ti − Ti−1) is unrealistic, in this
thesis we investigate the impact of dependence in this model. To this aim, we introduce another
form of the model. In the book of Kaas, there is a second equation that describes the Cramer-
Lundberg, which is more convenient for introducing the dependence between the inter-arrival time
and the claim size. Therefore, the following form of the model is introduced.

Definition 3.2 We define the surplus process as follows:

U(n) = u + G1 + G2 + ... + Gn , n = 0, 1..., (2)

Department of Applied Mathematics | Eindhoven University of Technology 4
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where Gi can be seen as the net-profit between the (i − 1)-th and the i-th claim instant. An additional
assumption is that the Gi’s are i.i.d..

Now we can use the formulation of the dependence between Ti and Xi for each i = 1, 2, ..., by
setting Gi = cTi − Xi such that Ti corresponds to the inter-arrival time between two successive
claims, Xi corresponds to the claim size and c > 0 is the constant premium income per unit of
time. Because of the i.i.d. assumption we can narrow down our investigation to the random vector
(T, X) to find the distribution of G. We can use the following result to determine the distribution
of G:

Theorem 3.1 Let (T, X) be a random vector with a known joint probability density function fT,X(t, x) then
cT − X has the following probability density function:

fcT−X(z) =

{
1
c
´ ∞
−z fT,X(

t+z
c , t)dt = 1

c
´ ∞

0 fT,X(
t
c , t− z)dt if, z ≤ 0,

1
c
´ ∞

0 fT,X(
t+z

c , t)dt = 1
c
´ ∞

z fT,X(
t
c , t− z)dt if, z ≥ 0.

(3)

Theorem 3.1 is helpful if the density of the random vector (T, X) exists. In other words, when the
distribution is absolutely continuous.

A core part of the analysis of the Cramer-Lundberg model is to find the ruin probability which is
the probability that the insurance company at some point in time has a negative amount of money.
For the model described in Definition 3.2 we want to get a closed-form expression for the ruin
probability, which is formally defined as follows.

Definition 3.3 (Ruin probability) Let U(n) be the process described in Definition 3.2. Then the event of
ruin can be described as the following random variable:

T̃ = Min{n : U(n) < 0}. (4)

Now T̃ corresponds to the first instant when the capital of the insurance company goes below 0 (which means
the company is ruined). Therefore, the ruin probability can be expressed as:

Ψ(u) = P(T̃ < ∞). (5)

To say something about the ruin probability we need to introduce the definition of the adjustment
coefficient.

Definition 3.4 (Adjustment coefficient) The adjustment coefficient R > 0 satisfies the following
equality:

KG(−R) = E[e−RG] = 1. (6)

For finding a closed form expression of the ruin probability we need to introduce the deficit at ruin,
which is the amount of money the insurance company loses when it gets ruined.

Definition 3.5 (Deficit at ruin) The deficit at ruin is a random variable with the following distribution:

P(−U(T̃) ≤ x|T̃ < ∞), (7)

where x ≥ 0.

Finding an explicit expression for the distribution of the deficit at ruin (7) can be hard since the
deficit at ruin depends on many factors. Nevertheless, we observe that it is easy to find the
distribution if the negative part of a distribution of the random variable cT − X satisfies the
memoryless property which we recall below.
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Definition 3.6 A random variable X is said to be memoryless if and only if:

P(X > x + t|X > x) = P(X > t) for all x, t ≥ 0. (8)

If the negative part of the distribution of the random variable cT− X has the memoryless property
then the deficit at ruin is equal to the distribution of the negative part. More concretely if:

P(cT − X ≤ z|cT − X < 0) (9)

has the memoryless property, then:

P(−U(T̃) ≤ z|T̃ < ∞) = P(X− cT ≤ z|cT − X < 0) for z ≥ 0. (10)

To get a better intuition for the deficit at ruin we use Figure 2.

Figure 2: Deficit at ruin, where the green line indicates that we are in the negative part of the distribution
and the red line the deficit at ruin.

Now we have all the ingredients to determine a closed form expression for the ruin probability, we
can give the following theorem.

Theorem 3.2 Let R be the adjustment coefficient of G as in Definition 3.4 and let −U(T̃) be defined as in
Definition 3.5, then the closed expression for the ruin probability is:

Ψ(u) =
e−Ru

E[e−RU(T̃)|T̃ < ∞]
. (11)

A proof of Theorem 3.2 can be found in Chapter 4.4 in the book of Kaas [1]. Note that the
denominator in (11) is always greater than 1, since −RU(T̃) > 0 for all R > 0 and by definition of
T̃. This means that we can determine an upper bound for the ruin probability as follows:

Ψ(u) ≤ e−Ru. (12)

The upper bound (12) holds for the alternative formulation (2).

We have established that we want to introduce dependence between the inter-arrival time and
claim size. In the next section, we will present the tool that will be used for this: copulas.

Department of Applied Mathematics | Eindhoven University of Technology 6
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3.2 Copulas

In this section, we introduce the definition of bivariate copulas and some of the properties that
the bivariate copulas possess, by following the book of Nelsen [2]. We also introduce the copula
functions that are used in the thesis. The definition of a bivariate copula is as follows.

Definition 3.7 A two-dimensional copula is a function C : [0, 1]2 → [0, 1], satisfying the following
properties:

1. For every u, v in [0, 1],
C(u, 0) = C(0, v) = 0, (13)

and
C(u, 1) = u and C(1, v) = v; (14)

2. For every u1, u2, v1, v2 in [0,1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (15)

A fundamental theorem that makes copulas useful tools is Sklar’s theorem, which links copulas
and joint probability distributions. For our purpose we only need the theorem in the case of a
bivariate distribution:

Theorem 3.3 (Sklar’s theorem for bivariate distributions) Let H be a joint distribution function with
margins F and G. Then there exists a copula C such that for all t, x in R,

H(t, x) = C(F(t), G(x)). (16)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on Range(F)× Range(G).
Conversely, if C is a copula and F and G are distribution functions, then the function H defined by (16) is a
joint distribution function with margins F and G.

We only consider exponential marginals, so any copula uniquely defines a joint distribution. Also,
from Theorem 3.3 we get the probabilistic interpretation of a copula as a corollary.

Corollary 3.1 The bivariate copula is a bivariate distribution with uniform marginals on the interval [0, 1].
So the probabilistic definition of a copula C is:

C(u, v) = P(U < u, V < v), (17)

where U and V are random variables with uniform distributions on the interval [0, 1].

In addition to the probabilistic interpretation of a copula we also need tools to derive the
distributions imposed by a copula, this follows as another corollary of Theorem 3.3:

Corollary 3.2 The density h(t, x) of an absolutely continuous bivariate distribution H(t, x) with marginal
distributions FT(t) and FX(x) can be expressed, by applying the chain rule:

h(t, x) =
d2H(t, x)

dtdx
=

d2C(FT(t), FX(x))
dtdx

= c(FT(t), FX(x)) fT(t) fX(x), (18)

where c(u, v) = d2C(u,v)
dudv .

The reason that F(t, x) in Corollary 3.2 needs to be an absolute continuous function is that
otherwise, the function is not differentiable everywhere. Corollary 3.2 is useful to get expressions
for the probability density functions of absolutely continuous bivariate distributions. We are also
interested in linear combinations of copulas. To find the distribution we can use the following
theorem:

Department of Applied Mathematics | Eindhoven University of Technology 7
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Theorem 3.4 Let a copula C(u, v) be a linear combination of two copulas, C(u, v) = aC1(u, v) + (1−
a)C2(u, v) where a ∈ [0, 1] and C1(u, v) , C2(u, v) are copulas with the property that the partial derivatives
∂C1
∂v and ∂C2

∂v or/and ∂C1
∂u and ∂C2

∂u exist. Then let F(cT−X)1
and F(cT−X)2

be the corresponding distributions
for C1 and C2 with T and X having continuous marginals F and G. The distribution of cT − X associated
with C is equal to:

FcT−X =

{
F(cT−X)1

with probability a,
F(cT−X)2

with probability 1− a.
(19)

Now that we have established what a copula is, we introduce special copulas that will be used in
the thesis.

3.2.1 The Frechet-Hoeffding copulas and independent copula

Simple examples of copulas are the independent copula Π, the Frechet-Hoeffding lower bound W,
and Frechet-Hoeffding upper bound M. The three copulas reflect strong functional relationships
and the level of dependence between the two random variables U and V. The independent case
corresponds to zero dependence (i.e. independent), the lower bound W corresponds to perfect
negative dependence (countermonotonic) and the upper bound M corresponds to perfect positive
dependence (comonotonic)[2]. They have the following expressions:

W(u, v) = Max{u + v− 1, 0} , Π(u, v) = uv , M(u, v) = Min{u, v}. (20)

The copulas W and M in (20) are the copula lower bound and upper bound. Also, we can plot (20)
to get a better understanding of the three copulas.

Figure 3: The copulas W, Π and M.

We can use Corollary 3.1 to interpret Figure 3.

Farlie-Gumbel-Morgenstern and Ali-Mikhail-Haq copula

Besides the lower bound, independent and upper bound copula (20), we will use two other
copulas namely the Farlie-Gumbel-Morgenstern (FGM) copula and Ali-Mikhail-Haq (AMH)
copula as described in Nelsen [2]. Both copulas can create moderately negative and positive
dependence. The FGM copula function has the following form:

CFGM(u, v) = uv(1 + θ(1− u)(1− v)), (21)

where θ ∈ [−1, 1]. To illustrate the copula we make a scatter plot of ten thousand simulations of
the FGM copula for some values of the parameter θ:

Department of Applied Mathematics | Eindhoven University of Technology 8
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Figure 4: The FGM copula evaluated at θ = −1, 0, 1.

The AMH copula function has the following form:

CAMH(u, v) =
uv

1− θ(1− u)(1− v)
= uv + uv

∞

∑
k=1

θk(1− u)k(1− v)k, (22)

where θ ∈ [−1, 1]. The AMH copula is very similar to the FGM copula:

CAMH(u, v) = CFGM(u, v) + uv
∞

∑
k=2

θk(1− u)k(1− v)k, (23)

this means that the only difference between the two copulas is the second term. Also they are part
of the same class of copulas, namely the polynomial copulas. Because they are so closely related,
we would expect that they will give similar results for the ruin probability.

3.3 Dependence and correlation

In this section, we will introduce the definition of positive quadrant dependence, negative
quadrant dependence, and Pearson’s correlation coefficient. The dependence that we want to
introduce between random variables can be characterized by certain properties the bivariate
distribution possesses. One such characterization is negative/positive quadrant dependence or
NQD/PQD as an abbreviation, which has direct implications on the adjustment coefficient from
Definition 3.4.

Definition 3.8 A random vector (T, X) is said to be Negative quadrant dependent if the following inequality
holds for all t, x ∈ R:

P(T ≤ t, X ≤ x) ≤ P(T ≤ t)P(X ≤ x), (24)

and Positive quadrant dependent if:

P(T ≤ t, X ≤ x) ≥ P(T ≤ t)P(X ≤ x). (25)

An alternative definition in terms of copulas functions is given in Definition 3.9 below.

Definition 3.9 A copula function C(u, v) is said to be Negative quadrant dependent if the following
inequality holds for all u, v ∈ [0, 1]:

C(u, v) ≤ uv = Π(u, v), (26)

and Positive quadrant dependent if:

C(u, v) ≥ uv = Π(u, v). (27)

Department of Applied Mathematics | Eindhoven University of Technology 9
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From Definition 3.9 we can conclude that the lower bound copula W and, FGM and AMH copula
for θ ∈ [−1, 0] are NQD and the upper bound copula M and, FGM and AMH copula for θ ∈ [0, 1]
are PQD. Also, note that the independent copula Π is both NQD and PQD. Now we know which
copulas possesses the NQD or and PQD property, we can use this to derive inequalities for the
adjustment coefficient.

If a random vector (T, X) is NQD/PQD, by Definition 3.8, then the moment generating function
K of the random variable cT − X satisfies the following inequality for all w ∈ (−σ, 0) where σ is
the smallest value such that the moment generating functions K and KI are defined. The moment
generating function KI is the moment generating function of cT − X when the random variables T
and X are independent of each other, then if (T, X) is NQD [3]:

K(w) = E[ew(cT−X)] ≥ KI(w), (28)

and if (T, X) is PQD:
K(w) = E[ew(cT−X)] ≤ KI(w). (29)

This has as a direct consequence that the adjustment coefficient R that corresponds to the random
vector (T, X) satisfies the following inequality if (T, X) is NQD:

R ≤ RI , (30)

and if (T, X) is PQD:

R ≥ RI , (31)

where RI is the adjustment coefficient of KI . From (12) it follows that a pair of random variables
that is PQD has a tighter upper bound than a pair of random variables that is NQD for the same
initial capital u, premium c and marginal distributions. Now we have a way to check our result for
the adjustment coefficient if Definition 3.8 is satisfied. A useful property of the definition of NQD
and PQD is that the property is preserved under linear combinations:

Proposition 1 Let C1(u, v) and C2(u, v) be NQD/PQD copulas and p ∈ [0, 1] then pC1(u, v) + (1 −
p)C2(u, v) is NQD/PQD.

Proof:

Let C1(u, v) and C2(u, v) be NQD copulas and p ∈ [0, 1] then:

pC1(u, v) + (1− p)C2(u, v) ≤ puv + (1− p)uv = uv. (32)

Analogously, let C1(u, v) and C2(u, v) be PQD copulas and p ∈ [0, 1] then:

pC1(u, v) + (1− p)C2(u, v) ≥ puv + (1− p)uv = uv. (33)

Proposition 1 will be useful when we take linear combinations of copulas to create different
dependence structures. Also, recall Section 3.2.1 for copulas W and M. From Albrecher and
Teugels [3], similarly to the NQD and PQD property we have that for all copulas C(u, v):

W(u, v) ≤ C(u, v) ≤ M(u, v) for all u, v ∈ [0, 1]. (34)

This also gives the same results for the corresponding moment generating function K(w) with fixed
marginals:

Department of Applied Mathematics | Eindhoven University of Technology 10
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KW(w) ≥ K(w) ≥ KM(w), (35)

for those values of w ∈ (−σ, 0), where σ is the smallest value such that the moment generating
function are defined. In Eq. (35), KW is the MGF of the lower bound and KM the MGF of the upper
bound. From Eq. (35) we can conclude the same result as in case of PQD and NQD:

RW ≤ R ≤ RM. (36)

In addition, we also want to compare various dependent random vectors under the same strength
of dependence. For this, we use a correlation measure called Pearson’s correlation
coefficient:

Definition 3.10 Let T and X be random variables. Then Pearson’s correlation coefficient ρPearson is defined
as:

ρPearson =
E[TX]−E[T]E[X]√

Var(T)
√

Var(X)
. (37)

Later on, in Chapter 6, Definition 3.10 will be used to compare the results. Also, the following
proposition will be helpful when creating bivariate exponential distributions:

Proposition 2 Let F1(t, x) and F2(t, x) be bivariate distributions with the same marginals and Pearson
correlation coefficient ρ1 and ρ2 then the following bivariate distribution has Pearson correlation coefficient
pρ1 + (1− p)ρ2:

F(t, x) =

{
F1(t, x) w.p. p,
F2(t, x) w.p. 1− p.

(38)

The proof of Proposition 2 follows from conditioning on the two events. In the next chapter, we
will introduce the bivariate distributions of the random vector (T, X) for which we will find the
distributions and the moment generating function for the random variable cT − X.

Department of Applied Mathematics | Eindhoven University of Technology 11
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4 Bivariate exponential distributions

In this chapter we introduce some bivariate distributions of the random vector (T, X) for which
we will investigate the ruin probability in the next chapter. We will divide the bivariate
distributions of our interest into three classes of distributions, namely, the simple copulas,
bivariate mixed exponential distribution, and bivariate Erlang distribution. Note that all
distributions we investigate have exponential marginals. For the bivariate distributions we will
derive analytical expressions for cT − X, the moment generating functions and the ruin
probability (if they exist). We will see that both the FGM and AMH copula with exponential
margins fall in the class of bivariate mixed exponential distributions. Besides these copula models,
we will consider two bivariate exponential distributions, namely, the Bladt-Nielsen distribution
and the Moran-Downton distribution. The Bladt-Nielsen distribution is in the same class as the
FGM and AMH copula. The Moran-Downton distribution is part of the bivariate mixed Erlang
distributions and is the main motivation for this class of distributions, because it has an analytical
expression for the ruin probability.

4.1 The Frechet-Hoeffding copulas and independent copula with exponential
marginals

In this section, the distribution of cT − X will be analyzed under the assumption that the
dependence is captured by the independent, Frechet-Hoeffding lower bound and
Frechet-Hoeffding upper bound copula with T and X exponential marginals with parameters λ
and µ.

Independent Copula

The independent copula Π(u, v) = uv is absolutely continuous and therefore the probability
density function exist. We can calculate the joint density of T and X, by using Corollary 3.2:

fT,X(t, x) =
∂2Π(1− e−λt, 1− e−µx)

∂t∂x
= λµe−λte−µx, (39)

which is exactly the same as the PDF of two independent random variables. Note that the Pearson
correlation coefficient for the independent copula with exponential marginals

ρΠ = 0, (40)

this follows directly from E[TX] = E[T]E[X].

We can use Eq (39) to derive the distribution of cT − X by applying Theorem 3.1, which results
in:

fcT−X(z) =

{
1
c
´ ∞
−z fT,X(

t+z
c , t)dt = 1

c e−λ z
c
´ ∞
−z λµe−(

λ
c +µ)tdt = λµ

λ+cµ eµz if, z ≤ 0,
1
c
´ ∞

0 fT,X(
t+z

c , t)dt = 1
c e−λ z

c
´ ∞

0 λµe−(
λ
c +µ)tdt = λµ

λ+cµ e−
λ
c z if, z ≥ 0,

. (41)

Now that we have the PDF of cT− X, we can find the CDF by using the relation between PDF and
CDF:

FcT−X(z) =

{´ z
−∞

λµ
λ+cµ eµxdx = λ

λ+cµ eµz = F−(z) if, z ≤ 0,

F−(0) +
´ z

0
λµ

λ+cµ e−
λ
c xdx = λ

λ+cµ −
cµ

λ+cµ e−
λ
c z + cµ

λ+cµ = 1− cµ
λ+cµ e−

λ
c z if, z ≥ 0.

(42)
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In terms of random variables, (42) can be represented as:

cT − X ∼
{

c · exp(λ) w.p. cµ
λ+cµ ,

−exp(µ) w.p. λ
λ+cµ .

(43)

From (43) we can derive the MGF of cT − X as follows:

E[ew(cT−X)] =
cµ

λ + cµ
E[ewexp( λ

c )] +
λ

λ + cµ
E[e−wexp(µ)] =

cµ

λ + cµ

λ

λ− cw
+

λ

λ + cµ

µ

µ + w
=

λµ

(λ− cw)(µ + w)
for w ∈ (−µ,

λ

c
).

(44)

Now that we have cT − X in terms of random variables (43) and as a MGF (44), we can find the
random variable that represents the deficit at ruin and the adjustment coefficient, therefore also
the ruin probability. Since the exponential distribution has the memoryless property (see
Definition 3.6), the deficit at ruin follows an exponential distribution with parameter µ. The
adjustment coefficient can be determined by solving the following equation:

λµ

(λ + cR)(µ− R)
= 1⇒ R =

λ− cµ

c
. (45)

Using Definition 3.3 we get an explicit formula for the ruin probability:

Ψ(u) =
µ− R

µ
e−Ru =

λ

µc
e−(µ−

λ
c )u. (46)

Frechet-Hoeffding upper bound

For the Frechet-Hoeffding upper bound M(u, v) = Min{u, v}, we can not use the same method
as for the independent case, since the upper bound is not absolutely continuous, and we can not
differentiate and get the joint density. Therefore we use that T = F−1

T (FX(x)) given that X = x (see
[3]):

P(cT − X < z) =
ˆ ∞

0
P(cF−1

T (FX(x))− x < z)µe−µxdx =

ˆ ∞

0
P((

cµ

λ
− 1)x < z)µe−µxdx =

ˆ zλ
cµ−λ

0
µe−µxdx = 1− e−

µλz
cµ−λ ,

(47)

where z > 0. Also, the Pearson correlation coefficient of the Frechet-Hoeffding upper bound copula
with exponential marginals becomes:

ρM = 1, (48)

where we also used that T = F−1
T (FX(x)) given that X = x, (see [4] for more information).

Now, in terms of random variables, (47) can be represented as:

cT − X ∼ exp(
µλ

cµ− λ
). (49)
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From (49) we can derive the MGF of cT − X:

E[ew(cT−X)] =

µλ
cµ−λ

µλ
cµ−λ − w

for w <
µλ

cµ− λ
. (50)

We notice that ruin will never occur since the random variable cT − X is non-negative.

Frechet-Hoeffding lower bound

For the Frechet-Hoeffding lower bound we apply the same approach as for the upper bound case,
but now we use that T = F−1

T (1− FX(x)) given X = x. In this case we can not find an explicit
expression for x in terms of z, λ and µ so easily as for the Frechet-Hoeffding upper bound. Therefore
we will adapt the following notation µ = αλ with α ∈ R+, (Note that for the implicit expression
we take c = 1. Also note that we are only interested in α > 1, otherwise the ruin probability would
be trivial.):

P(T − X ≤ t) =
ˆ ∞

0
P(F−1

T (1− FX(z))− z ≤ t)αλe−αλzdz =

ˆ ∞

0
P(− 1

λ
ln(1− e−αλz)− z ≤ t)αλe−αλzdz.

(51)

The inequality− 1
λ ln(1− e−αλz)− z < t is completely deterministic i.e. there is no random variable

involved. Therefore, if we evaluate this expression, this gives either one or zero depending on
whether the inequality is true or false. We can rewrite the inequality in the following way:

−λ−1ln(1− e−αλz)− z ≤ t⇐⇒
ln(1− e−αλz) + λz > −λt⇐⇒

(1− e−αλz)eλz > e−λt ⇐⇒
eαλz − 1− e−λte(α−1)λz > 0.

(52)

Setting eλz = y and e−λt = x, we can define the function f (y) = yα − xyα−1 − 1. We notice that the
following properties hold for f :

1. f (y) can be rewritten in the following way f (y) = yα−1(y− x)− 1, as a consequence f (y) ≤
−1 for y ∈ [0, x].

2. The derivative of f (y) is f ′(y) = αyα−1 − (α − 1)xyα−2 = yα−2(αy − (α − 1)x). Thus for
y > max{0, (α−1)x

α } we have that f ′(y) > 0.

3. limy→∞ f (y) = ∞

4. f (y) is continuous.

Observe that for all α > 0 we have that max{0, (α−1)x
α } < x. We have that f (y) < 0 for y ∈ [0, x] by

the first property of the function f and then from the second, third and fourth properties it follows
that there is exactly one root ŷ such that f (ŷ) = 0. Therefore, eλz = ŷ ⇒ ẑ = 1

λ ln(ŷ) and by the
third property the inequality (52) is always true for z > ẑ, which means that the distribution is of
the following form:

P(T − X ≤ t) =
ˆ ∞

1
λ ln(ŷ)

αλe−αλzdz =
1
ŷα

. (53)
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So we have found an implicit expression in case of the Frechet-Hoeffding lower bound distribution.
Nevertheless, we can find an explicit expression for the Pearson correlation coefficient:

ρW = 1− π2

6
, (54)

where we also used that T = F−1
T (1− FX(x)) given that X = x. We notice that the value found in

(54) is the smallest value of the Pearson correlation coefficient for the bivariate distributions with
exponential marginals (for more details, see [4]). Since we only have an implicit expression for the
distribution in case of the Frechet-Hoeffding lower bound, the MGF needs to be derived from the
beginning:

E[ew(cT−X)] =

ˆ ∞

0
ew(ct−−1

µ ln(1−e−λt)) · λe−λtdt =
ˆ ∞

0
(1− e−λt)

w
µ · λe(wc−λ)tdt

=

ˆ 1

0
(1− x)

w
µ x
−wc

λ dx = B(1− wc
λ

, 1 +
w
µ
) for w ∈ (−µ,

λ

c
),

(55)

where we use the substitution x = e−λt and B(p, q) =
´ 1

0 xp−1(1 − x)q−1dx is the beta
function.

4.1.1 Convex combinations of Frechet-Hoeffding copulas and independent copula

We can generalize the results that we obtained for the Frechet-Hoeffding copulas and independent
copula by making convex combinations of them. For example, let us consider the convex
combination of the Frechet-Hoeffding upper bound and independent copula with exponential
marginals. This copula takes on the following form:

C(u, v) = auv + (1− a)Min{u, v}, (56)

where a ∈ [0, 1]. We can interpret expression (56) as having the independent copula with
probability a and the upper bound copula with probability 1− a. Also note that (56) is PQD for all
a ∈ [0, 1], which follows from the fact that uv ≤ Min{u, v} for all u, v ∈ [0, 1]. We can now use
Theorem 3.4 to get an explicit formula for the distribution. From this explicit formula we get the
following expression in terms of random variables:

cT − X ∼


exp( λ

c ) w.p. a cµ
λ+cµ ,

−exp(µ) w.p. a λ
λ+cµ ,

exp( µλ
cµ−λ ) w.p. 1− a.

(57)

From (57) we can also derive an explicit expression for the ruin probability. The deficit at ruin is an
exponential random variable with parameter µ , by the memoryless property (see Definition 3.6).
Also, we find that the MGF follows from (57):

E[ew(cT−X)] = a
µλ

(λ− cw)(µ + w)
+ (1− a)

µλ
cµ−λ

µλ
cµ−λ − w

. (58)

In order to find the adjustment coefficient, we solve E[ew(cT−X)] = 1, which is a third order
polynomial equation. This can be done by using Mathematica which returns the following
solutions:
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w1 = 0,

w2 =
−λ2 + 2cλµ + acλµ− c2µ2 −

√
(−λ2 + 2cλµ + acλµ− c2µ2)2 + 4c(cµ− λ)(−λ2µ + cλµ2)

2c(cµ− λ)
,

w3 =
−λ2 + 2cλµ + acλµ− c2µ2 +

√
(−λ2 + 2cλµ + acλµ− c2µ2)2 + 4c(cµ− λ)(−λ2µ + cλµ2)

2c(cµ− λ)
,

(59)

where the second solution w2 is the only negative one, since cµ− λ > 0. By Definition 3.4, which
is the definition of the adjustment coefficient we have that R = −w2:

R = −−λ2 + 2cλµ + acλµ− c2µ2 −
√
(−λ2 + 2cλµ + acλµ− c2µ2)2 + 4c(cµ− λ)(−λ2µ + cλµ2)

2c(cµ− λ)
.

(60)

Now that we have the adjustment coefficient and the distribution of the deficit at ruin we can
determine the formula for the ruin probability, which is:

Ψ(u) =
µ− R

µ
e−Ru, (61)

where R is the adjustment coefficient reported in (60).

Note that for other convex combinations of Frechet-Hoeffding copulas and independent copula
there are no explicit expressions for the distribution and the MGF of cT − X because the Frechet-
Hoeffding lower bound has no explicit expression. Hence, there are also no explicit expressions for
the ruin probability. Still, we can get implicit expressions for the MGF. Let a, b ∈ [0, 1] such that
1− a− b ≥ 0 then for the copula:

C(u, v) = auv + (1− a− b)Min{u, v}+ bMax{u + v− 1, 0}, (62)

we get the MGF, by applying Theorem 3.4 and then using that differentiating and integrating are
linear operations:

K(w) = a
λµ

(λ− cw)(µ + w)
+ (1− a− b)

µλ
cµ−λ

µλ
cµ−λ − w

+ bB(1− wc
λ

, 1 +
w
µ
) for w ∈ (−µ,

λ

c
). (63)

In section 5 we will investigate the adjustment coefficient of combinations of the Frechet-Hoeffding
copulas and independent copula, for this, we can use (63). Also, we can use Proposition 2 to get
the corresponding Pearson correlation coefficient for each combination, since we have the Pearson
correlation coefficients of the individual copulas, see (40), (48) and (54).

4.2 Bivariate combination of exponential distributions

In this section we analyze cT − X where the random vector (T, X) follows a bivariate combination
of exponential distributions. In particular, we assume that the joint density of the random vector
(T, X) is given as follows:
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fT,X(t, x) =
m

∑
i=1

m

∑
j=1

ci,jλie−λitµje
−µjx (64)

where m ∈ N+, ci,j ∈ R and ∑m
i=1 ∑m

j=1 ci,j = 1 also {ci,j : i = 1, 2...m, j = 1, 2...m} such that
fT,X(t, x) ≥ 0 for all (t, x) ∈ R2 and λi, µj > 0 for all i, j ∈ {1, 2..., m}. Without loss of generality
we have that λi 6= λj and µi 6= µj for all i and j. We can add additional constraints such that the
marginals are exponentially distributed, instead of univariate combinations of exponentials. This
will be done in a later stage, since we do not need this assumption yet. In this section we derive an
expression for the distribution of cT− X inspired by Cossette et al.[5]. In particular, we investigate
under which conditions cT − X has a tractable distribution and we provide examples of bivariate
copulas that belong to this class. First we derive an expression for the distribution and MGF of
cT − X.

4.2.1 The derivation of the distribution of cT − X and its MGF

To get the distribution of cT − X, we first derive the density of cT − X, which is presented
next:

Proposition 3 The probability density function fcT−X(z) is:

fcT−X(z) =

∑m
i=1 ∑m

j=1 ci,j
λiµj

λi+cµj
eµjz, if z < 0,

∑m
i=1 ∑m

j=1 ci,j
λiµj

λi+cµj
e−

λi
c z, if z ≥ 0.

(65)

We use the joint density (64), by applying Theorem 3.1 we can find an expression for the density of
cT − X.
Case 1: z < 0

fcT−X(z) =
1
c

ˆ ∞

−z

m

∑
i=1

m

∑
j=1

ci,jλie−λi
t+z

c µje
−µjtdt =

1
c

m

∑
i=1

m

∑
j=1

ci,j

ˆ ∞

−z
λie−λi

t+z
c µje

−µjtdt =
m

∑
i=1

m

∑
j=1

ci,j
λiµj

λi + cµj
eµjz.

(66)

Case 2: z ≥ 0

fcT−X(z) =
ˆ ∞

0

m

∑
i=1

m

∑
j=1

ci,jλie−λi
t+z

c µje
−µjtdt =

m

∑
i=1

m

∑
j=1

ci,j

ˆ ∞

0
λie−λi

t+z
c µje

−µjtdt =
m

∑
i=1

m

∑
j=1

ci,j
λiµj

λi + cµj
e−

λi
c z.

(67)

Now that we have an explicit expression for the density of cT−X in Proposition 3 we can calculate
the CDF of cT − X.

Proposition 4 The cumulative distribution function FcT−X(z) of cT− X can be expressed as follows:

FcT−X(z) =

1−∑m
i=1 ∑m

j=1 ci,j
cµj

λi+cµj
(e−

λi
c z), if z ≥ 0,

∑m
i=1 ∑m

j=1 ci,j
λi

λi+cµj
eµjz, if z < 0.

(68)
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We can prove Proposition 4 by using Proposition 3.

Case 1, z < 0:

FcT−X(z) =
ˆ z

−∞

m

∑
i=1

m

∑
j=1

ci,j
λiµj

λi + cµj
eµjxdx =

m

∑
i=1

m

∑
j=1

ci,j

ˆ z

−∞

λiµj

λi + cµj
eµjxdx =

m

∑
i=1

m

∑
j=1

ci,j
λi

λi + cµj
eµjz = F−(z)

(69)

Case 2, z ≥ 0:

FcT−X(z) = F−(0) +
ˆ z

0

m

∑
i=1

m

∑
j=1

ci,j
λiµj

λi + cµj
e−

λi
c xdx =

m

∑
i=1

m

∑
j=1

ci,j
λi

λi + cµj
+

m

∑
i=1

m

∑
j=1

ci,j
cµj

λi + cµj
(1− e−

λi
c z) =

1−
m

∑
i=1

m

∑
j=1

ci,j
cµj

λi + cµj
(e−

λi
c z)

(70)

Realize that we can use Proposition 4 to find the CDF of cT − X for copulas with exponential
marginals and with a density that can be expressed as (64), where (T, X) is the corresponding
random vector to the copula with exponential marginals.

In a similar way we can derive the MGF of a random vector with the given density as in (64):

E[e−rT−sX ] =

ˆ ∞

0

ˆ ∞

0
e−rt−sx

m

∑
i=1

m

∑
j=1

ci,jλie−λitµje
−µjxdtdx =

m

∑
i=1

m

∑
j=1

ˆ ∞

0

ˆ ∞

0
e−rt−sxci,jλie−λitµje

−µjxdtdx =
m

∑
i=1

m

∑
j=1

ci,j
λi

λi + r
µj

µj + s

(71)

Let r = −wc and s = w then we get:

E[ew(cT−X)] =
m

∑
i=1

m

∑
j=1

ci,j
λi

λi − wc
µj

µj + w
. (72)

We can now add constraints to assure that the negative part follows a negative exponential
distribution such that the deficit at ruin is exponentially distributed. Also, we can use equation
(72) to investigate the adjustment coefficient.

4.2.2 The deficit at ruin and exponential marginals

If the negative part of the distribution is exponentially distributed we can only have one µj′

contributing to the negative part in Proposition 4. Then for every j such that j 6= j′ we have
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∑m
i=1 ci,j

λi
λi+cµj

= 0. As a result we have m − 1 linear constraints, and the distribution takes the
following form:

FcT−X(x) =

1−∑m
i=1 ∑m

j=1 ci,j
cµj

λi+cµj
(e−

λi
c x), if x ≥ 0

∑m
i=1 ci,j′

λi
λi+cµj′

eµj′ x, if x < 0.
(73)

We can also add constraints to ensure exponential marginals, this gives us m additional
constraints:

m

∑
i=1

ci,j =

{
0, if j 6= j′

1, if j = j′.
(74)

This follows directly from determining the marginal density and fixing a particular j :

fX(x) =
ˆ ∞

0

m

∑
i=1

m

∑
j=1

ci,jλie−λiyµje
−µjxdy =

m

∑
i=1

m

∑
j=1

ci,jµje
−µjx (75)

The same can be done for T, and this results in:

m

∑
j=1

ci,j =

{
0, if i 6= i′

1, if i = i′.
(76)

Now we have 3m− 1 linear constraints in total and m2 degrees of freedom. This implies that for
m ≥ 3 there are non-trivial solutions to this system of equations. But note that this is not a guarantee
for the existence of these distributions, since the constraint of the positive density for all t, x ≥ 0 is
not taken into account. We will work out the cases for m = 2 and m = 3 as an illustration. If m = 2
we get a set of 5 equations with 4 unknowns:

c1,1 + c1,2 = 0
c2,1 + c2,2 = 1
c1,1 + c2,1 = 0
c1,2 + c2,2 = 1
c1,1

λ1
λ1+cµ1

+ c2,1
λ2

λ2+cµ1
= 0

(77)

which lead to the following two equalities:

{
c2,1 = c1,2 = −c1,1

c1,1
λ1

λ1+cµ1
+ c2,1

λ2
λ2+cµ1

= 0
→ λ1 = λ2 (78)

This contradicts the assumption that λ1 6= λ2.

For m = 3 we get 8 equations with 9 unknowns:
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

c1,1 + c1,2 + c1,3 = 0
c2,1 + c2,2 + c2,3 = 0
c3,1 + c3,2 + c3,3 = 1
c1,1 + c2,1 + c3,1 = 0
c1,2 + c2,2 + c3,2 = 0
c1,3 + c2,3 + c3,3 = 1

λ1
λ1+cµ1

c1,1 +
λ2

λ2+cµ1
c2,1 +

λ3
λ3+cµ1

c3,1 = 0
λ1

λ1+cµ2
c1,2 +

λ2
λ2+cµ2

c2,2 +
λ3

λ3+cµ2
c3,2 = 0

(79)

which can be reduced to the following system:

c1,1 = (
t1,1
t2,1
− 1)x

c2,1 = x
c3,1 = − t1,1

t2,1
x

c1,2 = (
t1,2
t2,2
− 1)y

c2,2 = y
c3,2 = − t1,2

t2,2
y

c1,3 = −(( t1,1
t2,1
− 1)x + (

t1,2
t2,2
− 1)y)

c2,3 = −(x + y)
c3,3 =

t1,1
t2,1

x +
t1,2
t2,2

y + 1

, (80)

where ti,j =
λi+1

λi+1+cµj
− λi

λi+cµj
and x, y ∈ R are free variables. Note that the system of equations

was a dependent system, since we have 2 degrees of freedom. As we anticipated, in this case it is
already not clear if there is a solution that satisfies (64).

4.2.3 FGM copula, AMH copula, and Bladt-Nielsen distribution with exponential
marginals

In this section, we derive expressions for the CDF and the MGF for the random variable cT − X
when the dependence is created by the FGM copula, AMH copula, and Bladt-Nielsen distribution
with exponential marginals. The Bladt-Nielsen distribution with exponential marginals comes
from a paper by Bladt and Nielsen [4]. The FGM and AMH copulas functions were introduced in
Chapter 3.2. We show that the FGM copula, AMH copula, and Bladt-Nielsen distribution with
exponential marginals are part of the class of bivariate combinations of exponentials. Inspired by
the paper of Cossette et al. [5], we use Proposition 4 and (71) to derive the explicit expressions for
cT − X.

Farlie-Gumbel-Morgenstern copula

For the FGM copula we assume exponential marginals, therefore by Theorem 3.3 we get:

P(T ≤ t, X ≤ x) = CFGM(FT(t), FX(x)) =

(1− e−λt)(1− e−µx) + θ(1− e−λt)(e−λt)(1− e−µx)(e−µx)
(81)

where FT(t) = 1− e−λt and FX(x) = 1− e−µx. The Pearson correlation coefficient of the random
vector (T, X) with the FGM copula and exponential marginals becomes:

ρFGM =
θ

4
, (82)
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see Cossette et al. [5]. Now we can differentiate (81) with respect to t and x to find the joint density
function, this gives us:

fT,X(t, x) = (1 + θ)λµe−λte−µx − 2θλµe−2λte−µx − 2θλµe−λxe−2µx + 4θλµe−2λte−2µx, (83)

which is clearly of the form (64). Indeed, we have m = 2, c1,1 = 1 + θ, c1,2 = c2,1 = −θ, c2,2 = θ,
µi = iµ and λi = iλ for i ∈ {1, 2}. Therefore, we can apply Proposition 4 to get the CDF of
cT − X:

FcT−X(z) =

{
1−

(
(1 + θ) cµ

λ+cµ e−
λ
c z − θ

cµ
2λ+cµ e−2 λ

c z − θ
2cµ

λ+2cµ e−
λ
c z + θ

cµ
λ+cµ e−2 λ

c z), if z ≥ 0

(1 + θ) λ
λ+cµ eµz − θ 2λ

2λ+cµ eµz − θ λ
λ+2cµ e2µz + θ λ

λ+cµ e2µz, if z < 0.
(84)

In addition, we use (72) to derive the MGF KFGM(w):

KFGM(w) = (1 + θ)
λ

λ− wc
µ

µ + w
− θ

2λ

2λ− wc
µ

µ + w
− θ

λ

λ− wc
2µ

2µ + s
+ θ

2λ

2λ− wc
2µ

2µ + w
=

λµ((2µ + w)(2λ− wc)− θw2c)
(λ− wc)(2λ− wc)(µ + w)(2µ + w)

for w ∈ (−µ,
λ

c
).

(85)

AMH copula

For the AMH copula, we can follow the same approach as for the FMG copula. The AMH copula
can be represented in the following way:

CAMH(u, v) = uv + uv
∞

∑
k=1

θk(1− u)k(1− v)k, (86)

where θ ∈ [−1, 1]. Now we can use Theorem 3.3 again to get the bivariate distribution, by plugging
in the marginal distributions FT(t) = 1− e−λt and FX(x) = 1− e−µx :

FT,X(t, x) = CAMH(FT(t), FX(x)) =

(1− e−λt)(1− e−µx) + (1− e−λt)(1− e−µx)
∞

∑
k=1

θke−λtke−µxk =

(1− e−λt)(1− e−µx) +
∞

∑
k=1

θk
1

∑
i=0

1

∑
j=0

(−1)i+je−λt(k+i)e−µx(k+j).

(87)

Similar as for the FGM copula with exponential marginals, Cossette et al. derived an expression
for the Pearson correlation coefficient [5]. The Pearson correlation coefficient of the random vector
(T, X) with the AMH copula and exponential marginals becomes:

ρAMH =
∞

∑
k=1

θk
1

∑
i=0

1

∑
j=0

(−1)i+j 1
(k + i)(k + j)

. (88)

To get the joint density we can differentiate (87) with respect to t and x:

fT,X(t, x) = λµe−λte−µx +
∞

∑
k=1

θk
1

∑
i=0

1

∑
j=0

(−1)i+jλµ(k + i)(k + j)e−λt(k+i)e−µx(k+j). (89)
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Now we can apply Proposition 4 to get the CDF of cT − X:

FcT−X(z) =

1− cµ
λ+cµ e

−λ
c z −∑∞

k=1 θk ∑1
i=0 ∑1

j=0(−1)i+j cµ(k+j)
λ(k+i)+cµ(k+j) e−

λ(k+i)
c z, if z ≥ 0,

λ
λ+cµ eµz + ∑∞

k=1 θk ∑1
i=0 ∑1

j=0(−1)i+j λ(k+i)
λ(k+i)+cµ(k+j) eµz(k+j), if z < 0.

(90)

Note that if we set θ = 0 we indeed get the same distribution as in the independent case. The MGF
for the AMH can be found using (72), however this expression is also an infinite sum:

KAMH(w) = E[ew(cT−X)] =

λµ

(λ− wc)(µ + w)
+

∞

∑
k=1

θk
1

∑
i=0

1

∑
j=0

(−1)i+j λ(k + i)
λ(k + i)− wc

µ(k + j)
µ(k + j) + w

for w ∈ (−µ,
λ

c
).

(91)

Bladt-Nielsen bivariate distribution

The Bladt-Nielsen distribution has the following density function [4]:

f (t, x) =
n

∑
l=1

n

∑
k=1

cl,kλle−λltµke−µkx (92)

where cl,k = (−1)l+k−(n+1)

n (n
l )(

n
k)∑n

i=n+1−l ∑k
j=1 pi,j(−1)−i−j(l−1

n−i)(
k−1
n−j) with pi,j = δi−j or δi+j−n−1.

Here, the delta function is defined in the following way:

δt =

{
1, if t = 0
0, else.

(93)

Notice that there are other possibilities for pi,j but we are only interested in these two in particular,
because they both have a Markov chain representation depicted in Figure 5 and Figure 6:

nλ (n− 1)λ 2λ λ

nµ (n− 1)µ 2µ µ

· · · · · ·

· · · · · ·

n−1
n

n−2
n−1

2
3

1
2

1 1 1 1

1
n

1
n−1

1
2 1

1

1

Figure 5: Markov chain representation of the Bladt-Nielsen distribution with δi+j−(n+1).
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nλ (n− 1)λ 2λ λ

µ 2µ (n− 1)µ nµ

· · · · · ·

· · · · · ·

n−1
n

n−2
n−1

2
3

1
2

1 1 1 1

1
n

1
n−1

1
2 1

1

1

Figure 6: Markov chain representation of the Bladt-Nielsen distribution with δi−j.

In Figures 5 and 6 the first row of circles corresponds to an exponential random variable with
parameter λ and the second row of circles corresponds to an exponential random variable with
parameter µ and each circle is an exponential random variable with the specified parameter in the
circle and the numbers next to or below the arrows correspond to the probability of entering and
leaving a circle. In the language of Markov chains a circle is called a state. From Figures 5 and 6
we can see why there is positive or negative correlation in these distributions. In Figure 5 the more
states that we travel trough in the first row, the more states we have to travel trough in the second
row, therefore there is a positive correlation. In Figure 6 it is exactly the other way around. The
corresponding Pearson correlation coefficients are

ρi+j-n-1 = 1− 1
n

n

∑
k=1

1
k

(94)

ρi-j = 1−
n

∑
i=1

1
i2

. (95)

Clearly, the Bladt-Nielsen distribution is of the same form as (64). Using Proposition 4 we
get:

FcT−X(z) =

{
1−∑n

l=1 ∑n
k=1 cl,k

cµk
λl+cµk (e

− λ
c lz), if z ≥ 0,

∑n
l=1 ∑n

k=1 cl,k
λl

λl+cµk eµkz, if z < 0.
(96)

Also the MGF can be found using (72), but this gives a rather cumbersome formula, since cl,k also
depends on pi,j:

KBladt(w) =
n

∑
l=1

n

∑
k=1

cl,k
λl

λl − wc
µk

µk + w
for w ∈ (−µ,

λ

c
), (97)

where cl,k is defined as in (92). In the paper by Bladt and Nielsen, the MGF takes on a different
expression. In particular,

KBladt(w) =
1
n

n

∑
i=1

n

∑
j=1

pi,j

n

∏
l=n−i+1

lλ
lλ− wc

n

∏
k=j

kµ

kµ + w
for w ∈ (−µ,

λ

c
), (98)

this can be explained by the Markov chain representation in Figures 5 and 6 when pi,j is δi+j−n−1
or δi−j.
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4.3 Bivariate mixed Erlang distributions

In this section we will introduce the bivariate mixed Erlang distributions and derive the
distribution of cT − X. First, we will present the definition of a bivariate mixed Erlang
distribution. After this, we will show that the Moran-Downton distribution belongs to this class of
distributions. Also, we will show that for this distribution there is a mathematical expression for
the ruin probability. The bivariate mixed Erlang distributions can be seen as a generalization of
the Moran-Downton distribution.

4.3.1 Generalization of Moran-Downton’s bivariate exponential

In this subsection we will investigate the bivariate mixed Erlang distributions, in a similar fashion
as the second part of the paper by Cosette et al.[5], which can be used to generalize the bivariate
Moran-Downton distribution in the next subsection. Specifically, we are interested in distributions
with the following joint density for the random vector (T, X):

fT,X(t, x) =
∞

∑
i=1

∞

∑
j=1

pi,j
ti−1λie−λt

(i− 1)!
xj−1µje−µx

(j− 1)!
(99)

where ∑∞
i=1 ∑∞

j=1 pi,j = 1.

The MGF of such a distribution is given by:

E[er1T+r2X ] =

ˆ ∞

0

ˆ ∞

0

∞

∑
i=1

∞

∑
j=1

pi,j
ti−1λie(−λ+r1)t

(i− 1)!
xj−1µje(−µ+r2)x

(j− 1)!
dtdx. (100)

Switching the order of integration and summation, we can observe that (100) can be written as a
double infinite sum of products of two MGF’s of the Erlang distribution with parameters (λ, i) and
(µ, j):

∞

∑
i=1

∞

∑
j=1

pi,j

ˆ ∞

0

ti−1λie(−λ+r1)t

(i− 1)!
dt
ˆ ∞

0

xj−1µje(−µ+r2)x

(j− 1)!
dx =

∞

∑
i=1

∞

∑
j=1

pi,j
( λ

λ− r1

)i( µ

µ− r2

)j.

(101)

Note that in this context λ and µ do not have to correspond to the parameters of the marginal
exponential distributions. Now one can set r1 = cw and r2 = −w to get the MGF of cT − X:

E[ew(cT−X)] =
∞

∑
i=1

∞

∑
j=1

pi,j
( λ

λ− cw
)i( µ

µ− w
)j. (102)

4.3.2 Moran-Downton’s bivariate exponential distribution

In this section we will present a detailed example of a bivariate distribution named after Moran
and Downton. We will show that this distribution has an explicit formula for the adjustment
coefficient. We assume T and X as our marginals and we analyze the distribution of cT − X. We
have the following situation, T ∼ exp(λ) and X ∼ ∑

N(T)
i=0 Xi = X0 + ∑

N(T)
i=1 Xi where N(t) is a

Poisson process with rate γ and Xi ∼ exp(µ). In terms of ruin theory, the inter-arrival time is
exponentially distributed with parameter λ, and the total claim size can be seen as a random sum

Department of Applied Mathematics | Eindhoven University of Technology 24



2WH30

of smaller claim sizes. In [6], they showed that this setting is equivalent to the Moran-Downton
distribution. The MGF function of the random vector (T, X) has the following expression:

E[e−sT−ωX ] =

ˆ ∞

0
e−stE[e−w(X0+∑

N(t)
i=1 Xi)]λe−λtdt =

ˆ ∞

0

∞

∑
k=0

(γt)k

k!
e−γt(

µ

µ + ω
)k+1λe−(s+λ)xdt =

ˆ ∞

0
e

γµt
µ+ω λe−(s+λ+γ)tdt · µ

µ + ω
=

λ

s + λ + γ− γµ
µ+ω

· µ

µ + ω
=

µλ

(µ + ω)(s + λ + γ)− γµ
.

(103)

The first equality follows from conditioning on T, the second equality follows from conditioning
on N(t) and recognizing the MGF of the Erlang distribution, the third equality follows from the
definition of the exponential series. We can reparameterize (103) such that the parameters γ and
µ vanish. For this reparameterization we introduce the following new parameters ρ ∈ [0, 1] and
µ̂ > 0 where ρ is the Pearson correlation coefficient. Now by substituting γ = ρλ

1−ρ and µ = µ̂
1−ρ

into (103) we get:

µλ

(µ + ω)(s + λ + γ)− γµ
=

µ̂
1−ρ λ

( µ̂
1−ρ + ω)(s + λ + ρλ

1−ρ )−
ρλ

1−ρ
µ̂

1−ρ

=

λµ̂

(s + λ)(ω + µ̂)− ρωs
.

(104)

Another interpretation of this distribution would be that (T, X) follows the Moran-Downton
distribution, (see [3],[6]). In the investigation of the ruin probability of several distributions that
we discussed in chapter 5, we will use (104), Indeed, this parametrization is more convenient as it
allows for comparing different adjustment coefficients for the same correlation coefficient. We can
set ω = w and s = −cw in (103) to get the MGF of cT − X, which results in the following:

E[ew(cT−X)] =
µλ

(µ + w)(−cw + λ + γ)− γµ
. (105)

Now we can use partial fraction decomposition and then the inverse Laplace-Stieltjes transform to
find the density of the distribution. First, we find the roots of the denominator:

x± =
(λ + γ− cµ)±

√
(λ + γ− cµ)2 + 4cµλ

2c
, (106)

where x+ corresponds to the positive root and x− the negative root. Next, we apply partial fraction
decomposition:

E[ew(cT−X)] =
−µλ

x+ − x−
1

w− x+
+
−µλ

x− − x+
1

w− x−
=

µλ

x+(x+ − x−)
x+

x+ − w
+

µλ

x−(x− − x+)
−x−

w− x−
for w ∈ (x−, x+).

(107)

Using the definition of the MGF of the exponential random variable and minus an exponential
random variable, we get the following expression in terms of MGF’s:
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E[ew(cT−X)] =
µλ

x+(x+ − x−)
E[ewexp(x+)] +

µλ

x−(x− − x+)
E[e−wexp(−x−)]. (108)

A different interpretation of this would be:

cT − X ∼
{

exp(x+) with probability µλ
x+(x+−x−)

−exp(−x−) with probability µλ
x−(x−−x+)

.
(109)

From (109) it follows that the deficit at ruin has distribution exp(−x−) by the memoryless property
of the exponential distribution. We now get the following expression for the ruin probability:

ψ(u) =
e−Ru

E(e−RU(T̃)|T̃ < ∞)
=

e−Ru

E(eRexp(−x−))
=
−x− − R
−x−

e−Ru, (110)

where R is the positive solution of KcT−X(−r) = 1, which is, R = µ− λ+γ
c . Note that if we apply

the same substitution as in (104), then we get that R = cµ̂−λ
c(1−ρ)

, which is equivalent to the result
presented in Albrecher and Teugels [3]. For the investigation of the ruin probability (110) will be
used as a benchmark. Also, we can use that the Moran-Downton bivariate distribution is PQD
(Definition 3.8), see Balakrishna Chapter 10.15 [7]. Note that the adjustment coefficient that we
found clearly satisfies (31):

cµ̂− λ

c(1− ρ)
≥ λ− cµ̂

c
⇒ 1

1− ρ
≥ 1 for ρ ∈ [0, 1) (111)

Now that we know the ruin probability we will show that Moran-Downton bivariate distribution
is part of the bivariate mixed Erlang distributions:

E[er1T+r2X ] =

ˆ ∞

0
E[er1t+r2X |T = t]λe−λtdt =

ˆ ∞

0

∞

∑
n=0

E[er2 ∑n
i=0 Ti ]

(γt)n

n!
e−γtλe(−λ+r1)tdt =

ˆ ∞

0

∞

∑
n=0

( µ

µ− r2

)n+1 (γt)n

n!
e−γtλe(−λ+r1)tdt.

(112)

Switching the order of integration and taking the sum, we obtain:

∞

∑
n=0

( µ

µ− r2

)n+1
ˆ ∞

0

(γt)n

n!
e−γtλe(−λ+r1)tdt =

∞

∑
n=0

( µ

µ− r2

)n+1 λ

γ

( γ

λ + γ− r1

)n+1
=

∞

∑
n=0

( µ

µ− r2

)n+1
λ
γ γn+1

(λ + γ)n+1

( λ + γ

λ + γ− r1

)n+1.

(113)

The integral can be solved by applying n + 1 times partial integration. The last step is done by

multiplying with (λ+γ)n+1

(λ+γ)n+1 . Since now we have an expression of the form that we described in
(101), where

pi,j =


λ
γ γi+1

(λ+γ)i+1 , if i = j,

0, else.
(114)
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The condition that is set on pi,j also holds:

∞

∑
i=1

∞

∑
j=1

pi,j =
∞

∑
i=0

λ
γ γi+1

(λ + γ)i+1 =
λ

λ + γ

∞

∑
i=0

( γ

λ + γ

)i
=

λ

λ + γ
· 1

1− γ
λ+γ

= 1. (115)
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5 Model and simulation descriptions

In this section, we will use two different methods to approximate the adjustment coefficient for
several distributions: The Lagrange-Bürmann inversion method and a built-in function from
Mathematica. Also, we will simulate the ruin process to find an estimate for the ruin probability
and average deficit at ruin. We will use the following notations: K(w) is the moment generating
function of an arbitrary distribution, R is the adjustment coefficient that corresponds to K, and RI
is the adjustment coefficient for the independent case. We analyze the Moran-Downton
distribution, distributions corresponding to the FGM and AMH copulas with exponential
marginals, Bladt-Nielsen distribution, and convex combinations of the countermonotonic
(Frechet-Hoeffding lower bound), independent and comonotonic (Frechet-Hoeffding upper
bound) copula as described in Chapter 4. For all distributions, we assume exponential marginals
T and X with parameters λ and µ. We will investigate the adjustment coefficient of the
distribution cT − X, with c = 1. To compare the behavior of the adjustment coefficient of the
different distributions, we use the Pearson correlation coefficient ρ as a baseline. We will compare
the adjustment coefficients of different distributions with the same Pearson correlation
coefficient.

5.1 Lagrange-Bürmann inversion

In this section, we will present the basics to find the adjustment coefficient with the Lagrange-
Bürmann inversion theorem. For more details on the theorem, we refer to Schöpf and Supancic
[8]. First, we give the general formula for the adjustment coefficient as a direct consequence of
the Lagrange-Bürmann inversion theorem and after that, we provide a recursive formula to get an
approximation of the adjustment coefficient.

The Lagrange-Bürmann inversion theorem can be used to find an expression for R given that 1 =
K(−R) in the following way:

− R = −RI +
∞

∑
n=1

gn ·
(1− K(−RI))

n

n!
, (116)

where gn = limw→−RI
dn−1

dwn−1

( w+RI
K(w)−K(−RI)

)n. This approach works under the condition that K is
analytic on the domain that is being considered and K′(−RI) 6= 0 (this idea comes from [3]). We
can use (116) to approximate the adjustment coefficient by computing a finite part of the sum. For
this, we use the recursive definition of coefficients gn which can be found in Schöpf and Supancic
[8]. In particular, equation (9) of [8] defines the recursion where Inn! = gn for all n ∈N+:

I1( f , z) =
1

f ′(z)
and In( f , z) =

1
n

1
f ′(z)

· dIn−1( f , z)
dz

, z→ z0, (117)

where z0 ∈ R such that f ′(z0) 6= 0. The recursive relation (117) can be applied to our case, by
replacing f with the MGF K of the distribution that we are interested in and z0 with −RI :

I1(K, z) =
1

K′(z)
and In(K, z) =

1
n

1
K′(z)

· dIn−1(K, z)
dz

, z→ −RI . (118)

Then, the N − th order approximation is:

− R = −RI +
N

∑
n=1

In(K, z)(1− K(z))n, z→ −RI . (119)
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Schöpf and Supancic also provide the code to implement the Lagrange-Bürmann inversion
approximation in Mathematica.

5.2 FindRoot built-in function Mathematica

Mathematica provides several built-in functions that can solve equations algebraically and
numerically. In this section we will give an algorithmic description of what the function FindRoot
does. FindRoot has as a default algorithm Newton’s method. Such a method requires the choice of
a starting point. We have to choose a starting point to ensure convergence to the adjustment
coefficient and not some other root. For determining this starting point we can use that the MGF is
a continuous convex function. Therefore, there are only two points where the MGF can satisfy the
equality K(w) = 1. From the definition of the MGF and the assumption that E[cT − X] > 0 we
have that K(0) = 1 and K′(0) = E[cT − X] > 0. Since the MGF is convex and K′(0) > 0, the only
other solution must be in the negative domain of the MGF. If we start on the left side of the
minimum i.e. the minimum minus some small ε, then the only root the method can converge to is
the adjustment coefficient. The algorithmic description of Newton’s method in our case is:

Algorithm 1 Newton’s method

1: Let ε1 = 0.01, ε2 > 0 the level of accuracy and M > 0 be the amount of iterations.
2: Solve K′(x) = 0
3: Starting point R0 = x− ε1
4: while n < M do
5: −Rn = −Rn−1 − K(−Rn−1)−1

K′(−Rn−1)

6: n = n+1
7: if |K(−Rn−1)− 1| < ε2 then
8: Return Rn−1

Notice that we also divide by the derivative of the MGF as in the case of the Lagrange-Bürmann
inversion. Nevertheless, there is one important difference; in the case of the inversion we evaluate
the derivative on one specific point and rely on it to be not equal to zero, but in the case of Newton’s
method we have chosen our starting point in such a way that the derivative will never be equal to
zero.

5.3 Simulation of the claim process

In this section we describe the simulation procedure of each distribution. First we give a description
of how we can simulate the process which is described in Definition 3.2, which is used for all
distributions. After this we will zoom in on the individual distributions. The general process can
be described in the following way:

Algorithm 2 General process

Let u > 0 be the initial capital, c > 0 the premium, λ > 0 the parameter of T and µ > 0 the
parameter of X
Let M be the amount of claims that will be simulated, n = 1 and x0 = u.
while n < M do

Simulate cTn − Xn
xn = xn−1 + cTn − Xn
if xn < 0 thenReturn(1,-xn) as a vector, where 1 indicates that ruin occurred and xn is the

deficit at ruin.
Return (0, 0), where the zeros indicate that ruin did not occur and that there is no deficit at ruin.

We can do this multiple times and get an estimate for the ruin probability and average deficit at
ruin. Also, in Chapter 4 we got two analytical expressions for the ruin probability and deficit at
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ruin. One for the convex combination of independent copula and comonotonic copula and one
for the Moran-Downton distribution, see Subsections 4.1.1 and 4.3.2. We can use these results to
validate our simulation and determine how accurate the simulations are. Now that we have a way
to simulate the general process we need a way to simulate the random variable cT − X.

FGM and AMH copula

For the two copulas FGM and AMH we use the copula package in R, which enables us simulate a
random vector (T, X) instantaneously [9]. The outcome of those simulations can be used to
compute cT − X.

Convex combinations of countermonotonic, independent and comonotonic copula

The convex combinations of countermonotonic, independent and comonotonic copula can also be
simulated with the copula package in R, but we will use a different approach. We will make
combinations of two copulas: independent and comonotonic, independent and countermonotonic
and, countermonotonic and comonotonic. To simulate the combinations we first simulate the
inter-arrival time T ∼ exp(λ). Then the claim size is either an exponential random variable with
parameter µ in the independent case, F−1

T (FX(t)) = λ
µ t in the comonotonic copula case and

F−1
T (1− FX(t)) = −1

µ ln(1− e−λt) in the countermonotonic copula case, where t is the simulated
inter-arrival time. Now we can use a Bernoulli random variable with parameter p to determine
which one we will choose. For example, take the independent and comonotonic case: we simulate
T ∼ exp(λ) than with probability p we simulate an independent claim which follows the random
variable exp(µ) and with probability 1 − p we get the comonotonic part which is completely
determined by the inter-arrival time random variable T which gives us λ

µ T. This approach for the
simulation was also used in Chapter 4.1 to derive expressions for cT − X.

Bladt-Nielsen distribution

The two Bladt-Nielsen distributions can be simulated by using their interpretations in terms of
random variables. For this, we will use the Markov-chain representation in Figures 5 and 6.

Moran-Downton distribution

Similar to the Bladt-Nielsen distribution we use the interpretation of the distribution in terms of
random variables. In the case of the Moran-Downton distribution we first simulate the inter-arrival
time T ∼ exp(λ), then a Poisson random variable with parameter γt, where t is the simulated
inter-arrival time. The outcome of the Poisson random variable then determines the number of
claims that are being simulated. In order to fix the marginal distributions and compare the Moran-
Downton distribution, we need to use Eq. (104).
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6 Results and interpretation

In this section, we present and interpret the results from the investigation of the ruin probability,
adjustment coefficient, and average deficit at ruin. We will compare the results by plotting the
results as a function of Pearson’s correlation coefficient given in Definition 3.10. For each
distribution, the corresponding Pearson correlation coefficient in terms of its parameter is in
Chapter 4. In addition to this, we use Proposition 2 to determine the Pearson correlation
coefficient of the convex combination of Frechet copulas. Note that the Pearson correlation
coefficient (88) of the AMH copula is an infinite sum, therefore we use an approximation of the
Pearson’s correlation coefficient. We assume that λ = 1, µ = 2, c = 1 and u = 0. If one of these
parameters takes on a different value it will be explicitly stated.

6.1 Lagrange-Bürmann inversion

In this part, we present the results from the Lagrange-Bürmann inversion. The results consist of
the adjustment coefficient for the FGM copula, Moran-Downton distribution, and the combination
between the independent copula and the Frechet upper bound. For all three cases, we provide the
first up to fifth-order approximation.

(a) Adjustment Coefficient of the FGM distribution
with Pearson correlation.

(b) Adjustment Coefficient of the Moran-Downton
distribution.

(c) Adjustment Coefficient of the combination of
independent and comonotonic distribution.

Figure 7: Lagrange-Bürmann inversion approximation of the adjustment coefficient for three families of
distributions.

Looking at Figure 7, we notice that the approach becomes numerically unstable for higher order
approximations. To investigate these numerical issues we find the values ρ or parameters for which
the derivative K′(−RI) = 0. We will do this for general parameters λ and µ:
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ρFGM =
1
4
(1 +

2λµ

λ2 + µ2 )

ρMoran-Downton =
1
2

ρΠ-M = p =
(λ2 − λµ + µ2)2

λ4 − 2µλ3 + 4λ2µ2 − 2λµ3 + µ4 .

(120)

where p is the parameter that links the independent copula and Frechet upper bound together
(1− p)Π + pM, see (20). Therefore, from linearity of the Pearson correlation coefficient we get that
ρΠ-M = 0(1− p) + 1p = p. Eq. (120) can be used to determine where the derivative of K′(−RI) = 0
in case of the basic parameters λ = 1 and µ = 2. We get

ρFGM =
9

20

ρMoran-Downton =
1
2

ρΠ-M =
9

13
,

(121)

which explains why there is a divergence in the neighbourhood of those points in Figure 7. Every
term of the Lagrange-Bürmann inversion has a factor K′(−RI) in the denominator. Therefore, if
this term is close to zero rounding errors make the approximation diverge.

6.2 FindRoot built-in function Mathematica

In this subsection we present the results of the adjustment coefficient with corresponding Pearson
correlation coefficient, by using the built-in Mathematica function FindRoot (Newton’s
method).

The adjustment coefficient by Newton’s method

Figure 8: The adjustment coefficient for all distributions versus the Pearson correlation coefficient.
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In Figure 8 we see that the adjustment coefficient is given for a Pearson correlation coefficient in the
interval [1− π2

6 , 1]. Notice that for ρ = 0 we have that for all distributions the adjustment coefficient
is equal to one except the combination between the countermonotonic and comonotonic copula.
They coincide because for ρ = 0 the distributions are all equal to the independent copula which has
R = µ− λ = 1, except the combination between the countermonotonic and comonotonic copula.
Also, this combination is neither PQD nor NQD, which explains why the adjustment coefficient of
the combination can be less than the adjustment coefficient of the independent copula for a positive
Pearson correlation coefficient, since PQD (NQD) implies a positive (negative) Pearson correlation
coefficient, see Chapter 5 of Nelsen [2].

Notice that the behaviors of the adjustment coefficients for negative correlation are very similar to
each other in contrast to the distributions with positive correlation. This difference in behaviour is
possible because the adjustment coefficient of the lower bound copula exists, while the
comonotonic copula with exponential marginals the adjustment coefficient does not exist. Indeed,
the following equation:

KM(w) =

µλ
cµ−λ

µλ
cµ−λ − w

= 1, (122)

has only the solution w = 0. Therefore, Eq. (36) together with the result for the PQD and NQD
property explains why the behavior of the adjustment coefficients is possible in Figure 8. Note that
we only have a lower bound for the adjustment coefficient, therefore the individual behaviour of
the adjustment coefficient for each distribution cannot be explained. In the discussion, we provide
additional information for an approach to this.

For the part of Figure 8 with a positive Pearson correlation coefficient, there are more diverse results
in contrast to the negative correlated part. We see that the combinations of the independent and
comonotonic copula and, the countermonotonic and the comonotonic give the lowest adjustment
coefficient for a specific Pearson correlation coefficient. This could be explained by the particular
structure their MGFs have and implicitly the underlying distributions.

Also, we can observe in Figure 8 that only the adjustment coefficient of the positive Bladt-Nielsen
distribution increases less when the Pearson correlation coefficient becomes greater. Heuristically,
this can be explained by Figure 5, when we increase n the effect of adding additional states
becomes less. Because the probability n−1

n goes to one and the expectation of the additional state is
proportional to 1

n , which implies that adding these states becomes less and lesser of an
influence.

Note that the AMH copula is not in Figure 8, because the AMH copula has a similar structure as
the FGM copula. Also, the MGF of the AMH copula has an infinite sum representation just as the
Pearson correlation coefficient of the AMH copula. Therefore, to use the Findroot method we need
to approximate the MGF and the Pearson correlation coefficient. But this approximation would be
similar to the result of the FGM copula.

In order to check the accuracy we compare the FindRoot result with the exact value of the
adjustment coefficient in case of the independent-comonotonic copula and Moran-Downton
distribution:
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(a) Adjustment coefficient of the Moran-Downton
distribution for a specific Pearson correlation

coefficient.

(b) Adjustment coefficient of the combination
independent and comonotonic copula with exponential
marginals for a specific Pearson correlation coefficient.

Figure 9

In Figure 9 we see that the FindRoot result matches the exact value of the adjustment
coefficient.

6.3 Simulation of the claim process

In this section, we present the results of the simulation. The analysis proceeds by simulating the
ruin process described in Algorithm 2 with M = 1000 claims 10000 times. We first look at the
general behavior of the ruin probability and the average deficit at ruin. Then we compare the results
from the combination between the independent and comonotonic copula and the Moran-Downton
distribution with their explicit formulas. Also, we will compare the FGM and AMH copula, because
they have a similar correlation range, see (23). Since the Pearson correlation coefficient of the AMH
copula with exponential marginals is an infinite sum (88), we use the approximation ρAMH = θ

4 +
θ2

36 . The approximation is based on (88), where we only used the terms of the infinite sum up to
second order.
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(a) Ruin probability of distributions versus Pearson correlation.

(b) Average deficit at ruin versus Pearson correlation

Figure 10: Comparison of the results for all the distributions.

In Figure 10 we see that the ruin probability and average deficit at ruin decrease when the Pearson
correlation coefficient increases. Another general trend in Figure 10 is that a higher average deficit
at ruin seems to correspond to a lower ruin probability for a given correlation. For example, the
Moran-Downton distribution has a higher ruin probability than the rest of the distributions for
each given correlation but has also a lower average deficit at ruin for each given correlation. Only
the positive Bladt-Nielsen distribution seems to have a lower average deficit at ruin for some given
correlation.
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We can use the first order approximation of E[e−RU(T̃)|T̃ < ∞] ≈ 1 + RE[−U(T̃)|T̃ < ∞] to relate
the results of the ruin probability and average deficit at ruin in Figure 10 with the results for the
adjustment coefficient in Figure 8:

Ψ(0) ≈ 1
1 + RE[−U(T̃)|T̃ < ∞]

. (123)

Note that (123) is also an upper bound for the ruin probability Ψ(0), since all higher-order terms
of the approximation of the denominator are positive which makes the ruin probability only
lower. For negative Pearson correlation, we see in Figure 8 such adjustment coefficients behave
very similarly, and in Figure 10 we see that also for negative Pearson correlation that the average
deficit at ruin behaves similarly except in the case of the countermonotonic-comonotonic
combination. This also comes back in the results for the ruin probability in Figure 10, where we
see that in the case of the countermonotonic-comonotonic case the ruin probability is lower than
in the case of the other distributions. The formula given in (123) is a rough estimate. For example,
the Bladt-Nielsen distribution and Moran-Downton distribution have a similar average deficit at
ruin and the Moran-Downton distribution has a higher adjustment coefficient for each correlation.
This implies that the ruin probability of the Moran-Downton distribution should be less than the
ruin probability of the Bladt-Nielsen distribution. But this is not the case in Figure 10.

In the simulation of the average deficit at ruin, it seems that independent-comonotonic and
countermonotonic-comonotonic have a constant average deficit at ruin despite the change in
correlation. For the independent-comonotonic case, this is also predicted by the explicit formula
for the deficit at ruin distribution which only depends on the parameter µ = 2. But for the
countermonotonic-comonotonic case, we do not have an explicit formula for the deficit at ruin
distribution. In this case, ruin only occurs when the countermonotonic part is chosen, since the
comonotonic part always gives a positive contribution. An explanation for the constant behavior
could be that the Beta function which was used to express the moment generating function of the
countermonotonic copula has an alternate expression. Also, note that in both cases the result of
the average deficit at ruin seems to decrease in accuracy for higher correlation. This can be
explained by the fact that the ruin probability in the simulation tends to zero for a higher Pearson
correlation coefficient which implies that there are fewer samples of the deficit at ruin to average
over. We will show in the case of the independence-comonotonic case, by computing the
95%-confidence interval, that indeed this effect is due to the smaller sample. Note that for the
Bladt-Nielssen and Moran-Downton distribution the average deficit at ruin is more accurate than
for the independence-comonotonic and countermonotonic-comonotonic case. This is due to the
ruin probability being larger for a higher positive correlation, which implies there are more
samples to average over. Also, in the case of the Moran-Downton distribution, the distribution of
the deficit at ruin is exponentially distributed with parameter −x− which goes to infinity for
ρ → 1 therefore the variance of the deficit at ruin distribution 1

(−x−)2 → 0 for ρ → 1. This implies
that the variance decreases quadratically when −x− → ∞.

Since we have two distributions that have an explicit expression we will compare the simulation
results with them by plotting them together. In the case of the combination between independent
and comonotonic copula, we get the result reported in Figure 11.
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(a) Ruin probability of distributions with Pearson
correlation.

(b) Average deficit at ruin with Pearson correlation

Figure 11: Comparison of the theoretical results and the simulation results for the indpendent-comonotonic
copula with exponential marginals.

In Figure 11 we see that the simulation matches the theoretical result. Nevertheless, notice that for
the average deficit at ruin, for correlation close to one, the simulation gets less accurate. This can be
explained by the fact that ruin occurs less often, therefore there are fewer deficits at ruin to average
over, which is confirmed by the 95%-confidence interval around the average deficit at ruin.

For the Moran-Downton distribution we get:

(a) Ruin probability of distributions with Pearson
correlation.

(b) Average deficit at ruin with Pearson correlation

Figure 12: Comparison of the theoretical results and the simulation results for the Moran-Downton
distribution.

In Figure 12 we see that the simulation matches the theoretical result. We notice that for the average
deficit at ruin, for correlation close to one, the simulation stays accurate. This can be explained by
the fact that ruin occurs more often, in comparison to the other distributions for similar correlation.
Now that we compared the two simulation results of the distributions with the theoretical results,
we are interested in the FGM and AMH copula. Because they have a similar structure and the
differences were hard to spot in Figure 10, we also created Figure 13.
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(a) Ruin probability of distributions with Pearson
correlation.

(b) Average deficit at ruin with Pearson correlation

Figure 13: Comparison of the FGM and AMH copula with exponential marginals.

In figure 13 we can see that the AMH copula allows a larger positive correlation than the FGM
copula. Also, the behavior of the AMH copula is different from the FGM copula for a more
positive correlation. The resulting ruin probability decreases more and the average deficit at ruin
decreases less. The change cannot be explained by the rough approximation of the Pearson
correlation coefficient in the case of the AMH copula, since a better approximation would mean
that we rearrange the results with the corresponding Pearson correlation. Nevertheless, the
average deficit at ruin becomes constant which implies that a reordering would not change this
result. However, a better approximation could explain the sudden decrease in ruin probability for
the same reason. To summarize, the change in the ruin probability can be explained with a better
approximation but the change of the average deficit at ruin can not be explained.

Department of Applied Mathematics | Eindhoven University of Technology 38



2WH30

7 Discussion

In this chapter, we discuss the results of the thesis. We start with the three methods as described in
chapter 5 used for the results: Lagrange-Bürmann inversion, FindRoot built-in function Mathematica
and Simulation of the claim process. After this, we discuss the results of the methods.

The first two methods, Lagrange-Bürmann inversion and FindRoot built-in function Mathematica
are used to find the adjustment coefficient. Both methods use the derivatives of the moment
generating functions. However, the Lagrange-Bürmann inversion uses higher-order derivatives
evaluated at a single point while the FindRoot built-in function Mathematica uses only the
first-order derivative but evaluated at more than one point. Despite that the moment generating
function of the lower bound copula with exponential marginals did not have an explicit
expression we can use the Findroot method. But for the moment generating function of the AMH
copula with exponential marginals which is an infinite sum, the method failed. When the lower
bound copula was involved (combinations of Frechet-Hoeffding copulas and independent copula)
it was possible to use the FindRoot function eventhough the MGF of the lower bound copula is an
implicit expression. Nevertheless, for the AMH copula this was not possible, because Mathematica
tries to find a finite expression for the derivative, which is a rather cumbersome expression for the
AMH copula. This problem could be solved by computing the derivative manually and giving it
as a function to Mathematica. In our attempt at using the Lagrange-Bürmann inversion, the
methods became numerically unstable around the singularities. This problem could perhaps be
resolved by using more accuracy in the computations, nevertheless, the FindRoot method does
work properly and is more robust. Also, both methods can be used for similar situations, namely,
for distributions where we can find the derivatives of the MGF.

The third method is a simulation of the claim process. The software R can be used to simulate
other copulas than the current copulas in the thesis [10]. For example, the Marshall-Olkin copula
could be one of them [7]. For the simulation of the FGM and AMH copulas, we used the Copula
package from R, but for the convex combinations of Frechet-Hoeffding copulas and independent
copula, we used a different approach [9]. For the simulation there are two concerns: (1) we can
only simulate finitely many claims per run which were 1000 in our case, and (2) the uncertainty
of the result of the simulation. The second concern can be dealt with by constructing a confidence
interval, to illustrate how certain we are that the simulation results are in this interval. This was
done for the independent-comonotonic combination.

In Figure 8 we saw the adjustment coefficient plotted against the Pearson correlation coefficient.
We used the PQD and NQD property and, the result of Eq. (36) to explain why the result was
possible. Nevertheless, the individual behaviour of the adjustment coefficient for each distribution
was not explained. The direct reason for the different behavior is the structure of the MGF. A way
to analyze the behaviour of the adjustment coefficient further is to use stochastic orderings such as
the PQD and NQD that provide information about the adjustment coefficient.
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8 Conclusion

In this thesis, we looked at three sets of bivariate distributions to create dependence between the
inter-arrival time and the claim size in the Cramer-Lundberg model. In particular we consider the
countermonotonic, independent and comonotonic copula with exponential marginals, bivariate
combination of exponential distributions and bivariate mixed Erlang distributions. Then we
investigated how this dependence influences the ruin probability, under the assumption of
exponential marginals. We used copulas as a tool to construct our bivariate distributions. In
addition to the bivariate distributions constructed trough copulas, we analyzed two other
bivariate distributions which are standard choices in the field, namely, the Moran-Downton
distribution and the Bladt-Nielsen distribution.

We derived expressions for the cumulative distribution function and moment generating function
of the difference between premium times inter-arrival time and claim size. For the Moran-Downton
distribution and the combination of the independent and upper bound copula, it was also possible
to get an explicit expression for the ruin probability. The derivations of the expressions relied on
the memoryless property that the exponential distribution possesses. Nevertheless, for the other
distributions we could not find explicit expressions for the ruin probability, therefore we resorted
to simulation. We used two methods to get an approximation of the adjustment coefficient. The
Lagrange-Bürmann method did not yield a satisfactory result in contrast to the Findroot method.
In our simulation results, we saw that a more negative Pearson correlation corresponds to a higher
ruin probability and a higher average deficit at ruin. Also, we showed that the results of each
method matched the theoretical result in the case of the Moran-Downton distribution and in the
case of a combination of the independent and upper bound copula.

The Cramer-Lundberg model can be used to get insight into a claim process of an insurance
company. We introduced dependence into this model to make it more realistic. Nevertheless,
other bivariate distributions might be of interest for modeling this process, such as the famous
Marshall-Olkin distribution. For the simulation we assumed that we have exponential marginals
for the claim size and inter-arrival time and there is no dependence between successive
inter-arrival times or between successive claim sizes. These assumptions could be relaxed in
further investigations. For example, an insurance company that operates in an area where there
are frequent earthquakes or heavy storms would need to use this type of dependence, because
when an earthquake or a heavy storm hits, the insurance company would get more claims in a
short period. Next to these assumptions on the distributions of the claim sizes and inter-arrival
times we made a modeling assumption, by fixing the model parameters. Further research could
be done to investigate the impact of these parameters.

Department of Applied Mathematics | Eindhoven University of Technology 40



2WH30

References

[1] R. Kaas, M. Goovaerts, J. Dhaene and M. Denuit, Modern Actuarial Risk Theory. Springer-
Verlag Berlin Heidelberg, 2008.

[2] R. B. Nelsen, An Introduction to Copulas. New York, NY: Springer New York, 2006.
[3] H. Albrecher and J. L. Teugels, ‘Exponential behavior in the presence of dependence in risk

theory,’ Journal of Applied Probability, vol. 43, no. 1, pp. 257–273, 2006.
[4] M. Bladt and B. F. Nielsen, ‘On the construction of bivariate exponential distributions with

an arbitrary correlation coefficient,’ Stochastic Models, vol. 26, no. 2, pp. 295–308, 2010.
[5] H. Cossette, E. Marceau and S. Perreault, ‘On two families of bivariate distributions with

exponential marginals: Aggregation and capital allocation,’ Insurance: Mathematics and
Economics, vol. 64, pp. 214–224, 2015.

[6] B. Kim and J. Kim, ‘Representation of Downton’s bivariate exponential random vector and
its applications,’ Statistics and Probability Letters, vol. 81, no. 12, pp. 1743–1750, 2011.

[7] N. Balakrishna and C. D. Lai, Continuous bivariate distributions. 2009, pp. 1–684.
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A Mathematica code Lagrange-Bürmann inversion, Findroot
method and figures of copulas

1

2 ( * Lagrange−B rmann approach * )
3 c [ f , p , 1 , y ] :=
4 f ’ [ y]/p ’ [ y ] ( * S t a r t i n g the recurs ion f o r the B rmann approximation * )
5

6 c [ f , p , n , y ] :=
7 1/n * Together [1/p ’ [ y ] D[ c [ f , p , n − 1 , y ] , y ] ] ( * Recursion step * )
8

9 B rmann [ f , p , {z , z0 , m } ] :=
10 Module [{n , y} ,
11 f [ z0 ] + Sum[ c [ f , p , n , y ] (1 − p [ y ] ) ˆ n , {n , 1 , m} ] / .
12 y −> z0 ] ( * Applying the recurs ion on an a r b i t r a r y funct ion , note \
13 t h a t 1 in (1 −p [ y ] ) ˆ n i s in the a c t u a l case p [ z ] * )
14

15 lambda = 1 ; ( * I n i t i a l i z i n g the parameters * )
16 mu = 2 ;
17

18 M = {}
19 p = Range[ −1/3 , 1/3 , 0 . 0 1 ] ; ( * p i s the parameter of the FGM copula * )
20 FGM[ w ] := lambda *
21 mu* ( (w + 2*mu) * ( 2 * lambda − w) −
22 3*p*wˆ 2 ) / ( (w + mu) * (w + 2*mu) * ( lambda − w) * ( 2 * lambda −
23 w) ) ( *MGF of the FGM copula , note :
24 s p e c i f y p in the i nv e r v a l ( −1/3 ,1/3) * )
25 For [ i = 1 , i < 6 , i ++ ,
26 AppendTo [M,
27 B rmann [# &,
28 FGM, {R , lambda − mu,
29 i } ] ] ] ( * Evaluat ing the B rmann approximation mult ip le times * )
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30 G = {}
31 For [ i = 1 , i < 6 , i ++ , AppendTo [G, Transpose@{p*3/4 , −M[ [ i ] ] } ] ]
32 R a s t e r i z e [
33 L i s t P l o t [G,
34 PlotLegends −>
35 PointLegend [ Automatic , {”1” , ”2” , ”3” , ”4” , ”5” } ,
36 LegendFunction −> ”Frame” , LegendLabel −> ”Order” ] ,
37 AxesLabel −> {”P” , ”R” } ,
38 PlotLabe l −> ” B rmann approximation of the adjustment c o e f f i c i n t ” ] ]
39

40 a = Range [ 0 , 1 , 0 . 0 2 ] ;
41 Indep [ w ] := mu* lambda / ( ( lambda − w) (mu + w) )
42 ( * MGF of the independent d i s t * )
43 FrechetUp [
44 w ] := (mu* lambda/(mu − lambda ) ) / ( (mu* lambda/(mu − lambda ) ) −
45 w) ( * MGF of the Frechet upperbound * )
46 L [ w ] := (1 − a ) * Indep [w] +
47 a * FrechetUp [
48 w] ( * Linear combination of the independent and the f r e c h e t \
49 upperbound * )
50 M2 = {}
51 For [ i = 1 , i < 6 , i ++ ,
52 AppendTo [M2,
53 B rmann [# &,
54 L , {R , lambda − mu,
55 i } ] ] ] ( * Evaluat ing the B rmann approximation mult ip le times * )
56 G2 = {}
57 For [ i = 1 , i < 6 , i ++ , AppendTo [G2 , Transpose@{a , −M2[ [ i ] ] } ] ]
58

59 R a s t e r i z e [
60 L i s t P l o t [G2 ,
61 PlotLegends −>
62 PointLegend [ Automatic , {”1” , ”2” , ”3” , ”4” , ”5” } ,
63 LegendFunction −> ”Frame” , LegendLabel −> ”Order” ] ,
64 AxesLabel −> {”P” , ”R” } ,
65 PlotLabe l −> ” B rmann approximation of the adjustment c o e f f i c i n t ” ] ]
66

67 p = Range [ 0 , 1 , 0 . 0 2 ] ;
68 Moran [ w ] := (mu* lambda ) / ( (w) ˆ 2 * ( p − 1) + w* ( lambda − mu) + lambda *mu)
69 M3 = {}
70 For [ i = 1 , i < 6 , i ++ ,
71 AppendTo [M3,
72 B rmann [# &,
73 Moran , {R , lambda − mu,
74 i } ] ] ] ( * Evaluat ing the B rmann approximation mult ip le times * )
75 G3 = {}
76 For [ i = 1 , i < 6 , i ++ , AppendTo [G3 , Transpose@{a , −M3[ [ i ] ] } ] ]
77 R a s t e r i z e [
78 L i s t P l o t [G3 ,
79 PlotLegends −>
80 PointLegend [ Automatic , {”1” , ”2” , ”3” , ”4” , ”5” } ,
81 LegendFunction −> ”Frame” , LegendLabel −> ”Order” ] ,
82 AxesLabel −> {”P” , ”R” } ,
83 PlotLabe l −> ” B rmann approximation of the adjustment c o e f f i c i n t ” ] ]
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84

85 ( * Findroot approach * )
86

87 FGM[ w , p ] :=
88 lambda *mu* ( (w + 2*mu) * ( 2 * lambda − w) −
89 3*p*wˆ 2 ) / ( (w + mu) * (w + 2*mu) * ( lambda − w) * ( 2 * lambda −
90 w) ) ( *MGF of the FGM copula , note : s p e c i f y p in the i n v e rv a l \
91 ( −1/3 ,1/3) * )
92

93 Moran [ w ,
94 p ] := (mu* lambda ) / ( (w) ˆ 2 * ( p − 1) + w* ( lambda − mu) + lambda *mu)
95 ( *MGF of the Moran−downton dis t , note : s p e c i f y p , p in the in v e rv a l \
96 ( 0 , 1 ) * )
97

98 Indep [ w ] := mu* lambda / ( ( lambda − w) (mu + w) )
99 ( * MGF of the independent d i s t * )

100

101 BladtNeg [ w , n ] :=
102 Sum[ Product [ l * lambda/(−w + lambda * l ) , { l , n − i + 1 , n } ] *
103 Product [ k *mu/(k *mu + w) , {k , i , n } ] , { i , 1 , n}]/n
104 ( * MGF of the bladt − n i e l s e n d i s t r i b u t i o n with d e l t a { i − j } ( negat ive \
105 c o r r e l a t i o n ) , note : s p e c i f y n * )
106

107 FrechetUp [
108 w ] := (mu* lambda/(mu − lambda ) ) / ( (mu* lambda/(mu − lambda ) ) −
109 w) ( * MGF of the Frechet upperbound * )
110

111 FrechetLow [ w ] :=
112 Beta [1 + w/mu, 1 − w/lambda ] ( * MGF of the Frechet lowerbound * )
113

114 BladtPos [ w , n ] :=
115 Sum[ Product [ l * lambda/(−w + lambda * l ) , { l , n − i + 1 , n } ] *
116 Product [ k *mu/(k *mu + w) , {k , n − i + 1 , n } ] , { i , 1 , n}]/n
117 ( * MGF of the bladt − n i e l s e n d i s t r i b u t i o n with d e l t a { i + j −(n+1)} \
118 ( p o s i t i v e c o r r e l a t i o n ) , note : s p e c i f y n * )
119

120 MoranRoots = {} ;
121 lambda = 1 ;
122 mu = 2 ;
123 Q = Range [ 0 , 0 . 9 9 , 0 . 0 1 ] ;
124 Length [Q]
125 For [ i = 1 , i < 101 , i ++ ,
126 Minimum =
127 Solve [D[ Moran [w, Q[ [ i ] ] ] , w] == 0 , w] /. {{ (w −> y ) }} −> y ;
128 AppendTo [ MoranRoots ,
129 FindRoot [ Moran [w, Q[ [ i ] ] ] − 1 == 0 , {w,
130 Minimum − 0 . 0 1} ] / . { (w −> y ) } −> y ] ;
131

132 ]
133 SetMoran = Transpose@{Q, −MoranRoots } ;
134

135 BladtnegRoots = {} ;
136 lambda = 1 ;
137 mu = 2 ;
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138 n = 3 0 ;
139

140 For [ i = 1 , i <= 30 , i ++ ,
141 Minimum =
142 Solve [D[ BladtNeg [w, i ] , w] == 0 && −mu < w < 0 ,
143 w] /. {{ (w −> y ) }} −> y ;
144 AppendTo [ BladtnegRoots ,
145 FindRoot [ BladtNeg [w, i ] − 1 == 0 , {w,
146 Minimum − 0 . 0 1} ] / . { (w −> y ) } −> y ] ;
147

148 ]
149 Length [ BladtnegRoots ]
150 C6 = {} ;
151 For [ i = 1 , i <= n , i ++; , AppendTo [ C6 , 1 − Sum[1/n ˆ 2 , {n , 1 , i } ] ] ] ;
152 SetBladtneg = Transpose@{C6 , −BladtnegRoots } ;
153

154 BladtposRoots = {} ;
155 lambda = 1 ;
156 mu = 2 ;
157 n = 3 0 ;
158 Q = Range [ 1 , n , 1 ] ;
159 Length [Q]
160 For [ i = 1 , i <= n , i ++ ,
161 Minimum =
162 Solve [D[ BladtPos [w, i ] , w] == 0 && −mu < w < 0 ,
163 w] /. {{ (w −> y ) }} −> y ;
164 AppendTo [ BladtposRoots ,
165 FindRoot [ BladtPos [w, i ] − 1 == 0 , {w,
166 Minimum − 0 . 0 1} ] / . { (w −> y ) } −> y ] ;
167

168 ]
169 Length [Q]
170 Length [ BladtposRoots ]
171 C6 = {} ;
172 For [ i = 1 , i <= n , i ++; , AppendTo [ C6 , 1 − Sum[1/n , {n , 1 , i }]/ i ] ] ;
173 SetBladtpos = Transpose@{C6 , −BladtposRoots}
174

175 FGMRoots = {} ;
176 lambda = 1 ;
177 mu = 2 ;
178 Q = Range [ −1/3 , 1/3 , 0 . 0 1 ] ;
179 For [ i = 1 , i <= Length [Q] , i ++ ,
180 Minimum =
181 Solve [D[FGM[w, Q[ [ i ] ] ] , w] == 0 && −mu < w < 0 ,
182 w] /. {{ (w −> y ) }} −> y ;
183 AppendTo [ FGMRoots ,
184 FindRoot [FGM[w, Q[ [ i ] ] ] − 1 == 0 , {w,
185 Minimum − 0 . 0 1} ] / . { (w −> y ) } −> y ] ;
186

187 ]
188 SetFGM = Transpose@{Q*3/4 , −FGMRoots}
189

190 FreUpRoots = {} ;
191 lambda = 1 ;
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192 mu = 2 ;
193 Q = Range [ 0 , 1 ,
194 0 . 0 1 ] ; ( *Q corresponds to the Pearson c o r r e l a t i o n by l i n e a r i t y * )
195 Length [Q] ;
196 For [ i = 1 , i <= Length [Q] , i ++ ,
197 Minimum =
198 Solve [D[ Indep [w] * ( 1 − Q[ [ i ] ] ) + FrechetUp [w] *Q[ [ i ] ] , w] ==
199 0 && −mu < w < 0 , w] /. {{ (w −> y ) }} −> y ;
200 AppendTo [ FreUpRoots ,
201 FindRoot [ Indep [w] * ( 1 − Q[ [ i ] ] ) + FrechetUp [w] *Q[ [ i ] ] − 1 == 0 , {w,
202 Minimum − 0 . 0 1} ] / . { (w −> y ) } −> y ] ;
203

204 ]
205 SetFreUp = Transpose@{Q, −FreUpRoots } ;
206

207 FreLowRoots = {} ;
208 lambda = 1 ;
209 mu = 2 ;
210 Q = Range [ 0 , 1 ,
211 0 . 0 1 ] ; ( *Q corresponds to the spearman rho c o r r e l a t i o n by l i n e a r i t y \
212 of both * )
213 Length [Q] ;
214 For [ i = 1 , i <= Length [Q] , i ++ ,
215 Minimum =
216 Solve [D[ Indep [w] * ( 1 − Q[ [ i ] ] ) + FrechetLow [w] *Q[ [ i ] ] , w] ==
217 0 && −mu < w < 0 , w] /. {{ (w −> y ) }} −> y ;
218 AppendTo [ FreLowRoots ,
219 FindRoot [ Indep [w] * ( 1 − Q[ [ i ] ] ) + FrechetLow [w] *Q[ [ i ] ] − 1 == 0 , {w,
220 Minimum − 0 . 0 1} ] / . { (w −> y ) } −> y ] ;
221

222 ]
223 SetFreLowpearson = Transpose@{Q* ( 1 − Pi ˆ2/6) , −FreLowRoots}
224

225 UpLowRoots = {} ;
226 lambda = 1 ;
227 mu = 2 ;
228 Q = Range [ 0 , 1 ,
229 0 . 0 0 5 ] ; ( *Q corresponds to the spearman rho c o r r e l a t i o n by \
230 l i n e a r i t y of both * )
231 Length [Q] ;
232 For [ i = 1 , i <= Length [Q] , i ++ ,
233 Minimum =
234 Solve [D[ FrechetLow [w] * ( 1 − Q[ [ i ] ] ) + FrechetUp [w] *Q[ [ i ] ] , w] ==
235 0 && −mu < w < 0 , w] /. {{ (w −> y ) }} −> y ;
236 AppendTo [ UpLowRoots ,
237 FindRoot [ FrechetLow [w] * ( 1 − Q[ [ i ] ] ) + FrechetUp [w] *Q[ [ i ] ] − 1 ==
238 0 , {w, Minimum − 0 . 0 1} ] / . { (w −> y ) } −> y ] ;
239

240 ]
241 UpLowRoots
242 SetUpLowpearson = Transpose@{1 − Pi ˆ2/6 + Q* Pi ˆ2/6 , −UpLowRoots}
243

244 D2 = L i s t [ SetFreLowpearson , SetFreUp , SetUpLowpearson , SetMoran ,
245 SetBladtneg , SetBladtpos , SetFGM ] ;
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246 R a s t e r i z e [
247 L i s t P l o t [D2 , PlotRange −> {{1 − Pi ˆ2/6 , 1} , {0 , 2}} ,
248 PlotLegends −>
249 PointLegend [
250 Automatic , {”Independent −Countermonotonic” ,
251 ”Countermonotonic −Comonotonic” , ”Countermonotonic −Comonotonic” ,
252 ”Moran−Downton” , ” Negative Bladt −Nielsen ” ,
253 ” P o s i t i v e Bladt −Nielsen ” , ”FGM” } , LegendFunction −> ”Frame” ,
254 LegendLabel −> ” D i s t r i b u t i o n ” ] ,
255 AxesLabel −> {” Pearson c o r r e l a t i o n ” , ”R” } ,
256 PlotLabe l −> ”Adjustment c o e f f i c i n t with negat ive c o r r e l a t i o n ” ,
257 P l o t S t y l e −> {Blue , Red , LightBlue , Purple , Green , LightOrange ,
258 Orange } ] ]
259

260

261 ( * Copula p i c t u r e s * )
262

263 ( * Frechet Copulas * )
264 g = Plot3D [ u*v , {u , 0 , 1} , {v , 0 , 1} , AxesLabel −> { u , v} ,
265 PlotLabe l −> ” Independent Copula” ]
266

267 g2 = Plot3D [ Min [ u , v ] , {u , 0 , 1} , {v , 0 , 1} , AxesLabel −> { u , v} ,
268 PlotLabe l −> ”Comonotonic Copula” ]
269

270 g3 = Plot3D [Max[ u + v − 1 , 0 ] , {u , 0 , 1} , {v , 0 , 1} ,
271 AxesLabel −> { u , v} , P lo tLabe l −> ”Countermonotonic Copula” ]
272

273 R a s t e r i z e [
274 Grid [{{g3 , g , g2 }} , I temSize −> {{20 , 20 , 20}} , Frame −> Fa lse ] ]
275

276 ( * I n v e s t i g a t i n g l i n e a r combinations of the Frechet copulas * )
277 Manipulate [
278 Plot3D [ ( 1 − p ) *Max[ u + v − 1 , 0 ] + p*Min [ u , v ] , {u , 0 , 1} , {v , 0 ,
279 1} ] , {p , 0 , 1} ]
280

281 Manipulate [
282 Plot3D [ ( 1 − p ) *u*v + p*Min [ u , v ] , {u , 0 , 1} , {v , 0 ,
283 1} ] , {p , 0 , 1} ]
284

285 Manipulate [
286 Plot3D [ ( 1 − p ) *u*v + p*Max[ u + v − 1 , 0 ] , {u , 0 , 1} , {v , 0 ,
287 1} ] , {p , 0 , 1} ]

B R code for the simulation

1 ### Simulat ion of cramer lundberg model with dependence ###
2

3 fgm <− fgmCopula ( param = 0 , dim =2)
4 FGMmvdc <− mvdc( copula=fgm , margins=c ( ”exp” , ”exp” ) ,
5 paramMargins= l i s t ( l i s t ( r a t e =1) ,
6 l i s t ( r a t e = 1 . 1 ) ) )
7 E<− rMvdc ( 1 0 0 0 ,FGMmvdc)
8 E[ ,1 ] −E [ , 2 ]
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9

10 SimulationRuin<− funct ion ( Copula , Marginals , Param , c , u ) {
11

12 DIST <− mvdc( copula=Copula , margins=Marginals ,
13 paramMargins=Param )
14

15

16 Sim <− rMvdc ( 1 0 0 0 , DIST )
17

18 T [ 1 ] = u
19

20 f o r ( i in 2 : 1000) {
21 T [ i ] <− T [ i −1] + c * Sim [ i ,1 ] − Sim [ i , 2 ]
22 i f ( T [ i ]< 0) {
23 re turn ( c ( 1 , T [ i ] ) )
24 }
25 }
26

27 re turn ( c ( 0 , 0 ) )
28

29 }
30

31 MultipleSimRuin<− funct ion ( Copula , Marginals , Param , c , u , n ) {
32 AmountRuins <− 0
33 T o t a l D e f i c i t <− 0
34 f o r ( i in 1 : n ) {
35

36 Sim <− SimulationRuin ( Copula , Marginals , Param , c , u )
37 i f ( Sim [ 1 ] == 1) {
38 AmountRuins <− AmountRuins + 1
39 T o t a l D e f i c i t <− T o t a l D e f i c i t + Sim [ 2 ]
40 }
41 }
42 D e f i c i t a t R u i n <− T o t a l D e f i c i t /AmountRuins
43 Ruinprobabi l i ty <− AmountRuins/n
44 R <− log ( Ruinprobabi l i ty ) /( − D e f i c i t a t R u i n −u )
45 re turn ( c ( Ruinprobabi l i ty , − D e f i c i t a t R u i n , R) )
46 }
47

48

49 ###FGM###
50

51 ResultsFGMRuin <− c ( )
52 ResultsFGMDeficit <− c ( )
53 ResultsFGMR <− c ( )
54 q = 0
55 f o r ( i in seq ( −1 ,1 , by = 0 . 0 1 ) ) {
56 q <− q + 1 # Index counter
57 Res <− MultipleSimRuin ( fgmCopula ( param = i , dim = 2) , c ( ”exp” , ”exp” ) ,

l i s t ( l i s t ( r a t e =1) , l i s t ( r a t e =2) ) , 1 , 0 , 1 0 0 0 0 )
58 ResultsFGMRuin [ q ] <− Res [ 1 ]
59 ResultsFGMDeficit [ q ] <− Res [ 2 ]
60 ResultsFGMR [ q ] <− Res [ 3 ]
61 }
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62 ResultsFGMRuin
63 ResultsFGMDeficit
64 ResultsFGMR
65

66 ###AMH###
67

68 ResultsAMHRuin <− c ( )
69 ResultsAMHDeficit <− c ( )
70 ResultsAMHR <− c ( )
71 q = 0
72 f o r ( i in seq ( −1 ,1 , by = 0 . 0 1 ) ) {
73 q <− q + 1 # Index counter
74 Res <− MultipleSimRuin ( amhCopula ( param = i , dim = 2) , c ( ”exp” , ”exp” ) ,

l i s t ( l i s t ( r a t e =1) , l i s t ( r a t e =2) ) , 1 , 0 , 1 0 0 0 0 )
75 ResultsAMHRuin [ q ] <− Res [ 1 ]
76 ResultsAMHDeficit [ q ] <− Res [ 2 ]
77 ResultsAMHR [ q ] <− Res [ 3 ]
78 }
79 ResultsAMHRuin
80 ResultsAMHDeficit
81 ResultsAMHR <− log ( ResultsAMHRuin ) / ( ResultsAMHDeficit − 1)
82

83 ###MORAN−DOWNTON###
84

85 Moranstep<−funct ion ( lambda , muhat , rhoMoran , c ) {
86 gamma <− lambda * rhoMoran/(1 −rhoMoran )
87 mu <− muhat/(1 −rhoMoran )
88

89 i n t e r a r r i v a l <− rexp ( 1 , lambda )
90 amountofclaims <− rpois ( 1 , i n t e r a r r i v a l *gamma)
91 Claim <− rexp ( amountofclaims +1 ,mu)
92

93 re turn ( c * i n t e r a r r i v a l − sum( Claim ) )
94 }
95

96 MoranS <−funct ion ( lambda , muhat , rhoMoran , c , u , n ) {
97 s <− c ( u )
98 f o r ( i in 1 : n ) {
99 s [ i +1] <− s [ i ] + Moranstep ( lambda , muhat , rhoMoran , c )

100 }
101

102

103

104 Firs tNegat iveIndex <− which ( s < 0) [ 1 ]
105 F i r s t N e g a t i v e <− s [ F i rs tNegat iveIndex ]
106 i f ( i s . na ( F i r s t N e g a t i v e ) ) {
107 re turn ( 0 )
108

109 } e l s e {
110 re turn ( − F i r s t N e g a t i v e )
111

112 }
113 }
114
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115 MultiMoranS <− funct ion ( lambda , muhat , rhoMoran , c , u , n ,m) {
116 Ruin <− 0
117 T o t a l D e f i c i t <− 0
118

119 f o r ( i in 1 :m) {
120 Sim <− MoranS ( lambda , muhat , rhoMoran , c , u , n )
121

122 i f ( Sim > 0 ) {
123 T o t a l D e f i c i t = T o t a l D e f i c i t + Sim
124 Ruin <− Ruin + 1
125 }
126 }
127 D e f i c i t a t R u i n <− T o t a l D e f i c i t /Ruin
128 Ruinprobabi l i ty <− Ruin/m
129 R<− log ( Ruinprobabi l i ty ) /( − D e f i c i t a t R u i n −u )
130 re turn ( c ( Ruinprobabi l i ty , D e f i c i t a t R u i n , R) )
131 }
132

133 ResultsMoranRuin <− c ( )
134 Resul tsMoranDef ic i t <− c ( )
135 ResultsMoranR <− c ( )
136 q = 0
137 f o r ( i in seq ( 0 , 0 . 9 9 , by = 0 . 0 1 ) ) {
138 q <− q + 1 # Index counter
139 Res <− MultiMoranS ( 1 , 2 , i , 1 , 0 , 1 0 0 0 , 1 0 0 0 0 )
140 p r i n t ( Res [ 1 ] )
141 ResultsMoranRuin [ q ] <− Res [ 1 ]
142 p r i n t ( ResultsMoranRuin )
143 Resul tsMoranDef ic i t [ q ] <− Res [ 2 ]
144 ResultsMoranR [ q ] <− Res [ 3 ]
145 }
146

147 ### Bladt ###
148 # P o s i t i v e c o r r e l a t i o n
149

150 BladtNielsenPosCor <− funct ion ( lambda , mu, n , c ) {
151 Tota l <− 0
152

153 f o r ( i in 1 : n ) {
154 Chain <− rexp ( 2 , n− i +1) # Simulat ing the claim and the i n t e r a r r i v a l

toge ther
155 Tota l <− Tota l + c * Chain [ 1 ] /lambda − Chain [ 2 ] /mu # s c a l i n g propety of

the exponent ia l random v a r i a b l e
156 proceed <− rbinom ( 1 , 1 , ( n− i ) / ( n− i +1) )
157

158 i f ( proceed == 0) {
159 re turn ( Tota l )
160

161 }
162 }
163 re turn ( Tota l )
164 }
165

166 BladtNielsenSimP <− funct ion ( lambda ,mu, n , c , u ,m) {
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167 Run <− c ( u )
168

169 f o r ( i in 1 :m) {
170 Run[ i +1] = Run[ i ] + BladtNielsenPosCor ( lambda ,mu, n , c )
171 i f (Run[ i +1] < 0) {
172 re turn ( −Run[ i +1 ] )
173 }
174

175 }
176 re turn ( 0 )
177 }
178

179 MultiBladtSimP <− funct ion ( lambda ,mu, n , c , u ,m, k ) {
180 Ruin <− 0
181 D e f i c i t <− 0
182

183 f o r ( i in 1 : k ) {
184 Res <− BladtNielsenSimP ( lambda ,mu, n , c , u ,m)
185 i f ( Res > 0) {
186 Ruin <− append ( Ruin , 1 )
187 D e f i c i t <− append ( D e f i c i t , Res )
188 }
189 e l s e {
190 Ruin <− append ( Ruin , 0 )
191 D e f i c i t <− append ( D e f i c i t , 0 ) }
192 }
193 re turn ( l i s t ( Ruin , D e f i c i t ) )
194 }
195

196 D e f i c i t B l a d t p o s <− c ( )
197 RuinBladtpos <− c ( )
198 Defic i tBladtposSD <− c ( )
199 RuinBladtposSD <− c ( )
200 j = 0
201 f o r ( i in 1 : 3 0 ) {
202 Res <− MultiBladtSimP ( 1 , 2 , i , 1 , 0 , 1 0 0 0 , 1 0 0 0 0 )
203 RuinBladtpos [ j ] <− mean( u n l i s t ( Res [ 1 ] ) )
204 D e f i c i t B l a d t p o s [ j ] <− mean( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! = 0 ] ) )

)
205 RuinBladtposSD [ j ] <− sd ( u n l i s t ( Res [ 1 ] ) )
206 Defic i tB ladtposSD [ j ] <− sd ( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! = 0 ] ) )

)
207

208 j <− j +1
209 }
210

211 posCor <− c ( )
212 f o r ( i in 1 : 3 0 ) {
213 posCor [ i ] <− 1− 1/ i *sum(1/ 1 : i )
214 }
215

216 # Negative c o r r e l a t i o n
217

218 BladtNielsenNegCor<− funct ion ( lambda ,mu, n , c ) {
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219 Tota l <− 0
220 f o r ( i in 1 : n ) {
221 Chain <− rexp ( 1 , ( n− i +1) * lambda )
222 Tota l <− Tota l + Chain #Updating the t o t a l i n t e r a r r i v a l time
223 proceed <− rbinom ( 1 , 1 , 1 / ( n− i +1) ) # Determines i f we go to the cla ims
224

225 i f ( proceed == 1) {
226 Claims <− rexp ( n− i +1 ,1 ) # s imulat ing the remaining claims
227

228 Weights <− c ( ) # s c a l i n g a l l c la ims with the corresponding 1/ i n t e g e r
229 f o r ( j in 1 : n− i +1){
230 Weights [ j ] <− 1/ ( n− j +1)
231 }
232

233 Tota l <− c * Tota l −sum( Weights * Claims ) /mu # s c a l i n g a l l c la ims with
parameter mu

234 re turn ( Tota l )
235 }
236 }
237 }
238

239 BladtNielsenSimN <− funct ion ( lambda ,mu, n , c , u ,m) {
240 Run <− c ( u )
241

242 f o r ( i in 1 :m) {
243 Run[ i +1] = Run[ i ] + BladtNielsenNegCor ( lambda ,mu, n , c )
244 i f (Run[ i +1] < 0) {
245 re turn ( −Run[ i +1 ] )
246 }
247

248 }
249 re turn ( 0 )
250 }
251

252 MultiBladtSimN <− funct ion ( lambda ,mu, n , c , u ,m, k ) {
253 Ruin <− 0
254 D e f i c i t <− 0
255

256 f o r ( i in 1 : k ) {
257 Res <− BladtNielsenSimN ( lambda ,mu, n , c , u ,m)
258 i f ( Res > 0) {
259 Ruin <− append ( Ruin , 1 )
260 D e f i c i t <− append ( D e f i c i t , Res )
261 }
262 e l s e {
263 Ruin <− append ( Ruin , 0 )
264 D e f i c i t <− append ( D e f i c i t , 0 ) }
265 }
266 re turn ( l i s t ( Ruin , D e f i c i t ) )
267 }
268

269 D e f i c i t B l a d t n e g <− c ( )
270 RuinBladtneg <− c ( )
271 Defic i tBladtnegSD <− c ( )
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272 RuinBladtnegSD <− c ( )
273 j =0
274 f o r ( i in 1 : 3 0 ) {
275 Res <− MultiBladtSimN ( 1 , 2 , i , 1 , 0 , 1 0 0 0 , 1 0 0 0 0 )
276 RuinBladtneg [ j ] <− mean( u n l i s t ( Res [ 1 ] ) )
277 D e f i c i t B l a d t n e g [ j ] <− mean( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! = 0 ] ) )

)
278 RuinBladtnegSD [ j ] <− sd ( u n l i s t ( Res [ 1 ] ) )
279 Defic i tBladtnegSD [ j ] <− sd ( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! = 0 ] ) )

)
280

281 j <− j +1
282 }
283

284 negCor <− c ( )
285 f o r ( i in 1 : 3 0 ) {
286 negCor [ i ] <− 1− sum(1/ ( 1 : i ) ˆ 2 )
287 }
288

289 ### combination Independent −Comonotonic###
290

291 IndepComon<− funct ion ( lambda ,mu, a , c , u , n ) {
292 A r r i v a l r a t e <− rexp ( n , lambda )
293 IndepClaim <− rexp ( n ,mu)
294 ComonClaim <− lambda/mu* A r r i v a l r a t e
295 v <− rbinom ( n , 1 , a )
296 # p r i n t ( A r r i v a l r a t e )
297 # p r i n t ( IndepClaim * a + (1 −a ) *ComonClaim )
298 s teps <− c * A r r i v a l r a t e − ( IndepClaim * (1 −v ) + v*ComonClaim )
299 Run <− c ( u , s teps )
300 CumRun <− cumsum(Run)
301

302 indexRuin <− min ( which (CumRun<0) )
303 i f ( indexRuin== I n f ) {
304 re turn ( c ( 0 , 0 ) )
305 } e l s e {
306 re turn ( c ( 1 ,CumRun[ indexRuin ] ) )
307 }
308 }
309

310

311 MultiIndepComon<− funct ion ( lambda ,mu, a , c , u , n ,m) {
312 AmountRuin <− c ( )
313 AmountDeficit <− c ( )
314 f o r ( i in 1 :m) {
315 Run <− IndepComon ( lambda ,mu, a , c , u , n )
316 AmountRuin <− append ( AmountRuin , Run [ 1 ] , a f t e r = length ( AmountRuin ) )
317 AmountDeficit <− append ( AmountDeficit , −Run [ 2 ] , a f t e r = length (

AmountDeficit ) )
318

319 }
320

321 re turn ( l i s t ( AmountRuin , AmountDeficit ) )
322 }
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323

324 lambda <− 1
325 mu <− 2
326 c <− 1
327 u <− 0
328 a <− seq ( 0 , 1 , by = 0 . 0 1 )
329

330 IndepComonRuin <− c ( )
331 IndepComonDeficit <− c ( )
332 IndepComonRuinSD <− c ( )
333 IndepComonDeficitSD <− c ( )
334 IndepComonDeficitlength <− c ( )
335

336 j = 0
337 f o r ( i in a ) {
338 Res <− MultiIndepComon ( lambda ,mu, i , c , u , 1 0 0 0 , 1 0 0 0 0 )
339 IndepComonRuin [ j ] <− mean( u n l i s t ( Res [ 1 ] ) )
340 IndepComonDeficit [ j ] <− mean( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! =

0 ] ) ) )
341 IndepComonRuinSD [ j ] <− sd ( u n l i s t ( Res [ 1 ] ) )
342 IndepComonDeficitSD [ j ] <− sd ( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! =

0 ] ) ) )
343 IndepComonDeficitlength [ j ] <− length ( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x )

x [ x ! = 0 ] ) ) )
344

345 j <− j +1
346

347 }
348

349 ### combination Countermonotonic −Independent ###
350

351 IndepCountermon<− funct ion ( lambda ,mu, a , c , u , n ) {
352 A r r i v a l r a t e <− rexp ( n , lambda )
353 IndepClaim <− rexp ( n ,mu)
354 CounterClaim <− −1/mu* log (1 −exp( −lambda * A r r i v a l r a t e ) )
355 v = rbinom ( n , 1 , a )
356 # p r i n t ( A r r i v a l r a t e )
357 # p r i n t ( IndepClaim * a + (1 −a ) * CounterClaim )
358 s teps <− c * A r r i v a l r a t e − ( IndepClaim * (1 −v ) + v* CounterClaim )
359 Run <− c ( u , s teps )
360 CumRun <− cumsum(Run)
361 indexRuin <− min ( which (CumRun<0) )
362 i f ( indexRuin== I n f ) {
363 re turn ( c ( 0 , 0 ) )
364 } e l s e {
365 re turn ( c ( 1 ,CumRun[ indexRuin ] ) )
366 }
367 }
368

369 MultiIndepCounter<− funct ion ( lambda ,mu, a , c , u , n ,m) {
370 AmountRuin <− c ( )
371 AmountDeficit <− c ( )
372 f o r ( i in 1 :m) {
373 Run <− IndepCountermon ( lambda ,mu, a , c , u , n )
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374 AmountRuin <−append ( AmountRuin , Run [ 1 ] )
375 AmountDeficit <− append ( AmountDeficit , −Run [ 2 ] )
376 }
377

378 re turn ( l i s t ( AmountRuin , AmountDeficit ) )
379 }
380

381 IndepCounterRuin <− c ( )
382 IndepCounterDef ic i t <− c ( )
383 IndepCounterRuinSD <− c ( )
384 IndepCounterDeficitSD<− c ( )
385 j = 0
386 f o r ( i in a ) {
387 Res <− MultiIndepCounter ( lambda ,mu, i , c , u , 1 0 0 0 , 1 0 0 0 0 )
388 IndepCounterRuin [ j ] <− mean( u n l i s t ( Res [ 1 ] ) )
389 IndepCounterDef ic i t [ j ] <− mean( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! =

0 ] ) ) )
390 IndepCounterRuinSD [ j ] <− sd ( u n l i s t ( Res [ 1 ] ) )
391 IndepCounterDeficitSD [ j ] <− sd ( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! =

0 ] ) ) )
392

393 j <− j +1
394

395 }
396

397 ### combination Countermonotonic −Comonotonic###
398

399 CounterComon<− funct ion ( lambda ,mu, a , c , u , n ) {
400 A r r i v a l r a t e <− rexp ( n , lambda )
401 CounterClaim <− −1/mu* log (1 −exp( −lambda * A r r i v a l r a t e ) )
402 ComonClaim <− lambda/mu* A r r i v a l r a t e
403 v = rbinom ( n , 1 , a )
404 # p r i n t ( A r r i v a l r a t e )
405 # p r i n t ( IndepClaim * a + (1 −a ) *ComonClaim )
406 s teps <− c * A r r i v a l r a t e − ( CounterClaim * (1 −v ) + v*ComonClaim )
407 Run <− c ( u , s teps )
408 CumRun <− cumsum(Run)
409 indexRuin <− min ( which (CumRun<0) )
410 i f ( indexRuin== I n f ) {
411 re turn ( c ( 0 , 0 ) )
412 } e l s e {
413 re turn ( c ( 1 ,CumRun[ indexRuin ] ) )
414 }
415 }
416 CounterComon ( 1 , 2 , 1 / 2 , 1 , 0 , 1 0 0 )
417 MultiCounterComon<− funct ion ( lambda ,mu, a , c , u , n ,m) {
418 AmountRuin <− c ( )
419 AmountDeficit <− c ( )
420 f o r ( i in 1 :m) {
421 Run <− CounterComon ( lambda ,mu, a , c , u , n )
422 AmountRuin <− append ( AmountRuin , Run [ 1 ] )
423 AmountDeficit <− append ( AmountDeficit , −Run [ 2 ] )
424 }
425
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426 re turn ( l i s t ( AmountRuin , AmountDeficit ) )
427 }
428 MultiCounterComon ( 1 , 2 , 1 / 2 , 1 , 0 , 1 0 0 , 1 0 0 )
429

430 CounterComonRuin <− c ( )
431 CounterComonDeficit <− c ( )
432 CounterComonRuinSD <− c ( )
433 CounterComonDeficitSD <− c ( )
434

435 j = 0
436 f o r ( i in a ) {
437 Res <− MultiCounterComon ( lambda ,mu, i , c , u , 1 0 0 0 , 1 0 0 0 0 )
438 CounterComonRuin [ j ] <− mean( u n l i s t ( Res [ 1 ] ) )
439 CounterComonDeficit [ j ] <− mean( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! =

0 ] ) ) )
440 CounterComonRuinSD [ j ] <− sd ( u n l i s t ( Res [ 1 ] ) )
441 CounterComonDeficitSD [ j ] <− sd ( u n l i s t ( lapply ( Res [ 2 ] , func t ion ( x ) x [ x ! =

0 ] ) ) )
442

443 j <− j +1
444

445 }
446

447 ### Figures ###
448

449 ###Ruin p r o b a b i l i t y of a l l d i s t r i b u t i o n s ###
450 p l o t ( negCor , RuinBladtneg , xlim = c (1 − pi ˆ2/ 6 , 1 ) , ylim = c ( 0 , 1 ) , pch = 16 ,

c o l = ”Green” , xlab = ” Pearson c o r r e l a t i o n c o e f i c i e n t ” , ylab = ”
Ruin p r o b a b i l i t y ” , main = ” Simulat ion of d i s t r i b u t i o n s with
exponent ia l marginals ” )

451 points ( posCor , RuinBladtpos , c o l = ” l ightsalmon1 ” )
452 points ( seq ( 0 , 0 . 9 9 , by = 0 . 0 1 ) , ResultsMoranRuin , c o l = ” Purple ” )
453 points ( a [ 0 : 1 0 0 ] , IndepComonRuin , c o l = ”Red” )
454 points ( a [ 0 : 1 0 0 ] * (1 − pi ˆ2/6) , IndepCounterRuin , c o l = ” blue ” )
455 points ( a [ 0 : 1 0 0 ] + ( 1 − a [ 0 : 1 0 0 ] ) * (1 − pi ˆ2/6) , CounterComonRuin , c o l = ” l i g h t

blue ” )
456 points ( seq ( −1 ,1 , by = 0 . 0 1 ) /4+ seq ( −1 ,1 , by = 0 . 0 1 ) ˆ2/36 , ResultsAMHRuin ,

c o l =” black ” )
457 points ( seq ( −1 ,1 , by = 0 . 0 1 ) /4 , ResultsFGMRuin , c o l = ” orange ” , pch = 4)
458 legend ( 0 . 3 , 0 . 9 7 , legend=c ( ” Negative Bladt −Nielsen ” , ” P o s i t i v e Bladt −

Nielsen ” , ”Moran−Downton” , ” Independent −Comonotonic” , ” Independent −
Countermonotonic” , ”Countermonotonic −Comonotonic” , ”AMH” , ”FGM” ) , c o l =

c ( ”Green” , ” l ightsalmon1 ” , ” Purple ” , ”Red” , ” blue ” , ” l i g h t blue ” , ” black
” , ” orange ” ) , l t y = 1 : 2 , cex = 0 . 8 )

459

460 ###Average d e f i c i t a t ruin of a l l d i s t r i b u t i o n s ###
461 p l o t ( negCor , Def i c i tB ladtneg , xlim = c (1 − pi ˆ2/ 6 , 1 ) , ylim = c ( 0 , 1 . 5 ) , pch

= 16 , c o l = ”Green” , xlab = ” Pearson c o r r e l a t i o n c o e f i c i e n t ” , ylab
= ” D e f i c i t a t ruin ” , main = ” Simulat ion of d i s t r i b u t i o n s with
exponent ia l marginals ” )

462 points ( posCor , RuinBladtpos , c o l = ” l ightsalmon1 ” )
463 points ( seq ( 0 , 0 . 9 9 , by = 0 . 0 1 ) , ResultsMoranDefic i t , c o l = ” Purple ” )
464 points ( a [ 0 : 1 0 0 ] , IndepComonDeficit , c o l = ”Red” )
465 points ( a [ 0 : 1 0 0 ] * (1 − pi ˆ2/6) , IndepCounterDefic i t , c o l = ” blue ” )
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466 points ( a [ 0 : 1 0 0 ] + ( 1 − a [ 0 : 1 0 0 ] ) * (1 − pi ˆ2/6) , CounterComonDeficit , c o l = ”
l i g h t blue ” )

467 points ( seq ( −1 ,1 , by = 0 . 0 1 ) /4+ seq ( −1 ,1 , by = 0 . 0 1 ) ˆ2/36 , ResultsAMHDeficit ,
c o l =” black ” )

468 points ( seq ( −1 ,1 , by = 0 . 0 1 ) /4 , ResultsFGMDeficit , c o l = ” orange ” , pch = 4)
469 legend ( 0 . 3 5 , 1 . 4 9 , legend=c ( ” Negative Bladt −Nielsen ” , ” P o s i t i v e Bladt −

Nielsen ” , ”Moran−Downton” , ” Independent −Comonotonic” , ” Independent −
Countermonotonic” , ”Countermonotonic −Comonotonic” , ”AMH” , ”FGM” ) , c o l =

c ( ”Green” , ” l ightsalmon1 ” , ” Purple ” , ”Red” , ” blue ” , ” l i g h t blue ” , ”
black ” , ” orange ” ) , l t y = 1 : 2 , cex = 0 . 8 )

470

471 ###FGM versus AMH###
472 p l o t ( seq ( −1 ,1 , by = 0 . 0 1 ) /4 , ResultsFGMDeficit , c o l = ” orange ” , xlim = c ( −1

/3 ,1/3) , ylim = c ( 0 . 2 , 0 . 8 ) , x lab = ” Pearson c o r r e l a t i o n c o e f i c i e n t ”
, ylab = ” D e f i c i t a t ruin ” , main = ” Simulat ion of d i s t r i b u t i o n s with
exponent ia l marginals ” )

473 points ( seq ( −1 ,1 , by = 0 . 0 1 ) /4+ seq ( −1 ,1 , by = 0 . 0 1 ) ˆ2/36 , ResultsAMHDeficit ,
c o l =” black ” )

474 legend ( 0 . 2 , 0 . 7 5 , legend=c ( ”AMH” , ”FGM” ) , c o l = c ( ” black ” , ” orange ” ) , l t y
= 1 : 2 , cex = 0 . 8 )

475

476 p l o t ( seq ( −1 ,1 , by = 0 . 0 1 ) /4 , ResultsFGMRuin , c o l = ” orange ” , xlim = c ( −1/
3 ,1/3) , ylim = c ( 0 . 2 , 0 . 8 ) , x lab = ” Pearson c o r r e l a t i o n c o e f i c i e n t ” ,

ylab = ”Ruin p r o b a b i l i t y ” , main = ” Simulat ion of d i s t r i b u t i o n s with
exponent ia l marginals ” )

477 points ( seq ( −1 ,1 , by = 0 . 0 1 ) /4+ seq ( −1 ,1 , by = 0 . 0 1 ) ˆ2/36 , ResultsAMHRuin ,
c o l =” black ” )

478 legend ( 0 . 2 , 0 . 7 5 , legend=c ( ”AMH” , ”FGM” ) , c o l = c ( ” black ” , ” orange ” ) , l t y
= 1 : 2 , cex = 0 . 8 )

479

480 ###Moran−Downton d i s t r i b u t i o n t h e o r e t i c a l versus s imulat ion ###
481 curve ( ( ( ( 1 + x/(1 −x ) −2/(1 −x ) ) − s q r t ( (1 + x/(1 −x ) −2/(1 −x ) ) ˆ2+8/(1 −x ) ) ) /( −2) −1/

(1 −x ) ) / ( ( ( 1 + x/(1 −x ) −2/(1 −x ) ) − s q r t ( ( 1 + x/(1 −x ) −2/(1 −x ) ) ˆ2+8/(1 −x ) ) ) /
( −2) ) , from =0 , to =1 , xlab=” Pearson c o r r e l a t i o n c o e f f i c i e n t ” , ylab=”
Ruin p r o b a b i l i t y ” , xlim = c ( 0 , 1 ) , ylim = c ( 0 , 1 ) , main = ”Moran−Downton

ruin p r o b a b i l i t y ” )
482 points ( seq ( 0 , 0 . 9 9 , by = 0 . 0 1 ) , ResultsMoranRuin , c o l = ” Purple ” )
483 legend ( 0 . 7 , 0 . 9 5 , legend = c ( ” T h e o r e t i c a l ” , ” Simulat ion ” ) , c o l = c ( ” black ”

, ” purple ” ) , l t y = 1 : 2 , cex = 0 . 8 )
484

485 curve (1/ ( ( ( 1 + x/(1 −x ) −2/(1 −x ) ) − s q r t ( (1 + x/(1 −x ) −2/(1 −x ) ) ˆ2+8/(1 −x ) ) ) /( −2) )
, from =0 , to =1 , xlab=” Pearson c o r r e l a t i o n c o e f f i c i e n t ” , ylab=”
D e f i c i t a t ruin ” , xlim = c ( 0 , 1 ) , ylim = c ( 0 , 1 ) , main = ”Moran−Downton
d e f i c i t a t ruin ” )

486 points ( seq ( 0 , 0 . 9 9 , by = 0 . 0 1 ) , ResultsMoranDefic i t , c o l = ” Purple ” )
487 legend ( 0 . 7 , 0 . 9 5 , legend = c ( ” T h e o r e t i c a l ” , ” Simulat ion ” ) , c o l = c ( ” black ”

, ” purple ” ) , l t y = 1 : 2 , cex = 0 . 8 )
488

489 ### combination of Independent −Comonotonic###
490 e r r o r <− qnorm ( 0 . 9 7 5 ) * IndepComonRuinSD/ s q r t ( 1 0 0 0 0 )
491 l e f t <− IndepComonRuin− e r r o r
492 r i g h t <− IndepComonRuin+ e r r o r
493 plotCI ( a [ 1 : 1 0 0 ] , IndepComonRuin , ui=r ight , l i = l e f t , x lab=” Pearson

c o r r e l a t i o n c o e f f i c i e n t ” , ylab=”Ruin p r o b a b i l i t y ” , main = ”
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Independent −Comonotonic ruin p r o b a b i l i t y ” , c o l = ’ red ’ , ylim = c ( 0 , 1 )
, xlim = c ( 0 , 1 ) )

494 curve ( (2+1/2 * (1 −2 * x − s q r t (9 −4 * x+4 * x ˆ 2 ) ) ) / ( 2 ) , from =0 , to =1 , c o l = ” black
” , add = TRUE)

495 legend ( 0 . 7 , 0 . 9 5 , legend = c ( ” T h e o r e t i c a l ” , ” Simulat ion ” ) , c o l = c ( ” black ”
, ” red ” ) , l t y = 1 : 2 , cex = 0 . 8 )

496

497 e r r o r <− qnorm ( 0 . 9 7 5 ) * IndepComonDeficitSD/ s q r t ( IndepComonDeficitlength )
498 l e f t <− IndepComonDeficit − e r r o r
499 r i g h t <− IndepComonDeficit+ e r r o r
500 plotCI ( a [ 1 : 1 0 0 ] , IndepComonDeficit , ui=r ight , l i = l e f t , x lab=” Pearson

c o r r e l a t i o n c o e f f i c i e n t ” , ylab=” D e f i c i t a t ruin ” , c o l = ’ red ’ , ylim
= c ( 0 , 1 ) , xlim = c ( 0 , 1 ) , main = ”Independent −Comonotonic d e f i c i t a t

ruin ” )
501 points ( c ( 0 , 1 ) , c (1/2 ,1/2) , type = ” l ” , c o l = ’ black ’ )
502 legend ( 0 . 7 , 0 . 9 5 , legend = c ( ” T h e o r e t i c a l ” , ” Simulat ion ” ) , c o l = c ( ” black ”

, ” red ” ) , l t y = 1 : 2 , cex = 0 . 8 )
503

504 ### D i s t r i b u t i o n p l o t s of the fgm copula ###
505 par ( pty=” s ” ) #Makes the p l o t squares
506 p l o t ( fgmCopula ( param=−1) , n = 10000)
507 p l o t ( fgmCopula ( param=0) , n = 10000)
508 p l o t ( fgmCopula ( param=1) , n = 10000)
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