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Abstract
This study provides mathematical models to analyze the spreading of a pandemic to advance our
knowledge of how to control the spread of viruses, such as the coronavirus. More specifically,
this study analyzes the SIR and SEIRP models and the stability restrictions of their equilibria.
In addition, the next generation matrix will be used to determine the reproduction number of
both models. Furthermore, to better understand the spread of a disease in both models, multiple
analytical methods will be used to present and compare plots. This study extends the models by
introducing lockdowns and restriction free days for a certain period. Moreover, in the SIR model
the maximum fraction of individuals having the disease and the maximum fraction of individuals
having had the disease is determined, whereas the SEIRP model is extended by introducing the
effects of vaccinations.
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1 Introduction
In the beginning of 2020 the coronavirus started spreading around the world. Already in March
of 2020 the World Health Organization (WHO) considered it to be a global pandemic [1]. Gov-
ernments introduced lockdowns, social distancing rules and even curfews to fight the virus [2].
However, new developments such as new genetic changes of the coronavirus and even faster spread-
ing variants stress difficulties to control the spread of the virus on national and global scales and
therewith emphasis the importance of a profound understanding of the conditions under which its
spreading can be controlled [3]. These conditions are based on predictions, which can be made by
analyzing a disease describing mathematical model.

This study uses mathematical models to analyze the spreading of a pandemic to contribute to
the understanding of how to control the spread of viruses, such as the coronavirus. Mathematical
models describe a system and analyze the compartments within the system by using mathematical
concepts [4]. Although mathematical models are simplifications of a system, they are widely used
to study the behaviour of complex systems. Based on their behaviour predictions can be made by
using real data. For example, in a mathematical model which analyzes the spreading of a virus the
fraction of individuals having a disease and the effects of restrictions can be predicted.

Literature shows that many disease describing mathematical models have been developed to de-
scribe the spread of a pandemic. One of the simplest of these models is the susceptible-infected-
recovered (SIR) model, where the total population is divided into three categories: the susceptibles,
infected and recovered population. Other basic models divide the population into more categories,
such as the SEIR and SEIRP model [5]. These basic models and extensions consist of a system
of differential equations. Solutions of these systems are usually not known and hence analytical
methods are used to analyze the behaviour of the models [6].

This study analyses the SIR and SEIRP models and discusses their usefulness in understanding and
controlling the spread of the coronavirus. The former model is extended by introducing lockdowns
and restriction free days. The latter model is extended by introducing the effects of vaccinations.
In both models the (forward) Euler, 4-stage Runge-Kutta method and the Runge-Kutta Dormand-
Prince method are used to provide analytical solutions and plots. The accuracy of these methods is
discussed by comparing them with an exact solution of a special case of the SIR model with birth
and death rates. The aim of this study is to asses which interventions are most effective to reduce
the spreading of the coronavirus. Furthermore, the models help to predict the number of infected
over time such that the occupation rate of hospitals can be determined. Moreover, the findings of
this study may be useful for governments to decide which restrictions should be introduced and
when this should happen to reduce the spreading of the coronavirus.

The remainder of this study is structured as follows: First, chapter 2 discusses the SIR model,
including its reproduction number, the maximum fraction of infected and the stability of its equi-
librium points. Then, numerical methods are used to give plots and the model is extended by
introducing lockdowns, restriction free days and birth and death rates. Thereafter, the methods
used are compared. Chapter 3 discusses the SEIRP model. Consistent with the SIR model, the
stability of its equilibrium points are determined and numerical methods are used to illustrate the
spreading of the coronavirus. This model is then extended by adding vaccination rates. Finally, in
chapter 4 conclusions are drawn and discussed based on previous findings.
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2 The SIR model
This chapter discusses the SIR model. First the description of the model will be given. Secondly,
the parameters in this model are determined. The maximum fraction of infected and the fraction
of the population that will be infected is determined next. Then the stability of the system is
discussed. After that, numerical methods are used to give plots of the system. Thereafter, the
SIR model is extended by introducing lockdowns and by considering the SIR model with birth and
death rates. Lastly, the accuracy of the methods used to provide plots are assessed and compared
with an exact solution.

2.1 Three categories

rs

i
αi β

γ

Figure 1: A flowchart of the SIR model.

One of the easiest ways to model the spread of the coronavirus is by means of the suscepti-
ble–infected–recovered (SIR) model. In this model the total population at time instant t ≥ 0 days
is divided into three categories: the population that can be infected with the virus called suscep-
tibles, the infected population and the recovered population. Since each individual is assigned one
of these labels, the categories are in epidemiology also known to be compartments. In the model
it is assumed that the total population of N individuals stays the same, i.e., the SIR model is a
closed system. Let us assume s(t) to be the fraction of susceptibles of the total population, i(t) to
be the fraction of infected and r(t) the fraction that is recovered, with

0 ≤ s(t) ≤ 1, 0 ≤ i(t) ≤ 1, 0 ≤ r(t) ≤ 1. (1)

Since these three groups form the total population, their sum equals 1 for all t ≥ 0, i.e.,

s(t) + i(t) + r(t) = 1. (2)

In Figure 1 a simple flowchart of this model is presented. Here, the susceptibles are the part of
the population that do not have the virus, but are able to be infected with a certain positive
probability α called the infection rate. The infected are the ones that have the virus, can not be
infected a second time and can recover from the virus with the recovery rate β. If this recovery
rate β is set to 0, then the infective population can not recover and will hence stay in the infective
category. Hence, it is assumed that the recovery rate β is strictly positive. The rate of increase of
the infected is proportional to the product between susceptibles and infected, because susceptibles
can only be infected when they come into contact with infected. Since the coronavirus’s genetics
can change and there might be immunity loss, it is assumed that these recovered individuals can
become susceptibles again with probability γ called the immunity loss rate [5]. For each of the
parameters it is assumed that

0 < α ≤ 1, 0 < β ≤ 1, 0 ≤ γ ≤ 1. (3)
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In each of the previous cases, when an individual moves to another compartment, its previous
compartment decreases in size, which can be seen by the arrows illustrated in Figure 1. Moreover,
since at the moment the virus starts spreading each individual is assigned a label of one of the
above categories, it is assumed that s(0) + i(0) + r(0) = 1. By denoting y(t) = (s(t), i(t), r(t))T

and y′ = f(t, y), the following set of equations can be found:

y′ =



ds(t)

dt
= −αs(t)i(t) + γr(t),

di(t)

dt
= αs(t)i(t)− βi(t),

dr(t)

dt
= βi(t)− γr(t).

(4a)

(4b)

(4c)

Adding these equations yields

ds(t)

dt
+

di(t)

dt
+

dr(t)

dt
= 0,

and using the initial condition s(0) + i(0) + r(0) = 1 gives equation (2). For later use, let

S(t) = Ns(t), I(t) = Ni(t) and R(t) = Nr(t), (5)

which in combination with equation (2) results in

S(t) + I(t) +R(t) = N. (6)

2.2 Reproduction number and the fraction of infected
Using the assumptions given in (1) and (3) and by using equation (4b), observe that

di(t)

dt
= αs(t)i(t)− βi(t) ≤ (α− β)i(t).

In the latter expression, i(t) has a positive value for all t ≥ 0 which indicates that the fraction of
infected decreases when

α− β < 0 ⇐⇒ R0 :=
α

β
< 1, (7)

where R0 is the reproduction number, which is equal to the infection rate divided by the recovery
rate and hence also known to be the average number of people an infective individual will infect
[5]. One might also be interested in what portion of the population ends up having the virus.
Under the assumption that the immunity loss γ = 0, this portion can be calculated. Using this
assumption, one finds with help of the first two equations of (4) that

di

ds
=
αsi− βi
−αsi

= −1 + β

αs
=⇒ di =

(
−1 + β

αs

)
ds. (8)

Integrating both sides yields the equation

i(t) + s(t)− β ln s(t)

α
= i(0) + s(0)− β ln s(0)

α
. (9)
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Figure 2: A plot of function imax(R0) given in equation (10) for R0 ≥ 1 and with initial values
s(0) = 0.99, i(0) = 0.01 and r(0) = 0.

Equation (4b) tells us that di
dt = 0 when s = β

α . Using later numerical results described in section
2.4, one then finds that substituting this extremum in equation (9) yields the maximum fraction
of infected in the SIR model

imax(R0) = i(0) + s(0)− 1

R0

(
1 + ln

(
R0 · s(0)

))
, (10)

which holds for all R0 ≥ 1. When the virus started spreading almost the whole population was
part of the susceptible compartment, only a small fraction was infected and no one was recovered.
Hence, for numerical purposes it is for now assumed that 99 percent of the individuals in the
total population are susceptibles, 1 percent is infected and no one is recovered, i.e., s(0) = 0.99,
i(0) = 0.01 and r(0) = 0. A plot of the function imax with these initial conditions can be seen in
Figure 2. The maximum fraction of infected imax appears to be increasing. In order to determine
whether the function converges when R0 →∞ we compute

dimax

dR0
=

ln(R0 · s(0))
R2

0

= 0 =⇒ R0 =
1

s(0)
,

which shows with help of Figure 2 that imax has a minimum at

imax(R0) = i(0) + s(0)− s(0)(1 + ln(1)) = i(0),

and that imax monotonically increases for R0 > 1. As time progresses the fraction of infected
i(t) goes to 0, because there is no immunity loss and hence with help of equation (2) one finds
r(t∞) = 1− s(t∞) where t∞ is a large value of t ≥ 0 such that i(t∞) = 0. Equation (9) for t = t∞
is given by

s(t∞)− β ln s(t∞)

α
= i(0) + s(0)− β ln s(0)

α
, (11)

which can not be solved for s(t∞) analytically. Similarly as above, it is for numerical purposes
assumed that s(0) = 0.99, i(0) = 0.01 and r(0) = 0. Then equation (11) becomes

f (x) := x+
1

R0
ln

(
0.99

x

)
− 1 = 0, (12)

where x = s(t∞) and f : (0, 1] → R. In Figure 3 plots of function f(x) can be seen for different
values of R0. In particular, notice that f(s(0)) = f(0.99) = −0.01 for all values of R0, which can
clearly be seen in Figure 3b. Since

lim
x→0

f(x) = +∞, f(1) < 0, f ′(x) = 1− 1

R0x
= 0 =⇒ x =

1

R0
> 0,
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Figure 3: The function f(x) given in equation (12) for different values of R0.

and f is a continuous function for all values of R0 > 0, function f has exactly one intersection point
with the x-axis in its domain (0, 1] and hence the Newton-Raphson method can be used to solve
the nonlinear equation above. For different values of R0 this method generates approximations of
s(t∞) using

sn = sn−1 −
f(sn−1)

f ′(sn−1)
= sn−1 −

sn−1 +
1
R0

ln
(

0.99
sn−1

)
− 1

1− 1
R0·sn−1

,

starting from a suitable initial value s0. Observe in Figure 3a that if the starting value s0 is chosen
too large, the iteration might converge to a value on the x-axis outside the domain of the function
f and hence s0 should be small. Consequently, the fraction of the population that has once been
infected when t → ∞ can now be calculated, resulting in Figure 4. Hence, when α � β > 0 the
reproduction number R0 is large and the total infected fraction is close to 1. Similarly, when R0

is small the population gets infected slowly and gets recovered fast, resulting in the virus dying
out fast. Therefore the fraction of the population that has been infected is small, which agrees
with Figure 4. Lastly, when R0 converges to 0, the virus dies out even faster and the numerical
results tell us that the total fraction of the population that has been infected when t → 0 then
converges to 0.01, which can also be seen in Figure 4. Notice that this value was the initial fraction
of infected of the population, as desired.
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Figure 4: The total fraction of the population that has been infected when t → ∞ for different
values of R0.
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2.3 Stability
Under the assumption that γ 6= 0 and the assumptions given by (3), the equilibrium points of

system (4) are by definition the points satisfying
(

ds(t)
dt ,

di(t)
dt ,

dr(t)
dt

)T
= 0 ∈ R3. The second

equation in the system then yields i(t) = 0 or s(t) = β
α . The former is the trivial case where no

one is infected, there is no spreading of the virus and the first equilibrium point is hence given by

y
eq1

= (1, 0, 0)
T
. (13)

Substituting the latter case in equation (2) and using equation (4c) with dr(t)
dt = 0, one finds the

system (
β −γ
1 1

)(
i(t)

r(t)

)
=

(
0

1− β
α

)
,

resulting in the second equilibrium point given by

y
eq2

=

(
β

α
,
γ(α− β)
α(γ + β)

,
β(α− β)
α(γ + β)

)T
. (14)

Let us now calculate the Jacobian of f(y) given by (4). This Jacobian matrix is given by

J(y) =


∂f1
∂y1

∂f1
∂y2

∂f1
∂y3

∂f2
∂y1

∂f2
∂y2

∂f2
∂y3

∂f3
∂y1

∂f3
∂y2

∂f3
∂y3

 =

−αy2 −αy1 γ

αy2 αy1 − β 0

0 β −γ

 . (15)

Since system (4) is closed, the sum of the entries in J(y) is 0 and consequently λ = 0 is one of the
eigenvalues. This derivation can be found in section 6.1.1. The two other eigenvalues are

λ =
−γ − αy2 + αy1 − β ±

√
(γ + αy2 − αy1 + β)2 + 4αγy1 − 4(αγy2 + βγ + αβy2)

2
. (16)

A derivation for this can be found in section 6.1.2. Consequently, for the first equilibrium point
y
eq1

one finds the three eigenvalues λ = 0, λ = −γ and λ = α−β. This derivation can be found in
section 6.1.3. An equilibrium solution y

eq
is stable if for any neighborhood U of y

eq
there exists a

neighborhood V of this equilibrium point such that for any initial value y(0) ∈ V the corresponding
solution y(t) ∈ U for all t > 0. Furthermore, an equilibrium point is stable when the real part of
the eigenvalues of the Jacobian of the system are all non-positive. Otherwise an equilibrium point
is unstable [6]. Hence, the first equilibrium point y

eq1
is only stable when β ≥ α, i.e., when the

recovery rate is larger than the infection rate. Similarly, the second equilibrium point y
eq2

has the
three eigenvalues λ = 0 and

λ =

−γ − γ(α−β)
γ+β ±

√
γ2

(γ+β)2α
2 +

(
− 2βγ2

(γ+β)2 −
2γ2

(γ+β) −
4βγ
γ+β

)
α+

(
γ2 + γ2β2

(γ+β)2 + 2βγ2

γ+β + 4β2γ
γ+β

)
2

.

Moreover, this equilibrium point is stable when α ≥ β, i.e., when the infection rate is larger
than the recovery rate. A derivation for these results can be found in section 6.1.4. Notice that
the reproduction number R0 as given in equation (7) can be related to these stability results.
Equilibrium point y

eq1
is stable when R0 ≤ 1 and equilibrium point y

eq2
is stable when R0 ≥ 1.
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Figure 5: The first 100 days of the basic SIR
model with parameters α = 0.4, β = 0.06, γ =
0.00, timestep h = 0.01 and initial condition
y(0) = (0.99, 0.01, 0)T .
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Figure 6: The first 100 days of the basic SIR
model with parameters α = 0.4, β = 0.06, γ =
0.01, timestep h = 0.01 and initial condition
y(0) = (0.99, 0.01, 0)T .

2.4 Numerical methods
One way of determining a graph of the solution of the system is by using the numerical (forward)
Euler method. Let h > 0 denote the timestep and for n = 0, 1, 2, ... let tn = nh. Then the (forward)
Euler method is given by

y
n+1

= y
n
+ hf(tn, yn),

where y
n
≈ y(tn), which is the most basic explicit method for systems of ordinary differential

equations. Applying this method to the equations given by (4) yields

sn+1 = sn + h (−αsnin + γrn) ,

in+1 = in + h (αsnin − βin) ,

rn+1 = rn + h (βin − γrn) ,

where sn ≈ s(tn), in ≈ i(tn) and rn ≈ r(tn). Using this method and the software Matlab, plots of
the SIR model can be found given in Figures 5, 6, 7a, 7b, 8a and 8b. It is assumed that at day 0
one percent of the population is infected and the rest are susceptibles, i.e., the initial conditions
are given by s(0) = 0.99, i(0) = 0.01 and r(0) = 0. The first two figures illustrate the distribution
of the three populations using the SIR model with parameters α = 0.40 and β = 0.06 for the first
100 days, resulting in the reproduction number R0 = 20

3 . Figure 5 shows the spreading of the
virus without immunity loss after recovering, while in Figure 6 the immunity loss rate is assumed
to be γ = 0.01. In the first days of Figure 5 the fraction of susceptibles decreases rapidly and
converges towards zero, while the fraction of infected increases. Around the twentieth day the
infected fraction of the population starts decreasing, while the recovered fraction monotonically
increases. Computing the maximum fraction of infected, using parameters given in Figure 5, from
equation (10) yields

imax = 0.01 + 0.99− 0.06

0.40

(
1 + ln

(
0.40 · 0.99

0.06

))
≈ 0.5669,

which agrees with the maximum fraction of infected that can be seen in this figure.
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The first days in the plot of the SIR model with immunity loss in Figure 6 behave similarly as
the previous case, but after a while the fraction of susceptibles slowly increases and the recovered
fraction decreases. Since α ≥ β the equilibrium point y

eq1
is in this case not stable, but y

eq2
given by equation (14) is a stable equilibrium point and hence the fraction of susceptibles, infected
and recovered converge to this equilibrium point. The numerical results tell us that the fraction
of susceptibles, infected and recovered population at time t = 1000 are approximately equal to
0.1500, 0.1214 and 0.7286, respectively, which match the exact results given by

y
eq2

=

(
0.06

0.40
,
0.01 · (0.40− 0.06)

0.40 · (0.01 + 0.06)
,
0.06 · (0.40− 0.06)

0.40 · (0.01 + 0.06)

)T
≈ (0.1500, 0.1214, 0.7286)

T
.
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(a) The fraction of susceptibles, infected and recov-
ered.
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(b) The fraction of infected and recovered.

Figure 7: The first 500 days of the basic SIR model with parameters α = 0.15, β = 0.125, γ = 0.01,
timestep h = 0.01 and initial condition y(0) = (0.99, 0.01, 0)T .

In reality the reproduction number R0 is usually much closer to 1 and hence the value of α is closer
to the value of β, resulting in a smaller fraction of infected than in the previous figures at any t > 0.
This can clearly be seen in Figure 7a, where the first 500 days of the SIR model with parameters
α = 0.15, β = 0.125 and γ = 0.01 can be seen with the same timestep and initial conditions as in
the previous figures. A zoom in on the fraction of infected and recovered of this figure can be seen
in Figure 7b. In this case the reproduction number is R0 = 6

5 , which is much closer to 1 and using
equation (10) one finds that the maximum fraction of infected using these parameters is

imax = 0.01 + 0.99− 0.125

0.15

(
1 + ln

(
0.15 · 0.99
0.125

))
≈ 0.0231,

which agrees with the value that can be seen in Figure 7b. In Figures 8a and 8b the first 500
days of SIR model with parameters α = 0.5, β = 0.51 and γ = 0.01 can be seen. In this case the
recovery rate β is higher than the infection rate α and hence equilibrium point y

eq1
given by (13)

is stable, i.e., the initial values converge to this point and consequently, the fraction of susceptibles
converges to 1 and the virus dies out, which can clearly be seen in the figures.
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(b) Fraction of infected and recovered.

Figure 8: The first 500 days of the basic SIR model with parameters α = 0.5, β = 0.51, γ = 0.01,
timestep h = 0.01 and initial condition y(0) = (0.99, 0.01, 0)T .

A more accurate numerical method is the so-called Runge-Kutta Dormand–Prince (RKDP) method.
This method has a default method in Matlab (ode45) and can hence easily be used to compute
solutions of system (4). Similarly as in the (forward) Euler method, let hn > 0 denote the timestep
and for n = 0, 1, 2, ... let tn = nhn. Then this method gives a fourth order consistent approximation

y
n+1

= y
n
+ h

(
35

384
kn,1 +

500

1113
kn,3 +

125

192
kn,4 −

2187

6784
kn,5 +

11

84
kn,6

)
,

and a fifth order consistent approximation given by

ỹ
n+1

= ỹ
n
+ h

(
5179

57600
kn,1 +

7571

16695
kn,3 +

393

640
kn,4 −

92097

339200
kn,5 +

187

2100
kn,6 +

1

40
kn,7

)
,

with

kn,1 = f(tn, yn),

kn,2 = f

(
tn +

h

5
, y
n
+
h

5
kn,1

)
,

kn,3 = f

(
tn +

3h

10
, y
n
+

3h

40
kn,1 +

9h

40
kn,2

)
,

kn,4 = f

(
tn +

4h

5
, y
n
+

44h

45
kn,1 −

56h

15
kn,2 +

32h

9
kn,3

)
,

kn,5 = f

(
tn +

8h

9
, y
n
+

19372h

6561
kn,1 −

25360h

2187
kn,2 +

64448h

6561
kn,3 −

212h

729
kn,4

)
,

kn,6 = f

(
tn + h, y

n
+

9017h

3168
kn,1 −

355h

33
kn,2 −

46732h

5247
kn,3 +

49h

176
kn,4 −

5103h

18656
kn,5

)
,

kn,7 = f

(
tn + h, y

n
+

35h

384
kn,1 +

500h

1113
kn,3 +

125h

192
kn,4 −

2187h

6784
kn,5 +

11h

84
kn,6

)
.
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0 0 0 0 0 0 0 0
1
5

1
5 0 0 0 0 0 0

3
10

3
40

9
40 0 0 0 0 0

4
5

44
45 − 56

15
32
9 0 0 0 0

8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 0 0 0
1 9017

3168 − 355
33

46732
5247

49
176

−5103
18656 0 0

1 35
384 0 500

1113
125
192 − 2187

6784
11
84 0

35
384 0 500

1113
125
192 − 2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Table 1: Butcher array for the Runge-Kutta Dormand-Prince method.

Notice that kn,2 is not implemented in both solutions, but is used to calculate kn,i for i ∈
{3, 4, 5, 6, 7}. This Runge-Kutta method is explicit, which can be seen in the Butcher array in
Table 1. Here, the last but one row gives the fourth order accurate solution and the last row gives
the fifth order accurate solution. The difference between these two solutions is given by∣∣∣ỹ

n+1
− y

n+1

∣∣∣ = ∣∣∣∣ 71

57600
kn,1 −

71

16695
kn,3 +

71

1920
kn,4 −

17253

339200
kn,5 +

22

525
kn,6 −

1

40
kn,7

∣∣∣∣ ,
which is the error estimate for the fourth order solution. Moreover, this method makes use of
stepsize control, i.e., the value of hn+1 for each n = 1, 2, ... in this method is determined by
calculating

hn+1 = hn 5

√
εhn

2
∣∣ỹ
n+1
− y

n+1

∣∣ , (17)

where the ε is a small tolerance term [7]. Using Matlab, this method yields approximately the same
figures with the respective parameters as given in Figures 5, 6, 7a, 7b, 8a and 8b. Furthermore,
a phase plot of the SIR model with initial conditions s(0) = 0.99, i(0) = 0.01, r(0) = 0.00 and
parameters α = 0.40, β = 0.06, γ = 0.01 for the first 100 days can be calculated, resulting in Figure
9. Notice that the susceptible fraction of the population decreases and that the recovered fraction of
the population increases in these first 100 days. Furthermore, the infected fraction of the population
increases at first, but decreases after a while. This agrees with the results discussed before about
Figure 6. Moreover, in Figure 10 the direction field of the susceptible fraction versus the infective
fraction of the population of the basic SIR model with the same parameters and timestep can be
seen. Additionally, the two equilibrium points (13) and (14) have been implemented and a couple
of streamlines have been added. Notice that if the number of infected equals zero the number of
susceptibles converges to 1. This is due to the fact that there are no infected and hence no one
can become infected. Since γ > 0 the recovered fraction of the population slowly decreases and
these individuals become susceptibles. Hence, the population categories converge to equilibrium
point y

eq1
. Similarly, if the fraction of infected is not equal to zero, then the population categories

converge to y
eq2

. Both results can in the figure be seen by the direction of the arrows going to the
equilibrium points illustrated by the red points.
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Figure 9: A phase plot of the susceptible, in-
fective and recovered fraction of the total pop-
ulation of the basic SIR model with parame-
ters α = 0.40, β = 0.06 γ = 0.01 and timestep
h = 0.01 for the first 100 days.
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Figure 10: The direction field of the suscep-
tible fraction versus the infective fraction of
the population of the basic SIR model with
parameters α = 0.40, β = 0.06, γ = 0.01
and timestep h = 0.01 for the first 100 days.
The equilibrium points given by equations (13)
and (14) have been included in the plot just
as streamlines starting in points (0,0.05), (0.6,
0.02), (0.95,0.02), (1,0.35), where the first num-
ber indicates the value of s(t) and the second
the value of i(t).
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Figure 11: The basic SIR model with parame-
ters α = 0.4, β = 0.06, γ = 0.01, timestep h =
0.01, initial condition y(0) = (0.99, 0.01, 0)T

and a single lockdown period of 21 days that
activates when 30% of the population is in-
fected. The parameters during the lockdown
are α = 0.04, β = 0.07 and γ = 0.01.
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Figure 12: The basic SIR model with parame-
ters α = 0.4, β = 0.06, γ = 0.01, timestep h =
0.01, initial condition y(0) = (0.99, 0.01, 0)T

and a repeated lockdown period of 21 days that
activates when 30% of the population is in-
fected. The parameters during the lockdown
are α = 0.04, β = 0.07 and γ = 0.01.
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2.5 The SIR model with a lockdown

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6

Table 2: Butcher array for the 4-stage Runge-Kutta method.

A third method that can be used to give plots of the solution of system (4) is the 4-stage Runge-
Kutta method, which using Matlab results in approximately the same standard population distri-
butions as given in Figures 5, 6, 7a, 7b, 8a and 8b. Similarly as in the (forward) Euler method, let
h > 0 denote the timestep and for n = 0, 1, 2, ... let tn = nh. Then this method has the form

y
n+1

= y
n
+
h

6

(
kn,1 + 2kn,2 + 2kn,3 + kn,4

)
,

with

kn,1 = f(tn, yn),

kn,2 = f

(
tn +

h

2
, y
n
+
h

2
kn,1

)
,

kn,3 = f

(
tn +

h

2
, y
n
+
h

2
kn,2

)
,

kn,4 = f
(
tn + h, y

n
+ hkn,3

)
,

where f =
(
ds
dt ,

di
dt ,

dr
dt

)T
as given by the equations in 4, y

n
= (sn, in, rn)

T and sn ≈ s(tn), in ≈ i(tn),
rn ≈ r(tn). Its Butcher array is given in Table 2.

The Matlab model of this method can easily be modified in such a way that a lockdown can be
implemented. This is done by changing the values of α, β and γ for a certain period of time and
changing the parameters back to their original value after this period. For numerical purposes,
assume that during the lockdown the infection rate α reduces to only 10 percent of its original
value, because the spread of the virus is much slower during a lockdown due to less contact between
individuals. Furthermore, assume that the recovery rate β increases slightly, since in hospitals there
is more help provided, and assume that the lockdown takes three weeks. Lastly, the immunity loss is
assumed to remain the same, since a lockdown does in general not influence the immune system. In
Figure 11 an example of such an implementation of a lockdown can be seen with initial parameters
α = 0.4, β = 0.06 and γ = 0.01. The first few days of this population distribution are the same as
in Figure 6 which shows the population distribution with the same parameters without a lockdown,
but when 30% of the population is infected a three-week lockdown is entered where the parameters
are changed to α = 0.04, β = 0.07 and γ = 0.01. At this moment the rate at which the susceptibles
become infected decreases. When the lockdown ends, which is exactly three weeks after it started,
the virus develops in a similar manner as in Figure 6.

Page 14 of 48



Eindhoven University of Technology - 2WH40 - Bachelor Final Project

In reality, hospitals are not able to contain more than 1% of the population, but for insightful
purposes assume that hospitals can maximally contain 30% of the population. Then a single
lockdown as given in Figure 11 won’t suffice. Hence a second lockdown needs to be implemented
which can be done by slightly adjusting the model, resulting in Figure 12. Here, the number of
infected stays below 30% of the population, as desired. As discussed in the previous section, in
general the fraction of infected is much lower and lockdowns can last for much longer than three
weeks. However, the same model with different parameters can be used resulting in similar results.
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Figure 13: The basic SIR model with parame-
ters α = 0.4, β = 0.06, γ = 0.01, timestep h =
0.01, initial condition y(0) = (0.99, 0.01, 0)T

and a 14 days period starting at day 20 where
the value of α is doubled.
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Figure 14: The basic SIR model with pa-
rameters α = 0.15, β = 0.125, γ = 0.01,
timestep h = 0.01, initial condition y(0) =

(0.99, 0.01, 0)T and a two-week period starting
at day 20 where the value of α is doubled.

Instead of a lockdown, one can reverse the idea by canceling all rules regarding the virus for a
certain period called ‘(restriction) free days’. Then people will come into contact more, which
causes the infection rate α to increase. For numerical purposes, let α = 0.4, β = 0.06 and
γ = 0.01. Assume that this period starts on day 20, takes two weeks and that the infection rate
α is doubled during this period. By making small changes to the previous Matlab model, one
then finds Figure 13. Comparing this to Figure 6 without these free days, observe that such a
period does not influence the distribution a lot and only provides a slight increase in the number
of infected. However, in reality the reproduction number is close to 1, as discussed in section 2.4.
Hence, assume that α = 0.15, β = 0.125, γ = 0.01, that the free days period again starts on day
20, lasts two weeks and that the infection rate α is doubled. These parameters then give Figure
14. Comparing this with the first 100 days of Figures 7a and 7b, which have the same parameters,
but without free days shows a large difference in the distribution of the compartments. In section
2.4 it was determined that the maximum fraction of infected using these parameters without a free
days period is imax ≈ 0.0231. When including these free days, the numerical model shows that the
imax ≈ 0.1108, which indicates the impact these free days have on the distribution of the virus.
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2.6 The fatal SIR model

RS
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μ*

Figure 15: A flowchart of the fatal SIR model.

The SIR model can be slightly changed by adding rates of birth µ̃? per day and deathrates µs, µi and
µr depending on the fraction of the susceptible, infective and recovered population, respectively,
yielding the non-closed system

ỹ′ =



ds(t)

dt
= −αs(t)i(t) + γr(t)− µss(t) + µ̃?,

di(t)

dt
= αs(t)i(t)− βi(t)− µii(t),

dr(t)

dt
= βi(t)− γr(t)− µrr(t),

(18a)

(18b)

(18c)

where ỹ(t) = (s(t), i(t), r(t))T . Here it is assumed that newborns are susceptibles. Moreover, by
using the definitions given in equation (5) one can transform system (18) to the following system:

ŷ′ =



dS(t)

dt
= −αS(t)I(t) + γR(t)− µsS(t) + µ?,

dI(t)

dt
= αS(t)I(t)− βI(t)− µiI(t),

dR(t)

dt
= βI(t)− γR(t)− µrR(t),

(19a)

(19b)

(19c)

where ŷ(t) = (S(t), I(t), R(t))T , µ? = Nµ̃? and α is properly scaled. A flowchart of this system
can be seen in Figure 15. The system can be used to model, e.g., the spreading of the coronavirus
in the Netherlands. In 2020 the number of people in the Netherlands was about 17.28 million. For
numerical purposes then assume that ŷ(0) = (1.728 · 107, 1, 0)T . In 2018 approximately 169,000
babies were born, which is on average about 463 per day and hence consider µ? = 463 [8]. According
to [9] the number of Dutch citizens which have had the coronavirus was about 2.3 million on the
first day of January 2021. Furthermore, according to [10] the number of Dutch coronavirus deaths
up to that date was 13,422, resulting in an approximate mortality rate of 13,422

2,300,000 ≈ 0.005836.
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(a) A period of 30 days.
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(b) A period of 5000 days.
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Figure 16: The fatal SIR model with parameters α = 1.728 · 10−7, β = 0.966, γ = 0.01, µ? = 463,
µs = 0.00003389, µi = 0.00586989, µr = 0.00003389, initial condition y(0) = (1.728 · 107, 1, 0) and
timestep h = 0.1.

Consequently, the approximated recovery rate is β = 1 − 13,422
2,300,000 ≈ 0.994164. By assuming an

average life expectancy of 81 years, which is approximately 29.5 thousand days [11] one finds

µs = 0.00003389, µi = 0.005836 + 0.00003389 = 0.00586989, µr = 0.00003389,

because 1
29,500 ≈ 0.00003389. According to [12] it is not yet known how long it takes for an

individual to become vulnerable for getting the coronavirus a second time after recovering and
hence for numerical purposes it is assumed that γ = 0.001. Lastly, by scaling α with respect to
the total population and letting it equal to 1.728 · 10−7, one can apply forward Euler in Matlab
in a similar way as described in section 2.4 using timestep h = 0.1 over a period of 300 days,
resulting in Figure 16a. Notice that the three compartments of the population in these first 300
days appear to behave similarly to the numerical results of the basic SIR model described in section
2.4. Furthermore, in this figure it appears that the total population does not decrease rapidly, due
to the mortality rate of the virus being less than 1 percent. In Figures 16b and 16c plots of the
fatal SIR model with the same parameters, but over a period of 5000 days, which is approximately
13.7 years, can be seen. The numerical results show that during these first 5000 days the total
population has been decreased by almost 1 million. However, in reality a vaccine would in the
meantime have been developed, resulting in a large decrease of the mortality rate.
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2.7 Comparing methods
In previous sections three different methods have been used: the (forward) Euler method, the
4-stage Runge-Kutta method and the Runge-Kutta Dormand-Prince method. Notice that the
(forward) Euler method can also be seen as a Runge-Kutta method. Runge-Kutta methods preserve
linear invariance and hence

s(tn) + i(tn) + r(tn) = 1.

This derivation can be found in Theorem 2 of section 6.1.1. In order determine the (approximated)
errors each of these methods make, it is easier to compare their solutions with exact solutions. In
particular, the fraction of infected will be analyzed. However, since exact solutions of the general
SIR system (4) do not exist, system (18) with parameters γ = 0 and µ := µs = β + µi = µr = µ̃?

will be used to compare the methods, yielding the system

ỹ′ =



ds(t)

dt
= −αs(t)i(t)− µs(t) + µ,

di(t)

dt
= αs(t)i(t)− µi(t),

dr(t)

dt
= βi(t)− µr(t).

(20a)

(20b)

(20c)

The system consisting of only the first two equations is the SIR model as described by Kermack
and Mckendrick [13]. Exact solutions for the fraction of infected i(t) for t ≥ 0 in this system have
been found in chapter 3 of [14], given by

i(t) =
λi(0)

αi(0) + (λ− αi(0)) e−λt
where λ = α− µ+ α(s(0) + i(0)− 1).

For numerical purposes, let

α = 0.3, β = 0.045, µ = 0.2, s(0) = 0.99, i(0) = 0.01, r(0) = 0, (21)

which at day t = 200 yield the fraction of infected

i(200) =
0.001

0.003 + 0.097 · e−20
≈ 0.333333311118679. (22)

Table 3: Fraction of infected on day 200 of system (20) with parameters given in (21) using Forward
Euler with the exact solution given by (22).

Timestep h 1 0.1 0.01

Fraction of infected 0.333333322270946 0.333333312524624 0.333333311262558
Error 1.1152 · 10−8 1.4059 · 10−9 1.4387 · 10−10

Table 4: Fraction of infected on day 200 of system (20) with parameters given in (21) using the
4-stage Runge-Kutta method with the exact solution given by (22).

Timestep h 1 0.1 0.01

Fraction of infected 0.333333311118362 0.333333311118679 0.333333311118679
Error 3.1663 · 10−13 1.1102 · 10−16 4.4408 · 10−16
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This exact result can be compared to the fraction of infected on day 200 as calculated by the
(forward) Euler method with the same parameters, resulting in Table 3. In this table it can be
seen that a lower timestep yields a smaller error. More specifically, making the timestep ten times
smaller yields an error which is approximately ten times smaller. This agrees with the global
truncation error of the (forward) Euler method, which is O(h). Similarly, the fraction of infected
on day 200 as calculated by the 4-stage Runge-Kutta method can be found, which results in Table
4. The global truncation error of this method is of order O(h4). Notice that for each timestep this
method yields a more accurate result than the (forward) Euler method. However, since Matlab
only uses 16 digits of precision the error does not become smaller when reducing the timestep from
h = 0.1 to h = 0.01. The error becomes even larger, but this is due to the rounding errors of
Matlab.

Table 5: Fraction of infected on day 200 of system (20) with parameters given in (21) using the
Runge-Kutta Dormand-Prince method with the exact solution given by (22).

Tolerance term ε 10−8 10−12 10−15

Fraction of infected 0.333333310736543 0.333333311118595 0.333333311118679
Error 3.8213 · 10−10 8.4210 · 10−14 2.7755 · 10−16

The results of the fraction of infected at day 200 using the Runge-Kutta Dormand-Prince method
can be seen in Table 5. As described in section 2.4, this method has a default method in Matlab
called ode45 and makes use of stepsize control, given in equation (17), where ε is the small tolerance
term. When choosing a small tolerance term as in Table 5, this method yields smaller errors than
in the Euler and 4-stage Runge-Kutta methods. However, similarly as in the 4-stage Runge-Kutta
method, Matlab only uses 16 digits of precision and the error can hence not be made infinitely
small by using Matlab.
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3 The SEIRP model
This section discusses the SEIRP model. First a description of this model will be given. Its
equilibrium point and the stability condition of this equilibrium point will be determined next.
Thereafter, the reproduction number of the model will be determined by making use of a method
using the next generation matrix. Then numerical methods are used to give plots of solutions of
the system. Lastly, the model will be extended by introducing vaccinations.

3.1 Five categories

p

e
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s i

β
γ

κ

μ

αee+αii

ρ

Figure 17: A flowchart of the SEIRP model.

Governments are usually interested in the mortality rate of a virus, which is not implemented in
the basic SIR model. In section 2.6 this model was slightly elaborated by including birth and
death processes, resulting in system (18). However, since this system is not closed, it is harder
to analyze and provide plots. Secondly, when an individual is exposed to the virus, it might take
days or even weeks for this individual to gain symptoms and to be able to infect others. Both of
these issues are implemented in the so called SEIRP model, also called the fatal SEIR model [5].
In this model the population is divided into five categories. Similarly as in the SIR model, this
model consists of the susceptible fraction s(t), the infective fraction i(t) and the recovered fraction
r(t). Furthermore, this model also includes the exposed fraction of the population e(t), i.e., those
who have been exposed to the virus, but do not have any symptoms and are hence not infected.
The fifth category in this model is the fraction of the population p(t) that have passed away due
to the virus. Since these compartments form the total population, one finds

s(t) + e(t) + i(t) + r(t) + p(t) = 1. (23)

The susceptible fraction of the population does not have the virus, but is exposed to the virus
by the exposed population with probability αe or by the infected population with probability αi.
These parameters are also called the contagion factors between the exposed population and the
susceptibles and between the infected and susceptibles, respectively [5]. Note that in reality the
first of these parameters is larger, since contact is usually not avoided with exposed individuals,
because it is not known yet that these individuals have the virus. Furthermore, it is assumed that
the exposed fraction of the population gets infected with probability κ, which can be seen as the
parameter determining the speed at which exposed individuals get symptoms. They then recover
from this state with probability ρ called the recovery rate of the exposed fraction of the population
[5]. Since the virus has not fully penetrated for people in this compartment the chance of dying
is assumed to be zero. However, the probability of passing away for infected is assumed to be
µ. Furthermore, similarly as in the SIR model, their probability of recovering is β. Lastly, the
recovered fraction r(t) of the population become susceptibles again with the immunity loss rate
and probability γ. In Figure 17 a flowchart of this model can be seen. For each of the parameters
it is assumed that

0 ≤ αe ≤ 1, 0 ≤ αi ≤ 1, 0 < β ≤ 1, 0 < γ ≤ 1, 0 < κ ≤ 1, 0 < ρ ≤ 1, 0 < µ ≤ 1.
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Furthermore, it is assumed that αe + αi > 0, since the disease would otherwise not be spreading.
By denoting y = (s(t), e(t), i(t), r(t), p(t))T and y′ = f(y), the previous assumptions result in the
following set of equations:

y′ =



ds(t)

dt
= −αes(t)e(t)− αis(t)i(t) + γr(t),

de(t)

dt
= αes(t)e(t) + αis(t)i(t)− κe(t)− ρe(t),

di(t)

dt
= κe(t)− βi(t)− µi(t),

dr(t)

dt
= βi(t) + ρe(t)− γr(t),

dp(t)

dt
= µi(t).

(24a)

(24b)

(24c)

(24d)

(24e)

Similarly as in the SIR model, one finds by adding these equations and using the initial condition
s(0) + e(0) + i(0) + r(0) + p(0) = 1 equation (23).

3.2 Stability
Similarly as in the SIR model, assuming that the parameters are unequal to 0, the equilibrium points

of system (24) are by definition the points satisfying
(

ds(t)
dt ,

de(t)
dt ,

di(t)
dt ,

dr(t)
dt ,

dp(t)
dt

)T
= 0 ∈ R5,

yielding the only equilibrium point

y
eq

= (1− p∞, 0, 0, 0, p∞)
T
, (25)

where p∞ ∈ [0, 1] is the passed away fraction of the population in transient state. Since in this
equilibrium point the fraction of exposed and infected is 0, this is a disease-free equilibrium point
(DFE). Let us now calculate the Jacobian of f(y) in system (24). This Jacobian matrix in the
above equilibrium point is given by

J(y
eq
) =


0 −αe(1− p∞) −αi(1− p∞) γ 0

0 αe(1− p∞)− κ− ρ αi(1− p∞) 0 0

0 κ −β − µ 0 0

0 ρ β −γ 0

0 0 µ 0 0

 , (26)

which has the two zero eigenvalues λ1 = λ2 = 0 and eigenvalues

λ3 = −γ, λ4,5 =
αe(1− p∞)− κ− ρ− β − µ±

√
(β + µ+ αe(1− p∞)− κ− ρ)2 + 4καi
2

. (27)

This derivation can be found in section 6.1.5. Clearly, the part inside the root of the last two
eigenvalues is positive and hence each eigenvalue is real. Furthermore, the eigenvalue λ4 with the
positive root is the largest of these two eigenvalues. Therefore, assuming p∞ = 0 the equilibrium
point y

eq
is stable when λ4 ≤ 0, i.e., when

καi ≤ (κ+ ρ− αe)(β + µ). (28)

This derivation can be found in section 6.1.6.
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3.3 Reproduction number
Unlike in the SIR model, the reproduction number R0 can not be found as easily as described at
the start of section 2.2. In order to determine R0 in the SEIRP model an alternative method needs
to be used, described in [15]. First, the vector field f(y) given in (24) will be written in the form
f(y) = F(y) + V(y). Here, F consists of all new infection terms of f(y) and V(y) of the remaining
terms. Population shifts between infection compartments are not considered to be new infections.
Hence one finds

F =


0

αes(t)e(t) + αis(t)i(t)

0

0

0

 and V =


−αes(t)e(t)− αis(t)i(t) + γr(t)

−κe(t)− ρe(t)
κe(t)− βi(t)− µi(t)
βi(t) + ρe(t)− γr(t)

µi(t)

 .

The disease-free equilibrium point given in equation (25) satisfies each of the five conditions de-
scribed in section 2 of [15]. These conditions can also be found in section 6.1.7. Consequently, one
can make use of Lemma 1 described in the article, which states that the Jacobian of F and V in a
decease free equilibrium y

eq
can be written in the form

∇yF(yeq
) =

(
F 0

0 0

)
and ∇yV(yeq

) =

(
V 0

J1 J2

)
,

where F and V are square matrices, F is nonnegative, V is nonsingular and both F and V only
consist of the infection compartments. Using this lemma on the disease-free equilibrium point (25)
yields the Jacobians

∇yF(yeq
) =

0 0 0 0 0

0 αe(1− p∞) αi(1− p∞) 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



,

∇yV(yeq
) =

0 −αe(1− p∞) −αi(1− p∞) γ 0

0 −κ− ρ 0 0 0

0 κ −β − µ 0 0

0 ρ β −γ 0

0 0 µ 0 0




.

Notice that ∇yF(yeq
) +∇yV(yeq

) = J(y
eq
) where J(y) is the Jacobian given in equation (26), as

desired. Matrices F and V only consist of the infection compartments, which are indicated by the
boxes above. Consequently, one finds

F (y
eq
) =

(
αe(1− p∞) αi(1− p∞)

0 0

)
and V (y

eq
) =

(
−κ− ρ 0

κ −β − µ

)
.

Then one can make use of Theorem 2 in [15], which states that R0 = ρ(−FV −1), where ρ is the
spectral radius of the so called ’next generation matrix’ (NGM) −FV −1, which is known to be the
natural basis matrix of the reproduction number [16]. In our case, one finds the next generation
matrix

−FV −1 =
1

(κ+ ρ)(β + µ)

(
αe(1− p∞)(β + µ) + καi(1− p∞) αi(1− p∞)(κ+ ρ)

0 0

)
,
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which has spectral radius and reproduction number

R0 = ρ(−FV −1) = αe(1− p∞)(β + µ) + καi(1− p∞)

(κ+ ρ)(β + µ)
.

Under the assumption that the initial fraction of passed away individuals in transient state p∞ = 0,
this can be simplified toR0 = αe(β+µ)+καi

(κ+ρ)(β+µ) . Similarly as in the SIR model, this reproduction number
can be related to the stability results, that is, when R0 ≤ 1 the stability restriction of equilibrium
point y

eq
given by inequality (28) is satisfied. Similarly, when R0 > 1 this equilibrium point is

unstable. The above method can also be applied to the SIR model and can be found in section
6.1.8.

3.4 Numerical methods
For numerical purposes, let

αe = 0.4, αi = 0.2, β = 0.35, γ = 0.01, κ = 0.02, ρ = 0.03, µ = 0.005836, (29)

where the mortality rate µ is assumed to have the same value as discussed in Section 2.6. Fur-
thermore, let the initial condition be y(0) = (0.99, 0.005, 0.005, 0, 0), timestep h = 0.01 and a
time period of 100 days. Then the (forward) Euler, the Runge-Kutta Dormand-Prince and the
4-stage Runge-Kutta method previously described yield the approximately same result given in
Figures 18a and 18b. Similarly as for the SIR model, the population fractions of the individuals
having the virus first increases rapidly and after that decreases, the fraction of susceptibles first
decreases rapidly and after a while slowly increases and the recovered fraction starts increasing
when the number of infected increases and steadily decreases after a while. The exposed fraction
of the population is much higher than the infected fraction and the maximum exposed fraction
of the population is at its peak on day 20, while the maximum fraction of infected has its peak
shortly after that. Both these results rely on the fact that the infected population first belonged
to the exposed category. Furthermore, the passed away fraction increases very slowly, due to the
mortality rate only being µ = 0.005836 and ends up to be less than one percent of the population
after these first 100 days. Moreover, the stability restriction for equilibrium point y

eq
given in (28)

is not satisfied and hence this point is unstable.
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(a) The fraction of susceptibles, exposed, infected,
recovered and passed away.
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(b) The fraction of infected and passed away.

Figure 18: A distribution of the first 100 days in the SEIRP model with parameters αe = 0.4,
αi = 0.2, β = 0.35, γ = 0.01, κ = 0.02, ρ = 0.03, µ = 0.005836, timestep h = 0.01 and initial
condition y(0) = (0.99, 0.005, 0.005, 0, 0)T .
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For numerical purposes, the value of αe is changed to 0. In this case, the inequality given in
equation (28) holds and hence y

eq
is stable. This can clearly be seen in Figures 19a and 19b, where

all parameters except for αe remained the same, because the exposed, infected and recovered
population converge to 0, while the fraction of susceptibles and fraction of passed away converge
to some values 1 − p∞ and p∞, respectively. In Figure 19a it can be seen that the fraction of
susceptibles decreases in the first ten days, but after that increases. In Figure 19b the fraction of
exposed and recovered increases at first, but after that slowly decrease. On the other hand, the
fraction of infected decreases immediately. Lastly, the passed away fraction increases slowly in the
first days, but after that stabilizes.
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(a) The fraction of susceptibles.
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(b) The fraction of exposed, infected, recovered and
passed away.

Figure 19: A distribution of the first 100 days in the SEIRP model with parameters αe = 0,
αi = 0.2, β = 0.35, γ = 0.01, κ = 0.02, ρ = 0.03, µ = 0.005836, timestep h = 0.01 and initial
condition y(0) = (0.99, 0.005, 0.005, 0, 0)T .

Finally, one could also add lockdowns and free days as done in the SIR model. This gives similar
results as discussed in section 2.5 and can easily be visualized by using the Matlab code given in
section 6.2.10.

3.5 The SEIRP model with vaccination
The model can be extended by introducing vaccinations. Assumed that susceptibles can be vacci-
nated with a rate θ (0 ≤ θ ≤ 1), where they are transferred to the recovered compartment. Then
by slightly changing system (24) one finds

y′ =



ds(t)

dt
= −αes(t)e(t)− αis(t)i(t) + γr(t)− θs(t),

de(t)

dt
= αes(t)e(t) + αis(t)i(t)− κe(t)− ρe(t),

di(t)

dt
= κe(t)− βi(t)− µi(t),

dr(t)

dt
= βi(t) + ρe(t)− γr(t) + θs(t),

dp(t)

dt
= µi(t),

(30a)

(30b)

(30c)

(30d)

(30e)
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Figure 20: A flowchart of the SEIRP model with vaccinations.

for which the flowchart can be seen in Figure 20. For numerical purposes assume that θ = 0.06
and the values of all other parameters are given in (29). Furthermore, let the initial condition
be y(0) = (0.99, 0.005, 0.005, 0, 0), timestep h = 0.01 and a time period of 100 days. Using the
(forward) Euler method one then finds Figures 21a and 21b. The population fractions in these
figures behave similarly as in Figures 18a and 18b. However, the fraction of susceptibles, exposed,
infected and passed away at each day is lower than in the latter two figures, while the fraction of
recovered at each day is higher. These results are due to the extra flow from the susceptible to the
recovered compartment.
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(a) Fraction of susceptibles, exposed, infected, re-
covered and passed away.
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(b) Fraction of infected and passed away.

Figure 21: A distribution of the first 100 days of the five compartments in the SEIRP model with
vaccination and with parameters αe = 0.4, αi = 0.2, β = 0.35, γ = 0.01, κ = 0.02, ρ = 0.03,
µ = 0.005836, θ = 0.06, timestep h = 0.01 and initial condition y(0) = (0.99, 0.005, 0.005, 0, 0)T .

For better insight in the influence of the vaccination, assume now that the initial condition is
changed to y(0) = (1, 0, 0, 0, 0). Hence, the only flow is between the susceptible and recovered
compartments and there are no exposed, infected or passed away individuals in this model. Using
these assumptions one finds with help of the (forward) Euler method Figure 22. Here, the fraction
of recovered increases, while the fraction of susceptibles decreases. However, the rate at which the
fraction of susceptibles become part of the recovered compartment decreases, which is due to lack
of the fraction of available susceptibles. Furthermore, since the immunity loss parameter γ = 0.01
there is a flow going from the recovered to the susceptible compartment and hence the fraction of
susceptibles does not converge to 0.
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Figure 22: A distribution of the first 100 days of
the susceptible and recovered compartments in
the SEIRP model with vaccination with param-
eters αe = 0.4, αi = 0.2, β = 0.35, γ = 0.01,
κ = 0.02, ρ = 0.03, µ = 0.005836, θ = 0.06,
timestep h = 0.01 and initial condition y(0) =
(1, 0, 0, 0, 0)T .

0 100 200 300 400 500 600 700 800 900 1000

Days

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
ra

ct
io

n 
of

 in
di

vi
du

al
s

Fraction of susceptibles
Fraction of recovered

Figure 23: A distribution of the first 1000
days of the susceptible and recovered compart-
ments in the SEIRP model with vaccination
with parameters αe = 0.4, αi = 0.2, β = 0.35,
γ = 0.01, κ = 0.02, ρ = 0.03, µ = 0.005836,
θ(t) = 2·10−8 ·t2+4·10−10 ·t, timestep h = 0.01
and initial condition y(0) = (1, 0, 0, 0, 0)T .

In reality, vaccinations are not available immediately. This can clearly be seen in Figure 24,
where the coronavirus vaccine doses over time are given for different countries. Consequently, the
vaccination rate θ should be modelled as a function over time. For numerical purposes, assume
that

θ(t) =

{
2 · 10−8 · t2 + 4 · 10−10 · t if 2 · 10−8 · t2 + 4 · 10−10 · t < 1,

1 otherwise,
(31)

where the time unit t ≥ 0 is in days. Then, by using the same parameters and initial conditions as
before, one finds Figure 23. Notice that the fraction of recovered behaves in a similar manner as
the administered vaccine doses in Figure 24 [17], as desired.

Figure 24: The coronavirus vaccine doses over time [17].
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Now, let the parameters of system (30) be given by (29) and (31). Furthermore, let the initial
condition be y(0) = (0.99, 0.005, 0.005, 0, 0), timestep h = 0.01 and a time period of 200 days.
Using (forward) Euler, one then finds Figures 25a and 25b. Comparing the first days in these
figures to the first days in figures 18a and 18b shows that the vaccinations do not influence the
model much. This is due to the small value of θ in these first days. However, about day 200 it can
be seen in Figure 25a that the fraction of recovered individuals is much higher than in Figure 18a,
which shows the impact of vaccinations.

(a) The fraction of susceptibles, exposed, infected,
recovered and passed away.
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(b) The fraction of infected and passed away.

Figure 25: A distribution of the first 200 days in the SEIRP model with vaccination with parameters
αe = 0.4, αi = 0.2, β = 0.35, γ = 0.01, κ = 0.02, ρ = 0.03, µ = 0.005836, θ(t) = 2 · 10−8 · t2 + 4 ·
10−10 · t, timestep h = 0.01 and initial condition y(0) = (0.99, 0.005, 0.005, 0, 0)T .
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4 Conclusion and discussion
This study analyzed the SIR and SEIRP models to better understand the condition under which
we can control the spread of viruses and the effectiveness of government interventions. For this
reason, the total population was classified into different categories in both models. In the SIR model
the maximum fraction of infected and the fraction of the population that ends up having the virus
were calculated for different parameters. Depending on the specific circumstances and based on the
findings of the calculations, governments can decide whether the coronavirus restrictions should be
stricter or less strict to control the number of infected and how to manage the maximum capacity
in hospitals. Both models calculated the equilibrium points, assessed the stability conditions of
these equilibrium points and showed graphs to provide a clear overview of the distribution for each
of the categories over time. In the SIR model a lockdown was introduced, which gives the utility
of the coronavirus restrictions. Furthermore, by introducing a ‘free days’ period which was done
in section 2.5 it could be seen that a decision to cancel all rules regarding the virus for a certain
period is not a smart choice. In addition, the fatal SIR model discussed the impact of the virus in
the long run with birth and death rates without vaccinations. In the SEIRP model a vaccination
flow θ was added. When the coronavirus started spreading, the number of vaccinations were small,
but increased over time and hence population distribution graphs were provided with θ(t) being a
function over time, showing the impact of vaccinating the population.

Both mathematical models divided the total population into multiple categories. In particular, the
susceptible, exposed, infected, recovered and passed away compartments were considered. However,
in reality the infective compartment consists of smaller subcompartments such as the quarantined
infected, symptomatic infected, hospitalized infected and super spreaders, which were not taken into
account [18]. Furthermore, the total population can usually be divided into smaller subpopulations.
Each of these subpopulations decides for themselves how strict they must adhere the coronavirus
restrictions, which can cause fluctuations in the infection rates. These subpopulations are for
instance schools, working places or different cultures. For example, in the beginning of 2021
thousands of Orthodox Christians ignored the coronavirus restrictions, due to worshipping their
traditions [19]. Lastly, previous sections sometimes used parameters and functions such as α and θ
which approximately represented reality, but in general these parameters are determined by making
use of least squares methods. These methods make use of the curves representing the reality, then
try to fit these curves and predict what the parameters of the system are [5][20].

Already before the coronavirus emerged, many disease models existed, but during the spreading
new sophisticated models were discovered and existing models were thoroughly analyzed on high
abstract levels. This study used mathematical models to predict the distribution of a pandemic over
time and analyzed the effectiveness of interventions to control the spread of a virus. The findings
stress the usefulness of mathematical modeling in better understanding and predicting conditions
under which we can control the spread of the coronavirus. Future research could explore more
types of interventions and make further distinctions in categories to refine the models. Overall,
an advanced understanding is important, because increased insight may help to better control the
spread of a virus on national and global scales. Moreover, it may also help regulators to assess the
effectiveness of interventions and reduce the risks associated with the virus.
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6 Appendices

6.1 Derivations
This section discusses some calculations and derivations which were previously used in the report.

6.1.1 Theorems

Theorem 1. If the sum of each column of a square matrix equals 0, then 0 is one of the eigenvalues
of the matrix.

Proof. Let A be a n× n matrix for which each of the columns sums up to zero and let v ∈ Rn be
the all-ones vector. Then, one finds that vTA = 0 which implies that A is singular and hence has
eigenvalue λ = 0.

Theorem 2. All Runge-Kutta methods preserve linear invariants.

Proof. In general Runge-Kutta methods have the form

y
n+1

= y
n
+ h

m∑
i=1

biki,

where the bi are the weights of the Runge-Kutta method and

ki = f
(
tn + hci, yn + h

m∑
j=1

aijkj

)
,

for each i = 1, 2, ...,m, where ci are the nodes of the Runge-Kutta method and aij are the entries
of the Butcher array of the Runge-Kutta method. Recall that a variable I(y) is an invariant of the
autonomous ordinary differential equations system y = f(y) if I(y(t)) is a constant for all solutions
of the system, i.e., for all y it holds that

d

dt
I(y) = ∇I(y)T y′ = ∇I(y)T f(y) = 0.

If we let I(y) = aT y be a linear invariant, then

d

dt
I(y) = ∇I(y)T f(y) = aT f(y) = 0,

for all values of y and hence aT ki = 0 for all i = 1, 2, ...,m which yields

In+1 = aT y
n+1

= aT y
n
+ h

m∑
i=1

bia
T ki = In.

Consequently, In is a constant for all values of n and is hence an invariant of the Runge-Kutta
methods [21].
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6.1.2 Jacobian in the SIR model

The characteristic equation given by (15) can be rewritten as follows:

(−α2y2y1 + αβy2 + αy2λ− αy1λ+ βλ+ λ2)(−γ − λ)− αy2(αγy1 + αy1λ− γβ) = 0,

=⇒ α2γy1y2 − αβγy2 − αγy2λ+ αγy1λ− βγλ− γλ2 + α2y2y1λ− αβy2λ− αy2λ2+

αy1λ
2 − βλ2 − λ3 − α2γy1y2 − α2y1y2λ+ αβγy2 = 0,

=⇒ − αγy2λ+ αγy1λ− βγλ− γλ2 − αβy2λ− αy2λ2 + αy1λ
2 − βλ2 − λ3 = 0,

=⇒ αγy2λ− αγy1λ+ βγλ+ γλ2 + αβy2λ+ αy2λ
2 − αy1λ2 + βλ2 + λ3 = 0,

=⇒ λ3 + (γ + αy2 − αy1 + β)λ2 + (αγy2 − αγy1 + βγ + αβy2)λ = 0,

=⇒ λ(λ2 + (γ + αy2 − αy1 + β)λ+ αγy2 − αγy1 + βγ + αβy2)) = 0,

=⇒ λ = 0 or λ =
−γ − αy2 + αy1 − β ±

√
(γ + αy2 − αy1 + β)2 + 4αγy1 − 4(αγy2 + βγ + αβy2)

2
.

6.1.3 SIR Eigenvalues for equilibrium point 1

For the first equilibrium point y
eq1

one finds the eigenvalues λ = 0 and

λ =
−γ + α− β ±

√
(γ − α+ β)2 + 4αγ − 4(βγ)

2
,

=
α− β − γ ±

√
α2 + γ2 + β2 − 2αβ − 2αγ + 2βγ + 4αγ − 4βγ

2
,

=
α− β − γ ±

√
α2 + β2 + γ2 + 2αγ − 2(αβ + βγ)

2
,

=
α− β − γ ±

√
(α− β + γ)2

2
=
α− β − γ ± |α− β + γ|

2
.

For the first of these two eigenvalues:

λ =

{
α−β−γ+α−β+γ

2 = 2α−2β
2 = α− β if α− β + γ ≥ 0,

α−β−γ−α+β−γ
2 = −γ if α− β + γ < 0,

and for the second:

λ =

{
α−β−γ+α−β+γ

2 = 2α−2β
2 = α− β if α− β + γ < 0,

α−β−γ−α+β−γ
2 = −γ if α− β + γ ≥ 0.
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6.1.4 SIR Eigenvalues for equilibrium point 2

For the second equilibrium point y
eq2

one finds λ = 0 and

λ =
−γ − γ(α−β)

γ+β ±
√

(γ + γ(α−β)
γ+β )2 + 4βγ − 4(γ

2(α−β)
γ+β + βγ + βγ(α−β)

γ+β )

2
,

=
−γ − γ(α−β)

γ+β ±
√
γ2 + 2γ

2(α−β)
γ+β + γ2(α−β)2

(γ+β)2 + 4βγ − 4γ
2(α−β)
γ+β − 4βγ − 4βγ(α−β)γ+β

2
,

=
−γ − γ(α−β)

γ+β ±
√
γ2 + γ2(α−β)2

(γ+β)2 − 2γ
2(α−β)
γ+β − 4βγ(α−β)γ+β

2
,

=
−γ − γ(α−β)

γ+β ±
√
γ2 + γ2

(γ+β)2 · (α2 + β2 − 2αβ)− 2γ2

γ+β · (α− β)−
4βγ
γ+β · (α− β)

2
,

=

−γ − γ(α−β)
γ+β ±

√
γ2

(γ+β)2α
2 +

(
− 2βγ2

(γ+β)2 −
2γ2

(γ+β) −
4βγ
γ+β

)
α+

(
γ2 + γ2β2

(γ+β)2 + 2βγ2

γ+β + 4β2γ
γ+β

)
2

.

These last two eigenvalues are complex if the part inside the square root is negative, which can
only occur if γ > 0. Using Mathematica one then finds that this is the case when

2β2 + 4βγ + γ2 − 2
√
β4 + 3β3γ + 3β2γ2 + βγ3

γ
< α <

2β2 + 4βγ + γ2 + 2
√
β4 + 3β3γ + 3β2γ2 + βγ3

γ
,

(32)

for which a visual representation is given in Figure 26. Furthermore, if these last two eigenvalues
are complex, then the real part of these eigenvalues equals zero when

−γ − γ(α− β)
γ + β

= 0 =⇒ −(γ + β) = (α− β) =⇒ α = −γ.

Figure 26: A 3D plot of all values satisfying equation (32)

Consequently, since it was assumed that α, γ > 0 this tells us that the real part of the eigenvalues
are always negative and hence stable if the eigenvalues are complex [6]. However, if all three
eigenvalues are real, one might be interested in when this second equilibrium point is stable. This
is the case when all three eigenvalues are not positive. Choosing the eigenvalue with the negative
sign above gives for all positive parameters α, β and γ a negative eigenvalue. Therefore, next it will
be determined when the other eigenvalue with the positive sign above is non-positive. It follows
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that

−γ − γ(α−β)
γ+β +

√
γ2

(γ+β)2α
2 +

(
− 2βγ2

(γ+β)2 −
2γ2

(γ+β) −
4βγ
γ+β

)
α+

(
γ2 + γ2β2

(γ+β)2 + 2βγ2

γ+β + 4β2γ
γ+β

)
2

≤ 0,

=⇒

√
γ2

(γ + β)2
α2 +

(
− 2βγ2

(γ + β)2
− 2γ2

(γ + β)
− 4βγ

γ + β

)
α+

(
γ2 +

γ2β2

(γ + β)2
+

2βγ2

γ + β
+

4β2γ

γ + β

)
≤

γ +
γ(α− β)
γ + β

,

=⇒ γ2

(γ + β)2
α2 +

(
− 2βγ2

(γ + β)2
− 2γ2

(γ + β)
− 4βγ

γ + β

)
α+

(
γ2 +

γ2β2

(γ + β)2
+

2βγ2

γ + β
+

4β2γ

γ + β

)
≤

γ2 +
γ2(α− β)2

(γ + β)2
+ 2

γ2(α− β)
(γ + β)

= γ2 +
γ2α2

(γ + β)2
+

γ2β2

(γ + β)2
− 2

γ2αβ

(γ + β)2
+ 2

γ2α

γ + β
− 2

γ2β

γ + β
,

=⇒
(
− 2γ2

(γ + β)
− 4βγ

γ + β

)
α+

(
2βγ2

γ + β
+

4β2γ

γ + β

)
≤ 2

γ2α

γ + β
− 2

γ2β

γ + β
,

=⇒
(
− 4γ2

(γ + β)
− 4βγ

γ + β

)
α+

(
4βγ2

γ + β
+

4β2γ

γ + β

)
≤ 0,

=⇒ α ≥ βγ2 + β2γ

γ2 + βγ
=
βγ + β2

γ + β
= β,

and therefore the second equilibrium point is stable when α ≥ β.

6.1.5 Eigenvalues SEIRP

The characteristic equation of the Jacobian matrix given in equation (26) is

− λ ·

∣∣∣∣∣∣∣∣∣
αe(1− p∞)− κ− ρ− λ αi(1− p∞) 0 0

κ −β − µ− λ 0 0

ρ β −γ − λ 0

0 µ 0 −λ

∣∣∣∣∣∣∣∣∣
=− λ

(
(αe(1− p∞)− κ− ρ− λ) ·

∣∣∣∣∣∣∣
−β − µ− λ 0 0

β −γ − λ 0

µ 0 −λ

∣∣∣∣∣∣∣− κ
∣∣∣∣∣∣∣
αi(1− p∞) 0 0

β −γ − λ 0

µ 0 −λ

∣∣∣∣∣∣∣+
ρ

∣∣∣∣∣∣∣
αi(1− p∞) 0 0

−β − µ− λ 0 0

µ 0 −λ

∣∣∣∣∣∣∣
)

=− λ

(
(αe(1− p∞)− κ− ρ− λ)(−β − µ− λ)(−γ − λ)(−λ)− κ(αi(1− p∞))(−γ − λ)(−λ)

)

=− λ2(λ+ γ)

(
(αe(1− p∞)− κ− ρ− λ)(−β − µ− λ)− κ(αi(1− p∞))

)

=− λ2(λ+ γ)

(
− β(αe(1− p∞)− κ− ρ− λ)− µ(αe(1− p∞)− κ− ρ− λ)−

λ(αe(1− p∞)− κ− ρ) + λ2 − καi(1− p∞)

)
=− λ2(λ+ γ)

(
λ2 + λ(β + µ+ αe(1− p∞)− κ− ρ)− (αe(1− p∞)− κ− ρ)(β + µ)− καi

)
= 0,

resulting in eigenvalues

λ1 = λ2 = 0, λ3 = −γ, λ4,5 =
αe(1− p∞)− κ− ρ− β − µ±

√
(β + µ+ αe(1− p∞)− κ− ρ)2 + 4καi
2

.
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6.1.6 Largest eigenvalue SEIRP

The largest eigenvalue λ4 given in equation (27) is less or equal to 0 when:

λ4 ≤ 0 =⇒
αe(1− p∞)− κ− ρ− β − µ+

√
(β + µ+ αe(1− p∞)− κ− ρ)2 + 4καi
2

≤ 0,

=⇒
√

(β + µ+ αe(1− p∞)− κ− ρ)2 + 4καi ≤ β + µ− (αe(1− p∞)− κ− ρ),

=⇒ (β + µ+ αe(1− p∞)− κ− ρ)2 + 4καi ≤ (αe(1− p∞)− κ− ρ)2 + β2 + µ2+

2βµ− 2β(αe(1− p∞)− κ− ρ)− 2µ(αe(1− p∞)− κ− ρ),

=⇒ (αe(1− p∞)− κ− ρ)2 + β2 + µ2 + 2β(αe(1− p∞)− κ− ρ) + 2µ(αe(1− p∞)− κ− ρ)+

2βµ+ 4καi ≤ (αe(1− p∞)− κ− ρ)2 + β2 + µ2 + 2βµ− 2β(αe(1− p∞)− κ− ρ)−
2µ(αe(1− p∞)− κ− ρ),

=⇒ β(αe(1− p∞)− κ− ρ) + µ(αe(1− p∞)− κ− ρ) + καi ≤ 0,

=⇒ καi ≤ (κ+ ρ− αe)(β + µ).

6.1.7 Conditions disease-free equilibrium

The disease-free equilibrium point given in equation (25) satisfies each of the five conditions de-
scribed in section 2 of [15]. The first of these conditions is that if y

eq
≥ 0, then each of the entries

of F , V+
i and V−i is non-negative. The second condition states that if the i-th entry of y

eq
is equal

to 0, then the same entry in V−i is equal to 0. The third condition tells us that Fi = 0 for all
disease-free compartments i. If y

eq
is a disease-free equilibrium point, the fourth condition states

that Fi(yeq
) = 0 and V+

i (yeq
) = 0 for all exposed and infected compartments. The fifth condition

is that if F is set to 0, the eigenvalues of the Jacobian of the system f(y
eq
) are non-positive, i.e.

the equilibrium point is stable.

6.1.8 Reproduction number SIR model

The reproduction number in the SIR model can in a similar way be constructed as in the SEIRP
model by using the next generation matrix. The set of equations f(y) given in (4) will be written
in the form f(y) = F(y) + V(y), where F consists of all new infection terms of f(y) and V(y) of
the remaining terms. Consequently, one finds

F =

 0

αs(t)i(t)

0

 and V =

−αs(t)i(t) + γr(t)

−βi(t)
βi(t)− γr(t)

 .

The only disease-free equilibrium point of the SIR model given in equation (13) satisfies each of the
five conditions described [15] and section 6.1.7 above. Consequently, one can make use of Lemma
1 in section 3.3 and in this article. Using this lemma on the disease-free equilibrium point (13)
yields Jacobians

∇yF(yeq1
) =

0 0 0

0 α 0

0 0 0

 and ∇yV(yeq1
) =

0 −α γ

0 −β 0

0 β −γ

 .

Notice that ∇yF(yeq1
) +∇yV(yeq1

) = J(y
eq1

) where J(y) is the Jacobian given in equation (15),
as desired. Consequently, one finds

F (y
eq1

) =
(
α
)

and V (y
eq1

) =
(
−β
)
.

Then, similarly as in the SEIRP model, one can make use of Theorem 2 in [15], which gives
R0 = ρ(−FV −1) = α

β . This agrees with the reproduction found in section (2.2).
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6.2 Matlab code
This section consists of Matlab code used to make graphs and compute numerical results. In each
code the parameters can easily be modified to give numerical results.

6.2.1 Newton-Raphson method

The Matlab code below is used to plot Figures 2 and 3. Furthermore, it applies the Newton-
Rhapson method which yields Figure 4.

1 %% Newton−Raphson method
2 c l e a r a l l ; c l c ; t i c % t i c measures the time
3

4 %{
5 % Plot o f i_max(R_0)
6 i 0 = 0 . 0 1 ; s0 = 0 . 9 9 ; xbegin = 1 ; xend = 9 ; ybegin = 0 ; yend = 1 ;
7 f p l o t (@(x ) i 0+s0 −((1/x ) ∗(1+ log (x∗ s0 ) ) ) , [ xbegin xend ] )
8 ylim ( [ ybegin yend ] ) ; x l ab e l ( ’R_0 ’ ) ; y l ab e l ( ’ i$_{\mathrm{max}}$ ’ , ’

I n t e r p r e t e r ’ , ’ l a t e x ’ ) ; saveas ( gcf , ’ Function_i_max . pdf ’ ) ; % sav ing a
pdf o f the p l o t

9 %}
10

11 %{
12 % Plot o f f ( s ( i n f i n i t y ) ,R)
13 R_1=0.0; R_2=10; R_3=4; R_4=2; R_5=1.4; R_6=1. ; R_7=0.8; xbegin = 0 . 9 8 ;

xend = 1 ; ybegin = −0.02; yend = 0 . 0 0 5 ;
14 f p l o t (@(x ) x+(1/R_2) ∗ l og ( 0 . 9 9 . / x ) −1 ,[ xbegin xend ] )
15 ylim ( [ ybegin yend ] ) ; hold on ;
16 f p l o t (@(x ) x+(1/R_3) ∗ l og ( 0 . 9 9 . / x ) −1 ,[ xbegin xend ] ) ;
17 f p l o t (@(x ) x+(1/R_4) ∗ l og ( 0 . 9 9 . / x ) −1 ,[ xbegin xend ] ) ;
18 f p l o t (@(x ) x+(1/R_5) ∗ l og ( 0 . 9 9 . / x ) −1 ,[ xbegin xend ] ) ;
19 f p l o t (@(x ) x+(1/R_6) ∗ l og ( 0 . 9 9 . / x ) −1 ,[ xbegin xend ] ) ;
20 f p l o t (@(x ) x+(1/R_7) ∗ l og ( 0 . 9 9 . / x ) −1 ,[ xbegin xend ] ) ;
21 f p l o t (@(x ) 0∗x , [ xbegin xend ] , ’ k ’ ) ;
22 l egend ({ ’R_0=10 ’ , ’R_0=4 ’ , ’R_0=2 ’ , ’R_0=1.2 ’ , ’R_0=1 ’ , ’R_0=0.8 ’ } , ’

Locat ion ’ , ’ northwest ’ ) ; x l ab e l ( ’ x ’ ) ; y l ab e l ( ’ f ( x ) ’ ) ; hold o f f ;
saveas ( gcf , ’ Zeros_C_values2 . pdf ’ ) ;

23 %}
24

25 %{
26 %Newton−Raphson i t e r a t i o n
27 r = ze ro s (1 ,500) ; s = ze ro s (1 ,500) ;
28 f o r j = 1 : 1 : 5 00 %R=0 . 0 1 , 0 . 0 2 , . . . , 2 . 0 0
29 R=100/ j ; x = ze ro s (1 , 10) ; x (1 ) =1∗10^(−100) ; % i n i t i a l cond i t i on
30 f o r i = 2 :1 : 100000 % 100000/100=1000 i t e r a t i o n s
31 x ( i )=x( i −1)−(x ( i −1)+R∗ l og ( 0 . 9 9/ ( x ( i −1) ) )−1)/(1−R/(x ( i −1) ) ) ;
32 end
33 s ( j ) = x (100) ; % the value o f s f o r R=0 . 0 1 , 0 . 0 2 , . . . , 2 . 0 0
34 r ( j )=1−s ( j ) ; % the value o f r f o r R=0 . 0 1 , 0 . 0 2 , . . . , 2 . 0 0
35 end
36 x = l i n s p a c e ( 0 . 01 , 5 , 5 00 ) ; x = x . ’ ; r = r . ’ ; p l o t (x , r ) ; x l ab e l ( ’R_0 ’ ) ;

y l ab e l ( ’ I n f e c t ed f r a c t i o n r (t_\ i n f t y ) ’ ) ; t i t l e ( ’ Total f r a c t i o n o f
populat ion i n f e c t e d when t to i n f i n i t y ’ ) ; saveas ( gcf , ’
NewtonRaphson1 . pdf ’ ) ;

37 %}
38 toc % measures the time

Page 35 of 48



Eindhoven University of Technology - 2WH40 - Bachelor Final Project

6.2.2 Plot of complex eigenvalues in the SIR model

The Matlab code below is used to plot the graph given in Figure 26.

1 %% Alpha va lues 3D p lo t
2 c l e a r ; c l o s e a l l ; c l c ;
3 x = 0 . 0 : 0 . 1 : 1 ; y = 0 . 0 : 0 . 1 : 1 ; [X,Y] = meshgrid (x , y ) ;
4 Z = ( ( ( 2 . ∗ ( (X) .^2) )+4.∗X.∗Y+(Y) .^2) . /Y) +((2.∗ s q r t (X.^4+3.∗ ( (X) .^3) .∗Y

+3.∗((X) .^2) . ∗ ( (Y) .^2)+X. ∗ ( (Y) .^3) ) ) . /Y) ;
5 s u r f (X,Y,Z) ; hold on ;
6 Z = ( ( ( 2 . ∗ ( (X) .^2) )+4.∗X.∗Y+(Y) .^2) . /Y) −((2.∗ s q r t (X.^4+3.∗ ( (X) .^3) .∗Y

+3.∗((X) .^2) . ∗ ( (Y) .^2)+X. ∗ ( (Y) .^3) ) ) . /Y) ;
7 s u r f (X,Y,Z) ; x l ab e l ( ’ beta ’ ) ; y l ab e l ( ’gamma ’ ) ; z l a b e l ( ’ alpha ’ ) ; saveas (

gcf , ’ 3D_plot . pdf ’ ) ; hold o f f

6.2.3 (Forward) Euler method on the SIR model.

The Matlab code below yields a graph of the compartment division in the SIR model by using the
(forward) Euler method.

1 %% (Forward ) Euler method f o r the SIR model
2 c l e a r ; c l o s e a l l ; c l c ; format long ;
3

4 % Parameters
5 alpha = 0 . 1 5 ; beta = 0 . 1 5 ; gamma = 0 . 0 1 ; s0 = 1−(10^(−2) ) ; i 0 =

(10^(−2) ) ; r0 = 0 . 0 ; T = 1000 ; dt = 0 . 0 1 ; % length o f the time
i n t e r v a l ( dt should hence d iv id e T)

6 f p r i n t f ( ’The value o f the reproduct ion number R0 i s %.2 f . ’ , a lpha /beta )
7

8 % Calcu l a t i on o f the SIR va lues over time
9 [ s , i , r ] = s i r 1 ( alpha , beta , gamma, s0 , i0 , r0 ,T, dt ) ;

10

11 % Plot o f the populat ion d i v i s i o n over time
12 t = 0 : dt :T−dt ; p l o t ( t , s , ’ b ’ , t , i , ’ r ’ , t , r , ’ g ’ , ’ LineWidth ’ , 2 ) ; g r i d on ;

x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ; t i t l e ( ’
Populat ion f r a c t i o n s in the ba s i c SIR model over time ’ ) ; l egend ({ ’
Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion o f i n f e c t e d ’ , ’ Fract ion o f
recovered ’ } , ’ Locat ion ’ , ’ nor theas t ’ ) ; saveas ( gcf , ’ Euler_SIR_test .
pdf ’ ) ;

In this code the function sir1 is used, which is given below.

1 f unc t i on [ s , i , r ] = s i r 1 ( alpha , beta , gamma, s0 , i0 , r0 ,T, dt )
2 s = ze ro s (1 ,T/dt ) ; i = s ; r=s ; s (1 ) = s0 ; i ( 1 ) = i 0 ; r (1 ) = r0 ;
3 f o r t = 1 : (T/dt )−1 % f o r each t imestep t determining s ( t ) , i ( t ) and

r ( t )
4 s ( t+1) = (−alpha ∗ s ( t ) ∗ i ( t ) + gamma ∗ r ( t ) ) ∗ dt + s ( t ) ;
5 i ( t+1) = ( alpha ∗ s ( t ) ∗ i ( t ) − beta ∗ i ( t ) ) ∗ dt + i ( t ) ;
6 r ( t+1) = ( beta ∗ i ( t ) − gamma ∗ r ( t ) ) ∗ dt + r ( t ) ;
7 end
8 end

6.2.4 Prince Dormand method on the SIR model.

The Matlab code below yields a graph of the compartment division in the SIR model by using the
Dormand Prince method. In Matlab this method has a built in function called ode45. Further-
more, this code computes 2d and 3d phase plots and 2d and 3d direction fields.
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1 %% Runge−Kutta method f o r the SIR model
2 c l e a r a l l ; c l c ;
3

4 %Parameters & I n i t i a l c ond i t i on s
5 alpha = 0 . 4 ; beta = 0 . 0 6 ; gamma = 0 . 0 1 ; S0 = 1−(10^(−2) ) ; I0 = (10^(−2)

) ; R0 = 0 ;
6

7 % Ca l cu l a t i on s o f the SIR va lue s over time
8 t0 = 0 ; tmax = 100 ; X0 = [ S0 ; I0 ; R0 ] ; opt i ons = odeset ( ’ RelTol ’ ,1 e−6, ’

AbsTol ’ ,1 e−6) ;
9 [ T,X ] = ode45 ( @(T,X) s i r 2 (T,X, alpha , beta , gamma) , [ t0 tmax ] , X0 ,

opt ions ) ;
10 %{
11 % A plo t o f S , I and R
12 p lo t (T,X( : , 1 ) , ’b ’ ,T,X( : , 2 ) , ’ r ’ ,T,X( : , 3 ) , ’ g ’ ) ; g r i d on ; x l ab e l ( ’Days ’ ) ;

y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ; t i t l e ( ’ Populat ion f r a c t i o n s in
the ba s i c SIR model over time (Runge−Kutta ) ’ ) ; l egend ( ’ Fract ion o f
s u s c e p t i b l e s ’ , ’ Fract ion o f i n f e c t e d ’ , ’ Fract ion o f recovered ’ ) ;
saveas ( gcf , ’ Populat ionstes tSIR2 . pdf ’ ) ;

13 %}
14 %{
15 %A phase p l o t o f S , I and R
16 p lo t3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ’−o ’ ) ; g r i d on ; x l ab e l ( ’ s ’ ) ; y l ab e l ( ’ i ’ ) ;

z l a b e l ( ’ r ’ ) ; t i t l e ( ’ Phase plane p l o t o f S ver sus I ’ ) ; saveas ( gcf , ’
PhasePlotSIR . pdf ’ ) ; % sav ing a pdf o f the p l o t

17 %}
18 % 3d Di r e c t i on f i e l d p l o t o f S , I , R.
19 t =0 : . 2 0 : 1 ; y =0 : . 2 0 : 1 ; z =0 : . 2 0 : 1 ; [T,Y, Z]=meshgrid ( t , y , z ) ;
20 dT= −alpha ∗T.∗Y + gamma∗Z ; dY= alpha ∗T.∗Y − beta ∗Y; dZ = beta ∗Y − gamma

∗Z ; % new va r i a b l e s : T=S , Y=I and Z=R
21 N=sqr t (dT.^2+dY.^2+dZ .^2) ; dT=dT./N; dY=dY./N; dZ=dZ ./N; qu iver3 (T,Y, Z ,

dT,dY, dZ) ; ax i s equal ; ax i s ( [ −0.02 1 −0.02 1 ] ) ; g r i d on ; x l ab e l ( ’S ’
) ; y l ab e l ( ’ I ’ ) ; z l a b e l ( ’R ’ ) ; t i t l e ( ’A 3D p lo t o f the d i r e c t i o n
f i e l d ’ ) ; hold on ;

22 p lo t3 (1 , 0 , 0 , ’ o ’ , ’ c o l o r ’ , ’ red ’ ) ; p l o t3 ( beta /alpha ,gamma∗( alpha−beta ) /(
alpha ∗(gamma+beta ) ) , beta ∗( alpha−beta ) /( alpha ∗(gamma+beta ) ) , ’ o ’ , ’
c o l o r ’ , ’ red ’ ) ; %p lo t equ i l i b r ium po in t s

23 hold o f f
24 %}
25

26 %{
27 % 2d Di r e c t i on f i e l d p l o t
28 t =0 : . 0 5 : 1 ; y =0 : . 0 5 : 1 ; z =0 . 7 0 : . 1 0 : 0 . 7 0 ; % z f i x ed
29 %t =0 . 7 : . 0 5 : 0 . 7 ; y =0 : . 0 5 : 1 ; z =0 : . 0 5 : 1 ; % t f i x ed
30 %t =0 : . 0 5 : 1 ; y = 0 . 7 : . 0 5 : 0 . 7 ; z =0 : . 0 5 : 1 ; % y f i x ed
31 [T,Y, Z]=meshgrid ( t , y , z ) ;
32 dT= −alpha ∗T.∗Y + gamma∗Z ; dY= alpha ∗T.∗Y − beta ∗Y; dZ = beta ∗Y − gamma

∗Z ; % new va r i a b l e s : T=S , Y=I and Z=R
33 N=sqr t (dT.^2+dY.^2+dZ .^2) ; dT=dT./N; dY=dY./N; dZ=dZ ./N;
34 qu iver (T,Y,dT,dY) % z f i x ed
35 %quiver (Y, Z ,dY, dZ) % t f i x ed
36 %quiver (T, Z ,dT, dZ) % y f i x ed
37 ax i s equal ; ax i s ( [ −0.02 1 −0.02 1 ] ) ; g r i d on ; x l ab e l ( ’ s ’ ) ; y l ab e l ( ’ i ’ ) ;

%z l a b e l ( ’ r ’ ) ;
38 s t a r t x = [0 0 .6 0 .95 1 ] ; s t a r t y = [ 0 . 0 5 0 .02 0 .02 0 . 3 5 ] ; s t r eaml ine0 =

s t r eaml ine (T,Y,dT,dY, s tar tx , s t a r t y ) ; s e t ( s t reaml ine0 , ’ LineWidth ’
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,1 , ’ Color ’ , ’ [ 1 0 . 5 0 ] ’ )
39 %t i t l e ( ’A p lo t o f the d i r e c t i o n f i e l d ’ )
40 %plo t equ i l i b r i um po in t s
41 hold on
42 %plo t (1 , 0 , ’ MarkerSize ’ , 0 . 4 ) ;
43 p lo t (1 , 0 , ’ ro ’ , ’ c o l o r ’ , ’ red ’ , ’ MarkerFaceColor ’ , ’ r ’ ) ; p l o t ( beta /alpha ,

gamma∗( alpha−beta ) /( alpha ∗(gamma+beta ) ) , ’ o ’ , ’ c o l o r ’ , ’ red ’ , ’
MarkerFaceColor ’ , ’ r ’ ) ;

44 saveas ( gcf , ’ Direct ion_f ie ld_SIR . pdf ’ ) ; % sav ing a pdf o f the p l o t
45 hold o f f
46 %}

In this code the function sir2 is used, which is given below.

1 f unc t i on dx2 = s i r 2 (T,X, alpha , beta , gamma)
2 dx2 = ze ro s (3 , 1 ) ;
3 dx2 (1 ) = −alpha ∗X(1) .∗X(2) + gamma∗X(3) ;
4 dx2 (2 ) = alpha ∗X(1) .∗X(2) − beta ∗X(2) ;
5 dx2 (3 ) = beta ∗X(2) − gamma∗X(3) ;
6 end

6.2.5 4-stage Runge-Kutta method on the SIR model

The Matlab code below yields a graph of the compartment division in the SIR model by using the
4-stage Runge-Kutta method. Additionally, lockdowns and free days can be computed in this code
by setting the variable(s) lockdown period and free period unequal to 0.

1 %% 4−s tage RK method f o r the SIR model
2 c l e a r ; c l o s e a l l ; c l c ;
3

4 % Parameters
5 alpha = 0 . 1 5 ; beta = 0 . 1 2 5 ; gamma = 0 . 0 1 ; s0 = 1−(10^(−2) ) ; i 0 =

(10^(−2) ) ; r0 = 0 . 0 ; T = 100 ; dt = 0 . 0 1 ;
6 f p r i n t f ( ’The value o f the reproduct ion number R0 ( without lockdown ) i s

%.2 f . ’ , a lpha /beta )
7

8 % lockdown
9 lockdown_period = 0 ; % per iod o f lockdown in days

10 lockdown_infect ive_percentage = 0 . 3 0 ; % lockdown s t a r t s when t h i s
percentage o f people i s i n f e c t e d

11 lockdown_alpha = 0 . 0 4 ; lockdown_beta = 0 . 0 7 ; lockdown_gamma = 0 . 0 1 ; %
parameters during the lockdown

12

13 % f r e e day ( s )
14 f r ee_per iod = 14 ; % per iod o f no r e s t r i c t i o n s
15 f r ee_per iod_star t = 20 ; % the day the f r e e per iod s t a r t s
16 f ree_period_alpha = 0 . 3 ; free_period_beta = 0 . 1 2 5 ; free_period_gamma =

0 . 0 1 ; % parameters during f r e e days
17

18 % Calcu la t i on o f the SIR va lues over time
19 [ s , i , r , start_lockdown ] = s i r 3 ( alpha , beta , gamma, s0 , i0 , r0 ,T, dt ,

lockdown_period , lockdown_infect ive_percentage , lockdown_alpha ,
lockdown_beta , lockdown_gamma , f ree_per iod , f ree_per iod_start ,
free_period_alpha , free_period_beta , free_period_gamma ) ;

20

21 % Plot o f the populat ion d i v i s i o n over time
22 t = 0 : dt :T−dt ; % time i n t e r v a l
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23 p lo t ( t , s , ’ b ’ , t , i , ’ r ’ , t , r , ’ g ’ , ’ LineWidth ’ , 2 ) ; g r i d on ; x l ab e l ( ’Days ’ ) ;
y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ; t i t l e ( ’ Populat ion f r a c t i o n s in
the ba s i c SIR model over time ’ ) ; l egend ( ’ Fract ion o f s u s c e p t i b l e s ’ ,
’ Fract ion o f i n f e c t e d ’ , ’ Fract ion o f recovered ’ ) ; saveas ( gcf , ’
FreeDaysSIR2 . pdf ’ ) ;

In this code the function sir3 is used, which is given below.

1 f unc t i on [ s , i , r , start_lockdown ] = s i r 3 ( alpha , beta , gamma, s0 , i0 , r0 ,T, dt ,
lockdown_period , lockdown_infect ive_percentage , lockdown_alpha ,
lockdown_beta , lockdown_gamma , f ree_per iod , f ree_per iod_start ,
free_period_alpha , free_period_beta , free_period_gamma )

2 start_lockdown = 0 ;
3 s = ze ro s (1 ,T/dt ) ; i=s ; r=s ; k1s = s ; k1 i = s ; k1r = s ; k2s = s ;

k2 i = s ; k2r = s ; k3s = s ; k3 i = s ; k3r = s ; k4s = s ; k4 i = s ;
k4r = s ;

4 s (1 ) = s0 ; i ( 1 ) = i 0 ; r (1 ) = r0 ; lockdown = 0 ; % assume there has
not been a lockdown yet

5 s tar t ing_alpha = alpha ; s tar t ing_beta = beta ; starting_gamma =
gamma; start ing_lockdown_period = lockdown_period ;

6 f o r t = 1 : (T/dt )−1
7 k1s ( t ) = (−alpha ∗ s ( t ) ∗ i ( t ) + gamma ∗ r ( t ) ) ;
8 k1 i ( t ) = ( alpha ∗ s ( t ) ∗ i ( t ) − beta ∗ i ( t ) ) ;
9 k1r ( t ) = ( beta ∗ i ( t ) − gamma ∗ r ( t ) ) ;

10 k2s ( t ) = (−alpha ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( i ( t )+k1 i ( t ) ∗dt /2) +
gamma ∗ ( r ( t )+k1r ( t ) ∗dt /2) ) ;

11 k2 i ( t ) = ( alpha ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( i ( t )+k1 i ( t ) ∗dt /2) −
beta ∗ ( i ( t )+k1 i ( t ) ∗dt /2) ) ;

12 k2r ( t ) = ( beta ∗ ( i ( t )+k1 i ( t ) ∗dt /2) − gamma ∗ ( r ( t )+k1r ( t ) ∗dt
/2) ) ;

13 k3s ( t ) = (−alpha ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( i ( t )+k2 i ( t ) ∗dt /2) +
gamma ∗ ( r ( t )+k2r ( t ) ∗dt /2) ) ;

14 k3 i ( t ) = ( alpha ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( i ( t )+k2 i ( t ) ∗dt /2) −
beta ∗ ( i ( t )+k2 i ( t ) ∗dt /2) ) ;

15 k3r ( t ) = ( beta ∗ ( i ( t )+k2 i ( t ) ∗dt /2) − gamma ∗ ( r ( t )+k2r ( t ) ∗dt
/2) ) ;

16 k4s ( t ) = (−alpha ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( i ( t )+k3 i ( t ) ∗dt ) + gamma
∗ ( r ( t )+k3r ( t ) ∗dt ) ) ;

17 k4 i ( t ) = ( alpha ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( i ( t )+k3 i ( t ) ∗dt ) − beta ∗
( i ( t )+k3 i ( t ) ∗dt ) ) ;

18 k4r ( t ) = ( beta ∗ ( i ( t )+k3 i ( t ) ∗dt ) − gamma ∗ ( r ( t )+k3r ( t ) ∗dt ) ) ;
19 s ( t+1) = ( k1s ( t )+2∗k2s ( t )+2∗k3s ( t )+k4s ( t ) ) ∗ dt /6 + s ( t ) ;
20 i ( t+1) = ( k1 i ( t )+2∗k2 i ( t )+2∗k3 i ( t )+k4 i ( t ) ) ∗ dt /6 + i ( t ) ;
21 r ( t+1) = ( k1r ( t )+2∗k2r ( t )+2∗k3r ( t )+k4r ( t ) ) ∗ dt /6 + r ( t ) ;
22 i f ( i ( t+1)>lockdown_infect ive_percentage ) && ( lockdown==0) && (

lockdown_period >0)
23 lockdown = 1 ;
24 alpha = lockdown_alpha ; beta = lockdown_beta ; gamma =

lockdown_gamma ; lockdown_period = lockdown_period − dt ;
start_lockdown = ( t+1)∗dt ;

25 f p r i n t f ( ’ Lockdown s t a r t i n g at day %.0 f . ’ , start_lockdown )
26 e l s e i f ( lockdown_period >0) && ( lockdown==1)
27 lockdown_period = lockdown_period − dt ;
28 e l s e
29 alpha = start ing_alpha ; beta = star t ing_beta ; gamma =

starting_gamma ; lockdown = 0 ;
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30 lockdown_period = start ing_lockdown_period ; % comment f o r
only one lockdown

31 end
32 i f ( f r ee_per iod /dt>0) && ( t>free_per iod_star t /dt ) && ( t<(

f ree_per iod_star t+free_per iod ) /dt )
33 alpha = free_period_alpha ; beta = free_period_beta ; gamma =

free_period_gamma ;
34 end
35 end
36 end

6.2.6 (Forward) Euler method on the Fatal SIR model

The Matlab code below yields a graph of the fatal SIR model by using (forward) Euler.

1 %% Fatal SIR model us ing ( Forward ) Euler
2 c l e a r ; c l o s e a l l ; c l c ;
3

4 % Parameters
5 alpha = 0.1∗1.728∗10^( −6) ; % i n f e c t i o n ra t e
6 beta = 1−0.00583565217; % recovery ra t e (= 1 − death ra t e f o r i n f e c t e d )
7 gamma = 0 . 0 0 1 ; % immunity l o s s r a t e
8 s0 = 1.728∗10^7; i 0 = 1 ; r0 = 0 ; T = 5000 ; % i n i t i a l va lue s and per iod
9 dt = 0 . 1 ; % length o f the time i n t e r v a l ( dt should hence d iv id e T)

10 s b i r t h = 463 ; % number o f new i nd i v i d u a l s per t imestep capable o f
g e t t i n g the v i r u s (463 bab ie s per day in the Nether lands )

11 sdeath = 0 .00003389 ; % death ra t e f o r s u s c e p t i b l e s ( l i f e expectancy :
29 .5 k days )

12 i death = 0.00583565217+0.00003389; % death ra t e f o r s u s c e p t i b l e s (3.4%
d i e s on average + l i f e expectancy )

13 rdeath = 0 .00003389 ; % death ra t e f o r recovered ( l i f e expectancy : 29 .5 k
days )

14

15 % Calcu la t i on o f the SIR va lues over time
16 [ s , i , r ] = sirBD ( alpha , beta , gamma, s0 , i0 , r0 ,T, dt , sb i r th , sdeath , ideath ,

rdeath ) ;
17

18 % Total populat ion
19 N = zero s (1 ,T/dt ) ;
20 f o r t = 1 : (T/dt )
21 N( t )=s ( t )+i ( t )+r ( t ) ;
22 end
23

24 % Plot o f the populat ion d i v i s i o n over time
25 t = 0 : dt :T−dt ; % time i n t e r v a l
26 p lo t ( t , s , ’ b ’ , t , i , ’ r ’ , t , r , ’ g ’ , t ,N, ’ y ’ , ’ LineWidth ’ , 2 ) ; g r i d on ; x l ab e l ( ’

Days ’ ) ; y l ab e l ( ’Number o f i n d i v i d u a l s ’ ) ; t i t l e ( ’ Populat ion in the
f a t a l SIR model over time ’ ) ; l egend ({ ’Number o f s u s c e p t i b l e s ’ , ’
Number o f i n f e c t e d ’ , ’Number o f r ecovered ’ , ’ Total ’ } , ’ Locat ion ’ , ’
e a s t ’ ) ; saveas ( gcf , ’ FatalSIR2 . pdf ’ ) ;

27 %{
28 % Computing f r a c t i o n s o f the t o t a l populat ion ( note : t h i s i s not a

c l o s ed system )
29 s f r a c = s . / ( s0+i0+r0 ) ; i f r a c = i . / ( s0+i0+r0 ) ; r f r a c = r . / ( s0+i0+r0 ) ;
30 % Plot o f the f r a c t i o n o f s u s c ep t i b l e s , i n f e c t e d and recovered over

time
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31 t = 0 : dt :T−dt ; p l o t ( t , s f r a c , ’b ’ , t , i f r a c , ’ r ’ , t , r f r a c , ’ g ’ , ’ LineWidth ’ , 2 ) ;
g r i d on ; x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f the t o t a l populat ion ’

) ; t i t l e ( ’ Frac t i ons o f the populat ion in the SIR model with b i r t h s
and deaths over time ’ ) ; l egend ( ’ Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion
o f i n f e c t e d ’ , ’ Fract ion recovered ’ ) ; saveas ( gcf , ’ Fract ionsSIR . pdf ’ )

; % sav ing a pdf o f the p l o t
32 %}

In this code the function sirBD is used, which is given below.

1 f unc t i on [ s , i , r ] = sirBD ( alpha , beta , gamma, s0 , i0 , r0 ,T, dt , sb i r th , sdeath ,
ideath , rdeath )

2 s = ze ro s (1 ,T/dt ) ; i = s ; r = s ; s (1 ) = s0 ; i ( 1 ) = i 0 ; r (1 ) = r0 ;
3 f o r t = 1 : (T/dt )−1 % f o r each t imestep t determining s ( t ) , i ( t ) and

r ( t )
4 s ( t+1) = s ( t ) + (−alpha ∗ i ( t ) ∗ s ( t ) + gamma∗ r ( t ) − sdeath ∗ s ( t ) +

sb i r t h ) ∗ dt ;
5 i ( t+1) = i ( t ) + ( alpha ∗ i ( t ) ∗ s ( t ) − beta ∗ i ( t ) − i death ∗ i ( t ) ) ∗

dt ;
6 r ( t+1) = r ( t ) + ( beta ∗ i ( t ) − gamma∗ r ( t ) − rdeath ∗ r ( t ) ) ∗ dt ;
7 end
8 end

6.2.7 Comparing methods

The Matlab code below is used to compare the (forward) Euler, 4-stage Runge-Kutta and Dormand
Prince method.

1 %% Comparing methods in the SIR model
2 c l e a r ; c l o s e a l l ; c l c ;
3 format long % many more dec imals
4

5 % Parameters
6 alpha = 0 . 3 ; beta = 0 . 0 4 5 ; mu = 0 . 2 ; s0 = 1−(10^(−2) ) ; i 0 = (10^(−2) ) ;

r0 = 0 . 0 ; T = 200 ; dt = . 0 1 ; % length o f the time i n t e r v a l ( dt
should hence d iv id e T)

7 f p r i n t f ( ’The value o f the reproduct ion number R0 i s %.2 f . ’ , a lpha /beta )
8 per iod = T; % f o r notat ion
9

10 % Forward Euler c a l c u l a t i o n s
11 [ s , i , r ] = s ircompare1 ( alpha , beta ,mu, s0 , i0 , r0 ,T, dt ) ;
12 Euler_end = i ( end ) ;
13 %{
14 % Forward Euler p l o t
15 t = 0 : dt :T−dt ; p l o t ( t , s , ’ b ’ , t , i , ’ r ’ , t , r , ’ g ’ , ’ LineWidth ’ , 2 ) ; g r i d on ;

x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ; t i t l e ( ’
Populat ion f r a c t i o n s in the ba s i c SIR model over time ’ ) ; l egend ( ’
Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion o f i n f e c t e d ’ , ’ Fract ion o f
recovered ’ ) ; saveas ( gcf , ’ Euler_SIR_3 . pdf ’ ) ;

16 %}
17

18 % Dormand Prince method c a l c u l a t i o n s
19 t0 = 0 ; tmax = per iod ; X0 = [ s0 ; i 0 ; r0 ] ; opt i ons = odeset ( ’ RelTol ’ ,1 e

−8, ’ AbsTol ’ ,1 e−8) ;
20 [ T,X ] = ode45 ( @(T,X) s i rcompare2 (T,X, alpha , beta ,mu) , [ t0 tmax ] , X0 ,

opt ions ) ;
21 DP_end = X( end , 2 )
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22 %{
23 % Dormand Prince method p lo t
24 p lo t (T,X( : , 1 ) , ’b ’ ,T,X( : , 2 ) , ’ r ’ ,T,X( : , 3 ) , ’ g ’ ) ; g r i d on ; x l ab e l ( ’Days ’ ) ;

y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ; t i t l e ( ’ Populat ion f r a c t i o n s in
the ba s i c SIR model over time (Runge−Kutta ) ’ ) ; l egend ( ’ Fract ion o f
s u s c e p t i b l e s ’ , ’ Fract ion o f i n f e c t e d ’ , ’ Fract ion o f recovered ’ ) ; %
saveas ( gcf , ’ Populat ionstes tSIR2 . pdf ’ ) ;

25 %}
26

27 % Runge−Kutta 4/5 c a l c u l a t i o n s
28 [ u , v ,w] = sircompare3 ( alpha , beta ,mu, s0 , i0 , r0 , per iod , dt ) ; %u , v and w are

s , i and r , r e s p e c t i v e l y
29 RK_end = v( end ) ;
30 %{
31 % Runge−Kutta 4/5 p lo t
32 t = 0 : dt : per iod−dt ; p l o t ( t , u , ’b ’ , t , v , ’ r ’ , t ,w, ’ g ’ , ’ LineWidth ’ , 2 ) ; g r i d

on ; x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ; t i t l e ( ’
Populat ion f r a c t i o n s in the ba s i c SIR model over time ’ ) ; l egend ( ’
Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion o f i n f e c t e d ’ , ’ Fract ion o f
recovered ’ ) ; saveas ( gcf , ’ FreeDaysSIR1 . pdf ’ ) ;

33 %}
34

35 %{
36 % Exact s o l u t i o n p l o t
37 lambda = alpha−mu+alpha ∗( s0+i0 −1) ;
38 f p r i n t f ( ’The value o f lambda i s %.8 f . ’ , lambda ) ;
39 f p l o t (@( r ) 1+( s0+i0 −1)∗(1−mu∗ r )−(( lambda∗ i 0 ) /( alpha ∗ i 0+(lambda−alpha ∗ i 0

) ∗exp(−lambda∗ r ) ) ) , [ 0 100 ] , ’ b ’ ) ;
40 hold on
41 f p l o t (@( r ) ( ( lambda ) /( alpha+lambda ∗ ( ( lambda−alpha ∗ i 0 ) /( lambda∗ i 0 ∗exp ( (

alpha ∗( s0+i0 −1) ) /mu) ) ) ∗exp(−lambda∗ r+(( alpha ∗( s0+i0 −1) ) /(mu) ) ) ) ) , [ 0
100 ] , ’ r ’ )

42 hold o f f
43 %}
44

45 lambda = alpha−mu+alpha ∗( s0+i0 −1) ;
46 Exact_end = ( ( lambda ) /( alpha+lambda ∗ ( ( lambda−alpha ∗ i 0 ) /( lambda∗ i 0 ∗exp ( (

alpha ∗( s0+i0 −1) ) /mu) ) ) ∗exp(−lambda∗ per iod+(( alpha ∗( s0+i0 −1) ) /(mu) ) )
) ) ;

47 Euler_error = abs ( Euler_end − Exact_end ) ; DP_error = abs (DP_end −
Exact_end ) ; RK_error = abs (RK_end − Exact_end ) ;

In this code the function sircompare1 is used, which is given below.

1 f unc t i on [ s , i , r ] = s ircompare1 ( alpha , beta ,mu, s0 , i0 , r0 ,T, dt )
2 s = ze ro s (1 ,T/dt ) ; i = s ; r=s ; s (1 ) = s0 ; i ( 1 ) = i 0 ; r (1 ) = r0 ;
3 f o r t = 1 : (T/dt )
4 s ( t+1) = (−alpha ∗ s ( t ) ∗ i ( t ) − mu ∗ s ( t ) + mu) ∗ dt + s ( t ) ;
5 i ( t+1) = ( alpha ∗ s ( t ) ∗ i ( t ) − mu ∗ i ( t ) ) ∗ dt + i ( t ) ;
6 r ( t+1) = ( beta ∗ i ( t ) − mu ∗ r ( t ) ) ∗ dt + r ( t ) ;
7 end
8 end

Moreover, in the code the function sircompare2 is used, which is given below.

1 f unc t i on dx2 = sircompare2 (T,X, alpha , beta ,mu)
2 dx2 = ze ro s (3 , 1 ) ;
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3 dx2 (1 ) = −alpha ∗X(1) .∗X(2) − mu∗X(1) + mu;
4 dx2 (2 ) = alpha ∗X(1) .∗X(2) − mu∗X(2) ;
5 dx2 (3 ) = beta ∗X(2) − mu∗X(3) ;
6 end

Furthermore, in the code the function sircompare3 is used, which is given below.

1 f unc t i on [ u , v ,w] = sircompare3 ( alpha , beta ,mu, s0 , i0 , r0 ,T, dt )
2 s = ze ro s (1 ,T/dt ) ; i=s ; r=s ; k1s = s ; k1 i = s ; k1r = s ; k2s = s ;

k2 i = s ; k2r = s ; k3s = s ; k3 i = s ; k3r = s ; k4s = s ; k4 i = s ;
k4r = s ;

3 s (1 ) = s0 ; i ( 1 ) = i 0 ; r (1 ) = r0 ;
4 f o r t = 1 : (T/dt )
5 k1s ( t ) = (−alpha ∗ s ( t ) ∗ i ( t ) − mu ∗ s ( t ) + mu) ;
6 k1 i ( t ) = ( alpha ∗ s ( t ) ∗ i ( t ) − mu ∗ i ( t ) ) ;
7 k1r ( t ) = ( beta ∗ i ( t ) − mu ∗ r ( t ) ) ;
8 k2s ( t ) = (−alpha ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( i ( t )+k1 i ( t ) ∗dt /2) − mu

∗ ( s ( t )+k1s ( t ) ∗dt /2) + mu) ;
9 k2 i ( t ) = ( alpha ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( i ( t )+k1 i ( t ) ∗dt /2) − mu

∗ ( i ( t )+k1 i ( t ) ∗dt /2) ) ;
10 k2r ( t ) = ( beta ∗ ( i ( t )+k1 i ( t ) ∗dt /2) − mu ∗ ( r ( t )+k1r ( t ) ∗dt /2) ) ;
11 k3s ( t ) = (−alpha ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( i ( t )+k2 i ( t ) ∗dt /2) − mu

∗ ( s ( t )+k2s ( t ) ∗dt /2) + mu) ;
12 k3 i ( t ) = ( alpha ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( i ( t )+k2 i ( t ) ∗dt /2) − mu

∗ ( i ( t )+k2 i ( t ) ∗dt /2) ) ;
13 k3r ( t ) = ( beta ∗ ( i ( t )+k2 i ( t ) ∗dt /2) − mu ∗ ( r ( t )+k2r ( t ) ∗dt /2) ) ;
14 k4s ( t ) = (−alpha ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( i ( t )+k3 i ( t ) ∗dt ) − mu ∗ (

s ( t )+k3s ( t ) ∗dt ) + mu) ;
15 k4 i ( t ) = ( alpha ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( i ( t )+k3 i ( t ) ∗dt ) − mu ∗ ( i

( t )+k3 i ( t ) ∗dt ) ) ;
16 k4r ( t ) = ( beta ∗ ( i ( t )+k3 i ( t ) ∗dt ) − mu ∗ ( r ( t )+k3r ( t ) ∗dt ) ) ;
17 s ( t + 1) = ( k1s ( t )+2∗k2s ( t )+2∗k3s ( t )+k4s ( t ) ) ∗ dt /6 + s ( t ) ;
18 i ( t + 1) = ( k1 i ( t )+2∗k2 i ( t )+2∗k3 i ( t )+k4 i ( t ) ) ∗ dt /6 + i ( t ) ;
19 r ( t + 1) = ( k1r ( t )+2∗k2r ( t )+2∗k3r ( t )+k4r ( t ) ) ∗ dt /6 + r ( t ) ;
20 end
21 u = s ; v = i ; w = r ;
22 end

6.2.8 (Forward) Euler method on the SEIRP model.

The Matlab code below yields a graph of the compartment division in the SEIRP model by using
the (forward) Euler method.

1 %% Euler method f o r the SEIRP model
2 c l e a r ; c l o s e a l l ; c l c ; format long ;
3

4 % Parameters
5 alpha_e = 0 . 4 ; alpha_i = 0 . 2 ; beta = 0 . 3 5 ; gamma = 0 . 0 1 ; kappa = 0 . 0 2 ;

rho = 0 . 0 3 ; mu = 0 .005836 ;
6 s0 = 1−(10^(−2) ) ; e0 = 0.5∗(10^(−2) ) ; i 0 = 0.5∗(10^(−2) ) ; r0 = 0 . 0 ; p0

= 0 . 0 ; T = 10000; dt = 0 . 0 1 ;
7

8 % Calcu la t i on o f the SIR va lues over time
9 [ s , e , i , r , p ] = s e i r p 1 ( alpha_e , alpha_i , beta , gamma, kappa , rho ,mu, s0 , e0 , i0 ,

r0 , p0 ,T, dt ) ;
10

11 % Plot o f the populat ion d i v i s i o n over time
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12 t = 0 : dt :T−dt ; % time i n t e r v a l
13 p lo t ( t , s , ’ b ’ , t , e , ’ y ’ , t , i , ’ r ’ , t , r , ’ g ’ , t , p , ’m’ , ’ LineWidth ’ , 2 ) ; g r i d on ;

x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ;
14 t i t l e ( ’ Populat ion f r a c t i o n s in the SEIRP model over time ’ ) ; l egend ({ ’

Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion o f exposed ’ , ’ Fract ion o f
i n f e c t e d ’ , ’ Fract ion o f recovered ’ , ’ Fract ion o f passed away ’ } , ’
Locat ion ’ , ’ e a s t ’ ) ;

15 saveas ( gcf , ’Euler_SEIRP_2 . pdf ’ ) ; % sav ing a pdf o f the p l o t

In this code the function seirp1 is used, which is given below.

1 f unc t i on [ s , e , i , r , p ] = s e i r p 1 ( alpha_e , alpha_i , beta , gamma, kappa , rho ,mu,
s0 , e0 , i0 , r0 , p0 ,T, dt )

2 s = ze ro s (1 ,T/dt ) ; e=s ; i=s ; r=s ; p=s ; s (1 ) = s0 ; e (1 ) = e0 ; i ( 1 ) =
i 0 ; r (1 ) = r0 ; p (1 ) = p0 ;

3 f o r t = 1 : (T/dt )−1
4 s ( t+1) = (−alpha_e ∗ s ( t ) ∗ e ( t ) − alpha_i ∗ s ( t ) ∗ i ( t ) +

gamma ∗ r ( t ) ) ∗ dt + s ( t ) ;
5 e ( t+1) = ( alpha_e ∗ s ( t ) ∗ e ( t ) + alpha_i ∗ s ( t ) ∗ i ( t ) − kappa

∗ e ( t ) − rho ∗ e ( t ) ) ∗ dt + e ( t ) ;
6 i ( t+1) = ( kappa ∗ e ( t ) − beta ∗ i ( t ) − mu ∗ i ( t ) ) ∗ dt + i ( t ) ;
7 r ( t+1) = ( beta ∗ i ( t ) + rho ∗ e ( t ) − gamma ∗ r ( t ) ) ∗ dt + r ( t ) ;
8 p( t+1) = (mu ∗ i ( t ) ) ∗ dt + p( t ) ;
9 end

10 end

6.2.9 Prince Dormand method on the SEIRP model.

The Matlab code below yields a graph of the compartment division in the SEIRP model by us-
ing the Dormand Prince method. In Matlab this method has a built in function called ode45.
Furthermore, this code computes 2d and 3d phase plots and 2d and 3d direction fields.

1 %% Runge−Kutta method f o r the SEIRP model
2 c l e a r a l l ; c l c ;
3

4 %Parameters & I n i t i a l c ond i t i on s
5 alpha_e = 0 . 5 ; alpha_i = 0 . 5 ; beta = 0 . 4 5 ; gamma = 0 . 0 1 ; kappa = 0 . 0 2 ;

rho = 0 . 0 ; mu = 0 . 0 3 ;
6 S0 = 1−(10^(−2) ) ; E0 = 0.5∗(10^(−2) ) ; I0 = 0.5∗(10^(−2) ) ; R0 = 0 . 0 ; P0

= 0 . 0 ;
7 t0 = 0 ; tmax = 1000 ; X0 = [ S0 ; E0 ; I0 ; R0 ; P0 ] ; opt i ons = odeset ( ’

RelTol ’ ,1 e−6, ’ AbsTol ’ ,1 e−6) ;
8 [ T,X ] = ode45 ( @(T,X) s e i r p 2 (T,X, alpha_e , alpha_i , beta , gamma, kappa , rho

,mu) , [ t0 tmax ] , X0 , opt ions ) ;
9 %{

10 p lo t (T,X( : , 1 ) , ’b ’ ,T,X( : , 2 ) , ’ y ’ ,T,X( : , 3 ) , ’ r ’ ,T,X( : , 4 ) , ’ g ’ ,T,X( : , 5 ) , ’m’ ) ;
g r i d on ; x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ;

11 t i t l e ( ’ Populat ion f r a c t i o n s in the ba s i c SIR model over time (Runge−
Kutta ) ’ ) ; l egend ( ’ Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion o f i n f e c t e d ’ ,
’ Fract ion o f recovered ’ ) ;

12 %saveas ( gcf , ’ PopulationstestSEIRP2 . pdf ’ ) ; % sav ing a pdf o f the p l o t
13 %}
14 %A phase p l o t o f S , E and I
15 p lo t3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ’−o ’ ) ; g r i d on ; x l ab e l ( ’ s ’ ) ; y l ab e l ( ’ e ’ ) ;

z l a b e l ( ’ i ’ ) ; saveas ( gcf , ’ PhasePlotSEIRP . pdf ’ ) ; % sav ing a pdf o f
the p l o t
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In this code the function seirp2 is used, which is given below.

1 f unc t i on dx2 = s e i r p 2 (T,X, alpha_e , alpha_i , beta , gamma, kappa , rho ,mu)
2 dx2 = ze ro s (5 , 1 ) ;
3 dx2 (1 ) = −alpha_e∗X(1) .∗X(2)−alpha_i∗X(1) .∗X(3) + gamma∗X(4) ;
4 dx2 (2 ) = alpha_e∗X(1) .∗X(2)+alpha_i∗X(1) .∗X(3) − kappa∗X(2)−rho∗X

(2) ;
5 dx2 (3 ) = kappa∗X(2) − beta ∗X(3)−mu∗X(3) ;
6 dx2 (4 ) = beta ∗X(3)+rho∗X(2)−gamma∗X(4) ;
7 dx2 (5 ) = mu∗X(3) ;
8 end

6.2.10 4-stage Runge-Kutta method on the SEIRP model

The Matlab code below yields a graph of the compartment division in the SEIRP model by using
the 4-stage Runge-Kutta method. Additionally, lockdowns and free days can be computed in this
code by setting the variable(s) lockdown period and free period unequal to 0.

1 %% 4−s tage RK method f o r the SEIRP model
2 c l e a r ; c l o s e a l l ; c l c ; t i c ; % measure time
3

4 % Parameters
5 alpha_e = 0 . 4 ; alpha_i = 0 . 2 ; beta = 0 . 3 5 ; gamma = 0 . 0 1 ; kappa = 0 . 0 2 ;

rho = 0 . 0 3 ; mu = 0 .005836 ;
6 s0 = 1−(10^(−2) ) ; e0 = 0.5∗(10^(−2) ) ; i 0 = 0.5∗(10^(−2) ) ; r0 = 0 . 0 ; p0

= 0 . 0 ; T = 100 ; dt = 0 . 0 1 ;
7

8 % lockdown
9 lockdown_period = 0 ; % per iod o f lockdown in days

10 lockdown_infect ive_percentage = 0 . 0 1 ; % lockdown s t a r t s when t h i s
percentage o f people i s i n f e c t e d

11 ld_alpha_e = 0 . 0 4 ; ld_alpha_i = 0 . 0 4 ; ld_beta = 0 . 0 7 ; ld_gamma = 0 . 0 1 ;
ld_kappa = 0 . 0 1 ; ld_rho = 0 . 0 1 ; ld_mu = 0 . 0 1 ; % va lues during
lockdown

12

13 % f r e e day ( s )
14 f r ee_per iod = 10 ; % per iod o f no r e s t r i c t i o n s
15 f r ee_per iod_star t = 20 ; % the day the f r e e per iod s t a r t s
16 fp_alpha_e = 0 . 6 ; fp_alpha_i = 0 . 6 ; fp_beta = 0 . 1 2 5 ; fp_gamma = 0 . 0 1 ;

fp_kappa = 0 . 0 1 ; fp_rho = 0 . 0 1 ; fp_mu = 0 . 0 1 ;
17

18 % Calcu la t i on o f the SIR va lues over time
19 [ s , e , i , r , p , start_lockdown ] = s e i r p 3 ( alpha_e , alpha_i , beta , gamma, kappa ,

rho ,mu, s0 , e0 , i0 , r0 , p0 ,T, dt , lockdown_period ,
lockdown_infect ive_percentage , ld_alpha_e , ld_alpha_i , ld_beta ,
ld_gamma , ld_kappa , ld_rho , ld_mu , f ree_per iod , f ree_per iod_start ,
fp_alpha_e , fp_alpha_i , fp_beta , fp_gamma , fp_kappa , fp_rho , fp_mu) ;

20

21 % Plot o f the populat ion d i v i s i o n over time
22 t = 0 : dt :T−dt ; p l o t ( t , s , ’ b ’ , t , e , ’ y ’ , t , i , ’ r ’ , t , r , ’ g ’ , t , p , ’m’ , ’ LineWidth ’

, 2 ) ; g r i d on ; x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ;
t i t l e ( ’ Populat ion f r a c t i o n s in the ba s i c SIR model over time ’ ) ;
l egend ( ’ Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion o f exposed ’ , ’ Fract ion
o f i n f e c t e d ’ , ’ Fract ion o f recovered ’ , ’ Fract ion o f passed away ’ ) ;
saveas ( gcf , ’LockdownSEIRP2 . pdf ’ ) ; % sav ing a pdf o f the p l o t

In this code the function seirp3 is used, which is given below.
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1 f unc t i on [ s , e , i , r , p , start_lockdown ] = s e i r p 3 ( alpha_e , alpha_i , beta , gamma
, kappa , rho ,mu, s0 , e0 , i0 , r0 , p0 ,T, dt , lockdown_period ,
lockdown_infect ive_percentage , ld_alpha_e , ld_alpha_i , ld_beta ,
ld_gamma , ld_kappa , ld_rho , ld_mu , f ree_per iod , f ree_per iod_start ,
fp_alpha_e , fp_alpha_i , fp_beta , fp_gamma , fp_kappa , fp_rho , fp_mu)

2 start_lockdown = 0 ;
3 s = ze ro s (1 ,T/dt ) ; e=s ; i=s ; r=s ; p=s ;
4 k1s = s ; k1e = s ; k1 i = s ; k1r = s ; k1p = s ; k2s = s ; k2e = s ; k2 i

= s ; k2r = s ; k2p = s ; k3s = s ; k3e = s ; k3 i = s ; k3r = s ; k3p
= s ; k4s = s ; k4e = s ; k4 i = s ; k4r = s ; k4p = s ;

5 s (1 ) = s0 ; e (1 ) = e0 ; i ( 1 ) = i 0 ; r (1 ) = r0 ; p (1 ) = p0 ; lockdown =
0 ; % assume there has not been a lockdown yet

6 start ing_alpha_e = alpha_e ; start ing_alpha_i = alpha_i ;
s tar t ing_beta = beta ; starting_gamma = gamma; start ing_kappa =
kappa ; s tar t ing_rho = rho ; starting_mu = mu;
start ing_lockdown_period = lockdown_period ;

7 f o r t = 1 : (T/dt )−1 % f o r each t imestep t determining s ( t ) , e ( t ) , i (
t ) , r ( t ) and p( t )

8 k1s ( t ) = (−alpha_e ∗ s ( t ) ∗ e ( t ) − alpha_i ∗ s ( t ) ∗ i ( t ) +
gamma ∗ r ( t ) ) ;

9 k1e ( t ) = ( alpha_e ∗ s ( t ) ∗ e ( t ) + alpha_i ∗ s ( t ) ∗ i ( t ) −kappa
∗ e ( t ) − rho ∗ e ( t ) ) ;

10 k1 i ( t ) = ( kappa ∗ e ( t ) − beta ∗ i ( t ) − mu ∗ i ( t ) ) ;
11 k1r ( t ) = ( beta ∗ i ( t ) + rho ∗ e ( t ) − gamma ∗ r ( t ) ) ;
12 k1p ( t ) = (mu ∗ i ( t ) ) ;
13 k2s ( t ) = (−alpha_e ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( e ( t )+k1e ( t ) ∗dt /2) −

alpha_i ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( i ( t )+k1 i ( t ) ∗dt /2) + gamma ∗
( r ( t )+k1r ( t ) ∗dt /2) ) ;

14 k2e ( t ) = ( alpha_e ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( e ( t )+k1e ( t ) ∗dt /2) +
alpha_i ∗ ( s ( t )+k1s ( t ) ∗dt /2) ∗ ( i ( t )+k1 i ( t ) ∗dt /2) −kappa ∗
( e ( t )+k1e ( t ) ∗dt /2) − rho ∗ ( e ( t )+k1e ( t ) ∗dt /2) ) ;

15 k2 i ( t ) = ( kappa ∗ ( e ( t )+k1e ( t ) ∗dt /2) − beta ∗ ( i ( t )+k1 i ( t ) ∗dt
/2) − mu ∗ ( i ( t )+k1 i ( t ) ∗dt /2) ) ;

16 k2r ( t ) = ( beta ∗ ( i ( t )+k1 i ( t ) ∗dt /2) + rho ∗ ( i ( t )+k1 i ( t ) ∗dt /2)
− gamma ∗ ( r ( t )+k1r ( t ) ∗dt /2) ) ;

17 k2p ( t ) = (mu ∗ ( i ( t )+k1 i ( t ) ∗dt /2) ) ;
18 k3s ( t ) = (−alpha_e ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( e ( t )+k2e ( t ) ∗dt /2) −

alpha_i ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( i ( t )+k2 i ( t ) ∗dt /2) + gamma ∗
( r ( t )+k2r ( t ) ∗dt /2) ) ;

19 k3e ( t ) = ( alpha_e ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( e ( t )+k2e ( t ) ∗dt /2) +
alpha_i ∗ ( s ( t )+k2s ( t ) ∗dt /2) ∗ ( i ( t )+k2 i ( t ) ∗dt /2) −kappa ∗
( e ( t )+k2e ( t ) ∗dt /2) − rho ∗ ( e ( t )+k2e ( t ) ∗dt /2) ) ;

20 k3 i ( t ) = ( kappa ∗ ( e ( t )+k2e ( t ) ∗dt /2) − beta ∗ ( i ( t )+k2 i ( t ) ∗dt
/2) − mu ∗ ( i ( t )+k2 i ( t ) ∗dt /2) ) ;

21 k3r ( t ) = ( beta ∗ ( i ( t )+k2 i ( t ) ∗dt /2) + rho ∗ ( i ( t )+k2 i ( t ) ∗dt /2)
− gamma ∗ ( r ( t )+k2r ( t ) ∗dt /2) ) ;

22 k3p ( t ) = (mu ∗ ( i ( t )+k2 i ( t ) ∗dt /2) ) ;
23 k4s ( t ) = (−alpha_e ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( e ( t )+k3e ( t ) ∗dt ) −

alpha_i ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( i ( t )+k3 i ( t ) ∗dt ) + gamma ∗ ( r (
t )+k3r ( t ) ∗dt ) ) ;

24 k4e ( t ) = ( alpha_e ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( e ( t )+k3e ( t ) ∗dt ) +
alpha_i ∗ ( s ( t )+k3s ( t ) ∗dt ) ∗ ( i ( t )+k3 i ( t ) ∗dt ) −kappa ∗ ( e ( t
)+k3e ( t ) ∗dt ) − rho ∗ ( e ( t )+k3e ( t ) ∗dt ) ) ;

25 k4 i ( t ) = ( kappa ∗ ( e ( t )+k3e ( t ) ∗dt ) − beta ∗ ( i ( t )+k3 i ( t ) ∗dt ) −
mu ∗ ( i ( t )+k3 i ( t ) ∗dt ) ) ;

26 k4r ( t ) = ( beta ∗ ( i ( t )+k3 i ( t ) ∗dt ) + rho ∗ ( i ( t )+k3 i ( t ) ∗dt ) −
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gamma ∗ ( r ( t )+k3r ( t ) ∗dt ) ) ;
27 k4p ( t ) = (mu ∗ ( i ( t )+k3 i ( t ) ∗dt ) ) ;
28 s ( t+1) = ( k1s ( t )+2∗k2s ( t )+2∗k3s ( t )+k4s ( t ) ) ∗ dt /6 + s ( t ) ;
29 e ( t+1) = ( k1e ( t )+2∗k2e ( t )+2∗k3e ( t )+k4e ( t ) ) ∗ dt /6 + e ( t ) ;
30 i ( t+1) = ( k1 i ( t )+2∗k2 i ( t )+2∗k3 i ( t )+k4 i ( t ) ) ∗ dt /6 + i ( t ) ;
31 r ( t+1) = ( k1r ( t )+2∗k2r ( t )+2∗k3r ( t )+k4r ( t ) ) ∗ dt /6 + r ( t ) ;
32 p( t+1) = ( k1p ( t )+2∗k2p ( t )+2∗k3p ( t )+k4p ( t ) ) ∗ dt /6 + p( t ) ;
33 i f ( i ( t+1)>lockdown_infect ive_percentage ) && ( lockdown==0) && (

lockdown_period >0)
34 lockdown = 1 ;
35 alpha_e = ld_alpha_e ; alpha_i = ld_alpha_i ; beta = ld_beta ;

gamma = ld_gamma ; kappa = ld_kappa ; rho = ld_rho ; mu =
ld_mu ;

36 lockdown_period = lockdown_period − dt ; start_lockdown = ( t
+1)∗dt ; f p r i n t f ( ’ Lockdown s t a r t i n g at day %.0 f . ’ ,
start_lockdown )

37 e l s e i f ( lockdown_period >0) && ( lockdown==1)
38 lockdown_period = lockdown_period − dt ;
39 e l s e
40 alpha_e = start ing_alpha_e ; alpha_i = start ing_alpha_i ;

beta = star t ing_beta ; gamma = starting_gamma ; kappa =
start ing_kappa ; rho = start ing_rho ; mu = starting_mu ;
lockdown = 0 ;

41 lockdown_period = start ing_lockdown_period ; % comment f o r
only one lockdown

42 end
43 i f ( f r ee_per iod /dt>0) && ( t>free_per iod_star t /dt ) && ( t<(

f ree_per iod_star t+free_per iod ) /dt )
44 alpha_e = fp_alpha_e ; alpha_i = fp_alpha_i ; beta = fp_beta ;

gamma = fp_gamma ; kappa = fp_kappa ; rho = fp_rho ; mu =
fp_mu ;

45 end
46 end
47 end

6.2.11 (Forward) Euler method on the SEIRP model with vaccinations

The Matlab code below yields a graph of the compartment division in the SEIRP model with
vaccinations by using the Euler method.

1 %% Euler method f o r the SEIRP model with vac c i na t i on s
2 c l e a r ; c l o s e a l l ; c l c ; format long ;
3

4 % Parameters
5 alpha_e = 0 . 4 ; alpha_i = 0 . 2 ; beta = 0 . 3 5 ; gamma = 0 . 0 1 ; kappa = 0 . 0 2 ;

rho = 0 . 0 3 ; mu = 0 .005836 ;
6 theta1 = 2∗(10^(−8) ) ; theta2 = 4∗(10^(−10) ) ; theta3 = 0 . 0 ; % theta =

theta1 ∗( t ^2) ∗( dt ^2) + theta2 ∗ t ∗ dt + theta3
7 s0 = 1−(10^(−2) ) ; e0 = 0.5∗(10^(−2) ) ; i 0 = 0.5∗(10^(−2) ) ; r0 = 0 . 0 ; p0

= 0 . 0 ;
8 T = 200 ; dt = 0 . 0 1 ; % length o f the time i n t e r v a l ( dt should hence

d iv id e T)
9

10 % Calcu la t i on o f the SIR va lues over time
11 [ s , e , i , r , p ] = s e i rpvac ( alpha_e , alpha_i , beta , gamma, kappa , rho ,mu, theta1 ,

theta2 , theta3 , s0 , e0 , i0 , r0 , p0 ,T, dt ) ;
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12

13 % Plot o f the populat ion d i v i s i o n over time
14 t = 0 : dt :T−dt ; p l o t ( t , s , ’ b ’ , t , e , ’ y ’ , t , i , ’ r ’ , t , r , ’ g ’ , t , p , ’m’ , ’ LineWidth ’

, 2 ) ; g r i d on ; x l ab e l ( ’Days ’ ) ; y l ab e l ( ’ Fract ion o f i n d i v i d u a l s ’ ) ;
15 t i t l e ( ’ Populat ion f r a c t i o n s in the SEIRP model over time ’ ) ; l egend ({ ’

Fract ion o f s u s c e p t i b l e s ’ , ’ Fract ion o f exposed ’ , ’ Fract ion o f
i n f e c t e d ’ , ’ Fract ion o f recovered ’ , ’ Fract ion o f passed away ’ } , ’
Locat ion ’ , ’ e a s t ’ ) ; saveas ( gcf , ’Euler_SEIRP_11 . pdf ’ ) ; % sav ing a
pdf o f the p l o t

In this code the function seirpvac is used, which is given below.

1 f unc t i on [ s , e , i , r , p ] = s e i rpvac ( alpha_e , alpha_i , beta , gamma, kappa , rho ,mu
, theta1 , theta2 , theta3 , s0 , e0 , i0 , r0 , p0 ,T, dt )

2 s = ze ro s (1 ,T/dt ) ; e = s ; i = s ; r = s ; p =s ; s (1 ) = s0 ; e (1 ) = e0 ;
i ( 1 ) = i 0 ; r (1 ) = r0 ; p (1 ) = p0 ;

3 f o r t = 1 : (T/dt )−1 % f o r each t imestep t determining s ( t ) , i ( t ) and
r ( t )

4 theta = 1 ;
5 i f ( theta1 ∗( t ^2) ∗( dt ^2) + theta2 ∗ t ∗ dt + theta3 )<1
6 theta = ( theta1 ∗( t ^2) ∗( dt ^2) + theta2 ∗ t ∗ dt + theta3 ) ;
7 end
8 s ( t+1) = (−alpha_e ∗ s ( t ) ∗ e ( t ) − alpha_i ∗ s ( t ) ∗ i ( t ) +

gamma ∗ r ( t ) − theta ∗ s ( t ) ) ∗ dt + s ( t ) ;
9 e ( t+1) = ( alpha_e ∗ s ( t ) ∗ e ( t ) + alpha_i ∗ s ( t ) ∗ i ( t ) − kappa

∗ e ( t ) − rho ∗ e ( t ) ) ∗ dt + e ( t ) ;
10 i ( t+1) = ( kappa ∗ e ( t ) − beta ∗ i ( t ) − mu ∗ i ( t ) ) ∗ dt + i ( t ) ;
11 r ( t+1) = ( beta ∗ i ( t ) + rho ∗ e ( t ) − gamma ∗ r ( t ) + theta ∗ s ( t

) ) ∗ dt + r ( t ) ;
12 p( t+1) = (mu ∗ i ( t ) ) ∗ dt + p( t ) ;
13 end
14 end
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