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Abstract

In this report, a simulation study is done on the two-server fork-join queue model. Since every job in
the queue costs the server money, in this model it is assumed that servers can produce some inventory
beforehand, in order to cover some of the delay they have. To this purpose, a newsvendor game
is studied, in order to minimize the total costs with respect to the service rates and the inventory
levels. For the arrival and service distributions, the exponential and Erlang distributions have been
used. In addition, different strategies to divide the costs among the servers are studied, where the
servers solely want to minimize their own costs. The total costs obtained for the Nash equilibria
are compared to the total costs of the optimal solution in order to find a Nash equilibrium that has
a total costs that is close to that of the optimal solution, and thus a small price of anarchy. From
this research it can be concluded that giving the backlog costs to the slowest server in many cases
results in the lowest price of anarchy.
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Chapter 1

Introduction

In modern society, high-level technological products, such as smart phones, smart mobility and smart
lighting systems, are essential in every day lives. ASML is a high-tech manufacturer that produces
chips, which can be found in each of these intelligent products. Complex machines, which are used to
detect and cure illnesses in early stages, can also be found in health care nowadays. These machines
are considered to be complex, since they are made up out of many different components of high
technological value. In reality, each of these components is produced by specialized manufacturers
spread all over the country (or maybe even all over the world), that focus on the production of one
typical product. Thus, the manufacturers merely focus on the assembly of the final product out of
these complex components.

As soon as an order of such a complex product arrives at the factory of the manufacturer (e.g.
ASML), the manufacturing of its components is put into action simultaneously. When all the
components have been produced and delivered back to the factory, the final product can be assembled
and shipped out to the client. Each supplier works at his own speed, meaning that not all components
are finished at the same time. Components that are finished but cannot yet be assembled are
temporarily stored in a warehouse. The server who has the slowest production time causes a delay in
the delivery of the final product. So naturally the question arises: how can this delay be minimized?

A fork-join queue is characterized by one single arrival stream of jobs, where each job is split up into
smaller tasks that are tackled by specialized servers. So every task is completed by a unique server
and when all tasks are completed, they are bundled back together to form the final product. Thus, a
fork-join queue is a simplified model of the problem sketched above, where the servers represent the
suppliers of the high-tech manufacturer and the jobs in the system represent the components of the
product. As denoted above, all suppliers can choose their own service rate. In addition, suppliers
could also choose to produce some components beforehand that can be used to cover their delay,
also known as the inventory. Thus, each supplier can choose its own strategy, consisting of their
service rate and inventory choice.

A server does not want to produce too much inventory beforehand, since they have to pay for every
part that is stored at the warehouse. However, they also do not want to have too much delay, since
they also have to pay for each part that is in delay. Furthermore, each server makes costs that
are proportional to the service rate, meaning that each server has costs related to the number of
components that they produce. The goal is to find the perfect balance, such that the total costs are
minimized. How much inventory each server chooses is related to the newsvendor problem.

Using the model as described above, different aspects of the problem can be approximated and their
behavior can be analysed. More specifically, this report focuses on minimizing the total costs in the
system and finding the strategies for each of the suppliers that result in the minimal total costs in
the system. The total costs in the system are built up out of the production costs of the components,
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the holding costs of the components that are already produced but cannot yet be assembled and the
backlog costs for the components that are in delay. Our initial goal is to minimize the total costs,
as defined above, with respect to the inventory levels and the service rate.

In reality, each server is considered to be selfish and thus only cares about minimizing the costs he
makes himself. This means that the global optimal solution to the minimization problem in the
previous paragraph, does not have to be the optimal solution for each server individually. This
raises a far more interesting question: what combination of inventory value and service rate would
each supplier choose when he does not care about other suppliers? This question lies in the field of
game theory and more specifically Nash equilibria. One set of containing the combined strategies
of all servers that can be used to answer the previously mentioned question is referred to as a Nash
equilibrium.

Even so, the optimal solution for the total costs can be used as a benchmark for the Nash equilibiria
that are obtained using different cost division strategies. Namely, the ratio between the total costs
that are obtained for the Nash equilibrium and the total costs of the global optimal solution is an
indication for the performance of the Nash equilibria. This ratio is often referred to as the price of
anarchy or the price of stability. The closer this ratio is to one, the better the Nash equilibrium
performs. This observation promotes the following questions: how should the costs be divided among
the suppliers such that the price of anarchy reaches 1? In other words: which cost division strategy
results in a Nash equilibirum that has total costs close to that of the global optimal solution?

In order to find answers to the questions stated throughout this chapter, a simulation of the fork-join
queue is made. A simulation study is done, since there are only few analytical results known for the
fork-join queue. In Chapter 2, the different concepts are studied in relation to the already existing
literature. In Chapter 3 the basic mathematical concepts that are needed to fully understand
the model that is simulated are tackled. In particular, the concepts of the fork-join queue, the
newsvendor problem and Nash equilibria are explained. Furthermore, the model parameters that
are used in the simulation are described in this chapter and theoretical upper and lower bounds for
the total costs are determined. These upper and lower bounds are determined, since they are easy to
analyze and can be computed analytically. In Chapter 4, different arrival and service distributions
are considered, for which the results of the simulation are displayed in both tables and figures. In
Chapter 5 the main insights of the model and the corresponding simulation are summed up. Lastly,
in Chapter 6, some points of improvement are addressed that can be implemented in further research
on this topic.

The following research questions will be addressed throughout this report:

1. What effect does the choice of interarrival and service time distributions have on the optimal
solution for the total costs and the Nash equilibria for the cost distribution functions?

2. Can the total costs be divided among the suppliers in such a way that the global optimum
and the Nash equilibrium result in approximately the same total costs?

3. In what way does the choice of the cost parameters effect the results for the optimal solution
for the total costs and the Nash equilibria for the different cost distribution functions?
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Chapter 2

Literature

The concepts that are used throughout this report are not new, they have been studied by many
mathematicians over the last two centuries. This chapter illustrates the research that has been done.

The first concept that lies at the core of this research project is the fork-join queue. Several different
researches have been done on this concept. Flatto and Hahn studied the two server fork-join queue
with the arrival stream of jobs being a Poisson process with rate λ = 1 and the service times being
exponentially distributed [1]. In particular, they derived the generating functions for the equilibrium
probabilities. Baccelli and Makowski also studied the fork-join queue in their article The Fork-Join
Queue and Related Systems with Synchronization Constraints: Stochastic Ordering and Computable
Bounds [2].

A problem that is very similar to the one that is treated in our research problem is described in an
article by Kim and Agrawala [3]. In this paper, they consider a fork-join queue as an arrival stream
of jobs that are split up into m subtasks that are tackled by m servers. Each server is thus in charge
of one subtask. Subtasks that have been completed have to wait in a seperate queue until they
can be assembled. This definition of the fork-join queue coincides with the research that is carried
out throughout our report. This article uses the waiting times of the jobs in the queue in order to
determine the solutions of the fork-join queue in transient and steady state.

Another topic that plays an important role throughout our research project is game theory, and
in particular the concept of Nash equilibria and the newsvendor problem. The first mathemati-
cal formulation of game theory was generated by the German economist Oskar Morgenstern and
Hungarian-American mathematician John von Neumann in the book Theory of Games and Eco-
nomic Behavior [4].

A significant contribution to the field of game theory was made by the mathematician John Nash.
He introduced the notion of Nash equilibria, named after himself, which can be seen as solutions
to a game. A solution is a Nash equilibrium if for each server, deviating from the optimal solution
whilst ignoring the strategy of the other servers, does not benefit him. This is also called a non-
cooperative game. John Nash describes the concept of Nash equilibria in his paper Equilibrium
points in n-person games [5].

The Prisoner’s Dilemma is a concept related to Nash equilibria. The main idea behind this dilemma,
is that in a game setting where two prisoners only care about what will benefit them, the two prisoners
will not choose the strategy that has the best outcome for the system as whole. The formulation of
this concept has been described by Ross [6] and Kuhn [7] in The Stanford Encyclopedia of Philosophy.

A notion that is used to test how well a Nash equilibrium performs in comparison to the opti-
mal solution, is the price of anarchy. This notion was studied and described by Koutsoupias and
Papadimitriou [8] and the inefficiency of Nash equilibria was studied by Dubey [9].
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The minimization problem that is studied in this project, is in fact a newsvendor problem. A
newsvendor problem is about the question how a retailer should balance between avoiding too large
production costs and making as much revenue as possible. On one hand, when a retailer produces
too many products, he could in retrospect, have produced less and still made the same revenue,
and thus has too large production costs. While on the other hand, when he produces too little, he
cannot satisfy all the demand and misses profit. The newsvendor problem has also been studied by
many mathematicians. The first mathematicians to actually use the term where Morse and Kimball
according to the paper Novel Advances in Applications of the Newsvendor Model [10]. Not only does
this paper go into detail on the researchers that have already studied this model, it also studies the
new applications of this model.
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Chapter 3

Methods

In this chapter, a theoretical background is provided for a better understanding of the research
project. Mathematical concepts, such as the fork-join queue, Nash equilibria and the newsvendor
problem, that are necessary for the simulation are introduced and discussed. In addition, the different
cost distributions are introduced and a theoretical approximation of the total costs using upper
and lower bounds is presented. Lastly, the methods that are used to perform the simulations are
presented.

3.1 Fork-join queue

The main topic of this research project is the fork-join queue. Fork-join queues are characterised
by one single arrival stream of jobs, that is split up into N different subtasks that are each served
by N different unique servers. When all subtasks are completed, they are bundled back together to
form the final product and leave the system as a whole. This means that in order to determine the
delay of the manufacturer, one needs to look at the queue of the slowest server. Figure 3.1 gives a
schematic overview of the fork-join model as described above.

Figure 3.1: Fork-join queue with N servers. [11]

The interarrival times of the jobs in the arrival stream and the service times of the different servers can
both follow any arbitrary distribution. In this report, the focus lies on the exponential distribution
and the Erlang-r distribution. For the interarrival times, the exponential distribution takes a rate
parameter λ, meaning that the expected interarrival time is equal to 1/λ and the variance is equal
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to 1/λ2. For the service times of a server i, the exponential distribution takes a rate parameter
µi, where µi and µj for i 6= j are not necessarily equal. Again, the expected service time for the
exponential distribution is then equal to 1/µi and the variance is equal to 1/µ2i . The Erlang-r
distribution is equal to the sum of r exponentially distributed independent random variables with
mean 1/ν, and therefore the mean of an Erlang-r distribution is equal to r/ν and the variance is
equal to r/ν2.

In this report, the expected interarrival times and service times are kept equal for both distributions.
That means that in the case where the interarrival times are Erlang-r distributed, one takes the sum
of r exponentially distributed independent random variables with mean 1/(rλ). In this case, the rate
parameter ν, as mentioned earlier, is chosen to be ν = rλ, so that the mean of the interarrival times
becomes r/(rλ) = 1/λ, which is the same mean as for the exponential distribution. The variance in
this case is equal to r/(rλ)2 = 1/(rλ2)

Something similar is done for the case where the service times are Erlang-r distributed, in this case
one takes the sum of r exponentially distributed independent random variables with mean 1/(rµi).
In this case, the rate parameter ν, as mentioned earlier, is chosen to be ν = rµi, so that the mean
of the interarrival times becomes r/(rµi) = 1/µi, which is the same mean as for the exponential
distribution. The variance in this case is equal to r/(rµi)2 = 1/(rµ2i ). This will be explained further
in the upcoming sections.

All servers are considered to work independently of one another, meaning that the service of one
server does not depend on the service of another server and vice versa. Therefore, the queue of each
server can be considered seperately as N dependent G/G/1-queues, where the arrival of a job is at
exactly the same time for each server. The first G stands for the distribution of the interarrival times
and the second G stands for the distribution of the service times, the G can be any distribution
of choice. An exponential distribution is often denoted by M and an Erlang-r distribution is often
denoted by Er. These notations are used throughout the report.

It may occur that some servers have finished components that cannot yet be assembled, because the
other servers have not yet completed their components. In that case, the finished components are
temporarily stored in a warehouse. In order to avoid having delays, servers can choose to create an
inventory Ii beforehand. When a server has delay in comparison to the other servers, he can use the
components in his inventory to make up for this delay.

3.2 Cost functions

There are different types of costs that come into play when producing a product and its components.
Therefore, to determine the optimal combination of µi and Ii for each server i that minimizes the
total costs, it is important to define the cost functions for each server i.

The total costs can roughly be split up into three components, namely the holding costs, the pro-
duction costs of the components and the backlog costs. Holding costs are made when servers have
to temporarily store finished components in a warehouse. For each server, the holding costs are
determined by looking at the number of products that each server has stored in his warehouse.
To determine this number, one has to look at the queue length of each server at the end of the
simulation.

Each server has an inventory Ii that can be used to compensate for part of the delay. The variable
Qi(µi) stands for the queue length in front of server i with service rate µi and Ii is the inventory

9



CHAPTER 3. METHODS Bachelor Final Project

of server i. The difference Ii − Qi(µi) then represents either the number of products that the
server has overproduced or still has to produce. Furthermore, the maximum difference between each
(Qj(µj)− Ij)+ is considered, since it represents the delay that the slowest server has. The quantity
Ii−Qi(µi)+maxj≤N (Qj(µj)− Ij)+ represents the total number of products that server i has stored
in the warehouse at the end of the simulation.

The second component of the total costs is devoted to the production costs. This component is
determined by looking at the service rate of each server and multiplying it by the production costs
per unit. The last component is the backlog costs. These are determined by looking at the maximum
delay in the system. This is equal to maxj≤N (Qj(µj)− Ij)+. The total costs for the delay are then
equal to bmaxj≤N (Qj(µj)− Ij)+.

Combining the costs mentioned above results in the following formula for the total costs in the
system:

C(I,µ) =

N∑
i=1

(
E
[
hi(Ii −Qi(µi)) + himax

j≤N
(Qj(µj)− Ij)+ + ciµi

])
+ E

[
bmax
j≤N

(Qj(µj)− Ij)+
]
,

(3.1)

where I is a vector containing the inventory levels for all servers and similarly µ is a vector containing
the service rates of all servers. Furthermore, hi stands for the holding cost per product for server i,
ci stands for the production cost per unit of service rate for server i and b stands for the backlog cost
per product in delay. Here it can be seen that the backlog costs are only paid for the delay of the
slowest server, while the holding costs and production costs are paid by all the servers, where the
holding and production cost parameters may differ for each component. The variable Qi(µi) stands
for the queue length in front of server i with service rate µi and Ii is the inventory of server i. We
write x+ = max(x, 0).

There are several ways in which the backlog costs can be distributed over the N servers. In the
upcoming sections, six different cost division methods are described that are used in the simulation.

Symmetric choice

The first cost division method is the symmetric choice, meaning that the backlog costs are distributed
evenly over all servers. The costs for server i, considering that there are N components to be
produced by N servers, can be determined using the following formula:

C(i)
symm(I,µ) = E

[
hi(Ii −Qi(µi)) + himax

j≤N
(Qj(µj)− Ij)+ + ciµi

]
+ E

[
b

N
max
j≤N

(Qj(µj)− Ij)+
]
.

(3.2)

This choice for dividing the costs does not take into account the amount of delay that each server
has. All servers have to pay the same amount of backlog costs.

Symmetric choice with punishment for delay

Another symmetric way to distribute the costs among the suppliers does take into account the
amount of delay that the servers have. The amount of delay that each server has can be expressed
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by (Qi(µi) − Ii)+. The backlog costs are divided among the servers using their amount of delay.
This means that each server is accountable for (Qi(µi)− Ii)+/

∑N
i=1(Qi(µi)− Ii)+ part of the total

backlog costs. The total amount of costs that each server has to pay can thus be expressed by the
following formula:

C
(i)
punish(I,µ) = E

[
hi(Ii −Qi(µi)) + himax

j≤N
(Qj(µj)− Ij)+ + ciµi

]
+ E

[
(Qi(µi)− Ii)+∑N
i=1(Qi(µi)− Ii)+

bmax
j≤N

(Qj(µj)− Ij)+
]
.

(3.3)

These different ways of dividing costs among suppliers mentioned above give the same total costs.
So in the first place they do not seem so important to investigate. However, when looking at Nash
equilibria these different ways of dividing costs do have an influence.

Slowest server

Another way to distribute the backlog costs among the servers is to let the slowest servers account
for the backlog. In this case, all backlog costs are given to the slowest servers. If there is only one
slowest server, then this server gets all the backlog costs and the remaining servers get none. If
there are multiple servers that are all equally slow, then all of these servers get an equal part of the
backlog costs and the remaining servers get none.

Let J be the set of indices of all slowest servers and |J | denote the number of elements in J . Then
the total costs for one server i are defined in the following way:

C
(i)
slowest(I,µ) =


E [hi(Ii −Qi(µi)) + himaxj≤N (Qj(µj)− Ij)+ + ciµi] , if i 6∈ J
E [hi(Ii −Qi(µi)) + himaxj≤N (Qj(µj)− Ij)+ + ciµi]

+E
[
b
|J | maxj≤N (Qj(µj)− Ij)+

]
, if i ∈ J.

(3.4)

Fastest server

In contrary to the method that was mentioned previously, one can also give the fastest server all
of the backlog costs and the rest none. If there are multiple servers who are all equally fast, all of
these servers get an equal part of the backlog costs and the remaining servers get none. If there is
only one server who is the quickest, then this server gets all of the backlog costs and the rest of the
servers get none.

Let J denote the set of indices of the fastest servers and |J | denote the number of elements in J .
Then the total costs for one server i are defined in the following way:

C
(i)
fastest(I,µ) =


E [hi(Ii −Qi(µi)) + himaxj≤N (Qj(µj)− Ij)+ + ciµi] , if i 6∈ J
E [hi(Ii −Qi(µi)) + himaxj≤N (Qj(µj)− Ij)+ + ciµi]

+E
[
b
|J | maxj≤N (Qj(µj)− Ij)+

]
, if i ∈ J.

(3.5)

Production costs

The backlog costs could also be divided based on the productions costs of each server per unit. The
part of the backlog costs that each server has to pay can be determined by ci/

∑N
i=1 ci. This is also
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illustrated by the formula below:

C
(i)
prod(I,µ) = E

[
hi(Ii −Qi(µi)) + himax

j≤N
(Qj(µj)− Ij)+ + ciµi

]
+ E

[
ci∑N
i=1 ci

bmax
j≤N

(Qj(µj)− Ij)+
]
.

(3.6)

Holding costs

The backlog costs can also be divided based on the holding costs of each server per unit. The part
of the backlog costs that each server has to pay can be determined by hi/

∑N
i=1 hi. This is also

illustrated by the formula below:

C
(i)
hold(I,µ) = E

[
hi(Ii −Qi(µi)) + himax

j≤N
(Qj(µj)− Ij)+ + ciµi

]
+ E

[
hi∑N
i=1 hi

bmax
j≤N

(Qj(µj)− Ij)+
]
.

(3.7)

3.3 Newsvendor problem

As the title already suggests, the newsvendor problem is related to the real-life case of a newsvendor.
Every day, the newsvendor goes to his stand to sell his set of newspapers he chose to take with him
that day. Depending on the demand, the seller can either make some loss, since he has newspapers
left that he did not manage to sell, or he does not make enough profit, since the number of newspapers
he brought was too few and could not cover the demand. Either case is undesirable, since in the case
that the demand is smaller than his inventory, he loses money on the unsold papers because they
cannot be sold the next day, and in the case that the demand is larger than his inventory, he loses
additional profit. The question is: how many newspapers should he take with him every morning in
order to optimize his profit?

The profit that the seller makes can be expressed in the following equation,

R(I) = p ·min(D, I)− q · I, (3.8)

where R(I) denotes the revenue for an inventory choice I, p denotes the price of a newspaper, q
denotes the production cost of a newspaper and D is a random variable that denotes the demand.

The expected profit can then be expressed by the following equation,

E [R(I)] = E [p ·min(D, I)− q · I] . (3.9)

The goal of the newsvendor is to maximize his profit. In order to do so, he needs to find an inventory
level I such that his expected profit is maximized. This can be expressed by the following equation,

max
I≥0

(E [R(I)]) = max
I≥0

(E [p ·min(D, I)− q · I]) . (3.10)

This is the solution to the newsvendor problem. For more details, see [12, Ch. 4].

In this project, a minimization problem is studied, thus the aim is to minimize the costs rather than
to maximize the profit. Furthermore, the objective function is given in Equation (3.1), and has 2N
variables, representing the inventory levels and service rates of the N servers.
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3.4 Nash equilibrium

Since this project encounters multiple servers who each choose their own strategy and do not coop-
erate, the servers do not necessarily choose the service rates and inventory levels that minimize the
cost function in Equation (3.1) as their service rate and inventory level. Their costs are dependent
on both their own decisions, and that of other servers. So, the question what inventory level and
service rate will be chosen is a game-theoretical question. The Nash equilibrium is a general solution
concept for these games.

One considers a game of N players where each player chooses his own strategy. The set of strategies
from all players is called the strategy profile. A strategy profile is called a Nash equilibrium if none
of the players could do better by changing only his own strategy [5]. In general it means that you
ask yourself the following question: if the strategy of all other players but my own stays the same,
is there a better strategy that I could choose for myself that will benefit me more?

The general concept can also be explained using an example. A game with two servers is considered:
server 1 and server 2. There are two strategies that both servers can choose from: strategy A or B.
Strategy A is defined in the following way: the server chooses a service rate of 1.5 and an inventory
of 1. Strategy B is defined in the following way: the server chooses a service rate of 2.5 and an
inventory of 0. A table is provided in which the different options and their outcomes are described.
The outcomes are represented as a combination (C1, C2) of the total costs for each individual server.
So C1 represents the total costs for server 1 and the same for server 2. This table is displayed below.

Server 2
Strategy A Strategy B

Server 1 Strategy A (2,2) (10,1)
Strategy B (1,10) (5,5)

Table 3.1: Example of possible strategy combinations and their outcomes.

From this table the Nash equilibria can be derived. Starting at a solution (2,2) where server 1 chooses
strategy A and server 2 chooses strategy A, the Nash equilibrium is determined. Firstly, server 1 is
considered and it is assumed that server 2 does not change his strategy. Therefore, it can be derived
from Table 3.1 that if server 1 changes his strategy to strategy B, while server 2 remains remains
at strategy A, that server 1 benefits from this move, since the total costs for server 1 decrease.
Therefore the selected strategy for both servers as mentioned before is not a Nash equilibrium.

The same can be done for server 2 for the resulting combination of the last step (1,10). Assuming
now that server 1 remains at strategy B and server 2 can choose to either remain at strategy A or
move to strategy B. It can be derived from Table 3.1 that if server 2 moves to strategy B, while server
1 remains at strategy B, the total costs for server 2 decrease. These steps can be repeated until both
servers decide to not change strategy anymore. If this result has been achieved, the resulting set of
strategies is called a Nash equilibrium.

In the example mentioned above, the Nash equilibrium (5, 5) is a strict Nash equilibrium, since
changing strategy for either one of the servers results in a higher total costs. Therefore, the servers
do not want to change their strategy, since this only results in loss for them.

In Table 3.1 it can also be seen that (2, 2) is the optimal solution to the Newsvendor problem on
Equation (3.1). In this case, the Nash equilibrium is not the same as the optimal solution. This
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means that servers making decisions based on their own game does not necessarily have to result in
the optimal solution of the total cost function.

This is also related to the Prisoner’s dilemma, as described by Ross [6] and Kuhn [7] in The Stan-
ford Encyclopedia of Philosophy. The Prisoner’s dilemma describes a similar situation, where two
prisoners can choose between two strategies: confession or denial. If both servers confess, they both
get the highest jail sentence. If either one of the prisoners confess and the other denies, then the
prisoner that confesses gets no jail sentence, whereas the other prisoner faces a high jail sentence,
but one that is lower than in the case that both prisoners confess. The last case is the case where
both prisoners deny. In this case, the jail sentence is split between the two servers, these are the
lowest jail sentences that both can get that are not equal to zero. Considering this problem, both
prisoners will opt to confess, because the jail sentences for both of them are the lowest, considering
that they have no clue what the other prisoner will choose. In this case it can be seen that the Nash
equilibrium is not equal to the optimal solution in this case, which is for both of them to deny.

To measure how well a Nash equilibrium performs, it can be compared to the optimal solution for
the total cost function. This is done using the so called price of anarchy or price of stability. The
price of anarchy is defined as the ratio between the total cost of the Nash equilibrium and the total
costs of the optimal solution [8]. This ratio is described in the following formula:

PoA =
Coptimum(I,µ)

CNash(I,µ)
, (3.11)

where PoA denotes the price of anarchy, Coptimum(I,µ) denotes the total costs of the global optimum
and CNash(I,µ) denotes the total costs of the Nash equilibrium. This ratio can take on values larger
or equal to 1. The closer the price of anarchy is to 1, the better the Nash equilibrium performs.

This principle of Nash equilibria is used throughout this report to investigate whether different
cost distribution functions for servers result in different Nash equilibria. In addition, the goal is to
investigate whether there is a cost distribution function that has a Nash equilibria that is equal to
the solution of the minimum total costs.

3.5 Distributions for the interarrival and service times

In the sections that follow, the approach from Adan and Resing [13, Ch. 6,8] is followed.

3.5.1 M/M/1-queue

AnM/M/1-queue is a queue that has exponential interarrival times with mean 1/λ and exponential
service times with mean 1/µi. The 1 represents the fact that there is only one server. For stability
of the queue, to make sure that the queue lengths do not converge to ∞, it is required that ρi =
λ/µi < 1. Here ρi is called the occupation rate and indicates the fraction of time that the server is
working.

The variable pn denotes the probability that there are n jobs in the system and is described by the
following equation:

pn = (1− ρi)ρni . (3.12)
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Using this function, the mean number of jobs in the system L can be determined using the following
formula:

E[L] =
∞∑
n=0

npn =
ρi

1− ρi
. (3.13)

These two characteristics of the M/M/1-queue are used later on to determine parameters for the
model.

3.5.2 M/Er/1-queue

An M/Er/1-queue is a queue that has exponential interarrival times with mean 1/λ and Erlang-r
distributed service times with mean r/(rµi), where r is the shape of the distribution and rµi is the
rate. The variable µi denotes the service rate of server i. The 1 indicates that this queue consists
of one server. The occupation rate is equal to ρi = λ · r/(rµi) = λ/µi and for the stability of the
queue it is required that ρi < 1.

Let pn be the equilibrium probability that there are n phases of work in the system. The queue
length distribution is obtained by looking at the equilibrium equations of the queue, by setting the
flow into the state n equal to the flow out of state n [13]. These equations are shown below:

λp0 = rµip1 (3.14)
(λ+ rµi)pn = rµipn+1, n = 1, . . . r − 1 (3.15)
(λ+ rµi)pn = λpn−r + rµipn+1, n = r, r + 1, r + 2, . . . (3.16)

These equations can be solved by finding a solution of the form pn = xn with n = 0, 1, 2, . . .. This
solution is substituted into Equation (3.16) to find an expression for x, where |x| < 1 and µ > 1.
Throughout this report, it is assumed that λ = 1 and r = 2. Then, the equation that needs to be
solved for x is the following:

(1 + 2µi)x
2 = 1 + 2µix

3. (3.17)

Solving this equation for x results in the following solutions:

x1 =
1

4µi

(
1−

√
1 + 8µi

)
and x2 =

1

4µi

(
1 +

√
1 + 8µi

)
(3.18)

A linear combination pn = c1x
n
1 + c2x

n
2 of both solutions is now considered. From Adan and Resing

[13] it is known that the coefficients c1 and c2 satisfy,

c1 =
1− 1

µi

1− x2
x1

and c2 =
1− 1

µi

1− x1
x2

. (3.19)

Let qn be the probability that there are n jobs in the system. Then qn can be expressed by the
following formula:

qn = c1 · (x−11 + 1)(x21)
n + c2 · (x−12 + 1)(x22)

n. (3.20)

Using this probability the value of E [Qi(µi)] can be determined.
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3.5.3 Er/M/1-queue

An Er/M/1-queue is a queue that has Erlang-r distributed interarrival times with mean r/(λr),
where r is the shape parameter and λr is the rate, and exponentially distributed service times with
mean 1/µi, where µi is the service rate of server i. The 1 indicates that this queue consists of one
server. In this report, the expected value of the interarrival times for the Erlang-r distribution is kept
equal to that of theM/M/1-queue. That means that for the interarrival times one takes 1/r times the
sum of r exponential random variables. Then the occupation rate is equal to ρi = (rλ)/(rµi) = λ/µi
and it is required that ρi < 1 for the stability of the queue.

In order to find the distribution of the number of jobs in the queue, the following equation must be
solved:

σ = Ã(µi − µiσ), (3.21)

where Ã is the Laplace transform of the Erlang-r distribution, µi is the service rate and σ is the
parameter of the geometric distribution of the number of jobs in the queue. To keep the expected in-
terarrival time equal, as mentioned earlier, the shape paramater must be equal to the rate parameter,
taking that λ = 1. For the Laplace transform the following equation holds:

Ã(s) =

(
r

r + s

)r
. (3.22)

Throughout this report r = 2. Solving Equation (3.21) using the constraint that 0 < σ < 1, the
following holds:

σ =
−
√
µi (µi + 8) + µi + 4

2µi
. (3.23)

From this it follows that the number of jobs just before arrival can be described using the following
equation:

P(La = n) = an = (1− σ)σn, (3.24)

where P(La = n) is the probability that there are n jobs in the queue just before arrival. Since
P(La = n) follows a geometrical distribution, the numerical analysis is done for La. Nevertheless,
one is aware that P(Qi(µi) = n) 6= P(La = n).

3.6 Model parameters

In order to run the simulation, various model parameters need to be specified: the rate for the
interarrival times λ, the service rate µi, the shape parameter r for the Erlang-r distributions, the
number of servers N , hi, ci and b, the inventory levels Ii, and the simulation time T .

Throughout this report, the number of servers N is set to be 2. This is done because the simulation
time increases exponentially when N increases. In order to compute the Nash equilibria, it is nec-
essary to simulate all possible combinations of service rates µi for all servers. Therefore, increasing
the number of servers N , means that the number of combinations of service rates increases expo-
nentially and thus also the simulation time increases exponentially. Furthermore, in the cases that
the interarrival times are exponentially distributed, the rate λ is set to be 1. In the case where the
interarrival times have an Erlang-r distribution, the rate parameter rλ and the shape parameter r
satisfy r = 2 and λ = 1.
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In the case that the service times are Erlang-r distributed, the shape parameter r is set to be
2. In this case the rate parameter is equal to rµi = 2µi. In the case that the service times are
exponentially distributed, the rate parameter is equal to µi. Since the goal in this report is to find
the combinations of µi such that the total costs are minimized, the values of µi are ranged. The
values that need to be considered are determined using upper and lower bounds for the total costs.
This is done in Section 3.7.

Different values for the parameters hi, ci and b are tested to determine the influence of each of these
parameters on the choice of µi and Ii for each server. The combinations of parameters that are
considered are shown in Table 3.2 below.

h1 h2 c1 c2 b

CASE 1 1 1 1 1 1
CASE 2 1 2 1 2 1
CASE 3 1 1 1 1 2
CASE 4 1 2 2 1 1

Table 3.2: Combinations of the cost parameters ci, hi and b that are considered.

The values for the simulation time T and the inventory Ii of a server i are determined in the following
sections.

3.6.1 Simulation time

In the model where the interarrival times and the service times are exponentially distributed, the
individual queues of each server i are considered to be M/M/1−queues. Therefore, the simulation
time can be determined by looking at the stationary distribution of the M/M/1−queue. Since the
values in the set for the parameters µi are larger than 1, it can be said that the queues of both
servers will reach a steady state.

Using Proposition 5.3 by Robert [14], the simulation time T can be determined that is needed to
reach steady state. The formula as denoted in this proposition is displayed in the equation below:

||Px(L(T ) ∈ ·)−Gρ||tv =
1

2

+∞∑
n=0

|Px(L(T ) = n)− ρni (1− ρi)| ≤
(√

µi
λ

x

+ 1

)
e−(
√
λ−√µi)2T , (3.25)

where Gρ is the geometric distribution on N with parameter ρi = λ/µ < 1, x ∈ N is the starting
length of the queue and T ≥ 0 and Px(L(T ) ∈ ·) is the distribution of the variable L(T ), the
distribution of the number of jobs in the system, at time T . This inequality is an upper bound for
the convergence rate of the total variation distance between the system at time T , and the system
in steady state. Thus, this inequality gives us a measure how far the system is from steady state, at
time T .

In our case, x = 0 and the values for µi are determined using the upper and lower bounds in Section
3.7. The value for the simulation time T is found by trying different values of T such that the
distance to equilibrium ||Px(L(T ) ∈ ·)−Gρ||tv of the distribution of L(T ) is as small as possible.

The simulation time T for a combination (µ1, µ2) that is used to simulate is determined by looking
at the minimum of both µi’s and using its value in the formula denoted above. The reason for this
is that the queue with the smallest service rate has a longer simulation time before it reaches steady
state, since it is closer to 1.

17



CHAPTER 3. METHODS Bachelor Final Project

To determine the simulation time T , the right hand side of the formula is set equal to some parameter
s that denotes the desired accuracy. This parameter s is chosen to be 0.01 in this simulation. The
general formula that is used to determine the simulation time can then be denoted by, using that
λ = 1:

2e−(1−
√
µi)

2T = 0.01. (3.26)

This equation can be rewritten to obtain an expression for t:

T =
ln (200)

(1−√µi)2
. (3.27)

Observe that when µ ↓ 1, T →∞.

The assumption is made that the simulation times as calculated for the M/M/1-queue can also be
used for the Er/M/1-queue and the M/Er/1-queue.

3.6.2 Inventory level

In theory, the inventory level can take on any value in the set N. However, it is impossible to consider
all these values since this would take too many computations. Therefore, a limited set of inventory
values is determined for each value of µi.

The expected queue length of a server is used to determine such a set. It follows from an M/M/1-
queue that the queue length has a geometric distribution. Therefore the probability distribution for
the queue length is:

P(Qi(µi) = n) = (1− ρi)ρni , n = 0, 1, 2, . . . . (3.28)

Consider this probability distribution and look at the probability that P(Qi(µi) ≥ n) = 0.01 for
some n ∈ N. This is the same as checking the following:

P(Qi(µi) ≥ n) =
∞∑
j=n

(1− ρi)ρji = 0.01. (3.29)

This value of n is determined for each value of µi. For each service rate µi the inventory level Ii is
chosen from a set [0, n].

The assumption is made that the way of calculating the inventory values for the M/M/1-queue as
shown above also applies to the Er/M/1-queue and the M/Er/1-queue.

3.7 Theoretical bounds for the total costs

In the sections that follow, the approach from Adan and Resing [13, Ch. 6,8] is followed.

3.7.1 M/M/1-queue

To the best of our knowledge, the total costs can only be determined using a simulation, because
the term E[maxj≤N (Qj(µj) − Ij)+] is difficult to compute, since Qi(µi) and Qj(µj) have the same
arrival process. However, easy to analyze upper and lower bounds are available.
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Therefore, the total costs are approximated theoretically by considering upper and lower bounds. To
determine such an lower and upper bound, each component of the total cost function is considered
separately. To that extent, the total costs formula can be rewritten in the following way:

C(I,µ) =
N∑
i=1

(
E [hi(Ii −Qi(µi))] + E

[
himax

j≤N
(Qj(µj)− Ij)+

]
+ E [ciµi]

)
+ E

[
bmax
j≤N

(Qj(µj)− Ij)+
]
.

(3.30)

To find a general expression for the upper and lower bounds, the cost parameters hi, ci and b remain
undefined. Firstly, the expected value E [hi(Ii −Qi(µi))] can be determined exactly by the following:

E [hi(Ii −Qi(µi))] = hiE [Ii −Qi(µi)] = hi(E [Ii]− E[Qi(µi)]) = hi(Ii − E[Qi(µi)]). (3.31)

Furthermore, it is known that E[Qi(µi)] = ρi/(1− ρi), with ρi = λ/µi and λ = 1. Substituting this
back into Equation (3.31) results in the following:

E [hi(Ii −Qi(µi))] = hi (Ii − E[Qi(µi)]) = hi

(
Ii −

ρi
1− ρi

)
= hi

(
Ii −

1
µi

1− 1
µi

)
= hi

(
Ii −

1

µi − 1

)
.

(3.32)

The expected value E [ciµi] can also be easily determined, since ci and µi are both constants, so this
results in the following:

E [ciµi] = ciµi. (3.33)

Now all that is left to be determined is E [maxj≤N (Qj(µj)− Ij)+]. This cannot be determined
exactly, so an upper and lower bound is used to estimate this expected value. Since it is known that
(Qj(µj)−Ij)+ is always non-negative, it can be said that for all n ∈ {1, . . . , N}, the following holds:

(Qn(µn)− In)+ ≤ max
j≤N

(Qj(µj)− Ij)+ ≤
N∑
j=1

(Qj(µj)− Ij)+. (3.34)

It can be said that for Qi(µi) ∈ {0, 1, . . . , Ii} the value of (Qj(µj) − Ij)+ is equal to 0. Therefore,
the expected value of (Qj(µj)− Ij)+ can be determined in the following way:

E
[
(Qj(µj)− Ij)+

]
=

∞∑
n=Ij

(n− Ij)P(Qj(µj) = n) =

∞∑
n=Ij

(n− Ij)(1− ρj)ρnj

=
ρ
1+Ij
j

1− ρj
=

µ
−Ij
j

µj − 1
.

(3.35)

Using this result, the expected value E
[∑N

j=1(Qj(µj)− Ij)+
]
can also be easily determined, since

the expected value of the sum of random variables is equal to the sum of the expected values of each
random variable. So it follows that:

E

 N∑
j=1

(Qj(µj)− Ij)+
 =

N∑
j=1

E
[
(Qj(µj)− Ij)+

]
=

N∑
j=1

µ
−Ij
j

µj − 1
. (3.36)
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Combining the results obtained above, the following holds for the lower bound, for all j ∈ {1, . . . , N}:

N∑
i=1

(
hi

(
Ii −

1

µi − 1
+

µ
−Ij
j

µj − 1

)
+ ciµi

)
+ b

µ
−Ij
j

µj − 1
. (3.37)

For the upper bound the following holds:

N∑
i=1

hi
Ii − 1

µi − 1
+

N∑
j=1

µ
−Ij
j

µj − 1

+ ciµi

+ b
N∑
j=1

µ
−Ij
j

µj − 1
. (3.38)

For N = 2, the upper and lower bounds as defined above can be minimized in order to find the
combination of service rates and inventory levels (µ1, I1, µ2, I2) for which the total cost function is
minimal. All inventory values Ii as defined in Section 3.6.2 are considered. The service rate µi can
take on all values in the real numbers that are larger than 1, this condition is necessary for the
stability requirement of the queue. The upper and lower bounds as computed in this section are
used to determine the values of µi that are considered in this simulation.

In this report, four different combinations of cost parameters are considered. For each of these
combinations, the upper and lower bounds combinations have been determined. The results are
displayed in the table below (µi rounded to one decimal).

Cost parameter combinations Lower bound Upper bound
Strategy Total costs Strategy Total costs

h1 = 1, h2 = 1, c1 = 1, c2 = 1, b = 1 (1.7, 0, 1.7, 0) 4.8284 (2.1, 1, 2.1, 1) 6.9789
h1 = 1, h2 = 2, c1 = 1, c2 = 2, b = 1 (1.6, 0, 1.6, 0) 6.4641 (2.3, 1, 1.8, 1) 9.7453
h1 = 1, h2 = 1, c1 = 1, c2 = 1, b = 2 (1.8, 1, 1.8, 1) 5.8769 (2.3, 1, 2.3, 1) 7.7370
h1 = 1, h2 = 2, c1 = 2, c2 = 1, b = 1 (1.5, 1, 1.7, 0) 6.3952 (1.8, 2, 2.4, 0) 9.7212

Table 3.3: Upper and lower bounds for different cost parameter combinations for theM/M/1-queue.

The upper and lower bounds that have been computed above become less sharp for for N > 2, since

the
∑N

j=1

µ
−Ij
j

µj−1 term becomes larger. In these cases, it is possible to fins sharper upper and lower
bounds.

3.7.2 M/E2/1-queue

The second case is the case where the service times are Erlang-2 distributed, with shape parameter
2. Using a similar approach to the section above, an expression can be found for the upper and lower
bounds for this case. Each of the components in the total cost function are looked at separately. In
order to find a general expression for the upper and lower bound, the parameters hi, ci and b remain
undefined.

An exact expression is determined for E [hi(Ii −Qi(µi))] similarly to what was done for theM/M/1-
queue. Firstly an expression for E [Qi(µi)] is determined, this is done using the probability P(Qi(µi) =
n) = qn from Equation (3.20) that is defined in Section 3.5.2. For E [Qi(µi)] the following expression
is obtained:

E [Qi(µi)] =

∞∑
n=0

nqn =

∞∑
n=0

n
(
c1(x

−1
1 + 1)(x21)

n + c2(x
−1
2 + 1)(x22)

n
)
. (3.39)
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The exact value of this expression results in the following:

E [Qi(µi)] =
4µ2i − 1

8(µi − 1)µ2i
. (3.40)

Substituting this back into Equation (3.31) results in the following:

E [hi(Ii −Qi(µi))] = hi

(
Ii −

4µ2i − 1

8(µi − 1)µ2i

)
. (3.41)

The expected value E [ciµi] is determined in the same way as for the M/M/1-queue, so for this
expected value, Equation (3.33) still holds.

For E [maxj≤N (Qj(µj)− Ij)+] the bounds in Equation (3.34) are applied. An expression for
E [(Qi(µi)− Ii)+] can be determined using the following,

E
[
(Qi(µi)− Ii)+

]
=
∞∑
n=Ii

(n− Ii)qn

=

∞∑
n=Ii

(n− Ii)
(
c1(x

−1
1 + 1)(x21)

n + c2(x
−1
2 + 1)(x22)

n
)
.

(3.42)

The closed expression for this expectation is too long to display. Therefore, it has been left out of
this report. Combining the formulas found above in the same way as was done for theM/M/1-queue
results in expression for the upper and lower bounds.

The results for the upper and lower bounds for the four cases considered in the report are displayed
in the table below.

Cost parameter combinations Lower bound Upper bound
Strategy Total costs Strategy Total costs

c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 1 (1.6, 0, 1.6, 0) 4.6038 (2.0, 1, 2.0, 1) 6.4938
c1 = 1, c2 = 2, h1 = 1, h2 = 2, b = 1 (1.5, 0, 1.5, 0) 6.1662 (2.1, 1, 1.7, 1) 9.0774
c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 2 (1.7, 1, 1.7, 1) 5.4826 (2.1, 1, 2.1, 1) 7.1898
c1 = 2, c2 = 1, h1 = 1, h2 = 2, b = 1 (1.4, 1, 1.6, 0) 6.0544 (1.7, 2, 2.3, 0) 9.1313

Table 3.4: Upper and lower bounds for different cost parameter combinations for theM/E2/1-queue.

3.7.3 E2/M/1-queue

The third and final case is the case where the interarrival times are Erlang-2 distributed, with shape
parameter 2. Using a similar approach to the sections above, an expression can be found for the
upper and lower bounds for this case. Each of the components in the total cost function are looked
at separately. In order to find a general expression for the upper and lower bound, the parameters
hi, ci and b remain undefined.

An exact expression is determined for E [hi(Ii −Qi(µi))] similarly to what was done for theM/M/1-
queue. Firstly, an expression for E [Qi(µi)] is computed, using a similar approach to the sections
above. This is done using the distribution P(Qi(µi) = n) that was found in Section 3.5.3, from
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which it follows that,

E [Qi(µi)] =
∞∑
n=0

nP(Qi(µi) = n) =
µi −

√
µi(µi + 8) + 4

µi +
√
µi(µi + 8)− 4

. (3.43)

Substituting this back into Equation (3.31) results in the following,

E [hi(Ii −Qi(µi))] = hi

(
Ii −

µi −
√
µi(µi + 8) + 4

µi +
√
µi(µi + 8)− 4

)
. (3.44)

The expected value E [ciµi] is determined in the same way as for the M/M/1-queue, so for this
expected value, Equation (3.33) still holds.

For E [maxj≤N (Qj(µj)− Ij)+] the bounds in Equation (3.34) are applied. An expression for
E
[
(Qi(µi)− Ii)+

]
can be found in a similar manner as for the cases above. It follows that,

E
[
(Qi(µi)− Ii)+

]
=
∞∑
n=Ii

(n− Ii)P(Qi(µi) = n) =

2−Iiµi

(
µi−
√
µi(µi+8)+4

µi

)Ii+1

µi +
√
µi(µi + 8)− 4

. (3.45)

Combining the formulas found above in the same way as was done for the M/M/1-queue results in
expression for the upper and lower bounds.

The results for the upper and lower bounds for the four cases considered in the report are displayed
in the table below.

Cost parameters Lower bound Upper bound
Strategy Total costs Strategy Total costs

c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 1 (1.6, 0, 1.6, 0) 4.3062 (1.9, 1, 1.9, 1) 6.1208
c1 = 1, c2 = 2, h1 = 1, h2 = 2, b = 1 (1.5, 0, 1.5, 0) 5.8531 (2.0, 1, 1.9, 0) 8.5181
c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 2 (1.9, 0, 1.9, 0) 5.1926 (2.0, 1, 2.0, 1) 6.6511
c1 = 2, c2 = 1, h1 = 1, h2 = 2, b = 1 (1.4, 1, 1.6, 0) 5.8585 (1.8, 1, 2.2, 0) 8.4184

Table 3.5: Upper and lower bounds for different cost parameter combinations for the E2/M/1-queue.

3.7.4 M/M/1 vs. M/E2/1 vs. E2/M/1

There are a couple of observations that can be made already based on the upper and lower bounds
for the different types of interarrival and service time distributions. To make the comparison between
the results for the upper and lower bounds for the different cases and distributions, a table has been
made of the total costs. This is Table 3.6 below.

CASE 1 CASE 2 CASE 3 CASE 4
Lower Upper Lower Upper Lower Upper Lower Upper

M/M/1 4.8284 6.9789 6.4641 9.7453 5.8769 7.7370 6.3952 9.7212
M/E2/1 4.6038 6.4938 6.1662 9.0774 5.4826 7.1898 6.0544 9.1313
E2/M/1 4.3062 6.1208 5.8531 8.5181 5.1926 6.6511 5.8585 8.4184

Table 3.6: Upper and lower bounds for the optimal total costs forM/M/1 vs. M/E2/1 vs. E2/M/1.
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In this table it can be observed that the total costs for the upper and lower bounds for the four cases
are the highest for the M/M/1-queue. The costs decrease for the M/E2/1-queue and they decrease
even further for the E2/M/1-queue. From this it can already be concluded that when the variance
of the distribution decreases, so do the total costs.

A similar table to Table 3.6 has been made to compare the chosen service rates for the upper and
lower bounds for each type of queue and each case that is considered. The results are shown in
Table 3.7

CASE 1 CASE 2 CASE 3 CASE 4
Lower Upper Lower Upper Lower Upper Lower Upper

M/M/1 (1.7, 1.7) (2.1, 2.1) (1.6, 1.6) (2.3, 1.8) (1.8, 1.8) (2.3, 2.3) (1.5, 1.7) (1.8, 2.4)

M/E2/1 (1.6, 1.6) (2.0, 2.0) (1.5, 1.5) (2.1, 1.7) (1.7, 1.7) (2.1, 2.1) (1.4, 1.6) (1.7, 2.3)

E2/M/1 (1.6, 1.6) (1.9, 1.9) (1.5, 1.5) (2.0, 1.9) (1.9, 1.9) (2.0, 2.0) (1.4, 1.6) (1.8, 2.2)

Table 3.7: Upper and lower bounds for the service rates for M/M/1 vs. M/E2/1 vs. E2/M/1.

In Table 3.7 it can be observed that the service rates in the different cases are the highest for the
M/M/1-queue. The service rates decrease for the M/E2/1-queue and decrease even further for the
E2/M/1-queue. This is the same observation as for the total costs.

The service rates that result in the upper and lower bounds for the total costs are used as upper
and lower bounds for the service rates that are considered in the simulation. This is done to limit
our search.
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Results

In this section, the results of the models with two servers are presented. Each server i has his own
service rate µi, with i ∈ {1, 2}. The values for the service rates µi that are considered for each
simulation are determined using the theoretical upper and lower bounds that were computed in
Section 3.7.

The computation time of the simulations is a limitation for the number of runs and therefore the
number of runs for all simulations is set to be 1000. The maximum distance between the simulation
and the theoretical distribution is set to be 0.01. The simulation times are then computed using
Equation (3.27) in Section 3.6.1. In order to be able to compare the influence of the arrival and
service distributions on the obtained results, the same simulation times are used for M/E2/1-queue
and the E2/M/1-queue, as for the M/M/1-queue. Different combinations of the parameters hi, ci
and b are considered for each model.

The simulation determines the minimum total costs for each combination of service rates (µ1, µ2)
based on the empirical mean of 1000 observations, considering all possible combinations of inventory
values. The inventory levels that are considered for each pair are determined using Equation (3.29)
in Section 3.6. For each pair of service rates (µ1, µ2) that is considered, the simulation determines
the pair of inventory levels (I1, I2) that results in the minimum total costs for that combination of
service rates (µ1, µ2). For each combination of service rates (µ1, µ2) the simulations thus give a pair
of inventory levels (I1, I2) that results in the minimum total costs for that combination of service
rates (µ1, µ2).

Out of these results, the global minimum of all minimum combinations of service rates and inventory
levels (µ1, I1, µ2, I2) is determined to give the optimal combination of service rates and inventory
levels (µ̃1, Ĩ1, µ̃2, Ĩ2) that results in the global minimum of the total costs.

4.1 M/M/1-queue

The first model that is considered is the model where the interarrival times, as well as the service
times, are exponentially distributed. The queue of each individual server can then be considered as
an M/M/1-queue that has the same arrival stream as the other servers.

In Section 3.7.1, the upper and lower bounds for the total costs are computed for each combination
of cost parameters that is considered. The service rates that result in these minimum total costs are
displayed in Table 3.7. From this table, it can be seen that the service rates for this type of queue
range from 1.5 to 2.4. To determine if this is indeed the case, the values of the service rates µi in the
simulation are ranged from 1.4 to 2.4 with steps of 0.1. The simulation is run for all combinations
of service rates (µ1, µ2). A step size of 0.1 is chosen since taking an even smaller step size did not
show more accuracy.
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4.1.1 CASE 1: h1 = 1, h2 = 1, c1 = 1, c2 = 1 and b = 1

Optimal strategy

In the initial case, the holding, backlog and production cost parameters are set to be 1.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds that were calculated in Section 3.7.1 suggest that the minimum of the total
costs for this combination of the parameters is obtained for the service rates µi between 1.7 and 2.1.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (2.1, 0, 2.1, 0) is the optimal strategy for both servers and gives a minimum total
costs equal to 6.1170. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.1 and displayed in Table 3.3, it can be concluded that the optimal
strategy resulting from the simulation is considerably close to the upper bound that was calculated
for the total costs.

The difference between the two results is the choice for the inventory levels. The optimal inventory
level choice for the theoretical upper bound is equal to (1, 1) while the optimal inventory level choice
from the simulation is (0, 0).

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.1 below. The inventory levels that assure these minimal costs are left out of the
plot.

Figure 4.1: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
M/M/1-queue for CASE 1.

In Figure 4.1 it can be seen that for the combinations of service rates (µ1, µ2) where one of the
two service rates µi is small (close to 1.4) that the total costs are high. Combinations with both
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service rates µi closer to a value of 2.0 have lower total costs. Another observation is that for
the combinations of service rates µi that have both service rates µi higher than 2.0 the total costs
increase again. The optimum solution is clearly visible at (2.1, 2.1) in the dark blue.

Furthermore, the plot seems to be symmetric around the plane µ1 = µ2. In addition, the figure
clearly shows that the minimum is attained in the interior of the set of values that is observed. Thus,
it can be said that the actual minimum of C(I,µ) is very well approximated.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.1.

Total costs µ1 I1 µ2 I2

Optimal Solution 6.1170 2.1 0 2.1 0

Symmetric Nash equilibrium 7.9760 1.4 0 1.4 0
Theoretical value 9.0717 1.7 0 1.7 0

Symmetric with Punishment Nash equilibrium 6.2820 1.9 0 1.7 0
Slowest server Nash equilibrium 6.1170 2.1 0 2.1 0
Fastest server Nash equilibrium 7.9760 1.4 0 1.4 0
Production costs Nash equilibrium 7.9760 1.4 0 1.4 0
Holding costs Nash equilibrium 7.9760 1.4 0 1.4 0

Table 4.1: Results M/M/1-queue for c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in
a Nash equilibrium for the combination of service rates and inventory levels (1.4, 0, 1.4, 0) with a
total cost of 7.976. In this case, the price of anarchy is the highest, in comparison to the other
Nash equilibria. It must be noted that the service rate value µi = 1.4 is at the boundary of the
service rates µi that have been considered in this simulation. This could mean that the actual Nash
equilibrium is at a lower value of µi.

Comparing this result to the theoretical value for the Nash equilibrium (as computed using the
upper and lower bounds in Section 3.7.1), shows that there is a slight difference between the two.
The theoretical result for the Nash equilibrium of the symmetric choice is (1.7, 0, 1.7, 0) with a total
cost of 9.0717. The theoretical Nash equilibrium is obtained for a combination of µi whose values
are higher than those of the simulation result.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay is, also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (1.9, 0, 1.7, 0)
with a total cost of 6.2820. Again it can be seen that the Nash equilibrium has an inventory choice
of 0 for both servers. In this case, the service rates µi that both servers choose are different from
one another.

Looking at the results in Table 4.1 it can be seen that assigning the backlog costs to the slowest
server give a Nash equilibrium at the combination of service rates and inventory levels (2.1, 0, 2.1, 0)
with a total costs of 6.1170. This is in line with the results obtained for the optimal solution, which
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is also displayed in Table 4.1. Furthermore, assigning the backlog costs to the slowest server give
the lowest price of anarchy out of all Nash equilibria. In this case the price of anarchy is equal to 1.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.4, 0, 1.4, 0) with a total costs of 7.9760. In these cases, the price of anarchy is the highest. Again,
it has to be noted that the values of these service rates are at the boundary of all values that are
considered in this simulation. Thus, it is likely that the actual Nash equilibria for these cost divisions
are obtained for service rates µi ∈ (1, 1.4].

4.1.2 CASE 2: h1 = 1, h2 = 2, c1 = 1, c2 = 2 and b = 1

In the second case, the holding cost parameters are set to be h1 = 1 and h2 = 2 and the same holds
for the production cost parameters which are set to be c1 = 1 and c2 = 2. Lastly, the parameter for
the backlog costs for all servers is set to be b = 1.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds for the total costs can be calculated using the formulas in Section 3.7.1. It
follows that the choice of service rates and inventory levels that results in the optimal costs for the
theoretical lower bound is (1.6, 0, 1.6, 0) and for the theoretical upper bound is (2.3, 1, 1.8, 1).

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (1.9, 0, 1.7, 0) is the optimal strategy for both servers and gives a minimum total
costs equal to 8.3420. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.1, it can be concluded that the optimal strategy resulting from the
simulation falls between the two theoretical bounds.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.2 below. The inventory levels that assure these minimal costs are left out of the
plot.
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Figure 4.2: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
M/M/1-queue for CASE 2.

In Figure 4.2 it can be seen that the plot is not symmetric, as was the case Section 4.1.1. The reason
why the symmetry is lost here, is that the costs parameters differ per server, whereas for the previous
case the cost parameters were the same. The highest total costs are obtained for combinations of
service rates (µ1, µ2), where µ1 is close to 1.4 and µ2 is close to 2.4. The optimal combination is
clearly visible in the color dark blue.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.2.

Total costs µ1 I1 µ2 I2

Optimal Solution 8.3420 1.9 0 1.7 0
Symmetric 10.3370 1.4 0 1.4 0
Symmetric with Punishment 8.3420 1.9 0 1.7 0
Slowest server 8.3420 1.9 0 1.7 0
Fastest server 10.3370 1.4 0 1.4 0
Production costs 10.3370 1.4 0 1.4 0
Holding costs 10.3370 1.4 0 1.4 0

Table 4.2: Results M/M/1-queue for c1 = 1, c2 = 2, h1 = 1, h2 = 2, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory levels (1.4, 0, 1.4, 0) with a total
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cost of 10.3370. In this case, the price of anarchy is the largest, in comparison to the other Nash
equilibria. It must be noted that a service rate of µi = 1.4 is at the boundary of the service rates µi
that have been considered in this simulation. This could mean that the actual Nash equilibrium is
at a lower value of µi.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii (1.9, 0, 1.7, 0)
with a total cost of 8.3420. Again it can be seen that the Nash equilibrium has an inventory choice
of 0 for both servers. In this case, the service rate µi that both servers choose are different from one
another, which can be clarified due to the difference in holding and production cost parameters for
both servers. Furthermore, this Nash equilibrium gives the same result as the optimal solution, so
the price of anarchy in this case is equal to 1.

Looking at the results in Table 4.2 it can be seen that assigning the backlog costs to the slowest
server gives a Nash equilibrium at the combination of service rates and inventory levels (1.9, 0, 1.7, 0)
with a total costs of 8.3420. This is in line with the results obtained for the optimal solution, which
are also displayed in Table 4.2. In this case, the price of anarchy is equal to 1.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.4, 0, 1.4, 0) with a total costs of 10.3370. In these cases, the price of anarchy is the largest, in
comparison to the other Nash equilibria. Again, it has to be noted that the service rates µi are at
the boundary of all values that are considered in this simulation. Thus, it is likely that the actual
Nash equilibria for these cost divisions are obtained for service rates µi ∈ (1, 1.4].

4.1.3 CASE 3: h1 = 1, h2 = 1, c1 = 1, c2 = 1 and b = 2

In the third case, the holding and production cost parameters are set to be 1. Lastly, the parameter
for the backlog costs for all servers is set to be b = 2.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds can be calculated using the formulas in Section 3.7.1. It follows that the
choice of service rates and inventory levels that results in the optimal costs for the theoretical lower
bound is (1.8, 1, 1.8, 1) and for the theoretical upper bound (2.3, 1, 2.3, 1).

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (2.1, 1, 2.1, 1) is the optimal strategy for both servers and gives a minimum total
costs equal to 6.9070. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.1, it can be concluded that the optimal strategy resulting from the
simulation falls between the two theoretical bounds.

When comparing this optimal solution to that of case 1 in Section 4.1.1, it can be seen that the
service rate choices for both servers has stayed the same, but the inventory values for both servers
has increased to 1. This is in line with the expectations, since the holding and production cost
parameters are the same for both servers.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.3 below. The inventory levels that assure these minimal costs are left out of the
plot.
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Figure 4.3: Plot of all combinations of service rates(µ1, µ2) and their minimal total costs for the
M/M/1-queue for CASE 3.

In Figure 4.3 it can be seen that the plot is symmetric, similarly to the plot in Figure 4.1 in Section
4.1.1. The highest total costs are obtained for the combinations of service rates (µ1, µ2), where µ1
and µ2 are equal to 1.3. The optimal combination is clearly visible in the color dark blue. Again it
can be noted clearly that the minimum is attained in the interior of the set of values that is observed.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.3.

Total costs µ1 I1 µ2 I2

Optimal Solution 6.9070 2.1 1 2.1 1
Symmetric 7.9640 1.9 0 1.7 0
Symmetric with Punishment 6.9070 2.1 1 2.1 1
Slowest server 6.9070 2.1 1 2.1 1
Fastest server 11.3110 1.4 0 1.4 0
Production costs 7.9640 1.9 0 1.7 0
Holding costs 7.9640 1.9 0 1.7 0

Table 4.3: Results M/M/1-queue for c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 2.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory levels (1.9, 0, 1.7, 0) with a total
cost of 7.9640. Both servers have a different service rate.
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The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (2.1, 1, 2.1, 1)
with a total cost of 6.9070. This Nash equilibrium gives the same result as the optimal solution. The
price of anarchy in this case is equal to 1. Furthermore, it can be seen that the inventory choice of
both servers is not equal to 0. This can be clarified due to the increase of the backlog cost parameter
b.

Looking at the results in Table 4.3 it can be seen that assigning the backlog costs to the slowest
server gives a Nash equilibrium at the combination of service rates and inventory levels (2.1, 1, 2.1, 1)
with a total costs of 6.9070. This is in line with the results obtained for the optimal solution, which
is also displayed in Table 4.3. The price of anarchy in this case is equal to 1.

For the case where the backlog costs are assigned to the fastest server, the Nash equilibrium is
obtained for the combination of service rates and inventory values (1.4, 0, 1.4, 0) with a total costs
of 11.3110. In this case, the price of anarchy is the highest out of all Nash equilibria. Again, it
has to be noted that service rates µi are at the boundary of all values that are considered in this
simulation. Thus, it is likely that the actual Nash equilibrium for this cost distribution is obtained
for service rates µi ∈ (1, 1.4].

Lastly, it can be seen that the cost division strategies based on the holding and production costs
have the same Nash equilibrium as the symmetric cost distribution. This can be clarified, since the
holding and production cost parameters are the same for both servers, meaning that the costs are
distributed symmetrically over the servers. So when the holding and production cost parameters are
the same for both servers, the cost distribution functions that use the holding or productions costs
are actually equal to the symmetric cost distribution.

4.1.4 CASE 4: h1 = 1, h2 = 2, c1 = 2, c2 = 1 and b = 1

In the fourth case, the holding cost parameters are set to be h1 = 1 and h2 = 2 and the production
cost parameters are set to be c1 = 2 and c2 = 1. Lastly, the parameter for the backlog costs for all
servers is set to be b = 1.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds can be calculated using the formulas in Section 3.7.1. It follows that choice
of service rates and inventory levels that results in the optimal costs for the theoretical lower bound
is (1.5, 1, 1.7, 0) and for the theoretical upper bound is (1.8, 2, 2.4, 0). In the upper and lower bounds
it is visible that the chosen inventory level for server 1 is higher than for server 2.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (1.9, 1, 2.2, 0) is the optimal strategy for both servers and gives a minimum total
costs equal to 8.5030. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.1, it can be concluded that the optimal strategy resulting from the
simulation falls between the two theoretical bounds. Furthermore, it can be seen that the inventory
level for server 1 is not chosen to be 0 which is the same as for the upper and lower bounds.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.4 below. The inventory levels that assure this minimal cost are left out of the
plot.
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Figure 4.4: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
M/M/1-queue for CASE 4.

In Figure 4.4 it can be seen that the plot is not symmetric, similarly to the plot in Figure 4.2 in
Section 4.1.2. The highest total costs are obtained for the combinations of service rates (µ1, µ2),
where µ1 is equal to 2.4 and µ2 are equal to 1.3. The optimal combination is clearly visible in the
color dark blue.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.4.

Total costs µ1 I1 µ2 I2

Optimal Solution 8.5030 1.9 1 2.2 0
Symmetric 10.3370 1.4 0 1.4 0
Symmetric with Punishment 10.3370 1.4 0 1.4 0
Slowest server 8.9290 1.5 1 1.9 0
Fastest server 10.3370 1.4 0 1.4 0
Production costs 10.3370 1.4 0 1.4 0
Holding costs 10.3370 1.4 0 1.4 0

Table 4.4: Results M/M/1-queue for c1 = 2, c2 = 1, h1 = 1, h2 = 2, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in
a Nash equilibrium for the combination of service rates and inventory levels (1.4, 0, 1.4, 0) with a
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total cost of 10.3370. It must be noted that a service rate of µi = 1.4 is at the boundary of the
service rates µi that have been considered in this simulation. This could mean that the actual Nash
equilibrium is at a lower value of µi.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. This gives the same result as for
the symmetric choice of division of costs. Both ways of dividing the costs result in a high price of
anarchy.

Looking at the results in Table 4.4 it can be seen that assigning the backlog costs to the slowest server
gives a Nash equilibrium for the combination of service rates and inventory levels (1.5, 1, 1.9, 0) with
a total cost of 8.9290. This Nash equilibrium does not give the same result as the optimal solution
as seen before in the other cases. The price of anarchy in this case is the lowest in comparison to
the other Nash equilibria. Furthermore, it can be seen that the inventory level of server 1 is not
equal to 0. This can be clarified due to the increase of the production cost parameter c1. Both
servers choose different service rates, this can be clarified by the difference in cost and production
parameters between the two servers.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.4, 0, 1.4, 0) with a total costs of 10.3370. In these cases, the price of anarchy is the highest in
comparison to the other Nash equilibria. Again, it has to be noted that the service rates µi are at
the boundary of all values that are considered in this simulation. Thus, it is likely that the actual
Nash equilibria for these cost divisions are obtained for service rates µi ∈ (1, 1.4].

4.2 M/E2/1-queue

The second model that is considered is the model where the interarrival times are exponentially
distributed, but the service times follow an Erlang-2 distribution. The queue of each individual
server can then be considered as M/E2/1-queues with a joint arrival stream.

In Section 3.7.2, the upper and lower bounds for the total costs are computed for each combination
of cost parameters that is considered. The service rates that result in these minimum total costs are
displayed in Table 3.7. From this table, it can be seen that the service rates for this type of queue
range from 1.4 to 2.3. To determine if this is indeed the case, the values of the service rates µi in the
simulation are ranged from 1.3 to 2.4 with steps of 0.1. The simulation is run for all combinations
of service rates (µ1, µ2). A step size of 0.1 is chosen since taking an even smaller step size did not
show more accuracy.

4.2.1 CASE 1: h1 = 1, h2 = 1, c1 = 1, c2 = 1 and b = 1

Optimal strategy

In the initial case, the holding, production and backlog cost parameters are set to be b = 1.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds that were calculated in Section 3.7.2 suggest that the minimum of the total
costs for this combination of the parameters is obtained for the service rates µi between 1.6 and 2.0.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (1.9, 0, 1.9, 0) is the optimal strategy for both servers and gives a minimum total
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costs equal to 5.6500. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.2, it can be concluded that the optimal strategy resulting from the
simulation is considerably close to the upper bound that is calculated for the total costs.

The difference between the two results is the choice for the inventory levels. The optimal inventory
choice for the theoretical upper bound is equal to (1, 1) while the optimal inventory choice from the
simulation is (0, 0). Furthermore, there is a slight difference in the service rates. For the theoretical
results the pair of service rates (2.0, 2.0) gives the optimal upper bound for the total costs, while
the optimal solution of the simulation had µ1 = 1.9.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.5 below. The inventories that assure these minimal costs are left out of the plot.

Figure 4.5: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
M/E2/1-queue for CASE 1.

In Figure 4.5 it can be seen that for the combinations of service rates (µ1, µ2) where one of the
two service rates µi is small that the total costs are high. There is a rapid decrease of the total
costs visible when either one of the service rates µi deviates from 1.4. Combinations with both
service rates µi closer to a value of 1.9 have lower total costs. Another observation is that for the
combinations of service rates that have both service rates µi higher than 1.9 the total costs increase
again but only slightly.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.5.
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Total costs µ1 I1 µ2 I2

Optimal Solution 5.6500 1.9 0 1.9 0

Symmetric Nash equilibrium 7.7240 1.3 0 1.3 0
Theoretical value 8.6512 1.6 0 1.6 0

Symmetric with Punishment Nash equilibrium 5.7610 1.7 0 1.7 0
Slowest server Nash equilibrium 5.6500 1.9 0 1.9 0
Fastest server Nash equilibrium 7.7240 1.3 0 1.3 0
Production costs Nash equilibrium 7.7240 1.3 0 1.3 0
Holding costs Nash equilibrium 7.7240 1.3 0 1.3 0

Table 4.5: Results M/E2/1-queue for c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory levels (1.3, 0, 1.3, 0) with a total
cost of 7.7240. In this case, the price of anarchy is the smallest out of all Nash equilibira. It must
be noted that the service rate µi = 1.3 is at the boundary of the service rates µi that have been
considered in this simulation. This could mean that the actual Nash equilibrium is at a lower value
of µi.

Comparing this result to the theoretical value for the Nash equilibrium (as computed using the upper
and lower bounds in Section 3.7.2), shows that there is a slight difference between the two. The
theoretical result for the Nash equilibrium of the symmetric choice is at a combination of service
rates and inventory levels (1.6, 0, 1.6, 0) with a total cost of 8.6512. The theoretical Nash equilibrium
is obtained for a combination of service rates whose values are higher than those of the simulation
result.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (1.7, 0, 1.7, 0)
with a total cost of 5.7610. Again it can be seen that the Nash equilibrium has an inventory choice
of 0 for both servers. In terms of the price of anarchy, this way of dividing the costs come close to
the costs of the optimal solution, so the price of anarchy is small, but not yet equal to 1.

Looking at the results in Table 4.5 it can be seen that assigning the backlog costs to the slowest
server gives a Nash equilibrium at the combination of service rates and inventory levels (1.9, 0, 1.9, 0)
with a total costs of 5.6500. This is in line with the results obtained for the optimal solution, which
are also displayed in Table 4.5. In this case, the price of anarchy is equal to 1 and thus this way of
dividing the costs among the servers is the best.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.3, 0, 1.3, 0) with a total costs of 7.7240. In these cases, the price of anarchy is the highest in
comparison to the other Nash equilibria. Again, it has to be noted that the service rates are at
the boundary of all values that are considered in this simulation. Thus, it is likely that the Nash
equilibria for these cost divisions are obtained for service rates µi ∈ (1, 1.3].
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4.2.2 CASE 2: h1 = 1, h2 = 2, c1 = 1, c2 = 2 and b = 1

Optimal strategy

In the second case, the holding cost parameters are set to be h1 = 1 and h2 = 2 and the production
cost parameters are set to be c1 = 1 and c2 = 2. Lastly, the parameter for the backlog costs is set
to be b = 1.

As stated earlier, there are two servers that each have their own service rate µi. The theoretical upper
and lower bounds can be calculated using the formulas in Section 3.7.2. It follows that the optimal
combination for the theoretical lower bound is obtained for the combination of service rates and
inventory levels (1.5, 0, 1.5, 0) and for the theoretical upper bound is obtained for the combination
of service rates and inventory levels (2.1, 1, 1.7, 1).

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (2.0, 0, 1.7, 0) is the optimal strategy for both servers and gives a minimum total
costs equal to 7.6750. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.2, it can be concluded that the optimal strategy resulting from the
simulation is considerably close to the upper bound that is calculated for the total costs.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.6 below. The inventory levels that assure these minimal costs are left out of the
plot.

Figure 4.6: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
M/E2/1-queue for CASE 2.

In Figure 4.6 it can be seen that the plot is not symmetric, similarly to Plot 4.2 for the M/M/1-
queue. The highest total costs are obtained for combinations of service rates (µ1, µ2), where µ1 is
equal to 1.4 and µ2 are equal to 2.4. The optimal combination is clearly visible in the color dark
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blue. In addition, this figure clearly shows that the minimum is attained in the interior of the set of
service rates that is considered.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.6.

Total costs µ1 I1 µ2 I2

Optimal Solution 7.6750 2.0 0 1.7 0
Symmetric 9.8350 1.3 0 1.3 0
Symmetric with Punishment 7.9600 1.6 0 1.5 0
Slowest server 7.9600 1.6 0 1.5 0
Fastest server 9.8350 1.3 0 1.3 0
Production costs 9.8350 1.3 0 1.3 0
Holding costs 9.8350 1.3 0 1.3 0

Table 4.6: Results M/E2/1-queue for c1 = 1, c2 = 2, h1 = 1, h2 = 2, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory levels (1.3, 0, 1.3, 0) with a total
cost of 9.8350. It must be noted that the service rate µi = 1.3 is at the boundary of the service rates
that have been considered in this simulation. This could mean that the actual Nash equilibrium is
at a lower value of µi.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (1.6, 0, 1.5, 0)
with a total cost of 7.9600. Again it can be seen that the Nash equilibrium has an inventory choice
of 0 for both servers. In this case, the service rates µi that both servers choose are different from
one another, which can be clarified due to the difference in holding and production costs for both
servers. Furthermore, this Nash equilibrium does not give the same result as the optimal solution
as was seen for the similar case in the M/M/1-queue. In this case, the price of anarchy is the lowest
in comparison to the other Nash equilibrium, but it is larger than 1.

Looking at the results in Table 4.6 it can be seen that assigning the backlog costs to the slowest server
gives a Nash equilibrium for the combination of service rates and inventory levels (1.6, 0, 1.5, 0) with
a total costs of 7.9600. Again, this Nash equilibrium does not give the same result as the optimal
solution as was seen for the similar case in the M/M/1-queue. In this case, the price of anarchy is
the same as for the symmetric choice of cost distribution with punishment for the delay.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.3, 0, 1.3, 0) with a total costs of 9.8350. In these cases, the price of anarchy is the highest in
comparison to the other Nash equilibria. Again, it has to be noted that the service rates are at
the boundary of all values that are considered in this simulation. Thus, it is likely that the Nash
equilibria for these cost divisions are obtained for service rates µi ∈ (1, 1.3].
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4.2.3 CASE 3: h1 = 1, h2 = 1, c1 = 1, c2 = 1 and b = 2

Optimal strategy

In the third case, the holding and production cost parameters for both servers are set to be 1. Lastly,
the parameter for the backlog costs for all servers is set to be b = 2.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds can be calculated using the formulas in Section 3.7.2. It follows that
the optimal total costs for the theoretical lower bound are obtained at the combination of service
rates and inventory values (1.7, 1, 1.7, 1) and for the theoretical upper bound are obtained at the
combination of service rates and inventory levels (2.1, 1, 2.1, 1). In this case, it can be seen that the
upper and lower bounds both have inventory values that are larger than 1 for both servers.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (1.9, 1, 1.9, 1) is the optimal strategy for both servers and gives a minimum total
costs equal to 6.3970. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.2, it can be concluded that the optimal strategy resulting from the
simulation is between the upper and lower bounds that are calculated for the total costs.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.7 below. The inventory levels that assure these minimal costs are left out of the
plot.

Figure 4.7: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
M/E2/1-queue for CASE 3.

In Figure 4.7 it can be seen that the plot is symmetric, similarly to Figure 4.5. The highest total
costs are obtained for the combinations of service rates (µ1, µ2), where µ1 and µ2 are equal to 1.3.
The optimal combination is clearly visible in the color dark blue. Furthermore, it can be seen that
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the plot has a very similar shape to the plot in Figure 4.5. In addition, the figure clearly shows that
the minimum is attained in the interior of the set of service rates that are considered.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.7.

Total costs µ1 I1 µ2 I2

Optimal Solution 6.3970 1.9 1 1.9 1
Symmetric 8.0170 1.5 0 1.6 0
Symmetric with Punishment 6.3970 1.9 1 1.9 1
Slowest server 6.3970 1.9 1 1.9 1
Fastest server 11.2070 1.3 0 1.3 0
Production costs 8.0170 1.5 0 1.6 0
Holding costs 8.0170 1.5 0 1.6 0

Table 4.7: Results M/E2/1-queue for c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 2.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory values (1.5, 0, 1.6, 0) with a total
cost of 8.0170. For this combination the service rates µi are different from one another. This does
not coincide with the expectations based on the parameters in the cost function.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (1.9, 1, 1.9, 1)
with a total cost of 6.3970. It can be seen that the inventory levels are none zero. Furthermore, this
Nash equilibrium gives the same result as the optimal solution. Therefore, the price of anarchy in
this case is equal to 1.

Looking at the results in Table 4.7 it can be seen that assigning the backlog costs to the slowest server
gives a Nash equilibrium for the combination of service rates and inventory levels (1.9, 1, 1.9, 1) with
a total costs of 6.3970. Again, this Nash equilibrium gives the same result as the optimal solution.
So in this case, the price of anarchy is equal to 1.

For the case where the backlog costs are assigned to the fastest server, the Nash equilibrium is
obtained for the combination of service rates and inventory levels (1.3, 0, 1.3, 0) with a total costs of
11.2070. In this case, the price of anarchy is the highest in comparison to the other Nash equilibria.
Again, it has to be noted that the service rates are at the boundary of all values that are considered
in this simulation. Thus, it is likely that the Nash equilibrium for this cost distribution is obtained
for service rates µi ∈ (1, 1.3].

Lastly, it can be seen that the cost division strategies based on the holding and production costs
have the same Nash equilibrium as the symmetric cost distribution. This can be clarified, since the
holding and production cost parameters are the same for both servers, meaning that the costs are
distributed symmetrically over the servers. So when the holding and production cost parameters are
the same for both servers, the cost distribution functions that use the holding or productions costs
are actually equal to the symmetric cost distribution.
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4.2.4 CASE 4: h1 = 1, h2 = 2, c1 = 2, c2 = 1 and b = 1

In the fourth case, the holding cost parameters for each server are set to be h1 = 1 and h2 = 2
and the production cost parameters for each server are set to be c1 = 2 and c2 = 1. Lastly, the
parameter for the backlog costs for all servers is set to be b = 1.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds can be calculated using the formulas in Section 3.7.2. It follows that the
optimal total costs for the theoretical lower bound is obtained for the combination of service rates and
inventory levels (1.4, 1, 1.6, 0) and for the theoretical upper bound is obtained for the combination
of service rates and inventory levels (1.7, 2, 2.3, 0). In the upper and lower bounds it is visible that
the chosen inventory for server 1 is higher than server 2.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (1.6, 1, 1.8, 0) is the optimal strategy for both servers and gives a minimum total
costs equal to 7.7820. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.2, it can be concluded that the optimal strategy resulting from the
simulation falls between the two theoretical bounds. Furthermore, it can be seen that the inventory
for server 1 is not chosen to be 0 which is the same as for the upper and lower bounds.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.8 below. The inventory levels that assure these minimal costs are left out of the
plot.

Figure 4.8: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
M/E2/1-queue for CASE 4.

In Figure 4.8 it can be seen that the plot is not symmetric, similarly to the plot in Figure 4.6.
The highest total costs are obtained for combinations of service rates (µ1, µ2), where µ1 is equal to
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2.4 and µ2 are equal to 1.3. The optimal combination is clearly visible in the color dark blue. In
addition, this figure shows that the minimum is attained in the interior of the set of service rates
that is considered.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.8.

Total costs µ1 I1 µ2 I2

Optimal Solution 7.7820 1.6 1 1.8 0
Symmetric 9.8350 1.3 0 1.3 0
Symmetric with Punishment 8.4810 1.5 0 1.4 0
Slowest server 8.1510 1.5 0 1.6 0
Fastest server 9.8350 1.3 0 1.3 0
Production costs 9.8350 1.3 0 1.3 0
Holding costs 9.8350 1.3 0 1.3 0

Table 4.8: Results M/E2/1-queue for c1 = 2, c2 = 1, h1 = 1, h2 = 2, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory levels (1.3, 0, 1.3, 0) with a total
cost of 9.8350. It must be noted that the service rate µi = 1.3 is at the boundary of the service rates
that have been considered in this simulation. This could mean that the actual Nash equilibrium is
obtained for a lower service rate µi.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay is, also computed using the simulation. This gives a Nash equilibrium at
the combination of service rates and inventory levels (1.5, 0, 1.4, 0) with a total cost of 8.4810. This
Nash equilibrium does not give the same result as the optimal solution as seen before in the other
cases. The price of anarchy is low, but not equal to 1. Furthermore, it can be seen that the service
rates of both servers differ from one another.

Looking at the results in Table 4.8 it can be seen that assigning the backlog costs to the slowest server
gives a Nash equilibrium for the combination of service rates and inventory levels (1.5, 0, 1.6, 0) with
a total cost of 8.1510. This Nash equilibrium does not give the same result as the optimal solution
as seen before in the other cases. The price of anarchy is the lowest of all Nash equilibria, but not
equal to 1. Both servers choose different service rates, this can be clarified by the difference in cost
and production parameters between the two servers.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.3, 0, 1.3, 0) with a total costs of 9.8350. In these cases, the price of anarchy has the highest value
of all Nash equilibria. Again, it has to be noted that the service rates are at the boundary of all
values that are considered in this simulation. Thus, it is likely that the actual Nash equilibria for
these cost divisions are obtained for service rates µi ∈ (1, 1.3].
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4.3 E2/M/1-queue

The second model that is considered is the model where the interarrival times follow an Erlang-2
distribution, whereas the service times are exponentially distributed. The queue of each individual
server can then be considered as an E2/M/1-queues that has the same arrival stream as the other
servers.

In Section 3.7.1, the upper and lower bounds for the total costs are computed for each combination
of cost parameters that is considered. The service rates that result in these minimum total costs are
displayed in Table 3.7. From this table, it can be seen that the service rates for this type of queue
range from 1.4 to 2.2. To determine if this is indeed the case, the values of the service rates µi in the
simulation are ranged from 1.3 to 2.4 with steps of 0.1. The simulation is run for all combinations
of service rates (µ1, µ2). A step size of 0.1 is chosen since taking an even smaller step size did not
show more accuracy.

4.3.1 CASE 1: h1 = 1, h2 = 1, c1 = 1, c2 = 1 and b = 1

Optimal strategy

In the initial case, the holding, production and backlog cost parameters are set to be 1.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds that are calculated in Section 3.7.3 suggest that the minimum of the total
costs for this combination of the parameters is obtained for the service rates µi between 1.6 and 1.9.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (1.8, 1, 1.8, 1) is the optimal strategy for both servers and gives a minimum total
costs equal to 5.7440. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.3, it can be concluded that the optimal strategy resulting from the
simulation is considerably close to the upper bound that is calculated for the total costs.

The difference between the two results is the choice for the service rates. The optimal service rate
choice for the theoretical upper bound is equal to (1.9, 1.9) whereas the optimal service rate choice
from the simulation is (1.8, 1.8).

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.5 below. The inventory levels that assure this minimal cost are left out of the
plot.
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Figure 4.9: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
E2/M/1-queue for CASE 1.

In Figure 4.9 it can be seen that for the combinations of service rates (µ1, µ2) where one of the
two service rates µi is small that the total costs are high. In comparison to the other two plots,
it can be observed that there are two points for which µ1 = 1.4 and the total costs are extremely
high. There is a dip visible between these two points, which had not been observed in the plot of
the M/M/1-queue and the M/E2/1-queue. There is a rapid decrease of the total costs visible when
either one of the µi deviates from 1.4. Combinations with both service rates µi closer to a value
of 1.9 have lower total costs. Another observation is that for the combinations of service rates µi
that have both service rates µi higher than 1.9 the total costs increase again but only slightly. In
addition, the figure clearly shows that the optimal total costs are attained in the interior of the
service rates that are considered.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.9.
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Total costs µ1 I1 µ2 I2

Optimal Solution 5.7440 1.8 1 1.8 1

Symmetric Nash equilibrium 8.0030 1.3 0 1.4 0
Theoretical value 7.5796 1.6 0 1.6 0

Symmetric with Punishment Nash equilibrium 6.0740 1.7 0 1.7 0
Slowest server Nash equilibrium 6.0740 1.7 0 1.7 0
Fastest server Nash equilibrium 8.0030 1.3 0 1.4 0
Production costs Nash equilibrium 8.0030 1.3 0 1.4 0
Holding costs Nash equilibrium 8.0030 1.3 0 1.4 0

Table 4.9: Results E2/M/1-queue for c1 = 1, c2 = 1, h1 = 1, h1 = 1, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory levels (1.3, 0, 1.4, 0) with a total
cost of 8.0030. It must be noted that the service rate µi = 1.3 is at the boundary of the service rates
that have been considered in this simulation. This could mean that the actual Nash equilibrium is
obtained for a lower service rate µi.

Comparing this result to the theoretical value for the Nash equilibrium (as computed in Section
3.7), shows that there is a slight difference between the two. The theoretical result for the Nash
equilibrium of the symmetric choice is obtained for a combination of service rates and inventory
levels (1.6, 0, 1.6, 0) with a total cost of 7.5796. The theoretical Nash equilibrium is obtained for a
combination of service rates whose values are higher than those of the simulation result.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (1.7, 0, 1.7, 0)
with a total cost of 6.0740. Again it can be seen that the Nash equilibrium has an inventory choice
of 0 for both servers.

Looking at the results in Table 4.9 it can be seen that assigning the backlog costs to the slowest
server gives a Nash equilibrium at the combination of service rates and inventory levels (1.7, 0, 1.7, 0)
with a total costs of 6.0740. This is the same Nash equilibrium as for the symmetric cost distribution
with punishment. In this case and in the case of the symmetric cost distribution with punishment,
the price of anarchy is the lowest of all Nash equilibria, but it is not equal to 1.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.3, 0, 1.4, 0) with a total costs of 8.0030. in these cases, the price of anarchy is the highest in
comparison to the other Nash equilibria. Again, it has to be noted that the service rates are at the
boundary of all values that are considered in this simulation. Thus, it is likely that the actual Nash
equilibria for these cost divisions are obtained for service rates µi ∈ (1, 1.3].

4.3.2 CASE 2: h1 = 1, h2 = 2, c1 = 1, c2 = 2 and b = 1

Optimal strategy

In the second case, the holding cost parameters are set to be h1 = 1 and h2 = 2 and the production
cost parameters are set to be c1 = 1 and c2 = 2. Lastly, the parameter for the backlog costs for all
servers is set to be b = 1.
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As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds can be calculated using the formulas in Section 3.7.3. It follows that
the optimal total costs for the theoretical lower bound are obtained for the combination of service
rates and inventory values (1.5, 0, 1.5, 0) and for the theoretical upper bound are obtained for the
combination of service rates and inventory levels (2.0, 1, 1.9, 0).

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (2.0, 0, 1.6, 0) is the optimal strategy for both servers and gives a minimum total
costs equal to 7.9620. Comparing the results of the simulation to the upper and lower bounds
that are computed in Section 3.7.3, it can be concluded that the optimal strategy resulting from
the simulation is considerably close to the upper bound that was calculated for the total costs.
Furthermore, it can be noted that this result is similar to the one in case 2 for the M/E2/1-queue.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.10 below. The inventory levels that assure these minimal costs are left out of the
plot.

Figure 4.10: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
E2/M/1-queue for CASE 2.

In Figure 4.10 it can be seen that the plot is not symmetric, similarly to the plot Figure 4.2. The
highest total costs are obtained for combinations of service rates (µ1, µ2), where µ1 is equal to 1.3
and µ2 are equal to 2.4. The optimal combination is clearly visible in the color dark blue. In
addition, the figure clearly shows that the minimum is attained in the interior of the set of service
rates that is considered.
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Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.6.

Total costs µ1 I1 µ2 I2

Optimal Solution 7.9620 2.0 0 1.6 0
Symmetric 10.6760 1.3 0 1.4 0
Symmetric with Punishment 8.8260 1.6 0 1.4 0
Slowest server 8.8250 1.5 0 1.5 0
Fastest server 11.2210 1.3 0 1.3 0
Production costs 10.6760 1.3 0 1.4 0
Holding costs 10.6760 1.3 0 1.4 0

Table 4.10: Results E2/M/1-queue for c1 = 1, c2 = 2, h1 = 1, h2 = 2, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in
a Nash equilibrium for the combination of service rates and inventory levels (1.3, 0, 1.4, 0) with a
total cost of 10.6760. It must be noted that the service rate µi = 1.3 is at the boundary of the
service rates that have been considered in this simulation. This could mean that the actual Nash
equilibrium is obtained for a lower value of µi.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (1.6, 0, 1.4, 0)
with a total cost of 8.8260. Again it can be seen that the Nash equilibrium has an inventory choice
of 0 for both servers. In this case, the service rates µi that both servers choose are different from
one another, which can be clarified due to the difference in holding and production costs for both
servers. Furthermore, this Nash equilibrium does not give the same result as the optimal solution
as was seen for the similar case in the M/M/1-queue. In this case, the price of anarchy is low in
comparison to the other Nash equilibria but not equal to 1.

Looking at the results in Table 4.10 it can be seen that assigning the backlog costs to the slowest
server gives a Nash equilibrium for the combination of service rates and inventory levels (1.5, 0, 1.5, 0)
with a total costs of 8.8250. Again, this Nash equilibrium does not give the same result as the optimal
solution as was seen for the similar case in the M/M/1-queue. In this case, the price of anarchy is
low in comparison to the other Nash equilibria but not equal to 1.

Assigning the backlog costs to the fastest server results in a Nash equilibrium for the combination of
service rates and inventory levels (1.3, 0, 1.3, 0) with total costs equal to 11.2210. The last two choices
for the cost division among the servers have the same Nash equilibrium. This Nash equilibrium is
obtained for the combination of service rates and inventory levels (1.3, 0, 1.4, 0) with a total costs
of 10.6760. Again, it has to be noted that the service rates are at the boundary of all values that
are considered in this simulation. Thus, it is likely that the actual Nash equilibria for these cost
divisions are obtained for service rates µi ∈ (1, 1.3].
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4.3.3 CASE 3: h1 = 1, h2 = 1, c1 = 1, c2 = 1 and b = 2

Optimal strategy

In the third case, the holding and production cost parameters for both servers are set to be 1. Lastly,
the parameter for the backlog costs for all servers is set to be b = 2.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds can be calculated using the formulas in Section 3.7.3. It follows that
the optimal total costs for the theoretical lower bound are obtained for the combination of service
rates and inventory levels (1.9, 0, 1.9, 0) and for the theoretical upper bound are obtained for the
combination of service rates and inventory levels (2.0, 1, 2.0, 1). In this case, it can be seen that the
upper bound has inventory levels larger than 1 for both servers.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (2.0, 1, 2.0, 1) is the optimal strategy for both servers and gives a minimum total
costs equal to 6.3470. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.3, it can be concluded that the optimal strategy resulting from the
simulation is considerably close to the theoretical upper bound.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.11 below. The inventory levels that assure these minimal costs are left out of the
plot.

Figure 4.11: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
E2/M/1-queue for CASE 3.

In Figure 4.11 it can be seen that the plot is symmetric, similarly to the plot in Figure 4.9. The
highest total costs are obtained for the combinations of service rates (µ1, µ2), where µ1 and µ2 are
equal to 1.3. The optimal combination is clearly visible in the color dark blue. Furthermore, it can
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be seen that the plot has a very similar shape to the plot in Figure 4.9. In addition, the figure clearly
shows that the minimum is attained in the interior of the set of service rates that are considered.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.11.

Total costs µ1 I1 µ2 I2

Optimal Solution 6.3470 2.0 1 2.0 1
Symmetric 8.1490 1.6 0 1.6 0
Symmetric with Punishment 6.3950 1.8 1 1.9 1
Slowest server 6.3950 1.9 1 1.8 1
Fastest server 11.2180 1.3 0 1.4 0
Production costs 8.1490 1.6 0 1.6 0
Holding costs 8.1490 1.6 0 1.6 0

Table 4.11: Results E2/M/1-queue for c1 = 1, c2 = 1, h1 = 1, h2 = 1, b = 2.

When looking at the results, it can be seen that the symmetric choice of cost division results in a
Nash equilibrium for the combination of service rates and inventory levels (1.6, 0, 1.6, 0) with a total
cost of 8.1490. The values for the service rates in this Nash equilibrium are much smaller than that
of the optimal solution. In this case, the price of anarchy is the highest out of all Nash equilibria.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. For this cost distribution the Nash
equilibrium is obtained for a combination of service rates µi and inventory levels Ii of (1.8, 1, 1.9, 1)
with a total cost of 6.3950. It can be seen that the inventory levels are none zero. Furthermore,
this Nash equilibrium is quite close to the optimal solution. In this case, the price of anarchy is
the lowest of all Nash equilibria, but it is not equal to 1. The service rates for both servers differ
from one another. This is in contrary to the expected results, since the production and holding cost
parameters are equal for both servers.

Looking at the results in Table 4.11 it can be seen that assigning the backlog costs to the slowest
server gives a Nash equilibrium at the combination of service rates and inventory levels (1.9, 1, 1.8, 1)
with a total costs of 6.3950. Again, this Nash equilibrium is quite close to the optimal solution. In
this case, the price of anarchy is the smallest of all Nash equilibria, but it is not equal to 1. The
service rates for both servers differ from one another. This is in contrary to the expected results,
since the production and holding cost parameters are equal for both servers.

For the case where the backlog costs are assigned to the fastest server, the Nash equilibrium is
obtained for the combination of service rates and inventory levels (1.3, 0, 1.4, 0) with a total costs of
11.2180. In these cases, the price of anarchy is the high, but still smaller than in for the symmetric
cost distribution where the service rates are higher. Again, it has to be noted that the service rates
are at the boundary of all values that were considered in this simulation. Thus, it is likely that the
Nash equilibria for these cost divisions are obtained for service rates µi ∈ (1, 1.3].

Lastly, it can be seen that the cost division strategies based on the holding and production costs
have the same Nash equilibrium as the symmetric cost distribution. This can be clarified, since the
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holding and production cost parameters are the same for both servers, meaning that the costs are
distributed symmetrically over the servers. So when the holding and production cost parameters are
the same for both servers, the cost distribution functions that use the holding or productions costs
are actually equal to the symmetric cost distribution.

4.3.4 CASE 4: h1 = 1, h2 = 2, c1 = 2, c2 = 1 and b = 1

In the fourth case, the holding cost parameters are set to be h1 = 1 and h2 = 2 and the production
cost parameters are set to be c1 = 2 and c2 = 1. Lastly, the parameter for the backlog costs for all
servers is set to be b = 1.

As stated earlier, there are two servers that both have their own service rate µi. The theoretical
upper and lower bounds can be calculated using the formulas in Section 3.7.3. It follows that
the optimal total costs for the theoretical lower bound are obtained for the combination of service
rates and inventory levels (1.4, 1, 1.6, 0) and for the theoretical upper bound are obtained for the
combination of service rates and inventory levels (1.8, 1, 2.2, 0). In the upper and lower bounds it is
visible that the chosen inventory for server 1 is higher than server 2.

Using the simulation for this model it is determined that the combination of service rates and
inventory levels (1.8, 1, 1.9, 0) is the optimal strategy for both servers and gives a minimum total
costs equal to 7.9760. Comparing the results of the simulation to the upper and lower bounds that
are computed in Section 3.7.3, it can be concluded that the optimal strategy resulting from the
simulation falls between the two theoretical bounds. Furthermore, it can be seen that the inventory
level for server 1 is not chosen to be 0 which is the same as for the upper and lower bounds.

A plot is made of all combinations of service rates (µ1, µ2) and their minimal costs. This plot is
shown in Figure 4.12 below. The inventory levels that assure these minimal costs are left out of the
plot.

49



CHAPTER 4. RESULTS Bachelor Final Project

Figure 4.12: Plot of all combinations of service rates (µ1, µ2) and their minimal total costs for the
E2/M/1-queue for CASE 4.

In Figure 4.12 it can be seen that the plot is not symmetric, similarly to the plot in Figure 4.10.
The highest total costs are obtained for combinations of service rates (µ1, µ2), where µ1 is equal to
2.4 and µ2 are equal to 1.3. The optimal combination is clearly visible in the color dark blue.

Nash equilibria

The simulation is also used to determine the Nash equilibria for different cost functions as described
in Section 3.2. The results for the different ways of dividing costs among servers are shown in Table
4.12.

Total costs µ1 I1 µ2 I2

Optimal Solution 7.9760 1.8 1 1.9 0
Symmetric 10.5760 1.3 0 1.4 0
Symmetric with Punishment 8.4890 1.6 0 1.6 0
Slowest server 8.4610 1.6 0 1.7 0
Fastest server 10.5760 1.3 0 1.4 0
Production costs 10.5760 1.3 0 1.4 0
Holding costs 10.5760 1.3 0 1.4 0

Table 4.12: Results E2/M/1-queue for c1 = 2, c2 = 1, h1 = 1, h2 = 2, b = 1.

When looking at the results, it can be seen that the symmetric choice of cost division results in
a Nash equilibrium for the combination of service rates and inventory levels (1.3, 0, 1.4, 0) with a
total cost of 10.5760. It must be noted that the service rate µi = 1.3 is at the boundary of the
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service rates that have been considered in this simulation. This could mean that the actual Nash
equilibrium is obtained for a lower value of µi. In this case, the price of anarchy is the highest of all
Nash equilibria.

The Nash equilibrium for a symmetric choice of cost distribution, taking into account that servers
are punished for delay, is also computed using the simulation. This gives a Nash equilibrium for
the combination of service rates and inventory levels (1.6, 0, 1.6, 0) with a total cost of 8.4890. This
Nash equilibrium does not give the same result as the optimal solution as seen before in the other
cases. In this case, the price of anarchy is small in comparison to the other Nash equilibria, but not
equal to 1, as seen before in similar cases. Furthermore, it can be seen that the service rates of both
servers are equal.

Looking at the results in Table 4.12 it can be seen that assigning the backlog costs to the slowest
server gives a Nash equilibrium for the combination of service rates and inventory levels (1.6, 0, 1.7, 0)
with a total cost of 8.4610. This Nash equilibrium does not give the same result as the optimal
solution as seen before in the other cases. In this case, the price of anarchy is the smallest out of
all Nash equilibrua, but not equal to 1 as was seen in similar cases. Both servers choose different
service rates, this can be clarified by the difference in cost and production parameters between the
two servers.

The last three choices for the cost division among the servers all have the same Nash equilib-
rium. This Nash equilibrium is obtained for the combination of service rates and inventory levels
(1.3, 0, 1.4, 0) with a total costs of 10.5760. In these cases, the price of anarchy is the smallest out
of all Nash equilibria. Again, it has to be noted that service rates are at the boundary of all values
that are considered in this simulation. Thus, it is likely that the actual Nash equilibria for these
cost divisions are obtained for service rates µi ∈ (1, 1.3].

4.4 M/M/1 vs. M/E2/1 vs. E2/M/1

This section provides an overview of the most important results mentioned in the previous sections.
The goal of this section is to compare the results for the optimal total costs of the different types of
queues that are considered.

In Table 4.13 the combinations of service rates and inventory levels that result in optimal total costs
are displayed for all four cases and all three models.
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CASE 1 CASE 2
(µ1, I1, µ2, I2) C(I,µ) (µ1, I1, µ2, I2) C(I,µ)

M/M/1 (2.1, 0, 2.1, 0) 6.1170 (1.9, 0, 1.7, 0) 8.3420
M/E2/1 (1.9, 0, 1.9, 0) 5.6500 (2.0, 0, 1.7, 0) 7.6750
E2/M/1 (1.8, 1, 1.8, 1) 5.7440 (2.0, 0, 1.6, 0) 7.9620

CASE 3 CASE 4
(µ1, I1, µ2, I2) C(I,µ) (µ1, I1, µ2, I2) C(I,µ)

M/M/1 (2.1, 1, 2.1, 1) 6.9070 (1.9, 1, 2.2, 0) 8.5030
M/E2/1 (1.9, 1, 1.9, 1) 6.3970 (1.6, 1, 1.8, 0) 7.7820
E2/M/1 (2.0, 1, 2.0, 1) 6.3470 (1.8, 1, 1.9, 0) 7.9760

Table 4.13: The optimal total costs and corresponding combination of service rates and inventory
levels for M/M/1 vs. M/E2/1 vs. E2/M/1 determined using the simulation.

In Table 4.13 it is clearly visible that the total costs for the M/M/1-queue are the highest for all
cases. In addition, the service rates µi that assure these minimal costs are the highest for almost all
cases for the M/M/1-queue.

In addition, it can be seen that the total costs for the M/E2/1-queue are the lowest in almost all
cases. This is different to what could be seen from the theoretical upper and lower bounds, where
the total costs for the E2/M/1-queue are the lowest. A similar result can be seen for the service
rates that results in these optimal total costs. They are the lowest for the M/E2/1-queue and the
highest for the M/M/1-queue.
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Chapter 5

Conclusion

In this report, a two-server fork-join queue is studied. A newsvendor game is analyzed using the-
oretical upper and lower bounds for the total costs and using a simulation study. Furthermore,
Nash equilibria on different types of cost distributions have been studied. These Nash equilibria are
compared to the optimal solutions in order to find a Nash equilibrium that has total costs close to
that of the optimal solution. Based on the results of both the theoretical analysis and the simulation
study, several conclusions can be made. This section briefly reflects on the results in Chapter 4 and
summarizes the most important conclusions that can be drawn out of this research.

In this report, three cases are considered with different distribution choices for the interarrival times
and the service times. From the theoretical upper and lower bounds in Section 3.7 it can already
be observed that if either the interarrival time or the service time is set to be Erlang-2 distributed,
the total costs for the same combination of cost parameters decreases as well as the service rates
of both servers. This can be clarified, since the mean for both distributions is kept equal, but the
variance for the Erlang-2 distribution becomes smaller. The same can be concluded from the results
in the simulation. Overall it can be concluded that if the variance of the distribution of either the
interarrival times or the service times decreases, so does the choice of µi and the total costs.

From the results in Chapter 4 several other conclusions can also be made. Firstly, it is noticeable
that when the production, holding and backlog cost parameters (ci, hi and b) are set to be equal
to 1 the optimal costs are obtained for a combination of service rates (µ1, µ2), where µ1 = µ2 and
inventory levels (I1, I2) where I1 = I2. The same holds for the Nash equilibria. This can be clarified,
since the holding cost and production cost parameters are equal for both servers, thus the cost
function C(I,µ) is symmetric with respect to the variables I and µ. In addition, when the holding
cost and production cost parameters for both servers are not kept equal, it can be seen that both
servers choose a service rate µi and an inventory value Ii that is distinct to the other server.

In case 2, where the holding and production cost parameter for server 2 is increased, it can be
noticed that the service rate for server 2 decreases and that the inventory levels remain 0. This can
be clarified, since an increase in holding costs means that any product in the warehouse will cost the
server more money, therefore having zero inventory is cheaper. Since the production costs are also
increased, the server chooses to work less hard, since producing more also costs him more money
than for server 1.

In case 4, where the holding costs for server 2 are higher than for server 1 and the production costs
for server 1 are higher than for server 2, it can be seen that server 1 chooses to work slower, so his
service rate decreases in comparison to case 1, and in response server 1 chooses an inventory level of
1. This can be clarified, since the holding cost parameter for server 1 is low but the production cost
parameter is high. The opposite can be noted for server 2. Server 2 chooses a higher service rate,
since his production cost parameter is low, but chooses an inventory level of 0, since his holding cost
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parameter is high.

In case 3 of all three models, all parameters are set equal to 1 except for the backlog cost parameter
b = 2. In this case, it can be seen that the optimal combination has the same service rates µi as
that of case 1, but the inventory values Ii for both servers increase symmetrically. Therefore, it can
be concluded that increasing the backlog costs is paired with an increase in the choice of inventory
values Ii and naturally an increase of the total costs, but not an increase of the service rates µi.

Furthermore, for case 3 it could be seen that the symmetric cost distribution function as well as
the cost distribution functions based on the holding or production cost parameters, have a Nash
equilibrium that comes closer in terms of service rates and total costs to the optimal solution than
in any of the other cases. In all the other three cases, these cost distribution functions resulted in a
Nash equilibrium at the bounds of the service rates that are considered.

In the cases 1 an 3 that are considered, the holding and production cost parameters are equal for both
servers. Therefore, in these cases the Nash equilibria for the symmetric cost distribution function
and for the cost distribution functions based on the holding or production cost parameters have the
same outcome. This can be clarified, because of the fact that the cost distribution functions based
on the holding or production cost parameters in these specific cases are equal to the symmetric cost
distribution.

Another conclusion that can be drawn based on the results, is that the cost distribution where
the backlog costs are assigned to the slowest server results in a Nash equilibrium that is equal to
the optimal solution for the first three cases for the M/M/1-queue. It can be seen that for the
M/E2/1-queue and the E2/M/1-queue that the price of anarchy is still the smallest among all the
cost distributions.

Lastly, it can be seen that for the M/E2/1-queue and the E2/M/1-queue the cost distribution that
distributes the costs symmetrically among the servers taking into account the amount of delay that
each server has, often has the same Nash equilibrium as that in the case where all backlog costs are
assigned to the slowest server.
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Chapter 6

Discussion

In this chapter, a critical reflection is made on the approach as presented throughout this report.
Furthermore, the main findings of the results in Chapter 4 are discussed and based on this, sugges-
tions for further research are presented.

One of the bottlenecks for the simulations is the simulation time. Using the formula as described in
Section 3.6.1, it can be seen that the simulation time increases as the value for the service rate µi
decreases. This is due to the fact that the service rate µi gets closer to the value of the arrival rate λ
and thus it takes longer before the queue reaches its steady state. Using the upper and lower bounds
that are computed in Section 3.7, a selection of possible service rates has been made to shrink the
size of possible combinations that need to be evaluated. It can be seen that when the parameters
hi and ci are chosen such that h1 6= h2 and c1 6= c2, the upper and lower bounds are found for
smaller values of the service rates µi. The simulation time for these smaller values of the service
rates µi < 1.4 increases exponentially and therefore running a simulation for these combinations was
left out. To be able to generate results for service rates below 1.4, other methods are needed.

The equations that are used to compute the simulation time in Section 3.6.1 apply to the M/M/1-
queue. Throughout this report, it is assumed that the simulation time as denoted in Section 3.6.1
also applies to the E2/M/1-queue and M/E2/1-queue. This assumption has been made in order to
compare the results of the E2/M/1-queue and M/E2/1-queue to the M/M/1-queue. For further
research, it is suggested to find an approximation for the time it takes to reach steady state for the
E2/M/1-queue and M/E2/1-queue.

A similar assumption has been made concerning the inventory levels that are considered in the
simulation. These inventory levels are based on the M/M/1-queue. For the same reasons as before,
these inventory levels have also been used for the E2/M/1-queue and M/E2/1-queue. To obtain a
more accurate approximation of the inventory levels of the E2/M/1-queue and M/E2/1-queue that
need to be considered, it is wise to determine these using the distributions of the number of jobs in
the system for both queues.

In Section 3.7, the assumption has been made for the E2/M/1-queue that P(Qi(µi) = n) = P(La =
n). Here P(La = n) represents the probability that there are n jobs in the queue just before arrival.
This is not exactly the same as the definition for P(Qi(µi) = n). This assumption is made because
P(La = n) follows a geometric distribution with respect to σ which makes further computations
a lot easier. In theory the difference between P(Qi(µi) = n) and P(La = n) is not that big and
therefore the assumption can be backed. For further research, this is a point that could be looked
into in more detail.

Throughout the report, the computation of the optimal costs for each combination of service rates
(µ1, µ2) is based on the empirical mean of 1000 simulation runs. The choice for 1000 simulation runs
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was based on the computation power and the number of combinations of service rates (µ1, µ2) that
needed to be done. In order to get an even more accurate result, more simulation runs can be done.

In this report, two additional models to theM/M/1-queue are considered, namely the E2/M/1-queue
and M/E2/1-queue. The Erlang distribution with shape parameter r and rate λr is in distribution
the same as the average of r independent exponentially distributed random variables with mean 1/λ.
Beforehand, the shape parameter r as denoted in Sections 3.5.2 and 3.5.3 is chosen to be 2. From
Chapter 4, it can be seen that the optimal total costs with the corresponding combination of service
rates (µ1, µ2) decreases when choosing an Erlang-2 distribution for either the interarrival times or
the service times.

The expectation is that these total costs with corresponding combination of service rates (µ1, µ2)
will decrease even further when the shape parameter r increases. This is due to the fact that the
variance of the Erlang-r distribution decreases when r increases, keeping in mind that the mean of
the Erlang-r distribution is the same as for the exponential distribution. Using the Law of large
numbers, it can be said the if r → ∞ the systems M/Er/1 and Er/M/1 converge to M/D/1
and D/M/1 systems respectively, where D stands for a deterministic distribution. This is because
the variance 1/(rλ2) of the Erlang-r distribution converges to 0 as r → ∞, as is the case for the
deterministic distribution where the variance is equal to 0. In this case, the future can be predicted
better, which means that the inventory choice becomes higher and in response, the service rates
become lower. A recommendation for further research would be to simulate the Er/M/1-queue and
M/Er/1-queue for larger values of r to check whether the conjecture as denoted above is indeed
true.

The upper and lower bounds suggest that the optimal solutions that are found using the simulation
are the global optimal solutions. It may be possible that there are also more local optimal solutions
beyond the service rates that are considered in this report. It would therefore be interesting to
investigate the total costs for service rates µi > 2.4. It must also be noted that the Nash equilibria
that are found in this research are not necessarily the only Nash equilibria. This could be investigated
in further research.

Lastly, this report only addresses two different types of distributions for the arrivals and the services.
To be able to implement this simulation in real-life cases, the following is suggested. If data for the
number of arrivals for orders and the service times of each supplier are available, it would be wise
to make plots of this data in order to find the actual distribution for the interarrival times and
service times. In this way, the model can be applied in real-life situations, where in many cases, the
interarrival times and service times are not necessarily exponentially or Erlang distributed.
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