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Abstract

We would like to apply the path integral formalism to diffusion MRI. There are certain path inte-
grals which are on one hand of special interest in this context, and on the other hand insufficiently
covered in the literature or treated in a mathematically non-transparent fashion. These include
the Euclidean free path integral, a Lagrangian Euclidean path integral for the harmonic oscillator
(quadratic potential), and a path integral representing anisotropic diffusion. This work provides
a mathematically rigorous and transparent treatment of these path integrals. Moreover, physical
interpretations of the rigorous path integrals are discussed where possible. The most important
results are closed forms of the treated path integrals, derived in a mathematically rigorous fash-
ion. Due to the Lagrangian formulation of the path integrals, these expressions are valid on a
restricted domain of definition only, except for the free path integral. Additional results include
varying physical interpretations of the free path integral, as well as a partial interpretation of
the 1-dimensional Lagrangian Euclidean path integral for the harmonic oscillator. The problems
of the domain of definition of the closed expressions and further interpretation of the harmonic
oscillator path integral may serve as starting points for future research.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is one of the most widely used diagnostic tools in modern
healthcare. One particular variant of MRI is diffusion MRI (often called diffusion-weighted imaging
or DWI). This technique relies on diffusion of water molecules in the brain of the patient, which
is essentially movement of water induced by the MRI scanner. The water molecules cannot move
arbitrarily in any direction, since nerve fibers or axons act as barriers, meaning that there is more
diffusion in some directions than in others, depending on where the axons are located. Based on
the observed diffusion, an image of brain is generated. Such an image is called a tractogram. The
tractogram depicts nerve tracts in the brain, which are bundles of axons. An example is shown
in figure 1.1. In order to improve tractography, that is, the making of tractograms with diffusion
MRI, it is of importance to gain a better understanding of the phenomenon of diffusion. To this
end, we wish to understand and apply a different formalization of quantum mechanics instead of
the usual formalism in terms of the wave function and the Schrödinger equation. This brings us to
the path integral formalism. The present work focuses on gaining understanding of this formalism,
motivated by the application to diffusion MRI.

Figure 1.1: A tractogram depicting bundles of axons.
(Thomas Schultz, CC BY-SA 3.0, via Wikimedia Commons)

1.1 Feynman’s idea

The concept of a path integral has fascinated physicists and mathematicians alike, ever since
its introduction by Richard Feynman as a novel approach to quantum mechanics in his famous
1948 paper [1] (with preliminary work dating back to Feynman’s 1942 PhD thesis [2]). Before
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1.1 Feynman’s idea Introduction

Feynman’s work, the leading mathematical formulation of quantum mechanics was in terms of a
state vector which evolves according to the Schrödinger equation. The solution of the Schrödinger
equation is called the wave function, and it is a probability amplitude from which probabilities
for measurements about the physical system in question can be deduced. Feynman proposed a
different approach.

Inspired by Paul Dirac [3], [4], it was Feynman’s idea to generalize the notion of paths and their
action from classical to quantum mechanics. In classical mechanics, action is a quantity which
plays a role in describing how the system changes over time. The action is different for every
possible trajectory, or path, of a moving particle (see figure 1.2). For any path, which is just a
continuous real function of time, the action is obtained by evaluating the action functional for
that path.

Figure 1.2: Different paths from A to B.
(Drawn by Matt McIrvin, CC BY-SA 3.0, via Wikimedia Commons)

In this way, the classical equations of motion for the system can be derived via the principle of least
action, which asserts that a classical particle will traverse that path which has the least action,
i.e. the path which makes the action functional stationary. Feynman introduced these concepts in
the quantum world by proposing that the probability amplitude of a quantum particle should be
given by a “sum over all possible histories” [5], each weighed by their likelihood. More precisely,
according to Feynman the transition amplitude for a particle in point a at time ta to point b at
time tb should be given by an integration over all possible paths from a to b over time [ta, tb] that
the particle can traverse, with the integrand representing in some sense the likelihood of each of
those paths (that is, how likely a particle is to actually traverse that path). This likelihood is given
by the exponential of a term proportional to the action, so that the action of a path in some sense
dictates which path materializes, as in the classical setting. The resulting object, which Feynman
dubbed the path integral, is in its most basic form given by∫

exp

(
i

~
S[γ]

)
Dγ , (1.1)

where S denotes the action functional, γ a path and Dγ some mysterious measure on the space
of paths. The integration domain is a set of paths with a certain fixed starting and end point.
According to Feynman, it should then be possible to express the wave function ψ in terms of a
path integral, namely

ψ(t, x) =

∫
ψ(0, γ(0)) exp

(
i

~
S[γ]

)
Dγ . (1.2)

Here, we integrate over those paths which start in a certain fixed point at time 0 and are in x
at time t, that is, continuous real functions γ on [0,∞) such that γ(0) = a for some a ∈ R and
γ(t) = x [6]. Although (1.1) and (1.2) look appealing and result from a rather intuitive and elegant
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1.2 Mathematical difficulties Introduction

idea, it is not yet clear how this path integration should work. In fact, when Feynman came up
with his idea, it was mostly a heuristic tool and not a formal way of treating quantum mechanics.
Although he did in his original paper [1] attempt to formalize his path integration to a certain
extent, it is clear from his remarks that Feynman realized that his method was not particularly
mathematically rigorous.

1.2 Mathematical difficulties

From the moment Feynman coined his path integral formalism, mathematicians and (to a lesser
extent) physicists have attempted to come up with a mathematically rigorous definition of path
integration, which proved no easy task. Feynman himself was already aware of the difficulties of
working with his path integrals in a rigorous fashion, as becomes apparent in the following quote:

“(...) one feels as Cavalieri must have felt calculating the volume of a pyramid before the
invention of calculus.” [1]

Although significant progress has been made, there still has been no success in formulating a gen-
eral theory of path integration. Sophisticated analytic methods for broad classes of path integrals
exist (see for example [7], [8], as well as the overview in [9] and the references therein), but they are
still restricted to special cases. The key point is that to rigorously define path integration in gen-
eral, one is essentially asking for a rigorous general treatment of infinite-dimensional integration,
namely integration on a suitable infinite-dimensional function space which serves as the space of
paths. If we would be able to rigorously define the as of yet heuristic measure on path space Dγ,
we would know from measure theory how to integrate in the space of paths, and we would be done.
Unfortunately, things are not that simple. A quite simple argument shows that a Lebesgue-type
measure cannot be defined on infinite-dimensional Hilbert spaces, and the same holds true for
Banach spaces [5]. Thus, we cannot hope to find a general, reasonable measure Dγ on a complete
infinite-dimensional path space equipped with at least some vector space structure. In principle
this says nothing about the possibility of defining such a measure on a space with less constraints,
i.e. a space which is not complete or has no vector space structure, but it seems unlikely that we
end up with a useful theory if we cannot even put these requirements on the path space. Similarly,
it is undesirable to look at non-Lebesgue type of measures, that is, measures which need not be
rotation or translation invariant, need not assign a finite, positive value to bounded open sets of
paths, or need not be σ-additive. In short, it seems impossible to define a reasonable measure
Dγ on a suitable space of paths, which destroys our hopes of rigorously defining Feynman’s path
integration in a general way through measure theory.

This, however, is not to say that it is impossible to define useful infinite-dimensional integration in
any way. In fact, a theory of infinite-dimensional integration by Norbert Wiener already existed
at the time Feynman wrote his thesis. It is unknown whether Feynman was actually aware of
this. As it turns out, there is actually a connection between Feynman’s heuristic path integral
and Wiener’s well-defined infinite-dimensional Wiener integral. This connection was discovered by
Mark Kac, who noted the similarity between Feynman’s work and his own work while attending a
lecture of Feynman at Cornell University [10]. At the time, Kac was studying the distributions of
certain Wiener functionals [11]. His main result was that the expectation of this type of Wiener
functional, which is just a Wiener integral, is related to the fundamental solution of the heat
equation. Kac remarked that this equation is, in his own words, “quite similar” [11] to the
Schrödinger equation. Indeed, the heat equation is obtained from the Schrödinger equation by
making the transformation t→ −it 1, which is essentially a sort of analytic continuation to purely
imaginary time. But then the assertion of Feynman (1.2) implies that the solution to the heat
equation should be represented by the path integral that arises from the transformation t → −it

1Sometimes referred to as the Wick rotation.
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1.3 The Euclidean path integral Introduction

in Feynman’s original path integral. This path integral is, in the simple case of a free particle
(only having kinetic energy) of unit-mass and setting ~ = 1,∫

exp
(
−S0[γ]

)
Dγ , (1.3)

where S0 is the action functional for a free particle (the definition of S0 is at this point irrelevant).
Together with Kac’s result, this meant that the path integral (1.3) could be written as a rigorous
Wiener integral. A generalization of this result called the Feynman-Kac formula has become one
of the most fundamental and important results in the mathematical theory of path integration.

1.3 The Euclidean path integral

Consider again Feynman’s path integral (1.1), for which a general definition is still unclear, and
compare it to Kac’s path integral (1.3), which can be written as a Wiener integral. Disregarding
the fact that Kac’s path integral is given in terms of the simplified action functional S0, the essen-
tial difference is the factor in front of the action functional. In Feynman’s path integral we see the
complex factor i/~, whereas in Kac’s path integral we have the real factor −1. In the remainder of
this work, we shall only discuss path integrals of the latter type, with a real exponent. We remark
that most of the literature on path integrals focuses on the type with complex exponent, but this
case is not of primary interest in the context of diffusion. Moreover, this type of path integral is
even more troublesome than the type with real exponent. A thorough discussion would require,
among others, functional analysis too technical to present here. We refer those interested to [7], [8].

The path integrals that we will mainly be looking at are of the form

KV (a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇2

2
− V (γ, t)dt

Dγ (1.4)

with ta, tb ∈ R+ ∪ {0}, tb > ta, a, b ∈ R and Dγ denoting the heuristic measure on 1-dimensional
path space, and its n-dimensional generalization

KV (a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

‖γ̇‖2

2
− V (γ, t)dt

Dγ (1.5)

with ta, tb ∈ R+ ∪{0}, tb > ta, a, b ∈ Rn and Dγ denoting the heuristic measure on n-dimensional
path space. The integration bounds in the path integral indicate that we integrate over those
paths γ which start in point a at time ta and end in point b at time tb, i.e. over continuous
functions

γ : [ta,∞)→ R (1.6)

such that γ(ta) = a and γ(tb) = b (so the paths do not actually “end” and there is no such thing as
the end point, but we will only be considering the segments of the paths over closed time intervals
[ta, tb] which justifies the terminology used here). The exponent contains the action functional

S(ta, tb)[γ] :=

tb∫
ta

L(γ, γ̇, t)dt (1.7)

with the Lagrangian
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1.3 The Euclidean path integral Introduction

L(γ, γ̇, t) :=
‖γ̇‖2

2
− V (γ, t) , (1.8)

viz.

KV (a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp
(
−S(ta, tb)[γ]

)
Dγ =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

L(γ, γ̇, t)dt

Dγ . (1.9)

The term‖γ̇‖2 /2 in the Lagrangian denotes kinetic energy, whereas the function V represents the
potential energy. We see that (1.5) is a generalization of (1.3) to the general action functional S
instead of S0, the latter corresponding to V = 0 in the Lagrangian. Observe that we implicitly
assume that the particle can traverse any path from a to b, even though this is not quite true:
in reality, the particle’s speed is bounded by the speed of light. This is in general not taken into
account in the theory of path integrals, to maintain at least some simplicity in an already difficult
topic, but some interesting ideas are sketched in [12].

At this point, we must note that there is a difference between the type of path integral with real
exponent that is usually treated in the literature, and our path integral KV . Indeed, observe
that the transformation t→ −it in Feynman’s original path integral (1.1) actually gives the path
integral

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

‖γ̇‖2

2
+ V (γ, t)dt

Dγ . (1.10)

This is almost the same as our path integral KV , except that the sign in front of the potential
function V is flipped. Whereas we recognize the action functional with the Lagrangian in KV ,
the path integral that arises from Feynman’s path integral by substituting t → −it contains the
Hamiltonian instead, viz.

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

‖γ̇‖2

2
+ V (γ, t)dt

Dγ =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

H(γ̇, γ, t)dt

Dγ , (1.11)

with the Hamiltonian H being defined as

H(γ, γ̇, t) :=
‖γ̇‖2

2
+ V (γ, t) . (1.12)

Although the difference is only a sign, there is a fundamental difference between Lagrangian and
Hamiltonian formalism from the physical viewpoint [13]. Hence, there is a clear conceptual differ-
ence between these types of path integrals. It will turn out that this has quite severe implications
for the mathematics behind the path integrals as well, which we will discuss in detail from chapter
3 onward. Path integrals of the type (1.11) are often called Euclidean path integrals, and this is
the type of path integral with real exponent that one usually encounters in the literature. The
path integral KV which we will be studying is for V 6= 0 hardly ever discussed in the literature.
This is unfortunate, since it is precisely this formulation that we are interested in in the context
of diffusion MRI. We will henceforth also refer to path integrals of the type (1.5) as Euclidean
path integrals. Whenever necessary, we shall distinguish between the type (1.5) and (1.11) with
the terms Lagrangian and Hamiltonian, respectively.

The main goal of this work is to present a mathematically rigorous treatment of certain path
integrals which are of particular interest for application to diffusion MRI. This consists of special
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1.3 The Euclidean path integral Introduction

cases of this Lagrangian Euclidean path integral, as well as a slightly different, more general type
of path integral with real exponent, all of which are insufficiently covered in the literature. We will
also be looking at the Euclidean path integral with V = 0, for which there is no difference between
the Lagrangian and Hamiltonian formulation. This case is discussed in a multitude of literature
sources, but often from a physical point of view which is mathematically non-transparent. As
such, we will treat this case from a more mathematical point of view, which yields a transparent
treatment and at the same time serves as a basis to build on for the other, more complicated path
integrals. The secondary goal is to offer physical interpretations of the path integrals that we will
treat, where possible, once we have made them mathematically rigorous.

This work is written in such a way that only a minimal amount of preliminary knowledge is
required. Elementary knowledge of calculus, linear algebra, real analysis, and probability theory
should suffice for most parts. Knowledge of measure theory and mathematical physics is beneficial,
but these parts have been made as self-contained as possible so that it is not an absolute necessity.
We will begin by analyzing the 1-dimensional Euclidean path integral for the simple case V = 0
in chapter 2. In chapter 3, we will look at a quadratic potential function V in the Lagrangian
Euclidean path integral, first in the 1-dimensional case and then in the general n-dimensional case.
The latter case will also yield an n-dimensional generalization of the case V = 0. In chapter 4,
we will discuss a path integral slightly different from but closely related to the Euclidean type.
The last section of chapter 4 (section 4.3) will, as a special case, yield a result for the Lagrangian
Euclidean path integral for another class of potential functions. We will end with a summary of
the main results and an outline of possible future research in chapter 5.
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Chapter 2

The free path integral

In this section, we shall begin by analyzing the simplest form of the 1-dimensional Euclidean path
integral (1.4), namely the case where we set the potential V = 0, given by

K0(a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇(t)2

2
dt

Dγ . (2.1)

The path integral given by (2.1) shall henceforth be referred to as the free path integral, because
it corresponds to a particle moving in a region of uniform (non-varying) potential, which can be
set to 0 arbitrarily. Thus, the particle moves freely in that its movement is not restricted by
any potential field. This is not a good representation of the water molecules in diffusion MRI,
since their movement is restricted due to the structure of the brain, as explained in chapter 1.
Nonetheless, it is crucial to understand the free path integral before moving on to more complicated
versions. Treating the free path integral first will give a good idea of how the path integral works
from a mathematical point of view and what it represents on a deeper physical level, while avoiding
mathematical problems which arise for nonzero potentials. We consider the 1-dimensional case
here for simplicity. A generalization to the n-dimensional analogue of (2.1) will follow in chapter
3, as a corollary of the main result in that chapter.

2.1 Defining the free path integral

Let us start by discussing the most obvious issue: how to give meaning to the right-hand side of
(2.1)? The problem is two-fold. On one hand, we would like to rigorously define this integration
with respect to the heuristic measure on path space, and on the other hand, we want to do this
in such a way that the intuitive properties of the original idea are preserved. A natural way
to proceed is to infer a rigorous definition from certain properties that one would like the path
integral to have. One desired property is, for a general n-dimensional Euclidean path integral KV ,
the following:

KV (a, b; ta, tb) =

∫
Rn

KV (a, c; ta, tc)KV (c, b; tc, tb)dc (2.2)

for all tc ∈ (ta, tb). In particular, the one-dimensional free path integral should satisfy

K0(a, b; ta, tb) =

∫
R

K0(a, c; ta, tc)K0(c, b; tc, tb)dc (2.3)

for all tc ∈ (ta, tb). Equation (2.2) essentially says that we can introduce an arbitrary intermediate
point c on any path between a and b at a fixed time tc, allowing us to split the paths and

9



2.1 Defining the free path integral The free path integral

consequently the path integral itself in two parts, and in order to consider all admissible paths
from a to b we integrate over all possible intermediate points c. This requirement will form the
basis of a rigorous definition of the Euclidean path integral. Inspired by (2.3), we now consider N
intermediate points. By repeatedly applying (2.3), we then find

K0(a, b; ta, tb) =

∫
RN

N∏
j=0

K0(xj , xj+1; tj , tj+1)dx , (2.4)

with x0 := a, t0 := ta, xN+1 := b, tN+1 := tb and dx := dx1 . . . dxN . We can simplify this by
considering equidistant time points, that is, we set tj+1 − tj = ε := tb−ta

N+1 for j = 0, . . . , N . If we
denote the corresponding path integrals by K0(xj , xj+1; ε), this gives

K0(a, b; ta, tb) =

∫
RN

N∏
j=0

K0(xj , xj+1; ε)dx . (2.5)

Equation (2.5) does not seem very insightful, since the to-be-defined path integral appears on both
sides. The crucial trick is to consider the limit N →∞. In this case, we partition the time interval
[ta, tb] in infinitesimally small parts, viz. ε = tb−ta

N+1 ↓ 0. We obtain

K0(a, b; ta, tb) = lim
N→∞

∫
RN

N∏
j=0

K0(xj , xj+1; ε)dx . (2.6)

In the integrand, we then have the path integrals

K0(xj , xj+1; ε) =

γ(tj+1)=xj+1∫
γ(tj)=xj

exp

− tj+1∫
tj

γ̇(t)2

2
dt

Dγ , (2.7)

but since the partition of [ta, tb] gets infinitesimally fine as N →∞, we restrict the path at arbitrar-
ily many points in time, so that the freedom within the path integration effectively vanishes and
the path integrations together resemble integration over just the intermediate points x1, . . . , xN .
Consequently, using the approximation

exp

− tj+1∫
tj

γ̇(t)2

2
dt

 ≈ exp

(
− (xj+1 − xj)2

2ε

)
, (2.8)

we define the free path integral through (2.6) as follows.

Definition 2.1 (Free path integral). The free path integral (2.1) is defined as

K0(a, b; ta, tb) := lim
N→∞

1

ZN

∫
RN

N∏
j=0

exp

(
− (xj+1 − xj)2

2ε

)
dx

= lim
N→∞

1

ZN

∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx ,

where ε = ε(N) := tb−ta
N+1 > 0, x0 := a, xN+1 := b, dx := dx1 . . . dxN and 1

ZN
denotes a suitable

normalization constant to ensure convergence in the limit.
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2.1 Defining the free path integral The free path integral

Although definition 2.1 may seem cumbersome, it actually provides a very natural interpretation of
the path integral. Namely, we can apparently view integration in the space of paths as “ordinary”
integration over infinitely many intermediate points which lie on the path, via a limiting proce-
dure of Riemann integrals over RN . Of course, we can never control the path at every single point
in time by simply introducing enough intermediate points, for any path consists of uncountably
many points, but an arbitrarily small neighborhood of any point in time t ∈ (ta, tb) will eventually
contain such an intermediate time epoch tj when N gets sufficiently large. Thus, when N grows
large, integration over the N “control points” x1, . . . , xN closely resembles heuristic integration
in path space. For these reasons, and others which will become apparent later on, definition 2.1
and analogues thereof are the standard in literature on path integrals, see for example [14], [15].
In fact, Feynman himself proposed a more general version of this definition for his path integral
(1.1) [1], but only in the Euclidean case this definition is relatively straightforward. In the most
general case, convergence of the limit is not at all guaranteed, and a rigorous treatment involves
complicated machinery which is well beyond the scope of this work. For those interested, we refer
to [7], [8].

Now that we have established definition 2.1, let us briefly discuss the normalization factor 1/ZN .
Of course, this factor should be chosen such that the right-hand side in the definition of the free
path integral converges, but in principle there are many valid choices for ZN . However, there is
one particular choice which is preferred, as we shall now explain. We observe that the integral

1

ZN

∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx (2.9)

is, after a change of variables yi+1 = xi+1−xi (which has unit Jacobian determinant), the product
of N Gaussian integrals. It is well known that for the standard Gaussian integral, we have∫

R

exp
(
−α(x+ β)2

)
dx =

√
π

α
, (2.10)

for α > 0 and β ∈ R, or equivalently√
α

π

∫
R

exp
(
−α(x+ β)2

)
dx = 1 . (2.11)

With α = 1
2ε , this becomes

1√
2πε

∫
R

exp

(
− (x+ β)2

2ε

)
dx = 1 . (2.12)

Note that the fact that the above integral over R equals 1 suggests that we can interpret the
integrand as a probability density (indeed, the integrand is the probability density function of a
Gaussian distribution). Inspired by this, we wish to interpret (2.9) as a probability density in b
(so the entire RN -integral should be the probability density function in b). Therefore, we require
that

1

ZN

∫
R

∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dxdb = 1 , (2.13)

meaning that the probability of finding the particle in an arbitrary point b ∈ R at time tb must be
equal to 1. In other words, what this requirement says is that, starting in a at time ta, the particle
has to be in some point b ∈ R at time tb. Again performing the change of variables yi+1 = xi+1−xi,

11
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we see that the RN+1-integral in (2.13) is the product of N + 1 Gaussian integrals. But then we
immediately see from (2.12) that we can interpret (2.9) as a probability density in b when setting

1

ZN
=

(
1

2πε

)N+1
2

, (2.14)

which is the result of adding a factor 1/
√

2πε in front for each of the N + 1 Gaussian integrals.
The possibility of interpreting the N -dimensional Riemann integrals within the limit as proba-
bility density functions in turn allows for a clear probabilistic interpretation of the path integral
itself, as will become apparent in section 2.4. Referring back to the original idea of Feynman,
namely that the path integral should represent the wave function (see equation (1.2)) which has a
probabilistic physical meaning, we would indeed also like to interpret the Euclidean path integral
in some probabilistic sense (even though it does not represent the wave function anymore after
the transformation to imaginary time). Thus, (2.14) is a natural choice for the normalization
constant, and we shall henceforth fix this choice for ZN .

2.2 Relating the free path integral to the Wiener measure

In the preceding section, we established a definition of the free path integral in terms of a limit
of Riemann RN -integrals. In this section, we will concisely introduce Wiener measure, and sub-
sequently relate this measure to our definition of the free path integral. We will only consider the
1-dimensional case of the Wiener measure, but the general n-dimensional case is analogous. Some
knowledge of elementary measure theory is useful, as it is beyond the scope of this work to intro-
duce measure theory in all generality, but it is not strictly necessary. For the uninitiated reader, in
particular those who are not familiar with the concept of a measure space and integration w.r.t. a
measure, we refer to [16]. We also point out that a particularly interesting and elementary sketch
of the main topics of this section combined with some of the results of sections 2.4.1 and 2.4.2 (as
well as some results which we will see later in chapter 3) is given in chapter 9 of [17].

2.2.1 Construction of the Wiener measure

Wiener measure was first introduced by Norbert Wiener in 1923 in his work on Brownian motion
[18], [19]. It has been extensively studied and applied in, most notably, stochastic calculus and
analysis (see e.g. [20], [21], [22]) but it is related to a broad variety of subjects, among which our
path integrals. In particular, the Wiener integral (integration w.r.t. Wiener measure) is a form of
rigorous path integration, often called functional integration, which was already established well
before the work of Feynman. As remarked in chapter 1, it was Mark Kac who discovered the
connection between Feynman’s path integral and Wiener’s integral via the heat equation.

We shall adhere to a similar definition of the definition of Wiener measure, in particular conditional
Wiener measure, as given in [6], but notably in the 1-dimensional case instead of the 3-dimensional
one and without the restriction to time intervals which are symmetric around 0. Throughout the
literature the definition is not entirely consistent regarding the starting point and the time interval,
but this is a matter of preference. A more important difference between various literature sources
has to do with the (lack of) normalization of the conditional Wiener measure, which we will discuss
in more detail below. We begin by defining the relevant sets of paths.

Definition 2.2 (Set of Brownian paths). For fixed ta > 0 and a ∈ R, the set of continuous
functions

γ : [ta,∞)→ R

such that γ(ta) = a is denoted by Xa. Additionally, for fixed tb > ta and b ∈ R, the set of
continuous functions

12
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γ : [ta,∞)→ R

such that γ(ta) = a and γ(tb) = b is denoted by Xab. Elements of Xa and Xab are called Brownian
paths.

Next, let us define cylinder subsets on sets of paths Xa and Xab.

Definition 2.3 (Cylinder subsets). Cylinder subsets of Xa are sets of the form

{γ ∈ Xa : γ(tj) ∈ Ij (j = 1, . . . , n)} ⊆ Xa .

with Ij closed or open intervals in R and ta < t1 < · · · < tn. Analogously, cylinder subsets of Xab

are sets of the form

{γ ∈ Xab : γ(tj) ∈ Ij (j = 1, . . . , n)} ⊆ Xab ,

with Ij closed or open intervals in R and ta < t1 < · · · < tn < tb.

We shall henceforth refer to cylinder subsets of either set as cylinder sets or simply cylinders.
This should cause no confusion, as it will be clear from the context which set we mean. Using
the notion of cylinders, we can define a special collection of subsets on Xa and on Xab. Such a
collection is called a σ-algebra.

Definition 2.4 (σ-algebra of Brownian events). The collection of subsets of Xa that can
be obtained from cylinders C ⊆ Xa by the operations of countable unions, countable intersec-
tions and complement, is called the σ-algebra of Brownian events on Xa, and is denoted by Fa.
Similarly, the collection of subsets of Xab that can be obtained from cylinders C ⊆ Xab by the
operations of countable unions, countable intersections and complement, is called the σ-algebra
of Brownian events on Xab, and is denoted by Fab. Elements of Fa and Fab, which are subsets of
Xa, respectively Xab, are called Brownian events.

Thus, a Brownian event is a set of Brownian paths. This terminology, which is at this point still
mysterious, shall be clarified in section 2.4.2. Those familiar with measure theory will note that
Fa and Fab are the σ-algebra generated by the collection of cylinders on Xa and Xab, respectively.
In particular, Fa contains Xa and Fab contains Xab. Moreover, from the definition it is clear
that Fa and Fab are closed under taking a countable union or intersection of elements, and under
taking complements.

Having established a σ-algebra on Xa and on Xab, we can define a measure on the measurable
spaces (Xa,Fa) and (Xab,Fab). This will be the Wiener measure.

Definition 2.5 (Wiener measure). Let the set function w be given on cylinder sets C ⊆ Xa by

w(C) =

∫
I1

· · ·
∫
In

n−1∏
j=0

 1√
2π(tj+1 − tj)

exp

(
− (xj+1 − xj)2

2(tj+1 − tj)

) dx1 . . . dxn ,

where t0 := ta, x0 := a. Moreover, let w′ be given on cylinder sets C ⊆ Xab by

w′(C) =

∫
I1

· · ·
∫
In

n∏
j=0

 1√
2π(tj+1 − tj)

exp

(
− (xj+1 − xj)2

2(tj+1 − tj)

) dx1 . . . dxn ,

where t0 := ta, tn+1 := tb, x0 := ta, xn+1 = b. The extension of w to the σ-algebra Fa on Xa

is called Wiener measure on Xa. Similarly, the extension of w′ to the σ-algebra Fab on Xab is
called conditional2 Wiener measure on Xab. Wiener measure shall be denoted by W , whereas
conditional Wiener measure shall be denoted by W ′.

2The “condition” being that the end point is now also fixed.
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Note that this definition relies on the existence of a unique extension of w and w′ to the whole
σ-algebra Fa, respectively Fab. A proof of this is rather tedious and requires more advanced
measure theory, so instead of providing it here we refer to [6], [23]. Furthermore, the version of
the conditional Wiener measure which we provide here is the unnormalized variant, which is the
version most commonly seen in literature which is written from a predominantly physical point of
view. The normalized variant, where there is an additional division by a normalization constant
in the definition of w′, is more often seen in purely mathematical context. We will see later that
the unnormalized version is indeed relevant for our work, and we will explain the fundamental
difference in interpretation between the versions.

Through definition 2.2 up to 2.5, we have constructed a set of paths, a σ-algebra on the set of
paths, and a measure acting on the σ-algebra. Thus, we have constructed the triplets (Xa,Fa,W )
and (Xab,Fab,W ′), which are called measure spaces. An important remark which should be
kept in mind is that in this context, the use of the term “space” does not allude to the concept
of a vector space in any way. In fact, it is readily seen from definition 2.2 that, for example,
v, w ∈ Xa 6=⇒ v + w ∈ Xa under the usual addition operation in the space of continuous
functions. We postpone giving a precise meaning of (Xa,Fa,W ) and (Xab,Fab,W ′) to section
2.4.2.

2.2.2 Free path integral as a Wiener integral

Let us shift our attention back from the construction of the Wiener measure back to the path
integral. We note that the terms in the limit in definition 2.1 look remarkably similar to the
definition of conditional Wiener measure on cylinder sets. Indeed, they are in fact closely related,
as we will now show. Denote the terms in the limit in definition 2.1 by

K
(N)
0 (a, b; ta, tb) :=

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx , (2.15)

so that K0(a, b; ta, tb) = lim
N→∞

K
(N)
0 (a, b; ta, tb). Consider the family of cylinders

CN := {γ ∈ Xab : γ(tj) ∈ R (j = 1, . . . , N)} , (2.16)

for N ∈ N+, with ta and tb independent of N , so that the number of “intermediate points”
increases with N . By definition 2.5 we have for the family of cylinders (2.16) that

W ′(CN ) =

∫
RN

N∏
j=0

 1√
2π(tj+1 − tj)

exp

(
− (xj+1 − xj)2

2(tj+1 − tj)

) dx1 . . . dxN . (2.17)

Assuming that for all j we have tj+1 − tj = tb−ta
N+1 = ε, this reduces to

W ′(CN ) =

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx = K
(N)
0 (a, b; ta, tb) . (2.18)

Thus, we find

K0(a, b; ta, tb) = lim
N→∞

W ′(CN ) . (2.19)

Next, observe that the cylinders CN are actually different ways of writing the exact same set
every time, namely the set Xab of all continuous paths from a to b over time [ta, tb]. Indeed, the
constraint of intermediate points γ(tj) to the interval Ij is not a true constraint when Ij = R. The
only reason to introduce these arbitrary intermediate points is to get the integral denoting the
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Wiener measure to appear in exactly the same form as the integral K
(N)
0 . In light of the above,

we conclude

K0(a, b; ta, tb) = W ′(Xab) =

∫
Xab

dW ′ , (2.20)

the right-hand side denoting the Wiener integral over Xab (the right equality follows directly
from the definition of integration w.r.t. a measure). This is precisely the result known as the
Feynman-Kac formula for V = 0 (see (2.2.9) on page 34 of [15]), which establishes a connection
between the free path integral and the Wiener integral. Equation (2.20) shows that definition
2.1, which defines the path integral in terms of ordinary Riemann integrals, actually leads to an
equivalent formulation of Feynman’s path integral in terms of a well-defined Wiener integral. The
Wiener integral can be seen as a rigorous path integral, since the set Xab over which we integrate
is by definition a set of paths, and the measure W ′ is defined on collections of these paths. This
is another reason why our way of defining the free path integral is very natural and intuitive.
Finally, we can extend (2.20) to obtain an even stronger result, which really drives the point
home that definition 2.1 preserves the desired properties of the heuristic path integral. It follows
straightforwardly from definition 2.5 that

W ′(Xab) =
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
. (2.21)

This can be seen by realising that

W ′(Xab) = W ′

({
γ ∈ Xab : γ

(
ta +

tb − ta
2

)
∈ R

})

=
1

2πε

∫
R

exp

(
− (b− x1)2 + (x1 − a)2

tb − ta

)
dx1

(2.22)

and evaluating the integral (we will not do the explicit evaluation here, since a more general case
will be treated in section 2.3). Hence, we obtain

Result 2.1 (1-dimensional free path integral).

K0(a, b; ta, tb) = W ′(Xab) =

∫
Xab

dW ′ =
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
.

Result 2.1 is the main result so far. It presents the free path integral both as a rigorous Wiener
integral as well as in closed form. To conclude this section, we remark that some authors set
(2.21) as part of the definition of conditional Wiener measure, for example Glimm and Jaffe [6].
We have chosen not to do this because it is not strictly necessary and would needlessly obscure
the definition.

2.3 Computing the free path integral

By recognizing in our definition of the free path integral a limit of Wiener integrals, and subse-
quently using properties of the Wiener measure, we derived a closed form for the free path integral,
namely result 2.1. In this section, we show that we can rigorously manipulate the path integral
when it is defined as in definition 2.1, in order to arrive at the same closed form as given by result
2.1 without involving Wiener measure.
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Consider again the 1-dimensional free path integral, furnished with the appropriate normalization
factor in the limit as explained in section 2.1:

K0(a, b; ta, tb) = lim
N→∞

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx . (2.23)

We shall outline an approach3 to evaluate the right-hand side limit to an expression in closed
form. We remark that this is essentially a more rigorous version of the method illustrated in [24].
Only the most important steps and results shall be given here, while detailed computations can
be found in the appendix. We start by introducing the change of variables

yi+1 = xi+1 − xi (i = 0, . . . , N − 1) , (2.24)

and introducing the auxiliary variable

yN+1 = xN+1 − xN = b− xN . (2.25)

For the Jacobian ∂y/∂x of the change of variables (2.24), we have

(
∂y

∂x

)
ij

=
∂yi
∂xj

=


1 if j = i

−1 if j = i− 1

0 otherwise ,

(2.26)

hence det(∂y/∂x) = 1, which gives

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx =

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

y2
j+1

2ε

 dy1 . . . dyN .

(2.27)
Although we only integrate over y1, . . . , yN , we effectively integrate over all permitted values of
all of the N + 1 new variables, since yN+1 is automatically fixed by choosing y1, . . . , yN . Thus,
only N of the N + 1 new variables are free variables. In particular, we have the linear dependency

N∑
j=0

yj+1 = b− a , (2.28)

which we can exploit to make the integration over yN+1 explicit. Instead of integrating over
y1, . . . , yN as in (2.27), we may integrate over y1, . . . , yN+1 by adding a δ-function in the integrand
which restricts the choice for the (N+1)-th integration variable once the other N have been fixed.
This gives

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx

=

(
1

2πε

)N+1
2

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε

 δ

 N∑
j=0

yj+1 − (b− a)

 dy ,

(2.29)

where dy := dy1 . . . dyN+1. Using the inverse Fourier transform of the Dirac δ-function, we can
write

3Inspired by private communication with supervisor Luc Florack.
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δ

 N∑
j=0

yj+1 − (b− a)

 =
1

2π

∫
R

exp

iξ
 N∑
j=0

yj+1 − (b− a)


 δ̂(ξ)︸︷︷︸

=1

dξ

=
1

2π

∫
R

exp

iξ
 N∑
j=0

yj+1 − (b− a)


 dξ ,

(2.30)

hence

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx

=
1

2π

(
1

2πε

)N+1
2
∫
R

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

 N∑
j=0

yj+1 − (b− a)


 dydξ ,

(2.31)

where we changed the order of integration. The right-hand side of (2.31) can be evaluated in
closed form, giving

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx =
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
, (2.32)

and consequently

K0(a, b; ta, tb) = lim
N→∞

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

(xj+1 − xj)2

2ε

 dx

=
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
.

(2.33)

The step-by-step computation can be found in appendix A. By virtue of computation, and in
particular without involving Wiener measure, we have again found the closed form which we
already established in section 2.2. Thus, definition 2.1 is robust, because the result found by
performing rigorous manipulations to the Riemann integrals within the limit is entirely consistent
with the result found by relating the path integral to the Wiener integral. For the n-dimensional
analogue of equation (2.33), see result 3.3, which is obtained as a special case of the main result
in chapter 3.

2.4 Interpreting the free path integral

So far, this chapter has explored the free path integral from a strictly mathematical point of
view. Although mathematically rigorous treatment of path integrals is of particular interest, this
is in fact only a part of the story. Feynman introduced the concept of a path integral not as
a well-defined mathematical object, but rather as a tool in theoretical physics. Thus, with the
mathematical results from the previous sections and the path integral’s physical roots in mind,
the next question which arises is as follows. How can we interpret the mathematical result 2.1 in
physical context? The answer will be given in this section.
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2.4.1 Diffusion

Recall that, according to the original idea of Feynman, the path integral is meant to represent the
solution to the Schrödinger equation (see equation 1.2). Noting that the Hamiltonian Euclidean
path integral (3.7) arises from Feynman’s quantum mechanical path integral by introducing imag-
inary time, viz. t→ −it, one can argue that the Hamiltonian Euclidean path integral should then
represent the solution of the equation that arises from making the substitution t → −it in the
Schrödinger equation [5]. Similarly, our Lagrangian Euclidean path integral (1.4) should represent
the solution to the same equation but with inverted potential V in the case where V 6= 0. The
equation that one obtains when substituting t → −it in the Schrödinger equation is in fact the
heat equation. Thus, in order to mirror Feynman’s interpretation of his heuristic path integral,
we would like the Euclidean path integral, when defined properly, to represent the solution to the
heat equation (a priori this is just an informal identification which has no mathematical meaning).
In particular, definition 2.1 should somehow be related to the solution of the 1-dimensional heat
equation with V = 0, i.e. the 1-dimensional diffusion equation for constant diffusion coefficient
D = 1/2,

∂u(q, t)

∂t
=

1

2

∂2u(q, t)

∂q2
. (2.34)

Fortunately, our definition of the free path integral does just that.

The fundamental solution of the diffusion equation (2.34) is the solution subject to the initial
condition

u(q, 0) = δ(q) , (2.35)

where δ is the Dirac δ-function. It is well known that the solution to this initial value problem is
given by

u(q, t) =
1√
2πt

exp

(
−q

2

2t

)
. (2.36)

The right-hand side is often called the heat kernel or diffusion kernel. Obtaining this solution
is outside the scope of the present work; details can be found in any introductory textbook on
partial differential equations, see for example [25]. The fundamental solution u given by (2.36) is
rather interesting, because we have

K0(a, b; ta, tb) =
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
= u(b− a, tb − ta) , (2.37)

which is to say that apparently, the free path integral is the fundamental solution of the diffusion
equation, i.e. the diffusion kernel, evaluated at time coordinate tb− ta and space coordinate b−a.
With this result we arrive at the original, heuristic identification of the Euclidean path integral
with the heat equation, which has now been made rigorous in the case V = 0 by virtue of definition
2.1.

Equation (2.37) can be used to give physical meaning to the mathematically rigorous path integral.
Since we now recognize it as the diffusion/heat kernel, we can interpret the path integral through
the physical meaning of this kernel. The meaning of the kernel is probabilistic. Indeed, one may
recognize in the right-hand side of (2.36) the probability density function (pdf) of a Gaussian
random variable with mean 0 and variance t. Mathematically, a pdf f represents the probability
that a random variable Y following that distribution falls in a certain range of values (a, b), viz.

P(a < Y < b) =

b∫
a

f(y)dy . (2.38)
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In statistical physics, one often encounters the following informal reformulation of the above. If
dy is an infinitely small positive number, f(y)dy represents the probability that Y is contained in
the infinitesimal volume element (y, y + dy), viz.

P(y < Y < y + dy) = f(y)dy . (2.39)

Thus, for fixed t we identify

P(q < Q < q + dq) =
1√
2πt

exp

(
−q

2

2t

)
dq (2.40)

where Q is a random variable with pdf u(·, t), i.e. a Gaussian with mean 0 variance t. In the
context of diffusion, the physical meaning of the left hand side of 2.40 is the probability that
a single particle, subject to diffusion governed by (2.34) and starting in position q0 = 0 at time
t0 = 0, is found in the infinitesimal volume element (q, q+dq) at time t > 0. Note that the starting
position in the origin is a result of the initial condition (2.35) (recall that the Dirac δ-function
has an “infinite spike” at 0, and is equal to 0 everywhere else). Consider now the version of the
diffusion kernel that we are interested in, namely (2.37). Although (2.37) expresses our kernel in
terms of the standard kernel (2.36), there is a more instructive way of looking at our diffusion
kernel. In fact,

p(q, t) :=
1√

2π(t− ta)
exp

(
− (q − a)2

2(t− ta)

)
(t > ta) (2.41)

is the solution of the diffusion equation (2.34) subject to the alternative initial condition

u(q, ta) = δ(q − a) , (2.42)

which describes a particle subject to diffusion, now starting at position a at time ta. The right-
hand side of (2.41) is again a pdf, namely of a Gaussian random variable Z with mean a and
variance t− ta, and thus we identify

P(b < Z < b+ db) =
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
db = K0(a, b; ta, tb)db , (2.43)

with the left-hand side denoting the probability that the particle is found in the volume ele-
ment (b, b + db) at time tb > ta. Equation (2.43) connects the free path integral to the physical
phenomenon of diffusion, highlighting the probabilistic interpretation of the path integral. In
particular, (2.43) relates, in some sense, the probability that the particle ends up “in” b at time
tb to integration, or more suggestively summation, over all possible paths which the particle can
traverse to go from its starting point a at time ta to b at time tb (a more precise relation will be
given in section 2.4.2). It should however be kept in mind that (2.43) is just an informal way of
writing the pdf, which is more suggestive than its mathematically rigorous counterpart,

Result 2.2 (1-dimensional free path integral as pdf).

P(b1 < Z < b2) =
1√

2π(tb − ta)

b2∫
b1

exp

(
− (b− a)2

2(tb − ta)

)
db =

b2∫
b1

K0(a, b; ta, tb)db ,

where the left hand side denotes the probability that the particle is found in (b1, b2) at time tb. We
already suggested in section 2.1 that the proper choice of normalization constant 1/ZN enabled a
probabilistic interpretation of the path integral, and result 2.2 shows exactly how this works. In
particular, we obtain the result ∫

R

K0(a, b; ta, tb)db = 1 (2.44)
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from result 2.2 with b1 = −∞ and b2 =∞. This means that the probability of finding the particle
in (−∞,∞) at time tb is equal to 1, which is to say that the particle has to be somewhere. This
is precisely the interpretation of the requirement (2.13) according to which we chose the normal-
ization constant, but now applied to the path integral K0 itself, rather than the N -dimensional
Riemann integrals. Furthermore, result 2.2 together with equation (2.20) shows that we can ap-
parently interpret W ′(Xab) as a pdf in b, which is a quite elegant result. (This result can obviously
also be established by just looking at the conditional Wiener measure, outside the context of path
integrals.)

2.4.2 Brownian motion

Another way to look at the physical meaning of the free path integral is to interpret it in the
context of Brownian motion, a phenomenon which is conceptually not quite the same as diffusion
but closely related to it. Of course, we already hinted at Brownian motion by coining terms such
as “Brownian paths” to refer to the paths over which we integrate, and by introducing the Wiener
integral. In this section, we shall make the connection between the free path integral and Brownian
motion precise, in order to yield another physical interpretation of the mathematically rigorous
free path integral.4

The physical phenomenon of Brownian motion was studied scientifically for the first time by the
botanist Robert Brown, which explains the name. Brown looked at pollen submerged in water
through a microscope, and observed that the pollen were seemingly randomly moving through the
water. At the time, Brown explained his observation as some phenomenon inherent to the pollen
themselves, and not caused by external factors such as the current in the fluid or evaporation [26].
In 1905, Albert Einstein was the first to give a convincing explanation of Brownian motion. He
argued that the peculiar movement of the pollen was caused by continuous collisions between the
pollen and individual water molecules. Einstein presented a model for Brownian motion according
to this theory, marking one of his first major scientific achievements, and published some addi-
tional papers on the theory of Brownian motion after the first paper [27]. At the time, Einsteins
explanation was regarded as strong evidence for the existence of molecules and atoms, which was
still a contested subject. Today, Einstein’s explanation is widely accepted, and Brownian motion
as such is a well-known phenomenon. In particular, Brownian motion has been extensively studied
from a mathematical point of view within the field of probability theory and stochastic calculus
(see e.g. [28], [29], [20]), and as such it is recognized to have a wide range of applications in, among
others, (mathematical) physics and chemistry.

From now on, we shall focus on what is sometimes called the mathematical Brownian motion [20].
This refers to the mathematical model of the physical Brownian motion, that is, the mathematical
model for random movements of particles submerged in fluid due to collisions with the fluid
particles. (We shall not be so precise with the terminology, and simply use the term Brownian
motion for both the physical manifestation and the model thereof.) Mathematically, Brownian
motion is represented by a particular continuous stochastic process, called the Wiener process. A
continuous stochastic process is essentially a family of random variables {X(t)} with a continuous
time index t ∈ [t0,∞) for some t0 ≥ 0. Thus, at every fixed point in time t ∈ [t0,∞), X(t) is a
variable which takes a random value. The Wiener process {W(t)}, which describes the Brownian
motion, is such a family of random variables, with some special properties that distinguish it from
general stochastic processes. The concept of a stochastic process is however not of great interest
for the current discussion, so for a more detailed introduction we refer to [21], [22], and chapter 1

4Readers who are familiar with the subject matter may find the distinction between Brownian motion and
diffusion somewhat artificial. There is a degree of truth in this, but the distinction is made to illustrate how
different formulations of the free path integral naturally lead to different angles of interpretation. The free path
integral written as an exponential function points directly at the diffusion equation/a Gaussian pdf, whereas the
formulation as a Wiener integral naturally leads to the mathematical formulation of Brownian motion. Furthermore,
a separate treatment makes the text more accessible to those who are unfamiliar with the subject matter.
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of [29]. The key point is that such a stochastic process needs some probabilistic environment to
live in. Indeed, to have a notion of random variables, we must first have a notion of probabilities.
This is provided by a probability space.

Definition 2.6 (Probability space). A probability space is a measure space (Ω,F , P ) where
the measure P satisfies

P (Ω) = 1 .

In this case, P is called a probability measure.

Since we have by definition that P is in addition non-negative and that, as a property of a measure,
the measure of any set in F cannot exceed P (Ω), a probability measure maps every element of the
σ-algebra to a number in [0, 1]. In a probability space, the set Ω is often called the sample space.
The elements of the σ-algebra F are referred to as events. This way, the sample space Ω can be
thought of as a set of “elementary events”, which make up the subsets of Ω in F , i.e. the events.
Furthermore, when we think of elements of F as events, we can interpret P (A) for A ∈ F as the
probability that event A happens, because we have P : F → [0, 1]. With this, it is immediately
clear why we require P (Ω) = 1. The sample space Ω consists of all elementary events which we
consider, so Ω should be assigned probability 1: events which are not included in the sample space
(in the sense of being a subset) simply cannot happen. One could think of Ω as the “universe”,
outside of which nothing exists. This very brief summary is the essence of the measure theoretic
approach to probability theory. There is a lot more to it, and some more details will emerge later,
but for a thorough introduction we refer again to [16], in particular chapter 10, as well as chapter
1 of [29]. Having introduced the concept of a probability space, we state the following theorem.

Theorem 2.1. The measure space (Xa,Fa,W ) is a probability space.

Proof. Let t1 > ta. We can write Xa in terms of a cylinder as

Xa = {γ ∈ Xa : γ(t1) ∈ R} .

By definition of the Wiener measure on cylinders (see definition 2.5), we have

W (Xa) = W
(
{γ ∈ Xa : γ(t1) ∈ R}

)
=

1√
2π(t1 − ta)

∫
R

exp

(
− (x− a)2

2(t1 − ta)

)
dx .

The integral on the right-hand side is a standard Gaussian integral, which evaluates to∫
R

exp

(
− (x− a)2

2(t1 − ta)

)
dx =

√
2π(t1 − ta) .

Hence,

W (Xa) =
1√

2π(t1 − ta)
·
√

2π(t1 − ta) = 1 .

Thus, through definitions 2.2 up to 2.5 we have actually constructed a probability space, and this
is precisely the probability space in which the Wiener process describing Brownian motion lives.
For this reason, we have the following terminology.

Definition 2.7 (Probability space of Brownian motion). The probability space (Xa,Fa,W )
is called the probability space of Brownian motion.

21



2.4 Interpreting the free path integral The free path integral

This also explains the terminology in the definitions given in section 2.2.1. A more in-depth con-
struction of this probability space starting from elementary measure theory can be found in [20],
whereof the construction that we have outlined in section 2.2.1 is a condensed version.

Thus, the paths γ ∈ Xa are paths which a particle undergoing Brownian motion may traverse,
and the Wiener measure W of a set A ∈ Fa of such paths is the probability that the particle ac-
tually traverses one of these paths. In particular, we have Xab ⊂ Xa, so that the Wiener measure
assigns a probability W (Xab) to the set of paths which go from a to b over time interval [ta, tb],
which is the probability that a Brownian particle starting in a at time ta is found in b at time
tb. Note that this is not at all the same as W ′(Xab), the conditional Wiener measure applied to
the same set of paths. Indeed, we saw in section 2.4.1 that W ′(Xab) is to be interpreted as a pdf
in b, not as a probability. (In particular, (Xab,Fab,W ′) is not a probability space. Herein lies
the difference between the normalized conditional Wiener measure and our unnormalized version,
which we already mentioned. The normalized variant is a probability measure on (Xab,Fab), but
does not have the interpretation as a pdf.) Since W ′(Xab) is not a probability, we cannot di-
rectly interpret the free path integral as the probability of the set of Brownian paths Xab through
result 2.1, but we can express W (Xab) in terms of the free path integral in a natural way as follows.

We determine W (Xab) by expressing Xab in terms of cylinder subsets of Xa, since we know the
value of W for such cylinders by definition 2.3. Define

CN :=

{
γ ∈ Xa : γ(tb) ∈

(
b− 1

N
, b+

1

N

)}
. (2.45)

We then have

Xab =
⋂

N∈N+

CN . (2.46)

Since the sequence {CN} is decreasing, which is to say that CN+1 ⊆ CN for all N ∈ N+, we can
apply an elementary theorem (proposition 1.2.5 on page 10 of [16]) to find

W (Xab) = W

 ⋂
N∈N+

CN

 ∗
= lim
N→∞

W (CN ) = lim
N→∞

b+ 1
N∫

b− 1
N

1√
2π(tb − ta)

exp

(
(x− a)2

2(tb − ta)

)
dx ,

(2.47)

where we used the theorem in step (∗). We now instantly recognize the integrand as K0(a, x; ta, tb),
and thus we obtain

Result 2.3 (Free path integral and Wiener measure).

W (Xab) = lim
N→∞

b+ 1
N∫

b− 1
N

K0(a, x; ta, tb)dx .

This is the connection between on one hand the free path integral, and on the other hand the
physical phenomenon of Brownian motion. We remark that we can also extend result 2.2 with a
formulation in terms the Wiener measure, which connects Brownian motion and diffusion. Indeed,
we have

Result 2.4 (Brownian motion and diffusion).

W
(
{γ ∈ Xa : γ(tb) ∈ (b1, b2)}

)
=

b2∫
b1

K0(a, x; ta, tb)dx = P(b1 < Z < b2) .
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(Note that result 2.3 is just the limiting case of result 2.4, where we shrink the interval (b1, b2)
to which the path is confined at time tb to a single point b.) Apparently, the position at time
tb of a particle undergoing Brownian motion starting from point a at time ta is described by a
Gaussian random variable Z with mean a and variance tb − ta, which is also the description of a
particle undergoing diffusion as we saw in section 2.4.1. This means that Brownian motion and dif-
fusion are essentially two sides of the same coin, both characterized by the free path integral as pdf.

To finalize the discussion, we introduce one more interpretation of result 2.1. This will not be a
very useful interpretation for the free path integral, but we shall introduce it here since it will be
used later on in chapter 3, where we discuss more complicated path integrals. This interpretation
has to do with the measure theoretic meaning of the integral∫

Xab

dW ′ . (2.48)

We saw that it is, by definition, equal to W ′(Xab), but it can also be seen from a different perspec-
tive. To this end, consider the space (Xab,Fab,W ′). We saw that this is not a probability space,
since W ′ is unnormalized. Suppose however that we were instead working with the normalized
version W ′norm, i.e. the probability space (Xab,Fab,W ′norm). In that case, we would have (as a
general measure theoretic definition) that

E[Z] =

∫
Xab

ZdW ′norm (2.49)

for a random variable Z in the probability space (Xab,Fab,W ′norm) (which is simply a “nice” func-
tion on Xab). Thus, if (Xab,Fab,W ′) would be a probability space, we could express the expected
value of any random variable as an integral with respect to the measure W ′. In particular, this
would mean that we can express (2.48) as the expected value of the “random variable” 1. Unfor-
tunately, we cannot do this in our case, since we are working with the unnormalized W ′ which is
not a probability measure.

Nonetheless, we define in our case of unnormalized W ′ the functional

Eab[Z] :=

∫
Xab

ZdW ′ . (2.50)

We can interpret this as a sort of “unnormalized expectation” in the space (Xab,Fab,W ′)5, i.e.
the “expectation” with respect to the unnormalized measure. It may seem rather artificial to
introduce such an unnormalized expectation, but Eab has a more natural interpretation in the
context of the larger space (Xa,Fa,W ) (which is also the reason why this object is used often
throughout the literature on path integrals, see e.g. [17]). The true expected value of a random
variable in the probability space of Brownian motion follows elegantly from Eab. For a general
function f on Xa, we have (see e.g. [30])∫

Xa

fdW =

∫
R

∫
Xab

fdW ′db , (2.51)

from which it follows that

E[Z] =

∫
Xa

ZdW =

∫
R

∫
Xab

ZdW ′db =

∫
R

Eab[Z]db (2.52)

5This is somewhat dubious terminology, since we are not in a probability space and thus have no notion of
expected value, but it is the simplest way to think about this object.
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for a random variable Z in (Xa,Fa,W ). It is important to realize that the expectation of Z is
an object which lives in the large space (Xa,Fa,W ), whereas Eab lives for every b ∈ R in the
space (Xab,Fab,W ′). Thus, equation (2.52) says that in order to compute the expected value
of a random variable in the probability space of Brownian motion with starting point a, we can
evaluate the unnormalized expectation Eab[Z] over every group of paths Xab with a certain, fixed
endpoint b, and then add up these unnormalized expectations for every possible endpoint b ∈ R.
Equation (2.52) allows us to view Eab[Z] as a true conditional expectation in (Xa,Fa,W ) [31].
The difference between this interpretation and that of an unnormalized expectation is that the
view as an unnormalized expectation implies that we are only looking at (Xab,Fab,W ′) as our
“universe”, with no notion of (Xab,Fab) being contained in a larger space (Xa,Fa), whereas the
view as a conditional expectation implies that we consider (Xa,Fa,W ) to be the universe. In
other words, one interpretation assumes that we only know paths in Xab, whereas the other in-
terpretation assumes that we know all paths in Xa but only look at those which are in Xab. We
shall use the terms unnormalized expectation and conditional expectation interchangeably, but one
should keep this conceptual difference in mind at all times and realize that we are only speaking
of a true expectation in the probabilistic sense in the latter case.

Although all this is quite elegant, the unnormalized expectation is not very useful for the free path
integral: we just have

K0(a, b; ta, tb) =

∫
Xab

dW ′ = Eab[1] , (2.53)

which is a rather uninteresting result. Again, the reason for introducing it here is for use later on
in chapter 3, where we will see more interesting results.

2.4.3 Boltzmann distribution

So far, we have interpreted the free path integral in the light of diffusion and Brownian motion.
There is one more angle from which we can approach the free path integral, and this is the Boltz-
mann distribution. This approach is related to the preceding section. In sections 2.4.1 and 2.4.2,
we characterized the free path integral as a pdf for diffusion as well as a Brownian particle. In
this section, we will show that the path integral also has a different probabilistic interpretation,
through a more direct but also less rigorous approach.

The Boltzmann distribution6 (often called the Gibbs distribution or canonical distribution), after
Ludwig Boltzmann, is a probability distribution which gives, for a physical system and every one
of its possible states, the probability that the system is in that particular state. This probability
is a function of the energy of the state and the temperature of the system. We will resort to a
concise non-technical explanation here; a detailed introduction from a statistical physics point of
view can be found in [32], [33]. Usually, one writes the distribution as

pi ∝ exp

(
− Ei
kBT

)
, (2.54)

where pi is the probability of state i, Ei its energy, kB the Boltzmann constant, and T the absolute
temperature of the system. Alternatively, we can write

pi =
1

Q
exp

(
− Ei
kBT

)
, (2.55)

where the normalization denominator Q is the (canonical) partition function7 [32], which, loosely
speaking, ensures that summation (in the discrete case) or integration (in the continuous case) of

6Not to be confused with the Maxwell-Boltzmann distribution.
7Often written as Z.
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the probability over all possible states evaluates to 1. For the moment, however, let us focus on
the form (2.54). A logical question is whether we can relate the exponent in (2.54) to the exponent
in the integrand of the free path integral (2.1). To this end, let us start by analyzing the exponent

−
tb∫
ta

γ̇(t)2

2
dt . (2.56)

Clearly, we are going to have to write this in terms of some kind of energy in order to get to the
Boltzmann distribution. Observe that the integrand in (2.56), is actually the kinetic energy Ek,γ
of a unit-mass particle traversing the path γ at time t:

Ek,γ(t) =
γ̇(t)2

2
. (2.57)

At first glance, it seems rather unfortunate then that we still have the integral over [ta, tb]. How-
ever, remembering that in the Boltzmann distribution the exponent contains the energy of state
i, we identify the path γ of the particle as the state of the system, inspired by the fact that we
integrate over these paths γ and the obvious observation that a particle traverses precisely one
path of all the possible paths that it can traverse (i.e. it makes sense to view the paths as the
states, since a system can only be in one state at a time). We then define the energy of the state,
that is, the “energy” of a path γ, as

tb∫
ta

Ek,γ(t)dt = S0(ta, tb)[γ] , (2.58)

which is just the free action along the path between time ta and tb. Defining a state and its energy
in this way, the integrand exp

(
−S0(ta, tb)[γ]

)
of the free path integral is almost the of the same

form as the right-hand side of (2.54), except for the absence of the physical constants kB and
T . However, we may arbitrarily include these constants explicitly instead of implicitly within the
function γ, by virtue of a time scaling t → kBTt (i.e. a change of variable u = t

kBT
). With this

time scaling, we get

K0(a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp

(
−S0(ua, ub)[γ̃]

kBT

)
Dγ ≡

γ̃(ub)=b∫
γ̃(ua)=a

exp

(
−S0(ua, ub)[γ̃]

kBT

)
Dγ̃ , (2.59)

where γ̃(u) := γ(t), ua := ta
kbT

and ub := tb
kbT

. Note that equivalence between the path inte-
grals follows from the fact that we do not change the paths themselves, but only reparametrize
them. The integrand of the last path integral in (2.59) is now precisely of the form as the right-
hand side in (2.54). The consequence of this identification is that, remarkably, we can interpret
the free path integral even without a rigorous definition. According to equation (2.59), the free
path integral represents an “integration” of, up to a proportionality constant, the probability of
a reparametrized path γ̃, over all possible reparametrized paths γ̃ from a to b on the scaled time
interval [ua, ub]. As such, the free path integral can be interpreted as, up to a proportionality
constant, the probability that any of the admissible reparametrized paths γ̃ materializes, or equiv-
alently, up to a proportionality constant the probability that any of the paths γ ∈ Xab materializes
(since the admissible γ̃ are just reparametrized versions of the original admissible paths γ ∈ Xab).
This falls right in place with the results we obtained in section 2.4.2, where we saw that the free
path integral is equal to W ′(Xab) which is a probability up to a proportionality constant (namely
the normalization constant that is missing in our W ′, which would turn it into the normalized
conditional Wiener measure and thus a probability instead of a pdf).
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Although we chose to define the path as the state of the system, it bears mentioning that this
is not the only possible choice. An alternative is to consider the state as a function of time, by
recognizing the position of the particle at a fixed time t as the state at that point in time. In this
case, we may interpret the integral (2.56) as a “summation” of the energy of the state at time
t over all t ∈ [ta, tb], which in turn allows for an interpretation of the integrand of the free path
integral as a product of multiple Boltzmann distributions (one for every point in time between
ta and tb). This definition of the state is not necessarily less natural, but it is somewhat more
cumbersome to work out the details in this case as opposed to the way in which we proceeded
above. To appreciate why this alternative approach may be insightful, note that the idea resembles
the definition of the free path integral 2.1. In fact, it really is the same procedure, only backwards:
write for the integral (2.56) its Riemann sum approximation, write the resulting exponential of a
sum as a product of exponentials and recognize this as a product of Boltzmann distributions, and
take the continuum limit. In the end, the interpretation of the result will be the same as what we
found by defining the state, in a time-independent fashion, as the whole path.

26



Chapter 3

The path integral for quadratic
potentials

Now that we understand how to define, work with and interpret the 1-dimensional free path
integral, we have the basis which is necessary to start exploring the path integral for nonzero
potential functions. In this chapter, we will consider a particularly interesting and instructive
class of potentials. Our point of departure will be the 1-dimensional Euclidean path integral (1.4)
with a quadratic potential function V , viz.

V (γ, t) ≡ V (γ) :=
ω2γ(t)2

2
(3.1)

with ω ∈ R+. This gives the path integral

Kω(a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇(t)2 − ω2γ(t)2

2
dt

Dγ . (3.2)

In the light of application to diffusion MRI, we are mainly interested in quadratic potentials. As
we pointed out in chapter 1, the water molecules in diffusion MRI are obstructed by axons. A
good description of diffusion MRI must therefore take into account that the particles cannot move
arbitrarily, and this is precisely what we achieve by adding a quadratic potential function. The
quadratic potential acts as a potential barrier, which essentially restricts the region in which the
particles can move. Moreover, the quadratic potential function (3.1) is an interesting case beyond
the specific purpose of diffusion MRI since it is the potential function of the simple harmonic
oscillator (for unit-mass m = 1 and frequency ν = ω/2π), which is highly interesting to physics
as this potential occurs frequently in nature. Thus, on one hand this potential function is a case
of serious interest both in the context of diffusion MRI as well as in a general physical context.
On the other hand, it is one of the few cases of nonzero potential functions which we can treat
analytically. For these reasons, it is the logical next step after exploring the free path integral.
Once we have seen the details in the 1-dimensional case, we will make the generalization to the
n-dimensional case. This in turn will automatically generalize the results for the 1-dimensional
free path integral as well.

3.1 Defining the Euclidean path integral

As with the free path integral, the first question is how to define the right-hand side of equation
(3.2). We saw in section 2.1 that requirement (2.3) dictates a natural definition of the free path

27



3.1 Defining the Euclidean path integral The path integral for quadratic potentials

integral. This holds true for the Euclidean path integral with any potential. Recall that for the
general form (1.4) in 1 dimension, we require

KV (a, b; ta, tb) =

∫
R

KV (a, c; ta, tc)KV (c, b; tc, tb)dc (3.3)

for all a, b and ta < tc < tb. Analogous to the special case V = 0, we can use (3.3) to define the
Euclidean path integral in general, for any potential V . The procedure is essentially the same as
in section 2.1. By considering an arbitrarily fine partition of the time interval, and thus arbitrarily
many intermediate points, we obtain

KV (a, b; ta, tb) = lim
N→∞

∫
RN

N∏
j=0

KV (xj , xj+1; ε)dx (3.4)

with

KV (xj , xj+1; ε) =

γ(tj+1=xj+1∫
γ(tj)=xj

exp

− tj+1∫
tj

γ̇(t)2

2
− V (γ, t)dt

Dγ . (3.5)

As argued in section 2.1, in the limit N → ∞ we restrict the path at arbitrarily many points in
time so that the freedom of the path integration in (3.5) effectively vanishes, allowing us to omit
it. We can approximate the integrand by

exp

− tj+1∫
tj

γ̇(t)2

2
− V (γ, t)dt

 ≈ exp

(
− (xj+1 − xj)2

2ε
+ εV (xj+1, tj+1)

)
, (3.6)

which is arbitrarily accurate for N →∞, to arrive at the generalization of definition 2.1.

Definition 3.1 (Euclidean path integral). The 1-dimensional Euclidean path integral (1.4) is
defined as

KV (a, b; ta, tb) := lim
N→∞

(
1

2πε

)N+1
2
∫
RN

N∏
j=0

exp

(
− (xj+1 − xj)2

2ε
+ εV (xj+1, tj+1)

)
dx

= lim
N→∞

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

[
(xj+1 − xj)2

2ε
− εV (xj+1, tj+1)

] dx

where ε = ε(N) := tb−ta
N+1 > 0, x0 := a, xN+1 := b and dx := dx1 . . . dxN .

Note that we have already fixed the normalization term 1/(2πε)(N+1)/2 in the definition. Because
we must have consistency with definition 2.1 of the free path integral when setting V = 0 in the
above, this is clearly the only option for the normalization term (unless we allow a normalization
term which depends on V , but this makes no sense). Definition 3.1 is the common definition of the
general Euclidean path integral in the literature, see for example [14], [15]. It is also Feynman’s
proposed definition for his path integral [1] with the complex factor i/~ in the exponent replaced
by −1, which is precisely how our Lagrangian version of the Euclidean path integral (1.4) arises
from Feynman’s formulation of the path integral (1.1).
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3.2 Computing the path integral for quadratic potentials

Having defined the Euclidean path integral in full generality, we can now use this definition to find
a closed form of the path integral for the quadratic potential function (3.1), in the same vein as the
computation for the free path integral in section 2.3. This will prove to be rather cumbersome, but
it is the most straightforward (and possibly the only) way of obtaining a closed-form expression
for Kω. The reason is that, unlike for the free path integral, we do not know if it is possible to
express Kω in terms of a Wiener integral. We can say what the exact form of Kω as a Wiener
integral must be if it exists, as we will see in section 3.4, but even with the closed form of Kω

known it is difficult to prove that Kω is actually equal to this Wiener integral (if this is true at all).
It seems even more difficult to prove this result a priori, without a closed form. Moreover, even
if we were able to prove that Kω can be written as this Wiener integral without computing its
closed form, this characterization would not immediately yield a closed form as with the free path
integral. The only conclusion which we would directly be able to draw is that Kω is a solution to
a certain second degree nonlinear PDE, which is difficult to solve, and this would still not give a
fully closed form since we have no initial data specified (though we may be able to obtain these in
some other way). All this will become more concrete in section 3.4. The important message for
now is that the most sensible way to proceed is by performing a direct computation.

In order to compute Kω, we shall first compute another path integral, which is almost the same as
Kω except for the sign in front of the quadratic potential. Though mathematically rather subtle,
this is in fact a fundamental difference from a physical point view, as we will explain in a moment.
It is a matter of preference whether one computes Kω or this auxiliary path integral, since there
is a simple replacement of the constant ω which allows one to toggle between the two. Thus, the
closed form of one of them immediately gives the closed form of the other. We choose to start
from the auxiliary path integral because the computation is simpler in this case. The path integral
in question is

Kiω(a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇(t)2 + ω2γ(t)2

2
dt

Dγ . (3.7)

Observe that this is just the path integral which we obtain by replacing ω in the right-hand side
of (3.2) by ±iω, where i is the imaginary unit. This explains the subscript iω in the above. (Al-
though we restricted ω in (3.2) to be a positive real number, which makes sense from a physical
point of view, the extension to a purely imaginary frequency does not give any problems from a
mathematical point of view. From the physical point of view, this may be seen as an analytic
continuation of sorts, much like the transformation to purely imaginary time in the path integral.)
Furthermore, it is the path integral corresponding to the Hamiltonian (1.12) as opposed to the
Lagrangian (1.8) for the quadratic potential (3.1). This relates the path integrals Kω and Kiω

to the duality between Lagrangian and Hamiltonian formalism in physics, Kω belonging to the
former and Kiω to the latter. Accordingly, we will see that the closed forms of Kω and Kiω look
very similar but are of a completely different nature.

This being said, let us focus on computing Kiω for now. The computation will be along the lines of
[14], most notably the idea of expanding the paths around the classical path is inspired hereupon.
Consider the term

tb∫
ta

γ̇(t)2 + ω2γ(t)2

2
dt (3.8)

in the exponent in (3.7). We observe that this is the standard action functional
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3.2 Computing the path integral for quadratic pot. The path integral for quadratic potentials

S(ta, tb)[γ] =

tb∫
ta

L(γ, γ̇, t)dt =

tb∫
ta

γ̇(t)2

2
− V (γ, t)dt (3.9)

for the inverted potential V (γ, t) = −ω
2γ(t)2

2 . Hence, the classical equation of motion is

γ̈(t) = − d

dγ

(
−ω

2γ(t)2

2

)
= ω2γ(t) , (3.10)

which is to say that the classical path of the particle is the solution of the boundary value problem
γ̈ = ω2γ

γ(ta) = a

γ(tb) = b .

(3.11)

It is well known that the general solution of the differential equation is given by γ(t) = A sinh(ωt+
φ), thus we set

γcl(t) := A sinh(ωt+ φ) (3.12)

with A, φ ∈ R such that they enforce the boundary conditions. The integral (3.8) can be explicitly
evaluated for γ = γcl. The computation is tedious but straightforward, and can be found in
appendix B. We find

tb∫
ta

γ̇cl(t)
2 + ω2γcl(t)

2

2
dt =

ω

2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))
. (3.13)

Consider now an arbitrary path γ ∈ Xab. We may expand this path around the classical path,
viz.

γ(t) = γcl(t) + γd(t) . (3.14)

Since γ(ta) = γcl(ta) = a and γ(tb) = γcl(tb) = b, we find γd(ta) = γd(tb) = 0, hence γd ∈ X00 (cf.
definition 2.2). This way of writing γ is useful because of the following lemma.

Lemma 3.1. For all γ ∈ Xab, we have

tb∫
ta

γ̇(t)2 + ω2γ(t)2

2
dt =

tb∫
ta

γ̇cl(t)
2 + ω2γcl(t)

2

2
dt+

tb∫
ta

γ̇d(t)2 + ω2γd(t)2

2
dt

where γcl is the classical path and γd := γ − γcl.

Proof. We have

tb∫
ta

γ̇(t)2 + ω2γ(t)2

2
dt =

tb∫
ta

[
γ̇cl(t) + γ̇d(t)

]2
+ ω2

[
γcl(t) + γd(t)

]2
2

dt =

tb∫
ta

γ̇cl(t)
2 + ω2γcl(t)

2

2
dt

+

tb∫
ta

γ̇d(t)2 + ω2γd(t)2

2
dt+

tb∫
ta

γ̇cl(t)γ̇d(t) + ω2γcl(t)γd(t)dt .

Integration by parts gives
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3.2 Computing the path integral for quadratic pot. The path integral for quadratic potentials

tb∫
ta

γ̇cl(t)γ̇d(t) + ω2γcl(t)γd(t)dt =
[
γ̇cl(t)γd(t)

]tb
ta
−

tb∫
ta

γ̈cl(t)γd(t)dt+

tb∫
ta

ω2γcl(t)γd(t)dt .

The first term vanishes because γd(ta) = γd(tb) = 0, and the second and third term cancel each
other since γcl satisfies the equation of motion γ̈ = ω2γ. Thus,

tb∫
ta

γ̇cl(t)γ̇d(t) + ω2γcl(t)γd(t)dt = 0 ,

which completes the proof.

Combining lemma 3.1 with (3.13), we can write the integrand of (3.7) as

exp

− tb∫
ta

γ̇(t)2 + ω2γ(t)2

2
dt


= exp

−ω
2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))
−

tb∫
ta

γ̇d(t)2 + ω2γd(t)2

2
dt


= exp

(
−ω

2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))

)
exp

− tb∫
ta

γ̇d(t)2 + ω2γd(t)2

2
dt

 ,

(3.15)

hence

Kiω(a, b; ta, tb)

= exp

(
−ω

2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))

) γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇d(t)2 + ω2γd(t)2

2
dt

Dγ .
(3.16)

Note that we are allowed to take the constant term out of the path integral since we can take
constant terms outside the Riemann integral and limit in definition 3.1. Assuming that we may
integrate over the paths γd ∈ X00 instead of the paths γ ∈ Xab, we obtain

Kiω(a, b; ta, tb)

= exp

(
−ω

2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))

) γ(tb)=0∫
γ(ta)=0

exp

− tb∫
ta

γ̇(t)2 + ω2γ(t)2

2
dt

Dγ
= exp

(
−ω

2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))

)
Kiω(0, 0; ta, tb) .

(3.17)

We remark that the measure Dγ is not well-defined, hence a change of variables is in principle
not allowed. (More precisely, it is not clear how to interpret a change of variable with respect to
this non-existent measure. We may assume that certain changes of variables are allowed, but this
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3.2 Computing the path integral for quadratic pot. The path integral for quadratic potentials

could lead to inconsistencies since there is no reason why a change of variable should work from
a mathematical point of view. We will see an example of this at the end of section 4.2. Thus,
one should remain cautious when performing such manipulations.) However, it is reasonable to
assume that the change of variable works in this particular case, since we only “shift” the paths γ
to get the paths γd. Equation (3.17) reduces the problem of computing the path integral Kiω for
general a and b to computing it for a = b = 0.

By definition 3.1, we have

Kiω(0, 0; ta, tb) := lim
N→∞

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

[
(xj+1 − xj)2

2ε
+ ε ·

ω2x2
j+1

2

] dx

= lim
N→∞

(
1

2πε

)N+1
2
∫
RN

exp

− 1

2ε

N∑
j=0

[
(xj+1 − xj)2 + ε2ω2x2

j+1

] dx

(3.18)

with x0 = xN+1 = 0. Define the symmetric tridiagonal N ×N matrix

AN :=



2 + ε2ω2 −1

−1 2 + ε2ω2 −1

. . .
. . .

. . .

−1 2 + ε2ω2 −1

−1 2 + ε2ω2


. (3.19)

Then, for x0 = xN+1 = 0, we have

N∑
j=0

[
(xj+1 − xj)2 + ε2ω2x2

j+1

]
= xTANx (3.20)

with x := (x1, . . . , xN )T . It is readily seen from equation (3.20) that xTANx > 0 for all x 6= 0,
so AN is in fact symmetric positive-definite. Hence, there exists an N ×N orthogonal matrix R
with detR = 1 (a rotation matrix) such that

∆ = RTANR , (3.21)

where ∆ := diag(λ1, . . . , λN ) with λ1, . . . , λN > 0 the eigenvalues of AN . Set x = Ry. Then
xT = yTRT , and for x0 = xN+1 = 0 we find

∫
RN

exp

− 1

2ε

N∑
j=0

[
(xj+1 − xj)2 + ε2ω2x2

j+1

] dx =

∫
RN

exp

(
− 1

2ε
xTANx

)
dx

=

∫
RN

exp

(
− 1

2ε
yTRTANRy

)
dy =

∫
RN

exp

(
− 1

2ε
yT∆y

)
dy

=

∫
RN

exp

− 1

2ε

N∑
j=1

λjy
2
j

 dy =

N∏
j=1

∫
R

exp

(
−λj

2ε
· y2
j

)
dyj

∗
=

N∏
j=1

√
2πε

λj

∗∗
=

√
2πε

N

√
detAN

,

(3.22)

where we have used the standard Gaussian integral (2.10) in (∗) and the fact that detAN =
λ1 . . . λN in (∗∗). Substituting this in (3.18), we obtain
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Kiω(0, 0; ta, tb) = lim
N→∞

1√
2πεdetAN

=
1√

2π(tb − ta)
lim
N→∞

√
N + 1

detAN
. (3.23)

It is possible to show that

lim
N→∞

detAN
N + 1

=
sinh(ω(tb − ta))

ω(tb − ta)
, (3.24)

see appendix C for details. Consequently,

Kiω(0, 0; ta, tb) =
1√

2π(tb − ta)

√
ω(tb − ta)

sinh(ω(tb − ta))
=

√
ω

2π sinh(ω(tb − ta))
. (3.25)

Plugging this result into equation (3.17), we find

Kiω(a, b; ta, tb) =

√
ω

2π sinh(ω(tb − ta))
exp

(
−ω

2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))

)
. (3.26)

Recall that we obtain Kiω from Kω by replacing ω in the right-hand side of (3.2) by ±iω. Similarly,
we obtain Kω from Kiω by replacing ω in the right-hand side of (3.7) by ±iω. This means that
we can obtain Kω in closed form by doing the same replacement in the right-hand side of (3.26).
We then obtain

Kω(a, b; ta, tb) =

√
±iω

2π sinh(±iω(tb − ta))
exp

(
∓ iω

2

(a2 + b2) cosh(±iω(tb − ta))− 2ab

sinh(±iω(tb − ta))

)
(3.27)

Using the identities sinh(x) = −i sin(ix) and cosh(x) = cos(ix), we find

√
±iω

2π sinh(±iω(tb − ta))
exp

(
∓ iω

2

(a2 + b2) cosh(±iω(tb − ta))− 2ab

sinh(±iω(tb − ta))

)

=

√
∓ω

2π sin(∓ω(tb − ta))
exp

(
±ω

2

(a2 + b2) cos(∓ω(tb − ta))− 2ab

sin(∓ω(tb − ta))

)

=

√
ω

2π sin(ω(tb − ta))
exp

(
−ω

2

(a2 + b2) cos(ω(tb − ta))− 2ab

sin(ω(tb − ta))

)
,

(3.28)

hence

Result 3.1 (1-dimensional path integral with quadratic potential).

Kω(a, b; ta, tb) =

√
ω

2π sin(ω(tb − ta))
exp

(
−ω

2

(a2 + b2) cos(ω(tb − ta))− 2ab

sin(ω(tb − ta))

)
.

Thus, we see that the difference between Lagrangian and Hamiltonian formalism manifests in the
closed form of the path integral through the difference between standard trigonometric functions
and their hyperbolic counterparts. Looking at the closed form of Kω, we see that the expression is
in fact only defined for combinations of ω and tb − ta such that ω(tb − ta) + 2kπ ∈ (0, π) for some
k ∈ Z. If this is not the case, the sine in the square root is nonpositive, so that the expression is
ill-defined. This may seem like a severe restriction, but from a physical point of view it is not so.
Let us assume that we freely pick ω > 0, and that we subsequently enforce the requirement on

33



3.3 Generalization to n dimensions The path integral for quadratic potentials

ω(tb−ta) by restricting the size of the time interval tb−ta (it does indeed not make sense to assume
the contrary, namely that we pick tb − ta and then restrict ω). Then, without loss of generality,
we can replace the assumption that ω(tb − ta) + 2kπ ∈ (0, π) for some k by the assumption that
ω(tb−ta) ∈ (0, π), due to 2π-periodicity of Kω. Now observe that, when freely choosing ω > 0, the
latter is equivalent to requiring tb − ta ∈ (0, T/2), where T = 2π/ω is the period of the harmonic
oscillator with frequency ω. This means that the closed form of Kω is well-defined for all times
tb which occur within the first half of any period of the oscillator (not including the starting time
and the half-period time). However, there is essentially no difference between the behaviour of the
harmonic oscillator during the first half of its periodic motion and the second half. More precisely,
the behaviour of the harmonic oscillator for times tb − ta ∈ (T/2, T ), for which the closed form
we obtained is not defined, can be deduced from its behaviour for tb− ta ∈ (0, T/2), for which the
closed form is well-defined. The case for any tb − ta > T such that tb − ta 6= kT/2 (k = 3, 4, . . . )
is equivalent to either some tb − ta ∈ (0, T/2) or some tb − ta ∈ (T/2, T ) due to 2π-periodicity
of Kω. Thus, we conclude that it is from a physical point of view almost sufficient to be able to
evaluate Kω for tb − ta ∈ (0, T/2) in closed form, which result 3.1 allows us to do. The remain-
ing question is how to deal with tb − ta = kT/2 (k ∈ N+). Furthermore, from a mathematical
point of view it is desirable to find a generalized closed form which works for all ω, tb − ta > 0,
if this is possible. These are difficult problems which we shall not discuss further, but it may be
worthwhile to investigate them. From now on, we shall implicitly assume that the time interval
satisfies tb − ta ∈ (0, T/2). Looking again at (3.26), we see that the expression for Kiω requires
no such restrictions on ω(tb − ta). Apparently, a Lagrangian formulation of the Euclidean path
integral is restrictive in this sense, whereas a Hamiltonian formulation is not. Note also that, in the
case where both Kω and Kiω are well-defined, their behaviour differs significantly. The sine and
cosine in result 3.1 are bounded, periodic functions, whereas the hyperbolic sine and hyperbolic
cosine in (3.26) are unbounded and not periodic. These observations illustrate that there is in-
deed a clear conceptual difference between the Lagrangian and Hamiltonian formulation of physics.

On a final note, we remark that it is readily seen that result 3.1 is consistent with result 2.1 for
the free path integral, viz.

lim
ω↓0

Kω(a, b; ta, tb) = K0(ta, tb; a, b) . (3.29)

Indeed, with the help of the standard limit

lim
x↓0

sin(x)

x
= 1 , (3.30)

we find

lim
ω↓0

Kω(a, b; ta, tb)

= lim
ω↓0

√
1

2π(tb − ta)

ω(tb − ta)

sin(ω(tb − ta))
exp

(
− ω(tb − ta)

sin(ω(tb − ta))

(a2 + b2) cos(ω(tb − ta))− 2ab

2(tb − ta)

)

=
1√

2π(tb − ta)
exp

(
−a

2 + b2 − 2ab

2(tb − ta)

)
=

1√
2π(tb − ta)

exp

(
− (b− a)2

2(tb − ta)

)
= K0(a, b; ta, tb) .

(3.31)

3.3 Generalization to n dimensions

So far, we have worked with the 1-dimensional path integral only. Although this is instructive and
convenient to introduce the main ideas, we ideally want to work with 3-dimensional path integrals
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or even arbitrary, n-dimensional ones in the context of physical applications, in particular diffusion
MRI. To this end, we would like to generalize the results of chapter 2 as well as section 3.2. In this
section, we will provide a definition for the n-dimensional Euclidean path integral and explicitly
compute the result for a quadratic potential, analogous to the 1-dimensional case as discussed in
the preceding section. With this, we immediately obtain a generalization of the results of chapter
2, since this is a special case of the quadratic potential.

In this section, the path integral of interest will be the n-dimensional Euclidean path integral (1.5)
for the quadratic potential function

V (γ, t) ≡ V (γ) :=
γT (t)Ωγ(t)

2
, (3.32)

where Ω ∈ Rn×n is symmetric and positive semi-definite. The role of Ω is comparable to that of
the parameter ω in (3.1). Thus, the path integral that we will be considering is

KΩ(a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

‖γ̇‖2 − γTΩγ

2
dt

Dγ , (3.33)

with ta, tb ∈ R+ ∪ {0}, tb > ta and a, b ∈ Rn. Recall that in the 1-dimensional case, the quadratic
potential creates a potential barrier which restricts the area in which particles can move. The
effect is the same in the general n-dimensional case, but now the restriction may differ per direc-
tion. Thus, by choosing a suitable matrix Ω one can give the particle very little freedom in one
direction and a lot in others, which is a good way to model axons obstructing diffusion in certain
directions in diffusion MRI.

The definition of the general n-dimensional Euclidean path integral (1.5) for an arbitrary potential
V can be derived in a similar fashion as definition 3.1, using requirement (2.2). Throughout the
following, a double subscript will be used to denote components of indexed vectors: xk,l ∈ R is
the l-th component of xk ∈ Rn. A symbol with a single subscript may denote either an indexed
vector or an indexed real number/a component of a vector without index, where the exact type
will be clear from the context.

Definition 3.2 (n-dimensional Euclidean path integral). The n-dimensional Euclidean path
integral (1.5) is defined as

KV (a, b; ta, tb) := lim
N→∞

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε
+ εV (xj+1, tj+1)

 dx

= lim
N→∞

(
1

2πε

)n(N+1)
2

∫
RnN

exp

− N∑
j=0

∥∥xj+1 − xj
∥∥2

2ε
− εV (xj+1, tj+1)


 dx

where ε = ε(N) := tb−ta
N+1 > 0, x0 := a, xN+1 := b and dx := dx1 . . . dxN , dxi := dxi,1 . . . dxi,n.

Definition 3.2 is clearly a generalization of definition 3.1, and it is obtained in the exact same
fashion as the generalization to higher dimensions of the definition of Feynman’s path integral with
factor i/~ in the exponent (see equation (2.2.20) on page 36 of [15]). Note that the normalization
factor in front is raised to the power n compared to the 1-dimensional case, cf. definition 3.1. This
is a result of the fact that we now have to integrate for every intermediate point xj ∈ Rn over n
coordinates. The normalization constant is determined in the same way as for the 1-dimensional
free path integral, namely by requiring for the case V = 0 that
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1

ZN

∫
Rn

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε

 dxdb = 1 . (3.34)

This is equivalent to requiring

1

ZN

∫
Rn

∫
RnN

N∏
j=0

n∏
i=1

exp

(
− (xj+1,i − xj,i)2

2ε

)
dxdb = 1 . (3.35)

After a change of variables yj+1,i = xj+1,i − xj+1,i the left-hand side can be seen to be a product
of n(N + 1) Gaussian integrals, so from equation (2.12) it follows that the correct normalization
term is indeed ZN = (2πε)n(N+1)/2, resulting from a term 1/

√
2πε in front of each of the n(N +1)

Gaussian integrals. Assuming that the normalization factor does not depend on V , we conclude
that this is the correct normalization factor for general V by virtue of consistency with the case
V = 0.

Let us now turn to finding a closed form of the path integral (3.33). By definition 3.2, we have

KΩ(a, b; ta, tb) = lim
N→∞

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dx . (3.36)

Consider the integral terms within the limit on the right-hand side. The idea is to evaluate
the integral not per group of components xj,1, . . . , xj,n (i.e. per vector xj), but per group of
components x1,i, . . . , xN,i. This is in general not possible, but it works under our assumption that
Ω is symmetric positive semi-definite. Since Ω is symmetric positive semi-definite, we can write

Λ = UTΩU , (3.37)

where U is an orthogonal matrix with detU = 1 and Λ := diag(λ1, . . . , λn) with λ1, . . . , λn ≥ 0
the eigenvalues of Ω. We set xj = Uyj . Then xTj = yTj U

T , and since detU = 1 we have

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dx

=

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥Uyj+1 − Uyj
∥∥2

2ε
+ ε ·

yTj+1U
TΩUyj+1

2

 dy

∗
=

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥yj+1 − yj
∥∥2

2ε
+ ε ·

yTj+1Λyj+1

2

 dy

=

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

− n∑
i=1

[
(yj+1,i − yj,i)2

2ε
− ε ·

λiy
2
j+1,i

2

] dy ,

(3.38)

where step (∗) follows from the fact that orthogonal matrices are length-preserving, in the sense
that ‖Uv‖ =‖v‖. Note that we can switch the product over the vector index j and the sum over
the vector component index i around, viz.
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(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

− n∑
i=1

[
(yj+1,i − yj,i)2

2ε
− ε ·

λiy
2
j+1,i

2

] dy

=

(
1

2πε

)n(N+1)
2

∫
RnN

n∏
i=1

exp

− N∑
j=0

[
(yj+1,i − yj,i)2

2ε
− ε ·

λiy
2
j+1,i

2

] dy

(3.39)

=

n∏
i=1

( 1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

[
(yj+1,i − yj,i)2

2ε
− ε ·

λiy
2
j+1,i

2

] dy1,i . . . dyN,i

 . (3.40)

The advantage of this is that we now have a constant parameter λi in the “potential term”
−ελiy2

j+1,i/2 within the summation in the exponent, instead of one which depends on the sum-
mation index. Observe that each of the terms in the product (3.40) is in the limit a 1-dimensional
path integral which we have already computed, namely the free path integral K0 if λi = 0, or the
path integral for the quadratic potential Kω with ω =

√
λi if λi > 0. Thus, we have

lim
N→∞

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

[
(yj+1,i − yj,i)2

2ε
− ε ·

λiy
2
j+1,i

2

] dy1,i . . . dyN,i

= K√λi
(y0,i, yN+1,i; ta, tb) = K√λi

([
UTa

]
i
,
[
UT b

]
i
; ta, tb

)
.

(3.41)

Consequently,

Result 3.2 (n-dimensional path integral with quadratic potential).

KΩ(a, b; ta, tb) = lim
N→∞

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dx

= lim
N→∞

n∏
i=1

( 1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

[
(yj+1,i − yj,i)2

2ε
− ε ·

λiy
2
j+1,i

2

] dy1,i . . . dyN,i


=

n∏
i=1

 lim
N→∞

(
1

2πε

)N+1
2
∫
RN

exp

− N∑
j=0

[
(yj+1,i − yj,i)2

2ε
− ε ·

λiy
2
j+1,i

2

] dy1,i . . . dyN,i


=

n∏
i=1

K√λi

([
UTa

]
i
,
[
UT b

]
i
; ta, tb

)
.

Thus, it turns out that the n-dimensional path integral with a quadratic potential function is a
product of n 1-dimensional path integrals with potential functions that depend on the eigenvalues
of Ω. We again have to take care of the fact that the closed form of the 1-dimensional path
integral Kω is only defined for certain ω(tb − ta), as we saw in section 3.2. For the general n-
dimensional case we must therefore restrict the length of the time interval tb − ta based on the
eigenvalues of the matrix Ω (which will allow us to pick any symmetric, positive semi-definite
potential matrix Ω ∈ Rn×n, as desired). If λ1 is the largest positive eigenvalue, we assume
henceforth that tb − ta ∈ (0, π/

√
λ1) (note that in the case λ1 = · · · = λn = 0 we need not

restrict the time interval at all). Indeed, in this case we have for all positive eigenvalues λi that
tb − ta ∈ (0, π/

√
λi), or equivalently

√
λi(tb − ta) ∈ (0, π), meaning that all 1-dimensional path

integrals K√λi
in result 3.2 have a well-defined closed form. By result 2.1 and result 3.1, we get

37



3.3 Generalization to n dimensions The path integral for quadratic potentials

K√λi

([
UTa

]
i
,
[
UT b

]
i
; ta, tb

)

=


1√

2π(tb−ta)
exp

(
−

[
(UT b)

i
−(UT a)

i

]2
2(tb−ta)

)
if λi = 0

√ √
λi

2π sin(
√
λi(tb−ta))

exp

(
−
√
λi

2

[
(UT a)

2

i
+(UT b)

2

i

]
cos(
√
λi(tb−ta))−2(UT a)

i
(UT b)

i

sin(
√
λi(tb−ta))

)
if λi > 0 .

(3.42)

As discussed in section 3.2, the physical behaviour for tb− ta such that tb− ta ∈ (π/
√
λi, 2π/

√
λi)

for some λi > 0 can be deduced from the case tb − ta ∈ (0, π/
√
λ1), and the rest follows by

2π-periodicity except for the case where tb − ta = kπ/
√
λi for some λi > 0 and some k ∈ N+.

Note that result 3.2 is consistent with the 1-dimensional case Kω. Indeed, Kω can be seen as KΩ

with Ω the “1× 1 matrix” ω2, which gives λ1 = ω2 > 0, and then the general expression in result
3.2 reduces to Kω. If Ω is positive-definite, which is to say that λ1, . . . , λn > 0, the closed form
given by result 3.2 contains the determinant of Ω:

KΩ(a, b; ta, tb) =

n∏
i=1

√ √
λi

2π sin(
√
λi(tb − ta))

· exp

−√λi
2

[(
UTa

)2
i

+
(
UT b

)2
i

]
cos(
√
λi(tb − ta))− 2

(
UTa

)
i

(
UT b

)
i

sin(
√
λi(tb − ta))




=

√ √
det Ω

(2π)n
∏n
i=1 sin(

√
λi(tb − ta))

· exp

− n∑
i=1

√
λi
2

[(
UTa

)2
i

+
(
UT b

)2
i

]
cos(
√
λi(tb − ta))− 2

(
UTa

)
i

(
UT b

)
i

sin(
√
λi(tb − ta))

 .

(3.43)

Unfortunately, it is even in this special case troublesome to simplify the closed form of KΩ further.

As we already pointed out in the beginning of this chapter, the generalization to the n-dimensional
case for quadratic potential functions automatically provides a generalization to the n-dimensional
case for the free path integral. The n-dimensional free path integral is given by (1.5) with V = 0,
but that is just KΩ for Ω = O, with O the all-zero n× n matrix. The eigenvalues of O are all 0,
which means that the n-dimensional free path integral KO evaluates by result 3.2 to

Result 3.3 (n-dimensional free path integral).

KO(a, b; ta, tb) =

n∏
i=1

K0(ai, bi; ta, tb) =

n∏
i=1

 1√
2π(tb − ta)

exp

−
[(
UT b

)
i
−
(
UTa

)
i

]2
2(tb − ta)




=
1√

2π(tb − ta)
n exp

− 1

2(tb − ta)

n∑
i=1

[(
UT b

)
i
−
(
UTa

)
i

]2


=
1√

2π(tb − ta)
n exp

−∥∥UT (b− a)
∥∥2

2(tb − ta)

 ∗
=

1√
2π(tb − ta)

n exp

(
− ‖b− a‖

2

2(tb − ta)

)
.
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Step (∗) follows by orthogonality of UT . From the closed form, it is immediately apparent that
KO is invariant under rotations of a and b, meaning that

KO(a, b; ta, tb) = KO(Ra,Rb; ta, tb) (3.44)

for any orthogonal matrix R with detR = 1. This is due to the fact that orthogonal matrices
preserve length, as mentioned earlier.

Although KΩ is in general not invariant under rotations of a and b, it can be easily shown that
we have

KΩ(Ra,Rb; ta, tb) = KRT ΩR(a, b; ta, tb) (3.45)

for any orthogonal matrix R with detR = 1. This can be seen by considering the terms in the
limit (3.36), namely

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dx , (3.46)

where x0 = Ra and xN = Rb, and setting xj = Ryj . This gives y0 = a, yN+1 = b and

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dx

=

∫
RnN

N∏
j=0

exp

−∥∥yj+1 − yj
∥∥2

2ε
+ ε ·

yTj+1R
TΩRyj+1

2

 dy .

(3.47)

Consequently,

Result 3.4 (rotations).

KΩ(Ra,Rb; ta, tb) = lim
N→∞

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dxj

= lim
N→∞

(
1

2πε

)n(N+1)
2

∫
RnN

N∏
j=0

exp

−∥∥yj+1 − yj
∥∥2

2ε
+ ε ·

yTj+1R
TΩRyj+1

2

 dyj = KRT ΩR(a, b; ta, tb) .

This is a rather intuitive result: when considering a particle moving through space from point a to
point b under the influence of a potential field, rotating these points would effectively be the same
as keeping the original points a and b and rotating the potential field in the opposite way, which
corresponds to replacing Ω with RTΩR in the path integral. Usually, for a given matrix Ω we do
not have Ω = RTΩR for all rotation matrices R, but there may be nontrivial rotations R 6= I for
which this equality holds, in which case the path integral KΩ is invariant under that particular
rotation. In the special case Ω = αI with α ∈ R, we do have Ω = RTΩR for all rotation matrices
R, so KαI is truly rotation invariant. Furthermore, we also see from this result that the free path
integral KO is rotation invariant.

We remark that substituting Ω→ RΩRT in the result above yields

KRΩRT (Ra,Rb; ta, tb) = KΩ(a, b; ta, tb) . (3.48)

Apparently, a rotation of a and b may be undone by rotating the potential field in the same way.
Again, we see that there is effectively no difference between rotating a and b, and rotating the
potential field, as expected.
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3.4 Interpreting the path integral for quadratic potentials

Having evaluated the n-dimensional path integral quadratic potential functions, we will now focus
again on the 1-dimensional case. In this section, we will investigate how to physically interpret the
path integral for quadratic potentials, as we did for the free path integral in section 2.4. This is
done by looking at the 1-dimensional case for the sake of simplicity. All this theory may be gener-
alized to n dimensions, from which analogous interpretations for the n-dimensional path integrals
follow (both for the free path integral and for those with quadratic potential functions), but doing
so here would only obscure the discussion and distract from the main focus of this section. With
this out of the way, let us take a closer look at the physical meaning of (3.2).

Our point of departure will be a generalization of the result which we found in section 2.2.2,
namely equation (2.20). As it turns out, it is possible to represent certain Euclidean path integrals
as Wiener integrals, similar to the free path integral in (2.20), under some assumptions on the
potential function V . This is a fundamental and well-known result in the theory of path integrals,
functional integration and stochastic calculus & analysis, known as the Feynman-Kac formula.
The Feynman-Kac formula can be found in a multitude of forms throughout literature on the
aforementioned subjects, some more transparent than others. Although the details and the proof
are outside the scope of this work, we shall provide one form of the Feynman-Kac formula in full,
namely the variant which can be found in [15], [6] for the 1-dimensional case (see theorem 3.2.3
on page 48 of [6]).

Theorem 3.1 (Feynman-Kac formula). Let V = V (γ) be a continuous, real-valued function
on R which is bounded from below, and let H = − 1

2∆ + V be essentially self-adjoint. Then

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇(t)2

2
+ V

(
γ(t)

)
dt

Dγ =

∫
Xab

exp

− tb∫
ta

V
(
γ(t)

)
dt

 dW ′ ,

where the path integral on the left-hand side is defined by definition 3.1.

Proof. See the proof of theorem 3.2.3 on page 48 of [6].

We will not delve into the definition of (essential) self-adjointness, but those interested may consult
any introductory textbook on functional analysis, for example [34]. The proof of theorem 3.1 is
rather technical and uses both advanced functional analysis and measure theory, and moreover
it is not particularly insightful for the present discussion, which is why have omitted it. What
is important, is that we can apply the Feynman-Kac formula to (3.7). The quadratic potential
function (3.1) is continuous, real-valued and nonnegative i.e. bounded from below. Since the
quadratic potential function is a polynomial (in γ) and bounded from below, it is essentially
self-adjoint [6]. Thus, we can apply theorem 3.1 to obtain

Kiω(a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇(t)2 + ω2γ(t)2

2
dt

Dγ =

∫
Xab

exp

− tb∫
ta

ω2γ(t)2

2
dt

 dW ′ .

(3.49)
It is rather unfortunate that the path integrals for which the Feynman-Kac formula is given are
of the Hamiltonian type, with an inverted sign in front of the potential when compared to our
Lagrangian Euclidean path integral (1.4). This makes it impossible to directly apply the Feynman-
Kac formula to the path integral that we are interested in, namely Kω given by (3.2): to get the
left-hand side in the Feynman-Kac formula to be equal to Kω, we would have to set V = −ω2γ2/2,
which is a function that is bounded from above instead of bounded from below. Likewise, it would
be tempting to apply the Feynman-Kac formula for V = ω2γ2/2 as we did above and then sub-
stitute ω → ±iω in (3.49), but this also boils down to changing the sign of the potential function,
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which we are not allowed to do for our quadratic potential. Although there are cases of unbounded
potential functions for which the equality of the Feynman-Kac formula still holds [35], these are
special cases which are difficult to prove and scarcely covered in the literature. This is another
manifestation of the fundamental difference between Hamiltonian and Lagrangian formalism in
physics, as we already pointed out in section 3.2. The Feynman-Kac formula states a rigorous
formulation of the Hamiltonian Euclidean path integral in terms of a Wiener integral for a broad
and general class of potential functions, but when restating the formula in terms of a Lagrangian
Euclidean path integral (our Euclidean path integral (1.4)), one obtains restrictions on the poten-
tial which are a lot more severe: the requirement of boundedness from below in the Hamiltonian
formulation changes to the way more stringent requirement of boundedness from above in the
Lagrangian formulation, as the example of the quadratic potential illustrates.

To demonstrate the usefulness of the Feynman-Kac formula when applicable, let us consider (3.49).
Writing Kiω as a Wiener integral, we are again looking at the probability space of Brownian motion
which we introduced introduced in section 2.4.2, see definition 2.7. Recalling equation (2.50), we
see that

Kiω(a, b; ta, tb) =

∫
Xab

exp

− tb∫
ta

ω2γ(t)2

2
dt

 dW ′ = Eab

exp

− tb∫
ta

ω2γ(t)2

2
dt


 . (3.50)

Thus, the path integral Kiω can be interpreted as a conditional expectation in the probability
space (Xa,Fa,W ) of the functional

exp

− tb∫
ta

ω2γ(t)2

2
dt

 , (3.51)

where the exponent can be seen as minus the contribution of the potential V to the Hamiltonian
(1.12) along the segment γ|[ta,tb]. This conditional expectation can be seen as taking the average
of the functional over only those Brownian paths which start in a at time ta and are in b at time
tb. Equation (3.50) together with (2.52) implies

E

exp

− tb∫
ta

ω2γ(t)2

2
dt


 =

∫
R

Kiω(a, b; ta, tb)db , (3.52)

with E the expected value in the probability space (Xa,Fa,W ), which can be seen as taking the
average of the functional over all Brownian paths which start in a at time ta. This explana-
tion of Kiω is rather elegant. Despite the fact that its closed form (3.26) is not very revealing,
the Feynman-Kac formula provides a simple way of interpreting the path integral. This example
clearly shows the usefulness of the Feynman-Kac formula, and it serves as a motivation to look
into the possibility of proving an analogous result for the path integral of interest Kω. We will not
attempt to rigorously prove such a result here, but we will argue why it is reasonable to expect
that the analogue of (3.49) holds for Kω.

To this end, let us depart slightly from the mathematical rigour that has otherwise been the focus
of this work so far, and suppose that the analogue of equation (3.49) holds for Kω. That is,
suppose we have
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Kω(a, b; ta, tb) =

∫
Xab

exp

 tb∫
ta

ω2γ(t)2

2
dt

 dW ′ = Eab

exp

 tb∫
ta

ω2γ(t)2

2
dt


 . (supposition)

(3.53)
(Note that this is the only Wiener integral to which Kω can possibly be equal. Equality between
Kω and any other Wiener integral would be inconsistent with the Feynman-Kac formula upon
inverting the potential.) In this case, the path integral is the average of the functional

exp

 tb∫
ta

ω2γ(t)2

2
dt

 (3.54)

over the paths γ ∈ Xab (so again a conditional expectation in (Xa,Fa,W )), where the exponent
is minus the contribution of the potential energy V to the action functional

S(ta, tb)[γ] :=

tb∫
ta

L(γ, γ̇, t)dt (3.55)

with the Lagrangian L given by (1.8). This is in itself a rather elegant interpretation of Kω, but
it does not yet provide much of an argument as to why (3.53) should hold in the first place. We
will now address this question. In [17], it is shown that the functional

W (q, t) := E0q

exp

− t∫
0

U
(
γ(τ)

)
dτ


 (3.56)

satisfies the partial differential equation

∂W (q, t)

∂t
=

1

2

∂2W (q, t)

∂q2
− U(q)W (q, t) , (3.57)

which is a generalization of the diffusion/heat equation (2.34). Note that the (q, t)-dependence of
(3.56) manifests in the fact that the conditional expectation is taken over those paths γ ∈ X0q

which start in 0 at time 0 and are in q at time t. In particular, this means that

ψ(q, t) := E0q

exp

 t∫
0

ω2γ2

2
dτ


 =

∫
X0q

exp

 t∫
0

ω2γ2

2
dτ

 dW ′ (3.58)

satisfies

∂ψ(q, t)

∂t
=

1

2

∂2ψ(q, t)

∂q2
+
ω2q2

2
ψ(q, t) . (3.59)

We claim that this may be generalized to an arbitrary starting time ta ≥ 0 and starting point
a ∈ R, so that

ψ(q, t) := Eaq

exp

 t∫
ta

ω2γ2

2
dτ


 =

∫
Xaq

exp

 t∫
ta

ω2γ2

2
dτ

 dW ′ (3.60)

satisfies (3.59) for t > ta. Under our assumption (3.53), this means that
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∂Kω(a, q; ta, t)

∂t
=

1

2

∂2Kω(a, q; ta, t)

∂q2
+
ω2q2

2
Kω(a, q; ta, t) . (3.61)

In other words, if we can indeed write Kω as a Wiener integral through (3.53), then (3.61) holds.
This prompts the question whether we can invert this line of reasoning, and somehow make use
of the PDE to prove (3.53). Since we have a closed form for Kω, we can check independently
of assumption (3.53) whether Kω satisfies the PDE. By virtue of computation with the closed
form given by result 3.1, one can verify that (3.61) holds for t − ta ∈ (0, T/2) (see appendix D
for details). Thus, both the path integral Kω and the function (3.60) satisfy the same partial
differential equation, which is an indication that these 2 objects are related to each other, though
not necessarily in the assumed way (3.53). To prove (3.53), one could introduce an initial condition
which uniquely fixes the solution of the PDE, and subsequently show that both the path integral
Kω as well as the function (3.60) satisfy this initial condition, which implies that they must be
equal by uniqueness of the solution. The most promising approach seems to furnish the PDE with
the initial condition

ψ(q, ta) = δ(q − a) . (3.62)

Although we have strictly speaking only defined the path integral for tb > ta (which in this case
means t > ta), we can consider the limit t ↓ ta of the closed form given by result 3.1 to determine
the behaviour of Kω(a, q; ta, t) “at t = ta”. Considering the cases q = a and q 6= a separately, we
conjecture that the behaviour at t = ta is described by a δ-function, in the sense of a distributional
limit (see [36] for more on distributions and distributional limits). We have

Kω(a, q; ta, t) =

√
ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
. (3.63)

For q = a, we get 0 for the numerator and for the denominator in the exponent as t ↓ ta, so we
can apply L’Hôpital’s rule to find that the exponent goes to 0, so that the exponential goes to 1.
Clearly, the factor under the square root in front tends to infinity as t ↓ ta, so that

lim
t↓ta

Kω(a, a; ta, t) =∞ . (3.64)

On the other hand, for q 6= a the numerator in the exponent is nonzero as t ↓ ta, whereas the
denominator goes to 0, so that the exponent tends to minus infinity and the exponential decreases
to 0. Consequently,

lim
t↓ta

Kω(a, q; ta, t) = 0 (3.65)

for q 6= a. The 2 cases together lead to the following conjecture.

Conjecture 3.1.
lim
t↓ta

Kω(a, q; ta, t) = δ(q − a) .

One should realize that this conjecture is not a statement about a limit of t-parametrized func-
tions Kω(a, q; ta, t) of q, but rather a limit of tempered distributions associated with Kω(a, q; ta, t).
Indeed, by definition of the distributional limit, conjecture 3.1 is equivalent to

lim
t↓ta

∫
R

Kω(a, q; ta, t)φ(q)dq =

∫
R

δ(q − a)φ(q)dq = δa(φ) = φ(a) (3.66)

for all test functions φ ∈ S (R). Note that for each t > ta the integral within the limit on the
left-hand side is, unlike the “integral” of the δ-function, an ordinary Riemann integral, since the
function Kω(a, q; ta, t) of q is well-defined for all t > ta (i.e. it is a true function of q for all fixed
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t > ta and only needs to be treated as a generalized function in the limit t ↓ ta). Thus, to prove
conjecture 3.1, one would have to show

lim
t↓ta

∫
R

Kω(a, q; ta, t)φ(q)dq = φ(a) (3.67)

for all φ ∈ S (R). Unfortunately, it turns out that this is deceptively hard to prove, but we will
argue why we expect this to be true. To start, we can Taylor expand the test function around a,
viz.

φ(q) = φ(a) + φ′(ξ(q))(q − a) , (3.68)

with a < ξ(q) < q. This gives

∫
R

Kω(a, q; ta, t)φ(q)dq =

∫
R

Kω(a, q; ta, t)
[
φ(a) + φ′(ξ(q))(q − a)

]
dq

= φ(a)

∫
R

Kω(a, q; ta, t)dq +

∫
R

Kω(a, q; ta, t)φ
′(ξ(q))(q − a)dq ,

(3.69)

and

lim
t↓ta

∫
R

Kω(a, q; ta, t)φ(q)dq

= φ(a) lim
t↓ta

∫
R

Kω(a, q; ta, t)dq + lim
t↓ta

∫
R

Kω(a, q; ta, t)φ
′(ξ(q))(q − a)dq .

(3.70)

A straightforward computation (see appendix E) reveals that

lim
t↓ta

∫
R

Kω(a, q; ta, t)dq = 1 , (3.71)

so we find

lim
t↓ta

∫
R

Kω(a, q; ta, t)φ(q)dq = φ(a) + lim
t↓ta

∫
R

Kω(a, q; ta, t)φ
′(ξ(q))(q − a)dq . (3.72)

Thus, it remains to show that the integral on the right-hand side vanishes in the limit. To start,
we can bound the remainder term in the Taylor expansion by virtue of “rapid decay” of Schwartz
functions, so that ∣∣φ′(ξ(q))∣∣ < M (3.73)

for some M ∈ R+. Thus,

∣∣∣∣∣∣∣
∫
R

Kω(a, q; ta, t)φ
′(ξ(q))(q − a)dq

∣∣∣∣∣∣∣ ≤
∫
R

∣∣Kω(a, q; ta, t)φ
′(ξ(q))(q − a)

∣∣ dq
< M

∫
R

|q − a|Kω(a, q; ta, t)dq

(3.74)

The problem is to show that the latter integral vanishes in the limit. The integrand is
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|q − a|Kω(a, q; ta, t) = |q − a|
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
(3.75)

for t− ta sufficiently small. Since cos(ω(t− ta)) ↑ 1 as t ↓ ta, the integrand looks very much like

|q − a|
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a− q)2

sin(ω(t− ta))

)
(3.76)

for sufficiently small t− ta, which can be seen to vanish in the limit by a substitution of variables

z =

√
ω

2 sin(ω(t− ta))
(a− q) . (3.77)

Alas, this is obviously not quite the case, since t − ta in the integrand is small but fixed. To be
precise, we have

cos(ω(t− ta)) = 1 +R (3.78)

with R = O
(
(t− ta)2

)
and R < 0 since cos(ω(t− ta)) approaches 1 from below. Hence, what we

in fact get for t− ta sufficiently small, is

|q − a|
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a− q)2

sin(ω(t− ta))

)
exp

(
−ω

2

(a2 + q2)R

sin(ω(t− ta))

)
(3.79)

Since the remainder term R is negative, the total exponent of the latter exponential becomes posi-
tive, so within the integral (for small but fixed t− ta) this exponent can still grow unboundedly for
q → ±∞, which means that we cannot simply bound this exponential by a constant. Of course,
for small t−ta (i.e. small R) the growth of this latter exponential is slower than the decay towards
0 of the first exponential as q → ±∞. Because of this, we expect that the integral vanishes in the
limit, but due to the unboundedness of the remainder exponential regardless of how small t − ta
gets, this is not easily proven.

Assuming that conjecture 3.1 does indeed hold, Kω(a, q; ta, t) is the unique solution of the PDE
(3.61) under initial condition (3.62). If we can additionally show that the function φ given by
(3.60) satisfies (3.62), then we have proven (3.53). One may observe from result 2.1 that in the
case q 6= a, the “size” W ′(Xaq) of the set Xaq tends to 0 as t ↓ ta. From this, it can be argued
that the expected value of the functional over the paths in Xaq should decrease to 0, since this is
just an integral w.r.t W ′ over the set Xaq. One may analogously reason that in the case q = a,
the size W ′(Xaq) gets larger and larger as t ↓ ta, causing the expected value of the functional
over these paths to grow. These may (or may not) be perfectly valid heuristics, but making this
train of thought rigorous would be a more advanced exercise in stochastic analysis. To conclude,
it seems quite reasonable to expect that conjecture 3.1 holds and that our function (3.60) satisfies
(3.62), which in turn would mean that (3.53) holds, but rigorously proving this is an undertaking
too ambitious for the present work. Nonetheless, the arguments presented here show that (3.53)
is more than plausible.

We remind the reader that amidst this speculation we have established a connection between
Kω and a generalized form of the heat equation, which holds regardless of whether (3.53) and
conjecture 3.1 are true or not. As mentioned above, we have

Result 3.5 (path integral with quadratic potential & heat-type equation).

∂Kω(a, q; ta, t)

∂t
=

1

2

∂2Kω(a, q; ta, t)

∂q2
+
ω2q2

2
Kω(a, q; ta, t)

for t− ta ∈ (0, T/2).
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This just follows from the closed form of Kω which was found in a rigorous fashion in section 3.2.
Hence, we obtain an interpretation of the path integral for a quadratic potential as a solution of
a heat-type equation, just as the free path integral satisfies a heat equation, which we established
in section 2.4.1. If conjecture 3.1 holds, we have the stronger result that Kω satisfies the PDE
(3.59) subject to the initial condition (3.62), which would be the complete analogue of the result
for the free path integral that we saw in section 2.4.1. This is another reason why one may expect
conjecture 3.1 to hold.

On a final note, we point out another interesting observation about Kω. Recall that the free path
integral can be interpreted as a probability density function, as seen in section 2.4.1. One may
ask whether this generalizes to the case with a quadratic potential. It turns out that this is not
the case. Indeed, in appendix E we show that∫

R

Kω(a, b; ta, tb)db =
1√

cos(ω(tb − ta))
exp

(
ω

2

a2 sin(ω(tb − ta))

cos(ω(tb − ta))

)
6= 1 (3.80)

for tb − ta sufficiently small, which means that Kω is not a pdf. Although the path integral for a
quadratic potential should still have a probabilistic meaning, it can apparently not be interpreted
as a pdf. Observe that in the case of an inverted potential, the Feynman-Kac formula (theorem
3.1) indeed tells us that the path integral is a conditional expectation of some functional over a
certain set of paths, rather than a pdf. The same interpretation for our path integral of interest
Kω is hypothesized in (3.53).
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Chapter 4

The anisotropic path integral

So far, we have worked exclusively with Euclidean path integrals

KΩ(a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

‖γ̇‖2 − γTΩγ

2
dt

Dγ , (4.1)

with Ω ∈ Rn×n symmetric and positive semi-definite. These are path integrals of the isotropic
type. The term isotropic pertains to the fact that the kinetic energy term in the action functional
is

‖γ̇‖2 = γ̇T Iγ̇ , (4.2)

with I the n × n identity matrix. This form of the kinetic term is common in literature on path
integrals. In the light of certain applications, in particular diffusion MRI, it is interesting to
consider another, more general type of kinetic term, namely

γ̇TMγ̇ , (4.3)

where M ∈ Rn×n is symmetric and positive-definite. This form of the kinetic term describes
a moving particle with a certain preferred direction, which is captured by the matrix M . In
particular, it describes anisotropic diffusion, which is diffusion where the particles move easier in
some directions than in others. The diffusion in diffusion MRI is an example this, since the axons
act as barriers for the diffusing water molecules. Replacing the standard kinetic term in the path
integral by the more general one leads to the anisotropic path integral8,

KM,Ω(a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt

Dγ , (4.4)

where Ω ∈ Rn×n is symmetric and positive semi-definite. Although this may seem quite different
from the Euclidean, isotropic path integrals we discussed so far, it is not so. In fact, once we
have an appropriate definition of (4.4), it is rather simple to reduce the anisotropic path integral
to a case of the Euclidean path integral with quadratic potential, the type which we discussed in
chapter 3. Note that the particular choice M = I is allowed, so that the anisotropic path integral
is a generalization of the Euclidean path integral with quadratic potential.

8Since the term anisotropic pertains, strictly speaking, only to the form of the kinetic term, one may take the
term anisotropic path integral to refer to such a path integral for an arbitrary potential V . We choose to restrict
our attention to zero or quadratic potentials and henceforth refer to this as the anisotropic path integral.
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4.1 Defining the anisotropic path integral The anisotropic path integral

4.1 Defining the anisotropic path integral

Before computing the anisotropic path integral, we need to give a proper definition to (4.4). It is
logical to define it analogously to the Euclidean path integral, for which we established definition
3.1. Clearly, we cannot proceed directly in the same way due to the matrix M in the potential
term. To deal with this, observe that there is an orthogonal matrix V ∈ Rn×n with detV = 1 and
a diagonal matrix ∆ ∈ Rn×n such that

M = V∆V T , (4.5)

since M is symmetric. In particular, ∆ = diag(µ1, . . . , µn) with µ1, . . . , µn the eigenvalues of M .
Since M is positive-definite, we have µ1, . . . , µn > 0. Define

√
∆ := diag(

√
µ1, . . . ,

√
µn) . (4.6)

Note that
√

∆
2

= ∆. We then have

KM,Ω(a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt

Dγ
=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TV∆V T γ̇ − γTΩγ

2
dt

Dγ =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TV
√

∆
√

∆V T γ̇ − γTΩγ

2
dt

Dγ

=

γ(tb)=b∫
γ(ta)=a

exp

−
tb∫
ta

(√
∆V T γ̇

)T √
∆V T γ̇ − γTΩγ

2
dt

Dγ

=

γ(tb)=b∫
γ(ta)=a

exp

−
tb∫
ta

∥∥∥√∆V T γ̇
∥∥∥2

− γTΩγ

2
dt

Dγ .
(4.7)

This looks almost the same as the Euclidean path integral for a quadratic potential (3.33), except
that we have an additional term

√
∆V T in the norm. Comparing with definition 3.2, it is now

clear that we have to add the factor
√

∆V T in the approximation of the kinetic term in a limit
definition of (4.4). This implies another problem, namely the fact that we need a different nor-
malization term than the one in definition 3.2. This results from the added factor

√
∆V T in the

approximation of the kinetic term in the limit, which means that we need a change of variables
to obtain a product of Gaussian integrals, picking up a multiplicative constant in front of the
integrals along the way.

To make this more precise and determine the correct normalization constant, define

KM,Ω(a, b; ta, tb) := lim
N→∞

CN

∫
RnN

N∏
j=0

exp

−
∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dx ,

(4.8)
with CN the to-be-determined normalization constant, ε := tb−ta

N+1 , x0 := a, xN+1 := b and
dx := dx1 . . . dxN as before. As for the Euclidean path integral we assume that CN does not
depend on Ω, but it may depend on M (we will see later that this is in fact necessary). Note that
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this is indeed the analogue of definition 3.2, with the additional factor
√

∆V T in the approximation
of the kinetic term and a new normalization constant. We determine the normalization constant
in a similar fashion as for the Euclidean path integral, namely by requiring for the potential-free
case Ω = O that

CN

∫
R

∫
RnN

N∏
j=0

exp

−
∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε

 dxdb = 1 , (4.9)

and applying the assumption that CN does not depend on Ω to extend the obtained normalization
constant to the general case by virtue of consistency. Set yj =

√
∆V Txj . We then have xj =

V
√

∆
−1
yj , and

CN

∫
Rn

∫
RnN

N∏
j=0

exp

−
∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε

 dxdb

=
CN[

det
(√

∆V T
)]N+1

∫
Rn

∫
RnN

N∏
j=0

exp

−∥∥yj+1 − yj
∥∥2

2ε

 dydb̃

(4.10)

with y0 =
√

∆V Ta, yN+1 = b̃ =
√

∆V T b and dy = dy1 . . . dyN . Observe that

det
(√

∆V T
)

= det
(√

∆
)

det
(
V T
)

= det
√

∆ =
√
µ1 . . .

√
µn =

√
µ1 . . . µn =

√
detM . (4.11)

Plugging this results into (4.10) yields

CN

∫
Rn

∫
RnN

N∏
j=0

exp

−
∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε

 dxdb

=
CN

√
detM

N+1

∫
Rn

∫
RnN

N∏
j=0

exp

−∥∥yj+1 − yj
∥∥2

2ε

 dydb̃ .

(4.12)

The integral on the right-hand side of (4.12) corresponds to a Euclidean path integral. Recall
from chapter 3 that

(
1

2πε

)n(N+1)
2

∫
Rn

∫
RnN

N∏
j=0

exp

−∥∥xj+1 − xj
∥∥2

2ε

 dxdb = 1 , (4.13)

where xN+1 = b, regardless of the starting point x0. In particular,

(
1

2πε

)n(N+1)
2

∫
Rn

∫
RnN

N∏
j=0

exp

−∥∥yj+1 − yj
∥∥2

2ε

 dydb̃ = 1 (4.14)

with y0 =
√

∆V Ta and yN+1 = b̃. Equivalently,

√
detM

N+1 ( 1
2πε

)n(N+1)
2

√
detM

N+1

∫
Rn

∫
RnN

N∏
j=0

exp

−∥∥yj+1 − yj
∥∥2

2ε

 dydb̃ = 1 . (4.15)
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Comparing to equation (4.12) yields

CN

∫
R

∫
RnN

N∏
j=0

exp

−
∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε

 dxdb = 1

⇐⇒ CN =
√

detM
N+1

(
1

2πε

)n(N+1)
2

=

(
detM

(2πε)
n

)N+1
2

.

(4.16)

This leads to the following definition of the anisotropic path integral.

Definition 4.1 (n-dimensional anisotropic path integral). The n-dimensional anisotropic
path integral (4.4) is defined as

KM,Ω(a, b; ta, tb) := lim
N→∞

(
detM

(2πε)
n

)N+1
2
∫

RnN

N∏
j=0

exp

−
∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε
+ ε ·

xTj+1Ωxj+1

2

 dx

= lim
N→∞

(
detM

(2πε)
n

)N+1
2
∫

RnN

exp

−
N∑
j=0


∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε
− ε ·

xTj+1Ωxj+1

2


 dx ,

where ε = ε(N) := tb−ta
N+1 > 0, x0 := a, xN+1 := b and dx := dx1 . . . dxN , dxi := dxi,1 . . . dxi,n.

4.2 Computing the anisotropic path integral

With definition 4.1, it is straightforward to reduce the anisotropic path integral to a case of the

Euclidean path integral for a quadratic potential. Set yj =
√

∆V Txj , then xj = V
√

∆
−1
yj and

(
detM

(2πε)
n

)N+1
2
∫

RnN

exp

−
N∑
j=0


∥∥∥√∆V T

(
xj+1 − xj

)∥∥∥2

2ε
− ε ·

xTj+1Ωxj+1

2


 dx

=
1[

det
(√

∆V T
)]N

×
(

detM

(2πε)
n

)N+1
2
∫

RnN

exp

−
N∑
j=0


∥∥yj+1 − yj

∥∥2

2ε
− ε ·

yTj+1

(√
∆
−1
)T

V TΩV
√

∆
−1
yj+1

2


 dy

(4.11)
=

1
√

detM
N

(
detM

(2πε)
n

)N+1
2
∫

RnN

exp

− N∑
j=0

∥∥yj+1 − yj
∥∥2

2ε
− ε ·

yTj+1

√
∆
−1
V TΩV

√
∆
−1
yj+1

2


 dy

=
√

detM

(
1

2πε

)n(N+1)
2

∫
RnN

exp

− N∑
j=0

∥∥yj+1 − yj
∥∥2

2ε
− ε ·

yTj+1

√
∆
−1
V TΩV

√
∆
−1
yj+1

2


 dy .

(4.17)
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Plugging this into definition 4.1, we find

KM,Ω(a, b; ta, tb)

=
√

detM lim
N→∞

(
1

2πε

)n(N+1)
2

∫
RnN

exp

− N∑
j=0

∥∥yj+1 − yj
∥∥2

2ε
− ε ·

yTj+1

√
∆
−1
V TΩV

√
∆
−1
yj+1

2


 dy

=
√

detMK√
∆
−1
V T ΩV

√
∆
−1

(√
∆V Ta,

√
∆V T b; ta, tb

)
.

(4.18)

For brevity, let us henceforth define

Ω′ :=
√

∆
−1
V TΩV

√
∆
−1

. (4.19)

Then the result for the anisotropic path integral reads

KM,Ω(a, b; ta, tb) =
√

detMKΩ′

(√
∆V Ta,

√
∆V T b; ta, tb

)
. (4.20)

Observe that the path integral KΩ′ falls within the scope of chapter 3, since Ω′ is positive semi-
definite as a result of Ω being positive semi-definite. Indeed, for x ∈ Rn we have

xTΩ′x = xT
√

∆
−1
V TΩV

√
∆
−1
x =

(
V
√

∆
−1
x

)T
Ω

(
V
√

∆
−1
x

)
≥ 0 . (4.21)

Thus, the anisotropic path integral KM,Ω essentially reduces to the Euclidean path integral with
quadratic potential KΩ′ . It should be kept in mind that, despite its name, the matrix Ω′ depends
on both Ω and M , through the matrices ∆ and V from the diagonalization of M (4.5). Note that
for M = I, the right-hand side of (4.20) reduces to KΩ(a, b; ta, tb) as desired, since ∆ = V = I in
this case.

For the special case Ω = O, which we call the anisotropic free path integral, we find

Result 4.1 (anisotropic free path integral).

KM,O(a, b; ta, tb) =
√

detMKO

(√
∆V Ta,

√
∆V T b; ta, tb

)
res. 3.3

=

√
detM√

2π(tb − ta)
n exp

−
∥∥∥√∆V (b− a)

∥∥∥2

2(tb − ta)



=

√
detM√

2π(tb − ta)
n exp

−
(√

∆V (b− a)
)T √

∆V (b− a)

2(tb − ta)



=

√
detM√

2π(tb − ta)
n exp

− (b− a)TV T
(√

∆
)T √

∆V (b− a)

2(tb − ta)


=

√
detM√

2π(tb − ta)
n exp

(
− (b− a)TV T∆V (b− a)

2(tb − ta)

)
=

√
detM√

2π(tb − ta)
n exp

(
− (b− a)TM(b− a)

2(tb − ta)

)
.

Note that the closed form of the anisotropic free path integral is completely different from the
closed form of the Euclidean path integral for a quadratic potential. Indeed, the difference is
readily seen by considering the 1-dimensional case of result 4.1 and comparing it to result 3.1.
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The former contains no trigonometric functions whereas the latter does. It is quite interesting
that the difference is so striking, for the following reason. The underlying phenomenon which is
represented by the anisotropic free path integral is that of anisotropic diffusion, where the par-
ticles have a certain preferred direction in which they diffuse instead of an arbitrary direction
as represented by the Euclidean free path integral (see section 2.4.1). On the other hand, the
addition of a quadratic potential term to the Euclidean free path integral introduces a potential
barrier, as we already discussed in chapter 3. There is a conceptual difference with true anisotropic
diffusion, but in the end the effect is similar. In particular, both the path integral KΩ and KM,O

model the obstruction of diffusing water molecules by axons in diffusion MRI. One might therefore
expect that the closed forms of these path integrals look similar, but this is apparently not the case.

For the general case of the anisotropic path integral, we have

KM,Ω(a, b; ta, tb) =
√

detMKΩ′

(√
∆V Ta,

√
∆V T b; ta, tb

)
res. 3.2

=
√

detM

n∏
i=1

K√λi

([
UT
√

∆V Ta
]
i
,
[
UT
√

∆V T b
]
i
; ta, tb

)
,

(4.22)

where λ1, . . . , λn ≥ 0 are the eigenvalues of Ω′, and U ∈ Rn×n the orthogonal matrix with
detU = 1 which satisfies

diag(λ1, . . . , λn) = UTΩ′U . (4.23)

For brevity, we henceforth define

WT := UT
√

∆V T . (4.24)

Then the general result for the anisotropic path integral reads

Result 4.2 (anisotropic path integral).

KM,Ω(a, b; ta, tb) =
√

detM

n∏
i=1

K√λi

([
WTa

]
i
,
[
WT b

]
i
; ta, tb

)
.

In the same way as in section 3.3, we restrict the size of the time interval tb − ta based on the
eigenvalues of the matrix Ω′. If λ1 is the largest positive eigenvalue, we henceforth assume that
tb − ta ∈ (0, π/

√
λ1). This ensures that all path integrals K√λi

in result 4.2 have a well-defined
closed form, namely

K√λi

([
WTa

]
i
,
[
WT b

]
i
; ta, tb

)

(3.42)
=


1√

2π(tb−ta)
exp

(
−

[
(WT b)

i
−(WT a)

i

]2
2(tb−ta)

)
if λi = 0

√ √
λi

2π sin(
√
λi(tb−ta))

exp

(
−
√
λi

2

[
(WT a)

2

i
+(WT b)

2

i

]
cos(
√
λi(tb−ta))−2(WT a)

i
(WT b)

i

sin(
√
λi(tb−ta))

)
if λi > 0 .

(4.25)

It should go without saying that evaluating the anisotropic path integral is, computationally, a
rather cumbersome affair for nontrivial cases with n ≥ 2. One first has to diagonalize M to find
the matrix Ω′, and then one has to diagonalize this matrix Ω′ to find its eigenvalues λi and the
matrix WT . Then, finally, one obtains a product of n one-dimensional path integrals, for which we
have a closed expression (which is, unfortunately, quite complicated in the nontrivial case λi > 0).
This being said, it is in principle feasible to evaluate the anisotropic path integral exactly in the
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special case of interest n = 3. For (much) higher dimensions, one may resort to numerical methods
for finding eigenvalues and eigenvectors of matrices (see e.g. [37]).

After all this work to arrive at an appropriate definition of the anisotropic path integral and
subsequently compute its closed form, one might ask if this could not have been done easier. After
all, the essence of the computations is the change of variables yj =

√
∆V Txj . With this in mind,

it may be tempting to opt for a naive approach and carry out an analogous change of variables
directly within the path integral by setting η(t) =

√
∆V T γ(t), treating it just as any other change

of variables in a well-defined Riemann integral. Doing so, we would obtain

KM,Ω(a, b; ta, tb)
(4.7)
=

γ(tb)=b∫
γ(ta)=a

exp

−
tb∫
ta

∥∥∥√∆V T γ̇
∥∥∥2

− γTΩγ

2
dt

Dγ

=
1

det
(√

∆V T
) η(tb)=

√
∆V T b∫

η(ta)=
√

∆V T a

exp

− tb∫
ta

‖η̇‖2 − ηTΩ′η

2
dt

Dη (incorrect)

=
1√

detM
KΩ′

(√
∆V Ta,

√
∆V T b; ta, tb

)
,

which is clearly the wrong result, cf. equation (4.20). Of course, there is indeed no reason why
this naive approach should work, since the measure Dγ is not well-defined and thus cannot be
subjected to formal manipulations such as a change of variables. Moreover, even in cases when the
path integral as a whole can be defined in a reasonable way, such as definitions 2.1, 3.2 and 4.1,
the result is vastly different from ordinary Riemann integration, not least because one is working
with a limit of Riemann integrals whose dimension becomes arbitrarily large. Thus, one cannot
assume Riemann integral-like behaviour of the path integral in these cases either. In general, one
should be careful with formal manipulations to path integrals and always ask whether the desired
manipulations are justifiable by the definition of the path integral in question.

4.3 Perturbing the anisotropic path integral

In this section, we shall present a method to treat an even more general class of path integrals
analytically, expressing them in terms of anisotropic path integrals. This method is a generaliza-
tion of a perturbative approach suggested by supervisor Luc Florack, but similar methods can be
found in various literature sources as well (see e.g. [38] and the references therein). It differs from
the techniques which we employed in the previous chapters, because we will not be able to provide
a fully closed form of the more general type of path integrals. What we will be doing instead,
is expressing them as an infinite series containing only anisotropic path integrals for which we
have a closed form. We shall furthermore not be concerned with giving an appropriate definition
of the complicated path integral as we did before. Rather, we will be performing manipulations
with the path integral itself. We recall from section 4.2 that it is not straightforward to perform
formal manipulations to the path integral, so we aim to keep this to a minimum and only perform
“reasonable” manipulations. In particular, we will avoid manipulations to the heuristic measure
in path space (i.e. change of variable in the path integral). For this perturbative approach, we will
be using the “intermediate point requirement” (2.2) to split path integrals, on which we based all
previous definitions of the path integrals, and in addition we will make some other, mild assump-
tions.

The path integral of interest is
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KM,Ω,V (a, b; ta, tb) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
− V (γ, t)dt

Dγ , (4.26)

where M ∈ Rn×n is symmetric and positive-definite, Ω ∈ Rn×n symmetric and positive semi-
definite, and

‖V ‖∞ := sup
(x,t)∈Rn×[ta,tb]

∣∣V (x, t)
∣∣� 1

tb − ta
. (4.27)

Thus, we essentially consider the anisotropic path integral and add to its quadratic potential an-
other, sufficiently small function V which may be interpreted as a perturbation of the quadratic
potential. Note that this may be reduced to a Euclidean path integral with perturbed quadratic
potential by setting M = I, or a “perturbed free path integral” (of either Euclidean or anisotropic
type) by setting Ω = O.

We shall assume that the length of the time interval tb−ta is chosen such that the anisotropic path
integral KM,Ω(a, b; ta, tb) has a well-defined closed form through result 4.2 and equation (4.25),
since we are going to express KM,Ω,V in terms of KM,Ω. To start, we rewrite (4.26) as

KM,Ω,V (a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt

 exp

 tb∫
ta

V (γ, t)dt

Dγ (4.28)

and Taylor expand the exponential term containing the perturbation, viz.

exp

 tb∫
ta

V (γ, t)dt

 =

∞∑
k=0

1

k!

 tb∫
ta

V (γ, t)dt


k

. (4.29)

This yields

KM,Ω,V (a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt

 ∞∑
k=0

1

k!

 tb∫
ta

V (γ, t)dt


k

Dγ

∗
=

∞∑
k=0

1

k!

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt


 tb∫
ta

V (γ, t)dt


k

Dγ ,

(4.30)

where step (∗) relies on the assumption that we may interchange the infinite summation and path
integration. For convenience, let us define

K
(k)
M,Ω,V (a, b; ta, tb) :=

1

k!

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt


 tb∫
ta

V (γ, t)dt


k

Dγ , (4.31)

so that

KM,Ω,V (a, b; ta, tb) =

∞∑
k=0

K
(k)
M,Ω,V (a, b; ta, tb) . (4.32)
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This series expansion has a quite elegant interpretation. The path integrals in the series can be
seen as the contribution to KM,Ω,V of those paths that are “patched together” line segments.
These paths are trajectories of scattering particles, comparable to Brownian motion: the particles
start by travelling in a straight line from a to b, but on the way they collide with other particles
and thus the direction of their straight path changes. The k-th term in the series expansion,

that is, the path integral K
(k)
M,Ω,V then represents the contribution to KM,Ω,V of those scattering

trajectories along which the particle collides with another particle k times (giving a path which
consists of k+1 line segments). This is shown in figure 4.1. Apparently, summing the contributions
of all these scattering trajectories is equivalent to considering all paths γ ∈ Xab as per the original
path integral KM,Ω,V , even though Xab contains many more paths than just these scattering
trajectories.

Figure 4.1: Example paths corresponding to the lowest order terms in the series expansion.
(Original drawing by supervisor Luc Florack, used with permission.)

Note that

K
(0)
M,Ω,V (a, b; ta, tb) =

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt

Dγ = KM,Ω(a, b; ta, tb) . (4.33)

For k ≥ 1, we make each of the k integrals containing V within K
(k)
M,Ω,V distinct by introducing

time variables s1, . . . , sk, which gives

K
(k)
M,Ω,V (a, b; ta, tb) =

1

k!

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt


 k∏
j=1

tb∫
ta

V (γ(sj), sj)dsj

Dγ .
(4.34)

We now assume that we may interchange the order of the integration over s1, . . . , sk and the path
integration, so that

K
(k)
M,Ω,V (a, b; ta, tb) =

1

k!

∫
[ta,tb]k

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt


 k∏
j=1

V (γ(sj), sj)

Dγds ,
(4.35)
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where ds := ds1 . . . dsk. This is a quite natural assumption. In (4.34), one considers in the in-
tegrand of the path integral the effect of the k perturbation terms V along the whole path, and
one “repeats” this for every path. In (4.35) on the other hand, one considers in the integrand of
the time integral the effect of the k perturbation terms V at fixed times s1, . . . , sk for all paths
combined, and one repeats this for every combination of times s1, . . . , sk. In the end, one will
have considered the effect of every single one of the k perturbation terms along every path (i.e.
for every path at every moment in time) in both cases.

Note that we can restrict the integration domain to ta < s1 < · · · < sk < tb by dropping the
factorial [38]:

K
(k)
M,Ω,V (a, b; ta, tb) =

tb∫
ta

sk∫
ta

· · ·
s2∫
ta

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt


 k∏
j=1

V (γ(sj), sj)

Dγds .
(4.36)

The benefit of interchanging the order of integration is that we can now focus on the path integral

F
(k)
M,Ω,V (a, b; ta, tb; s1, . . . , sk) :=

γ(tb)=b∫
γ(ta)=a

exp

− tb∫
ta

γ̇TMγ̇ − γTΩγ

2
dt


 k∏
j=1

V (γ(sj), sj)

Dγ
(4.37)

where the perturbation V only contributes at fixed times s1, . . . , sk. Since ta < s1 < · · · < sk < tb,
we can conveniently apply the “intermediate point requirement” (2.2) to split the path integral
over [ta, tb] into a product of path integrals over [ta, s1], [s1, s2], . . . , [sk, tb]. (Strictly speaking, we
only stated that (2.2) should hold for the Euclidean path integral (1.5), but we simply require

that this also holds for our path integral F
(k)
M,Ω,V .) In doing so, the points γ(sj) will become

parameters over which we integrate independently from the path integration, effectively making
the path integrals over the smaller time intervals independent of the perturbation term. Defining
s0 := ta, x0 := a, sk+1 := tb, xk+1 := b and dx := dx1 . . . dxk, we get

F
(k)
M,Ω,V (a, b; ta, tb; s1, . . . , sk) =

γ(tb)=b∫
γ(ta)=a

exp

− s1∫
ta

γ̇TMγ̇ − γTΩγ

2
dt

V (γ(s1), s1)× . . .

· · · × exp

− sk∫
sk−1

γ̇TMγ̇ − γTΩγ

2
dt

V (γ(sk), sk)× exp

− tb∫
sk

γ̇TMγ̇ − γTΩγ

2
dt

Dγ

=

∫
Rkn


γ(s1)=x1∫
γ(s0)=x0

exp

− s1∫
s0

γ̇TMγ̇ − γTΩγ

2
dt

V (γ(s1), s1)Dγ × . . .

· · · ×
γ(sk)=xk∫

γ(sk−1)=xk−1

exp

− sk∫
sk−1

γ̇TMγ̇ − γTΩγ

2
dt

V (γ(sk), sk)Dγ

×
γ(sk+1)=xk+1∫
γ(sk)=xk

exp

− sk+1∫
sk

γ̇TMγ̇ − γTΩγ

2
dt

Dγ
 dx
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=

∫
Rkn


γ(s1)=x1∫
γ(s0)=x0

exp

− s1∫
s0

γ̇TMγ̇ − γTΩγ

2
dt

Dγ

×
k∏
j=1

V (xj , sj)

γ(sj+1)=xj+1∫
γ(sj)=xj

exp

− sj+1∫
sj

γ̇TMγ̇ − γTΩγ

2
dt

Dγ

 dx

=

∫
Rkn

KM,Ω(x0, x1; s0, s1)

k∏
j=1

[
V (xj , sj)KM,Ω(xj , xj+1; sj , sj+1)

]
dx . (4.38)

This gives

K
(k)
M,Ω,V (a, b; ta, tb) =

tb∫
ta

sk∫
ta

· · ·
s2∫
ta

F
(k)
M,Ω,V (a, b; ta, tb; s1, . . . , sk)ds

=

tb∫
ta

sk∫
ta

· · ·
s2∫
ta

∫
Rkn

KM,Ω(x0, x1; s0, s1)

k∏
j=1

[
V (xj , sj)KM,Ω(xj , xj+1; sj , sj+1)

]
dxds ,

(4.39)

and consequently

Result 4.3 (Perturbed anisotropic path integral).

KM,Ω,V (a, b; ta, tb) =

∞∑
k=0

K
(k)
M,Ω,V (a, b; ta, tb) = KM,Ω(a, b; ta, tb)

+

∞∑
k=1

tb∫
ta

sk∫
ta

· · ·
s2∫
ta

∫
Rkn

KM,Ω(x0, x1; s0, s1)

k∏
j=1

[
V (xj , sj)KM,Ω(xj , xj+1; sj , sj+1)

]
dxds .

Note that 0 < sj+1−sj < tb−ta on the whole integration domain. Since we assumed that tb−ta is
chosen such that KM,Ω(a, b; ta, tb) has a well-defined closed form (for all a, b ∈ R), this implies that
KM,Ω(xj , xj+1; sj , sj+1) is also well-defined in closed form through result 4.2 and equation (4.25)
on the whole integration domain. In particular, the closed forms are integrable functions, hence
the series expansion in result 4.3 is indeed well-defined. We have thus reduced the path integral
KM,Ω,V to a series of ordinary Riemann integrals. Convergence of the series is guaranteed by
the restriction (4.27) on the magnitude of the perturbation. It should be clear that the approach
presented here can in fact be applied to any perturbed potential, as long as the path integrals in
the resulting series expansion (containing the unperturbed potential) are known in closed form.
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Chapter 5

Summary of the main results &
future research

Throughout the preceding chapters, we have discussed a variety of path integrals, computing them
in closed form and interpreting them whenever possible. In this final chapter, we shall provide a
compact overview of the most significant results. We will also point out relevant problems that
were not (fully) solved in this work, which may serve as a starting point for future research.

5.1 Rigorous results

In chapter 2, we started by exploring the free path integral. We found that it can be written in
closed form in various ways, which are all given by result 2.1:

K0(a, b; ta, tb) = W ′(Xab) =

∫
Xab

dW ′ =
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
. (5.1)

We recognize the heat/diffusion kernel in the closed form, which is actually a probability density
function in the end point b. Thus, the free path integral is a pdf, namely of a Gaussian random
variable. A more explicit formulation of the free path integral as a pdf is given by result 2.2:

P(b1 < Z < b2) =
1√

2π(tb − ta)

b2∫
b1

exp

(
− (b− a)2

2(tb − ta)

)
db =

b2∫
b1

K0(a, b; ta, tb)db , (5.2)

where Z denotes a Gaussian random variable with mean a and variance tb− ta. P(b1 < Z < b2) is
the probability that a particle undergoing diffusion starting in a at time ta is found in some point
b ∈ (b1, b2) at time tb. If we consider the probability density over an arbitrarily small interval,
we find an expression of the probability which the Wiener measure assigns to the set of Brownian
paths Xab in terms of the free path integral, namely result 2.3:

W (Xab) = lim
N→∞

b+ 1
N∫

b− 1
N

K0(a, x; ta, tb)dx . (5.3)

Finally, we extended result 2.2 to also include a formulation in terms of Wiener measure, given by
result 2.4:
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W
(
{γ ∈ Xa : γ(tb) ∈ (b1, b2)}

)
=

b2∫
b1

K0(a, b; ta, tb)db = P(b1 < Z < b2) . (5.4)

Thus, the free path integral is the pdf for both diffusion and Brownian motion. In particular, this
shows that diffusion and Brownian motion are similar in that they are both characterized by the
same pdf.

In chapter 3, we looked at the important case of a path integral for a quadratic potential function.
We saw that the Lagrangian formulation of the Euclidean path integral gives problems in this
case, since the closed form of the path integral is not defined for all time intervals, which is not
the case in the Hamiltonian formulation. Under the restriction tb − ta ∈ (0, T/2), or equivalently
ω(tb − ta) ∈ (0, π), we found the closed form for the 1-dimensional case which is given by result
3.1:

Kω(a, b; ta, tb) =

√
ω

2π sin(ω(tb − ta))
exp

(
−ω

2

(a2 + b2) cos(ω(tb − ta))− 2ab

sin(ω(tb − ta))

)
. (5.5)

The general n-dimensional case was shown to reduce to a product of 1-dimensional path integrals
in result 3.2:

KΩ(a, b; ta, tb) =

n∏
i=1

K√λi

([
UTa

]
i
,
[
UT b

]
i
; ta, tb

)
. (5.6)

It follows that the n-dimensional case has a well-defined closed form through result 3.1 if tb− ta ∈
(0, π/

√
λ1), where we assume λ1 to be the largest nonzero eigenvalue of Ω (if all eigenvalues are 0,

we simply have Ω = O, in which case no restriction on the time interval is needed). As a special
case of the n-dimensional case for a quadratic potential, we found the closed form of the general
n-dimensional free path integral, given by result 3.3:

KO(a, b; ta, tb) =
1√

2π(tb − ta)
n exp

(
− ‖b− a‖

2

2(tb − ta)

)
. (5.7)

Result 3.4 shows that the path integral for a quadratic potential behaves as desired under rotations
of the potential field/the starting and end point:

KΩ(Ra,Rb; ta, tb) = KRT ΩR(a, b; ta, tb) . (5.8)

In particular, the free path integral is invariant under rotations of the starting and end point.
We also obtained the interpretation of the 1-dimensional path integral with quadratic potential as
solution to a heat-type equation through result 3.5:

∂Kω(a, q; ta, t)

∂t
=

1

2

∂2Kω(a, q; ta, t)

∂q2
+
ω2q2

2
Kω(a, q; ta, t) (5.9)

for t− ta ∈ (0, T/2).

In chapter 4, we looked beyond the Euclidean path integral and introduced the anisotropic path
integral. For the special case of the n-dimensional anisotropic free path integral, we found the
closed form in result 4.1:

KM,O(a, b; ta, tb) =

√
detM√

2π(tb − ta)
n exp

(
− (b− a)TM(b− a)

2(tb − ta)

)
. (5.10)

We found that the general n-dimensional anisotropic path integral reduces to a product of 1-
dimensional Euclidean path integrals with quadratic potential as given by result 4.2:
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KM,Ω(a, b; ta, tb) =
√

detM

n∏
i=1

K√λi

([
WTa

]
i
,
[
WT b

]
i
; ta, tb

)
. (5.11)

It follows that the general n-dimensional anisotropic path integral has a well-defined closed form
through result 3.1 if tb−ta ∈ (0, π/

√
λ1), where we assume λ1 to be the largest nonzero eigenvalue of

Ω′ (again, if all eigenvalues are 0 we have Ω′ = O, and then we need not restrict the time interval).
Finally, we looked at an even more general class of path integrals in the form of a perturbed
anisotropic path integral. We obtained a series expansion in terms of the usual (unperturbed)
anisotropic path integral in result 4.3:

KM,Ω,V (a, b; ta, tb) = KM,Ω(a, b; ta, tb)

+

∞∑
k=1

tb∫
ta

sk∫
ta

· · ·
s2∫
ta

∫
Rkn

KM,Ω(x0, x1; s0, s1)

k∏
j=1

[
V (xj , sj)KM,Ω(xj , xj+1; sj , sj+1)

]
dxds .

(5.12)

If we choose tb − ta such that KM,Ω(a, b; ta, tb) has a well-defined closed form as discussed above,
then all anisotropic path integrals KM,Ω(xj , xj+1; sj , sj+1) in the Riemann integral are also well-
defined in closed form, since 0 < sj+1 − sj < tb − ta on the integration domain.

5.2 Future research

The most important problem which we encountered in this work, is the fact that our closed form
for the 1-dimensional path integral with quadratic potential is only well-defined for certain time
intervals tb − ta (in particular, only for end times tb which fall within the first half of a period of
the harmonic oscillator). This is a direct consequence of the choice for a Lagrangian formulation of
the Euclidean path integral instead of a Hamiltonian formulation. Although this restriction on the
time interval is not necessarily very severe from a physical standpoint, it would be mathematically
more pleasing if we can find a way to generalize the closed form to all time intervals tb − ta > 0.
Indeed, if we look at the definition of the Euclidean path integral there is no clear reason why this
should be restricted to certain time intervals in the 1-dimensional Lagrangian case of a quadratic
potential. Thus, it would be worth investigating whether it is possible to extend the closed form of
the Lagrangian 1-dimensional path integral with quadratic potential to general tb− ta > 0. In this
case, we would also immediately be able to extend the closed forms for the general n-dimensional
path integral with quadratic potential and anisotropic path integral, since these are defined in
terms of the 1-dimensional path integral with quadratic potential.

Another significant problem is the interpretation of the path integral with quadratic potential in
the Lagrangian case. For the Hamiltonian case, we have the Feynman-Kac formula which provides
a clear way to interpret the path integral, but there seems to be no proof of a similar result for
the Lagrangian formulation which we are interested in. Nonetheless, we expect that such a result
does hold. We sketched a possible proof in section 3.4. To complete it, one would have to prove
conjecture 3.1 and show that (3.60) satisfies (3.62) (in the sense of a distributional limit t ↓ ta).
These claims need not be true, but if they are, it would be valuable to work them out in full rigor,
since this would prove that we have an elegant formulation of the Lagrangian path integral with
quadratic potential as a Wiener integral. Alternatively, one could try to come up with an entirely
different proof. Although it would be a most unexpected result, a proof of the converse, namely
that the Lagrangian path integral with quadratic potential cannot be represented as a Wiener
integral, would also be a useful result. In any case, one may restrict attention to the Wiener
integral in (3.53), since this is the only Wiener integral which the path integral can possibly be
equal to by virtue of consistency with the Feynman-Kac formula.
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Aside from these significant problems, it would be worthwhile to look into the closed form of the
general n-dimensional path integral with quadratic potential and of the anisotropic path integral.
It is desirable to simplify these expressions, if possible. In particular, we would like to obtain
expressions in which the starting and end point are not included component-wise as in result 3.2
and 4.2, but rather as complete vectors through some sort of vector/matrix-vector multiplication
as in the closed forms the n-dimensional free path integral and the anisotropic free path integral,
i.e. result 3.3 and 4.1. It may be sensible to start with the relatively simple case where Ω is
positive-definite, viz. (3.43), so that all 1-dimensional path integrals in the product are of the
same form.
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Appendix A

Computation of the free path
integral

Consider the right hand side of equation (2.31),

1

2π

(
1

2πε

)N+1
2
∫
R

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

 N∑
j=0

yj+1 − (b− a)


 dydξ . (A.1)

Let us write

1

2π

(
1

2πε

)N+1
2
∫
R

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

 N∑
j=0

yj+1 − (b− a)


 dydξ

=
1

2π

(
1

2πε

)N+1
2
∫
R

exp
(
−iξ(b− a)

) ∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

N∑
j=0

yj+1

 dydξ ,

(A.2)

and focus on the innermost integral

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

N∑
j=0

yj+1

 dy . (A.3)

We may rewrite this as a product of 1-dimensional integrals and apply a change of variables to
obtain

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

N∑
j=0

yj+1

 dy =

N∏
j=0

∫
R

exp

(
−
y2
j+1

2ε
+ iξyj+1

)
dyj+1

=

∫
R

exp

(
−y

2

2ε
+ iξy

)
dy


N+1

=
√

2ε
N+1

∫
R

exp
(
−u2 +

√
2εiξu

)
du


N+1

.

(A.4)

We rewrite the exponent in the latter integral as

− u2 +
√

2εiξu = −

(
u−

√
ε

2
iξ

)2

− εξ2

2
, (A.5)
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so that

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

N∑
j=0

yj+1

 dy

=
√

2ε
N+1

exp

(
−ε(N + 1)ξ2

2

)∫
R

exp

−(u−√ε

2
iξ

)2
 du


N+1

.

(A.6)

We can now use a result from complex analysis which follows from the Cauchy integral theorem
(see [39] for details about this theorem).

Lemma A.1. ∫
R

exp
(
−(ω + iη)2

)
dω =

√
π

for all η ∈ R.

Proof. Without loss of generality, we assume that η > 0. Define for R ∈ R+ the parametrized
curves in the complex plane γ1,R, γ2,R, γ3,R and γ4,R by

γ1,R : [−R,R]→ C : t 7→ −t (A.7)

γ2,R : [0, η]→ C : t 7→ −R+ it (A.8)

γ3,R : [−R,R]→ C : t 7→ t+ iη (A.9)

γ4,R : [−η, 0]→ C : t 7→ R− it . (A.10)

(For η < 0, we would need slightly different curves.) Define γR := γ1,R∪γ2,R∪γ3,R∪γ4,R. Observe
that γR is for every R a Jordan curve. Moreover, f(z) := exp

(
−z2

)
is holomorphic, so that we

have ∫
γR

exp
(
−z2

)
dz = 0 (A.11)

by Cauchy’s theorem. This implies

∫
γ3,R

exp
(
−z2

)
dz = −

∫
γ1,R

exp
(
−z2

)
dz −

∫
γ2,R

exp
(
−z2

)
dz −

∫
γ4,R

exp
(
−z2

)
dz . (A.12)

Let us now study the separate integrals, in particular their behaviour as R → ∞. Note that in
the limit, the integral over γ3,R becomes the integral that we are interested in:

∫
γ3,R

exp
(
−z2

)
dz =

R∫
−R

exp
(
− (t+ iη)

2
)
dt =

R∫
−R

exp
(
− (ω + iη)

2
)
dω

R→∞−→
∫
R

exp
(
− (ω + iη)

2
)
dω .

(A.13)
The integral over γ1,R converges to a standard Gaussian integral:

∫
γ1,R

exp
(
−z2

)
dz = −

R∫
−R

exp
(
−t2

)
dt

R→∞−→ −
∫
R

exp
(
−t2

)
dt = −

√
π . (A.14)
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The integral over γ2,R vanishes in the limit, since

∫
γ2,R

exp
(
−z2

)
dz = i

η∫
0

exp
(
− (−R+ it)

2
)
dt (A.15)

and hence

∣∣∣∣∣∣∣
∫
γ2,R

exp
(
−z2

)
dz

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
η∫

0

exp
(
− (−R+ it)

2
)
dt

∣∣∣∣∣∣∣ ≤
η∫

0

∣∣∣∣exp
(
− (−R+ it)

2
)∣∣∣∣ dt

=

η∫
0

∣∣∣∣exp
(
−R2 + t2

)
exp (2Rti)

∣∣∣∣ dt =

η∫
0

exp
(
−R2 + t2

)
dt ≤

η∫
0

exp
(
−R2 + η2

)
dt

= η exp
(
−R2 + η2

)
R→∞−→ 0 .

(A.16)

Analogously, one can show that the integral over γ4,R vanishes in the limit. Finally, we may pass
to the limit R→∞ in (A.12) to obtain∫

R

exp
(
− (ω + iη)

2
)
dω =

√
π . (A.17)

Lemma A.1 together with (A.6) gives

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

N∑
j=0

yj+1

 dy =
√

2πε
N+1

exp

(
−ε(N + 1)ξ2

2

)
. (A.18)

Plugging in this result into (A.2), we find

1

2π

(
1

2πε

)N+1
2
∫
R

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

 N∑
j=0

yj+1 − (b− a)


 dydξ

=
1

2π

(
1

2πε

)N+1
2 √

2πε
N+1

∫
R

exp
(
−iξ(b− a)

)
exp

(
−ε(N + 1)ξ2

2

)
dξ

=
1

2π

∫
R

exp

(
−ε(N + 1)ξ2

2
− iξ(b− a)

)
dξ .

(A.19)

We rewrite the exponent of the latter integral as

− ε(N + 1)ξ2

2
− iξ(b− a) = −

√ε(N + 1)

2
ξ +

i(b− a)

2

√
2

ε(N + 1)

2

− (b− a)2

2ε(N + 1)
, (A.20)

which gives
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1

2π

∫
R

exp

(
−ε(N + 1)ξ2

2
− iξ(b− a)

)
dξ

=
1

2π
exp

(
− (b− a)2

2ε(N + 1)

)∫
R

exp

−
√ε(N + 1)

2
ξ +

i(b− a)

2

√
2

ε(N + 1)

2
 dξ .

(A.21)

After a change of variable, applying lemma (A.1) again and using that ε(N + 1) = tb − ta, we
obtain

1

2π

∫
R

exp

(
−ε(N + 1)ξ2

2
− iξ(b− a)

)
dξ

=
1

2π

√
2

ε(N + 1)
exp

(
− (b− a)2

2ε(N + 1)

)∫
R

exp

−
ξ +

i(b− a)

2

√
2

ε(N + 1)

2
 dξ

=
1

2π

√
2

ε(N + 1)
exp

(
− (b− a)2

2ε(N + 1)

)
√
π

=
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
.

(A.22)

Plugging this into (A.19) yields

1

2π

(
1

2πε

)N+1
2
∫
R

∫
RN+1

exp

− N∑
j=0

y2
j+1

2ε
+ iξ

 N∑
j=0

yj+1 − (b− a)


 dydξ

=
1√

2π(tb − ta)
exp

(
− (b− a)2

2(tb − ta)

)
.

(A.23)
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Appendix B

Computation of the action
integral for the classical path

In this appendix, we will compute

tb∫
ta

γ̇cl(t)
2 + ω2γcl(t)

2

2
dt , (B.1)

with

γcl(t) = A sinh(ωt+ φ) , (B.2)

where A, φ ∈ R are chosen such that γcl(ta) = a, γcl(tb) = b. Throughout our computations, we
shall implicitly make use of the following identities for the hyperbolic sine and cosine:

cosh2(x) + sinh2(x) = cosh(2x) ,

cosh2(x)− sinh2(x) = 1 ,

sinh(2x) = 2 sinh(x) cosh(x) ,

sinh(x± y) = sinh(x) cosh(y)± cosh(x) sinh(y) ,

cosh(x± y) = cosh(x) cosh(y)± sinh(x) sinh(y) ,

sinh(−x) = − sinh(x) .

(B.3)

Using the fact that

d

dx
sinh(x) = cosh(x) , (B.4)

it is straightforward to evaluate (B.1). We find

tb∫
ta

γ̇cl(t)
2 + ω2γcl(t)

2

2
dt =

tb∫
ta

(ωA cosh(ωt+ φ))2 + ω2(A sinh(ωt+ φ))2

2
dt

=
ω2A2

2

tb∫
ta

cosh2(ωt+ φ) + sinh2(ωt+ φ)dt =
ω2A2

2

tb∫
ta

cosh(2ωt+ 2φ)dt

=
ω2A2

2

[
1

2ω
sinh(2ωt+ 2φ)

]tb
ta

=
ωA2

4

[
sinh(2ωtb + 2φ)− sinh(2ωta + 2φ)

]
.

(B.5)

66



B. Computation of the action integral for the classical path

The difficulty is to write the result explicitly, that is, to write it solely in terms of ta, tb, a, b and
ω. To this end, we shall not derive closed expressions for A and φ, but rather derive expressions
for the terms A2 sinh(2ωtb + 2φ) and A2 sinh(2ωta + 2φ) at once, following the approach in [14].

Recall the boundary conditions:

a = γcl(ta) = A sinh(ωta + φ) = A
[
sinh(ωta) cosh(φ) + cosh(ωta) sinh(φ)

]
, (B.6)

b = γcl(tb) = A sinh(ωtb + φ) = A
[
sinh(ωtb) cosh(φ) + cosh(ωtb) sinh(φ)

]
. (B.7)

With these, we find

b cosh(ωta)− a cosh(ωtb) = A
[
sinh(ωtb) cosh(φ) cosh(ωta) + cosh(ωtb) sinh(φ) cosh(ωta)

− sinh(ωta) cosh(φ) cosh(ωtb)− cosh(ωta) sinh(φ) cosh(ωtb)
]

= A cosh(φ)
[
sinh(ωtb) cosh(ωta)− sinh(ωta) cosh(ωtb)

]
= A cosh(φ) sinh(ω(tb − ta))

(B.8)

⇐⇒ A cosh(φ) =
b cosh(ωta)− a cosh(ωtb)

sinh(ω(tb − ta))
(B.9)

and

b sinh(ωta)− a sinh(ωtb) = A
[
sinh(ωtb) cosh(φ) sinh(ωta) + cosh(ωtb) sinh(φ) sinh(ωta)

− sinh(ωta) cosh(φ) sinh(ωtb)− cosh(ωta) sinh(φ) sinh(ωtb)
]

= A sinh(φ)
[
cosh(ωtb) sinh(ωta)− cosh(ωta) sinh(ωtb)

]
= A sinh(φ) sinh(ω(ta − tb))

(B.10)

⇐⇒ A sinh(φ) =
b sinh(ωta)− a sinh(ωtb)

sinh(ω(ta − tb))
=
a sinh(ωtb)− b sinh(ωta)

sinh(ω(tb − ta))
. (B.11)

We can now compute the terms A2 sinh(2ωtb + 2φ) and A2 sinh(2ωta + 2φ) in closed form. For
the first term, we find

A2 sinh(2ωtb + 2φ)

= 2A2 sinh(ωtb + φ) cosh(ωtb + φ)
(B.7)
= 2Ab cosh(ωtb + φ)

= 2Ab
[
cosh(ωtb) cosh(φ) + sinh(ωtb) sinh(φ)

]
(B.9),(B.11)

= 2b cosh(ωtb) ·
b cosh(ωta)− a cosh(ωtb)

sinh(ω(tb − ta))

+ 2b sinh(ωtb) ·
a sinh(ωtb)− b sinh(ωta)

sinh(ω(tb − ta))

=
2b2
[
cosh(ωtb) cosh(ωta)− sinh(ωtb) sinh(ωta)

]
− 2ab

[
cosh2(ωtb)− sinh2(ωtb)

]
sinh(ω(tb − ta))

=
2b2 cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))
.

(B.12)

Likewise, we find for the second term

A2 sinh(2ωta + 2φ)

= 2A2 sinh(ωta + φ) cosh(ωta + φ)
(B.6)
= 2Aa cosh(ωta + φ)

= 2Aa
[
cosh(ωta) cosh(φ) + sinh(ωta) sinh(φ)

]
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(B.9),(B.11)
= 2a cosh(ωta) · b cosh(ωta)− a cosh(ωtb)

sinh(ω(tb − ta))

+ 2a sinh(ωta) · a sinh(ωtb)− b sinh(ωta)

sinh(ω(tb − ta))

=
−2a2

[
cosh(ωta) cosh(ωtb)− sinh(ωta) sinh(ωtb)

]
+ 2ab

[
cosh2(ωta)− sinh2(ωta)

]
sinh(ω(tb − ta))

=
−2a2 cosh(ω(tb − ta)) + 2ab

sinh(ω(tb − ta))
. (B.13)

Combining (B.12) and (B.13) with (B.5), we obtain

tb∫
ta

γ̇cl(t)
2 + ω2γcl(t)

2

2
dt =

ωA2

4

[
sinh(2ωtb + 2φ)− sinh(2ωta + 2φ)

]
=
ω

4

2b2 cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))

+
ω

4

2a2 cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))
=
ω

2

(a2 + b2) cosh(ω(tb − ta))− 2ab

sinh(ω(tb − ta))
.

(B.14)
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Appendix C

Computation of the limit (3.24)

In this appendix we will show that

lim
N→∞

detAN
N + 1

=
sinh(ω(tb − ta))

ω(tb − ta)
, (C.1)

where AN is given by (3.19). We will follow the proof sketched in [14]. Throughout all computa-
tions, we will implicitly use the identities (B.3). Define for c ∈ R the symmetric tridiagonal N×N
matrix MN (c) by

MN (c) :=



2c −1

−1 2c −1

. . .
. . .

. . .

−1 2c −1

−1 2c


. (C.2)

For this matrix, we have the following lemma.

Lemma C.1. Let c > 1 and u ∈ R such that c = cosh(u). Then

detMN (c) =
sinh((N + 1)u)

sinh(u)
.

Proof. We proceed by induction. Observe that

detM1(c) = 2c = 2 cosh(u) =
2 sinh(u) cosh(u)

sinh(u)
=

sinh(2u)

sinh(u)
,

detM2(c) = det

(
2c −1
−1 2c

)
= 4c2 − 1 = 4 cosh2(u)− 1 = 3− 4

(
1− cosh2(u)

)
= 3 + 4 sinh2(u) =

4 sinh3(u) + 3 sinh(u)

sinh(u)
.

Moreover, we have

sinh(3u) = sinh(2u) cosh(u) + cosh(2u) sinh(u) = 2 sinh(u) cosh2(u) +
(

2 cosh2(u)− 1
)

sinh(u)

= 4 sinh(u) cosh2(u)− sinh(u) = 4 sinh(u)
(

1 + sinh2(u)
)
− sinh(u) = 4 sinh3(u) + 3 sinh(u) ,
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hence

detM2(c) =
sinh(3u)

sinh(u)
.

Observe that we have the following recursive relation:

detMN+1(c) = 2cdetMN (c)− detMN−1(c) . (C.3)

This can be seen as follows. By expanding the determinant of MN+1(c) along the first row, we get

detMN+1(c) = 2cdetMN (c) + detB ,

where B is the N ×N matrix which has (−1, 0, . . . , 0)T as its first column, and as its other N − 1
columns the rightmost N − 1 columns of MN+1 starting from the second row. Expanding the
determinant of B along its first column, we then get

detB = −detC ,

where C is the lower rightmost (N −1)× (N −1) block of B. But then, by our characterization of
the N − 1 rightmost columns of B, the columns of C are precisely the rightmost N − 1 columns of
MN+1 starting from its third row. This implies that C is the lower rightmost (N − 1)× (N − 1)
block of MN+1, hence C = MN−1(c), which gives the recursive relation.

Using the above observations, we shall give the induction proof. Clearly, the statement holds for
n = 1 and n = 2. Assume now that the statement holds up to some k ≥ 2, which is to say that it
holds for n = 1, 2, . . . , k. We can then use the recursion to obtain

detMk+1(c) = 2cdetMk(c)− detMk−1(c) = 2c · sinh((k + 1)u)

sinh(u)
− sinh(ku)

sinh(u)

=
2 cosh(u) sinh((k + 1)u)− sinh(ku)

sinh(u)
.

We have

sinh((k + 2)u) = sinh((k + 1)u) cosh(u) + cosh((k + 1)u) sinh(u) ,

sinh(ku) = sinh((k + 1)u) cosh(u)− cosh((k + 1)u) sinh(u) .

Summing the left- and right-hand sides gives

sinh((k + 2)u) + sinh(ku) = 2 sinh((k + 1)u) cosh(u)

⇐⇒ 2 sinh((k + 1)u) cosh(u)− sinh(ku) = sinh((k + 2)u) .

Consequently,

detMk+1(c) =
sinh((k + 2)u)

sinh(u)
,

which completes the induction step.

Using this lemma, the computation of the limit for the determinant of AN is straightforward.
Noting that we have AN = MN (1 + ε2ω2/2), we get

detAN
N + 1

=
sinh((N + 1)u)

(N + 1) sinh(u)
(C.4)
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C. Computation of the limit (3.24)

with cosh(u) = 1 + ε2ω2/2, according to the lemma. We have, using ε = (tb − ta)/(N + 1), that

sinh2(u) = cosh2(u)− 1 =

(
1 +

ε2ω2

2

)2

− 1 = ε2ω2 +
ε4ω4

4

=⇒ (N + 1)2 sinh2(u) = (tb − ta)2ω2 + ε2 · (tb − ta)2ω4

4

(N→∞)−→ (tb − ta)2ω2

=⇒ (N + 1) sinh(u)
(N→∞)−→ ω(tb − ta) .

(C.5)

Observe that u = arcosh
(

1 + ε2ω2

2

)
> 0, and moreover

u = arcosh

(
1 +

ε2ω2

2

)
(N→∞)−→ arcosh(1) = 0 =⇒ sinh(u)

u

(N→∞)−→ 1 (C.6)

because of the standard limit limx→0 sinh(x)/x = 1. In particular,

sinh(u)

u
> 0 (N ≥ N∗) (C.7)

for some N∗ ∈ N+. Since u > 0, this implies sinh(u) > 0 for N ≥ N∗. We can therefore write

(N + 1)u = (N + 1) sinh(u) · u

sinh(u)
(N ≥ N∗) , (C.8)

and consequently, together with (C.5) and (C.6),

(N + 1)u
(N→∞)−→ ω(tb − ta) . (C.9)

Combining (C.5) and (C.9) with (C.4), we conclude

detAN
N + 1

=
sinh((N + 1)u)

(N + 1) sinh(u)

(N→∞)−→ sinh(ω(tb − ta))

ω(tb − ta)
. (C.10)
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Appendix D

Verification of the PDE (3.61)

Recall result 3.1:

Kω(a, b; ta, tb) =

√
ω

2π sin(ω(tb − ta))
exp

(
−ω

2

(a2 + b2) cos(ω(tb − ta))− 2ab

sin(ω(tb − ta))

)
(D.1)

for ω(tb − ta) ∈ (0, π). We will now show that Kω satisfies the PDE (3.59), that is,

∂Kω(a, q; ta, t)

∂t
=

1

2

∂2Kω(a, q; ta, t)

∂q2
+
ω2q2

2
Kω(a, q; ta, t) (D.2)

for ω(t− ta) ∈ (0, π). We start by computing the time derivative. We have

∂

∂t

√
ω

2π sin(ω(t− ta))
=

1

2

√
2π sin(ω(t− ta))

ω
· ∂
∂t

ω

2π sin(ω(t− ta))

= −ω
2

2

√
2π sin(ω(t− ta))

ω

cos(ω(t− ta))

2π sin2(ω(t− ta))
,

(D.3)

and

∂

∂t
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

= exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
· ∂
∂t

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

= −ω
2

sin(ω(t− ta)) · −ω(a2 + q2) sin(ω(t− ta))−
[
(a2 + q2) cos(ω(t− ta))− 2aq

]
· ω cos(ω(t− ta))

sin2(ω(t− ta))

· exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=
ω2(a2 + q2) sin2(ω(t− ta)) + ω2(a2 + q2) cos2(ω(t− ta))− 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))

· exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=
ω2(a2 + q2)− 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
.

(D.4)
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Hence,

∂Kω(a, q; ta, t)

∂t
=

∂

∂t

√
ω

2π sin(ω(t− ta))
· exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

+

√
ω

2π sin(ω(t− ta))
· ∂
∂t

exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

= −ω
2

2

√
2π sin(ω(t− ta))

ω

cos(ω(t− ta))

2π sin2(ω(t− ta))
· exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

+

√
ω

2π sin(ω(t− ta))
· ω

2(a2 + q2)− 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=

[
− ω2 cos(ω(t− ta))

4π sin2(ω(t− ta))

√
2π sin(ω(t− ta))

ω
+
ω2(a2 + q2)− 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))

·
√

ω

2π sin(ω(t− ta))

]
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
.

(D.5)

Next, we compute the second spatial derivative. We have

∂Kω(a, q; ta, t)

∂q
=

√
ω

2π sin(ω(t− ta))
· ∂
∂q

exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=

√
ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

· ∂
∂q

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

= −ω
2

√
ω

2π sin(ω(t− ta))
· 2q cos(ω(t− ta))− 2a

sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
,

(D.6)

and thus

∂2Kω(a, q; ta, t)

∂q2
= −ω

2

√
ω

2π sin(ω(t− ta))

exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

· ∂
∂q

2q cos(ω(t− ta))− 2a

sin(ω(t− ta))
+

2q cos(ω(t− ta))− 2a

sin(ω(t− ta))
· ∂
∂q

exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
= −ω

2

2 cos(ω(t− ta))

sin(ω(t− ta))
+

2q cos(ω(t− ta))− 2a

sin(ω(t− ta))
· ∂
∂q

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
·
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
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= −ω
2

[
2 cos(ω(t− ta))

sin(ω(t− ta))
− 2q cos(ω(t− ta))− 2a

sin(ω(t− ta))
· qω cos(ω(t− ta))− aω

sin(ω(t− ta))

]
·
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=

[
−ω cos(ω(t− ta))

sin(ω(t− ta))
+
q2ω2 cos2(ω(t− ta)) + a2ω2 − 2aqω2 cos(ω(t− ta))

sin2(ω(t− ta))

]

·
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
. (D.7)

Combining (D.5) and (D.7), we find

1

2

∂2Kω(a, q; ta, t)

∂q2
+
ω2q2

2
Kω(a, q; ta, t)

=

[
−ω cos(ω(t− ta))

2 sin(ω(t− ta))
+
q2ω2 cos2(ω(t− ta)) + a2ω2 − 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))
+
ω2q2

2

]

·
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=

[
−ω cos(ω(t− ta))

2 sin(ω(t− ta))
+
q2ω2 cos2(ω(t− ta)) + q2ω2 sin2(ω(t− ta)) + a2ω2 − 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))

]

·
√

ω

2π sin(ω(t− ta))
exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=

[
−ω cos(ω(t− ta))

2 sin(ω(t− ta))

√
ω

2π sin(ω(t− ta))
+
ω2(a2 + q2)− 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))

√
ω

2π sin(ω(t− ta))

]

· exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=

−ω cos(ω(t− ta))

2 sin(ω(t− ta))

√
ω2

4π2 sin2(ω(t− ta))

√
2π sin(ω(t− ta))

ω
+
ω2(a2 + q2)− 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))

·
√

ω

2π sin(ω(t− ta))

]
· exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)

=

[
− ω2 cos(ω(t− ta))

4π sin2(ω(t− ta))

√
2π sin(ω(t− ta))

ω
+
ω2(a2 + q2)− 2aqω2 cos(ω(t− ta))

2 sin2(ω(t− ta))

·
√

ω

2π sin(ω(t− ta))

]
· exp

(
−ω

2

(a2 + q2) cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
=
∂Kω(a, q; ta, t)

∂t
.

(D.8)
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Appendix E

Computation of the integral limit
(3.71)

Recall result 3.1:

Kω(a, b; ta, tb) =

√
ω

2π sin(ω(tb − ta))
exp

(
−ω

2

(a2 + b2) cos(ω(tb − ta))− 2ab

sin(ω(tb − ta))

)
(E.1)

for ω(tb − ta) ∈ (0, π). We shall first compute a closed form of the integral

∫
R

Kω(a, q; ta, t)dq

=

√
ω

2π sin(ω(t− ta))
exp

(
−ω

2

a2 cos(ω(t− ta))

sin(ω(t− ta))

)∫
R

exp

(
−ω

2

q2 cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
dq .

(E.2)

For convenience, we assume that t− ta is sufficiently small to ensure that cos(ω(t− ta)) > 0 (this
is fine since we shall take the limit t ↓ ta in the end anyways). The first step is to rewrite the
numerator of the exponent in the integrand. We have

q2 cos(ω(t− ta))− 2aq =

(√
cos(ω(t− ta))q − a√

cos(ω(t− ta))

)2

− a2

cos(ω(t− ta))
, (E.3)

hence

∫
R

exp

(
−ω

2

q2 cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
dq

=

∫
R

exp

−ω2
(√

cos(ω(t− ta))q − a√
cos(ω(t−ta))

)2

− a2

cos(ω(t−ta))

sin(ω(t− ta))

 dq
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= exp

(
ωa2

2 sin(ω(t− ta)) cos(ω(t− ta))

)
∫
R

exp

−
√ ω

2 sin(ω(t− ta))

(√
cos(ω(t− ta))q − a√

cos(ω(t− ta))

)2
 dq

= exp

(
ωa2

2 sin(ω(t− ta)) cos(ω(t− ta))

)
∫
R

exp

−
√ω cos(ω(t− ta))

2 sin(ω(t− ta))
q − a

√
ω

2 sin(ω(t− ta)) cos(ω(t− ta))

2
 dq . (E.4)

A change of variable

u =

√
ω cos(ω(t− ta))

2 sin(ω(t− ta))
q (E.5)

gives

∫
R

exp

−
√ω cos(ω(t− ta))

2 sin(ω(t− ta))
q − a

√
ω

2 sin(ω(t− ta)) cos(ω(t− ta))

2
 dq

=

√
2 sin(ω(t− ta))

ω cos(ω(t− ta))

∫
R

exp

−[u− a√ ω

2 sin(ω(t− ta)) cos(ω(t− ta))

]2
 du

(2.10)
=

√
2 sin(ω(t− ta))

ω cos(ω(t− ta))

√
π =

√
2π sin(ω(t− ta))

ω cos(ω(t− ta))
.

(E.6)

Plugging this into (E.4) gives

∫
R

exp

(
−ω

2

q2 cos(ω(t− ta))− 2aq

sin(ω(t− ta))

)
dq =

√
2π sin(ω(t− ta))

ω cos(ω(t− ta))
exp

(
ωa2

2 sin(ω(t− ta)) cos(ω(t− ta))

)
,

(E.7)
which together with (E.2) gives

∫
R

Kω(a, q; ta, t)dq

=

√
ω

2π sin(ω(t− ta))
exp

(
−ω

2

a2 cos(ω(t− ta))

sin(ω(t− ta))

)√
2π sin(ω(t− ta))

ω cos(ω(t− ta))

exp

(
ωa2

2 sin(ω(t− ta)) cos(ω(t− ta))

)
=

1√
cos(ω(t− ta))

exp

(
ω

2

a2
[
1− cos2(ω(t− ta))

]
sin(ω(t− ta)) cos(ω(t− ta))

)

=
1√

cos(ω(t− ta))
exp

(
ω

2

a2 sin2(ω(t− ta))

sin(ω(t− ta)) cos(ω(t− ta))

)

=
1√

cos(ω(t− ta))
exp

(
ω

2

a2 sin(ω(t− ta))

cos(ω(t− ta))

)
.

(E.8)
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Finally, taking the limit yields

lim
t↓ta

∫
R

Kω(a, q; ta, t)dq = lim
t↓ta

1√
cos(ω(t− ta))

exp

(
ω

2

a2 sin(ω(t− ta))

cos(ω(t− ta))

)
= 1 . (E.9)
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