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Abstract

In the online dial-a-ride problem, requests for rides arrive over time. Each request has a release
time and specifies two points in a metric space representing the pick-up and drop-off locations for
the ride. These requests are handled by a server with a certain capacity indicating the number of
requests it can handle simultaneously. At time 0, the server is at a distinguished point in the metric
space called the origin, and it needs to return there after having served all requests. The goal is
to find a so-called online algorithm for controlling the server which performs well according to a
specified objective.

We consider special cases of the problem where the metric space is the real line, the server has unit
or infinite capacity, and all pick-up locations or all drop-off locations are the origin. Our interest
lies in the performance of two simple algorithms: HOMESICK and ALTERNATE. HOMESICK is analyzed
for the unit capacity problem settings and ALTERNATE for the infinite capacity settings. HOMESICK

serves requests one-by-one in the order that they arrive and never lets the server stay idle when
there are unserved requests. The ALTERNATE algorithm behaves similarly as HOMESICK, but makes
use of the server’s infinite capacity to serve all requests on the same side of the line at once,
moving to the side that contains the earliest released request. For both algorithms, we conduct a
competitive analysis with the objectives of minimizing the make-span and minimizing the maximum
flow time. This yields four unit capacity settings and four infinite capacity settings for which the
HOMESICK and ALTERNATE algorithms are analyzed respectively. The HOMESICK algorithm performs
well, for three out of the four unit capacity settings, the HOMESICK algorithm has the best possible
competitive ratio. For all the infinite capacity settings, there are gaps between the best lower bound
we constructed and the ALTERNATE algorithm. Nevertheless, ALTERNATE is a simple algorithm and
provides a basis for research into the performance of more complex algorithms.

Aside from competitive analysis, we also briefly consider the problem of minimizing the make-span
when all requests are known in advance, and we investigate the expected flow time of the two
algorithms by making assumptions on the probability distribution of the input.
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Chapter 1

Introduction

Dial-a-ride transit, also called demand-responsive transport, is a type of transportation service
where people can request a ride without planning it in advance. A bus or taxi drives around in an
area without a fixed schedule or route, and its task is to pick up people that requested a ride and
drive them to their destinations. This service is used in places where traditional public transport is
not financially feasible, or for providing transport to passengers with special needs. Because of the
flexible and on-demand nature of this service, the question arises: how to determine an effective
route that is efficient for both the driver of the vehicle and the passengers?

The dial-a-ride transportation service inspired two mathematical problems: the dial-a-ride problem
(DARP) and the online dial-a-ride problem (OLDARP). The DARP assumes that all requests are
known beforehand, and is about finding ways to efficiently calculate an optimal route or approximate
one well. The OLDARP, on the other hand, more closely resembles the real-world dial-a-ride service;
requests are not known in advance, but become known over time. In the OLDARP, there is a server
that needs to carry out a sequence of requests; each request becomes known to the server at its
release time and specifies a pick-up and a drop-off location. The server has the task to pick up∗

each request at its pick-up location and drop it off∗ at its drop-off location; the number of requests
the server can carry simultaneously is constrained by the server’s capacity. After serving all requests,
the server is required to return to the place from which it started, which is called the origin.

Besides considering the problem in a 2-dimensional plane that models the dial-a-ride transportation
service, other spaces like the line have been considered as well. The motivation for analyzing the
problem on a line is that it models elevators. The elevator takes the role of the server, and people
wanting to make use of the elevator arrive unannounced. The users of the elevator want to be
picked up at their current floor and dropped off at their destination floor.

In this report, we will consider special cases of the OLDARP on the line. Namely, the cases where
either the pick-up locations of all requests are the origin, or the drop-off locations of all requests
are the origin. Furthermore, we consider two extremes regarding the capacity of the server: either
the server can only carry one request, or it can carry infinitely many. To view these problems as a
real-life situation, one can think of an elevator system at a company and consider the start and
end of the workday. At the start of the workday, employees will all want to be picked up at the
ground floor (the origin). Similarly, at the end of the workday, the destination of all employees will
be the ground floor. One can also think of a waiter at a one-dimensional restaurant, as shown in
Figure 1.1.

∗ We say a request is picked up or dropped off to mean that the corresponding object or person is picked up or
dropped off.
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Figure 1.1: Waiter at the restaurant

In this restaurant, the kitchen is at the origin and tables stand on both sides of it. Customers at
these tables have requests for the waiter. For example, we can think of a waiter whose sole task is
to bring meals from the kitchen to the tables (Figure 1.2a), or one who takes orders at the tables
and notifies the cook in the kitchen (Figure 1.2d).

(a) Serving meals (all pick-up locations
are the origin, unit capacity)

(b) Collecting dirty plates (all drop-off
locations are the origin, unit capacity)

...

(c) Serving drinks (all pick-up locations
are the origin, infinite capacity)

...

(d) Taking orders (all drop-off locations
are the origin, infinite capacity)

Figure 1.2: Different problem settings

For these different problem settings, we consider simple algorithms for controlling the server and
investigate their performance. Such a performance analysis requires a measure of performance: an
objective. The focus in this report lies on the following two objectives:

– Minimizing the make-span. This objective minimizes the completion time of the server: the
time it has served all requests and is back at the origin.

– Minimizing the maximum flow time. This objective minimizes the longest time a request
needs to wait from the time it is released until it has been dropped off at its destination.

The intuition behind minimizing the make-span is that a server would like to be finished with all
requests as soon as possible. On the other hand, minimizing the maximum flow time is desirable
from the perspective of the people submitting a request. In the example of a waiter at a restaurant,
people want their orders to arrive at the kitchen as soon as possible, and want minimal time between
their meal being ready and them receiving it at their table.

In the subsequent sections, we will give the method used in this report for analyzing algorithms, a
literature overview, and lastly an outline of the report.
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1.1. METHOD

1.1 Method

In this section, we introduce the method used in the main part of the report: competitive analysis.
In competitive analysis, the quality of an algorithm is assessed by comparing the objective value of
its solutions with the optimal objective value that can be computed with full knowledge of the input.
We use the following concepts and conventions from [4] and [7] regarding competitive analysis of
minimization problems:

– We call an algorithm online if it only becomes aware of a request at its release time. Similarly,
we say an algorithm is offline if it is aware of all requests at any time.

– We say an algorithm is randomized if randomness may be used to determine the course of
action. Similarly, an online algorithm is deterministic if no randomness is involved.

– Let ALG be a deterministic algorithm and σ a sequence of requests, then ALG(σ) denotes
the objective value that the server moved by ALG achieves for input σ. Since we consider
multiple objectives in this report, subscripts will be used to clarify which objective is meant.

– We call a deterministic algorithm ALG1 optimal if for all request sequences σ we have
ALG1(σ) ≤ ALG2(σ) for any algorithm ALG2.

– We use OPT to denote an arbitrary optimal algorithm. Note that the optimal algorithm can
change depending on the constraints and objective function that is considered.

– A deterministic online algorithm is (strictly) ρ-competitive if for all sequences of requests σ
we have that ALG(σ) ≤ ρ ·OPT(σ). Note that here ρ ≥ 1 since by definition no algorithm
can perform better than the optimal algorithm.

– The competitive ratio of a deterministic online algorithm ALG is the infimum over all ρ for
which ALG is ρ-competitive.

This last piece of terminology, the competitive ratio, is the quality measure of an online algorithm in
competitive analysis. The competitive ratio of an online algorithm gives a performance guarantee:
no matter the input, the objective value of a solution constructed by the algorithm is never larger
than the competitive ratio multiplied by the optimal objective value. Furthermore, the competitive
ratio is the smallest value for which this property holds.

When doing a competitive analysis, one is often interested in finding the lowest possible competitive
ratio and the corresponding algorithm that achieves it. For this, we define the best possible
competitive ratio as the infimum over all competitive ratios of deterministic online algorithms
(we do not consider randomized algorithms). Finding such a best possible competitive ratio is
approached from two sides by constructing lower bounds and upper bounds.

A lower bound is proven by providing a set of instances on which no algorithm can perform well. If
there is a lower bound of L, then that means that for any deterministic online algorithm ALG there
exists an input σ for which ALG(σ) ≥ L ·OPT(σ). This sequence of requests σ can be different
for each algorithm. Constructing such a lower bound can be seen as a game between the online
algorithm and a malicious adversary. This adversary knows the workings of the online algorithm,
and will construct an input for which the online algorithm performs badly, but the optimal algorithm
performs well.

For an upper bound U on the best possible competitive ratio, one needs to find an algorithm and
prove that it is U-competitive. Such a U is an upper bound because it shows a competitive ratio of
U is achievable, therefore the best possible competitive ratio is then at most U.
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1.2. RELATED WORK

1.2 Related work

In this section, we give an overview of research that has been done on problems related to the
ones investigated in this report. As far as I am aware, no literature has been published on the
exact problem variants of the OLDARP that are considered in this report. However, the OLDARP

on the line with no constraints on the pick-up and drop-off locations is well-studied. Furthermore,
the infinite capacity problems in this report are similar to the broadcast scheduling problem and
the online travelling salesman problem (OLTSP), which we briefly discuss. The OLTSP is a special
case of the OLDARP, just like the problem variants we consider in this report are special cases
of the OLDARP. Note that lower bounds on the competitive ratio of any deterministic algorithm
for a special case of the OLDARP also hold for the general OLDARP. Similarly, if an algorithm is
ρ-competitive for the OLDARP then it is also ρ-competitive for special cases of the OLDARP, though
it may have a lower competitive ratio.

The OLTSP on the line

In the OLTSP on the line, requests are released over time that specify points on the line that need to
be visited by the server. This problem arises out of the OLDARP if the pick-up locations and drop-off
locations of each request coincide. The OLTSP was first introduced in [3] by G. Ausiello et al. For
the real line, the authors presented a lower bound of approximately 1.6404 on the competitive ratio
of any deterministic algorithm, and introduced an algorithm that has a competitive ratio of 1.75. In
[6], A. Bjelde et al. provided an algorithm with a competitive ratio of 1.6404, matching the lower
bound and thereby settling the problem in the sense of traditional competitive analysis.

For the objective of minimizing the maximum flow time, Krumke et al. [17] showed that there is no
randomized, and therefore also no deterministic, algorithm that can achieve a constant competitive
ratio for the OLTSP on the real line. This result holds even in a “fair” setting where the optimal
server may not move outside the convex hull of the released requests. The authors also study a
“non-abusive” setting where the adversary is not allowed to move to the left or right if there are no
unserved requests at that side. For this “non-abusive” setting, they introduce the algorithm DTO
(detour) that obtains a competitive ratio of 8. The restriction does not make the problem trivial, a
lower bound of 2 was given on the competitive ratio any deterministic algorithm can achieve.

The OLTSP has also been investigated for the objective of minimizing the weighted sum of
completion times (see [16] and [13]). The problem for this objective, which is also referred to as
minimizing latency, is often called the online travelling repairman problem.

The relevant results of the OLTSP from the literature are summarized in Table 1.1.

Objective Lower bound Upper bound

Minimize make-span 1.6404
[3]

1.6404
‘Algorithm 1’, [6]

Minimize maximum flow ∞
[17] —

Table 1.1: Lower and upper bounds for the best possible competitive ratio of a deterministic algorithm
for the closed OLTSP on the real line for different objectives. For every bound a reference is given,
and for upper bounds the name of the algorithm that achieved the bound is given. An upper bound ρ
is written in boldface when the given algorithm is not only ρ-competitive, but also has a competitive
ratio of ρ on the real line.
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1.2. RELATED WORK

The OLDARP on the line

To my knowledge, the algorithms we consider in this report have not been analyzed for the OLDARP.
For different objective and capacities, we list the best lower bounds and the algorithms that achieve
the best known competitive ratio.

For the OLDARP on the line, most research has been done regarding the objective of minimizing
the make-span. For finite capacity, N. Ascheuer et al. [2] introduced the algorithm SMARTSTART.
This result holds even for a generalization of the OLDARP with k servers with arbitrary finite
capacities and on arbitrary metric spaces. Essentially, the SMARTSTART algorithm functions by
computing optimal offline solutions for unserved requests. When the server is executing such a
computed schedule, it ignores all incoming requests until it has finished its schedule. Furthermore,
SMARTSTART lets the server be idle for some time when the computed schedule ‘takes too long
to serve’. In the same paper that SMARTSTART was introduced, the authors proved that it is
2-competitive. A. Birx and Y. Disser [5] gave a matching instance to prove that SMARTSTART has
a competitive ratio of 2.

The best known lower bound, 1.7636, for the case where the server has finite capacity was proven
in the thesis by A. Birx [4]. For infinite capacity, the best known lower bound follows from the
lower bound from the OLTSP, namely 1.6404. The algorithm TIR (Temporarily Ignore Requests),
introduced by E. Feuerstein and L. Stougie in [12], has the best known competitive ratio of 2 for
infinite capacity on general metric spaces and on the real line. The TIR algorithms works as follows.
When the TIR server is at the origin and there are unserved requests, the TIR algorithm computes
an optimal offline route for serving all unserved requests. When following such a route, the TIR
algorithm temporarily ignores requests if their pick-up and drop-off location are closer to the origin
than the current position of the server. If either the pick-up or drop-off location are further from
the origin than the server, then the algorithm orders the server to return to the origin and compute
a new optimal offline route.

As the OLTSP is a special case of the OLDARP, also for the OLDARP no algorithms can exist with a
constant competitive ratio for minimizing the maximum flow. As for the OLTSP, research has also
been done regarding the latency objective for the OLDARP on the line [12] [16].

Table 1.2 summarizes the relevant results from the literature regarding the OLDARP on the line.

Objective Constraint Lower bound Upper bound

Minimize make-span
c <∞ 1.7636

[4]
2

SMARTSTART, [2]

c =∞ 1.6404
[3]

2
TIR, [12]

Minimize maximum flow ∞
[17] —

Table 1.2: Lower and upper bounds for the best possible competitive ratio of a deterministic algorithm
for the closed non-preemptive OLDARP on the real line for different objectives. For every bound a
reference is given, and for upper bounds the name of the algorithm that achieved the bound is given.
An upper bound ρ is written in boldface when the given algorithm is not only ρ-competitive, but also
has a competitive ratio of ρ on the real line.
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1.3. REPORT OUTLINE

Broadcast scheduling

In broadcast scheduling there is a fixed number of different pages present at a server. Requests
for pages arrive over time, and it is the job of the server to broadcast pages in order to complete
the requests. When a server broadcasts a page, all requests for that page are satisfied. The main
values of interest are the response times, i.e. the difference between the release time of a request
and the time the corresponding page has been broadcast. The average response time objective has
been investigated in [11] for the case where all pages have the same size. In [8], the maximum
response time was investigated for unit sized pages. The authors give a proof that serving pages in
a first-in-first-out order is 2-competitive. C. Chekuri et al. showed in [9] that the result holds even
when page sizes are different.

Minimizing maximum response time in the broadcast problem has clear similarities to minimizing
maximum flow time for the infinite capacity settings we consider in this report. Consider, for
example, the case where all pick-up locations are the origin. One can view the negative part and
positive part of the line as two different pages. When the server moves to serve requests on the
positive part of the line, then it resembles the broadcasting of the respective page. The difference
is that in the OLDARP, requests on the same part of the line can have different drop-off locations,
while broadcasting a page takes a fixed amount of time. Furthermore, in the OLDARP the server
needs to return to the origin after dropping off requests.

1.3 Report outline

The remaining part of the report is organized as follows.

In Chapter 2, we will give a more mathematical problem description and introduce the two main
algorithms analysed in this report: HOMESICK and ALTERNATE. HOMESICK is analyzed for the unit
capacity problem settings and ALTERNATE for the infinite capacity settings. HOMESICK serves
requests one-by-one in the order that they arrive and never lets the server stay idle when there are
unserved requests. The ALTERNATE algorithm behaves similarly as HOMESICK, but makes use of the
server’s infinite capacity to serve all requests on the same side of the line at once, moving to the
side that contains the earliest released request.

In Chapter 3 we will use competitive analysis to analyze the HOMESICK and ALTERNATE algorithms.
These algorithms are analyzed for different objectives, minimizing make-span and minimizing
maximum flow, and for different settings, all pick-up locations are the origin or all drop-off locations
are the origin. Furthermore, we investigate the offline problems for the objective of minimizing
make-span. Algorithms are given that compute solutions with the optimal objective value.

In Chapter 4 the HOMESICK and ALTERNATE algorithms will be analyzed from a stochastic point of
view. Assumptions will be made on the probability distribution of the inputs. In this way, the steady
state behaviour of the HOMESICK and ALTERNATE algorithms can be investigated, and performance
measures like expected flow time can be calculated.

Lastly, in Chapter 5 the report is concluded by discussing the results and providing directions for
further research.
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Chapter 2

Problem Description

In this chapter, we elaborate on the problem that is investigated in this report. In Section 2.1
we provide the formal problem definition of the OLDARP and give the variants that we explore in
this report. Section 2.2 introduces the two algorithms that have our main interest: HOMESICK and
ALTERNATE.

2.1 Formal problem definition

In the OLDARP, a server has to serve a sequence of requests σ = (r1, . . . , rn) on a metric space
(X, d). Each request is a triple ri = (ti , ai , bi), where ti ∈ R≥0 is the time request ri is released
(becomes known to the server), and ai ∈ X and bi ∈ X are the pick-up and drop-off locations
respectively. The server travels with unit speed, meaning it can cover one distance unit in one
time unit, and starts at some unique position called the origin o ∈ X. The task of the server is to
pick up each request at the pick-up location after its release time, and drop off the request at its
drop-off location. The server can only serve a certain number of requests at the same time, which
is determined by its capacity c ∈ N ∪ {∞}. We are interested in finding algorithms for controlling
the server that perform well according to a certain objective.

When a server has picked up a request, it is not allowed to drop it before it has reached the
corresponding drop-off location. This restriction is called non-preemptive in the literature; we do
not consider the preemptive variant here. Furthermore, we require the server to return to the origin
after serving all requests. In the literature this is referred to as the closed OLDARP problem, as
opposed to the open problem where this restriction is not present.

There is a light restriction on the metric spaces that are allowed, namely that for all pairs (x, y) of
points in X, the shortest path from x to y is continuous, formed by points in X and has length
d(x, y). This restriction is adapted from a paper by Ausiello et al. [3]. A metric space corresponding
to an undirected edge-weighted graph, where the set of points X are the vertices of the graph
and the distance between two vertices is their weight, is an example of a metric space that does
not satisfy the property. This is because there is no continuous path between some vertices x and
y that are connected by an edge. A server moving on the graph would then either be at vertex
x or vertex y , but it could not be at any point in between. Of course, one could consider the
metric space induced by such an undirected edge-weighted graph, such that there does exist a
continuous path between the vertices such that all the points lie in the metric space. When we
speak of arbitrary or general metric spaces, a metric space with continuous paths between all pairs
of points x, y ∈ X with length d(x, y) is meant.

In this report, we consider the real line with Euclidean distance; so X = R and d(x, y) = |x − y |.

Page 9 of 62



2.1. FORMAL PROBLEM DEFINITION

We define the origin as o := 0, and we sometimes refer to the negative and positive parts of the
line as the left and right side respectively. We will consider the problems where the server has unit
capacity (UC) or infinite capacity (IC), and where all pick-up locations are the origin (PO), or all
drop-off locations are the origin (DO). The main objectives we consider are minimizing make-span
(MS) and minimizing maximum flow (MF). This yields eight different problem settings, which we
refer to with the acronyms given in Table 2.1. The reason we do not consider any finite capacity
greater than one, is because my supervisor, Kelin Luo, has unpublished negative results for this case.
These results show that for any finite capacity greater than one, there can be no algorithm with a
constant competitive ratio for the objective of minimizing maximum flow when all pick-up locations
are the origin. It is likely that the result also holds for the case where all drop-off locations are the
origin.

Acronym Constraint

UCPO-MS c = 1, ∀i : ai = o

UCDO-MS c = 1, ∀i : bi = o

ICPO-MS c =∞, ∀i : ai = o

ICDO-MS c =∞, ∀i : bi = o

(a) Objective: minimizing make-span

Acronym Constraint

UCPO-MF c = 1, ∀i : ai = o

UCDO-MF c = 1, ∀i : bi = o

ICPO-MF c =∞, ∀i : ai = o

ICDO-MF c =∞, ∀i : bi = o

(b) Objective: minimizing maximum flow

Table 2.1: Acronyms of the problem settings

In the OLDARP, the algorithm controlling the server has to make decisions based on input which is
given item by item. Such problems are called online problems, opposed to offline problems where
the algorithm has full knowledge of the input. The offline variant of the OLDARP is called the
dial-a-ride problem, or DARP. The online and offline terminology is also used for algorithms; online
and offline algorithms are algorithms for the online and offline problem respectively. In this report,
we will briefly consider the DARP, but we will mainly focus on the OLDARP. In the next section, we
introduce the two online algorithms that form the main topic of this report.

Page 10 of 62



2.2. ALGORITHMS

2.2 Algorithms

For both the unit capacity and infinite capacity settings, we analyze a simple algorithm. For the
unit capacity case, we analyze a first-in first-out (FIFO) algorithm which we denote with HOMESICK

(Algorithm 1). Essentially, HOMESICK serves requests as soon as they become known in the order
they were released, and makes the server return to the origin immediately after each request.

Algorithm 1: HOMESICK

Input : server that starts at o; requests arrive over time
Q← empty FIFO queue

repeat
if a new request ri becomes known then

add ri to Q

if server is at the origin and Q is not empty then
ri ← pop request from Q

order the server to serve request ri and return to the origin via the shortest route

For infinite capacity we introduce the algorithm ALTERNATE, described in Algorithm 2. The algorithm
exploits the server’s infinite capacity to serve all unserved requests on the same side of the line at
once, moving to the side that contains the earliest released request.

The algorithm functions by keeping track of the released but yet unserved requests. These are
separated into the multisets R− and R+; multisets are used instead of sets because two requests
may have exactly the same release time, pick-up location and drop-off location. Multiset R−

keeps track of the requests with negative pick-up or drop-off location depending on the problem
we consider. Similarly, multiset R+ contains the requests with non-negative pick-up or drop-off
location.

Algorithm 2: ALTERNATE

Input : server that starts at o; requests arrive over time
R− ← empty multiset
R+ ← empty multiset

repeat
if a new request ri becomes known then

if ai + bi < 0 then
add ri to R−

else
add ri to R+

if server is at the origin and R− ∪ R+ is not empty then
rf ← a request with minimum release time from R− ∪ R+ (break ties arbitrarily)
if rf ∈ R− then

order the server to serve requests R− and return to the origin via the shortest route
R− ← empty multiset

else
order the server to serve requests R+ and return to the origin via the shortest route
R+ ← empty multiset

Note that HOMESICK and ALTERNATE are general in the sense that they are valid algorithms for the
OLDARP on the line with no restrictions on the pick-up and drop-off locations of requests.
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Chapter 3

Competitive Analysis

3.1 Overview of results

An overview of the results for the online problems is given in Table 3.1.

Objective Constraint Lower bound Upper bound

Minimize make-span

c = 1, ∀i : ai = o 1 1
HOMESICK, Theorem 3.4

c = 1, ∀i : bi = o 1.5
Theorem 3.9

1.5
HOMESICK, Theorem 3.12

c =∞, ∀i : ai = o 1.5
Theorem 3.17

2
ALTERNATE, Theorem 3.21

c =∞, ∀i : bi = o 1.6404∗

Theorem 3.34, [3]
2.5†

ALTERNATE, Theorem 3.39

Minimize maximum flow

c = 1, ∀i : ai = o 1.414
Theorem 3.5

2
HOMESICK, Theorem 3.8

c = 1, ∀i : bi = o 2
Theorem 3.13

2
HOMESICK, Theorem 3.16

c =∞, ∀i : ai = o 1.7208
Theorem 3.29

5
ALTERNATE, Theorem 3.32

c =∞, ∀i : bi = o 2
Theorem 3.40

6
ALTERNATE, Theorem 3.43

Table 3.1: Lower and upper bounds for the best competitive ratios of deterministic algorithms for
closed non-preemptive OLDARP on the real line for different objectives. For every non-trivial bound
the corresponding lemma or theorem is given, and for upper bounds the name of the algorithm that
achieved the bound is given. An upper bound is written in boldface when it is proven to be tight.

Observe that the HOMESICK algorithm has the best possible competitive ratio for 3 out of the 4
unit capacity problem settings. Only for the UCPO-MF setting, the HOMESICK algorithm may not
be best possible (it cannot yet be ruled out that there exists a lower bound of 2 on the competitive
ratio of any deterministic algorithm, however we deem it highly unlikely that this is the case).

∗ This is not our own result, but instead follows from an equivalence of the ICDO-MS and OLTSP problems.
† ‘Algorithm 1’ from [6] has the best possible competitive ratio, hence there is an upper bound matching the

lower bound of 1.6404.
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3.1. OVERVIEW OF RESULTS

Among the four infinite capacity problems, the ICDO-MS problem stands out. The reason is that
the ICDO-MS problem is equivalent to the closed OLTSP problem, therefore the results for that
problem transfer to the ICDO-MS problem. ‘Algorithm 1’ from [6] has the best possible competitive
ratio for closed OLTSP, and by extension ICDO-MS. The ALTERNATE algorithm has a competitive
ratio of 2.5 for this problem. For each of the infinite capacity problem settings, we see there are
gaps between the competitive ratio of ALTERNATE and the lower bound we found for the problem.
In particular, the gaps are large for the settings where the objective is to minimize the maximum
flow time.

The results of the offline problems are summarized in Table 3.2. The offline unit capacity problems
have very simple solutions. The infinite capacity problems are a bit more difficult, for these the
structure of solutions can be exploited to compute a solution using a dynamic program.

Objective Constraint
Time complexity of best known

optimal offline algorithm

Minimize make-span

c = 1, ∀i : ai = o O(n)∗

c = 1, ∀i : bi = o O(n log n)

c =∞, ∀i : ai = o O(n4)†

c =∞, ∀i : bi = o O(n2)

Table 3.2: Runtimes for solving the offline problems. Here, n is the number of requests.

∗ It takes O(n) to compute the trajectory with compatible loading matrix; the order in which requests need to be
served can be computed in O(1) time.

† It is trivial to adapt the algorithm such that it runs in O(n3) time.
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3.2. PRELIMINARIES

3.2 Preliminaries

A list of problem specific assumptions and notation is given below.

– We assume that the sequence of requests σ is ordered by non-decreasing release times unless
specified otherwise.

– An online algorithm receives requests from σ one-by-one. If multiple requests have identical
release times, then they are provided to the online algorithm in order of σ.

– We use sets and sequences somewhat interchangeably. For example, for a request sequence
σ = (r1, . . . , rn) we use

ri ∈ σ ⇐⇒ ri ∈ {r1, . . . , rn}.

Let ρ = (s1, . . . , sm) also be a sequence of requests, then we define the union of σ and ρ as

σ ∪ ρ = (r1, . . . , rn, s1, . . . , sm) sorted by non-decreasing release time.

– For a sequence of requests σ = (r1, . . . , rn) and m ∈ N we define for m ≤ n the subsequence
until m with σ≤m := (r1, . . . , rm).

– For a sequence of requests σ = (r1, . . . , rn) and T ∈ R we define σ≤T = {ri ∈ σ | ti ≤ T};
we define σ<T , σ=T , σ>T , σ≥T in a similar fashion. Note that this definition can conflict with
the previous one since N ⊂ R, but it will be clear from the context which is meant.

It is useful to mathematically define what a solution to the dial-a-ride problem is. In the DARP,
such a solution is what an algorithm should output. For the OLDARP, the solution is calculated
piece by piece. A formal definition of a solution also allows us to formally define the objectives.
We adapt the following definitions from the thesis by A. Birx [4]:

– The trajectory of a server is modelled as a sequence of M tuples (qj , xj)j∈{1,...,M} where
qj ∈ R is a point on the line and xj ∈ R≥0 is a waiting time at that position. Since the
server starts and ends at the origin, the trajectory needs to satisfy q1 = o and qM = o.
Furthermore, xM = 0 since there is no waiting time after reaching the final position.

– Aside from moving around, the server also has to pick up requests, and drop them off. For
this the loading matrix (Li , Ui)i∈{1,...,n} is introduced, consisting of the times the server picks
up and drops off every request ri ∈ σ. Requests can only be dropped off after they have been
picked up and the server has moved to the drop-off location, therefore Ui ≥ Li + d(ai , bi).
Furthermore, the capacity constraint of the server need to be satisfied, so for all requests ri
we have |{k ∈ {1, . . . , n} \ {i} | Li ∈ [Lk , Uk)}| < c.

– A trajectory (qj , xj)j∈{1,...,M} is compatible with loading matrix (Li , Ui)i∈{1,...,n} if the server
is at position ai at time Li and at position bi at time Ui for all requests ri .

– An offline solution for OLDARP is a trajectory with a compatible loading matrix, and we call
such a solution a (feasible) walk.

– The completion time of a walk with trajectory (qj , xj)j∈{1,...,M} is

M−1∑
j=1

xj + d(qj , qj+1).

We can now define the following things:

– We say a server is idle in a trajectory at time t if it is waiting at time t. Similarly, a server is
busy in a trajectory at time t if it is not waiting at time t.
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3.2. PRELIMINARIES

– The completion time of a request ri in a walk is the time that it is dropped off by the server,
so Ui . We often denote this completion time by Ci for the walk of the online algorithm we
are considering, and we use C∗i for the optimal algorithm OPT.

– The flow time of a request ri in a walk is the difference between its completion time and its
release time. This is denoted by Fi and F ∗i . So

Fi = Ci − ti , and, F ∗i = C∗i − ti .

– The make-span of a solution, is the completion time of the corresponding walk. For a certain
input σ and an algorithm ALG, the make-span is denoted by ALGCmax(σ). We sometimes
use the shorthands Cmax and C∗max for the online algorithm we are considering and OPT

respectively. Note that Cmax is not equivalent to maxri∈σ Ci when not all drop-off locations
are the origin, since then the server may need to return to the origin after finishing all requests.
Still, we use this notation since it is often used in the literature for denoting the make-span,
both for machine scheduling problems and dial-a-ride problems (see e.g. [10], [15]).

– The maximum flow time of a walk is the maximum of all the flow times of the different
requests. This is denoted by ALGFmax(σ) for some algorithm ALG and input σ. Similarly as
before, we use Fmax and F ∗max as shorthands. We have

Fmax = max
ri∈σ

Fi , and, F ∗max = max
ri∈σ

F ∗i .

3.2.1 How to read lower bound figures

Position-time diagrams, such as Figure 3.1, are used throughout the report for illustrating lower
bounds on the competitive ratio of algorithms.

time

pos

1

1 2 3 40

ALTERNATE

OPT

Figure 3.1: Example of position time diagram

These figures are inspired by similar position-time diagrams in the thesis by A. Birx [4]. A diagram
is made for a particular input sequence of requests, and shows how different algorithms control
the server for that input. The route the server travels when controlled by a particular algorithm is
represented by a line, which is coloured differently for each algorithm. In addition, circles represent
the moments and locations at which requests are picked up or dropped off by the server. Lastly,
stars indicate the times at which requests are released; the height of a star has no meaning, they
are simply positioned above the lines in the graph.

As an example, Figure 3.1 plots the workings of the ALTERNATE and OPT algorithms on the input
σ = (r1, r2), with r1 = (0, o, 1) and r2 = (0.5, o, 1). The symbols in Figure 3.1 are listed below,
together with their meaning.

Request r1 is released, and is indicated using the color yellow.

Request r2 is released, and is indicated using the color red.

Request r1 is picked up by the ALTERNATE server.
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3.2. PRELIMINARIES

Request r1 is dropped off by the ALTERNATE server.

The OPT server picks up requests r1 and r2 at the same time.

The OPT server drops off requests r1 and r2 at the same time.

Request r2 is picked up by the ALTERNATE server.

Request r2 is dropped off by the ALTERNATE server.

In the figure, the make-spans of the two algorithms are the times at which the lines end. Hence,
we see that ALTERNATECmax(σ) = 4 and OPTCmax(σ) = 2.5. For the flow times, we see that the
flow time of request r1 in the walk of ALTERNATE is F1 = 1; similarly F2 = 2.5. The flow times of
requests r1 and r2 in the walk of OPT are F ∗1 = 1.5 and F ∗2 = 1 respectively. The maximum flow
times of the algorithms are therefore ALTERNATEFmax(σ) = 2.5 and OPTFmax(σ) = 1.5.

3.2.2 Observations

Before considering specific problem settings and algorithms, we make three observations that
will be useful throughout the competitiveness proofs. These observations hold for the general
OLDARP, and therefore also for all special cases we consider. With slight abuse of notation, we use
OPTCmax(σ) and OPTFmax(σ) to denote the optimal make-span and maximum flow time for input σ
for any problem setting.

Our first observation is the following.

Observation 3.1. Let σ be an arbitrary sequence of request, then

OPTCmax(σ) ≥ d(o, ai) + d(ai , bi) + d(bi , o), for any request ri in σ. (3.1)

The above holds because the server starts and ends at the origin, and has to serve all requests.
Hence, since request ri must be dropped off at some moment in time, the optimal walk needs
to include the movement from the pick-up location of request ri to the drop-off location of ri .
Furthermore, since the server starts and ends at the origin, the walk must include the movement
from the origin to the pick-up location of ri , and from the drop-off location of ri to the origin.

One can observe a similar trivial lower bound by making use of the fact that a request can only be
picked up after its release time. After having picked up the request, the server will at least need to
move to the drop-off location and then the origin in order to finish. Hence:

Observation 3.2. Let σ be an arbitrary sequence of request, then

OPTCmax(σ) ≥ ti + d(ai , bi) + d(bi , o), for any request ri in σ. (3.2)

Lastly, in order to complete a request, the server needs to at least wait until it is released and then
move from the pick-up location to the drop-off location of the request. This yields the following
observation on the flow time of requests.

Observation 3.3. Let σ be an arbitrary sequence of requests and consider any algorithm serving
input σ. Then for any request ri ∈ σ served by the algorithm we have:

Fi = Ci − ti ≥ d(ai , bi), (3.3)

where Fi and Ci denote the flow and completion time of request ri respectively.
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3.2.3 Offline problems

In the offline setting, we are interested in finding optimal algorithms for the DARP, with which
we mean algorithms that return solutions obtaining the optimal objective value. Such algorithms
are also often called exact algorithms, but we use optimal for consistency with the definition in
competitive analysis. For the four problem settings with the objective of minimizing make-span we
consider the offline problem. For these problem settings, the offline problem will be discussed at
the end of the corresponding sections. For the ICPO-MS problem a detailed analysis is given, for
the other problem settings the solution method is only briefly mentioned.

Formally, a solution to the DARP can be represented by a trajectory with a compatible loading
matrix, as introduced earlier in this section. The constraints of each of the different problem
settings allow, however, for easier representation of solutions. For the UCPO-MS, UCDO-MS and
ICDO-MS settings, a sequence denoting the order in which requests need to be served is sufficient
for representing optimal solutions. Similarly, in the ICPO-MS setting a sequence of sets of requests
is a simpler and sufficient representation of optimal solutions. We focus on the solution method;
we deem the form of output less important.

Page 17 of 62



3.3. THE HOMESICK ALGORITHM

3.3 The HOMESICK algorithm

In this section we perform a competitive analysis of the HOMESICK algorithm for the different
problem settings. Recall that HOMESICK serves requests one-by-one in the order that they arrive
and never lets the server stay idle when there are unserved requests. We will start by showing how
the HOMESICK algorithm behaves on an example input sequence.

Example. Consider the sequence of requests σ = (r1, r2, r3) with r1 = (2, o, 1), r2 = (5, o,−1)

and r3 = (6, o, 0.5). The server controlled by the HOMESICK algorithm starts at the origin at
time 0. The server will stay there until a request is released. This happens at time t1 = 2, at
this point HOMESICK orders the server to pick up request r1, drop it off, and return to the origin
via the shortest route. The server arrives back at the origin at time 4, and will be ordered to
wait there since there are no unserved requests. At time t2 = 5 the second request is released,
and the server will serve r2. When the server is back at the origin at time 7, it can immediately
serve request r3. After serving request r3 and the server is back at the origin at time 8, no
more requests are released.

We see that the HOMESICK algorithm yields completion times C1 = 3, C2 = 6 and C3 = 7.5 for
requests r1, r2 and r3 respectively. The flow times of the requests are calculated by subtracting
the release times from the corresponding completion times; letting Fi denote the flow time of
request ri , we find

F1 = C1 − t1 = 3− 2 = 1; F2 = C2 − t2 = 6− 5 = 1; F3 = C3 − t3 = 7.5− 6 = 1.5.

At time 8, the server has served all requests and is back at the origin, therefore the make-span
is HOMESICKCmax(σ) = 8. The maximum flow time of HOMESICK for input σ is

HOMESICKFmax(σ) = max{F1, F2, F3} = 1.5.

The behaviour of the HOMESICK server on input σ is shown in Figure 3.2. Two illustrations are
given: a position-time diagram and a timeline. These two types of figures are used throughout
the report to provide a visual representation of the behaviour of algorithms. Idle and busy periods
of the server are also indicated in the figure. Recall that idle means that the server waits, not
necessarily that there are no unserved requests. A server controlled by the Homesick algorithm,
however, never stays idle when there are unserved requests.

time

pos

1

-1

1 2 3 4 5 6 7 80

HOMESICK

time
0 1 2 3 4 5 6 7 8

r1 r2 r3

idle busy idle busy

Figure 3.2: Example behaviour of the HOMESICK algorithm in the UCPO setting.
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3.3.1 UCPO-MS

For this problem, HOMESICK is optimal, as is proven in the following theorem. This result also
provides the solution to the offline problem, as is discussed at the end of the section.

Theorem 3.4. HOMESICK is optimal for UCPO-MS.

Proof. Let σ = (r1, . . . , rn) be an arbitrary sequence of requests. We use Li to denote the time at
which the HOMESICK server picks up request ri (this corresponds to the loading matrix from the
preliminaries in Section 3.2). Note that we have L1 = t1 since the server picks up and serves r1 as
soon as it is released. Furthermore, for any request ri we have Li ≥ ti because requests cannot
be picked up before they are released. Since the HOMESICK server picks up requests as soon as
possible, Li > ti implies that the server was not idle between time ti and Li . Now, define

f := arg max
1≤i≤n

{Li | Li = ti} (if there is no unique index, pick the largest).

Hence, rf is the last request served by HOMESICK that was picked up at exactly the time it was
released. Clearly f exists since L1 = t1.

time

rf rn

Lf

Figure 3.3: Example timeline of HOMESICK where Lf is the last time the server picked up a request
the same time it was released.

Now, because for all i > f we have Li > ti , the server was not idle after tf . Therefore,

HOMESICKCmax(σ) = tf + 2

n∑
i=f

d(o, ai). (3.4)

Next, we investigate the make-span of the OPT algorithm. Aiming for a similar expression as in
Equation 3.4, we consider the requests σ≥f . Let rh be the first request from σ≥f that the OPT

server serves. We know the OPT server can only pick up rh after it has been released at time th.
After the server has picked up rh, it has to move to the drop-off location and back to the origin
which takes at least 2d(o, ah) time. Similarly, for any other requests in σ≥f the server has to pick
up the request at the origin, drop it off at the drop-off location, and return to the origin. Therefore
we have

OPTCmax(σ) ≥ th + 2

n∑
i=f

d(o, ai).

Now, since rh ∈ σ≥f we have th ≥ tf because σ is ordered on non-decreasing release times.
Therefore,

HOMESICKCmax(σ) = tf + 2

n∑
i=f

d(o, ai) ≤ th + 2

n∑
i=f

d(o, ai) = OPTCmax(σ).

Offline We have seen that serving requests as soon as they are released is optimal. Since the
input sequence of requests is already sorted on release time, the offline solution can be ‘computed’
in O(1) time by simply returning the input. Calculating the exact trajectory and loading matrix can
be done in O(n) time by stepping through the input sequence σ, keeping track of the necessary
variables and doing basic arithmetic.
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3.3.2 UCPO-MF

For the UCPO-MS problem, the HOMESICK algorithm is optimal. When minimizing the maximum
flow time, no deterministic online algorithm can be optimal, as is apparent from the following
theorem.

time

pos

0

1

1 2 3
√
2−1

ALG

OPT

(a) Best ALG can do: adversary releases one request

time

pos

1

1 2 3
√
2−10

ALG

OPT

(b) Best ALG can do: adversary releases two requests

Figure 3.4: Illustration of Theorem 3.5 with ε = 0.2

Theorem 3.5. No deterministic online algorithm ALG for UCPO-MF has a competitive ratio
lower than

√
2 ≈ 1.4142.

Proof. Let ALG be an arbitrary deterministic online algorithm. The adversary releases request
r1 = (0, o, 1) at time 0. The server operated by ALG has to pick up request r1 at some time T ≥ 0.
We perform a case distinction on the value of T .

Case 1: 0 ≤ T <
√

2− 1. The adversary releases one other request r2 = (T + ε, o, o) for some
small ε ∈ (0, 1−

√
2/2). In this case, the complete request sequence is σ = (r1, r2). The server

operated by ALG has picked up request r1 at time T and cannot drop it to pick up request r2
because we do not allow preemption. Hence, r1 is dropped off at time at least T + 1 yielding
flow time F1 = T + 1 <

√
2, and r2 is dropped off at time at least T + 2 yielding flow time

F2 ≥ T + 2− (T + ε) = 2− ε. Hence ALGFmax(σ) ≥ 2− ε. The optimal algorithm OPT first serves
r2 at time T + ε, and then serves r1. This yields flow times F ∗1 = T + ε+ 1 and F ∗2 = 0; hence
OPTFmax(σ) = T + ε+ 1. Hence ALG has competitive ratio at least

ALGFmax(σ)

OPTFmax(σ)
≥

2− ε
T + ε+ 1

≥
2− ε√
2 + ε

.

Taking ε small enough, the lower bound can be made arbitrarily close to
√

2.

Case 2: T ≥
√

2 − 1. The adversary releases no other requests, so the complete sequence is
σ = (r1). The server operated by ALG picks up r1 at time T , then moves to the drop-off location.
Therefore ALGFmax(σ) ≥ T + 1. An optimal algorithm OPT would pick up r1 directly at time 0

yielding OPTFmax(σ) = 1. Hence ALG has competitive ratio at least

ALGFmax(σ)

OPTFmax(σ)
≥
T + 1

1
≥
√

2.

In the previous theorem we have seen that no deterministic online algorithm can exist which is
optimal in this problem setting. Now, we will analyze the HOMESICK algorithm and prove it has
competitive ratio 2. First, we prove a lower bound of 2 on the competitive ratio of HOMESICK using
a similar instance as in the previous theorem. Afterwards, we give a 2-competitiveness proof in
which we use the optimality result of HOMESICK in the UCPO-MS problem setting.

Page 20 of 62



3.3. THE HOMESICK ALGORITHM

Lemma 3.6. HOMESICK has a competitive ratio of at least 2 for UCPO-MF.

Proof. Consider instance σ = (r1, r2) with requests r1 = (0, o, 1) and r2 = (ε, o, o) for some small
ε ∈ (0, 1/2). Then HOMESICK immediately serves request r1, and directly afterwards r2. This yields
flow times F1 = 1, F2 = 2−ε. Hence HOMESICKFmax(σ) = 2−ε. The optimal algorithm OPT would
first serve r2, then r1. This yields flow times F ∗1 = 1 + ε, F ∗2 = 0, therefore OPTFmax(σ) = 1 + ε.
We can take ε arbitrarily small, hence HOMESICK has a competitive ratio of at least 2.

time

pos

1

1 2 3ε0

HOMESICK

OPT

Figure 3.5: Illustration of Lemma 3.6 with ε = 0.2

Lemma 3.7. HOMESICK is 2-competitive for UCPO-MF.

Proof. Let σ = (r1, . . . , rn) be an arbitrary sequence of requests. For all m ≤ n, let P(m) be the
property that HOMESICKFmax(σ≤m) ≤ 2OPTFmax(σ≤m). By using induction, we will prove that P(n)

holds, thereby proving the lemma.

Base case: m = 1. As soon as r1 is released the HOMESICK server will pick up the request, serve it,
and return to the origin. Since the server operated by HOMESICK starts and stays at the origin, and
the pick-up locations of all requests are the origin, the server can immediately pick up r1. Therefore
the flow time of r1 is F1 = d(o, b1). The optimal algorithm cannot do better than this, therefore

HOMESICKFmax(σ≤1) = d(o, b1)
(3.3)

≤ OPTFmax(σ≤1) ≤ 2OPTFmax(σ≤1),

and P(1) holds.

Induction hypothesis (IH). Suppose we have some m < n such that property P(m) holds.

Inductive step. We prove that P(m+ 1) holds by using the induction hypothesis. Since HOMESICK

serves requests in the same order as σ, the flow times F1, . . . , Fm are the same on input σ≤m+1
and σ≤m. Therefore

HOMESICKFmax(σ≤m+1) = max{F1, . . . , Fm+1} = max{HOMESICKFmax(σ≤m), Fm+1}.

We will consider the two terms of the maximum separately. For the first term we know from the
induction hypothesis that

HOMESICKFmax(σ≤m)
(IH)
≤ 2OPTFmax(σ≤m).

Also note that adding request rm+1 to the input sequence will not decrease the optimal maximum
flow, therefore

OPTFmax(σ≤m) ≤ OPTFmax(σ≤m+1).

By combining the above two inequalities we find

HOMESICKFmax(σ≤m) ≤ 2OPTFmax(σ≤m+1), (3.5)
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therefore property P(m + 1) holds in case the first term is largest.

Now the second term of the maximum, Fm+1. First observe that from Theorem 3.4 we know
the make-span Cmax := HOMESICKCmax(σ≤m+1) is the best possible. Hence, when defining C∗max :=

OPTCmax(σ≤m+1), we have Cmax ≤ C∗max. Using these make-spans, the completion time of request
rm+1 can be bounded. The following trivial upper bound is sufficient:

Cm+1 ≤ Cmax.

We assume that OPT returns to the origin immediately after serving its last request. We can make
this assumption without loss of generality because this does not make a difference for the flow
times of either OPT or HOMESICK, and Cmax ≤ C∗max holds regardless. Letting rl be the last request
served by OPT, we then have

C∗max = C∗l + d(bl , o).

Combining these two equations, we find

Cm+1 ≤ C∗l + d(bl , o).

With this inequality in hand, the flow time Fm+1 can be bounded. We have

Fm+1 = Cm+1 − tm+1 ≤ C∗l + d(bl , o)− tm+1 = tl + F ∗l + d(bl , o)− tm+1.

Noting that tl − tm+1 ≤ 0 because rm+1 cannot be before rl in the request sequence, we end up
with

Fm+1 ≤ F ∗l + d(bl , o)
(3.3)

≤ 2F ∗l ≤ 2OPTFmax(σ≤m+1). (3.6)

By obtaining Inequalities 3.5 and 3.6 we can now bound HOMESICKFmax(σ≤m+1) to get

HOMESICKFmax(σ≤m+1) = max{HOMESICKFmax(σ≤m), Fm+1} ≤ 2OPTFmax(σ≤m+1),

and we see that property P(m + 1) holds.

Thus, by the principle of induction P(m) holds for all m ≤ n. In particular it holds for m = n,
therefore HOMESICKFmax(σ) ≤ 2OPTFmax(σ) for any σ, meaning HOMESICK is 2-competitive.

Theorem 3.8. HOMESICK has a competitive ratio of 2 for UCPO-MF.

Proof. The result follows directly from Lemma 3.6 and 3.7.
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3.3.3 UCDO-MS

We start by proving a lower bound on the competitive ratio of any deterministic online algorithm
for the UCDO-MS problem. The idea behind the proof is that the optimal offline algorithm knows
the pick-up locations of future requests, therefore it can already move towards the pick-up location
of a request before it is released. The lower bound is illustrated in Figure 3.6, and formalized in the
following theorem.

time

pos

1

1 2 30

ALG

OPT

Figure 3.6: Illustration of Theorem 3.9

Theorem 3.9. No deterministic online algorithm ALG has a competitive ratio smaller than 1.5

for UCDO-MS.

Proof. Consider the input sequence σ = (r1), where r1 = (1, 1, o). Without loss of generality, we
assume the server operated by ALG is at a non-positive location x at time 1. The ALG server has
to pick up request r1 and move back to the origin at some point, therefore we find a make-span of

ALGCmax(σ) ≥ 1 + d(x, 1) + d(1, o) ≥ 3.

The OPT server starts moving directly towards the pick-up location 1 at time 0, picks up the request
and returns to the origin to drop it off. Therefore, the optimal make-span is

OPTCmax(σ) = d(o, 1) + d(1, o) = 2,

and we find
ALGCmax(σ)

OPTCmax(σ)
≥

3

2
.

For a server that is at a positive location at time 1 consider r1 = (1,−1, o) instead.

We now turn our attention to the HOMESICK algorithm. We will prove that HOMESICK has a
competitive ratio of 1.5, matching the lower bound of the previous theorem. The key observation
for proving this is that OPT can only ever be ahead of HOMESICK by d(o, ai) for some request ri .
This is formalized and proven in Lemma 3.10, which will also prove useful in the UCDO-MF setting.
The proof of the lemma follows the same structure as Theorem 3.4.

Lemma 3.10. Let σ be an arbitrary sequence of requests, then

HOMESICKCmax(σ) ≤ OPTCmax(σ) + max
ri∈σ

d(o, ai).

Proof. Let σ = (r1, . . . , rn) be an arbitrary sequence of requests. Denote the time at which the
server operated by HOMESICK leaves the origin to serve request ri by Oi . Note that we have O1 = t1
since the server leaves the origin to serve r1 as soon as it is released. Furthermore, for any request
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time

rf rn

Of

Figure 3.7: Example timeline of HOMESICK where Of is the last time the server left the origin to
serve a request the same time it was released. Vertical lines represent requests being picked up by
the server.

ri we have Oi ≥ ti . Since HOMESICK serves requests as soon as possible, if Oi > ti then HOMESICK

was not idle between Oi and ti . Now, define

f := arg max
1≤i≤n

{Oi | Oi = ti} (if there is no unique index, pick the largest).

Hence, rf is the last request for which HOMESICK left the origin at exactly the time it was released.
Clearly f exists since O1 = t1.

Now, because for all i > f we have Oi > ti , the server was not idle after tf . Therefore

HOMESICKCmax(σ) = tf + 2

n∑
i=f

d(o, ai). (3.7)

Next, we investigate the make-span of the OPT algorithm. Aiming for a similar expression as in
Equation 3.7, we consider the requests σ≥f . Let rh be the first request from σ≥f that the OPT

server serves. We know the OPT server can only pick up rh after it has been released at time th.
After the server has picked up rh, it has to move to the drop-off location which takes at least
d(o, ah) time. For any other requests in σ≥f the server first has to move to the pick-up location,
and then drop if off. Therefore we have

OPTCmax(σ) ≥ th + 2

n∑
i=f

d(o, ai)− d(o, ah).

Now, since rh ∈ σ≥f we have th ≥ tf because σ is ordered on non-decreasing release times.
Combining this fact with the previous equation we see

OPTCmax(σ) ≥ tf + 2

n∑
i=f

d(o, ai)− d(o, ah). (3.8)

Finally, using Inequality 3.8 the make-span HOMESICKCmax(σ) can be bounded:

HOMESICKCmax(σ) = tf + 2

n∑
i=f

d(o, ai)
(3.8)

≤ OPTCmax(σ) + d(o, ah) ≤ OPTCmax(σ) + max
ri∈σ

d(o, ai).

Corollary 3.11. HOMESICK is 1.5-competitive for UCDO-MS.

Proof. Let σ be an arbitrary sequence of requests. Applying Lemma 3.10 to input σ gives

HOMESICKCmax(σ) ≤ OPTCmax(σ) + max
ri∈σ

d(o, ai).

We then apply Inequality 3.1 to obtain the desired result:

HOMESICKCmax(σ) ≤ OPTCmax(σ) + max
ri∈σ

d(o, ai)
(3.1)

≤
3

2
OPTCmax(σ).
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Theorem 3.12. HOMESICK has a competitive ratio of 1.5 for UCDO-MS, and this is the best
possible competitive ratio.

Proof. Follows directly from Theorem 3.9 and Corollary 3.11.

Offline As we have seen, the strategy of HOMESICK is not optimal for UCDO-MS. In this problem
setting, knowing the entire sequence of requests allows a server to move to pick-up locations of
requests before they are released. Intuitively, an optimal algorithm for the offline problem would be
one that exploits this knowledge best.

For serving some request ri ∈ σ, leaving the origin at time ti − d(o, ai) and travelling directly to
ai would let a server arrive at ai exactly at the request’s release time. When aiming to pick up
request ri , leaving the origin earlier than ti − d(o, ai) would therefore never be beneficial. These
values can thus be seen as the earliest times the server can start working on the corresponding
request. Serving requests in non-decreasing order of these values hence lets the server work on
serving a request whenever it can, and in this way minimizes the make-span.

The UCDO-MS problem can thus be solved optimally by sorting requests ri ∈ σ in non-decreasing
order of ti−d(o, ai). This sorting can be done in O(n log n) time. For computing the trajectory and
loading matrix for the server, O(n) time is needed, which does not increase the time complexity.
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3.3.4 UCDO-MF

We will start by giving a lower bound on the competitive ratio of any deterministic online algorithm
for UCDO-MF; the same set of instances is used as in the lower bound for UCDO-MS.

time
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Figure 3.8: Illustration of Theorem 3.13

Theorem 3.13. No deterministic online algorithm ALG has a competitive ratio smaller than 2
for UCDO-MF.

Proof. Consider σ = (r1), where r1 = (1, 1, o). Without loss of generality, we assume the server
operated by ALG is at a non-positive location x at time 1. The ALG server has to pick up request
r1 and move back to the origin at some point. At time 1 the server is at location x ≤ 0, therefore
the server drops off request r1 at time

C1 = 1 + d(x, 1) + d(1, o) ≥ 3,

and the maximum flow time is

ALGFmax(σ) = F1 = C1 − t1 ≥ 2.

The OPT server starts moving directly towards the pick-up location 1 at time 0, picks it up and
returns to the origin. Therefore the completion of request r1 is

C∗1 = d(o, 1) + d(1, o) = 2,

and the maximum flow time is

OPTFmax(σ) = F ∗1 = C∗1 − t1 = 1.

Therefore
ALGFmax(σ)

OPTFmax(σ)
≥

2

1
= 2.

For a server that is at a positive location at time 1 consider r1 = (1,−1, o) instead.

Next, we will prove that HOMESICK has a competitive ratio of 2. First, we prove that HOMESICK is
2-competitive under a restriction on the input. Afterwards we generalize the result to any input,
thereby proving HOMESICK is 2-competitive.

Lemma 3.14. Let σ = (r1, . . . , rn) be a sequence of requests such that the flow time of
request rn is maximal in the walk of HOMESICK on input σ, i.e. Fn = HOMESICKFmax(σ). Then

HOMESICKFmax(σ) ≤ 2OPTFmax(σ).
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Proof. By assumption the maximum flow time of HOMESICK is attained by request rn, therefore we
compute its flow time Fn. To compute this, note that the completion time of request rn is equal
to the make-span of HOMESICK. This is because HOMESICK serves request rn last, thus the server is
finished as soon as it drops off rn at the origin. Hence, we have

HOMESICKFmax(σ) = Fn = Cn − tn = HOMESICKCmax(σ)− tn. (3.9)

We bound the make-span of HOMESICK by applying Lemma 3.10 to input σ. Let OPT′ denote the
optimal algorithm for minimizing make-span, then

HOMESICKCmax(σ) ≤ OPT′Cmax
(σ) + max

ri∈σ
d(o, ai) ≤ OPTCmax(σ) + max

ri∈σ
d(o, ai). (3.10)

Let rl denote the request that is dropped off last by OPT; this means its completion time C∗l =

OPTCmax(σ). Note that tl ≤ tn because rn is the last request in the sequence, therefore

OPTCmax(σ)− tn = C∗l − tn ≤ C∗l − tl = F ∗l ≤ OPTFmax(σ). (3.11)

Combining Inequalities 3.3, 3.9, 3.10 and 3.11 yields the desired result

HOMESICKFmax(σ)
(3.9)
= HOMESICKCmax(σ)− tn
(3.10)

≤ OPTCmax(σ)− tn + max
ri∈σ

d(o, ai)

(3.11)

≤ OPTFmax(σ) + max
ri∈σ

d(o, ai)

(3.3)

≤ 2OPTFmax(σ).

Lemma 3.15. HOMESICK is 2-competitive for UCDO-MF.

Proof. Let σ be an arbitrary sequence of requests. Denote with rf a request with maximal flow
in the walk of HOMESICK on input σ. Consider now the subsequence σ≤f obtained by omitting all
requests with index greater than f from σ. Observe that the maximum flow time of HOMESICK is
still Ff for input σ≤f because the algorithm serves requests in order of σ. Clearly, sequence σ≤f
satisfies the condition in Lemma 3.14, therefore we have

HOMESICKFmax(σ) = HOMESICKFmax(σ≤f ) ≤ 2OPTFmax(σ≤f ) ≤ 2OPTFmax(σ).

The last inequality follows from the observation that adding more requests to an input will never
decrease the maximum flow time obtained on that input.

Theorem 3.16. HOMESICK has a competitive ratio of 2 for UCDO-MF, and this is the best
possible competitive ratio.

Proof. The result follows directly from Theorem 3.13 and Lemma 3.15.
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3.4 The ALTERNATE algorithm

The main part of this section is about proving the competitive ratio of the ALTERNATE algorithm
for the various problem settings. Furthermore, for the ICPO-MS setting a detailed analysis of the
offline problem is performed, and an algorithm is given that solves it. Recall that ALTERNATE serves
all unserved requests on the same side of the line at once, moving to the side that contains the
earliest released request. The ALTERNATE algorithm is never idle when there are unserved requests,
and ignores requests that are released while it is away from the origin.

Before considering specific problem settings, we show the workings of the ALTERNATE algorithm by
giving an example.

Example. Consider the sequence of requests σ = (r1, r2, r3, r4) with r1 = (1, o, 1), r2 =

(2, o,−1), r3 = (2.5, o, 0.5) and r4 = (3, o, 1). The server controlled by the ALTERNATE

algorithm is at the origin at time 0. The server will stay there until a request is released. This
happens at time t1 = 1; at this point ALTERNATE orders the server to move to point 1 to pick
up request r1 and return to the origin directly to drop it off. The server arrives back at the
origin at time 3; at this point there are three unserved requests: r2, r3 and r4. The request
with earliest release time is r2, therefore since r2 has a negative pick-up location ALTERNATE

decides to serve all requests with negative pick-up locations. This means the ALTERNATE server
moves to pick up r2 and drops it off at the origin at time 4. At time 4, the request with earliest
release time is r3, therefore ALTERNATE decides to serve requests with non-negative pick-up
locations, which are r3 and r4. After the ALTERNATE server has served these requests and is
back at the origin, no more requests are released.

The ALTERNATE algorithm has completion times C1 = 3, C2 = 4 and C3 = C4 = 6, where Ci
is the completion time of request ri . The flow times follow from the completion times; letting
Fi denote the flow time of request ri , we find

F1 = 3− 1 = 2; F2 = 4− 2 = 2; F3 = 6− 2.5 = 3.5; F4 = 6− 3 = 3.

At time 6, the ALTERNATE server has served all requests and is back at the origin, therefore the
make-span is ALTERNATECmax(σ) = 6. The maximum flow time of ALTERNATE for input σ is

ALTERNATEFmax(σ) = max{F1, F2, F3, F4} = 3.5.

Figure 3.9 shows the behaviour of the ALTERNATE server on input σ. Such figures are provided for
all lower bounds and it is recommended to consult these while reading the corresponding proof.
Some figures in this section use a slightly different color coding of requests; if there are many
requests, the requests with negative pick-up or drop-off location are colored red and the others
green.

time
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Figure 3.9: Example behaviour of the ALTERNATE algorithm in the ICDO setting.
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3.4.1 ICPO-MS

First we will construct a lower bound on the competitive ratio that can be achieved by any
deterministic online algorithm, then we will prove that ALTERNATE has a competitive ratio of 2 for
this problem.

time
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Figure 3.10: Illustration of Theorem 3.17; example with T = 1.5

Theorem 3.17. No deterministic online algorithm ALG has a competitive ratio smaller than
1.5 for ICPO-MS.

Proof. Let ALG be an arbitrary deterministic online algorithm. The adversary starts by releasing
requests r1 = (0, o, 1) and r2 = (0, o,−1). Since these two requests are symmetric and they have
to be dropped off at some point, we can assume, without loss of generality, that the server operated
by ALG drops off r1 before r2 at some time T ≥ 1. We perform a case distinction on the value of T .

Case 1: T ∈ [1, 4]. The adversary releases one other request r3 = (T, o, 1) just when the server
controlled by ALG has dropped off r1. The complete request sequence in this case is σ = (r1, r2, r3).
Next, the ALG server has to serve r2 and r3. Using the knowledge that the server was at location 1

at time T , we see that the make-span is ALGCmax(σ) ≥ T + 5. The optimal algorithm will start by
serving request r2, after which it is back at the origin at time 2. To determine the actions of the
optimal algorithm after time 2, we again perform a case distinction on the value of T .

Case 1.1: T ∈ [1, 2]. In this case, request r3 has been released at time 2, therefore OPT can
directly leave the origin to serve requests r1 and r3 together. This yields the optimal make-span
OPTCmax(σ) = 4. In this case, we see that ALG has competitive ratio at least

ALGCmax(σ)

OPTCmax(σ)
≥
T + 5

4
≥

6

4
= 1.5.

Case 1.2: T ∈ (2, 4]. The OPT server will wait for T − 2 time units until request r3 is released,
and then serve r1 and r3 together. In this case OPTCmax(σ) = T + 2, and ALG has competitive
ratio at least

ALGCmax(σ)

OPTCmax(σ)
≥
T + 5

T + 2
≥

9

6
= 1.5.

Case 2: T > 4. The adversary releases no other requests, hence the complete input is σ = (r1, r2).
After the ALG server has dropped off request r1 at location 1, it takes the ALG server at least 3

time units to serve r2 and return to the origin. Hence ALGCmax(σ) = T + 3. The optimal algorithm
will serve requests r1 and r2 immediately, giving OPTCmax(σ) = 4. Hence, the competitive ratio of
ALG is at least

ALGCmax(σ)

OPTCmax(σ)
≥
T + 3

4
≥

7

4
> 1.5.
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Remark. Theorem 3.17 only uses the fact that the capacity is at least 2, therefore the lower
bound also holds for the ICPO-MS problem where instead of infinite capacity the server has
any finite capacity greater than 1.

We continue by investigating the performance of the ALTERNATE algorithm. We start with a lower
bound.

Lemma 3.18. ALTERNATE has a competitive ratio of at least 2 for ICPO-MS.

Proof. Consider the sequence of requests σ = (r1, r2) with r1 = (0, o, 1) and r2 = (ε, o, 1) for some
small ε < 2. The ALTERNATE server first serves r1 and ignores the release of request r2. Only after
finishing request r1, the request r2 will be served. The make-span is therefore ALTERNATECmax(σ) = 4.
The optimal server waits until time ε and then serves r1 and r2 in one visit to location 1, yielding
a make-span of OPTCmax(σ) = 2 + ε. Taking ε small enough, the lower bound on ALTERNATE’s
competitive ratio can be made arbitrary close to 2.

time
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Figure 3.11: Illustration of Lemma 3.18 with ε = 0.5

Before we prove ALTERNATE is 2-competitive, we introduce some notation.

Definition. Let S be a non-empty set or sequence of requests on one side of the line. Then let
L(S) denote the length of the shortest tour visiting all drop-off locations from requests in S,
starting and ending at the origin. We have

L(S) = 2 max
ri∈S
|bi |.

Note that if S1 ⊆ S then L(S1) ≤ L(S).

Definition. For some set or sequence of requests ρ, define

ρ+ = {ri ∈ ρ | bi ≥ o}, and, ρ− = {ri ∈ ρ | bi < o}.

Note that ρ = ρ+ ∪ ρ−.

Observation 3.19. Any algorithm has to serve the left-most request and the right-most request
while starting and ending at the origin. Hence,

OPTCmax(σ) ≥ L(σ−) + L(σ+). (3.12)

Lemma 3.20. ALTERNATE is 2-competitive for ICPO-MS.

Proof. We distinguish cases based on what the ALTERNATE server is doing at the time tn at which
the last request rn becomes known. If the ALTERNATE server is idle at the origin then it simply
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serves the released request rn immediately giving

ALTERNATECmax(σ) = tn + 2d(o, bn)
(3.2)

≤ OPTCmax(σ),

and the lemma holds.

Now, we consider the case where the ALTERNATE server is not idle at the origin at time tn, but
instead it is following some schedule S serving requests at one side of the line. The arrival of request
rn does not stop the ALTERNATE server from following S; it ignores this request and continues with
its schedule. Let T be the time the server started schedule S, and let R denote the set of unserved
requests at that time T . The requests served by the ALTERNATE server in schedule S are either
the requests R− or R+, whichever set has the request with minimum release time. Without loss
of generality we assume that R+ contains the requests that are served in schedule S. Now, the
make-span of ALTERNATE can be expressed as:

ALTERNATECmax(σ) = T + L(R+) + L(R− ∪ σ−≥T ) + L(σ+≥T ). (3.13)

Indeed, the ALTERNATE server finishes schedule S at time T + L(R+) ≥ tn; this is later than tn
because recall the ALTERNATE server was performing schedule S when request rn was released. This
means no new requests arrived after schedule S was finished. Therefore, the last task for the
ALTERNATE server is serving the remaining requests with drop-off location on the negative part of
the line R− ∪ σ−≥T , and the remaining requests at the positive part σ+≥T .

For the OPT server, consider the first request rf from σ≥T that is served by the OPT server. Since
rf is in σ≥T , by definition tf ≥ T . The OPT server has to at least wait until this release time tf ,
and then serve all requests in σ≥T , therefore

OPTCmax(σ) ≥ tf + L(σ+≥T ) + L(σ−≥T ) ≥ T + L(σ+≥T ) + L(σ−≥T ). (3.14)

Using Equations 3.13 and 3.14 we can bound ALTERNATECmax(σ) by OPTCmax(σ). First, from
Equation 3.13 we see

ALTERNATECmax(σ)
(3.13)

≤ T + L(R+) + L(R− ∪ σ−≥T ) + L(σ+≥T ).

We rearrange and add and subtract appropriate terms to get

ALTERNATECmax(σ) ≤ T + L(σ+≥T ) + L(σ−≥T ) + L(R+) + L(R− ∪ σ−≥T )− L(σ−≥T ).

Next, we apply Equation 3.14, which yields

ALTERNATECmax(σ)
(3.14)

≤ OPTCmax(σ) + L(R+) + L(R− ∪ σ−≥T )− L(σ−≥T )

≤ OPTCmax(σ) + L(R+) + L(R− ∪ σ−≥T ).

Note that R+ ⊆ σ+ and R− ∪ σ−≥T ⊆ σ
−, therefore using Inequality 3.12 we have

ALTERNATECmax(σ)
(3.12)

≤ OPTCmax(σ) + OPTCmax(σ) = 2OPTCmax(σ),

and the lemma also holds in this case.

Theorem 3.21. ALTERNATE has a competitive ratio of 2 for ICPO-MS.

Proof. Follows directly from Lemma 3.18 and 3.20.
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We also briefly consider the online algorithm TIR (Temporarily Ignore Requests) introduced by E.
Feuerstein and L. Stougie [12]. The algorithm TIR was originally constructed for a more general
version of ICPO-MS where pick-up locations need not be the origin. In this setting TIR has a
competitive ratio of 2. This implies that in the more restricted setting of ICPO-MS algorithm
TIR is still 2-competitive (see Theorem 3.22), but its competitive ratio may be lower. Indeed,
the instance given in [12] to prove tightness does not hold in the ICPO-MS setting. We found,
however, a different set of instances which shows that TIR has a competitive ratio of 2 for the
ICPO-MS problem (see Lemma 3.23).

The way the algorithm TIR works is as follows. When the TIR server is at the origin and there
are unserved requests, the algorithm orders the server to serve all the unserved requests via the
shortest route, and to return to the origin at the end. When the TIR serve receives a request while
it is busy, it acts based on how far away the drop-off location of the incoming request is from
the origin. If the drop-off location is further from the origin than the server itself, then the server
returns to the origin; otherwise the server continues with its task. In Algorithm 3, TIR is described
in more detail.

Algorithm 3: TIR
Input : server that starts at o; requests arrive over time
R← empty multiset

repeat
if a new request ri becomes known then

add ri to R
p ← position of server
if d(bi , o) > d(p, o) then

order server to return to the origin immediately
else

let server continue with its schedule

if server drops off request ri then
remove ri from R

if server is at the origin and R is not empty then
order the server to serve requests R and return to the origin via the shortest route

Theorem 3.22. (Theorem 2.3 in [12]) TIR is 2-competitive for ICPO-MS.

Lemma 3.23. TIR has a competitive ratio of at least 2 for ICPO-MS.

Proof. Let N ∈ N≥1 and let δ be a small positive number. Consider the sequence of requests
σ = (p1, m, p2, . . . , pN), where m = (0, o,−1), p1 = (0, o, 1N ), and pi = ((2i − 3) · ( 1N − δ), o, 1N )

for i ∈ {2, . . . , N}. Requests p1 and m have the same release time, but recall that requests are
presented to the online algorithm one-by-one in order of σ. When request p1 becomes known to
TIR, it orders the server to serve p1 and return to the origin via the shortest route. However,
immediately afterwards request m becomes known, which causes TIR to return to the origin. This
results in the server being at the origin at time 0, and TIR ordering it to serve requests p1 and m
and return to the origin via the shortest route. The algorithm does not specify which shortest route
it uses; without loss of generality we can thus assume that it first serves requests with drop-off
locations on the positive side of the line, and then moves to the negative side.
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At time 1N − δ, the server is at point 1N − δ and request p2 is released. The release of p2 causes
the server to return to the origin. When back at the origin at time 2N − 2δ, the TIR algorithm will
decide to go to the positive side of the line to server requests p1 and p2, and afterwards serve m.
At time 3N − 3δ, request p3 is released and the TIR algorithm will again return to the origin. This
process of the server moving to 1

N , and returning to the origin just before it gets there, repeats
itself N times. Finally, at time 2− 1

N − 2Nδ the server drops off all requests pi for i ∈ {1, . . . , N}.
The server then proceeds to serve request m, yielding a make-span of TIRCmax(σ) = 4− 2Nδ.

The optimal algorithm would first serve request m, and afterwards all requests pi for i ∈ {1, . . . , N}
in one visit to 1

N . This yields the optimal make-span OPTCmax(σ) = 2 + 2
N . We have therefore

TIRCmax(σ)

OPTCmax(σ)
=

4− 2Nδ

2 + 2
N

.

For any ε > 0, consider N =
⌈
2
ε

⌉
and δ = ε2

2N . Then, we have:

TIRCmax(σ)

OPTCmax(σ)
=

4− ε2

2 + 2

d 2εe
≥

(2− ε)(2 + ε)

2 + ε
= 2− ε.

Since this holds for any ε > 0, the competitive ratio of TIR is at least 2.
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Figure 3.12: Illustration of Lemma 3.23 with δ = 0.02 and N = 5

Corollary 3.24. TIR has a competitive ratio of 2 for ICPO-MS.

Proof. Follows directly from Theorem 3.22 and Lemma 3.23.
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Offline

It was stated by De Paepe et al. [10] that there exists a polynomial time algorithm for solving the
offline ICPO-MS problem (using Lemma 9 in the paper the problem ICPO-MS can be rewritten
to the ‘easy’ problem E7 in Table 1). The algorithm however has been lost to time (personal
communication with one of the authors revealed that the current location of the file containing the
algorithm is unknown), therefore we reinvent it. Inspired by De Paepe et al. we follow a dynamic
programming approach and exploit the structure of optimal walks for offline ICPO-MS.

We use similar notation and assumptions as in [6]:

– There is a request r0 = (0, o, o). Note that if such a request r0 is not present in a request
sequence, then it can be added without altering the make-span of any solution.

– Requests are sorted and indexed by non-decreasing drop-off location. We denote the requests
as r−L, . . . , r0, . . . , rR with b−L ≤ · · · ≤ b0 ≤ · · · ≤ bR. Therefore r−L denotes the leftmost
request, and rR the rightmost request.

– A request ri is dropped off the last time the server visits its drop-off location bi ; this assumption
does not affect the make-span of a solution.

The dynamic program we introduce relies on the fact that an optimal walk has the kind of spiral
structure as shown in Figure 3.13. The length of the visits to the positive part of the line are
non-increasing over time, similarly with the visits to the negative part of the line. To see this,
suppose there was an increase in amplitude, then on the smaller amplitude part of the walk no
requests are dropped off. This is because we assume requests are dropped off the last time their
drop-off location is visited, therefore the first departure was redundant. This is formalized in
Lemma 3.25 which is adapted from a similar lemma in [6].

Lemma 3.25. At any time in a feasible walk, the set of served requests is the union of two
disjoint sets S1 = {r−L, . . . , ri} and S2 = {rj , . . . , rR} for some i ≤ 0 and j ≥ 0.

Proof. Suppose there is a time T at which the set of requests does not have the claimed structure.
Then there is some request rk that is dropped off at time T , and a request rl that is still unserved
at time T with l > k ≥ 0 or l < k ≤ 0. Without loss of generality assume the first to be true. At
time T ′ > T when request rl is dropped off, the server is at position bl . Since the walk ends at the
origin o = 0 and 0 ≤ bk < bl , the server passes drop-off location bk at some time after T . Since a
request is dropped off the last time the server visits its drop-off location, request rk is dropped off
at some time after T . This contradicts that rk was dropped off at time T , therefore the lemma
holds.

At the start of an optimal solution we see therefore that a set of left-most requests or right-most
requests is served, after which we return to the origin and arrive in a similar situation as before.

r−L r−1 r0 r1 r2 rR

o

Figure 3.13: Spiral structure of an optimal solution to offline ICPO-MS. Crosses indicate a request
being dropped off.
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r−L r−1 r0 r1 r2 rR

o

S2S1

Figure 3.14: Example of two contiguous sets S1, S2 in the context of Lemma 3.25.

At this time, there are fewer unserved requests, and again the server will serve a set of left-most
requests or right-most requests. This process continues until all requests have been served. Hence,
this problem has optimal substructure. Based on this we give the following definition.

Definition. Let i ∈ [−L − 1, 0] and j ∈ [0, R + 1], then we define V (i , j) as the optimal
make-span of a walk starting and ending at the origin, serving requests {rl | l ≤ i ∨ l ≥ j}.

Note that the optimal make-span for the entire request sequence is then V (0, 0). In the following
lemma, a recurrence is given for V (i , j).

Lemma 3.26. Given an instance of ICPO-MS with requests r−L, . . . , rR, some indices i ∈
[−L − 1, 0], j ∈ [0, R + 1], and make-spans V (h, g) for h ∈ [−L − 1, i), g ∈ (j, R + 1]; then
the makespan V (i , j) is given by the following recurrence:

V (i , j) =


0 if i = −L− 1 and j = R + 1

tR + 2d(o, bR) if i = −L− 1 and j = R

t−L + 2d(o, b−L) if i = −L and j = R + 1

min{V −(i , j), V +(i , j)} if i ∈ [−L, 0] and j ∈ [0, R]

,

where

V −(i , j) = min
−L−1≤h<i

{max{V (h, j), max
h<k≤i

tk}+ 2d(o, bh+1)},

V +(i , j) = min
j<g≤R+1

{max{V (i , g), max
j≤k<g

tk}+ 2d(o, bg−1)}.

Proof. We start by proving the first three base cases. For the first case, note that

{rl | l ≤ −L− 1 ∨ l ≥ R + 1} = ∅,

therefore no requests need to be served, and the optimal make-span is 0. For the second base case,
the set of requests that need to be served is

{rl | l ≤ −L− 1 ∨ l ≥ R} = {rR},

hence only request rR needs to be served. The optimal make-span for this is obtained by a server
that waits until time tR, picks up the request at the origin, drops it off at bR and moves back to
the origin immediately afterwards. This yields V (−L − 1, R) = tR + 2d(o, bR). The third base
case is symmetrical.

We prove the recurrence of V (i , j) by proving ≤ and ≥.

≤: We prove a make-span of value min{V −(i , j), V +(i , j)} is feasible for serving requests rl with
l ≤ i or l ≥ j . Regarding V −(i , j), we construct a route consisting of two parts. First, for any value
of h the server starts by executing the route attaining V (h, j) in which requests {rl | l ≤ h ∨ l ≥ j}
are served. After this route the server is back at the origin at which the server will wait until
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all requests rk with h < k ≤ i are released, and then will pick up all of them. Next, the server
moves to bh+1 and back to the origin, dropping of requests along the way. Note that since
bh+1 ≤ bk ≤ bi ≤ 0 for all h < k ≤ i , all drop-off locations for requests rk are visited. In this
second part of the route we see therefore that requests {rk | h < k ≤ i} are served. Hence,
combining the two parts of the route, we find that requests

{rl | l ≤ h ∨ l ≥ j} ∪ {rk | h < k ≤ i} = {rl | l ≤ i ∨ l ≥ j}

are served in the constructed route. Therefore V −(i , j) is feasible. Symmetrically we have feasibility
for V +(i , j), therefore min{V −(i , j), V +(i , j)} is feasible.

≥: We prove a make-span of value min{V −(i , j), V +(i , j)} is minimal for serving requests rl with
l ≤ i or l ≥ j . From Lemma 3.25 follows that between two consecutive visits to the origin a server
serving requests rl with l ≤ i or l ≥ j either drops off requests {rk | h ≤ k ≤ i} last for some h < i

or requests {rk | j ≤ k ≤ g} for some g > j . Therefore the make-span is at least

min{ min
−L−1≤h<i

{V (h, j) + 2d(o, bh+1)}, min
j<g≤R+1

{V (i , g),+2d(o, bg−1)}}.

Furthermore, we can only leave the origin in order to drop off certain requests after they have been
released. Therefore min{V −(i , j), V +(i , j)} is the minimal make-span for serving requests rl with
l ≤ i or l ≥ j .

We can make use of the recurrence from Lemma 3.26 to calculate the optimal make-span for a
given sequence of requests. Computing V (0, 0) directly from the recursion is not efficient because
the same computation would be done multiple times. Therefore, we describe a dynamic program
which stores previously computed values, and in this way is more efficient. For constructing this
dynamic program, we use the fact that given i ∈ [−L − 1, 0] and j ∈ [0, R + 1], the recurrence
for V (i , j) only uses values V (h, j) with −L − 1 ≤ h < i and values V (i , g) with j < g ≤ R + 1.
This is more easily understood in a picture; in Figure 3.15 a table is depicted, each cell in the
table representing a values of V . In the table, the calculation of the value in a cell requires the
values of the cells above it and to the right of it. To calculate V (0, 0), we therefore need to start
at the top-right and move to the bottom-left, either row-wise or column-wise. This calculation
procedure is described in Algorithm 4, of which the correctness and time complexity is proven in
Theorem 3.27.

0 1 2 3 R + 1R

−2

−1

0

−L− 1

−L

j

i

Figure 3.15: An in-progress dynamic program calculation with L = 3 and R = 4
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Algorithm 4: Dynamic Program for Offline ICPO-MS.
Input : Sequence of requests σ
Output : The minimum make-span

1: r−L, . . . , rR ← σ sorted in non-decreasing order of drop-off location

2: V (−L− 1, R + 1)← 0

3: V (−L− 1, R)← tR + 2d(o, bR)

4: V (−L,R + 1)← t−L + 2d(o, b−L)

5: for i ← −L− 1 to 0 do
6: for j ← R + 1 to 0 do
7: V −(i , j)← min−L−1≤h<i{max{V (h, j),maxh<k≤i tk}+ 2d(o, bh+1)}
8: V +(i , j)← minj<g≤R+1{max{V (i , g),maxj≤k<g tk}+ 2d(o, bg−1)}
9: V (i , j)← min{V −(i , j), V +(i , j)}

10: return V (0, 0)

Theorem 3.27. Algorithm 4 computes the minimum make-span of a walk for ICPO-MS in
time O(n4), where n is the number of requests.

Proof. Correctness of the program follows from Lemma 3.26 and the fact that values of V are
referenced only after they have been computed. For the runtime, first note that the sorting in
line 1 can be done in O(n log n) time and lines 2-4 are performed in O(1) time. For the nested
loop, note that L ≤ n and R ≤ n, therefore lines 7-9 are executed O(n2) times. For line 7, since
i ≤ 0, the minimum is taken over O(n) values. For calculating each value, the maximum has to be
taken over O(n) release times. Hence line 10 takes in total at most O(n2) time. Similarly, line 8
takes at most O(n2) time and line 9 takes O(1) time. The nested for loop can hence be executed
in O(n4) time, and since this is the most computationally expensive part of the program, the entire
program can be executed in O(n4) time.

Remark. By precomputing the maximums of release times, the algorithm can be adjusted to
run in O(n3) time.

Remark. Algorithm 4 computes the make-span of an optimal solution. To compute the optimal
solution itself, an extra table can be introduced that stores the choices leading to the optimal
solution, or alternatively the choices may be reconstructed from the table of value V .
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3.4.2 ICPO-MF

As in most other sections, we start by providing a lower bound on the competitive ratio any
deterministic algorithm can have. First we prove a lemma that will help us in constructing a lower
bound.

time

pos

1

1 2 S = 30
. . .

. . .

ALG

OFF

(a) Example with T = 1

time

pos

1

1 S = 20
. . .

. . .

ALG

OFF

(b) Example with T = 2

Figure 3.16: Illustration of Lemma 3.28

Lemma 3.28. Let ALG be an arbitrary deterministic online algorithm. The adversary can
release requests such that there is a value S ∈ R≥0 and an offline algorithm OFF satisfying
the following properties:

(i) At time S the ALG server is at location 1 and has no unserved requests.

(ii) At time S the OFF server is at the origin and has no unserved requests. Furthermore,
the flow times of the requests it has served do not exceed 3.

Proof. The adversary starts by releasing request r1 = (0, o, 1). This request is dropped off by the
ALG server at time T ≥ 1. We perform a case distinction based on the value of T .

Case 1: 1 ≤ T < 2. The adversary releases a second request r2 = (T, o, 1). Define S as the time
r2 is dropped off, therefore S ≥ T + 2. By construction, property (i) holds. Let the OFF server wait
until time T , and then serve both request r1 and r2, returning to the origin immediately afterwards.
This results in the OFF server being at the origin with no unserved requests at time T + 2 ≤ S at
which it stays until time S. Furthermore, the flow times of requests r1 and r2 are F1 = T + 1 < 3

and F2 = 1 respectively, none exceed 3. Therefore, property (ii) holds and thereby the lemma holds.

Case 2: T ≥ 2. The adversary releases no other requests until time S. Define S := T ≥ 2; it is
easily seen that property (i) holds. Let the OFF server pick up and serve request r1 immediately at
time 0. Afterwards, the server can return to the origin directly such that it is back at time 2 ≤ S.
If needed, the server can wait until time S. Since the flow time of request r1 is 1, we see that
property (ii) and therefore the lemma holds.

Theorem 3.29. No deterministic online algorithm ALG for ICPO-MF has a competitive ratio
lower than (

√
10 + 2)/3 ≈ 1.7208.

Proof. Let ALG be an arbitrary deterministic online algorithm. From Lemma 3.28, we have S and
OFF satisfying the listed properties. Let ρ be the sequence of requests released by the adversary
before time S.

At time S the adversary releases two new requests s1 = (S, o, 1) and s2 = (S, o,−1). Without loss
of generality, we can assume that the ALG server drops off request s1 before s2 at time Q ≥ S + 2

(otherwise the signs of all subsequent requests can be flipped). We perform a case distinction on
the value of Q− S.
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(a) Best ALG can do: Case 1.2.2
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(b) Best ALG can do: Case 2.2

Figure 3.17: Illustration of Theorem 3.29

Case 1: 2 ≤ Q − S ≤
√

10. As s1 is dropped off, the adversary releases another request
s3 = (Q, o, 1). We perform a case distinction on whether s2 or s3 is dropped off first by ALG.

Case 1.1: ALG drops off s3 before s2. The completion time of s2 is at least Q+1+2+1 = Q+4,
therefore the maximum flow time of ALG is at least Q− S + 4.

Case 1.2: ALG drops off s2 before s3. Denote the time request s2 is dropped off by R ≥ Q+ 2.
At that time, the adversary releases its last request s4 = (R, o,−(Q− S + 1)). We distinguish
cases based on the order in which the ALG server drops off s3 and s4.

Case 1.2.1: ALG drops off s4 before s3. The completion time of s3 is at least R + 1 + 2(Q−
S + 1) + 1 ≥ R + 8 giving a maximum flow time of at least R + 8−Q ≥ 10 ≥ Q− S + 4.

Case 1.2.2: ALG drops off s3 before s4. The flow time of s4 is at least R+1+2+Q−S+1−R =

Q− S + 4. Therefore also the maximum flow time of ALG is Q− S + 4.

Hence, we see that in all cases the maximum flow time of ALG is at least Q−S+ 4. From property
(ii) of S we know that the flow times of the requests served by OFF before time S do not exceed 3.
From time S onward, the OFF algorithm can serve request s2, wait until time Q and then serve s1
and s3 together. The yields flow times of 1, 1 and Q− S + 1 for r1, r2 and r3 respectively. The
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OFF server is back at the origin at time Q+ 2.

In Case 1.1, OFF is finished and has a maximum flow time of Q − S + 1. In Case 1.2, the OFF

server will wait at the origin until time R and then serve request s4 as it is released, yielding a flow
time of Q− S + 1. Therefore, also in Case 1.2 the maximum flow time of OFF is Q− S + 1. No
further requests are released, therefore the complete request sequence is σ = ρ ∪ (s1, s2, s3) in
Case 1.1 and σ = ρ ∪ (s1, s2, s3, s4) in Case 1.2. In conclusion, in Case 1 the competitive ratio of
ALG is at least

ALG(σ)

OPT(σ)
≥

ALG(σ)

OFF(σ)
≥
Q− S + 4

Q− S + 1
≥
√

10 + 4√
10 + 1

=

√
10 + 2

3
.

Case 2:
√

10 < Q− S. The adversary releases its last request s3 = (S + 4, o,−3). We distinguish
cases based on the order in which the ALG server drops off s2 and s3.

Case 2.1: ALG drops off s3 before s2. The completion time of s2 is at least Q+ 1 + 6 + 1 = Q+ 8

giving a maximum flow time of at least 8 +
√

10 ≥ 2 +
√

10.

Case 2.2: ALG drops off s2 before s3. We see that the flow time of s3 is Q+1+2+3−(S+4) =

Q− S + 2 ≥ 2 +
√

10.

The OFF server first serves s1 and s2; it is back at the origin at time S + 4. At this time, s4 is
released and will directly be served, yielding a maximum flow time of 3. Therefore:

ALG(σ)

OPT(σ)
≥

ALG(σ)

OFF(σ)
≥
√

10 + 2

3
.

Next, we will investigate the performance of the ALTERNATE algorithm in this problem setting.
Lower and upper bounds of 5 on the competitive ratio of ALTERNATE are proven, after which we
conclude that ALTERNATE has a competitive ratio of 5.

time

pos

1

−1

1 2 3 4 5 6 7 80

ALTERNATE

OPT

Figure 3.18: Illustration of Lemma 3.30 with ε = 0.25

Lemma 3.30. ALTERNATE has a competitive ratio of at least 5 for ICPO-MF.

Proof. Consider the sequence of requests σ = (r1, r2, r3, r4, r5) with r1 = (0, o, 1), r2 = (ε, o, 1),
r3 = (2 + ε, 0, ε), r4 = (2 + 2ε, 0,−1), and r5 = (4− ε, 0, 1); here ε is a sufficiently small positive
number.

The ALTERNATE server first serves r1 and ignores the release of request r2. The server finishes
request r1 at C1 = 1, and is back at the origin at time 2. Next request r2 is served, which is dropped
off at time C2 = 3 and the server has returned to the origin at time 4. At this time there are
three released but yet unserved requests. The ALTERNATE server will choose to go to the positive
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part to serve requests r3 and r5 since r3 has the earliest release time among the three. This yields
completion times C3 = 4 + ε and C5 = 5. Lastly, the ALTERNATE server picks up request r4 and
drops it off at time C4 = 7. From the completion times and release times, the flow times of the
requests follow:

F1 = 1, F2 = 3− ε, F3 = 2,

F4 = 5− 2ε, F5 = 1 + ε.

Therefore ALTERNATEFmax(σ) = 5− 2ε.

The optimal server starts by waiting ε time units until request r2 is released, then it picks up both
r1 and r2 and drops them off at time C∗1 = C∗2 = 1 + ε. When the server is back at the origin it
serves request r3 that has arrived, yielding completion time C∗3 = 2 + 2ε. At time 2 + 3ε, the server
is back at the origin and it serves requests r4 and r5 consecutively. This gives completion times
C∗4 = 3 + 3ε and C∗5 = 5 + 3ε. From the completion times and release times the following flow
times can be calculated:

F ∗1 = 1 + ε, F ∗2 = 1, F ∗3 = ε,

F ∗4 = 1 + ε, F ∗5 = 1 + 4ε.

Therefore OPTFmax(σ) = 1 + 4ε, and

ALTERNATEFmax(σ)

OPTFmax(σ)
=

5− 2ε

1 + 4ε
.

By making ε small enough, the lower bound on ALTERNATE’s competitive ratio can be made
arbitrarily close to 5.

Lemma 3.31. ALTERNATE is 5-competitive for ICPO-MF.

Proof. Let σ be an arbitrary sequence of requests. We consider an arbitrary request ri ∈ σ and will
prove its flow time Fi is not larger than 5 times the maximum flow F ∗ of the optimal algorithm
OPT. Without loss of generality we can assume bi ≥ 0 as the proof for bi < 0 is symmetric.

There are three ways the ALTERNATE server can serve request ri , and these are listed below.

1. As soon as request ri is released the ALTERNATE server leaves the origin to serve it.

2. When request ri is released the ALTERNATE server is or begins serving requests at the negative
or positive part of the line, and serves requests on the positive part including ri as soon as its
done.

3. When request ri is released the ALTERNATE server is or begins serving requests at the negative
or positive of the line, serves requests on the negative part when its done, and after that it
serves requests on the positive part.

Note that these are indeed all possible cases. In particular, it is not possible that after ri is released
the ALTERNATE server would leave the origin twice without intending to drop off ri . Indeed, if the
ALTERNATE server leaves to the positive part of the origin it will also drop off ri . The option that is
left is that the server leaves to the negative part of the line two times in a row after ri is released,
but this is not possible. One can see this by noting that during the first excursion to the negative
part of the line, all requests with release time no later than ti are served. Therefore after that first
excursion, ri would be the request with earliest release time and the ALTERNATE server would decide
to serve requests on the positive part of the line.
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time

. . . . . .

(a) Case 1

time
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(b) Case 2

time
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(c) Case 3

Figure 3.19: The three ways the ALTERNATE server can serve ri . Red and green indicate requests
with drop-off location on the negative and positive part of the line respectively. Orange indicates that
requests were served either on the negative or the positive part of the line.

Consider the third case. Let rf be the request in the first excursion with the furthest drop-off
location. Similarly define rm for the second excursion, the one to the negative part of the line.
Now, note that for any request ri we have F ∗ ≥ d(o, bi) (Equation 3.3), therefore the flow time of
request ri is

Fi ≤ 2d(o, bf ) + 2d(o, bm) + d(o, bi)
(3.3)

≤ 5F ∗.

Case 1 and 2 can be proven similarly to yield bounds of F ∗ and 3F ∗ respectively, which are both
stricter than 5F ∗.

Since ri was arbitrary we have Fi ≤ 5F ∗ for all requests ri , hence ALTERNATEFmax(σ) ≤ 5OPTFmax(σ).

Theorem 3.32. ALTERNATE has a competitive ratio of 5 for ICPO-MF.

Proof. The result follows directly from Lemma 3.30 and 3.31.
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3.4.3 ICDO-MS

First we will show that this problem setting is equivalent to closed OLTSP, allowing us to use
existing results. Afterwards, we investigate the performance of the ALTERNATE algorithm in this
setting.

Lemma 3.33. (part of Lemma 6 of [10]) The ICDO-MS problem is equivalent to minimizing
make-span for closed OLTSP on the real line.

Proof. Let ρ = (s1, . . . , sn) be an arbitrary sequence of requests for closed OLTSP on the real line.
Here si = (t ′i , pi) denotes a request released at time t ′i specifying a point pi that has to be visited.
We construct a sequence of requests for ICDO-MS: let σ = (r1, . . . , rn) with ri = (ti , ai , o), and
set ti = t ′i and ai = pi . Any walk that solves ICDO-MS for request sequence σ is also valid for the
OLTSP problem with input ρ since all positions are visited by the server and the walk ends at the
origin. Also, the walk has the same make-span for both problems.

This conversion can also be done the other way around. In the same way, any route that solves the
OLTSP problem for an input ρ is also valid for the ICDO-MS problem for the corresponding input σ.
Any time the server is at a pick-up location, the request is picked up. Now because the route visits
all points pi for the OLTSP, also all pick-up locations are visited for the ICDO-MS problem. Since
the server returns to the origin at the end, the server can drop off all requests at that moment.

Applying Lemma 3.33, we can use existing results of closed OLTSP on the line for the ICDO-MS
setting.

Theorem 3.34. (Theorem 3.3 of [3]) No deterministic online algorithm has a competitive
ratio smaller than (9 +

√
17)/8 ≈ 1.6404 for ICDO-MS.

Theorem 3.35. (Theorem 3.5 of [6]) ‘Algorithm 1’ has a competitive ratio of (9 +
√

17)/8 ≈
1.6404 for ICDO-MS, and this is the best possible competitive ratio.

The authors of [6] that introduce ‘Algorithm 1’ note that at any time t, sufficient input for an
online algorithm is the position of the server at time t, and the left-most and right-most unserved
requests at that time. Based on this observation, the authors describe ‘Algorithm 1’ which makes
decisions only when a new left-most or right-most unserved request is released. ‘Algorithm 1’ uses
a complicated set of rules to calculate how the server should serve all remaining requests, and
return to the origin. This involves determining whether the server should wait, and whether it
should first go to the left side of the line and then the right, or vice versa.

‘Algorithm 1’ as described in [6] runs in constant time, however it is only run when a new extreme
request (a new left-most or right-most request) is released. One way of determining whether a
released request is an extreme request, would be to simply go through all unserved requests. This
would take Θ(|R|) time where |R| is the number of unserved requests. Other approaches may allow
checking whether a request is extreme in constant time, but this most likely requires keeping a data
structure updated. In any case, it is likely that the lowest possible time complexity of ‘Algorithm 1’
is non-constant, but instead depends on the number of unserved requests in some way.

We now return to our analysis of simple algorithms, and investigate the performance of the
ALTERNATE algorithm for this problem. Even though an algorithm with a best-possible competitive
ratio for this problem is already known, analyzing ALTERNATE is still interesting. In particular,
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ALTERNATE is simpler, both in terms of understanding and implementing it, as most likely in time
complexity.

First, we give a lower bound on the competitive ratio of ALTERNATE in Lemma 3.36.

Lemma 3.36. ALTERNATE has a competitive ratio of at least 2.5 for ICDO-MS.

Proof. Consider the sequence of requests σ = (r1, r2) with r1 = (1, o, 1) and r2 = (ε, o, 1) for
some small ε < 2. The ALTERNATE server picks up r1 when it is released at time 1 and serves it.
While serving r1 the ALTERNATE server ignores the release of request r2. After the server is back at
the origin it will serve request r2, resulting in a make-span of ALTERNATECmax(σ) = 5. The OPT

server would start driving towards point 1 at time 0, wait ε time units, and serve both request r1 and
r2 at the same time. This yields an optimal make-span of OPTCmax(σ) = 2 + ε. Now, taking ε small
enough, we see that the lower bound on ALTERNATE’s competitive ratio can be made arbitrarily
close to 52 = 2.5.

time

pos

1

1 2 3 4 50

ALTERNATE

OPT

Figure 3.20: Illustration of Lemma 3.36 with ε = 0.2

Now that we have a lower bound on the competitive ratio of ALTERNATE, we match this with a
corresponding upper bound in Lemma 3.38. The competitiveness proof is very similar to that of the
ICPO-MS problem, Lemma 3.20. We also use similar notation, but in the definitions the drop-off
locations are substituted by the pick-up location. For completeness, the definitions are given below.

Definition. Let S be a non-empty set or sequence of requests on one side of the line. Then let
L(S) denote the length of the shortest tour visiting all pick-up locations from requests in S,
starting and ending at the origin. We have

L(S) = 2 max
ri∈S
|ai |.

Definition. For some set or sequence of requests ρ, define

ρ+ = {ri ∈ ρ | ai ≥ o}, and, ρ− = {ri ∈ ρ | ai < o}.

Also, the same observation can be made as before:

Observation 3.37. Any algorithm has to serve the left-most request and the right-most request
while starting and ending at the origin. Hence,

OPTCmax(σ) ≥ L(σ−) + L(σ+). (3.15)

Lemma 3.38. ALTERNATE is 2.5-competitive for ICDO-MS.
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Proof. We distinguish cases based on what the ALTERNATE server is doing at the time tn at which
the last request rn becomes known. If the ALTERNATE server is idle at the origin then we simply
serve the request giving

ALTERNATECmax(σ) = tn + 2d(o, bn)
(3.2)

≤ OPTCmax(σ) + d(o, bn)
(3.1)

≤
3

2
OPTCmax(σ),

and the lemma holds.

Now, we consider the case where the ALTERNATE server is not idle at the origin at time tn, but
instead it is following some schedule S serving requests at one side of the line. The arrival of request
rn does not stop the ALTERNATE server from following S; it ignores this request and continues with
its schedule. Let T be the time it started schedule S, and let R denote the set of unserved requests
at that time T . The requests served by the ALTERNATE server in schedule S are either the requests
R− or R+, whichever set has the request with minimum release time. Without loss of generality
we assume that R+ contains the requests that are served in schedule S. Now, the make-span of
ALTERNATE can be expressed as:

ALTERNATECmax(σ) = T + L(R+) + L(R− ∪ σ−≥T ) + L(σ+≥T ). (3.16)

Indeed, the ALTERNATE server finishes schedule S at time T + L(R+) ≥ tn; this is later than tn
because recall the ALTERNATE server was performing schedule S when request rn was released.
This means no new requests arrive after schedule S is finishes. Therefore, the last task for the
ALTERNATE server is to serve the remaining requests with drop-off location on the negative part of
the line R− ∪ σ−≥T , and the remaining requests at the positive part σ+≥T .

For the OPT server, consider the first request rf from σ≥T that is picked up by the OPT server.
Since rf is in σ≥T , by definition tf ≥ T . The OPT server has to at least wait until this release time
tf , and then serve all requests in σ≥T . The OPT server therefore needs to move to the furthest
negative request and positive request in σ≥T , and return to the origin. If the server would start at
the origin, then this would take at least L(σ+≥T ) + L(σ−≥T ) time; a distance of d(o, af ) may have
already been covered though, therefore this can be subtracted. This yields

OPTCmax(σ) ≥ tf + L(σ+≥T ) + L(σ−≥T )− d(o, af ) ≥ T + L(σ+≥T ) + L(σ−≥T )− d(o, af ). (3.17)

Using Equations 3.16 and 3.17 we can bound ALTERNATECmax(σ) by OPTCmax(σ). First, from
Equation 3.16 we see

ALTERNATECmax(σ)
(3.16)

≤ T + L(R+) + L(R− ∪ σ−≥T ) + L(σ+≥T ).

We rearrange and add and subtract appropriate terms to get

ALTERNATECmax(σ) ≤ T + L(σ+≥T ) + L(σ−≥T ) + L(R+) + L(R− ∪ σ−≥T )− L(σ−≥T ).

Next, we apply Equation 3.17, which yields

(3.17)

≤ OPTCmax(σ) + d(o, af ) + L(R+) + L(R− ∪ σ−≥T )− L(σ−≥T )

≤ OPTCmax(σ) + d(o, af ) + L(R+) + L(R− ∪ σ−≥T ).

The optimal make-span is at least 2d(o, af ) (Observation 3.1), therefore

(3.1)

≤
3

2
OPTCmax(σ) + L(R+) + L(R− ∪ σ−≥T ).

Note that R+ ⊆ σ+ and R− ∪ σ−≥T ⊆ σ
−, therefore using Inequality 3.15 we have

ALTERNATECmax(σ)
(3.15)

≤
3

2
OPTCmax(σ) + OPTCmax(σ) =

5

2
OPTCmax(σ),

and the lemma also holds in this case.
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Theorem 3.39. ALTERNATE has a competitive ratio of 2.5 for ICDO-MS.

Proof. Follows directly from Lemma 3.36 and 3.38.

Offline setting

The dynamic programming approach of Algorithm 5 from [6] solves the closed offline travelling
salesman problem (TSP) in O(n2) time, where n is the number of requests. In Lemma 3.33 we
proved the online ICDO-MS problem is equivalent to OLTSP, the same argument applies to the
offline setting. Therefore, Algorithm 5 from [6] solves offline ICDO-MS in O(n2) time. As noted
before, for proving the offline algorithm for ICPO-MS we used a similar structure as in [6], therefore
the approach outlined in the paper is similar to the offline discussion in Section 3.4.1. First, a
property of feasible tours is identified and proven, this structure reveals optimal substructure which
is then exploited to obtain a recurrence for the optimal make-span. Lastly, the dynamic program is
given for calculating the optimal make-span in Algorithm 5 in [6].

In Algorithm 5 in [6], the authors use the assumption that ti ≥ |ai | (using the notation from this
report). This assumption can be made, without loss of generality, because the server cannot reach
|ai | before time ti , therefore transforming input to match this assumption does not change the
set of feasible solutions. This does entail that before applying Algorithm 5 the input has to be
modified to match the assumption, or the base cases need to be changed from t−L and tR to
max{t−L, |a−L|} and max{tR, |aR|} so that the algorithm works for any input.
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3.4.4 ICDO-MF

The lower bound on the competitive ratio of any deterministic online algorithm in the UCDO-MF
section only used one request, therefore it also holds for the ICDO-MF problem setting. This is
stated in the following theorem.

Theorem 3.40. No deterministic online algorithm ALG has a competitive ratio smaller than 2
for ICDO-MF.

Proof. Identical to the proof of Theorem 3.13.

The analysis of the ALTERNATE algorithm for ICDO-MF follows the same structure as the one for
ICPO-MF. In Lemma 3.41 we give a lower bound of 6 on the competitive ratio of ALTERNATE for
ICDO-MF, after which we give the 6-competitive proof thereby proving a competitive ratio of 6.

time

pos

1

-1

1 2 3 4 5 6 7 8 9 10 110

ALTERNATE

OPT

Figure 3.21: Illustration of Lemma 3.41 with ε = 0.1

Lemma 3.41. ALTERNATE has a competitive ratio of at least 6 for ICDO-MF.

Proof. Consider the sequence of requests σ = (r1, r2, r3, r4, r5, r6), with r1 = (1, 1, 0), r2 =

(1 + ε, 1, 0), r3 = (3 + ε,−1, 0), r4 = (5 + ε,−ε, 0), r5 = (5 + 2ε, 1, 0) and r6 = (7− ε,−1, 0) for
some small positive ε.

The ALTERNATE server leaves the origin at time 1 to serve request r1, and ignores the release
of request r2. After having dropped off r1 at the origin at time C1 = 3, the server operated by
ALTERNATE will serve request r2 and drop it off at C2 = 5. Next the server goes to the negative
part of the line to serve request r3, and drops it off at time C3 = 7. Back at the origin at time 7,
the released but yet unserved requests are r4, r5 and r6. Request r4 with pick-up location at the
negative part of the line has the earliest release time, hence the ALTERNATE server serves requests
r4 and r6 yielding C4 = C6 = 9. Lastly request r5 is served, dropping it off at time C5 = 11. From
the completion times and release times the following flow times follow:

F1 = 2, F2 = 4− ε, F3 = 4− ε,
F4 = 4− ε, F5 = 6− 2ε, F6 = 2 + ε.

Therefore ALTERNATEFmax(σ) = 6− 2ε.

The OPT server moves to position 1 at time 0, and waits there for ε time units until request r2
is released. Then it picks both up and drops them off at time C1 = C2 = 2 + ε. Afterwards, the
server moves to point −1 to pick up request r3 at time 3 + ε and drops it off at the origin at time
C3 = 4 + ε. Next, the server moves to point 1 and waits there for ε time units to pick up request
r5 when it is released, and drops it off at time C5 = 6 + 2ε. Now, the server goes to location −ε to
pick up request r4, and immediately returns to the origin to drop it off at time C4 = 6 + 4ε. Finally
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the OPT server picks up r6 to then drop it off at time C6 = 8 + 4ε. Subtracting each release time
from the corresponding completion time results in the following flow times:

F ∗1 = 1 + ε, F ∗2 = 1, F ∗3 = 1,

F ∗4 = 1 + 3ε, F ∗5 = 1, F ∗6 = 1 + 5ε.

Hence the optimal maximum flow time for input σ is OPTFmax(σ) = 1 + 5ε. The lower bound on
the competitive ratio of ALTERNATE is therefore

ALTERNATEFmax(σ)

OPTFmax(σ)
=

6− 2ε

1 + 5ε
.

By taking ε small enough, this lower bound on ALTERNATE’s competitive ratio can be made arbitrarily
close to 6.

Lemma 3.42. ALTERNATE is 6-competitive for ICDO-MF.

Proof. Let σ be an arbitrary sequence of requests. We consider an arbitrary request ri ∈ σ and will
prove its flow time Fi is not larger than 6 times the maximum flow F ∗ of the optimal algorithm
OPT. Without loss of generality we can assume ai ≥ 0 as the proof for ai < 0 is symmetric.

Similar to Lemma 3.31, there are three ways the ALTERNATE server can serve request ri , which are
depicted in Figure 3.22.

time

. . . . . .

(a) Case 1

time

. . . . . .

(b) Case 2

time

. . . . . .

(c) Case 3

Figure 3.22: The three ways the ALTERNATE server can serve ri . Red and green indicate requests
with pick-up location on the negative and positive part of the line respectively. Orange indicates that
requests were served either on the negative or the positive part of the line.

Consider case 3. In this case, at the time that ri is released, the ALTERNATE server is busy serving
requests at some part of the line, and serves requests at the negative part afterwards. Let rf be
the request in the first excursion with the furthest pick-up location, and define rm similarly for the
second excursion. Now, using the fact that for any request ri we have F ∗ ≥ d(o, bi) (Equation
3.3), the flow time of request ri can be bounded:

Fi ≤ 2d(o, bf ) + 2d(o, bm) + 2d(o, bi)
(3.3)

≤ 6F ∗.

Case 1 and 2 can be proven similarly to yield bounds of 2F ∗ and 4F ∗ respectively, which are both
stricter than 6F ∗.

Since ri was arbitrary we have Fi ≤ 6F ∗ for all requests ri , hence ALTERNATEFmax(σ) ≤ 6OPTFmax(σ).

Theorem 3.43. ALTERNATE has a competitive ratio of 6 for ICDO-MF.

Proof. The result follows directly from Lemma 3.41 and 3.42.
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Chapter 4

Stochastic Analysis

In the previous chapter, we conducted a competitive analysis where a type of worst-case performance
of online algorithms is considered. This chapter is about the average performance of HOMESICK

and ALTERNATE. We make an assumption on the probability distribution of the input, and we will
see that then the unit capacity problem settings have a very close connection to queueing systems.
Queueing theory allows us to then compute the expected flow time of requests in steady state.

4.1 Preliminaries

Before outlining how the unit capacity problem settings can be viewed as a queueing system, we
list some basic information about queueing systems.

Queueing systems

A queueing system, an example is depicted in Figure 4.1, consists of three main parts: arriving tasks
(often called customers), a queue, and servers that perform tasks. There are several parameters
that vary between queueing systems, five of which are listed below:

– The arrival process of tasks.

– The service times of tasks.

– The number of servers.

– The service discipline.

– The size of the queue.

Kendall [14] introduced a notation for classifying queueing systems based on these different
parameters, namely a code consisting of three parts: A/S/k . Here A describes the arrival process,
S the service time distribution and k the number of servers. There are also extensions of this
notation where more parameters are described, such as the service discipline or size of the queue.
Unless otherwise specified, in these queueing systems it is assumed that the queue has infinite size,
and that the service discipline is first-come-first-served (FCFS).

Poisson process

The standard (homogeneous) Poisson process models random events occurring over time at a fixed
rate λ ∈ R>0. We will not go into the formal definition of a Poisson process, but briefly list some
of its convenient properties.
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µλ

Queue Server

Figure 4.1: A standard queueing system

– The times between events are exponentially distributed with parameter λ.

– The number of events that occur in t time units is distributed according to a Poisson
distribution with parameter tλ. More specifically, letting N(t) denote the number of events
that occur in the interval [0, t], then

P(N(t) = n) = e−tλ
(tλ)n

n!
.

The Poisson process has independent increments. This implies that the distribution of the
number of events in an interval of time only depends on the length of the interval, not on
previous events. Therefore, for any s, t ≥ 0 we have P(N(s + t)−N(s) = n) = P(N(t) = n).
Also note that E[N(t)] = λt, so λ can be viewed as the expected number of requests that
arrive per time unit.

– Given that an event occurs within an interval of time [s, t] with t ≥ s, then the time T at
which the event occurs is uniformly distributed in [s, t].

Queueing systems that use Poisson arrivals have a useful property. Namely, the probability that
the system is in some state upon arrival of a task is equal to the probability that the system is in
that state in any given time. This is often referred to with the acronym PASTA which stands for
Poisson Arrivals See Time Averages.

Little’s law

Little’s law expresses an intuitive but powerful relation. Namely, in a queueing system, the expected
number of tasks in the queue is equal to the expected time a task spends in the queue multiplied
by the arrival rate of tasks. Letting λ denote the arrival rate, L the length of the queue, and W
the time spent in the queue (the waiting time), then

E[L] = λ · E[W ].
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4.2 The HOMESICK algorithm

We can think of the OLDARP where the server has unit capacity and is controlled by the HOMESICK

algorithm as a queueing system. We abstract away from HOMESICK serving requests in the UCPO
and UCDO settings, and outline how these can more generally be seen as tasks. Such a task
encapsulates all the work done by HOMESICK to serve a request: moving towards the pick-up location
to pick up the request, dropping off the request at the drop-off location, and returning to the origin.
A certain request ri = (ti , ai , bi) can be considered as a task τi as follows:

– The task τi arrives at the request’s release time ti .

– The service time of task τi is d(o, ai) + d(ai , bi) + d(bi , o); this is 2d(o, bi) = 2|bi | for the
UCPO setting, and 2d(o, ai) = 2|ai | for the UCDO setting.

Notice that in the UCPO setting, if the drop-off locations of requests are distributed according
to some distribution G, then the service time distribution of tasks is 2|G|. The same holds for
the UCDO setting, but then the pick-up locations are distributed according to G. Now that we
have defined what tasks are and determined their service times, we need to determine the other
parameters of the queueing system. For the arrival process, it is not too unreasonable to assume
that requests, and therefore tasks, arrive according to a Poisson process. We make this assumption,
and do not consider an arbitrary arrival process, because a Poisson process allows for an elegant
mathematical analysis. For the service discipline it is clear that the HOMESICK algorithm translates
to a FCFS service discipline. Lastly, in our OLDARP settings there is only one server, and there is
no limit on the number of unserved requests. Therefore, in the queueing system there is also only
one server, and the size of the queue is infinite. Combining the parameters, we find the UCPO and
UCDO problems can be viewed as an M/G/1 queueing system. The M means Poisson arrivals and
the G denotes that service times are identically and independently distributed (i.i.d.) according to
some unspecified distribution G.

For analyzing the M/G/1 queue, we follow the mean value approach for analyzing M/G/1 queueing
systems as described in the lecture notes written by Ivo Adan et al. for the course “Queueing
Systems” at the TU/e [1]. We use λ to denote the arrival rate of the Poisson process. Furthermore,
we use the continuous random variable B to denote the service time distribution, and ρ to denote
the fraction of time the server is busy serving tasks. We assume ρ < 1; in this case ρ = λ · E[B],
the expected amount of ‘work units’ that arrive per time unit since HOMESICK serves tasks as soon
as they arrive. Lastly, for a random variable X, we write fX and FX for the probability density
function and cumulative distribution function respectively.
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4.2.1 Waiting time of a task

Adapted from Section 7.6 of [1].

Consider a task τ arriving in the steady state of HOMESICK. We will investigate the time between
the arrival of τ and the time the server leaves the origin to perform task τ . We call this time the
waiting time of task τ , and denote it with the random variable Wτ .

To calculate Wτ , we use the law of total expectation and condition on whether the server is busy
upon arrival of task τ :

E[Wτ ] = E[Wτ | server is busy upon arrival] · P(server is busy upon arrival)

+ E[Wτ | server is idle upon arrival] · P(server is idle upon arrival).

If the server is idle at the moment task τ arrives, then the server will leave the origin immediately to
perform the task. Therefore E[Wτ | server is idle upon arrival] = 0, and the second term vanishes.
If instead, the server is busy upon arrival, then the server first needs to finish its current task,
and then perform each task that is before τ in the queue. Let the random variable R denote the
residual service time of the task that is currently being served by the HOMESICK server, and let L
denote the number of requests that are in the queue upon arrival of task τ . Then,

E[Wτ | server is busy upon arrival︸ ︷︷ ︸
A

] = E[R] + E[L | A] · E[B].

To calculate E[L | A], we apply the law of total expectation to E[L] as follows:

E[L] = E[L | A] · P(A) + E[L | server is idle upon arrival]︸ ︷︷ ︸
=0

· P(server is idle upon arrival).

Now, the PASTA property for queueing systems with Poisson arrivals tells us that arriving tasks
encounter on average the same situation as an outside observer. Therefore, recalling that ρ denotes
the fraction of time a server is busy, we have

P(A) = P(server is busy) = ρ, and hence, E[L | A] =
E[L]

ρ
.

Finally, by using the previous equations we find

E[Wτ ] = E[Wτ | A] · P(A) = (E[R] + E[L | A] · E[B]) · ρ = ρ · E[R] + E[L] · E[B]. (4.1)

Applying Little’s law to the queue, we find that the mean number of tasks in the queue is the
product of the mean time a task spends in the queue and the arrival rate of new tasks. This means
we have E[L] = E[Wτ ] · λ. Substituting this expression in Equation 4.1 yields

E[Wτ ] = ρ · E[R] + E[Wτ ] · λ · E[B]︸ ︷︷ ︸
=ρ

=⇒ (1− ρ)E[Wτ ] = ρ · E[R] =⇒ E[Wτ ] =
ρ · E[R]

1− ρ .

The expected residual service time E[R] is still unknown; we will calculate this in the next section.
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4.2.2 Residual service time

Adapted from Section 7.7 of [1].

We now consider in more detail the case where a task arrives when the server is busy. Our aim is
to compute the expected residual service time, i.e., the expected amount of time it takes for the
server to finish its current task in service. To compute this residual service time, we first consider
the total service time X of the task in service. The probability density function of X, fX(x), is not
exactly equal to fB(x). Indeed, given that the server is busy, a task is more likely to arrive during
longer service times, therefore fX(x) is directly proportional to x . Letting C ∈ R be a constant, we
see

fX(x) = C · x · fB(x).

A density function should integrate to 1, therefore∫ ∞
0

C · x · fB(x) dx = C · E[B] = 1 =⇒ C =
1

E[B]
, hence, fX(x) =

x · fB(x)

E[B]
.

Using the distribution of the total service time, we can calculate the distribution of the residual
service time. First we condition on the total service time. Suppose the task we are considering
arrives in a service time of length x , then its arrival time is uniformly distributed in that service
interval. From this it is easily seen that the residual service time is uniformly distributed on [0, x ],
hence

fR|X(r | X = x) =

{
1
x if r ∈ [0, x ]

0 if r 6∈ [0, x ]
.

Using the above, we can calculate the probability density function of R to find

fR(r) =

∫ ∞
x=r

fR|X(r | X = x)fX(x) dx =

∫ ∞
x=r

1

x
·
x · fB(x)

E[B]
dx =

1

E[B]

∫ ∞
x=r

fB(x) dx =
1− FB(r)

E[B]
.

Finally, the expected residual service time can be calculated:

E[R] =

∫ ∞
r=0

r · fR(r) dr =
1

E[B]

∫ ∞
r=0

r(1− FB(r)) dr

Using partial integration, we see∫ ∞
r=0

r(1− FB(r)) dr =

[
1

2
r2 · (1− FB(r))

]∞
r=0

+
1

2

∫ ∞
r=0

r2 · fB(r) dr

= lim
M→∞

(
1

2
M2 · (1− FB(M))

)
+

1

2
E[B2]

We make the following assumption.

Assumption 4.1. For the service time distribution B, we have

lim
M→∞

(
M2 · (1− FB(M))

)
= 0.

Assumption 4.1 holds for the most commonly used service time distributions, but not for all
probability distributions (e.g. the Pareto distribution with 1− F (x) = 1

x for x ≥ 1).

If Assumption 4.1 holds, then

E[R] =
E[B2]

2E[B]
.
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4.2.3 Shortest-processing-time-first discipline

We have derived the expected waiting time for a task when the server uses the FCFS service
discipline. This service discipline is not optimal with respect to the expected waiting time of tasks.
A service discipline that performs better in this regard is the shortest-processing-time-first (SPTF)
discipline. The SPTF discipline, just like the FCFS discipline, serves tasks as soon as they arrive.
However, the disciplines differ in their actions when there are multiple tasks in the queue. FCFS
will serve the task that arrived longest ago, the SPTF discipline, on the other hand, will serve the
task that has the shortest service time. The SPTF makes the optimal choice, as proven in [1], and
we make a brief intuitive argument based on [1]. To see SPTF makes the optimal choice, one can
imagine n tasks in the queue that are served by the server in the order τ1, . . . , τn. Let bi denote
the service time of task τi . Suppose no new tasks arrive, then the total waiting time of the tasks is

n∑
i=1

i−1∑
j=1

bj =

n∑
i=1

(n − i)bi .

This is seen from the fact that task τi needs to wait until the tasks before it in the order, τ1, . . . , τi−1,
are completed. The earlier a task is in the ordering, the larger the coefficient with which its service
time is multiplied. Therefore, it is clear that to obtain the lowest total waiting time, the tasks
should be ordered such that b1, b2, . . . bn are in increasing order. Recalling that bi denotes the
service time of request ri , we hence want to serve the task with shortest processing time first in
order to minimize the total (and therefore average) waiting time.

When the server uses the SPTF discipline, the expected waiting time of tasks is

E[Wτ ] = ρ · E[R] ·
∫ ∞
x=0

fB(x) dx

(1− λ ·
∫ y=x
y=0 yfB(y) dy)2

,

as derived in [1]. If Assumption 4.1 holds, then E[R] can be substituted to yield

E[Wτ ] = ρ ·
E[B2]

2E[B]
·
∫ ∞
x=0

fB(x) dx

(1− λ ·
∫ y=x
y=0 yfB(y) dy)2

.
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4.2.4 Expected flow time of requests

In the previous sections we have considered Wτ , the waiting time of a task. We now return to the
OLDARP setting and consider requests and their flow times. For deterministic inputs we investigated
the maximum flow time (Chapter 3); in this section, we will calculate the expected flow time. The
flow time of a request can be obtained simply by taking its waiting time and adding the time it
takes to move from the request’s pick-up location to the drop-off location. Therefore, when the
server is controlled by the HOMESICK algorithm, we have

E[Fr ] = E[Wr ] +
1

2
E[B].

For the UCPO problem, the server picks up a request r as soon as it starts the associated task τ ,
therefore the waiting time Wr of r equals Wτ . For the UCDO problem, driving towards the pick-up
location of a request r takes half the service time of the associated task τ , therefore

E[Wr ] = E[Wτ + B] = E[Wτ ] +
1

2
E[B].

Next, we give an example.

Example. Consider the UCDO problem where pick-up locations are uniformly distributed on
[−1, 1] and requests arrive according to a Poisson process with rate λ. As described at the
start of Section 4.2, this corresponds to tasks with service time B ∼ Unif([0, 2]). Before we
continue, we verify that Assumption 4.1 holds. Since FB(x) = 1 for x > 1, we see easily

lim
M→∞

(
M2 · (1− FB(M))

)
= 0.

Note that for the chosen service time distribution we have E[B] = 1, E[B2] = 4
3 and

ρ = E[B] · λ = λ. Therefore, when the FCFS service discipline is used, the expected flow time
of a request is

E[Fr ] = E[Wτ ] + E[B] =
λ

1− λ ·
2

3
+ 1.

For the SPTF service discipline, the expected flow time of a request is

E[Fr ] = ρ ·
E[B2]

2E[B]
·
∫ ∞
x=0

fB(x) dx

(1− λ ·
∫ y=x
y=0 yfB(y) dy)2

+ E[B]

=
2

3
λ ·
∫ 2
x=0

1
2 dx

(1− λ ·
∫ y=x
y=0

1
2y dy)2

+ 1

=
2

3
λ ·
∫ 2
x=0

1

2(1− 14λx2)2
dx + 1.

The expected flow times of requests are plotted in Figure 4.2. Figure 4.2a shows the expected
flow times separately for the two service disciplines FCFS and SPTF; Figure 4.2b plots the
ratio of the flow times of the two disciplines.

We have seen that the SPTF discipline results in lower expected flow times than FCFS. It is
natural to wonder whether this can be quantified in terms of competitive ratios for the objective of
minimizing the average flow time of a request. It turns out that, for the competitive ratio as we
have defined it, the SPTF and FCFS algorithms cannot be distinguished in terms of competitive
ratio. This is because there can be no deterministic online algorithm with a constant competitive
ratio. Indeed in e.g. the UCPO setting, the adversary can start by releasing a request r1 = (0, o, 1).
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Figure 4.2: Expected flow times of the FCFS and SPTF disciplines for different values of λ. Here,
the service time follows a uniform distribution on [0, 2].

Just as the request is picked up by the online algorithm, the adversary releases N requests with
drop-off location the origin. In this way, all requests served by the online algorithm have flow time
at least 1, while the average flow time of requests served by the optimal offline algorithm goes to 0

as N goes to infinity.

One could also think of the SPTF discipline for the objective of minimizing maximum flow. For
this objective, SPTF also has no constant competitive ratio. Indeed, if there is one request with a
drop-off or pick-up location far from the origin (large request), and there are regular arrivals of
requests that are close by (small requests), then SPTF will ignore the large request until there are
no small requests anymore. In this way, the flow time of the large request can be made arbitrarily
large.

In conclusion, for the objective of minimizing the average flow time, the SPTF algorithm performs
just as bad as the FCFS algorithm in terms of competitive ratio. This fact highlights a shortcoming
of competitive analysis when using it to decide which algorithm to use. Namely, two algorithms
that cannot be distinguished based on competitive ratio may still have different average case
performance. From the stochastic analysis we have performed in this chapter, we can conclude
that SPTF is a better choice than FCFS when minimizing the expected or average flow time of
requests. FCFS or HOMESICK, however, is a good choice for minimizing the maximum flow time,
and much safer than the SPTF algorithm.
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4.3 The ALTERNATE algorithm

For the infinite capacity problem settings and the ALTERNATE algorithm, there is no corresponding
queueing system which closely resembles the problem. The techniques from queueing theory can,
however, be used to provide formulas for the expected flow time of requests for a simplified version
of the problem. A preliminary analysis of the ALTERNATE algorithm for the original problem was not
promising; many case distinction were needed thereby creating complicated expressions.

4.3.1 Half-line with fixed service time

Suppose all requests have the exact same pick-up or drop-off location, depending on the problem.
Then the problem with the ALTERNATE algorithm reduces to the situation in Exercise 73.(ii-iii) in
[1]. We abstract away from requests and consider tasks in the same way as before. Let b denote
the fixed service time of a task, and λ the arrival rate of the Poisson process.

We calculate the expected waiting time of an arriving task. Since the waiting time is zero when the
server is idle, we find

E[Wτ ] = E[Wτ | server is busy upon arrival] · P(server is busy upon arrival). (4.2)

Since the server has infinite capacity, the arriving task only needs to wait until the current task is
completed. Given that the task arrives when the server is busy, the arrival instant will be uniformly
distributed within the service time. Therefore, since every service time is b, the expected residual
service time is E[R] = b

2 . Hence,

E[Wτ | server is busy upon arrival] = E[R] =
b

2
(4.3)

Next, we calculate the probability that the server is busy upon arrival. Using the PASTA property
this is equal to the fraction of time the server is busy. To calculate this, we consider a service
time period followed by a possible idle period. Clearly, the service period is b since all tasks have
service time b. If tasks arrived during the service period, then there is no idle period since the
server continues work after it is done with its current tasks. If no tasks arrived during the service
period, then upon return the server becomes idle. This idle period lasts until the next task arrives.
Recall that the times between arrivals of tasks in a Poisson process are exponentially distributed
with parameter λ, and that exponential distributions are memoryless. Therefore, the expected time
until the next request arrives is 1λ . Hence,

P(server is busy upon arrival) =
b

b + P(no tasks arrive during service period) · 1λ
.

Recall that the number of arriving tasks in a time period of length b is distributed according to a
Poisson distribution with parameter b · λ. Therefore,

P(server is busy upon arrival) =
b

b + e−bλ · 1λ
. (4.4)

Substituting Equations 4.3 and 4.4 in Equation 4.2 yields

E[Wτ ] =
b

2
·

b

b + e−bλ · 1λ
=

b2

2b + e−bλ · 2λ
.

The expected flow times of requests can then be calculated in the same way as for the unit capacity
problems (Section 4.2.4).
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Chapter 5

Conclusion

In this report, we considered eight different settings of the closed non-preemptive OLDARP on the
line. Our main interest was the performance of two simple algorithms we introduced: HOMESICK and
ALTERNATE. We used competitive analysis to assess the performance of these two algorithms for the
objectives of minimizing the make-span and minimizing the maximum flow time. For each problem
setting, we have proven the competitive ratio of either the HOMESICK or ALTERNATE algorithm, and
gave lower bounds on the competitive ratio any deterministic online algorithm can achieve. In
addition, we briefly considered the offline problems for minimizing the make-span, and gave optimal
algorithms for the different settings. Lastly, we investigated the performance of the HOMESICK

algorithm when assumptions are made on the probability distribution of the input. Using the close
resemblance of the problem to an M/G/1 queue, we gave an expression for the expected flow time
of requests served by HOMESICK. We also compared HOMESICK to a similar algorithm SPTF that
optimally chooses the request to serve among the waiting requests.

5.1 Discussion

In this section we discuss slight variations of the problem we considered in this report. For each
variant and problem setting we indicate whether the results can be transferred.

The open OLDARP

We considered the closed variant of the OLDARP, meaning that after having served all requests,
the server is required to return to the origin. Removing this requirement yields the open OLDARP.
For the problem settings where all drop-off locations are the origin, lifting the restriction to return
to the origin at the end makes no difference since any algorithm finishes at the origin as soon as it
drops off its last request there. Furthermore, the restriction does not make a difference for the
objective of minimizing maximum flow. However, for the cases where all pick-up locations are the
origin and the objective is minimizing make-span, the restriction does make a difference.

For the UCPO-MS problem, lifting the restriction means HOMESICK is no longer optimal, in-
stead it has a competitive ratio of 2. For the lower bound, one can consider the instance
σ = ((0, o, 1), (ε, o, ε)) for a small positive ε. The competitiveness proof can also easily be
obtained by adapting Theorem 3.4. For the lower bound on any deterministic online algorithm,
a lower bound of

√
3+1
2 ≈ 1.3660 can easily be constructed. The adversary can release request

r1 = (0, o, 1); the online algorithms picks it up at some time T . If T <
√

3, the adversary releases
a second request r2 = (T + ε, o, o) just as the first one is picked up, otherwise no further requests
are released.

Page 58 of 62



5.1. DISCUSSION

For the ICPO-MS problem, the instance in Lemma 3.18 yields a lower bound of 3 for ALTERNATE

when considering the open variant. By slightly modifying the competitiveness proof in Lemma 3.20,
it can then be shown that ALTERNATE has a competitive ratio of 3. The lower bound of 1.5 in
Lemma 3.17 for arbitrary deterministic online algorithms yields a lower bound of 53 ≈ 1.6667 for
the open ICPO-MS setting.

Problem setting Lower bound Upper bound

UCPO-MS 1.3660 2
HOMESICK

ICPO-MS 1.6667 3
ALTERNATE

Table 5.1: Lower and upper bounds for the open problem variants. The results for the problem
settings not listed in this table are the same as for the closed problem.

The preemptive OLDARP

Aside from the restriction discussed above, we also did not allow the server to drop off requests at
any point other than their drop-off location. When this restriction is present, the problem is called
non-preemptive. Clearly, preemption does not matter when the server has infinite capacity. For unit
capacity, it does make a difference since it allows online algorithms to change plans. Preemption
provides the server the ability to free up its capacity, and in this way allowing it to pick up a different
request. Note that the optimal algorithm does not gain any advantage when allowing preemption;
it knows the future, therefore nothing unexpected can happen that requires it to change plans.
This implies that the competitive ratio of HOMESICK for the different problem settings is the same
for the preemptive case as when disallowing preemption. Hence, the only difference between the
non-preemptive and preemptive results may be the lower bounds for the problem settings where the
server has unit capacity. It is easily seen that lower bounds for UCDO-MS and UCDO-MF still hold
in the preemptive case, but the UCPO-MF lower bound does not. Recall that the lower bound for
UCPO-MS was the trivial lower bound of 1, therefore this also stays the same.

The OLDARP with service times

The OLDARP is a simplified model of real-world problems. To make the model more realistic, one
can consider adding service times to each request. A service time can be added for picking up a
request and for dropping off a request. Then, when picking up a request, the server needs to wait
at the pick-up location for the specified service time. Similarly, the server would need to wait for a
specified amount of time at the drop-off location before the request is completed. Thinking back
to the example given in the introduction, a waiter at a restaurant, this is a natural extension. For
example, it takes the waiter some time to take an order, and the service time varies per table.

Clearly, all lower bounds given in this report also hold for the variant with service times: simply set
the service times of each request to zero. For the upper bounds, the competitiveness proofs of all
but the ICPO-MF and ICDO-MF settings can easily be adapted.
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5.2 Future work

For the unit capacity problems, we have seen that HOMESICK performs well. In fact, for three out
of the four settings it has the best possible competitive ratio. For the infinite capacity problems,
on the other hand, there are gaps between the best lower bound we found and the competitive
ratio of ALTERNATE. The gaps are largest for the objective of minimizing the maximum flow time.
Therefore, a natural direction for future work is closing these gaps by constructing better lower
bounds and analyzing more complex algorithms. One exception is the ICPO-MS problem; we have
seen that this problem is equivalent to the OLTSP problem for which a best-possible algorithm is
known.

Besides continuing the competitive analysis of this report, modifications of the model, like the
variants discussed in the previous section, could also be investigated. Other possible variants are
the problem where requests arrive that have either the pick-up or the drop-off location as the origin,
or the problem variants in this report but on different metric spaces like the circle or star. The
offline problems could be further explored as well. In this report only the offline problems with the
objective of minimizing make-span were considered. It would be interesting to construct offline
algorithms for the objective of minimizing the maximum flow time, or prove that the problems are
NP-hard. One could also consider further studying the problems and algorithms from a stochastic
point of view. Lastly, a computational analysis of algorithms could be performed. In this way more
complex algorithms could be compared with one another without much difficulty. This would also
allow for analysis of more realistic problems where a mathematical analysis would take much effort.

Page 60 of 62



Bibliography

[1] Ivo Adan et al. Queueing Systems. Technische Universiteit Eindhoven, 2021.

[2] Norbert Ascheuer, Sven O. Krumke, and Jörg Rambau. “Online Dial-a-Ride Problems:
Minimizing the Completion Time”. In: STACS 2000. Ed. by Horst Reichel and Sophie Tison.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 639–650. ISBN: 978-3-540-46541-6.

[3] Giorgio Ausiello et al. “Algorithms for the on-line travelling salesman”. In: Algorithmica 29.4
(2001), pp. 560–581.

[4] Alexander Birx. “Competitive analysis of the online dial-a-ride problem”. PhD thesis. Darmstadt:
Technische Universität, Sept. 2020. URL: http://tuprints.ulb.tu-darmstadt.de/
14134/.

[5] Alexander Birx and Yann Disser. “Tight Analysis of the Smartstart Algorithm for Online
Dial-a-Ride on the Line”. In: SIAM Journal on Discrete Mathematics 34.2 (2020), pp. 1409–
1443. DOI: 10.1137/19M1268513. eprint: https://doi.org/10.1137/19M1268513. URL:
https://doi.org/10.1137/19M1268513.

[6] Antje Bjelde et al. “Tight Bounds for Online TSP on the Line”. In: ACM Trans. Algorithms
17.1 (Dec. 2020). ISSN: 1549-6325. DOI: 10.1145/3422362. URL: https://doi.org/10.
1145/3422362.

[7] Allan Borodin and Ran El-Yaniv. Online computation and competitive analysis. cambridge
university press, 1998.

[8] Jessica Chang et al. “Broadcast scheduling: algorithms and complexity”. In: ACM Transactions
on Algorithms (TALG) 7.4 (2011), pp. 1–14.

[9] Chandra Chekuri, Sungjin Im, and Benjamin Moseley. “Minimizing maximum response time
and delay factor in broadcast scheduling”. In: European Symposium on Algorithms. Springer.
2009, pp. 444–455.

[10] Willem E. De Paepe et al. “Computer-aided complexity classification of dial-a-ride problems”.
In: INFORMS Journal on Computing 16.2 (2004), pp. 120–132. ISSN: 08991499. DOI:
10.1287/ijoc.1030.0052.

[11] Jeff Edmonds and Kirk Pruhs. “A Maiden Analysis of Longest Wait First”. In: ACM Trans.
Algorithms 1.1 (July 2005), pp. 14–32. ISSN: 1549-6325. DOI: 10.1145/1077464.1077467.
URL: https://doi.org/10.1145/1077464.1077467.

[12] Esteban Feuerstein and Leen Stougie. “On-line single-server dial-a-ride problems”. In: Theoret-
ical Computer Science 268.1 (2001), pp. 91–105. ISSN: 03043975. DOI: 10.1016/S0304-
3975(00)00261-9.

[13] Dawsen Hwang and Patrick Jaillet. “Online scheduling with multi-state machines”. In: Networks
71.3 (2018), pp. 209–251.

[14] David G Kendall. “Stochastic processes occurring in the theory of queues and their analysis
by the method of the imbedded Markov chain”. In: The Annals of Mathematical Statistics
(1953), pp. 338–354.

Page 61 of 62

http://tuprints.ulb.tu-darmstadt.de/14134/
http://tuprints.ulb.tu-darmstadt.de/14134/
https://doi.org/10.1137/19M1268513
https://doi.org/10.1137/19M1268513
https://doi.org/10.1137/19M1268513
https://doi.org/10.1145/3422362
https://doi.org/10.1145/3422362
https://doi.org/10.1145/3422362
https://doi.org/10.1287/ijoc.1030.0052
https://doi.org/10.1145/1077464.1077467
https://doi.org/10.1145/1077464.1077467
https://doi.org/10.1016/S0304-3975(00)00261-9
https://doi.org/10.1016/S0304-3975(00)00261-9


BIBLIOGRAPHY

[15] Sven O Krumke. “Online optimization: Competitive analysis and beyond”. Habilitationsschrift.
Technische Universität Berlin, 2002.

[16] Sven O. Krumke et al. News from the online traveling repairman. English. SPOR-Report :
reports in statistics, probability and operations research. Technische Universiteit Eindhoven,
2002.

[17] Sven O. Krumke et al. “Non-abusiveness helps: An O(1)-competitive algorithm for minimizing
the maximum flow time in the online traveling salesman problem”. In: Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 2462.1 (2002), pp. 200–214. ISSN: 16113349.

Page 62 of 62


	Introduction
	Method
	Related work
	Report outline

	Problem Description
	Formal problem definition
	Algorithms

	Competitive Analysis
	Overview of results
	Preliminaries
	How to read lower bound figures
	Observations
	Offline problems

	The Homesick algorithm
	UCPO-MS
	UCPO-MF
	UCDO-MS
	UCDO-MF

	The Alternate algorithm
	ICPO-MS
	ICPO-MF
	ICDO-MS
	ICDO-MF


	Stochastic Analysis
	Preliminaries
	The Homesick algorithm
	Waiting time of a task
	Residual service time
	Shortest-processing-time-first discipline
	Expected flow time of requests

	The Alternate algorithm
	Half-line with fixed service time


	Conclusion
	Discussion
	Future work


