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Abstract

In a super-resolution imaging technique called iPAINT, interfaces between tiny oil droplets
and surrounding water can be detected. The technique creates a dataset of points that lie
in both the droplets and the surrounding water. There is a difference between the density
of the points inside and outside of the droplets. To analyse the interfaces, we will zoom
far enough into the interface such that it resembles a straight line. We model this as each
point being on either side with some probability. The location on that side is uniformly
distributed. We assume that the boundary is a straight line from the top to the bottom
edge of a unit square. We investigate how quickly the maximum likelihood estimator for
the boundary converges as the amount of points increases. We give a method to prove that
it converges at least as fast as 1/n, where n is the amount of points. This proof is based on
the proof of a one-dimensional equivalent to this model. This proof is described roughly
in a paper by Chernoff and Rubin. We work out the entire proof of the one-dimensional
variant and give all relevant details. In the one-dimensional case, we consider the unit
interval. There is a boundary, which is given by a fixed point on this interval. Points are
generated that lie on either side of the boundary with some given probability. The location
on the side of the boundary is uniformly distributed.
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Chapter 1

Introduction

1.1 Motivation

In chemistry there is a type of mixture of substances called colloid. This is a mixture
where a substance is scattered throughout a liquid in the form of small particles. These
particles can essentially be seen as tiny droplets of the substance with a diameter which is
of nanometre scale. An example of a colloid is milk. In milk, the particles are small beads
of fat. These particles are suspended in a water-based solution. These colloids are found
in many common products.

A colloid is called stable if the attraction force between particles is smaller than some
threshold. If this is not the case, the particles will clump together and the mixture will
cease to be a colloid. Hence in the production process of a colloid, the stability is crucial.
There are many methods to improve stability. To investigate some of these methods, it is
useful to visualise the interface between the particle and the surrounding liquid.

The visualisation of the interface comes with two problems: the particles are very
sensitive and the scale is very small. Because of these, conventional microscopy can not be
used. A method that is able to do this is iPAINT[1]. The result of applying this method
is a collection of three-dimensional points. The density of the points within the particles
is different from the density of the points in the surrounding liquid. In the analysis of this
data, one of the important factors is the estimation of the location of the interfaces.

In the master’s thesis by D. van der Haven[2], a method is described to automatically
estimate the location of the interface. In this thesis, there is a focus on a two-dimensional
equivalent of this problem with the observation that it can easily be generalised to a three-
dimensional setting. One of the tools that are used in this paper is the maximum likelihood
estimator (MLE).

The model used for the maximum likelihood estimation is as follows. When zooming in
far enough on an interface, the boundary will approximately be a straight line. Hence it is
assumed that the boundary is a straight line. The observations are assumed to come from
an inhomogeneous Poisson point process where the density on both sides of the boundary
are homogeneous, but different from each other.
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1.2 Goal

One of the properties of an estimator that is useful to know is its convergence speed. In this
case we will investigate how quickly the error of the estimator of the boundary decreases as
the amount of observations increases. This is the topic of this thesis. However, we will not
consider the exact model that was just described. We will simplify two aspects. The first
simplification is that we do not assume the observations to come from an inhomogeneous
Poisson. Instead we assume that they are a sample from a distribution which has different
but constant densities on both sides of the line. The second simplification is that it will
be that it is assumed that the boundary touches the upper and bottom edge of the image.
These two assumptions allow us to look at an easier situation, while making sure that the
result can likely be generalised to the model that was described before. We assume we
work with the unit square. An example of a sample from this distribution can be seen in
Figure 1.1a.

(a) Visualisation of simulated sample
from the two-dimensional random vari-
ables

(b) Visualisation of simulated sample from
the one-dimensional random variables using
a strip plot

Figure 1.1: Visualisations of the two models

A one-dimensional equivalent of this problem has already been considered before by
Chernoff and Rubin[3]. In this paper, the unit interval is considered with a boundary
splitting it into two parts. The observations come are distribution which has different but
constant densities on both sides of the boundary point. We assume we work with the unit
interval. A strip plot of an example sample from this distribution can be seen in Figure
1.1b. The MLE is found to have convergence speed of 1/n, where n is the amount of
observations. This is considered to be relatively fast.

We hypothesise that the MLE in the two-dimensional case converges with the same
speed. To find the convergence speed of an estimator, we need to show that something is
both the upper and lower bound for the speed. In mathematical terms, if α̂n is the MLE
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for the boundary with true value α0, then it needs to be shown that α̂n − α0 = Op(1/n),
but α̂n − α0 6= op(1/n) as n → ∞. The definitions of Op and op are critical to the thesis
and can be found in Appendix Section B, where some assumed knowledge is explained.
More specifically, they are mentioned in Definitions B.6 and B.7 respectively. In this thesis
we will only concern ourselves with the former statement, which says that MLE converges
at least as fast as 1/n. The goal is to describe a method to prove that this is the case in
the two-dimensional case.

1.3 Approach

In order to find out how it can be proven that the error of the MLE is Op(1/n) as n→∞,
we will start by looking at the one-dimensional case as described by Chernoff and Rubin[3].
The paper contains the main ideas of the method on how to prove that the error of the
MLE is Op(1/n) as n→∞ in the one-dimensional case. However, most details are absent.
This makes it difficult to translate the proof into the two-dimensional setting. For this
reason, we start by completely working out the proof in the one-dimensional setting. Then
we use this to find a method to prove the two-dimensional problem. Part of this proof is
given in the appendix. The appendix also includes some prerequisite knowledge.

The outline of the proof of the one-dimensional problem is as follows. First we define
all the necessary notation, before finding the MLEs for all parameters. Then it will be
shown that the MLEs are consistent. In order to prove that the error of the MLE for the
boundary is Op(1/n) as n → ∞, another estimator shall be introduced. This estimator
on its own does not have any practical use as it uses information of the true values of the
parameters. However, it can be shown that the error of this new estimator is Op(1/n) as
n → ∞. Finally it will be shown that the difference between the new estimator and the
MLE is op(1/n) as n→∞, from which the desired result immediately follows.
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Chapter 2

Convergence speed in 1D model

In this chapter, we will consider the convergence speed of the one-dimensional model. The
random variable that is considered in this model has different constant densities in two
parts of the unit interval. We split the unit interval into two sections based on a parameter
α ∈ (0, 1). This gives us the intervals [0, α] and (α, 1]. The random variable lies in these
intervals with probabilities θ and 1 − θ respectively. Within these intervals, the random
variable is uniformly distributed. This gives us a probability distribution function of the
form

f(x) =


β, if x ∈ [0, α],

γ, if x ∈ (α, 1],

0, otherwise,

(2.0.1)

where ∫ α

0

f(x)dx = αβ = θ, (2.0.2)

and ∫ 1

α

f(x)dx = (1− α)γ = 1− θ. (2.0.3)

This naturally leads us to define β and γ as functions of α and θ. The functions β, γ :
(0, 1)2 → (0,∞) are defined by

β(α, θ) :=
θ

α
, and γ(α, θ) :=

1− θ
1− α

. (2.0.4)

Now these are defined such that for all α, θ ∈ (0, 1) replacing β and γ in Equation (2.0.1)
with their respective functions from Equation (2.0.4) yields a proper probability density
function. For fixed parameters α, θ ∈ (0, 1) the probability density function f : R→ [0,∞)
is defined by

f(x, α, θ) :=


β(α, θ), if x ∈ [0, α],

γ(α, θ), if x ∈ (α, 1],

0, otherwise.

(2.0.5)
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We are interested in maximum likelihood estimation. Therefore we need to sample from
the distribution. To this end we fix α0, θ0 ∈ (0, 1) and let X1, X2, . . . be i.i.d. distributed
with density f(x, α0, θ0). These samples will be used by the estimator.

Assumption 2.1. Since it is assumed that f is not the PDF for the uniform distribution
and hence the densities on the two sides of the boundary are different, we can also assume
that α0 6= θ0.

Since we will often work with the density f(x, α0, θ0) of the random variables (Xi)i∈N
we define the values β0, γ0 ∈ R+ as

β0 := β(α0, θ0), and γ0 := γ(α0, θ0). (2.0.6)

Assumption 2.2. Without loss of generality we assume that β0 > γ0.

We now want to find the CDF corresponding to the distribution with PDF f(x, α0, θ0).
Suppose X is a random variable with PDF f(x, α0, θ0). Then for x ∈ [0, α0] we have

P(X ≤ x) =

∫ x

−∞
f(t, α0, β0)dt (2.0.7)

=

∫ x

0

β0dt (2.0.8)

= β0 · x, (2.0.9)

and for x ∈ (α0, 1] we have

P(X ≤ x) =

∫ x

−∞
f(t, α0, β0)dt (2.0.10)

= 1−
∫ 1

x

γ0dt (2.0.11)

= 1− γ0(1− x). (2.0.12)

Therefore the CDF corresponding to f(x, α0, θ0) is

F0(x) :=


0, if x < 0,

β0x, if x ∈ [0, α0],

1− γ0(1− x), if x ∈ (α0, 1],

1, if x > 1.

(2.0.13)

It will also be necessary to look at the empirical cumulative distribution function. For any
n ∈ N the eCDF for X1, . . . , Xn is denoted by

Fn(x) :=
1

n

n∑
i=1

1Xi≤x. (2.0.14)
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2.1 Maximum likelihood estimators

The goals of this section are to find an expression for the MLE of θ0 in terms of the MLE
of α0 and to find a convenient form for the MLE of α0. To compute the MLEs, we first
look at the likelihood

Ln(α, θ) =
n∏
i=1

f(Xi, α, θ) (2.1.1)

=
∏
Xi<α

β(α, θ)
∏
Xi>α

γ(α, θ) (2.1.2)

= (β(α, θ))nFn(α)(γ(α, θ))n(1−Fn(α)). (2.1.3)

Therefore the log-likelihood divided by n is given by

`n(α, θ) = log

(
θ

α

)
Fn(α) + log

(
1− θ
1− α

)
(1− Fn(α)). (2.1.4)

First we want to find the MLE for θ. The partial derivative of Equation (2.1.4) with respect
to θ is given by

∂`n
∂θ

(α, θ) =
Fn(α)

θ
− 1− Fn(α)

1− θ
. (2.1.5)

The zero of this equation is given by Fn(α). To check whether this is actually the MLE,
we compute the second order partial derivative of Equation (2.1.4) with respect to θ and
verify whether it is negative. The second order partial derivative is

∂2`n
∂θ2

(α, θ) = −Fn(α)

θ2
− 1− Fn(α)

(1− θ)2
. (2.1.6)

Evaluation in θ = Fn(α) yields

∂2`n
∂θ2

(α, Fn(α)) = − 1

Fn(α)
− 1

1− Fn(α)
(2.1.7)

=
−1

Fn(α)(1− Fn(α))
. (2.1.8)

We know that Fn(α)(1 − Fn(α)) > 0 for any value of α and therefore Equation (2.1.8) is
negative. We can conclude that

θ̂n := Fn(α̂n) (2.1.9)

is the MLE for θ0, where α̂n is the MLE for α0.
Now we want to find the MLE for α0. To do this, we will fill in the MLE for θ0 into

Equation (2.1.4). This yields

`n(α, Fn(α)) = log

(
Fn(α)

α

)
Fn(α) + log

(
1− Fn(α)

1− α

)
(1− Fn(α)). (2.1.10)
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Since the MLE maximises this function, we can write

α̂n := arg max
x∈(0,1)

(
log

(
Fn(x)

x

)
Fn(x) + log

(
1− Fn(x)

1− x

)
(1− Fn(x))

)
. (2.1.11)

This is the expression for α̂n that we shall use in the next section to prove consistency.

2.2 Consistency of MLEs

The most essential property of an estimator is consistency. Not all MLEs are consistent
though. As this property is necessary for the rest of this chapter, we will show that both
α̂n and θ̂n are consistent.

Theorem 2.1. The MLE θ̂n = Fn(α̂n), which estimates θ0, is a consistent estimator for
θ0.

Theorem 2.2. The MLE α̂n, which estimates α0, is consistent.

Theorem 2.1 will follow straightforwardly from Theorem 2.2 and the Glivenko-Cantelli
theorem, which can be found in the appendix at Theorem B.4. Since the this proof is
relatively short in comparison to the proof of Theorem 2.2, we start with the proof of
Theorem 2.1.

2.2.1 Proof of Theorem 2.1

Proof of Theorem 2.1. This proof shall make a straightforward use of the triangle inequal-
ity, combined with the Glivenko-Cantelli theorem and consistency of α̂n.

Let ε1, ε2 > 0. Since
F0(α0) = β0α0 = θ0, (2.2.1)

we find that

P(|Fn(α̂)− θ0| < ε1) = P(|Fn(α̂)− F0(α0)| < ε1) (2.2.2)

≥ P(|Fn(α̂)− F0(α̂)|+ |F0(α̂)− F0(α0)| < ε1). (2.2.3)

By the Glivenko-Cantelli theorem, which is stated in Theorem B.4, we have

sup
x∈(0,1)

∣∣Fn(x)− F0(x)
∣∣ a.s.−−→ 0. (2.2.4)

Since almost sure convergence implies convergence in probability, we can choose N1 ∈ N
such that for all n ≥ N1 we have

P

(
sup
x∈(0,1)

∣∣Fn(x)− F0(x)
∣∣ < ε1

2

)
> 1− ε2

2
. (2.2.5)
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Since
sup
x∈(0,1)

∣∣Fn(x)− F0(x)
∣∣ < ε1

2
=⇒ |Fn(α̂)− F0(α̂)| < ε1

2
, (2.2.6)

we find that for all n ≥ N1 we have

P
(∣∣Fn(α̂)− F0(α̂)

∣∣ < ε1
2

)
> P

(
sup
x∈(0,1)

∣∣Fn(x)− F0(x)
∣∣ < ε1

2

)
> 1− ε2

2
. (2.2.7)

By convergence of α̂ to α0 in probability for n→∞ and continuity of F0 we can apply the
continuous mapping theorem, which is stated in Theorem B.3, to find that

F0(α̂) = F0(α0) + op(1). (2.2.8)

Hence we can choose N2 ∈ N such that for all n ≥ N2 we have

P
(
|F0(α̂)− F0(α0)| <

ε1
2

)
> 1− ε2

2
. (2.2.9)

If
|F0(α̂)− F0(α0)| <

ε1
2

and
∣∣Fn(x)− F0(x)

∣∣ < ε1
2
, (2.2.10)

then
|Fn(α̂)− F0(α̂)|+ |F0(α̂)− F0(α0)| < ε1. (2.2.11)

Hence by the Fréchet inequalities from Lemma B.6 we find that for n ≥ max{N1, N2}

P(|Fn(α̂)− θ0| < ε1) ≥ P(|Fn(α̂)− F0(α̂)|+ |F0(α̂)− F0(α0)| < ε1) (2.2.12)

≥ P
(
|F0(α̂)− F0(α0)| <

ε1
2
,
∣∣Fn(x)− F0(x)

∣∣ < ε1
2

)
(2.2.13)

≥ 1− ε2, (2.2.14)

which concludes the proof of the theorem. �

2.2.2 Proof of Theorem 2.2

In order to prove Theorem 2.2, which states that α̂n is a consistent estimator for α0, we
first introduce some relevant notation. Then we will explain the proof heuristically while
stating the necessary lemmas. After this the details for the proof of the theorem will be
given.

For any function G : R→ [0, 1] we define

Φ(G) = arg max
x∈(0,1)

(
G(x) log

(
G(x)

x

)
+ (1−G(x)) log

(
1−G(x)

1− x

))
. (2.2.15)

Using this notation, we can write
α̂n = Φ(Fn). (2.2.16)

We will use the following lemma.
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Lemma 2.3. Let Gn(x) be a sequence of nonrandom c.d.f.’s such that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ = O(1), (2.2.17)

sup
x∈(0,1)

∣∣∣∣1−Gn(x)

1− x

∣∣∣∣ = O(1), (2.2.18)

and
sup
x∈(0,1)

|Gn(x)− F0(x)| = o(1), (2.2.19)

where o and O are for n→∞. Then

Φ(Gn) = α0 + o(1), (2.2.20)

for n→∞.

Lemma 2.3 will be proven after we finish proving Theorem 2.2. We use this lemma to
get to the next lemma. Lemma 2.3 only mentions deterministic CDFs. In our case, we
are talking about stochastic CDFs Fn. Fortunately, it is possible to directly translate the
lemma into random CDFs. This is the case because the calculus of o and O is the same
as the calculus of op and Op. A more precise statement can be found in Theorem 1 of [4].
The proof can be found in Corollary 1 of [5]. This gives us a new lemma that we will state
without proof, as it is a direct result from the equivalent calculus.

Lemma 2.4. Let Gn(x) be a sequence of random c.d.f.’s such that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ = Op(1), (2.2.21)

sup
x∈(0,1)

∣∣∣∣1−Gn(x)

1− x

∣∣∣∣ = Op(1), (2.2.22)

and
sup
x∈(0,1)

|Gn(x)− F0(x)| = op(1). (2.2.23)

Then
Φ(Gn) = α0 + op(1). (2.2.24)

Applying Lemma 2.4 to the sequence Fn would lead to the desired result of Theorem
2.2. Therefore, we shall check whether Fn satisfies the conditions in Equations (2.2.21),
(2.2.22), and (2.2.23).

The third condition is a direct consequence from the Glivenko-Cantelli theorem as
stated in Theorem B.4. We now consider the first condition. We want to be able to
consider a uniform distribution instead of Fn. To do this we first notice that

sup
x∈(0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ = sup
x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣+ sup
x∈(α0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ . (2.2.25)
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The supremum over (α0, 1) is bounded 1/α0. Thus it suffices to show that

sup
x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ = Op(1), (2.2.26)

as n → ∞. To do this we introduce a new random variable Yi that is equal to β0Xi if
Xi ≤ α0 and equal to some uniformly distributed random variable on [θ0, 1] otherwise.
Then Yi is uniformly distributed on the unit interval. However we also have

sup
x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ ≤ β0 sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ , (2.2.27)

where Gn is the eCDF for Yi. When can then apply the following lemma, which is proven
in Appendix Section A.1. The proof is not included here as it is not directly relevant for
the generalisation to two dimensions.

Lemma 2.5. If Gn is the eCDF for a random variable which is uniformly distributed on
[0, 1], then

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ = Op(1), (2.2.28)

for n→∞.

We then conclude that Equation (2.2.26) holds and therefore the first condition is
met. The second condition follows by using that the first condition holds regardless of the
parameters α0 and θ0. We introduce Zi = 1−Xi and notice that

sup
x∈(0,1)

1− Fn(x)

1− x
= sup

x∈(0,1)

1− Fn(1− x)

1− (1− x)
. (2.2.29)

Since Zi is in the same family of random variables as Xi, the second condition also holds.
We will now give the detailed proof.

Proof of Theorem 2.2. Due to Lemma 2.4, we only need to show that Fn satisfies the
conditions in Equations (2.2.21), (2.2.22), and (2.2.23).

We start with the third condition, as it can be verified very quickly. It is known that

sup
x∈(0,1)

|Fn(x)− F0(x)| , (2.2.30)

converges to 0 almost surely by the Glivenko-Cantelli theorem, which is stated in Theorem
B.4. However, almost sure convergence implies convergence in probability. Hence the third
condition is met.

Now we will look at the first condition. The first step will be to show that we can
actually consider the eCDF of a uniform distribution instead of Fn. By some technical
lemma that will be proven after this theorem, the condition will hold. For the second
condition, we can use the result for the first condition by rewriting the problem.
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We start by showing that we can consider uniform distributions. To do this we will
show that we only need to care about

sup
x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ , (2.2.31)

instead of

sup
x∈(0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ . (2.2.32)

Then we will define a new random variable which is uniformly distributed on [0, 1] such

that its eCDF is equal to Fn(x/β0) for x ≤ α0. The supremum over (0, α0) of
∣∣∣Fn(x)x

∣∣∣ will

then be bounded from above by some scalar multiple of the supremum over [0, 1] of the
eCDF for the uniform distribution. Lemma 2.5 will then show that the condition is met.

For any M > 0 we can use the Fréchet inequalities from Lemma B.6 to find that

P

(
sup
x∈(0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M

)
≤ P

(
sup

x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M

)
(2.2.33)

+ P

(
sup

x∈(α0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M

)
. (2.2.34)

Notice that for all x ∈ (α0, 1) we surely have∣∣∣∣Fn(x)

x

∣∣∣∣ ≤ 1

α0

. (2.2.35)

Hence if M > 1
α0

, we have

P

(
sup

x∈(α0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M

)
= 0. (2.2.36)

Thus

P

(
sup
x∈(0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M

)
≤ P

(
sup

x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M

)
+ 1 1

α0
>M . (2.2.37)

We want to show that for all ε > 0 there exist M > 0 and N ∈ N such that for all n > N
we have

P

(
sup
x∈(0,1)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M

)
< ε. (2.2.38)

If we can instead find M1 > 0 and N ∈ N such that for all n > N we have

P

(
sup

x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ > M1

)
< ε, (2.2.39)
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we can take M = max{M1,
1
α0

+ 1}. The result would then immediately follow. Hence we
just need to show that

sup
x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ = Op(1), (2.2.40)

as n → ∞. Notice that this statement is not dependent on the behaviour of Fn(x) for
x > α0. We want to look at the eCDF of a uniform distribution instead of Fn. To do this
we define the sequence of random variables

Yi :=

{
β0Xi, if Xi ≤ α0,

Zi, if Xi > α0,
(2.2.41)

for i ∈ N, where all Zi are i.i.d and distributed as a uniform distribution on the interval
[θ0, 1]. Then for any i ∈ N and x ∈ [0, θ0] we have

P(Yi ≤ x) = P
(
Xi ≤

x

β0

)
= x. (2.2.42)

For any i ∈ N and x ∈ [θ0, 1] we have

P(Yi ≤ x) = P(Yi ≤ x|Xi ≤ α0)P(Xi ≤ α0) + P(Yi ≤ x|Xi > α0)P(Xi > α0) (2.2.43)

= θ0 + P(Zi ≤ x) · (1− θ0) (2.2.44)

= θ0 +
x− θ0
1− θ0

· (1− θ0) (2.2.45)

= x. (2.2.46)

Therefore Yi ∼ unif([0, 1]). Define Gn to be the eCDF for the sequence of random variables
(Y1, Y2, . . .). If x ≤ α0, then

Xi ≤ x =⇒ Yn = β0Xi ≤ β0x, (2.2.47)

and

Yi ≤ β0x =⇒ Xi =
Yi
β0
≤ x. (2.2.48)

Hence for x ≤ α0 we have Fn(x) = Gn(β0x). Therefore

sup
x∈(0,α0)

∣∣∣∣Fn(x)

x

∣∣∣∣ = β0 sup
x∈(0,α0)

∣∣∣∣Gn(β0x)

β0x

∣∣∣∣ (2.2.49)

= β0 sup
x∈(0,θ0)

∣∣∣∣Gn(x)

x

∣∣∣∣ (2.2.50)

≤ β0 sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ . (2.2.51)
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Hence we only need to prove that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ = Op(1). (2.2.52)

In Lemma 2.5 it will be shown that this is true. At this moment we shall use this result,
but it shall be proven later. From this we can conclude that indeed the first condition is
met. Finally we need to show that the second condition is met. First we notice that

sup
x∈(0,1)

1− Fn(x)

1− x
= sup

x∈(0,1)

1− Fn(1− x)

x
. (2.2.53)

We can think of 1− Fn(1− x) as the eCDF of

Zi := 1−Xi. (2.2.54)

But Zi is distributed with PDF f(x, 1− α0, 1− θ0). Hence Zi lies within the same family
as Xi. If we define Gn to be the eCDF for Zi, we then have

sup
x∈(0,1)

1− Fn(x)

1− x
= sup

x∈(0,1)

Gn(x)

x
. (2.2.55)

The proof of the fact that the first condition is met by Fn does not depend on α0 and θ0
except for the assumption that α0 6= θ0, which still holds for 1 − α0 and 1 − θ0. Hence it
can also be applied to Gn, from which we can conclude that the second condition is also
satisfied by Fn. Now we have shown that all three conditions of Lemma 2.4 are met by Fn.
Hence α̂n = Φ(Fn) = α0 +op(1) for n→∞, which tells us that α̂n is indeed consistent. �

2.2.3 Proof of Lemma 2.3

In the proof of Theorem 2.2, we used Lemma 2.3. We will now prove this lemma after
giving a heuristic overview of the proof and introducing a relevant lemma.

Recall that Lemma 2.3 states that whenever Gn(x) is a sequence of nonrandom CDFs
such that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ = O(1), (2.2.56)

sup
x∈(0,1)

∣∣∣∣1−Gn(x)

1− x

∣∣∣∣ = O(1), (2.2.57)

and
sup
x∈(0,1)

|Gn(x)− F0(x)| = o(1), (2.2.58)

where o and O are for n→∞, then

Φ(Gn) = α0 + o(1), (2.2.59)
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for n→∞. We start by introducing some notation that will be used in this proof. Define
H : [0, 1]× (0,∞)× (0,∞)→ R by

H(y1, y2, y3) = y1 log y2 + (1− y1) log y3. (2.2.60)

For all n ∈ N define

Hn(x) = H

(
Gn(x),

Gn

x
,
1−Gn

1− x

)
. (2.2.61)

Then by the definition of Φ in Equation (2.2.15), we have

Φ(Gn) = arg max
x∈(0,1)

Hn(x). (2.2.62)

Define

H0(x) := F0(x) log

(
F0(x)

x

)
+ (1− F0(x)) log

(
1− F0(x)

1− x

)
. (2.2.63)

Then
Φ(F0) = arg max

x∈(0,1)
H0(x). (2.2.64)

We want that Hn → H0 uniformly. To do this, we need to do a couple of things. When
talking about Hn and H0, we want to be able to consider H on a compact domain for
n large enough to exploit uniform continuity with the use of the Heine-Cantor theorem.
At the same time, we need be able to consider Hn on a domain that is smaller than [0, 1]
in order for Gn(x)/x and (1 − Gn(x))/(1 − x) to converge uniformly. This property is
necessary for finding a compact domain. To prove that we can use a smaller domain, we
need to prove that the argmax of Gn does not converge to 0 or 1. If we have these things,
we can show that Hn converges uniformly to H0 on a closed interval smaller than [0, 1]
which includes the argmax of Hn for n large enough. Uniform convergence of Hn will allow
us to show the final result.

First we bound the domain of the last two parameters of H from above. By Equations
(2.2.56) and (2.2.57), we know that

sup
x∈(0,1)

Gn(x)

x
and sup

x∈(0,1)

Gn(x)

x
, (2.2.65)

are stochastically bounded. It can also be seen that

sup
x∈(0,1)

F0(x)

x
and sup

x∈(0,1)

F0(x)

x
, (2.2.66)

are bounded. This gives us upper bounds M1 and M2 respectively. Now we want a
positive lower bound for these variables. For this we need uniform convergence of Gn(x)/x
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and (1−Gn(x))/(1− x). However, to do this we need to restrict the domain of x. Hence
we need to show that

1

Φ(Gn)
= O(1), and

1

1− Φ(Gn)
= O(1), (2.2.67)

for n→∞. We only prove the former, as the proof of the latter is completely analogous.
To prove this, we do a proof by contradiction. We start with a subsequence such that
Φ(Gnk) → 0. Then we will find that Hnk(Φ(Gnk)) → 0, but Hnk(α0) → H0(α) > 0.
However, that means that at some point Hnk(Φ(Gnk)) < Hnk(α0), which is not possible
because of the definitions of Hn and Φ. Because of this contradiction we conclude that
indeed Equation (2.2.67) holds.

Therefore there exist d1, d2 ∈ (0, 1) with d1 < d2 such that eventually Φ(Gn) ∈ [d1, d2].
We will thus consider x ∈ [d1, d2]. Equation (2.2.58) from the hypothesis tell us that Gn

converges to F0 uniformly. Using this uniform convergence we find that we can consider

Gn(x) ∈ [F0(d1)/2, (1 + F0(d2))/2]. (2.2.68)

Now we will find lower bounds for the last two arguments of H. These are based on the
fact that it can be shown that

Gn(x)

x
→ F0(x)

x
, and

1−Gn(x)

1− x
→ 1− F0(x)

1− x
, (2.2.69)

uniformly on [d1, d2]. Since these limits can not get arbitrarily close to zero, we can indeed
find m1 and m2 such that we can now consider H with domain D := [F0(d1)/2, (1 +
F0(d2))/2]× [m1,M1]× [m2,M2], which is compact. Since H is continuous on D and D is
compact, we can apply the Heine-Cantor theorem to find that H is uniformly continuous
on D. This can be used to show that Hn → H0 uniformly on [d1, d2]. We now want to get
to the final conclusion. For this we need the following lemma, which will be proven in the
next subsection.

Lemma 2.6. Under the given definitions of Φ, F0, and α0 we have Φ(F0) = α0.

We define ζ to be the maximum of H0 on [d1, d2] outside of a small region around
α0. By Lemma 2.6, we know that ζ < H0(α0). But then the maximum of Hn on [d1, d2]
outside of a small region around α0 will go towards ζ the maximum of Hn inside of the
small region will go towards H0(α0). So for n large enough, the maximum of Hn on [d1, d2]
will lie in the small area around α0. Since we can take this area arbitrarily small, we find
that Φ(Gn) = α0 + o(1) for n→∞. We will now give a detailed proof.

Proof of Lemma 2.3. We start by bounding the domain of the last two parameters of H
from above. We need to make sure F0 and all Gn for n large enough can be properly defined
with the new domain of H. By equations 2.2.56 and 2.2.57, there exist M ′

1,M
′
2 ∈ R and

N1 such that for all n > N1 we have

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ ≤M1, (2.2.70)

15



and

sup
x∈(0,1)

∣∣∣∣1−Gn(x)

1− x

∣∣∣∣ ≤M2. (2.2.71)

Notice that by the definition of F0 in Equation (2.0.13) we have

F0(x)

x
=

{
β0, if x ∈ [0, α0],
1−γ0
x

+ γ0, if x ∈ (α0, 1],
(2.2.72)

and
1− F0(x)

1− x
=

{
1−β0x
1−x , if x ∈ [0, α0],

γ0, if x ∈ (α0, 1].
(2.2.73)

Hence F0(x)
x

and 1−F0(x)
1−x are bounded. Therefore M1 and M2 can be chosen such that

M1 ≥M ′
1 and M2 ≥M ′

2, but also

F0(x)

x
≤M1, and

1− F0(x)

1− x
≤M2, (2.2.74)

for all x ∈ (0, 1). Then for all n > N1 and all x ∈ (0, 1) we have

Gn(x)

x
≤M1 and

1−Gn(x)

1− x
≤M2. (2.2.75)

We can thus consider H as a function on the domain [0, 1] × (0,M1] × (0,M2]. We want
to be able to consider H on a compact domain for n large enough. To get a positive lower
bound for the last two parameters of H, we want to use uniform convergence of Gn(x)/x
and (1 − Gn(x))/(1 − x). Because Gn(x)/x and (1 − Gn(x))/(1 − x) do not converge
uniformly on [0, 1], we want to be able to look at a smaller interval for x. To do this, we
will show that

1

Φ(Gn)
= O(1), and

1

1− Φ(Gn)
= O(1), (2.2.76)

for n→∞, as that would imply that Φ(Gn) is bounded away from 0 and 1 eventually.
We start by showing that 1/Φ(Gn) = O(1) for n→∞. We will do this by contradiction.

From the hypothesis that 1/Φ(Gn) 6= O(1) we will create some subsequence such that
Hnk(Φ(Gnk)) is bounded from above by a sequence that converges to 0. Then we will show
that H0(α0) > 0. Finally we will combine these to come to a contradiction on the basis
that Φ(Gnk) should maximise Hnk .

Suppose
1

Φ(Gn)
6= O(1), (2.2.77)

for n→∞. Then there is a subsequence (Gnk)k∈N of (Gn)n∈N such that

Φ(Gnk)→ 0. (2.2.78)
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Let ε > 0. Then there exists K1 ∈ N such that for all k > K1 we have

Φ(Gnk) <
ε

M1

. (2.2.79)

By Equation (2.2.70), there exists K2 such that for all k > K2

Gnk(Φ(Gnk))

Φ(Gnk)
≤M1. (2.2.80)

Hence for k > max{K1, K2} =: K0 we have

Gnk(Φ(Gnk)) ≤M1Φ(Gnk) < ε. (2.2.81)

Therefore
Gnk(Φ(Gnk))→ 0. (2.2.82)

By equations 2.2.78, 2.2.80 and 2.2.82 we find that for all k > K2 we have

Hnk(Φ(Gnk)) = Gnk(Φ(Gnk)) log

(
Gnk(Φ(Gnk))

Φ(Gnk)

)
(2.2.83)

+ (1−Gnk(Φ(Gnk))) log

(
1−Gnk(Φ(Gnk))

1− Φ(Gnk)

)
(2.2.84)

≤ Gnk(Φ(Gnk)) logM1 + (1−Gnk(Φ(Gnk))) log

(
1−Gnk(Φ(Gnk))

1− Φ(Gnk)

)
(2.2.85)

→ 0. (2.2.86)

Therefore
∀ε>0∃K∈N : ∀k≥K : Hnk(Φ(Gnk)) < ε. (2.2.87)

We will now show that H0(α0) > 0. By the definitions of H0 and F0 given in Equation
(2.2.63) and Equation (2.0.13) respectively, we know that

H0(α0) = θ0 log
θ0
α0

+ (1− θ0) log
1− θ0
1− α0

. (2.2.88)

Define J : (0, 1)× (0, 1)→ R by

J(α, θ) = θ log
θ

α
+ (1− θ) log

1− θ
1− α

. (2.2.89)

Its gradient is given by

∇J(α, θ) =

(
1−θ
1−α −

θ
α

log θ
1−θ + log 1−α

α

)
, (2.2.90)

which can easily be seen to be zero if and only if α = θ. When α = θ, we have

J(α, α) = 0. (2.2.91)
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Since

J

(
1

4
,
1

2

)
= J

(
3

4
,
1

2

)
=

1

2
log 2 +

1

2
log

4

6
=

1

2
log

4

3
> 0, (2.2.92)

we find that J(α, θ) > 0 on both sides of the line α = θ. Therefore J(α, θ) > 0 whenever
α 6= θ. Since α0 6= θ0 by Assumption 2.1, we have H0(α0) = J(α0, θ0) > 0.

By continuity of H and convergence of Gn to F0, we know that Hn → H0 pointwise.
Hence Hnk(α0) → H0(α0) > 0. Let ε = H0(α0)/2. Then there exists K ∈ N such that for
all k > K

Hnk(α0) >
1

2
H0(α0). (2.2.93)

However, by Equation (2.2.87) there exists K ′ ∈ N such that for k > K ′ we have

Hnk(Φ(Gnk)) <
1

2
H0(α0). (2.2.94)

But then for k > max{K,K ′} we have

Hnk(Φ(Gn)) < Hnk(α0), (2.2.95)

which contradicts that Φ(Gnk) maximises Hnk . We can thus conclude that

1

Φ(Gn)
= O(1). (2.2.96)

In an analogous way, it can be shown that

1

1− Φ(Gn)
= O(1). (2.2.97)

Hence there exist d1, d2 ∈ (0, 1) with d1 < d2 and N2 ∈ N such that for all n > N2 we have

Φ(Gn) ∈ [d1, d2]. (2.2.98)

We will consider x ∈ [d1, d2]. Recall that F0 is increasing, because it is a CDF. Equation
(2.2.58) from the lemma hypothesis tells us that Gn converges uniformly to F0. By using
uniform convergence of Gn to F0, we know that we can choose N3 ∈ N such that for all
n > N3 and x ∈ [d1, d2] we have

Gn(x) ∈ [F0(d1)/2, (1 + F0(d2))/2]. (2.2.99)

Hence we will consider H on the domain [F0(d1)/2, (1 +F0(d2))/2]× (0,M1]× (0,M2], but
first we shall make it compact by getting lower bounds for the last two arguments based
on the restriction on the first one. This will give us a domain of the form [F0(d1)/2, (1 +
F0(d2))/2]× [m1,M1]× [m2,M2]. To do this, we first need to show that

Gn(x)

x
→ F0(x)

x
, (2.2.100)
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and
1−Gn(x)

1− x
→ 1− F0(x)

1− x
, (2.2.101)

uniformly on [d1, d2]. We start by proving the former. Let ε > 0. Choose N ∈ N such that
for all n > N we have

sup
x∈(0,1)

|Gn(x)− F0(x)| < d1 · ε. (2.2.102)

Then for all n > N and x ∈ (0, 1) we have

|Gn(x)− F0(x)| < d1 · ε. (2.2.103)

Hence for all n > N and x ∈ (0, 1) we have∣∣∣∣Gn(x)

x
− F0(x)

x

∣∣∣∣ =
1

x
|Gn(x)− F0(x)| (2.2.104)

≤ 1

d1
|Gn(x)− F0(x)| (2.2.105)

< ε. (2.2.106)

Therefore Gn(x)/x converges to F0(x)/x uniformly on [d1, d2]. We now turn towards (1−
Gn(x))/(1− x). Let ε > 0. Choose N ∈ N such that for all n > N we have

sup
x∈(0,1)

|Gn(x)− F0(x)| < (1− d2) · ε. (2.2.107)

Then for all n > N and x ∈ (0, 1) we have

|Gn(x)− F0(x)| < (1− d2) · ε. (2.2.108)

Hence for all n > N and x ∈ (0, 1) we have∣∣∣∣1−Gn(x)

1− x
− 1− F0(x)

1− x

∣∣∣∣ =
1

1− x
|Gn(x)− F0(x)| (2.2.109)

≤ 1

1− d2
|Gn(x)− F0(x)| (2.2.110)

< ε. (2.2.111)

Therefore (1−Gn(x))/(1− x) converges to (1− F0(x))/(1− x) uniformly on [d1, d2]. We
will now find m1,m2 and N3 such that for all n > N3 and x ∈ [d1, d2] we have

Gn(x)

x
> m1, (2.2.112)

and
1−Gn(x)

1− x
> m2. (2.2.113)
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By the definition of F0 given in Equation (2.0.13), we know that

F0(x)

x
=

{
β0, if x ∈ [0, α0],
1−γ0
x

+ γ0, if x ∈ (α0, 1].
(2.2.114)

Note that β0 > 0. Since γ0 ∈ (0, 1), we have

1− γ0
x

+ γ0 > 0, (2.2.115)

for all x ∈ (α0, 1]. Hence in neither of the cases for x in Equation (2.2.114), can F0(x)/x
get arbitrarily close to 0. Similarly we know that

1− F0(x)

1− x
=

{
1−β0x
1−x , if x ∈ [0, α0],

γ0, if x ∈ (α0, 1].
(2.2.116)

Note that γ0 > 0. Since β0 = θ0/α0, we have

1− β0x = 1− θ0x

α0

> 0, (2.2.117)

for x ∈ [0, α0). Therefore
1− β0x
1− x

≥ 1− β0x > 0, (2.2.118)

for x ∈ [0, α0). Hence 1−F0(x)
1−x can not get arbitrarily close to 0. Let

m3 := min
x∈[d1,d2]

F0(x)

x
> 0, (2.2.119)

and

m4 := min
x∈[d1,d2]

1− F0(x)

1− x
> 0. (2.2.120)

By the uniform convergence on [d1, d2] mentioned in equations 2.2.100 and 2.2.101, there
exists N4 ∈ N such that for all n > N4 and x ∈ [d1, d2] we have

Gn(x)

x
> m1 :=

m3

2
, (2.2.121)

and
1−Gn(x)

1− x
> m2 :=

m4

2
. (2.2.122)

Notice that we also have

F0(x)

x
≥ m1 and

1− F0(x)

1− x
≥ m2, (2.2.123)
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for all x ∈ [d1, d2]. We will be able to consider H on the domain D := [F0(d1)/2, (1 +
F0(d2))/2] × [m1,M1] × [m2,M2]. This domain is compact. Since H is continuous on D
and D is compact, we can apply the Heine-Cantor theorem to find that H is uniformly
continuous on D. Let ε > 0. By uniform continuity of H on D, there exists δ > 0 such
that for all y1, y2 ∈ D we have

|y1 − y2| < δ =⇒ |H(y1)−H(y2)| < ε. (2.2.124)

Let N5 ∈ N such that for all n > N5 and x ∈ (0, 1) we have

|Gn(x)− F0(x)| < 1

1 + 1
d1

+ 1
1−d2

· δ. (2.2.125)

Let N0 := max{N1, . . . , N5} and let x ∈ [d1, d2] be arbitrary. Define

xn :=

 Gn(x)
Gn(x)
x

1−Gn(x)
1−x

 , (2.2.126)

and

y :=

 F0(x)
F0(x)
x

1−F0(x)
1−x

 . (2.2.127)

By definition of N1, . . . , N5, we know that for n > N0 we have xn, y ∈ D and

|xn − y| ≤ |Gn(x)− F0(x)|+
∣∣∣∣Gn(x)

x
− F0(x)

x

∣∣∣∣+

∣∣∣∣1−Gn(x)

1− x
− 1− F0(x)

1− x

∣∣∣∣ (2.2.128)

=

(
1 +

1

x
+

1

1− x

)
|Gn(x)− F0(x)| (2.2.129)

≤
(

1 +
1

d1
+

1

1− d2

)
|Gn(x)− F0(x)| (2.2.130)

< δ. (2.2.131)

By Equation (2.2.124) we thus have

|H(xn)−H(y)| < ε. (2.2.132)

Therefore, for all ε > 0 there exists N ∈ N such that for all x ∈ D and n > N we have

|Hn(x)−H0(x)| = |H(xn)−H(y)| < ε. (2.2.133)

Hence Hn(x)→ H0(x) uniformly on [d1, d2]. We finally turn ourselves to Φ(Gn). Let ε > 0
and define

ζ := max
x∈[d1,d2]\(α0−ε,α0+ε)

H0(x), (2.2.134)
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and

δ =
1

2
(H0(α0)− ζ). (2.2.135)

By Lemma 2.6 we have
ζ < H0(α0), (2.2.136)

and thus δ > 0. By uniform convergence of Hn to H0 on [d1, d2], we can choose N ∈ N
such that for all x ∈ [d1, d2] and n > N we have

|Hn(x)−H0(x)| < δ. (2.2.137)

Let n > N . Then we find that

max
x∈[d1,d2]\(α0−ε,α0+ε)

Hn(x) < ζ + δ =
1

2
(H0(α0) + ζ), (2.2.138)

and

max
x∈(α0−ε,α0+ε)

Hn(x) > H0(α0)− δ =
1

2
(H0(α0) + ζ). (2.2.139)

Since Φ(Gn) ∈ [d1, d2], we thus have

|Φ(Gn)− α0| < ε. (2.2.140)

We conclude that
Φ(Gn) = α0 + o(1), (2.2.141)

for n→∞. �

2.2.4 Proof of Lemma 2.6

To complete this section, we now only need to prove Lemma 2.6, which states that Φ(F0) =
α0.

Proof of Lemma 2.6. We use the same notation as in the previous subsection. In order to
prove that α0 = Φ(F0), we need to show that α0 maximises H0 on (0, 1). Usually we would
like to simply find where the derivative of H0 is zero. However, F0 is not differentiable in
α0, leading us to a different approach. We will show that H ′0(x) < 0 for all x ∈ (α0, 1)
and H ′0(x) > 0 for all x ∈ (0, α0). If we also have that H0 is continuous, we will be able to
conclude that indeed α0 = Φ(F0).

Notice that F0 is continuous. Therefore H0 is also continuous. When proving properties
of the derivative of H0, it will be useful to extend the domain of H0 to [0, 1]. We can extend
the domain of H0 by setting H0(0) = limx→0H0(x) and H0(1) = limx→1H0(x). This will
then maintain continuity. Now H0 is a continuous function with domain [0, 1].

First we note that

H0(α0) = β0α0 log β0 + γ0(1− α0) log γ0, (2.2.142)
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is well defined. We will first look at (0, α0). For x ∈ (0, α0) we have

H0(x) = β0x log
β0x

x
+ (1− β0x) log

1− β0x
1− x

(2.2.143)

= β0x log β0 + (1− β0x) log
1− β0x
1− x

. (2.2.144)

Since this is continuous, it also holds for x = 0. Therefore H0(0) = 0 < H0(α0). By
straightforward differentiation we find that for x ∈ [0, α0) we have

H ′0(x) = β0 log β0 + (1− β0x)

(
1

1− x
− β0

1− β0x

)
− β0 log

1− β0x
1− x

. (2.2.145)

Since θ0 ∈ (0, 1) and x ∈ [0, α0), we have

1− β0x = 1− θ0
α0

x > 0. (2.2.146)

Hence we can write

H ′0(x) = β0 log β0 +
1− β0x
1− x

− β0 − β0 log
1− β0x
1− x

, (2.2.147)

for x ∈ [0, α0) and this derivative is well defined. We will show that this is non-negative
for all x ∈ [0, α0). To do this we will show that the value for x = 0 is non-negative and
that the second derivative is non-negative for x ∈ (0, α0). First we look at H ′0(0). We see
that this is

H ′0(0) = 1− β0 + β0 log β0. (2.2.148)

To show that this is positive, we consider ω : (0,∞)→ R defined by

ω(β) := 1− β + β log β. (2.2.149)

Then
dω

dβ
= log β, (2.2.150)

which is negative for β ∈ (0, 1) and positive for β > 1. Its only zero lies at β = 1. Since
ω(1) = 0 and ω is continuous, we find that ω(β) > 0 for all β ∈ (0,∞). By Assumption
2.1, we have β0 6= 1. Hence, no matter what the value for β0 is, we always have H ′0(0) > 0.
We turn ourselves towards the second derivative of H0 for x ∈ (0, α0). By differentiating
Equation (2.2.147) we find that the second derivative of H0 for x ∈ (0, α0) is given by

H ′′0 (x) =
−β0(1− x) + (1− β0x)

(1− x)2
+

β2
0

1− β0x
− β0

1− x
(2.2.151)

=
(β0 − 1)2

(1− x)2(1− β0x)
. (2.2.152)
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By Equation (2.2.146) we have (1 − β0x) > 0. Since x 6= 1 we have (1 − x)2 > 0. By
Assumption 2.1 we have β0 6= 1 and therefore (β0 − 1)2 > 0. Thus H ′′(x) > 0 for all
x ∈ (0, α0) and H ′0(0) > 0. By continuity of H ′0(x) on [0, α0) we find that H ′(x) > 0 for all
x ∈ [0, α0).

We turn ourselves to H0(x) for x ∈ (α0, 1). For x ∈ (α0, 1) we have

H0(x) = (1− γ0 + γ0x) log
1− γ0 + γ0x

x
+ γ0 log γ0 − xγ0 log γ0. (2.2.153)

By continuity, this also holds for x = 1. Taking the derivative yields

H ′0(x) = (1− γ0 + γ0x)

(
γ0

1− γ0 + γ0x
− 1

x

)
+ γ0 log

1− γ0 + γ0x

x
− γ0 log γ0, (2.2.154)

for x > α0. Since θ0 ∈ (0, 1) and x > α0, we have

1− γ0(1− x) > 0, (2.2.155)

Hence for x ∈ (α0, 1] we can write

H ′0(x) = γ0 −
1− γ0 + γ0x

x
+ γ0 log

1− γ0 + γ0x

x
− γ0 log γ0, (2.2.156)

and this derivative is well-defined. We want to show that H ′0(x) < 0 for all x ∈ (α0, 1]. To
do this we will show that H ′0(1) < 0 and H ′′0 (x) > 0 for x ∈ (α0, 1). The result then follows
from continuity of H ′0(x) on (α0, 1]. First we notice that

H ′0(1) = γ0 − 1− γ0 log γ0 = −ω(γ0), (2.2.157)

where ω is as defined in Equation (2.2.149). We showed that ω is a positive function on
(0,∞) \ {1}. By Assumption 2.1 we know that γ0 6= 1. It follows that H ′0(1) < 0. We
continue by looking at H ′′0 (x). For x ∈ (α0, 1) we have

H ′′0 (x) =
1− γ0
x2

+
γ20

1− γ0(1− x)
− γ0

x
(2.2.158)

=
(γ0 − 1)2

x2(1− γ0(1− x))
. (2.2.159)

By Equation (2.2.155) we have 1 − γ0(1 − x) > 0. Since x > α0, we have x2 > 0. Since
by Assumption 2.1 we know that γ0 6= 1, we have (γ0 − 1)2 > 0. Thus H ′′(x) > 0 for all
x ∈ (α0, 0) and H ′0(1) < 0. By continuity of H ′0(x) on (α0, 1] we find that H ′(x) < 0 for all
x ∈ (α0, 1].

Now we have H ′0(x) < 0 for all x ∈ (α0, 1] and H ′0(x) > 0 for all x ∈ [0, α0). By
continuity of H0(x) we can conclude that indeed Φ(F0) = α0. �
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2.3 Quasi-maximum likelihood estimator

Our goal in this chapter is to show that α̂n = α0+Op(1/n). Instead of showing this directly,
we will introduce an estimator for α0 in this section that will be close enough to α̂n, but also
close enough to α0. To do this we will use a quasi-maximum likelihood estimator (QMLE).
A QMLE is an estimator which maximises a function that is related to the log-likelihood.
To create such a QMLE, we will rewrite the log-likelihood divided by n to include terms
that have convenient asymptotic properties. We will then use one part of this resulting
function. The QMLE will maximise this function in some small neighbourhood around α0.
We start out by displaying the QMLE and then proceed by motivating the choice for this
estimator. First notice that we can use the actual values for α0 and θ0 in the definition of
the QMLE, because we only use the QMLE as a vehicle for proving properties of the MLE.
We now need to define two things that are necessary for the definition of the QMLE. First
will be a function that will be maximised in some range around α0 by the QMLE and the
second will be a sequence of ranges around α0 that the QMLE will maximise this function
on.

The function that we want to use for defining the QMLE is denoted by

Mn(α, θ) := Fn(α)− Fn(α0) +
(γ0 − β0)(α− α0)

log(β(α0, θ))− log(γ(α0, θ))
. (2.3.1)

To show that this function makes sense, we will state a theorem that tells us that the
log-likelihood can be expressed in some way including asymptotically small terms. These
terms are small O or small O in probability. The deterministic small Os are for α → ∞.
The probabilistic equivalents are for n→∞. However, sometimes a term is a function of
both n and α. We want to know what happens when n → ∞ and α → α0. For this we
need to introduce new notation, as the big O small O notation does not include enough
rigour when it comes to this multivariate asymptotic behaviour. When we will be using
these expressions in proof later on, we will be evaluating in consistent estimators for α0.
Therefore we only care about what happens when we evaluate the term in a consistent
estimator for α0 and then take n to infinity. We use the following notation.

Definition 2.1. Let gn : R→ R be a sequence of random functions. Let h : R→ R. Fix
some a ∈ R. Then we write

gn(α) = Tp(h(α)), (2.3.2)

for α→ a if for any consistent estimator ηn of a we have

gn(ηn) = op(h(ηn)), (2.3.3)

for n→∞.

Now we can state the theorem using this new notation.
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Theorem 2.7. The log-likelihood divided by n has the property that

`n(α, θ) =
1

n

n∑
i=1

log(f(Xi, α0, θ)) + Sn(α, θ), (2.3.4)

for some function

Sn(α, θ) = (log(β(α0, θ))− log(γ(α0, θ)) + o(1))Mn(α, θ)

+ (α− α0)(o(1) + op(1)) + Tp(|α− α0|),
(2.3.5)

where o and Tp are for α→ α0 and op is for n→∞.

Most terms in this expression are asymptotically small. Because of Assumption 2.2,
which states that β0 > γ0, we also know that log(β(α0, θ)) − log(γ(α0, θ)) + o(1) will be
positive when θ is close enough to θ0 and α is close enough to α0. Hence it does seem to
make sense to maximise Mn(α, θ0) in some region around α0.

To create a sequence of ranges around α0 that the QMLE will maximise Mn on, we will
use the following lemma that shall be proven after defining the QMLE.

Lemma 2.8. Suppose η̂n is a consistent estimator of some parameter η0. Then there exists
a sequence (an)n∈N of positive real numbers with limn→∞ an = 0 such that

η̂n − η0 = op (an) , (2.3.6)

as n→∞.

It has been proven that α̂n is a consistent estimator of α0. By Lemma 2.8 it thus follows
that we can define a sequence an of positive numbers with limn→∞ an = 0 such that

α̂n − α0 = op (an) , (2.3.7)

as n→∞.
We can now define the new estimator α̃ using this sequence an and the function

Mn(α, θ).

Definition 2.2. The QMLE α̃n for α0 is defined as

α̃n := arg max
α∈[α0−an,α0+an]

Mn(α, θ0). (2.3.8)

Now we move on to the proof of Lemma 2.8.

Proof of Lemma 2.8. By consistency of η̂n we know that for each ε, δ > 0 there exists
Nε,δ ∈ N such that for all n > Nε,δ we have

P(|η̂n − η0| > δ) < ε. (2.3.9)
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Let ε, δ > 0 and for each i ∈ N define δi := δ/i. Then for each i ∈ N there exists some
Ni ∈ N such that for all n > Ni we have

P(i · |η̂n − η0| > δ) = P(|η̂n − η0| > δi) < ε. (2.3.10)

Notice that the sequence (Ni)i∈N can be chosen to be strictly increasing. Then for each
i ∈ N we can define

an =
1

i
, (2.3.11)

for n ∈ {Ni + 1 . . . , Ni+1}. For n ≤ N1, we define an = 1. Clearly all elements are positive
and

an
n→∞−−−→ 0. (2.3.12)

Let n > N1. Then

P
(
|η̂n − η0|

an
> δ

)
= P(i · |η̂n − η0| > δ), (2.3.13)

for some i ∈ N. But then by definition of (an) we know that n > Ni. Therefore by
definition of Ni we have

P(i · |η̂n − η0| > δ) < ε. (2.3.14)

We conclude that
η̂n − η0 = op (an) , (2.3.15)

as n→∞. �

To finish this section, we will prove Theorem 2.7.

Proof of Theorem 2.7. The likelihood is given by

Ln(α, θ) =
n∏
i=1

f(Xi, α, θ). (2.3.16)

Instead we look at the log-likelihood divided by n, which is given by

`n(α, θ) =
1

n

n∑
i=1

log(f(Xi, α, θ)) (2.3.17)

=
1

n

n∑
i=1

log(f(Xi, α0, θ)) +
1

n

n∑
i=1

(
log(f(Xi, α, θ)− log(f(Xi, α0, θ)

)
. (2.3.18)

The first sum in Equation (2.3.18) does not depend on α. Hence it makes sense to ignore
that part when constructing the QMLE for α0. We will denote the second part of Equation
(2.3.18) as

Sn(α, θ) :=
1

n

n∑
i=1

(
log(f(Xi, α, θ)− log(f(Xi, α0, θ)

)
. (2.3.19)
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We want to split this sum into two. The first sum will only include the observations that
lie between α and α0. The second sum will include all other observations. To be able to
talk about the observations between α and α0, we denote the minimum and maximum of
{α, α0} by

αm(α) := min{α, α0}, (2.3.20)

and
αM(α) := max{α, α0}, (2.3.21)

respectively. Now we can define the two separate sums using this notation. The sum over
the observations between α and α0 is denoted by

S(1)
n (α, θ) :=

1

n

∑
Xi∈
(
αm(α),αM (α)

) ( log(f(Xi, α, θ))− log(f(Xi, α0, θ))
)
, (2.3.22)

and the sum over the other observations is denoted by

S(2)
n (α, θ) :=

1

n

∑
Xi /∈
(
αm(α),αM (α)

) ( log(f(Xi, α, θ))− log(f(Xi, α0, θ))
)
. (2.3.23)

Now we have Sn(α, θ) = S
(1)
n (α, θ) + S

(2)
n (α, θ). We will rewrite S

(1)
n and S

(2)
n separately.

We start by looking at S
(1)
n . First notice that for any observation Xi ∈ (αm(α), αM(α))

log(f(Xi, α, θ))− log(f(Xi, α0, θ)) =

{
log(β(α, θ))− log(γ(α0, θ)), if α > α0,

log(γ(α, θ))− log(β(α0, θ)), if α < α0.
(2.3.24)

Recall the definition of the eCDF from Equation (2.0.14). Then using Equation (2.3.24)
we find that

S(1)
n (α, θ) =

{
(Fn(α)− Fn(α0))

(
log(β(α, θ))− log(γ(α0, θ))

)
, if α > α0,

(Fn(α)− Fn(α0))
(

log(β(α0, θ))− log(γ(α, θ))
)
, if α < α0.

(2.3.25)

We can rewrite this as

S(1)
n (α, θ) = (Fn(α)− Fn(α0))

(
log(β(α0, θ))− log(γ(α0, θ)) + ξ(α, θ)

)
, (2.3.26)

where

ξ(α, θ) :=

{
log(β(α, θ))− log(β(α0, θ)), if α > α0,

log(γ(α0, θ))− log(γ(α, θ)), if α < α0.
(2.3.27)
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Then

S(1)
n (α, θ) = (Fn(α)− Fn(α0)) log

(
β(α0, θ)

γ(α0, θ)

)
+ ξ(α, θ)

(
Fn(α)− Fn(α0) +

(γ0 − β0)(α− α0)

log(β(α0, θ))− log(γ(α0, θ))

)
− ξ(α, θ) (γ0 − β0)(α− α0)

log(β(α0, θ))− log(γ(α0, θ))

(2.3.28)

= (Fn(α)− Fn(α0)) log

(
β(α0, θ)

γ(α0, θ)

)
+ ξ(α, θ)Mn(α, θ)

− ξ(α, θ) (γ0 − β0)(α− α0)

log(β(α0, θ))− log(γ(α0, θ))
.

(2.3.29)

Notice that both parts of ξ(α, θ) are continuous in α. Hence for all θ ∈ (0, 1) we have

lim
α↓α0

ξ(α, θ) = lim
α↓α0

log(β(α, θ))− log(β(α0, θ)) = 0, (2.3.30)

and
lim
α↑α0

ξ(α, θ) = lim
α↑α0

log(γ(α0, θ))− log(γ(α, θ)) = 0. (2.3.31)

Therefore
lim
α→α0

ξ(α, θ) = 0, (2.3.32)

for any θ ∈ (0, 1). Thus
ξ(α, θ) = o(1), (2.3.33)

for α→ α0. Therefore

− ξ(α, θ) (γ0 − β0)(α− α0)

log(β(α0, θ))− log(γ(α0, θ))
= (α− α0)o(1), (2.3.34)

for α→ α0. Plugging this back into Equation (2.3.29) yields

S(1)
n (α, θ) = (Fn(α)− Fn(α0)) log

(
β(α0, θ)

γ(α0, θ)

)
+ o(1)Mn(α, θ) + o(1)(α− α0), (2.3.35)

for α→ α0.
We now turn ourselves towards S

(2)
n (α, θ). Since we have

P(Xi ∈ {α, α0}) = 0, (2.3.36)

we only need to considerXi ∈ [0, αm(α))∪(αM(α), 1]. Note that for allXi /∈ (αm(α), αM(α))
we have

log(f(Xi, α, θ))− log(f(Xi, α0, θ)) =

{
log β(α, θ)− log β(α0, θ), if Xi < αm(α),

log γ(α, θ)− log γ(α0, θ), if Xi > αM(α)

(2.3.37)

=

{
log α0

α
, if Xi < αm(α),

log 1−α0

1−α , if Xi > αM(α).
(2.3.38)
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Notice that this value does not depend on θ. We can linearise this with respect to α around
the point α = α0 as for all Xi that we consider, Equation (2.3.38) is differentiable with
respect to α around a neighbourhood of α0. Define

b(x, α) :=

{
log α0

α
, if x < αm(α),

log 1−α0

1−α , if x > αM(α).
(2.3.39)

Then linearization around α0 yields

b(x, α) = b(x, α0) +
∂b(x, α0)

∂α
(α− α0) + h(x, α)(α− α0), (2.3.40)

for some function h(x, α). We can clearly see that for any x we have

b(x, α0) = 0. (2.3.41)

Therefore

h(x, α) =
b(x, α)

α− α0

− ∂b(x, α0)

∂α
. (2.3.42)

The partial derivative of b with respect to α is given by

∂b(x, α)

∂α
=

{
− 1
α
, if x < αm(α),

1
1−α , if x > αM(α).

(2.3.43)

So for x < αm(α) we have

h(x, α) = h1(α) :=
log α0

α

α− α0

+
1

α0

, (2.3.44)

and for x > αM(α) we have

h(x, α) = h2(α) :=
log 1−α0

1−α

α− α0

− 1

1− α0

. (2.3.45)

By using l’Hôpital’s rule we see that

lim
α→α0

h1(α) = lim
α→α0

− 1

α
+

1

α0

= 0, (2.3.46)

and

lim
α→α0

h2(α) = lim
α→α0

1

1− α
− 1

1− α0

= 0. (2.3.47)
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Hence both h1 and h2 are o(1) as α → α0. Using b in the definition of S
(2)
n (α, θ), we find

that

S(2)
n (α, θ) =

1

n

∑
Xi /∈(αm(α),αM (α))

b(Xi, α) (2.3.48)

=
1

n

∑
Xi /∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0)

+
1

n

∑
Xi<αm

h1(α)(α− α0) +
1

n

∑
Xi>αM

h2(α)(α− α0)

(2.3.49)

=
1

n

∑
Xi /∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0)

+
(
Fn(αm(α))h1(α) + (1− Fn(αM(α)))h2(α)

)
(α− α0).

(2.3.50)

Recall the definition of Tp from Definition 2.1. We now want to show that(
Fn(αm(α))h1(α) + (1− Fn(αM(α)))h2(α)

)
(α− α0) = Tp(|α− α0|), (2.3.51)

for α→ α0. To do this we assume ηn is some consistent estimator for α0. We then analyse∣∣Fn(αm(ηn))h1(ηn) + (1− Fn(αM(ηn)))h2(ηn)
∣∣. (2.3.52)

For any n ∈ N and α ∈ (0, 1) we know that by definition of a CDF |Fn(αm(α))| and
|1− Fn(αM(α))| are bounded by 1. So these sequences are also bounded by 1 for α = ηn.
Hence ∣∣Fn(αm(ηn))h1(ηn) + (1− Fn(αM(ηn)))h2(ηn)

∣∣ ≤ |h1(ηn)|+ |h2(ηn)|. (2.3.53)

Since h1(α) and h2(α) are both o(1) as α → α0 and do not depend on n, we can use
consistency of ηn to find that that h1(ηn) and h2(ηn) are op(1) as n→∞. Hence

Fn(αm(ηn))h1(ηn) + (1− Fn(αM(ηn)))h2(ηn) = op(1), (2.3.54)

for n→∞. Therefore indeed(
Fn(αm(α))h1(α) + (1− Fn(αM(α)))h2(α)

)
(α− α0) = Tp(|α− α0|), (2.3.55)

for α→ α0. Putting this back into the expression for S
(2)
n (α, θ) that we found in Equation

(2.3.50) yields

S(2)
n (α, θ) =

1

n

∑
Xi /∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0) + Tp(|α− α0|), (2.3.56)
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for α → α0. Now we want to rewrite the sum that we see in the equation above. To do
this we rewrite it as the sum over all observations and subtract the observations between
α and α0. This gives us

1

n

∑
Xi /∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0) =

1

n

n∑
i=1

∂b(Xi, α0)

∂α
(α− α0)

− 1

n

∑
Xi∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0).

(2.3.57)

We want to show that

1

n

∑
Xi∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0) = Tp(|α− α0|), (2.3.58)

for α→ α0. By Equation (2.3.43), we have

1

n

∑
Xi∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0) =

{
α−α0

1−α0
(Fn(α)− Fn(α0)), if α > α0,

α−α0

α0
(Fn(α)− Fn(α0)), if α < α0.

(2.3.59)

Dividing by α0 or 1−α0 does not have any effects on the asymptotic properties. Therefore
it suffices to show that

(α− α0)(Fn(α)− Fn(α0)) = Tp(|α− α0|), (2.3.60)

for α→ α0. Clearly we can instead show that

Fn(α)− Fn(α0) = Tp(1), (2.3.61)

for α→ α0. To do this we let ηn be a consistent estimator of α0. Then

Fn(ηn)− Fn(α0) ∼
1

n
Binom(n, |ηn − α0|). (2.3.62)

Let ε > 0. By consistency of ηn, we can choose N ∈ N such that for all n ≥ N we have
|ηn − α0| < ε/2. Then for n ≥ N

P(Fn(ηn)− Fn(α0) < ε) ≥ P
(

1

n
Binom(n, ε/2) < ε

)
. (2.3.63)

By the law of large numbers

1

n
Binom(n, ε/2)

a.s.−−→ ε/2. (2.3.64)

Therefore

lim
n→∞

P
(

1

n
Binom(n, ε/2) < ε

)
= 1. (2.3.65)
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By the squeeze theorem we thus conclude that

lim
n→∞

P(Fn(ηn)− Fn(α0) < ε) = 1, (2.3.66)

and hence
Fn(α)− Fn(α0) = Tp(1), (2.3.67)

and
1

n

∑
Xi∈(αm(α),αM (α))

∂b(Xi, α0)

∂α
(α− α0) = Tp(|α− α0|), (2.3.68)

for α→ α0. Therefore

S(2)
n (α, θ) =

1

n

n∑
i=1

∂b(Xi, α0)

∂α
(α− α0) + Tp(|α− α0|) + Tp(|α− α0|) (2.3.69)

=
1

n

n∑
i=1

∂b(Xi, α0)

∂α
(α− α0) + Tp(|α− α0|), (2.3.70)

for α→ α0. By the law of large numbers we have

1

n

n∑
i=1

∂b(Xi, α0)

∂α

P−→ E
[
∂b(X,α0)

∂α

]
, (2.3.71)

where X is a random variable which is distributed with PDF f(x, α0, θ0). This can also be
written as

1

n

n∑
i=1

∂b(Xi, α0)

∂α
= E

[
∂b(X,α0)

∂α

]
+ op(1), (2.3.72)

as n→∞. Since

E
[
∂b(X,α0)

∂α

]
= P(X < α0) ·

−1

α0

+ P(X > α0) ·
1

1− α0

(2.3.73)

=
1− θ0
1− α0

− θ0
α0

(2.3.74)

= γ0 − β0, (2.3.75)

we find that

S(2)
n (α, θ) = (α− α0)(γ0 − β0) + (α− α0)op(1) + Tp(|α− α0|), (2.3.76)

for n→∞.
Now we want to combine S

(1)
n (α, θ) and S

(2)
n (α, θ) to get an expression for Sn(α, θ). We

find that

Sn(α, θ) = (Fn(α)− Fn(α0)) log

(
β(α0, θ)

γ(α0, θ)

)
+ o(1)Mn(α, θ) + (α− α0)o(1)

+ (α− α0)(γ0 − β0) + (α− α0)op(1) + Tp(|α− α0|),
(2.3.77)
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where o and Tp are for α→ α0 and op is for n→∞. Since

(α−α0)(γ0− β0) + (Fn(α)−Fn(α0)) log

(
β(α0, θ)

γ(α0, θ)

)
= log

(
β(α0, θ)

γ(α0, θ)

)
Mn(α, θ), (2.3.78)

we can conclude that

Sn(α, θ) = (log(β(α0, θ))− log(γ(α0, θ)) + o(1))Mn(α, θ)

+ (α− α0)(o(1) + op(1)) + Tp(|α− α0|),
(2.3.79)

where o and Tp are for α→ α0 and op is for n→∞. �

2.4 Convergence speed of QMLE

Recall that the QMLE is defined in Definition 2.2 as

α̃n := arg max
α∈[α0−an,α0+an]

Mn(α, θ0), (2.4.1)

where the function Mn(α, θ) is defined in Equation (2.3.1) as

Mn(α, θ) := Fn(α)− Fn(α0) +
(γ0 − β0)(α− α0)

log(β(α0, θ))− log(γ(α0, θ))
. (2.4.2)

The goal of this section is to prove the following theorem.

Theorem 2.9. The QMLE has the property that

α̃n − α0 = Op

(
1

n

)
, (2.4.3)

as n→∞.

First we will give a heuristic overview of the proof while introducing a relevant lemma.
After that we will give the detailed proof of the theorem. The lemma will be proven
afterwards.

2.4.1 Proof of Theorem 2.9

The proof of Theorem 2.9 is based on the following lemma, which will be proven in the
next subsection.

Lemma 2.10. For each ε > 0 there exist K, k > 0 and N ∈ N such that for all n ≥ N we
have

P

(
sup

K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k

)
> 1− ε. (2.4.4)
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Lemma 2.10 gives us a stronger statement than needed in the proof of the theorem.
We do state it in this form, because this lemma will be used again in Section 2.5. In this
case we use that this lemma roughly says that supK/n<|α−α0|<anMn(α, θ0) < 0 eventually
for some K. Since Mn(α0, θ0) = 0, the definition of α̃n tells us that Mn(α̃n, θ0) ≥ 0. Hence
n|α̃n − α0| < K.

Proof of Theorem 2.9. We start by reducing the strong statement from Lemma 2.10 into
a statement that will be mmore useful to the proof. Lemma 2.10 states that for each ε > 0
there exist K, k > 0 and N ∈ N such that for all n ≥ N we have

P

(
sup

K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k

)
> 1− ε. (2.4.5)

If for some K, k > 0 and n ∈ N we have that

sup
K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k, (2.4.6)

then we also have
sup

K/n<|α−α0|<an
Mn(α, θ0) < 0. (2.4.7)

Thus by Lemma 2.10 we find that for all ε > 0 there exist K > 0 and N ∈ N such that for
all n ≥ N we have

P

(
sup

K/n<|α−α0|<an
Mn(α, θ0) < 0

)
> 1− ε. (2.4.8)

Now we can use this statement to prove the final result.
Let ε > 0. Choose K > 0 and N ∈ N such that for all n ≥ N Equation (2.4.8) holds.

Notice that
Mn(α0, θ0) = 0. (2.4.9)

Therefore using that by definition α̃n maximises Mn(α, θ0) on [α0 − an, α0 + an], we see
that

Mn(α̃n, θ0) ≥Mn(α0, θ0) = 0. (2.4.10)

By definition, we always have |α̃n − α0| < an. Hence for any n ∈ N

n|α̃n − α0| > K =⇒ sup
K/n<|α−α0|<an

Mn(α, θ0) ≥ 0. (2.4.11)

Thus for all n ≥ N we have

P(n|α̃n − α0| ≥ K) ≤ P

(
sup

K/n<|α−α0|<an
Mn(α, θ0) ≥ 0

)
< ε. (2.4.12)

We conclude that indeed

α̃n − α0 = Op

(
1

n

)
, (2.4.13)

as n→∞. �
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2.4.2 Proof of Lemma 2.10

We now continue by proving Lemma 2.10. This lemma states that for each ε > 0 there
exist K, k > 0 and N ∈ N such that for all n ≥ N we have

P

(
sup

K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k

)
> 1− ε. (2.4.14)

First we give a heuristic overview of the proof and introduce a relevant lemma. Then
we will give the detailed proof. The lemma that we introduce will be proven in the next
subsection.

We split the supremum into two parts. The first part considers α > α0 and the second
part considers α < α0. If we can bound both of these suprema, we have bound the entire
supremum. The two cases can are analogous to each other. We will cover the case of
α > α0. First we use the definition of Mn and apply some computational steps to find that

Mn(α, θ0)

|α− α0|
=

(
Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

)
γ0 + γ0 +

γ0 − β0
log β0 − log γ0

. (2.4.15)

It can be proven that

γ0 +
γ0 − β0

log β0 − log γ0
< 0. (2.4.16)

We then use the following theorem, which will be proven in the next subsection.

Lemma 2.11. For all ε, k > 0 there exist K > 0 and N ∈ N such that for all n ≥ N we
have

P

(
sup

K/n<|α−α0|

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
> 1− ε. (2.4.17)

We apply Lemma 2.11 by choosing

k = − 1

2γ0

(
γ0 +

γ0 − β0
log β0 − log γ0

)
> 0. (2.4.18)

Then we find that
Mn(α, θ0)

|α− α0|
<

1

2

(
γ0 +

γ0 − β0
log β0 − log γ0

)
< 0. (2.4.19)

Analogously we can find a bound for α < α0. Thus the whole supremum is bounded.
Now we will give the detailed proof.

Proof of Lemma 2.10. We will look at α > α0 and α < α0 separately. These correspond
to

P

(
sup

K/n<α−α0<an

Mn(α, θ0)

|α− α0|
< −k

)
, (2.4.20)
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and

P

(
sup

K/n<α0−α<an

Mn(α, θ0)

|α− α0|
< −k

)
, (2.4.21)

respectively. We will find a different K, k, and N for both probabilities to be less than 1−
ε/2. The two cases are analogous. To find these K, k, and N , we will write Mn(α, θ0)/|α−
α0| as a sum of a negative constant and an expression that, with great probability, is less
than minus the negative constant for some K and N . The fact that this second part of
the sum has this property will be proven by Lemma 2.11.

Fix ε > 0. We will first look at α > α0. Notice that for α > α0 we have

Mn(α, θ0)

|α− α0|
=
Fn(α)− Fn(α0)

α− α0

+
γ0 − β0

log β0 − log γ0
(2.4.22)

=
Fn(α)− Fn(α0)

F0(α)− F0(α0)
· F0(α)− F0(α0)

α− α0

+
γ0 − β0

log β0 − log γ0
(2.4.23)

=
Fn(α)− Fn(α0)

F0(α)− F0(α0)
· γ0(α− α0)

α− α0

+
γ0 − β0

log β0 − log γ0
(2.4.24)

=
Fn(α)− Fn(α0)

F0(α)− F0(α0)
γ0 +

γ0 − β0
log β0 − log γ0

(2.4.25)

=

(
Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

)
γ0 + γ0 +

γ0 − β0
log β0 − log γ0

. (2.4.26)

We will to prove that

γ0 +
γ0 − β0

log β0 − log γ0
< 0. (2.4.27)

Observe that

γ0 +
γ0 − β0

log β0 − log γ0
=

1− α0

1− θ0
+

1−α0

1−θ0 −
α0

θ0

log α0(1−θ0)
θ0(1−α0)

(2.4.28)

=
1

log α0(1−θ0)
θ0(1−α0)

(
1− α0

1− θ0
· log

α0(1− θ0)
θ0(1− α0)

+
1− α0

1− θ0
− α0

θ0

)
(2.4.29)

=
1− α0

(1− θ0) log α0(1−θ0)
θ0(1−α0)

(
log

α0(1− θ0)
θ0(1− α0)

+ 1− α0(1− θ0)
θ0(1− α0)

)
. (2.4.30)

Since β0 > γ0 by Assumption 2.2, we have α0 > θ0 and

α0(1− θ0)
θ0(1− α0)

> 1. (2.4.31)

Therefore
1− α0

(1− θ0) log α0(1−θ0)
θ0(1−α0)

> 0. (2.4.32)
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Hence we only need to prove that

log
α0(1− θ0)
θ0(1− α0)

+ 1− α0(1− θ0)
θ0(1− α0)

< 0. (2.4.33)

Define g : (0,∞)→ R by
g(x) := 1− x+ log x. (2.4.34)

Clearly g(1) = 0 and g′(x) = 1
x
− 1. For x > 1, we thus have g′(x) < 0. Hence for x > 1

we get g(x) < 0. Hence using Equation (2.4.31) we find that

log
α0(1− θ0)
θ0(1− α0)

+ 1− α0(1− θ0)
θ0(1− α0)

< 0. (2.4.35)

Therefore

γ0 +
γ0 − β0

log β0 − log γ0
< 0. (2.4.36)

Now we want to bound the first part of Equation (2.4.26), which is given by(
Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

)
γ0. (2.4.37)

To do this, we shall use Lemma 2.11, which states that for all ε′, k > 0 there exist K > 0
and N ∈ N such that for all n ≥ N we have

P

(
sup

K/n<|α−α0|

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
> 1− ε′. (2.4.38)

Let

k1 := −1

2

(
γ0 +

γ0 − β0
log β0 − log γ0

)
> 0. (2.4.39)

By the hypothesis in equation Lemma 2.11 there exist K1 > 0 and N1 ∈ N such that for
all n ≥ N1 we have

P

(
sup

K1/n<|α−α0|

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k1
γ0

)
> 1− ε

2
. (2.4.40)

Thus for all n ≥ N1 we also have

P

(
sup

K1/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k1
γ0

)
> 1− ε

2
. (2.4.41)

If for some n ∈ N ∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k1
γ0
, (2.4.42)
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then

Mn(α, θ0)

|α− α0|
=

(
Fn(x)− Fn(α0)

F0(α)− F0(α0)
− 1

)
γ0 + γ0 +

γ0 − β0
log β0 − log γ0

(2.4.43)

≤
∣∣∣∣Fn(x)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ γ0 + γ0 +
γ0 − β0

log β0 − log γ0
(2.4.44)

< −k1. (2.4.45)

Therefore for all n ≥ N1 we have

P

(
sup

K1/n<α−α0<an

Mn(α, θ0)

|α− α0|
< −k1

)
≥ P

(
sup

K1/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k1
γ0

)
(2.4.46)

> 1− ε

2
. (2.4.47)

We continue by looking at the case α < α0. Using a completely similar argumentation we
can show that there exist K2, k2 > 0 and N2 ∈ N such that for all n ≥ N2 we have

P

(
sup

K2/n<α0−α<an

Mn(α, θ0)

|α− α0|
< −k2

)
> 1− ε

2
. (2.4.48)

There is only a slight difference. This time we notice that for α < α0

Mn(α, θ0) =

(
1− Fn(α)− Fn(α0)

F0(α)− F0(α0)

)
β0 −

(
β0 +

γ0 − β0
log β0 − log γ0

)
, (2.4.49)

and prove that

β0 +
γ0 − β0

log β0 − log γ0
> 0. (2.4.50)

Since this proof is analogous to the previous case, we do not repeat the proof. Now we can
start to combine the results for the two cases in order to get to the final conclusion.

Define K0 := max{K1, K2}, k0 := min{k1, k2}, and N0 := max{N1, N2}. Then

sup
K1/n<α−α0<an

Mn(α, θ0)

|α− α0|
< −k1 =⇒ sup

K0/n<α−α0<an

Mn(α, θ0)

|α− α0|
< −k0, (2.4.51)

and

sup
K2/n<α0−α<an

Mn(α, θ0)

|α− α0|
< −k2 =⇒ sup

K0/n<α0−α<an

Mn(α, θ0)

|α− α0|
< −k0. (2.4.52)

Hence if

sup
K1/n<α−α0<an

Mn(α, θ0)

|α− α0|
< −k1, and sup

K2/n<α0−α<an

Mn(α, θ0)

|α− α0|
< −k2, (2.4.53)
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then

sup
K0/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k0. (2.4.54)

We now use the Fréchet inequalities and Equations (2.4.47) and (2.4.48) to find that for
n ≥ N0

P

(
sup

K0/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k0

)

≥ P

(
sup

K1/n<α−α0<an

Mn(α, θ0)

|α− α0|
< −k1, sup

K2/n<α0−α<an

Mn(α, θ0)

|α− α0|
< −k2

)
≥ 1− ε

2
+ 1− ε

2
− 1

= 1− ε.

�

2.4.3 Proof of Lemma 2.11

Finally we will prove Lemma 2.11. Recall that this lemma states that for all ε, k > 0 there
exist K > 0 and N ∈ N such that for all n ≥ N we have

P

(
sup

K/n<|α−α0|

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
> 1− ε. (2.4.55)

To prove this we start by giving a short outline of the proof an introducing a lemma
that we will use. This lemma is proven in the appendix. Then we will give the proof of
Lemma 2.11 in full detail.

Just like in the proof for the previous lemma look at α < α0 and α > α0 separately.
The two cases are completely analogous. We first consider α > α0. We find that∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ =

∣∣∣∣Fn(α)− Fn(α0)

γ0(α− α0)
− 1

∣∣∣∣ . (2.4.56)

However, the number of points in an interval that lies completely on one side of α0 is
distributed according to a binomial distribution. The number of observations in any inter-
val from a uniform distribution is distributed according to a binomial distribution. This
observation shows us that for any K, k > 0 and n ∈ N we have

P

(
sup

K/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
= P

 sup
K
nγ0

<x

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k

 . (2.4.57)

At this point we use the following lemma, which is proven in Appendix Section A.2.
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Lemma 2.12. For all ε, k > 0 there exist K > 0 and N ∈ N such that for all n ≥ N we
have

P

(
sup
x>K/n

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k

)
> 1− ε, (2.4.58)

where Gn is the eCDF for the uniform distribution on [0, 1].

This bound on the supremum of
∣∣∣Gn(x)x

− 1
∣∣∣ directly gives us a bound on the supremum

of
∣∣∣Fn(α)−Fn(α0)
F0(α)−F0(α0)

− 1
∣∣∣. Repeating this for α < α0 gives us the final result. Now we move on

to the detailed proof.

Proof of Lemma 2.11. Let ε, k > 0 be fixed. First we consider α > α0. Notice that

F0(α)− F0(α0) = 1− γ0(1− α)− 1 + γ0(1− α0) = γ0(α− α0). (2.4.59)

Thus ∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ =

∣∣∣∣Fn(α)− Fn(α0)

γ0(α− α0)
− 1

∣∣∣∣ . (2.4.60)

Notice that Fn(α) − Fn(α0) is the proportion of the observations that lie in (α0, α]. The
probability of any given sample to fall in that interval is γ0(α− α0). Therefore

Fn(α)− Fn(α0) ∼ Binom(n, γ0(α− α0)). (2.4.61)

Define Gn to be the eCDF of some uniform distribution on [0, 1]. Then we also have

Gn(γ0(α− α0)) ∼ Binom(n, γ0(α− α0)). (2.4.62)

Hence for any K1 > 0 and n ∈ N we have

P

(
sup

K1/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
= P

(
sup

K1/n<α−α0

∣∣∣∣Gn(γ0(α− α0))

γ0(α− α0)
− 1

∣∣∣∣ < k

)
.

(2.4.63)
By taking x = γ0(α− α0) we find that for any K1 > 0 and n ∈ N

P

(
sup

K1/n<α−α0

∣∣∣∣Gn(γ0(α− α0))

γ0(α− α0)
− 1

∣∣∣∣ < k

)
= P

 sup
K1
nγ0

<x

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k

 . (2.4.64)

Now we can use Lemma 2.12. By this lemma, we can take some K ′1 > 0 and N1 ∈ N such
that for all n ≥ N1

P

 sup
K′

1
n
<x

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k

 > 1− ε

2
. (2.4.65)
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By taking K1 = γ0K
′
1 we get that for all n ≥ N1

P

(
sup

K1/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
> 1− ε

2
. (2.4.66)

We can now consider α < α0. In a completely analogous fashion it can be shown that there
exist K2 > 0 and N2 ∈ N such that for all n ≥ N2 we have

P

(
sup

K2/n<α0−α

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
> 1− ε

2
. (2.4.67)

Now we can combine the two cases to get to the final conclusion.
Define K0 := max{K1, K2} and N0 := max{N1, N2}. Clearly

sup
K1/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k =⇒ sup
K0/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k, (2.4.68)

and

sup
K2/n<α0−α

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k =⇒ sup
K0/n<α0−α

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k. (2.4.69)

Hence if

sup
K1/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k and sup
K2/n<α0−α

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k,

(2.4.70)
then

sup
K0/n<|α−α0|

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k. (2.4.71)

Thus we can use the Fréchet inequalities to find that for n ≥ N0

P

(
sup

K0/n<|α−α0|

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
(2.4.72)

≥ P

(
sup

K0/n<α−α0

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k, sup
K0/n<α0−α

∣∣∣∣Fn(α)− Fn(α0)

F0(α)− F0(α0)
− 1

∣∣∣∣ < k

)
(2.4.73)

≥ 1− ε. (2.4.74)

�
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2.5 Convergence speed of MLE

The goal of this section is to show the following theorem.

Theorem 2.13. The MLE for α0 has the property that

α̂n = α0 +Op

(
1

n

)
, (2.5.1)

as n→∞.

The proof of this theorem will combine Theorem 2.9, which says that

α̃n = α0 +Op

(
1

n

)
, (2.5.2)

with the following theorem.

Theorem 2.14. The MLE and QMLE for α0 have the property that

α̂n − α̃n = op(1/n). (2.5.3)

The proof of Theorem 2.13 is relatively short, so we start by stating this proof. After-
wards we will prove Theorem 2.14.

Proof of Theorem 2.13. By Theorem 2.14, we know that

α̂n = α̃n + op

(
1

n

)
, (2.5.4)

as n→∞. However by Theorem 2.9

α̃n = α0 +Op

(
1

n

)
, (2.5.5)

as n→∞. Hence

α̂n = α0 +Op

(
1

n

)
+ op

(
1

n

)
= α0 +Op

(
1

n

)
, (2.5.6)

as n→∞. �

2.5.1 Preparations for proving Theorem 2.14

In order to prove Theorem 2.14, we will look at the difference of the log-likelihood evaluated
in (α̂n, θ̂n) and the log-likelihood evaluated in (α̃n, θ̂n). We will rewrite this difference to a
usable expression by using some small lemmas that we will prove along the way. Then we
move on to the next subsection where we use this result in the proof of Theorem 2.14.
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We start by considering the log-likelihood. Recall from Theorem 2.7 that the log-
likelihood is given by

`n(α, θ) =
1

n

n∑
i=1

log(f(Xi, α0, θ)) + Sn(α, θ), (2.5.7)

where

Sn(α, θ) = (log(β(α0, θ))− log(γ(α0, θ)) + o(1))Mn(α, θ)

+ (α− α0)(o(1) + op(1)) + Tp(|α− α0|),
(2.5.8)

where o and Tp are for α→ α0 and op is for n→∞. Since by definition the MLEs α̂n and

θ̂n maximise the log-likelihood,

`n(α̂n, θ̂n)− `n(α̃n, θ̂n) ≥ 0. (2.5.9)

However,
`n(α̂n, θ̂n)− `n(α̃n, θ̂n) = Sn(α̂n, θ̂n)− Sn(α̃n, θ̂n). (2.5.10)

Therefore
0 ≤ Sn(α̂n, θ̂n)− Sn(α̃n, θ̂n). (2.5.11)

Recall that by the definition of Tp evaluating Tp(|α− α0|) in a consistent estimator ηn for
α0 yields a function that is op(|ηn − α0|). By Theorem 2.2 we know that α̂ is consistent.
Recall that

α̃n = arg max
α∈[α0−an,α0+an]

Mn(α, θ0), (2.5.12)

and limn→∞ an = 0. Therefore α̃n is also consistent. Thus we know what happens when
we evaluate Tp(|α− α0|) in α̂n or α̃n.

We still need to look at what happens when we evaluate functions that are o(1) as
α → α0 in α̂n or α̃n. It will give us some asymptotic behaviour in probability as n → ∞.
For this we use the following lemma.

Lemma 2.15. Suppose that h ∈ o(1) for α → α0 and ηn is a consistent estimator of α0.
Then

h(ηn) = op(1), (2.5.13)

for n→∞.

Proof. Let ε1, ε2 > 0. Since h ∈ o(1), there exists δ > 0 such that for all α with |α−α0| < δ
we have |h(α)| < ε1. Since ηn−α0 = op(1) as n→∞, there exists N ∈ N such that for all
n > N we have

P(|ηn − α0| > δ) < ε2. (2.5.14)

Since
|ηn − α0| < δ =⇒ |h(ηn)| < ε1, (2.5.15)
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we have
|h(ηn)| > ε1 =⇒ |ηn − α0| > δ. (2.5.16)

Therefore for n > N we have

P(|h(ηn)| > ε1) ≤ P(|ηn − α0| > δ) < ε2. (2.5.17)

Hence
h(ηn) = op(1). (2.5.18)

�

Since α̂n and α̃n are consistent estimators of α0, Lemma 2.15 tell us that evaluating
a function that is o(1) for α → α0 in either α̂n or α̃n yields a function that is op(1) for
n→∞.

Therefore

Sn(α̂n, θ̂n)− Sn(α̃n, θ̂n) = (log(β(α0, θ̂n))− log(γ(α0, θ̂n)) + op(1))(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n))

+ (α̂n − α̃n)op(1) + op(|α̂n − α0|) + op(|α̃n − α0|),
(2.5.19)

for n→∞. Since 0 ≤ Sn(α̂n, θ̂n)− Sn(α̃n, θ̂n), we find that

0 ≤ (log(β(α0, θ̂n))− log(γ(α0, θ̂n)) + op(1))(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n))

+ (α̂n − α̃n)op(1) + op(|α̂n − α0|) + op(|α̃n − α0|),
(2.5.20)

for n → ∞. We will now look at op(|α̂n − α0|). Suppose h ∈ op(|α̂n − α0|) for n → ∞.
Then

h =
h

|α̂n − α0|
|α̂n − α0| (2.5.21)

= |α̂n − α0|op(1) (2.5.22)

≤ (|α̂n − α̃n|+ |α̃n − α0|)op(1) (2.5.23)

= |α̂n − α̃n|op(1) + op(|α̃n − α0|). (2.5.24)

for n→∞. Therefore

0 ≤ (log(β(α0, θ̂n))− log(γ(α0, θ̂n)) + op(1))(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n))

+ (α̂n − α̃n)op(1) + op(|α̃n − α0|),
(2.5.25)

for n → ∞. By Theorem 2.9 we know that α̃n − α0 = Op

(
1
n

)
as n → ∞. Thus it would

make sense that

op(|α̃n − α0|) ⊂ op

(
1

n

)
, (2.5.26)

for n→∞. We prove this in the following lemma.
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Lemma 2.16. Suppose for the sequences of random variables An and Bn we have An =
op(Bn) and Bn = Op(1/n) respectively for n→∞. Then An = op(1/n) for n→∞.

Proof. Let ε1, ε2 > 0. Since Bn = Op(1/n) for n→∞, there exist M > 0 and N1 ∈ N such
that for all n ≥ N1 we have

P(n|Bn| ≥M) ≤ ε2
2
. (2.5.27)

Since An = op(Bn), there exists N2 ∈ N such that for all n ≥ N2 we have

P
(∣∣∣∣AnBn

∣∣∣∣ ≥ ε1
M

)
≤ ε2

2
. (2.5.28)

Define N0 := max{N1, N2}. If

|nBn| < M and

∣∣∣∣AnBn

∣∣∣∣ < ε1/M. (2.5.29)

then
n|An| < ε1. (2.5.30)

Hence by using the Fréchet inequalities, we find that for n ≥ N0 we have

P(n|An| < ε1) ≥ P (|nBn| < M) + P
(∣∣∣∣AnBn

∣∣∣∣ < ε1/M

)
− 1 (2.5.31)

≥ 1− ε2, (2.5.32)

from which we conclude that indeed An = op(1/n) for n→∞. �

By applying Theorem 2.9 and Lemma 2.16 we can see that Equation (2.5.26) does
indeed hold. Thus we find that

0 ≤ (log(β(α0, θ̂n))− log(γ(α0, θ̂n)) + op(1))(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n))

+ |α̂n − α̃n|op(1) + op(1/n),
(2.5.33)

for n→∞.
Now we want to investigate log(β(α0, θ̂n)) − log(γ(α0, θ̂n). Using Theorem 2.1, which

states that θ̂n is a consistent estimator for θ0, and the continuous mapping theorem stated
in Theorem B.3, it can clearly be seen that

log(β(α0, θ̂n))− log(γ(α0, θ̂n)) = log
β0
γ0

+ op(1), (2.5.34)

for n→∞. Therefore

0 ≤
(

log
β0
γ0

+ op(1)

)
(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n)) + (α̂n − α̃n)op(1) + op(1/n), (2.5.35)

for n→∞.
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Since the sign of α̂n − α̃n is stochastically bounded by 1, we can clearly we can write

(α̂n − α̃n)op(1) = |α̂n − α̃n|op(1). (2.5.36)

Hence

0 ≤
(

log
β0
γ0

+ op(1)

)
(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n)) + |α̂n − α̃n|op(1) + op(1/n). (2.5.37)

This expression is what will be used to prove Theorem 2.14 which states that α̂n − α̃n =
op(1/n).

2.5.2 Proof of Theorem 2.14

We start by giving a heuristic overview of the proof of Theorem 2.14 and introducing a
relevant lemma, which will be proven in the next subsection. Then we give the detailed
proof.

The idea of the proof is that we bound Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n) both from above and
below. Both of these bounds will include |α̃n− α̂n| and one of them includes op(1/n). Then
we use that the lower bound is bounded from above by the upper bound and do some more
steps to get to the final conclusion. First we will use the following lemma, which will be
proven in the next subsection.

Lemma 2.17. For all ε > 0 there exist δ,W > 0 and N ∈ N such that for all n ≥ N we
have

P

sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< W

 > 1− ε, (2.5.38)

and
P(∀

(α,θ)∈D(n)
δ

: Mn(α̃n, θ)−Mn(α, θ) > 0) > 1− ε, (2.5.39)

where

D
(n)
δ := {(α, θ) ∈ [0, 1]2 : α 6= α̃n ∧ |α− α0| ≤ an ∧ |θ − θ0| ≤ δ}. (2.5.40)

Lemma 2.17 basically says that

sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< W, (2.5.41)

and
∀
(α,θ)∈D(n)

δ
: Mn(α̃n, θ)−Mn(α, θ) > 0. (2.5.42)

Theorem 2.1 states that θ̂n is a consistent estimator of θ0. Hence |θ̂n − θ0| < δ eventually.

Since α̂n−α0 = op(an), we have |α̂n−α0| < an eventually. Thus (α̂n, θ̂n) ∈ D(n)
δ eventually.

But then
Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n) > 0, (2.5.43)
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and
|α̃n − α̂n|

Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n)
< W. (2.5.44)

However then also
1

K
|α̃n − α̂n| < Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n) (2.5.45)

Equation (2.5.37) tells us that we can pick An, Bn ∈ op(1) and Cn ∈ op(1/n) such that

0 ≤
(

log
β0
γ0

+ An

)
(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n)) + |α̂n − α̃n|Bn + Cn. (2.5.46)

Since β0 > γ0 we have log β0
γ0

+ An > 0 eventually. Thus

1

K
|α̃n − α̂n|

(
log

β0
γ0

+ An

)
< (Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n))

(
log

β0
γ0

+ An

)
(2.5.47)

≤ |α̂n − α̃n|Bn + Cn, (2.5.48)

and hence
n

K
|α̃n − α̂n|

(
log

β0
γ0

+ (An −Bn)

)
< n · Cn. (2.5.49)

However we also have log β0
γ0

+ (An −Bn) > 0 eventually. Therefore

n|α̃n − α̂n| <
K · n · Cn

log β0
γ0

+ (An −Bn)
. (2.5.50)

We can show that the right hand side is op(1), leading us to the conclusion that α̃n− α̂n =
op(1/n).

Proof of Theorem 2.14. First we will bound Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n) from below by some-
thing positive. To do this, we will use Theorem 2.1, which states that θ̂n is consistent, and
Lemma 2.17, which states that or all ε > 0 there exist δ,W > 0 and N ∈ N such that for
all n ≥ N we have

P

sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< W

 > 1− ε, (2.5.51)

and
P(∀

(α,θ)∈D(n)
δ

: Mn(α̃n, θ)−Mn(α, θ) > 0) > 1− ε, (2.5.52)

where

D
(n)
δ := {(α, θ) ∈ [0, 1]2 : α 6= α̃n ∧ |α− α0| ≤ an ∧ |θ − θ0| ≤ δ}. (2.5.53)
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Let ε1, ε2 > 0. By Lemma 2.17, we can choose δ,K > 0 and N1 ∈ N such that for all
n ≥ N1 we have

P
(
∀
(α,θ)∈D(n)

δ
: Mn(α, θ)−Mn(α̃n, θ) < 0

)
> 1− ε1/24, (2.5.54)

and

P

sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< K

 > 1− ε1/24. (2.5.55)

Since θ̂n is a consistent estimator for θ0, there exists N2 ∈ N such that for n ≥ N2 we have

P(|θ̂n − θ0| < δ) > 1− ε1/24. (2.5.56)

Since α̂n − α0 = op(an), there exists N3 ∈ N such that for n ≥ N3 we have P(|α̂n − α0| <
an) > 1− ε/24. If

|α̂n − α0| < an, and |θ̂n − θ0| < δ, (2.5.57)

then (α̂n, θ̂n) ∈ D(n)
δ . If additionally

∀
(α,θ)∈D(n)

δ
: Mn(α, θ)−Mn(α̃n, θ) < 0, (2.5.58)

then
Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n) > 0. (2.5.59)

If also

sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< K, (2.5.60)

then

(α̂n, θ̂n) ∈ D(n)
δ , and sup

D
(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< K, (2.5.61)

and hence
1

K
|α̃n − α̂n| < Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n). (2.5.62)

Thus we can use the Fréchet inequalities to find that for n ≥ max{N1, N2, N3}

P
(

1

K
|α̃n − α̂n| < Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n)

)
> 1− ε1

6
. (2.5.63)

We continue to bound Mn(α̃n, θ̂n) −Mn(α̂n, θ̂n) from above. After finding the bounds we
want to compare the bounds and create some bound on n|α̃n − α̂n|. To find the upper
bound for Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n), we consider Equation (2.5.37). It tells us that we can
pick An, Bn ∈ op(1) and Cn ∈ op(1/n) such that

0 ≤
(

log
β0
γ0

+ An

)
(Mn(α̂n, θ̂n)−Mn(α̃n, θ̂n)) + |α̂n − α̃n|Bn + Cn. (2.5.64)
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Hence for all n ∈ N we have(
log

β0
γ0

+ An

)
(Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n)) ≤ |α̂n − α̃n|Bn + Cn. (2.5.65)

If
1

K
|α̃n − α̂n| < Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n) (2.5.66)

and (
log

β0
γ0

+ An

)
> 0, (2.5.67)

then

1

K
|α̃n − α̂n|

(
log

β0
γ0

+ An

)
< (Mn(α̃n, θ̂n)−Mn(α̂n, θ̂n))

(
log

β0
γ0

+ An

)
(2.5.68)

≤ |α̂n − α̃n|Bn + Cn. (2.5.69)

By taking |α̂n− α̃n|Bn to the left hand side and multiplying both sided by n, we also have

n

K
|α̃n − α̂n|

(
log

β0
γ0

+ (An −Bn)

)
< n · Cn. (2.5.70)

If also

log
β0
γ0

+ (An −Bn) > 0, (2.5.71)

then

n|α̃n − α̂n| <
K · n · Cn

log β0
γ0

+ (An −Bn)
. (2.5.72)

We will now work out the probabilities.
Since by Assumption 2.2 we have β0 > γ0 and An ∈ op(1) for n → ∞, we can take

N4 ∈ N such that for n ≥ N4 we have that

P
((

log
β0
γ0

+ An

)
> 0

)
> 1− ε1

6
. (2.5.73)

Since (An−Bn) ∈ op(1) for n→∞ and we have assumed that β0 > γ0, there exists N5 ∈ N
such that for n ≥ N5 we have

P
(

log
β0
γ0

+ (An −Bn) > 0

)
> 1− ε1

6
. (2.5.74)

By the Fréchet inequalities we thus find that for n ≥ max{N1, N2, N3, N4, N5}

P

(
n|α̃n − α̂n| <

K · n · Cn
log β0

γ0
+ (An −Bn)

)
> 1− ε1

2
. (2.5.75)
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All that we have left to do is to bound

K · n · Cn
log β0

γ0
+ (An −Bn)

, (2.5.76)

by ε2. To do this we shall first prove that 1

log
β0
γ0

+(An−Bn)
= Op(1) for n→∞.

Define En := (An − Bn) ∈ op(1). Let ε′ > 0. Fix δ1 ∈
(

0, log β0
γ0

)
and choose N ′ ∈ N

such that for all n ≥ N ′ we have

P(|En| ≥ δ1) ≤ ε′. (2.5.77)

Define

δ2 :=
1

log β0
γ0
− δ1

> 0. (2.5.78)

If ∣∣∣∣∣ 1

log β0
γ0

+ En

∣∣∣∣∣ ≥ δ2, (2.5.79)

then by using the reverse triangle inequality we find that

log
β0
γ0
− δ1 =

1

δ2
(2.5.80)

≥
∣∣∣∣log

β0
γ0

+ En

∣∣∣∣ (2.5.81)

≥
∣∣∣∣log

β0
γ0
− |En|

∣∣∣∣ (2.5.82)

≥ log
β0
γ0
− |En|, (2.5.83)

and therefore
δ1 ≤ |En|. (2.5.84)

Hence for n ≥ N ′ we have

P

(∣∣∣∣∣ 1

log β0
γ0

+ En

∣∣∣∣∣ ≥ δ2

)
≤ P(|En| ≥ δ1) ≤ ε′. (2.5.85)

Thus we can conclude that
1

log β0
γ0

+ En
= Op(1), (2.5.86)

for n→∞.
Since Cn ∈ op(1/n) for n→∞, we can notice that K · n · Cn ∈ op(1). Hence

K · n · Cn
log β0

γ0
+ (An −Bn)

= op(1)Op(1) = op(1). (2.5.87)
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Therefore we can choose N6 ∈ N such that for n ≥ N6 we have

P

(∣∣∣∣∣ K · n · Cn
log β0

γ0
+ (An −Bn)

∣∣∣∣∣ ≤ ε2

)
≥ 1− ε/2. (2.5.88)

If

n|α̃n − α̂n| <
K · n · Cn

log β0
γ0

+ (An −Bn)
, (2.5.89)

and ∣∣∣∣∣ K · n · Cn
log β0

γ0
+ (An −Bn)

∣∣∣∣∣ ≤ ε2, (2.5.90)

then
n|α̃n − α̂n| < ε2. (2.5.91)

Hence we can use the Fréchet inequalities to show that for n ≥ max{N1, N2, N3, N4, N5, N6}
we have

P(n|α̃n − α̂n| < ε2) ≥ 1− ε, (2.5.92)

from which we conclude that indeed

α̃n − α̂n = op(1/n). (2.5.93)

�

2.5.3 Proof of Lemma 2.17

In the proof of Theorem 2.14, we used Lemma 2.17, which states that for all ε > 0 there
exist δ,W > 0 and N ∈ N such that for all n ≥ N we have

P

sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< W

 > 1− ε, (2.5.94)

and
P(∀

(α,θ)∈D(n)
δ

: Mn(α̃n, θ)−Mn(α, θ) > 0) > 1− ε, (2.5.95)

where

D
(n)
δ := {(α, θ) ∈ [0, 1]2 : α 6= α̃n ∧ |α− α0| ≤ an ∧ |θ − θ0| ≤ δ}. (2.5.96)

Before talking about the proof of this lemma, we want to point out that Lemma 4 from the
paper by Chernoff and Rubin[3], which corresponds to Lemma 2.14, is not correct. The
lemma is roughly the same, but in the paper they state that δ does depend on ε.

To prove Lemma 2.14, we will use the following lemma, which will be proven in the
next subsection.
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Lemma 2.18. We have

sup
α 6=α̃n

|α−α0|≤an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
= Op(1), (2.5.97)

for n→∞.

We first give a short introduction to the proof of Lemma 2.17. For any δ ≥ 0, we define

Yn(δ) := sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

. (2.5.98)

The proof relies on Lemma 2.18, which says that Yn(0) = Op(1) as n→∞. The strategy
of this proof is to first relate Yn(δ) to Yn(0). We then bound Yn(0) by using Lemma 2.18.
To continue we will find some δ > 0 such that we can bound Yn(δ) by a multiple of Yn(0).
Since Yn(0) was bounded already, we found a bound for Yn(δ).

We now give the detailed proof of Lemma 2.17.

Proof of Lemma 2.17. Notice that Yn(δ) is always positive.
Let ε > 0 be fixed. We first want to find a convenient expression for Mn(α̃n, θ) −

Mn(α, θ), which is closer to what is used in Yn(0). Recall from Equation (2.3.1) that for
any α, θ ∈ (0, 1) we have

Mn(α, θ) := Fn(α)− Fn(α0) +
(γ0 − β0)(α− α0)

log(β(α0, θ))− log(γ(α0, θ))
. (2.5.99)

Define c : (0, 1)→ R by

c(θ) :=
β0 − γ0

log β(α0, θ)− log γ(α0, θ)
. (2.5.100)

Then
Mn(α, θ) = Fn(α)− Fn(α0)− (α− α0)c(θ). (2.5.101)

Therefore for any α, θ ∈ (0, 1) we have

Mn(α̃n, θ)−Mn(α, θ) = Fn(α̃n)− Fn(α)− (α̃n − α)c(θ) (2.5.102)

= Mn(α̃n, θ0)−Mn(α, θ0) + (α̃n − α)(c(θ0)− c(θ)). (2.5.103)

Now we bound Yn(0). We know from Lemma 2.18 that Yn(0) = Op(1) for n→∞. Hence
we can choose N ∈ N and W > 0 such that for all n ≥ N

P
(
|Yn(0)| < W

2

)
> 1− ε. (2.5.104)

Clearly c(θ) is continuous on its domain. Therefore we can choose δ > 0 such that

|θ − θ0| < δ =⇒ |c(θ0)− c(θ)| <
1

W
. (2.5.105)
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Suppose that Yn(0) < W/2. Then for any θ ∈ (θ0 − δ, θ0 + δ) we have

|c(θ0)− c(θ)| <
1

W
<

1

2Yn
. (2.5.106)

Thus for all (α, θ) ∈ D(n)
δ

Mn(α̃n, θ)−Mn(α, θ) = Mn(α̃n, θ0)−Mn(α, θ0) + (α̃n − α)(c(θ0)− c(θ)) (2.5.107)

≥Mn(α̃n, θ0)−Mn(α, θ0)− |α̃n − α| · |c(θ0)− c(θ)| (2.5.108)

≥Mn(α̃n, θ0)−Mn(α, θ0)−
|α̃n − α|
2Yn(0)

. (2.5.109)

However by definition of Yn(0), we know that for any (α, θ) ∈ D(n)
δ we also have

|α̃n − α|
Mn(α̃n, θ0)−Mn(α, θ0)

≤ Yn(0). (2.5.110)

By definition of α̃n, we know that for any (α, θ) ∈ D(n)
δ

Mn(α̃n, θ0)−Mn(α, θ0) > 0. (2.5.111)

By recalling that Yn(0) > 0 and using Equations (2.5.110) and (2.5.111), it can be seen

that for any (α, θ) ∈ D(n)
δ

Mn(α̃n, θ0)−Mn(α, θ0) ≥
|α̃n − α|
Yn(0)

. (2.5.112)

Plugging this back into Equation (2.5.109) yields that for all (α, θ) ∈ D(n)
δ

Mn(α̃n, θ)−Mn(α, θ) ≥ |α̃n − α|
2Yn(0)

> 0. (2.5.113)

But then for all (α, θ) ∈ D(n)
δ we find that

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

≤ 2Yn(0), (2.5.114)

and thus
Yn(δ) ≤ 2Yn(0) ≤ W. (2.5.115)

Hence for n ≥ N we have

P(|Yn(δ)| < W ) ≥ P(Yn(0) < W/2) > 1− ε. (2.5.116)

Since Yn(0) < W/2 also implies Equation (2.5.113), we also have that for n ≥ N

P
(
∀
(α,θ)∈D(n)

δ
: Mn(α̃n, θ)−Mn(α, θ) > 0

)
> 1− ε. (2.5.117)
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Thus we conclude that indeed for all ε > 0 there exist δ,W > 0 and N ∈ N such that for
all n ≥ N we have

P

sup
D

(n)
δ

|α̃n − α|
Mn(α̃n, θ)−Mn(α, θ)

< W

 > 1− ε, (2.5.118)

and
P(∀

(α,θ)∈D(n)
δ

: Mn(α̃n, θ)−Mn(α, θ) > 0) > 1− ε. (2.5.119)

�

2.5.4 Proof of Lemma 2.18

We still need to show Lemma 2.18, which was used in the proof of Lemma 2.17. This
lemma states that

sup
α 6=α̃n

|α−α0|≤an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
= Op(1), (2.5.120)

for n→∞.
We start by giving a short overview of the proof. Then we will give the proof in full

detail.
Recall that in the proof of Theorem 2.9 we used a lemma that was stronger than what

we needed in that proof. This lemma was Lemma 2.10. It was mentioned that we proved
this stronger version because it would be useful later on. It will be crucial to the proof of
this lemma. This lemma says that for all ε > 0 there exist K, k > 0 and N1 ∈ N such that
for all n ≥ N1 we have

P

(
sup

K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k

)
> 1− ε. (2.5.121)

Now we can split the supremum that we want to bound in

sup
α 6=α̃n

|α−α0|≤an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
, (2.5.122)

into two parts. These parts are for |α−α0| < K/n and K/n < |α−α0| < an. We start by
bounding the supremum over the latter. Because of Lemma 2.10 we have |α̃n−α0| < K/n.
A few simple steps will lead us to the bound on this supremum. The more involved part
of the proof is bounding the supremum over |α − α0| < K/n. To do this we must first
introduce some new notation for the observations. Whenever we talk about a sample of
size n, we order the observations and give them the labels

. . . , x
(n)
−2 , x

(n)
−1 , x

(n)
1 , x

(n)
2 , . . . (2.5.123)
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such that
· · · < x

(n)
−2 < x

(n)
−1 < x

(n)
0 < x

(n)
1 < x

(n)
2 < · · · , (2.5.124)

where
x
(n)
0 := α0. (2.5.125)

We call these the order statistics of the observations.
We will first show that there is some U ∈ N such that with great probability for n large

enough we have x
(n)
−U < α0−K/n and x

(n)
U > α0 +K/n. What this means is that there will

be less than U observations on the left and right hand side of α0 which lie in the interval
[α0 −K/n, α0 +K/n]. Then we will show that α̃n is one of the observations that do lie in
this interval. We use all of these things to show that the supremum we are considering is
bounded by the sequence of random variables

Zn := sup
−U≤j1<j2≤U

∣∣∣∣∣ x
(n)
j2
− x(n)j1

Mn(x
(n)
j2
, θ0)−Mn(x

(n)
j1
, θ0)

∣∣∣∣∣ . (2.5.126)

Then we use the following lemma, which will be proven in the next subsection.

Lemma 2.19. For any fixed U ∈ N the sequence of random variables

sup
−U≤j1<j2≤U

∣∣∣∣∣ x
(n)
j2
− x(n)j1

Mn(x
(n)
j2
, θ0)−Mn(x

(n)
j1
, θ0)

∣∣∣∣∣ , (2.5.127)

converges in distribution.

Since convergent sequences of random variables are stochastically bounded, Lemma 2.19
tells us that Zn is stochastically bounded too. But then the supremum that is bounded by
Zn is also bounded, leading us to the final conclusion. Now we give the detailed proof.

Proof of Lemma 2.18. Define

Yn := sup
α 6=α̃n

|α−α0|≤an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
. (2.5.128)

Fix ε > 0. By using Lemma 2.10 there exist K, k > 0 and N1 ∈ N such that for all n ≥ N1

we have

P

(
sup

K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k

)
> 1− ε/3. (2.5.129)

This will be useful in analysing Yn, because it allows us to split the supremum over {α ∈
(0, 1) : α 6= α̃n ∧ |α− α0| ≤ an} into two parts. First we will bound

sup
α 6=α̃n

K/n<|α−α0|<an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
. (2.5.130)
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Afterwards we continue with

sup
α 6=α̃n

|α−α0|<K/n

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
. (2.5.131)

In order to bound the former, we will use Equation (2.5.129). Suppose

sup
K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k. (2.5.132)

By definition of the QMLE and Mn we have

Mn(α̃n, θ0) ≥Mn(α0, θ0) = 0. (2.5.133)

Therefore

|α̃n − α0| <
K

n
. (2.5.134)

If α ∈ (0, 1) such that K/n < |α− α0| < an, then

−Mn(α, θ0)

k
> |α− α0|. (2.5.135)

Since Mn(α̃n, θ0) ≥ 0, we find that

Mn(α̃n, θ0)−Mn(α, θ0)

k
> |α− α0|. (2.5.136)

As this holds for all α ∈ (0, 1) such that K/n < |α − α0| < an, it follows by Equation
(2.5.134) that under the assumption of Equation (2.5.132)

sup
α 6=α̃n

K/n<|α−α0|<an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
≤ sup

α6=α̃n
K/n<|α−α0|<an

(
|α− α̃n|
k|α− α0|

)
(2.5.137)

≤ sup
α 6=α̃n

K/n<|α−α0|<an

(
|α− α0|+ |α0 − α̃n|

k|α− α0|

)
(2.5.138)

=
1

k
+ sup

α 6=α̃n
K/n<|α−α0|<an

|α0 − α̃n|
k|α− α0|

(2.5.139)

≤ 1

k
+

K
n
K·k
n

(2.5.140)

=
2

k
. (2.5.141)
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Hence for n ≥ N1 we have

P

 sup
α 6=α̃n

K/n<|α−α0|<an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
≤ 2

k

 ≥ P

(
sup

K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k

)
(2.5.142)

> 1− ε/3. (2.5.143)

We will now consider

sup
α 6=α̃n

|α−α0|<K/n

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
. (2.5.144)

Bounding this will be more technical. We will use the steps as mentioned in the outline of
the proof.

We start by showing that there is some U ∈ N such that with great probability for n
large enough we have x

(n)
−U < α0 −K/n and x

(n)
U > α0 +K/n. By the Fréchet inequalities,

we know that for any U ∈ N we have

P
(
x
(n)
−U < α0 −

K

n
, x

(n)
U > α0 +

K

n

)
≥ P

(
x
(n)
−U < α0 −

K

n

)
+ P

(
x
(n)
U > α0 +

K

n

)
− 1.

(2.5.145)
However since that is the same as the probability of there being less than U observations
in each (α0, α0 +K/n) and (α0 −K/n, α0), we find that

P
(
x
(n)
−U < α0 −

K

n

)
= P

(
n

(
Fn(α0)− Fn

(
α0 −

K

n

))
< U

)
, (2.5.146)

and

P
(
x
(n)
U > α0 +

K

n

)
= P

(
n

(
Fn

(
α0 +

K

n

)
− Fn(α0)

)
< U

)
. (2.5.147)

Notice that since they count the amount of times observations lie within the intervals, we
have

n

(
Fn(α0)− Fn

(
α0 −

K

n

))
∼ Binom

(
n,
Kβ0
n

)
, (2.5.148)

and

n

(
Fn

(
α0 +

K

n

)
− Fn(α0)

)
∼ Binom

(
n,
Kγ0
n

)
. (2.5.149)

It is well known that for any fixed q ∈ R+

Binom
(
n,
q

n

)
p−→ Pois(q). (2.5.150)

Thus

n

(
Fn(α0)− Fn

(
α0 −

K

n

))
d−→ Pois(Kβ0), (2.5.151)
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and

n

(
Fn

(
α0 +

K

n

)
− Fn(α0)

)
d−→ Pois(Kγ0). (2.5.152)

Let U1, U2 ∈ N such that

P(Pois(Kβ0) < U1) > 1− ε

12
, (2.5.153)

and
P(Pois(Kγ0) < U2) > 1− ε

12
. (2.5.154)

Fix U := max{U1, U2}. Since

P
(
n

(
Fn(α0)− Fn

(
α0 −

K

n

))
< U

)
≥ P

(
n

(
Fn(α0)− Fn

(
α0 −

K

n

))
< U1

)
(2.5.155)

→ P(Pois(Kβ0) < U1) (2.5.156)

> 1− ε

12
, (2.5.157)

and

P
(
n

(
Fn

(
α0 +

K

n

)
− Fn(α0)

)
< U

)
≥ P

(
n

(
Fn

(
α0 +

K

n

)
− Fn(α0)

)
< U2

)
(2.5.158)

→ P(Pois(Kγ0) < U2) (2.5.159)

> 1− ε

12
, (2.5.160)

we can choose N2 ∈ N such that for all n ≥ N2 we have

P
(
n

(
Fn(α0)− Fn

(
α0 −

K

n

))
< U

)
> 1− ε

6
, (2.5.161)

and

P
(
n

(
Fn

(
α0 +

K

n

)
− Fn(α0)

)
< U

)
> 1− ε

6
. (2.5.162)

Then by Equation (2.5.145), we find that for all n ≥ N2

P
(
x
(n)
−U < α0 −

K

n
, x

(n)
U > α0 +

K

n

)
> 1− ε

3
. (2.5.163)

Now we have a bound on the amount of observations on the left and right hand side of α0

which lie in the interval [α0 − K/n, α0 + K/n]. Now we will show that α̃n is one of the
observations that do lie in this interval. Recall that

α̃n = arg max
α∈[α0−an,α0+an]

Mn(α, θ0). (2.5.164)
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Since

Mn(α, θ0) = Fn(α)− Fn(α0) +
γ0 − β0

log β0 − log γ0
(α− α0), (2.5.165)

and
γ0 − β0

log β0 − log γ0
< 0, (2.5.166)

we can see that Mn(α, θ0) decreases between observations, but jumps up at the observa-
tions. Hence α̃n is equal to one of the observations in [α0 − an, α0 + an] or one of the
boundary points of this interval, α0 ± an. If again we suppose that

sup
K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k, (2.5.167)

then, as mentioned before in Equation (2.5.134),

|α̃n − α0| <
K

n
< an. (2.5.168)

Hence if Equation (2.5.167) holds, then α̃n is equal to an observation with a distance to
α0 which is less than K/n.

We will now move on to finding a bounding sequence of random variables. In addition
to Equation (2.5.167) we also suppose that

x
(n)
−U < α0 −

K

n
, and x

(n)
U > α0 +

K

n
. (2.5.169)

For all n ∈ N define

Zn := sup
−U≤j1<j2≤U

∣∣∣∣∣ x
(n)
j2
− x(n)j1

Mn(x
(n)
j2
, θ0)−Mn(x

(n)
j1
, θ0)

∣∣∣∣∣ . (2.5.170)

We will now show that for all n ∈ N

sup
α 6=α̃n

|α−α0|<K/n

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
≤ Zn, (2.5.171)

under assumption of Equations (2.5.167) and (2.5.169).
Fix n ∈ N. Since α̃n is one of the observations in the interval (α0 −K/n, α0 + K/n),

there is j0 ∈ N ∩ [−U,U ] such that α̃n = x
(n)
j0

. Since Zn is the supremum over all unequal
combinations of j1 and j2, we find that

Zn ≥ sup
−U≤j≤U
j 6=j0

∣∣∣∣∣ x
(n)
j − x

(n)
j0

Mn(x
(n)
j , θ0)−Mn(x

(n)
j0
, θ0)

∣∣∣∣∣ = sup
−U≤j≤U
j 6=j0

∣∣∣α̃n − x(n)j

∣∣∣
Mn(α̃n, θ0)−Mn(x

(n)
j , θ0)

.

(2.5.172)
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Let α ∈ (α0−K/n, α0 +K/n) \ {α̃n}. If α is one of the observations or α0, then obviously

|α− α̃n|
Mn(α̃n, θ0)−Mn(α, θ0)

≤ sup
−U≤j≤U
j 6=j0

∣∣∣α̃n − x(n)j

∣∣∣
Mn(α̃n, θ0)−Mn(x

(n)
j , θ0)

. (2.5.173)

We will thus consider α that are not one of the observations or α0. Let j1 ∈ N∩ [−U,U−1]

such that α ∈ (x
(n)
j1
, x

(n)
j1+1). We will consider three separate cases. The first case is the case

where j1 < j0. The second case is j1 > j0. The last case is j1 = j0. In all cases we have

|α− α̃n|
Mn(α̃n, θ0)−Mn(α, θ0)

=
|α− α̃n|

Fn(α̃n)− Fn(α) + γ0−β0
log β0−log γ0 (α̃n − α)

(2.5.174)

=
1

Fn(α̃n)−Fn(α)
|α−α̃n| + γ0−β0

log β0−log γ0 · sgn(α̃n − α)
. (2.5.175)

We will now prove that in each case Equation (2.5.173) holds.

1. In the first case we assume that j1 < j0. Then α < α̃n. For α < α̃n we can see that

Fn(α̃n)− Fn(α)

|α− α̃n|
+

γ0 − β0
log β0 − log γ0

· sgn(α̃n − α) (2.5.176)

increases between observations and decreases with a jump at the observations them-
selves. Therefore

|α− α̃n|
Mn(α̃n, θ0)−Mn(α, θ0)

(2.5.177)

decreases between observations and increases with a jump at the observations them-
selves. Hence

|α− α̃n|
Mn(α̃n, θ0)−Mn(α, θ0)

≤
|x(n)j1

− α̃n|
Mn(α̃n, θ0)−Mn(x

(n)
j1
, θ0)

(2.5.178)

≤ sup
−U≤j≤U
j 6=j0

∣∣∣α̃n − x(n)j

∣∣∣
Mn(α̃n, θ0)−Mn(x

(n)
j , θ0)

. (2.5.179)

2. In the second case we assume that j1 > j0. Then α > x
(n)
j0+1. For α > x

(n)
j0+1 we can

see that
Fn(α̃n)− Fn(α) < 0 (2.5.180)

and therefore Equation (2.5.176) increases between observations and decreases with
a jump at the observations themselves. Thus Equation (2.5.177) decreases between
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observations and increases with a jump at the observations themselves. Hence

|α− α̃n|
Mn(α̃n, θ0)−Mn(α, θ0)

≤
|x(n)j1

− α̃n|
Mn(α̃n, θ0)−Mn(x

(n)
j1
, θ0)

(2.5.181)

≤ sup
−U≤j≤U
j 6=j0

∣∣∣α̃n − x(n)j

∣∣∣
Mn(α̃n, θ0)−Mn(x

(n)
j , θ0)

. (2.5.182)

3. In the last case we assume that j1 = j0. Then x
(n)
j0

< α < x
(n)
j0+1 and hence

Fn(α̃n)− Fn(α)

|α− α̃n|
+

γ0 − β0
log β0 − log γ0

· sgn(α̃n − α) =
β0 − γ0

log β0 − log γ0
. (2.5.183)

The difference with the previous two cases is that we can not consider the observa-
tionn to the left of α, as this is the QMLE, which is not in the supremum. However,
this time there is no decrease between observations, but it is constant. The jump at
the next observation therefore always gives us an upper bound. This can be written
more precisely as

|α− α̃n|
Mn(α̃n, θ0)−Mn(α, θ0)

=
log β0 − log γ0

β0 − γ0
(2.5.184)

≤ 1
β0−γ0

log β0−log γ0 −
1

n|α̃n−x(n)j0+1|

(2.5.185)

=
|x(n)j1+1 − α̃n|

Mn(α̃n, θ0)−Mn(x
(n)
j1+1, θ0)

(2.5.186)

≤ sup
−U≤j≤U
j 6=j0

∣∣∣α̃n − x(n)j

∣∣∣
Mn(α̃n, θ0)−Mn(x

(n)
j , θ0)

. (2.5.187)

We can conclude that for all α ∈ (α0 −K/n, α0 +K/n) \ {α0} we have

|α− α̃n|
Mn(α̃n, θ0)−Mn(α, θ0)

≤ sup
−U≤j≤U
j 6=j0

∣∣∣α̃n − x(n)j

∣∣∣
Mn(α̃n, θ0)−Mn(x

(n)
j , θ0)

≤ Zn, (2.5.188)

and therefore indeed for all n ∈ N

sup
α 6=α̃n

|α−α0|<K/n

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
≤ Zn. (2.5.189)
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To complete the proof of the lemma, we want to find N ∈ N and Ξ ∈ R such that for
n ≥ N we have

P(Zn < Ξ) > 1− ε

3
. (2.5.190)

By Lemma 2.19, we know that Zn converges in probability to some random variable Z.
We can choose Ξ ∈ R such that

P(Z < Ξ) > 1− ε

6
. (2.5.191)

But then we can choose N3 ∈ N such that for all n ≥ N3 we have

P(Zn < Ξ) > 1− ε

3
. (2.5.192)

If

sup
K/n<|α−α0|<an

Mn(α, θ0)

|α− α0|
< −k and Zn < Ξ, (2.5.193)

and

x
(n)
−U < α0 −

K

n
, and x

(n)
U > α0 +

K

n
, (2.5.194)

then

sup
α 6=α̃n

K/n<|α−α0|<an

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
≤ 2

k
, (2.5.195)

and

sup
α 6=α̃n

|α−α0|<K/n

(
|α− α̃n|

Mn(α̃n, θ0)−Mn(α, θ0)

)
≤ Zn < Ξ. (2.5.196)

Therefore we also have

Yn ≤ max

{
2

k
,Ξ

}
. (2.5.197)

By using the Fréchet inequalities, we thus find that for n ≥ max{N1, N2, N3}

P
(
Yn ≤ max

{
2

k
,Ξ

})
≥ 1− ε, (2.5.198)

from which we conclude that Yn = Op(1) as n→∞. �

2.5.5 Proof of Lemma 2.19

The last lemma that has to be proven in this section is Lemma 2.19, which states that for
any fixed U ∈ N the sequence of random variables

sup
−U≤j1<j2≤U

∣∣∣∣∣ x
(n)
j2
− x(n)j1

Mn(x
(n)
j2
, θ0)−Mn(x

(n)
j1
, θ0)

∣∣∣∣∣ , (2.5.199)
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converges in distribution.
We first give a short overview of the proof. Then we provide the detailed proof.
To start we define

Zn := sup
−U≤j1<j2≤U

∣∣∣∣∣ x
(n)
j2
− x(n)j1

Mn(x
(n)
j2
, θ0)−Mn(x

(n)
j1
, θ0)

∣∣∣∣∣ . (2.5.200)

We want to rewrite Zn. To do this we define

y
(n)
i := n(x

(n)
i − x

(n)
i−1), (2.5.201)

and

j∗ :=

{
j, if j ≥ 0,

j + 1, if j < 0.
(2.5.202)

After a few computational steps we find that

Zn = sup
−U≤j1<j2≤U

∣∣∣∣∣
∑j2

i=j1+1 y
(n)
i

j∗2 − j∗1 + γ0−β0
log β0−log γ0

∑j2
i=j1+1 y

(n)
i

∣∣∣∣∣ . (2.5.203)

We then define Ψ : R2U → R by

Ψ(z−U+1, . . . z−1, z0, z1, . . . , zU) = sup
−U≤j1<j2≤U

∣∣∣∣∣
∑j2

i=j1+1 zi

j∗2 − j∗1 + γ0−β0
log β0−log γ0

∑j2
i=j1+1 zi

∣∣∣∣∣ . (2.5.204)

Then Zn = Ψ(y
(n)
−U+1, . . . , y

(n)
U ). We show that the joint distribution (y

(n)
−U+1, . . . , y

(n)
U ) con-

verges in distribution and find the limiting distribution. Then we will show that Ψ is
continuous. Finally we will use the continuous mapping theorem to show that Zn con-
verges in distribution.

Proof of Lemma 2.19. We first rewrite Zn. For all i define

y
(n)
i := n(x

(n)
i − x

(n)
i−1). (2.5.205)

Then

x
(n)
j2
− x(n)j1

=
1

n

j2∑
i=j1+1

y
(n)
i . (2.5.206)

Therefore

Zn = sup
−U≤j1<j2≤U

∣∣∣∣∣ x
(n)
j2
− x(n)j1

Mn(x
(n)
j2
, θ0)−Mn(x

(n)
j1
, θ0)

∣∣∣∣∣ (2.5.207)

= sup
−U≤j1<j2≤U

∣∣∣∣∣ 1
n

∑j2
i=j1+1 y

(n)
i

Fn(x
(n)
j2

)− Fn(x
(n)
j1

) + γ0−β0
log β0−log γ0 (x

(n)
j2
− x(n)j1

)

∣∣∣∣∣ (2.5.208)

= sup
−U≤j1<j2≤U

∣∣∣∣∣
∑j2

i=j1+1 y
(n)
i

n(Fn(x
(n)
j2

)− Fn(x
(n)
j1

)) + γ0−β0
log β0−log γ0

∑j2
i=j1+1 y

(n)
i

∣∣∣∣∣ . (2.5.209)
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Also define

j∗ :=

{
j, if j ≥ 0,

j + 1, if j < 0.
(2.5.210)

Since n(Fn(x
(n)
j2

)−Fn(x
(n)
j1

)) is equal to the amount of observations in the interval (x
(n)
j1
, x

(n)
j2

]
and α0 is not an observation,

n(Fn(x
(n)
j2

)− Fn(x
(n)
j1

)) =

{
j2 − j1 − 1, if j1 < 0 ≤ j2,

j2 − j1, otherwise
(2.5.211)

= j∗2 − j∗1 . (2.5.212)

Therefore we can write

Zn = sup
−U≤j1<j2≤U

∣∣∣∣∣
∑j2

i=j1+1 y
(n)
i

j∗2 − j∗1 + γ0−β0
log β0−log γ0

∑j2
i=j1+1 y

(n)
i

∣∣∣∣∣ . (2.5.213)

Thus when we define Ψ : R2U → R by

Ψ(z−U+1, . . . z−1, z0, z1, . . . , zU) = sup
−U≤j1<j2≤U

∣∣∣∣∣
∑j2

i=j1+1 zi

j∗2 − j∗1 + γ0−β0
log β0−log γ0

∑j2
i=j1+1 zi

∣∣∣∣∣ , (2.5.214)

we have
Zn = Ψ(y

(n)
−U+1, . . . , y

(n)
U ). (2.5.215)

We are now going show that the joint distribution (y
(n)
−U+1, . . . , y

(n)
U ) converges in distribu-

tion and find the limiting distribution. Then we will show that Ψ is continuous. Finally
we will use the continuous mapping theorem to show that Zn converges in distribution.

To show that the joint distribution (y
(n)
−U+1, . . . , y

(n)
U ) converges in distribution and find

the limiting distribution, we want to use the available knowledge about order statistics of
uniform random variables. To that end we first define the random variables

Qi =

{
β0Xi + 1− θ0, if Xi < α0,

γ0(Xi − α0), otherwise.
(2.5.216)

This makes sense as Qi can be seen as flipping the left and right hand side of α0 and
stretching them to create a uniform distribution. This will be useful to the proof, since
the first and last U observations are the observations we are interested in and the order
statistics of uniform distributions have convenient properties that we can exploit.

Notice that Qi ∈ (0, 1 − θ0) if and only if Xi ∈ (α0, 1). Similarly notice that Qi ∈
(1− θ0, 1) if and only if Xi ∈ (0, α0) Thus for x ∈ [0, 1− θ0]

P(Qi ≤ x) = P
(
Xi ∈

[
α0, α0 +

x

γ0

])
=

(
α0 +

x

γ0
− α0

)
γ0 = x, (2.5.217)
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and for x ∈ [1− θ0, 1] we have

P(Qi ≤ x) = P
(
Xi ∈ [α0, 1] ∪

[
0,
x− 1 + θ0

β0

])
(2.5.218)

= (1− α0)γ0 +
x− 1 + θ0

β0
β0 (2.5.219)

= x. (2.5.220)

Therefore
Qi ∼ Unif([0, 1]). (2.5.221)

Whenever we have a sample of size n, we order the observations to the get the order
statistics for Qi. We denote these as

q
(n)
1 , . . . , q(n)n , (2.5.222)

such that
0 =: q

(n)
0 < q

(n)
1 < · · · < q(n)n < q

(n)
n+1 := 1. (2.5.223)

For i ∈ {1, . . . , n+ 1} and n ∈ N define

v
(n)
i := n(q

(n)
i − q

(n)
i−1). (2.5.224)

Then with probability 1 there exists N ∈ N such that for all n ≥ N we have

q
(n)
i = γ0(x

(n)
i − α0), for i ∈ {0, . . . , U}, (2.5.225)

and
q
(n)
n+1+i = β0x

(n)
i + 1− θ0, for i ∈ {−U + 1, . . . , 0}. (2.5.226)

Therefore when n ≥ N we have

v
(n)
i = γ0y

(n)
i for i ∈ {1, . . . , U}, (2.5.227)

and
v
(n)
n+1+i = β0y

(n)
i for i ∈ {−U + 1, . . . , 0}. (2.5.228)

It is well known that

(v
(n)
1 , . . . , v

(n)
n+1) ∼

(
V1

V n+1

, . . . ,
Vn+1

V n+1

)
, (2.5.229)

where all Vi are i.i.d. exponential distributions with mean 1 and V n+1 = 1
n+1

∑n+1
i=1 Vi.

This statement is formulated well in Equation 1 of [6] and proven in Section 4.1 of [7]. We
consider

(v
(n)
1 , . . . , v

(n)
U , v

(n)
n−U+2, . . . , v

(n)
n+1) ∼

(
V1

V n+1

, . . . ,
V2U

V n+1

)
, (2.5.230)
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where all Vi for i ∈ {1, . . . , n + 1} are i.i.d. exponential distributions with mean 1 and
V n+1 = 1

n

∑n+1
i=1 Vi. By the law of large numbers we find that V n+1

a.s.−−→ 1. Thus by the
continuous mapping theorem

(v
(n)
1 , . . . , v

(n)
U , v

(n)
n−U+2, . . . , v

(n)
n+1)

d−→ (V1, . . . , V2U) . (2.5.231)

But then

(y
(n)
−U+1, . . . , y

(n)
U ) =

(
v
(n)
n−U+2

β0
. . . ,

v
(n)
n+1

β0
,
v
(n)
1

γ0
. . . ,

v
(n)
U

γ0

)
(2.5.232)

d−→
(
VU+1

β0
. . . ,

V2U
β0

,
V1
γ0
. . . ,

VU
γ0

)
. (2.5.233)

So y
(n)
−U+1, . . . , y

(n)
0 converge in distribution to i.i.d. exponential distributions with mean

1/β0 and y
(n)
1 , . . . , y

(n)
U converge in distribution to i.i.d. exponential distributions with mean

1/γ0. The joint limiting distribution is mutually independent. Let (y−U+1, . . . , yU) be the
limiting distribution.

We will continue by showing that Ψ is continuous. We can consider Ψ with domain
R2U . Define Q := {j1, j2 ∈ [−U,U ] ∩ N : j1 < j2} Let Θ : R2U ×Q→ R be defined by

Θ(z−U+1, . . . , zU , j1, j2) :=

∣∣∣∣∣
∑j2

i=j1+1 zi

j∗2 − j∗1 + γ0−β0
log β0−log γ0

∑j2
i=j1+1 zi

∣∣∣∣∣ . (2.5.234)

Then
Ψ(z−U+1, . . . , zU) = sup

(j1,j2)∈Q
Θ(z−U+1, . . . , zU , j1, j2). (2.5.235)

In order to show continuity of Ψ, we first want to show that Θ is continuous. Clearly it is
continuous with respect to any zi when fixing j1 and j2. Fix z(0) ∈ R2U and (j1, j2) ∈ Q.
Let ε1 > 0. We can choose δ > 0 such that for any z ∈ R2U we have

‖z − z(0)‖ < δ =⇒ |Θ(z, j1, j2)−Θ(z(0), j1, j2)| < ε1. (2.5.236)

Take δ0 = min{1, δ}. Suppose z ∈ R2U and i1, i2 ∈ Q such that∥∥∥∥∥∥
zi1
i2

−
z(0)j1
j2

∥∥∥∥∥∥ < δ0. (2.5.237)

Then ∥∥∥∥(i1i2
)
−
(
j1
j2

)∥∥∥∥ < 1, (2.5.238)

which implies that i1 = j1 and j1 = j2. Therefore

‖z − z(0)‖ =

∥∥∥∥∥∥
zi1
i2

−
z(0)j1
j2

∥∥∥∥∥∥ < δ0 ≤ δ (2.5.239)
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and hence

|Θ(z, i1, i2)−Θ(z(0), j1, j2)| = |Θ(z, j1, j2)−Θ(z(0), j1, j2)| < ε1, (2.5.240)

from which we can conclude that Θ is continuous on its domain. We will use this to show
that Ψ is continuous. Fix z(0) ∈ R2U . Let ε2 > 0. By continuity of Θ there exists δ > 0
such that for any z ∈ R2U and i, j ∈ Q we have∥∥∥∥(z(0)i

)
−
(
z
j

)∥∥∥∥ < δ =⇒ |Θ(z(0), i)−Θ(z, j)| < ε2
2
. (2.5.241)

Then for any z ∈ R2U with ‖z − z(0)‖ < δ and any i ∈ Q we have∥∥∥∥(z(0)i
)
−
(
z
i

)∥∥∥∥ = ‖z − z(0)‖ < δ (2.5.242)

and therefore
|Θ(z(0), i)−Θ(z, i)| < ε2. (2.5.243)

Hence for any i ∈ Q we have

Θ(z, i) ≤ Θ(z(0), i) + ε2 ≤ sup
j∈Q

Θ(z(0), j) + ε2 = Ψ(z(0)) + ε2 (2.5.244)

and
Θ(z(0), i) ≤ Θ(z, i) + ε2 ≤ sup

j∈Q
Θ(z, j) + ε2 = Ψ(z) + ε2 (2.5.245)

Since Q is compact, Θ(z(0), i) and Θ(z, i) attain their supremum. Fix i, j ∈ Q such that

Θ(z(0), i) = Ψ(z(0)) and Θ(z, j) = Ψ(z). (2.5.246)

Then
Ψ(z(0)) = Θ(z(0), i) ≤ Ψ(z) + ε2 (2.5.247)

and
Ψ(z) = Θ(z, j) ≤ Ψ(z(0)) + ε2. (2.5.248)

Thus
|Ψ(z(0))−Ψ(z)| ≤ ε2, (2.5.249)

from which we can conclude that Ψ is a continuous function. Since

(y
(n)
−U+1, . . . , y

(n)
U )

d−→ (y−U+1, . . . , yU), (2.5.250)

and Ψ is continuous, we can apply the continuous mapping theorem to find that

Zn = Ψ(y
(n)
−U+1, . . . , y

(n)
U )

d−→ Ψ(y−U+1, . . . , yU). (2.5.251)

�
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Chapter 3

Convergence speed in 2D model

The random variable we consider in this chapter should have different constant densities in
two parts of the unit square. We split the unit interval into two parts. We do this with the
parameters λ, µ ∈ (0, 1). These parameters refer to points on the bottom and top edge of
the square respectively. The square is split into two parts by the straight line connecting
(λ, 0) with (µ, 1). This creates areas to the left and to the right of the line, which are
denoted L and R respectively. The random variable lies in these areas with probabilities θ
and 1 − θ respectively. Within these areas, the random variable is uniformly distributed.
This gives us a joint probability distribution function of the form

f(x, y) =


β, if (x, y) ∈ L,
γ, if (x, y) ∈ R,
0, otherwise,

(3.0.1)

where ∫∫
L

f(x, y)dxdy = β ·
∫∫

L

1dxdy = θ, (3.0.2)

and ∫∫
R

f(x, y)dxdy =

(
1−

∫∫
L

1dxdy

)
γ = 1− θ. (3.0.3)

In order to be able to be precise, we introduce notation that takes the parameters λ and
µ into account. In order to do this, we first notice that the line segment connecting (λ, 0)
with (µ, 1) is given by

{(x, y) ∈ [0, 1]2 : x = (µ− λ)y + λ}. (3.0.4)

Therefore the left and right side of the line segment are given by

{(x, y) ∈ [0, 1]2 : x ≤ (µ− λ)y + λ}, (3.0.5)

and
{(x, y) ∈ [0, 1]2 : x > (µ− λ)y + λ}, (3.0.6)

respectively.
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The left and ride side areas of the unit square, based on the values for the parameters
λ and µ are

L(λ, µ) := {(x, y) ∈ [0, 1]2 : x ≤ (µ− λ)y + λ}, (3.0.7)

and
R(λ, µ) := {(x, y) ∈ [0, 1]2 : x > (µ− λ)y + λ}, (3.0.8)

respectively.
In the one dimensional case, we worked with a parameter α. This was the parameter

that we wanted to estimate with the MLE, as it defined the location of the boundary. In
the two dimensional case we still define a value α. This time it is the area of the subset of
[0, 1]2 to the left side of the boundary that divides the square. In this way it will sometimes
show up in the equations in the same way as it did in the one dimensional case. However,
it does not define the location of the boundary, so this time estimation of α will not be of
prime interest. We denote the area of L(λ, µ) by

α(λ, µ) :=

∫∫
L(λ,µ)

1dxdy. (3.0.9)

Since L(λ, µ) is a trapezoid, we find that α(λ, µ) = 1
2
(λ + µ). Notice that the area of

R(λ, µ) is given by 1 − α(λ, µ). This naturally leads us to define β and γ as functions of
λ, µ and θ. The functions β, γ : (0, 1)3 → (0,∞) are defined by

β(λ, µ, θ) :=
θ

α(λ, µ)
and γ(λ, µ, θ) :=

1− θ
1− α(λ, µ)

. (3.0.10)

Now these are defined such that for all λ, µ, θ ∈ (0, 1) replacing β and γ in Equation
(3.0.1) with their respective functions from Equation (3.0.10) yields a proper probability
density function. For fixed parameters λ, µ, θ ∈ (0, 1) the probability density function
f : R2 → [0,∞) is defined by

f(x, y, λ, µ, θ) :=


β(λ, µ, θ), if (x, y) ∈ L(λ, µ),

γ(λ, µ, θ), if (x, y) ∈ R(λ, µ),

0, otherwise.

(3.0.11)

We are interested in maximum likelihood estimation. Therefore we need to sample from
the distribution. To this end we fix λ0, µ0, θ0 ∈ (0, 1) and let X1, X2, . . . be i.i.d. distributed
on [0, 1]2 with joint density f(x, y, λ0, µ0, θ0). These samples will be used by the estimator.
Since we will often work with the density f(x, y, λ0, µ0, θ0) of the random variables Xi we
introduce the some notation.

The values α0 ∈ (0, 1) and β0, γ0 ∈ R+ are defined by

α0 := α(λ0, µ0), β0 := β(λ0, µ0, θ0), and γ0 := γ(λ0, µ0, θ0). (3.0.12)

The areas L0, R0 ⊂ [0, 1]2 are defined by

L0 := L(λ0, µ0), and R0 := R(λ0, µ0). (3.0.13)
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Assumption 3.1. Since it is assumed that f is not the PDF for the uniform distribution
on the unit square and hence the densities on the two sides of the boundary are different,
we can also assume that α0 6= θ0.

Assumption 3.2. Without loss of generality we assume that β0 > γ0.

In this two dimensional case the joint CDF is not very useful. This is the case because
we care more about the probability that observations lie on the left side of straight lines.
This will be the analog to the CDF that we used in one dimension. Therefore we use the
following notation.

Definition 3.1 (Cumulative line distribution function). The cumulative line distribution
function or CLDF corresponding to distribution f(x, y, λ0, µ0, θ0) is defined as

F0(λ, µ) := P(X ∈ L(λ, µ)), (3.0.14)

where X is some random variable which is distributed with PDF f(x, y, λ0, µ0, θ0).

For the same reason, we want to define an analog to the eCDF that we used in one
dimension. This will give the ratio of observations that lie in L(λ, µ) for any λ, µ ∈ (0, 1).
For this we use the following notation.

Definition 3.2 (Empirical cumulative line distribution function). For any n ∈ N the
Empirical cumulative line distribution function eCLDF for X1, . . . , Xn is defined as

Fn(λ, µ) :=
1

n

n∑
i=1

1Xi∈L(λ,µ). (3.0.15)

3.1 Maximum likelihood estimators

The goal of this section are to find an expression for the MLE of θ0 in terms of the MLEs
of λ0 and µ0, and to find a convenient form for the MLEs of λ0 and µ0. To compute the
MLEs, we look at the likelihood

Ln(λ, µ, θ) =
n∏
i=1

f(Xi, λ, µ, θ) (3.1.1)

=
∏

Xi∈L(λ,µ)

β(λ, µ, θ)
∏

Xi∈R(λ,µ)

γ(λ, µ, θ) (3.1.2)

= (β(λ, µ, θ))nFn(λ,µ)(γ(λ, µ, θ))n(1−Fn(λ,µ)). (3.1.3)

We notice that this expression is the same as the likelihood in the one-dimensional case, but
with Fn(α) replaced by Fn(λ, µ) and α replaced by α(λ, µ). This is the case since we have
defined α(λ, µ) and Fn(λ, µ) in such a way that they are the two-dimensional equivalents
of Fn(α) and α. Notice that α in Fn(α) is not the same as the other α which is replaced by
α(λ, µ). We can find the MLEs using the same computations as in one dimension, leading
us to the next definition.
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Definition 3.3. The MLEs for λ0, µ0 and θ0 are denoted by

(λ̂n, µ̂n) := arg max
(x1,x2)∈(0,1)2

(
log

(
Fn(x1, x2)

α(x1, x2)

)
Fn(x1, x2)

+ log

(
1− Fn(x1, x2)

1− α(x1, x2)

)
(1− Fn(x1, x2))

)
,

(3.1.4)

and
θ̂n := Fn(λ̂n, µ̂n). (3.1.5)

The proof of the fact that these are indeed the MLEs is omitted here, as it is the exact
same as in one dimension. For the sake of completeness, the proof is included in Appendix
Section A.3.

3.2 Consistency of MLEs

The form of the function that the MLEs (λ̂n, µ̂n) is practically the same as in the one-
dimensional case. This leads us to believe that these MLEs will also be consistent.

Proposition 3.1. The MLE for (λ0, µ0) have the property that

‖(λ̂− λ0, µ̂− µ0)‖ = op(1). (3.2.1)

We do not prove Conjecture 3.1, but we will discuss the potential pitfalls in the proof.
To emulate the one-dimensional proof, the MLEs will be written as a function of eCLDFs.
The first step will be to show that evaluating this function in F0 yields (λ0, µ0). It seems
that this can work in the same way as the one-dimensional proof. However, this time
multiple partial derivatives have to be taken, because there are multiple variables. After
that is done, there will be a Lemma stating that evaluating the function in a sequence of
deterministic CLDFs under some conditions converges to (λ0, µ0). Overall it seems that
this is not very different from the one-dimensional case. The fact that Gn is not a function
of α, while the denominator is, can change some details though. After this lemma, it
needs to be shown that Fn has the correct properties in order to apply the probabilistic
version of the lemma. This time, the Glivenko-Cantelli theorem can not be used, as we
are not working with eCDFs, but eCLDFs. For this part of the proof, a counterpart to the
Glivenko-Cantelli theorem needs to be proven. For the rest of the proof, it will be necessary
to manipulate some random variables in order to be able to work with a uniform random
variable. In this case it will likely give us a uniform distribution on the unit square. The
details will be a bit more involved when working with this distribution.

For the θ̂, we base the following conjecture on Conjecture 3.1.

Proposition 3.2. The MLE for θ0 has the property that

θ̂ − θ0 = op(1). (3.2.2)

The proof of Conjecture 3.2 is entirely analogous to the one-dimensional case. It uses
consistency of the other MLEs.
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3.3 Quasi-maximum likelihood estimators

In the same way as in the one-dimensional case, we want to introduce a QMLE. This
QMLE should be close enough to the MLE, but still have the convergence property that
we want. We could try to look at the likelihood in the same way as in one dimension. Let
us start by presenting the QMLEs.

The function that we want to use for defining the QMLE is denoted by

Mn(λ, µ, θ) := Fn(λ, µ)− Fn(λ0, µ0) +
(γ0 − β0)(λ− λ0 + µ− µ0)

1
2

log(β(λ0, µ0, θ))− log(γ(λ0, µ0, θ))
. (3.3.1)

Based on Lemma 2.8 and Conjecture 3.1 we define the sequence (an)n∈N of positive numbers
with limn→∞ an = 0 such that

‖(λ̂n − λ0, µ̂n − µ0)‖ = op (an) , (3.3.2)

as n→∞.

Definition 3.4. The QMLEs λ̃ and µ̃ for λ0 and µ0 are defined as

(λ̃n, µ̃n) := arg max
‖(λ−λ0,µ−µ0)‖≤an

Mn(λ, µ, θ0). (3.3.3)

The definition of Mn is almost the same as its one-dimensional equivalent. As this
thesis does not contain the proofs for Sections 3.4 and 3.5, it is still possible that slight
adjustments need to be done. Of course the function Mn only works well if we have a the
same asymptotic properties of the log-likelihood as in the one-dimensional case. For this
we state the following theorem, which will be proven later on in this section.

Theorem 3.3. The log-likelihood has the property that

`n(λ, µ, θ) =
1

n

n∑
i=1

log(f(Xi, λ0, µ0, θ)) + Sn(λ, µ, θ), (3.3.4)

where

Sn(λ, µ, θ) =

(
log

(
β(λ0, µ0, θ)

γ(λ0, µ0, θ)

)
+ o(1)

)
Mn(λ, µ, θ)

+
1

2
(λ− λ0 + µ− µ0)(o(1) + op(1)) + Tp (‖(λ− λ0, µ− µ0)‖) ,

(3.3.5)

where o and Tp are for (λ, µ)→ (λ0, µ0) and op is for n→∞.

From Theorem 3.3 we can see that indeed Mn(λ, µ, θ) is defined in a way such that the
log-likelihood has similar properties as in one dimension. Notice that 1

2
(λ−λ0 +µ−µ0) =

α(λ, µ) − α0. This brings it even closer to the one-dimensional case. We will now briefly
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comment on the difference between the analysis that was done for Theorem 3.3 and the
analysis in the one-dimensional case. Afterwards we will give the proof of the theorem.

The quantities S
(1)
n , S

(2)
n , and Sn are defined in the same way as in one dimension. Now

S
(1)
n summed over the points between the two lines created by (λ, µ) and (λ0, µ0). The

difference here is that now the densities with respect to the two distributions are different
in the two triangles that are created if the two lines cross. To compensate for this, we get
an extra term, which turns out to have good asymptotic properties. In the end, this term
combines with a term from S

(2)
n to give us Tp (‖(λ− λ0, µ− µ0)‖) as seen in Theorem 3.3.

Hence this term is not a problem.
It is crucial that we want to have asymptotic terms with ‖(λ − λ0, µ − µ0)‖ in them.

Blindly following the steps from the one-dimensional case would not give these kinds of
results. Instead they would give asymptotic terms with α(λ, µ)−α0 in them. This difference

was very prominent in the analysis of S
(2)
n . At some point in this analysis, a function needs

to be linearised. In the one-dimensional case, it was linearised with respect to α. This
time, it has to be linearised with respect to λ and µ. To get to the correct asymptotic
properties, we write the error term as a function multiplied by ‖(λ− λ0, µ− µ0)‖. Except
for some details, the rest is similar.

Now we will give the proof of Theorem 3.3.

Proof of Theorem 3.3. We will start by rewriting the log-likelihood. The likelihood is given
by

Ln(λ, µ, θ) =
n∏
i=1

f(Xi, λ, µ, θ). (3.3.6)

Instead we can look at the log-likelihood divided by n, which is given by

`n(λ, µ, θ) =
1

n

n∑
i=1

log(f(Xi, λ, µ, θ)) (3.3.7)

=
1

n

n∑
i=1

log(f(Xi, λ0, µ0, θ))

+
1

n

n∑
i=1

(
log(f(Xi, λ, µ, θ)− log(f(Xi, λ0, µ0, θ)

)
.

(3.3.8)

The first sum in Equation (3.3.8) does not depend on λ and µ. Hence it makes sense to
ignore that part when constructing the QMLE for (λ0, µ0). The second part of Equation
(3.3.8) is denoted by

Sn(λ, µ, θ) :=
1

n

n∑
i=1

(
log(f(Xi, λ, µ, θ)− log(f(Xi, λ0, µ0, θ)

)
. (3.3.9)

We want to split this sum into two. The first sum will only include the observations that
lie between the lines created by (λ, µ) and (λ0, µ0). The second sum will include all other
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observations. To be able to talk about the observations between the two lines and the
observations outside of the two lines, we first introduce the following notation.

The area between the lines created by (λ, µ) and (λ0, µ0) is denoted by

B(λ, µ) :=
(
L(λ, µ) ∩R0

)
∪
(
L0 ∩R(λ, µ)

)
. (3.3.10)

Now we can define the two separate sums using this notation.
The sum over the observations between the two lines is denoted by

S(1)
n (λ, µ, θ) :=

1

n

∑
Xi∈B(λ,µ)

(
log(f(Xi, λ, µ, θ))− log(f(Xi, λ0, µ0, θ))

)
, (3.3.11)

and the sum over the other observations is denoted by

S(2)
n (λ, µ, θ) :=

1

n

∑
Xi /∈B(λ,µ)

(
log(f(Xi, λ, µ, θ))− log(f(Xi, λ0, µ0, θ))

)
. (3.3.12)

Now we have Sn(λ, µ, θ) = S
(1)
n (λ, µ, θ) + S

(2)
n (λ, µ, θ). We will rewrite S

(1)
n and S

(2)
n

separately. We start by looking at S
(1)
n . First notice that for any observation Xi ∈ B(λ, µ)

log(f(Xi, λ, µ, θ))− log(f(Xi, λ0, µ0, θ))

=

{
log(β(λ, µ, θ))− log(γ(λ0, µ0, θ)), if Xi ∈ L(λ, µ) ∩R0,

log(γ(λ, µ, θ))− log(β(λ0, µ0, θ)), if Xi ∈ L0 ∩R(λ, µ).

(3.3.13)

Therefore

S(1)
n (λ, µ, θ) =

(
1

n

n∑
i=1

1Xi∈L(λ,µ)∩R0

)(
log(β(λ, µ, θ))− log(γ(λ0, µ0, θ))

)
−

(
1

n

n∑
i=1

1Xi∈L0∩R(λ,µ)

)(
log(β(λ0, µ0, θ))− log(γ(λ, µ, θ))

)
.

(3.3.14)

Using the definition of the eCLDF from Definition 3.2, note that

1

n

n∑
i=1

1Xi∈L(λ,µ)∩R0 −
1

n

n∑
i=1

1Xi∈L0∩R(λ,µ) = Fn(λ, µ)− Fn(λ0, µ0). (3.3.15)

We can use this to rewrite the expression for S
(1)
n (λ, µ, θ) from Equation (3.3.14) into

S(1)
n (λ, µ, θ) = (Fn(λ, µ)− Fn(λ0, µ0))

(
log(β(λ0, µ0, θ))− log(γ(λ0, µ0, θ))

)
+ ξn(λ, µ, θ),

(3.3.16)
where

ξn(λ, µ, θ) :=
1

n

n∑
i=1

1Xi∈L(λ,µ)∩R0

(
log(β(λ, µ, θ))− log(β(λ0, µ0, θ))

)
− 1

n

n∑
i=1

1Xi∈L0∩R(λ,µ)

(
log(γ(λ0, µ0, θ))− log(γ(λ, µ, θ))

)
.

(3.3.17)
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Unlike the one-dimensional equivalent of ξn, we now have a function that is not multiplied
by Fn(λ, µ)−Fn(λ0, µ0). We can rewrite it as a function that does include this expression,
but it will then include another term to compensate for it. This term needs to have good
asymptotic properties. By adding and subtracting a term, we can write

ξn(λ, µ, θ) =
1

n

n∑
i=1

(
1Xi∈L(λ,µ)∩R0 − 1Xi∈L0∩R(λ,µ)

)
log

β(λ, µ, θ)

β(λ0, µ0, θ)

− 1

n

n∑
i=1

1Xi∈L0∩R(λ,µ) log
γ(λ0, µ0, θ)β(λ0, µ0, θ)

γ(λ, µ, θ)β(λ, µ, θ)

(3.3.18)

= (Fn(λ, µ)− Fn(λ0, µ0)) log
β(λ, µ, θ)

β(λ0, µ0, θ)

− 1

n

n∑
i=1

1Xi∈L0∩R(λ,µ) log
α(λ, µ)(1− α(λ, µ))

α0(1− α0)
.

(3.3.19)

Recall the definition of Tp from Definition 2.1. We want to show that

1

n

n∑
i=1

1Xi∈L0∩R(λ,µ) log
α(λ, µ)(1− α(λ, µ))

α0(1− α0)
= Tp(‖(λ− λ0, µ− µ0)‖), (3.3.20)

for (λ, µ)→ (λ0, µ0). To do this, it suffices to show that

1

n

n∑
i=1

1Xi∈L0∩R(λ,µ) = Tp(1), (3.3.21)

and

log
α(λ, µ)(1− α(λ, µ))

α0(1− α0)
= O(‖(λ− λ0, µ− µ0)‖), (3.3.22)

both for (λ, µ) → (λ0, µ0). We start by showing the former. To prove this statement, we
let (η1n, η

2
n) be a consistent estimator of (λ0, µ0). Then

1

n

n∑
i=1

1Xi∈L0∩R(η1n,η
2
n)
∼ 1

n
Binom

(
n,

∫∫
L0∩R(η1n,η

2
n)

β0dt

)
. (3.3.23)

Define

ωn :=

∫∫
L0∩R(η1n,η

2
n)

β0dt. (3.3.24)

By consistency of (η1n, η
2
n), we have

lim
n→∞

ωn = 0. (3.3.25)

Let ε > 0. We can choose N ∈ N such that for all n ≥ N we have ωn < ε/2. Then for
n ≥ N

P

(
1

n

n∑
i=1

1Xi∈L0∩R(η1n,η
2
n)
< ε

)
≥ P

(
1

n
Binom(n, ε/2) < ε

)
. (3.3.26)
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By the law of large numbers

1

n
Binom(n, ε/2)

a.s.−−→ ε/2. (3.3.27)

lim
n→∞

P
(

1

n
Binom(n, ε/2) < ε

)
= 1. (3.3.28)

By the squeeze theorem we conclude that

lim
n→∞

P

(
1

n

n∑
i=1

1Xi∈L0∩R(η1n,η
2
n)
< ε

)
= 1, (3.3.29)

and hence
1

n

n∑
i=1

1Xi∈L0∩R(λ,µ) = Tp(1), (3.3.30)

for (λ, µ)→ (λ0, µ0). Now we will prove that

log
α(λ, µ)(1− α(λ, µ))

α0(1− α0)
= O(‖(λ− λ0, µ− µ0)‖), (3.3.31)

for (λ, µ)→ (λ0, µ0). To do this we analyse∣∣∣∣∣ log (λ+µ)(2−λ−µ)
(λ0+µ0)(2−λ0−µ0)

‖(λ− λ0, µ− µ0)‖

∣∣∣∣∣ . (3.3.32)

We will rewrite this expression by writing λ and µ as polar coordinates with center (λ0, µ0).
This gives the substitution

λ = λ0 + r cosφ, and µ = µ0 + r sinφ. (3.3.33)

Plugging this into Equation (3.3.32) yields

1

r

∣∣∣∣log

(
1 +

r(cosφ+ sinφ)

λ0 + µ0

)
+ log

(
1− r(cosφ+ sinφ)

2− λ0 + µ0

)∣∣∣∣ . (3.3.34)

We want to bound this for any fixed r. To do this we first apply the triangle inequality.
Using that for any x > 0 we have | log(1 − x)| ≥ | log(1 + x)| and that for any φ we have
cosφ+ sinφ ∈ [−

√
2,
√

2], we find that∣∣∣∣log

(
1 +

r(cosφ+ sinφ)

λ0 + µ0

)∣∣∣∣ ≤
∣∣∣∣∣log

(
1− r

√
2

λ0 + µ0

)∣∣∣∣∣ , (3.3.35)

and ∣∣∣∣log

(
1− r(cosφ+ sinφ)

2− λ0 + µ0

)∣∣∣∣ ≤
∣∣∣∣∣log

(
1− r

√
2

2− λ0 + µ0

)∣∣∣∣∣ . (3.3.36)
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Therefore∣∣∣∣∣ log (λ+µ)(2−λ−µ)
(λ0+µ0)(2−λ0−µ0)

‖(λ− λ0, µ− µ0)‖

∣∣∣∣∣ ≤ 1

r

(∣∣∣∣∣log

(
1− r

√
2

λ0 + µ0

)∣∣∣∣∣+

∣∣∣∣∣log

(
1− r

√
2

2− λ0 + µ0

)∣∣∣∣∣
)
.

(3.3.37)
We want to show that this bound is increasing in r when r is positive, since that would
mean that a bound for a fixed r also bounds everything within a distance of r from (λ0, µ0).
Let a > 0 be fixed. Then log(1 − ax) is negative for positive x. Thus log(1 − ax)/x is
also negative for x > 0. We need to show that log(1 − ax)/x is decreasing, because this
would imply that | log(1− ax)/x| is increasing for x > 0. To do this, we first find that the
derivative is given by

−ax− (1− ax) log(1− ax)

(1− ax)x2
. (3.3.38)

Since we only consider x ∈ (0, 1/a), we find that (1 − ax)x2 > 0. We need to show that
−ax − (1 − ax) log(1 − ax) ≤ 0 for x > 0. For this we use that log y ≥ 1 − 1/y for any
y > 0. Applying this to 1− ax we find that log(1− ax) ≥ 1− 1/(1− ax). But then also

− (1− ax) log(1− ax) ≤ −(1− ax)

(
1− 1

1− ax

)
= ax. (3.3.39)

Thus −ax − (1 − ax) log(1 − ax) ≤ −ax + ax = 0, from which we can conclude that the
derivative is non-positive and thus | log(1 − ax)/x| is increasing for x > 0. By taking the
correct values for a we find that

1

r

(∣∣∣∣∣log

(
1− r

√
2

λ0 + µ0

)∣∣∣∣∣+

∣∣∣∣∣log

(
1− r

√
2

2− λ0 + µ0

)∣∣∣∣∣
)
, (3.3.40)

is increasing in r for r > 0. Now we can fix some r > 0 such that

1− r
√

2

λ0 + µ0

> 0, and 1− r
√

2

2− λ0 + µ0

> 0. (3.3.41)

Then for all (λ, µ) such that ‖(λ− λ0, µ− µ0)‖ ≤ r, we have∣∣∣∣∣ log (λ+µ)(2−λ−µ)
(λ0+µ0)(2−λ0−µ0)

‖(λ− λ0, µ− µ0)‖

∣∣∣∣∣ ≤ 1

r

(∣∣∣∣∣log

(
1− r

√
2

λ0 + µ0

)∣∣∣∣∣+

∣∣∣∣∣log

(
1− r

√
2

2− λ0 + µ0

)∣∣∣∣∣
)
,

(3.3.42)
where this time r is the fixed value that we chose. We conclude that indeed

log
α(λ, µ)(1− α(λ, µ))

α0(1− α0)
= O(‖(λ− λ0, µ− µ0)‖), (3.3.43)

for (λ, µ)→ (λ0, µ0) and therefore

1

n

n∑
i=1

1Xi∈L0∩R(λ,µ) log
α(λ, µ)(1− α(λ, µ))

α0(1− α0)
= Tp(‖(λ− λ0, µ− µ0)‖), (3.3.44)
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for (λ, µ)→ (λ0, µ0). Hence

S(1)
n (λ, µ, θ) = (Fn(λ, µ)− Fn(λ0, µ0))

(
log

β(λ0, µ0, θ)

γ(λ0, µ0, θ)
+ log

β(λ, µ, θ)

β(λ0, µ0, θ)

)
+ Tp(‖(λ− λ0, µ− µ0)‖),

(3.3.45)

for (λ, µ)→ (λ0, µ0). Define

χ(λ, µ) := log
β(λ, µ, θ)

β(λ0, µ0, θ)
= log

α0

α(λ, µ)
. (3.3.46)

Notice that χ(λ, µ) = o(1) as (λ, µ)→ (λ0, µ0). Then

S(1)
n (λ, µ, θ) = (Fn(λ, µ)− Fn(λ0, µ0)) log

β(λ0, µ0, θ)

γ(λ0, µ0, θ)
+ Tp(‖(λ− λ0, µ− µ0)‖)

+ χ(λ, µ)

(
Fn(λ, µ)− Fn(λ0, µ0) +

(γ0 − β0)(λ− λ0 + µ− µ0)
1
2

log(β(λ0, µ0, θ))− log(γ(λ0, µ0, θ))

)
− χ(λ, µ)

(γ0 − β0)(λ− λ0 + µ− µ0)
1
2

log(β(λ0, µ0, θ))− log(γ(λ0, µ0, θ))
(3.3.47)

= (Fn(λ, µ)− Fn(λ0, µ0)) log
β(λ0, µ0, θ)

γ(λ0, µ0, θ)
+ Tp(‖(λ− λ0, µ− µ0)‖)

− χ(λ, µ)
(γ0 − β0)(λ− λ0 + µ− µ0)

1
2

log(β(λ0, µ0, θ))− log(γ(λ0, µ0, θ))
+ χ(λ, µ)Mn(λ, µ, θ)

(3.3.48)

= (Fn(λ, µ)− Fn(λ0, µ0)) log
β(λ0, µ0, θ)

γ(λ0, µ0, θ)
+ Tp(‖(λ− λ0, µ− µ0)‖)

+
1

2
(λ− λ0 + µ− µ0)o(1) + o(1)Mn(λ, µ, θ),

(3.3.49)

where o and Tp are for (λ, µ)→ (λ0, µ0).

We now turn ourselves towards S
(2)
n (λ, µ, θ). Note that for all Xi /∈ B(λ, µ) we have

log(f(Xi, λ, µ, θ))− log(f(Xi, λ0, µ0, θ))

=

{
log β(λ, µ, θ)− log β(λ0, µ0, θ), if Xi ∈ L(λ, µ) ∩ L0,

log γ(λ, µ, θ)− log γ(λ0, µ0, θ), if Xi ∈ R(λ, µ) ∩R0

(3.3.50)

=

{
log α0

α(λ,µ)
, if Xi ∈ L(λ, µ) ∩ L0,

log 1−α0

1−α(λ,µ) , if Xi ∈ R(λ, µ) ∩R0.
(3.3.51)

Notice that this value does not depend on θ. We can linearise this with respect to λ and
µ around the point (λ, µ) = (λ0, µ0). Define

b(x, λ, µ) :=

{
log α0

α(λ,µ)
, if x ∈ L(λ, µ) ∩ L0,

log 1−α0

1−α(λ,µ) , if x ∈ R(λ, µ) ∩R0.
(3.3.52)
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To linearise this around (λ0, µ0), we write it as

b(x, λ, µ) = b(x, λ0, µ0) +
∂b(x, λ0, µ0)

∂λ
(λ− λ0)

+
∂b(x, λ0, µ0)

∂µ
(µ− µ0) + h(x, λ, µ)‖(λ− λ0, µ− µ0)‖,

(3.3.53)

for some function h(x, λ, µ). We can clearly see that for any x we have

b(x, λ0, µ0) = 0. (3.3.54)

Therefore

h(x, λ, µ) =
b(x, λ, µ)− ∂b(x,λ0,µ0)

∂λ
(λ− λ0)− ∂b(x,λ0,µ0)

∂µ
(µ− µ0)

‖(λ− λ0, µ− µ0)‖
. (3.3.55)

By using the chain rule we find that the partial derivative of b with respect to λ is given
by

∂b(x, λ, µ)

∂λ
=

{
− 1
α(λ,µ)

· 1
2
, if x ∈ L(λ, µ) ∩ L0,

1
1−α(λ,µ) ·

1
2
, if x ∈ R(λ, µ) ∩R0.

(3.3.56)

The partial derivative of b with respect to µ is the same. Let

d(x) :=
∂b(x, λ0, µ0)

∂λ
=

{
− 1
α0
· 1
2
, if x ∈ L0,

1
1−α0

· 1
2
, if x ∈ R0.

(3.3.57)

Then

h(x, λ, µ) =
b(x, λ, µ)− d(x)(λ− λ0 + µ− µ0)

‖(λ− λ0, µ− µ0)‖
. (3.3.58)

Define

h1(λ, µ) :=
log α0

α(λ,µ)
+ 1

2α0
(λ− λ0 + µ− µ0)√

(λ− λ0)2 + (µ− µ0)2
, (3.3.59)

and

h2(λ, µ) :=
log 1−α0

1−α(λ,µ) + 1
2(1−α0)

(λ− λ0 + µ− µ0)√
(λ− λ0)2 + (µ− µ0)2

. (3.3.60)

Then for x ∈ L(λ, µ) ∩ L0 we have

h(x, λ, µ) = h1(λ, µ) (3.3.61)

and for x ∈ R(λ, µ) ∩R0 we have

h(x, λ, µ) = h2(λ, µ). (3.3.62)
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By using b in the definition of S
(2)
n (λ, µ, θ), we find that

S(2)
n (λ, µ, θ) =

1

n

∑
Xi /∈B(λ,µ)

b(Xi, λ, µ) (3.3.63)

=
1

n

∑
Xi /∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0)

+
1

n

∑
Xi∈L(λ,µ)∩L0

h1(λ, µ)‖(λ− λ0, µ− µ0)‖

+
1

n

∑
Xi∈R(λ,µ)∩R0

h2(λ, µ)‖(λ− λ0, µ− µ0)‖

(3.3.64)

=
1

n

∑
Xi /∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0)

+ ‖(λ− λ0, µ− µ0)‖

h1(λ, µ)

 1

n

∑
Xi∈L(λ,µ)∩L0

1


+ h2(λ, µ)

 1

n

∑
Xi∈R(λ,µ)∩R0

1

 .

(3.3.65)

We want to show that

‖(λ−λ0, µ−µ0)‖

h1(λ, µ)

 1

n

∑
Xi∈L(λ,µ)∩L0

1

+ h2(λ, µ)

 1

n

∑
Xi∈R(λ,µ)∩R0

1

 , (3.3.66)

is Tp(‖(λ− λ0, µ− µ0)‖) as (λ, µ)→ (λ0, µ0). It suffices to show thath1(λ, µ)

 1

n

∑
Xi∈L(λ,µ)∩L0

1

 + h2(λ, µ)

 1

n

∑
Xi∈R(λ,µ)∩R0

1

 = Tp(‖(λ− λ0, µ− µ0)‖),

(3.3.67)
as (λ, µ)→ (λ0, µ0). The sums 1

n

∑
Xi∈L(λ,µ)∩L0

1

 , and

 1

n

∑
Xi∈R(λ,µ)∩R0

1

 , (3.3.68)

are bounded by 1 for any λ and µ and n ∈ N. Thus evaluating them in consistent estimators
results in sequences that are Op(1) as n→∞. Hence it suffices to show that h1(λ, µ) and
h2(λ, µ) are o(1) as (λ, µ) → (λ0, µ0). We start by investigating h1. To solve the limit we
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will use polar coordinates around (λ0, µ0) and use the squeeze theorem. First we write

h1(λ, µ) =
log λ0+µ0

λ+µ
+ 1

λ0+µ0
(λ− λ0 + µ− µ0)√

(λ− λ0)2 + (µ− µ0)2
(3.3.69)

=
log λ0+µ0

λ+µ
+ λ+µ

λ0+µ0
− 1√

(λ− λ0)2 + (µ− µ0)2
. (3.3.70)

By using the substitution

λ = λ0 + r cosφ, and µ = µ0 + r sinφ, (3.3.71)

we define
h3(r, φ) := h1(λ0 + r cosφ, µ0 + r sinφ). (3.3.72)

Then

h3(r, φ) =
log λ0+µ0

λ0+µ0+r(sinφ+cosφ)
+ λ0+µ0+r(sinφ+cosφ)

λ0+µ0
− 1

r
(3.3.73)

=
1

r
log

λ0 + µ0

λ0 + µ0 + r(sinφ+ cosφ)
+

sinφ+ cosφ

λ0 + µ0

(3.3.74)

=
−1

r
log

(
1 +

r(sinφ+ cosφ)

λ0 + µ0

)
+

sinφ+ cosφ

λ0 + µ0

. (3.3.75)

For convenience we define

ζ(φ) :=
sinφ+ cosφ

λ0 + µ0

. (3.3.76)

Then

h3(r, φ) =
−1

r
log (1 + rζ(φ)) + ζ(φ). (3.3.77)

Since we want to apply the squeeze theorem, we need to find a lower and an upper bound
for h3(r, φ) that only rely on r. This will allow us to take the limit of r going to 0 in the
lower and upper bound, which will tell us about the limit of h1(λ, µ). We start by finding
a lower bound. Notice that we only need to consider r > 0. It is known that for any y ∈ R
we have log(1 + y) ≤ y. Hence for any r and φ we have

h3(r, φ) =
−1

r
log (1 + rζ(φ)) + ζ(φ) ≥ −ζ(φ) + ζ(φ) = 0. (3.3.78)

For the upper bound, we first notice that we only have to consider r and φ such that
1 + rζ(φ) > 0. Since ζ(φ) is 2π-periodic, h3 is also 2π-periodic in φ. For r small enough,
it is continuous. Hence it is a bounded function. The partial derivative with respect to φ
of h3(r, φ) is given by (

1− 1

1 + rζ(φ)

)
ζ ′(φ), (3.3.79)
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where

ζ ′(φ) =
cosφ− sin(φ)

λ0 + µ0

. (3.3.80)

Hence the partial derivative of h3 with respect to φ is zero if ζ ′(φ) = 0 or 1 + rζ(φ) = 1.
The latter happens if and only if ζ(φ) = 0. For such φ, the function h3 is zero. Since
the function is non-negative with a derivative which is not constantly zero, these can not
be the maximum. Instead it happens when ζ ′(φ) = 0, which is the case if and only if
φ = π/4 + k ·π for some k ∈ N. Since the function is 2π-periodic, we only need to consider
the maxima on [0, 2π]. It is either π/4 or 5π/4. We do not need to compute which of these
it is, as we now know that h3(r, φ) is bounded by max{h3(r, π/4), h3(r, 5π/4)} and we can
show that both h3(r, π/4) and h3(r, 5π/4) converge to zero if we take r to zero. To show
this, we fix φ0 ∈ [0, 2π] and define ζ0 := ζ(φ0). We also define h4(r) := h3(r, φ0). Then

h4(r) =
−1

r
log (1 + rζ0) + ζ0 =

rζ0 − log (1 + rζ0)

r
. (3.3.81)

We can see that the limit of r going to zero of both the numerator and the denominator is
zero. Therefore we can apply l’Hôpital’s rule to find that

lim
r→0

h4(r) = lim
r→0

(
ζ0 −

ζ0
1 + rζ0

)
= 0. (3.3.82)

Since this applies for all φ0, we find that the upper bound for h3(r, φ) converges to zero.
Notice that we did have to do the above analysis, as the fact that this limit holds pointwise
does not mean that it holds for the maximum. We did need to find a finite amount of
candidates for the maximum. We can now apply the squeeze theorem to find that

lim
r→0

h4(r, φ) = 0, (3.3.83)

and therefore
lim

(λ,µ)→(λ0,µ0)
h1(λ, µ) = 0. (3.3.84)

We conclude that h1(λ, µ) = o(1) as (λ, µ) → (λ0, µ0). In a similar way it can be shown
that h2(λ, µ) = o(1) as (λ, µ)→ (λ0, µ0). Therefore indeed

‖(λ−λ0, µ−µ0)‖

h1(λ, µ)

 1

n

∑
Xi∈L(λ,µ)∩L0

1

+ h2(λ, µ)

 1

n

∑
Xi∈R(λ,µ)∩R0

1

 , (3.3.85)

is Tp(‖(λ− λ0, µ− µ0)‖) as (λ, µ)→ (λ0, µ0) and thus

S(2)
n (λ, µ, θ) =

1

n

∑
Xi /∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0) + Tp(‖(λ− λ0, µ− µ0)‖), (3.3.86)

as (λ, µ)→ (λ0, µ0)
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Now we want to rewrite the sum that we see in the equation above. To do this we
rewrite it as the sum over all observations and subtract the observations in B(λ, µ). This
gives us

1

n

∑
Xi /∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0) =
1

n

n∑
i=1

d(Xi)(λ− λ0 + µ− µ0)

− 1

n

∑
Xi∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0).

(3.3.87)

We want to show that

1

n

∑
Xi∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0) = Tp(‖(λ− λ0, µ− µ0)‖), (3.3.88)

as (λ, µ)→ (λ0, µ0). Recall that

d(x) =

{
− 1
α0
· 1
2
, if x ∈ L0,

1
1−α0

· 1
2
, if x ∈ R0.

(3.3.89)

Therefore

1

n

∑
Xi∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0) =

 1

n

∑
Xi∈L0∩R(λ,µ)

1

 −(λ− λ0 + µ− µ0)

2α0

+

 1

n

∑
Xi∈R0∩L(λ,µ)

1

 λ− λ0 + µ− µ0

2(1− α0)
.

(3.3.90)

In Equation (3.3.30) it was shown that

1

n

∑
Xi∈L0∩R(λ,µ)

1 = Tp(1), (3.3.91)

for (λ, µ)→ (λ0, µ0). Analogously it can be found that

1

n

∑
Xi∈R0∩L(λ,µ)

1 = Tp(1), (3.3.92)

as (λ, µ)→ (λ0, µ0). Hence it suffices to show that −(λ−λ0+µ−µ0)
2α0

and λ−λ0+µ−µ0
2(1−α0)

are O(‖(λ−
λ0, µ − µ0)‖) as (λ, µ) → (λ0, µ0). Dividing by −2α0 or 2(1 − α0) does not affect this
behaviour. Thus it suffices to show that λ − λ0 + µ − µ0 is O(‖(λ − λ0, µ − µ0)‖) as
(λ, µ)→ (λ0, µ0). Notice that

|λ− λ0 + µ− µ0|
‖(λ− λ0, µ− µ0)‖

≤ |λ− λ0|+ |µ− µ0|
‖(λ− λ0, µ− µ0)‖

=
‖(λ− λ0, µ− µ0)‖1
‖(λ− λ0, µ− µ0)‖2

. (3.3.93)
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Since the 1-norm and the 2-norm on R2 are equivalent, this is bounded by some constant.
Thus we find that indeed

λ− λ0 + µ− µ0 = O(‖(λ− λ0, µ− µ0)‖), (3.3.94)

as (λ, µ)→ (λ0, µ0). Therefore

1

n

∑
Xi∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0) = Tp(‖(λ− λ0, µ− µ0)‖), (3.3.95)

as (λ, µ)→ (λ0, µ0).
Plugging this back into Equation (3.3.87) yields

1

n

∑
Xi /∈B(λ,µ)

d(Xi)(λ− λ0 + µ− µ0) =
1

n

n∑
i=1

d(Xi)(λ− λ0 + µ− µ0)

+ Tp(‖(λ− λ0, µ− µ0)‖),

(3.3.96)

as (λ, µ)→ (λ0, µ0). Using this in Equation (3.3.86) we find that

S(2)
n (λ, µ, θ) =

1

n

n∑
i=1

d(Xi)(λ− λ0 + µ− µ0) + Tp(‖(λ− λ0, µ− µ0)‖)

+ Tp(‖(λ− λ0, µ− µ0)‖)
(3.3.97)

=
1

n

n∑
i=1

d(Xi)(λ− λ0 + µ− µ0) + Tp(‖(λ− λ0, µ− µ0)‖), (3.3.98)

as (λ, µ)→ (λ0, µ0). By the law of large numbers we have

1

n

n∑
i=1

d(Xi)
p−→ E [d(X)] , (3.3.99)

where X is a random variable which is distributed with probability density function
f(x, λ0, µ0, θ0). This can also be written as

1

n

n∑
i=1

d(Xi) = E [d(Xi)] + op(1), (3.3.100)

for n→∞. Since

E [d(Xi)] = P(X ∈ L0) ·
−1

2α0

+ P(X ∈ R0) ·
1

2(1− α0)
(3.3.101)

=
1− θ0

2(1− α0)
− θ0

2α0

(3.3.102)

=
1

2
(γ0 − β0), (3.3.103)
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we find that

S(2)
n (λ, µ, θ) =

1

2
(λ− λ0 + µ− µ0)(γ0 − β0) +

1

2
(λ− λ0 + µ− µ0)op(1)

+Op(1)o(‖(λ− λ0, µ− µ0)‖),
(3.3.104)

where Op, op are for n→∞ and o is for (λ, µ)→ (λ0, µ0).

Now we want to combine S
(1)
n (λ, µ, θ) and S

(2)
n (λ, µ, θ) to get an expression for Sn(λ, µ, θ).

Recall that

S(1)
n (λ, µ, θ) = (Fn(λ, µ)− Fn(λ0, µ0)) log

β(λ0, µ0, θ)

γ(λ0, µ0, θ)

+ Tp(‖(λ− λ0, µ− µ0)‖)

+
1

2
(λ− λ0 + µ− µ0)o(1) + o(1)Mn(λ, µ, θ),

(3.3.105)

where Tp and o are for (λ, µ)→ (λ0, µ0).

By using that Sn(λ, µ, θ) = S
(1)
n (λ, µ, θ) + S

(2)
n (λ, µ, θ), we find that

Sn(λ, µ, θ) = (Fn(λ, µ)− Fn(λ0, µ0)) log
β(λ0, µ0, θ)

γ(λ0, µ0, θ)

+ Tp(‖(λ− λ0, µ− µ0)‖) + Tp(‖(λ− λ0, µ− µ0)‖)

+
1

2
(λ− λ0 + µ− µ0)(o(1) + op(1)) +Mn(λ, µ, θ)o(1)

+
1

2
(λ− λ0 + µ− µ0)(γ0 − β0),

(3.3.106)

where o and Tp are for (λ, µ)→ (λ0, µ0) and op is for n→∞. Since

1

2
(λ− λ0 + µ− µ0)(γ0 − β0) + (Fn(λ, µ)− Fn(λ0, µ0)) log

β(λ0, µ0, θ)

γ(λ0, µ0, θ)

= log

(
β(λ0, µ0, θ)

γ(λ0, µ0, θ)

)
Mn(λ, µ, θ)

(3.3.107)

we can conclude that

Sn(λ, µ, θ) =

(
log

(
β(λ0, µ0, θ)

γ(λ0, µ0, θ)

)
+ o(1)

)
Mn(λ, µ, θ)

+
1

2
(λ− λ0 + µ− µ0)(o(1) + op(1)) + Tp(‖(λ− λ0, µ− µ0)‖),

(3.3.108)

where o and Tp are for (λ, µ) → (λ0, µ0) and op is for n → ∞. Since most terms in this
expression are asymptotically small and log(β(λ0, µ0, θ)) − log(γ(λ0, µ0, θ)) + o(1) will be
positive when θ is close enough to θ0 and (λ, µ) is close enough to (λ0, µ0) it does seem to
make sense to maximise M(λ, µ, θ0) in some region around (λ0, µ0). �
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3.4 Convergence speed of QMLEs

Because the form of Mn is roughly the same as in one dimension, the proof will likely be
very similar. In the one-dimensional case, there needs to be a distinction on whether α is
bigger or smaller than α0. In two dimensions, this is not exactly possible, as there is the
option of the lines crossing. This will give more problems. Another point is that in the
one-dimensional case, we try to turn some problems into problems including uniform dis-
tributions on the unit interval. Again this means that we have to use uniform distributions
on the unit square. This will again be slightly more involved.

3.5 Convergence speed of MLEs

Getting to the final conclusion that the error of the MLE is Op(1/n) will be the same as
in one dimension.

The problem in this section will be to prove that the difference between the MLE and the
QMLE is op(1/n). The idea of the proof will be the same as in one dimension. We compare

the log-likelihood evaluated in (λ̂, µ̂, θ̂) with the log-likelihood evaluated in (λ̃, µ̃, θ̂). The
proof of the theorem will not give many problems. The proof of the lemma where we make
use of the order statistics will be a bit more involved than its one-dimensional counterpart,
Lemma 2.19. The observations can not be ordered directly, as they do not lie on a straight
line. However, it will be possible to order them based on their (horizontal) distance to the
line induced by (λ0, µ0). In one dimension, we had to flip the two parts of the unit interval
and stretch them in order to create a uniform distribution where the points closest to the
boundary were on the outside. Something similar to this can likely be done. However,
this time the stretching might need to be done in multiple directions. After pasting the
backsides of the two areas with different density together, there is a vertical boundary
in the middle. The two trapezoids need to be stretched in a way to make sure that the
horizontal perturbation from the left boundary is uniformly distributed.
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Chapter 4

Concluding remarks

In the introduction it was hypothesised that the MLE for the boundary in the two-
dimensional model is Op(1/n) as n→∞. This claim has not been proven, but it does seem
very likely. What has been proven is that the MLE for the boundary in the one-dimensional
model is Op(1/n) as n→∞. The main goal of working out this proof was to get a better
idea of the intricacies that are involved within this proof. This would then allow us to
generalise the proof to two dimensions. The proof of the one-dimensional problem turned
out to contain many more details than initially expected. This makes it even more helpful
for tackling the two-dimensional version.

There is even a falsely stated lemma in the paper by Chernoff and Rubin[3]. Lemma 4
from the paper, which corresponds to Lemma 2.17, is wrong in saying that δ does not need
to depend on ε. This statement is stronger than necessary and it does not hold. It seems
as if it was stated in the paper, because it shortens the lemma statement. These types of
mistakes are harder to spot if the proof is not worked out before trying to generalise it.

The proof of the one-dimensional case helped create a promising start to the proof of
the two-dimensional case. However, there are still many gaps that have to be filled in order
to prove the hypothesis.
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Appendix A

Omitted proofs

This appendix includes proofs that have been omitted in the text. These proofs were moved
to the appendix to keep the focus of the main text on the proofs that are most relevant to
the two-dimensional generalisation. The first two sections will give proofs from Chapter 2.
The last section gives a proof from Chapter 3.

A.1 Proof of Lemma 2.5

Lemma 2.5 states that if Gn is the eCDF for a random variable which is uniformly dis-
tributed on [0, 1], then

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ = Op(1), (A.1.1)

for n→∞.
Before we give the complete proof, we give a heuristic overview. First we use the reverse

triangle to see that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ ≤ sup
x∈(0,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣+ 1. (A.1.2)

Hence it suffices to show that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ = Op(1). (A.1.3)

We bound this in two parts. First we bound
∣∣∣Gn(x)x

− 1
∣∣∣ on the interval [0, a/n] for some

conveniently chosen a. To do this we use the probability of Gn being equal to zero at a/n.
This probability converges to exp(−a), so we can simply choose some suitable a. Now we
only need to bound Gn on [a/n, 1]. Chebyshev’s inequality tell us that for any M > 1,
n ∈ N, and x > 0 we have

P
(∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥M

)
≤ 1

nxM2
. (A.1.4)
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We use this to bound
∣∣∣Gn(x)x

− 1
∣∣∣ at the sequence 2i · a/n for i ∈ N. It tells us that the

probability of being larger than M in all points in the sequence is less than 2
M2a

. Thus M
can be chosen to make this probability arbitrarily small. Finally we can use the following
lemma to bound everything between the points.

Lemma A.1. Suppose that x ∈ (0, 1) such that∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < M, and

∣∣∣∣Gn(2x)

2x
− 1

∣∣∣∣ < M. (A.1.5)

Then for any y ∈ (x, 2x), we have∣∣∣∣Gn(y)

y
− 1

∣∣∣∣ < 2M + 3. (A.1.6)

This makes sure that everything between the points in the sequence is also bounded.
With this, we can finally get to the final conclusion. Now we will give a proof with all the
details included. After that we will give the proof of Lemma A.1.

Proof of Lemma 2.5. The first step is to bound the supremum from above by some more
convenient supremum. We will then show that this new expression is Op(1) for n→∞.

Using the reverse triangle inequality, we see that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ =

∣∣∣∣∣ sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣
∣∣∣∣∣ (A.1.7)

=

∣∣∣∣∣ sup
x∈(0,1)

(∣∣∣∣Gn(x)

x

∣∣∣∣− 1

)
+ 1

∣∣∣∣∣ (A.1.8)

≤

∣∣∣∣∣ sup
x∈(0,1)

(∣∣∣∣Gn(x)

x

∣∣∣∣− 1

)∣∣∣∣∣+ 1 (A.1.9)

≤ sup
x∈(0,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣+ 1. (A.1.10)

Hence it would suffice to show that

sup
x∈(0,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ = Op(1). (A.1.11)

Let ε > 0. We want to find M > 0 and N ∈ N such that

P

(
sup
x∈(0,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ > M

)
< ε. (A.1.12)

We will take a couple of steps in order to prove the result. The steps are roughly as

follows: First we stochastically bound
∣∣∣Gn(x)x

− 1
∣∣∣ by 0 on [0, a/n] for some conveniently
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chosen a ∈ R. Then we will bound it on a sequence of points starting at a/n. Finally, we
will show that this also bounds everything between the points.

Define
a := − log

(
1− ε

4

)
. (A.1.13)

Let N1 ∈ N such that for all n > N1 we have a/n < 1. Then for n > N1 we have

P
(
Gn

(a
n

)
= 0
)

= P
(
∀i∈{1,2,...,n} : Xi >

a

n

)
. (A.1.14)

=
(

1− a

n

)n
(A.1.15)

→ exp(−a) (A.1.16)

= 1− ε

4
. (A.1.17)

Thus we can choose N ∈ N such that for all n > N we have

P
(
Gn

(a
n

)
= 0
)
> 1− ε

2
. (A.1.18)

Since Gn is increasing, we find that

P

(
sup

x∈(0,a/n)
Gn(x) = 0

)
> 1− ε

2
. (A.1.19)

We now move on to bounding Gn on the rest of the domain. Recall Chebyshev’s inequality
from Theorem B.5. We want to apply Chebyshev’s inequality on Gn(x)

x
. To do this, we first

compute the expectation of Gn(x)/x. For any x ∈ (0, 1) we find that

E
[
Gn(x)

x

]
=

1

x
E

[
1

n

n∑
i=1

1Yi≤x

]
(A.1.20)

=
1

nx

n∑
i=1

E [1Yi≤x] (A.1.21)

=
1

nx

n∑
i=1

P (Yi ≤ x) (A.1.22)

= 1. (A.1.23)

By Chebyshev’s inequality, we know that for all M > 0 and x ∈ (0, 1) we have

P
(∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥M

)
≤ σ2

M2
, (A.1.24)

where σ2 is the variance of Gn(x)/x. We compute that for any n ∈ N and x ∈ (0, 1) the
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variance is given by

σ2 = E

[(
Gn(x)

x

)2
]
− E

[
Gn(x)

x

]2
(A.1.25)

=
1

x2n2
E

[
n∑
i=1

n∑
j=1

1Yi≤x1Yj≤x

]
− 1 (A.1.26)

=
1

x2n2

(
E

[
n∑
i=1

1Yi≤x

]
+ E

[
n∑
i=1

∑
j 6=i

1Yi≤x1Yj≤x

])
− 1 (A.1.27)

=
1

x2n2

(
nx+ (n2 − n)x2

)
− 1 (A.1.28)

=
1

nx
− 1

n
(A.1.29)

≤ 1

nx
. (A.1.30)

Therefore for all M > 0 and x ∈ (0, 1) we have

P
(∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥M

)
≤ 1

nxM2
, (A.1.31)

for all n ∈ N. For all x > 1 and n ∈ N we have

Gn(x)

x
=

1

x
∈ (0, 1). (A.1.32)

Therefore for x > 1 and n ∈ N we have∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≤ 1. (A.1.33)

Hence for x,M > 1 and n ∈ N we also have

P
(∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥M

)
= 0 ≤ 1

nxM2
. (A.1.34)

Hence for any M > 1 and x > 0 we have

P
(∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥M

)
≤ 1

nxM2
, (A.1.35)

for all n ∈ N. Now we can bound
∣∣∣Gn(x)x

− 1
∣∣∣ at a sequence of points. For any n ∈ N we

consider the sequence 2ia/n. By the Fréchet inequalities we find that for M > 1 and n ∈ N
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we have

P

(
sup

i∈N∪{0}

∣∣∣∣Gn(2ia/n)

2ia/n
− 1

∣∣∣∣ ≥M

)
≤

∞∑
i=0

P
(∣∣∣∣Gn(2ia/n)

2ia/n
− 1

∣∣∣∣ ≥M

)
(A.1.36)

≤
∞∑
i=0

1

M2a2i
(A.1.37)

=
2

M2a
. (A.1.38)

We fix M > 1 such that for any n ∈ N we have

P

(
sup

i∈N∪{0}

∣∣∣∣Gn(2ia/n)

2ia/n
− 1

∣∣∣∣ ≥M

)
<
ε

2
. (A.1.39)

We shall now use Lemma A.1 and the other previous results to show that for n large enough

P

(
sup
x∈(0,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < 2M + 3

)
< ε. (A.1.40)

Lemma A.1 tells us that for any n ∈ N we have

sup
i∈N∪{0}

∣∣∣∣Gn(2ia/n)

2ia/n
− 1

∣∣∣∣ < M =⇒ sup
x∈(a/n,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < 2M + 3. (A.1.41)

Hence for n ∈ N we have

P

(
sup

i∈N∪{0}

∣∣∣∣Gn(2ia/n)

2ia/n
− 1

∣∣∣∣ < M

)
≤ P

(
sup

x∈(a/n,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < 2M + 3

)
, (A.1.42)

and thus

P

(
sup

x∈(a/n,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥ 2M + 3

)
≤ P

(
sup

i∈N∪{0}

∣∣∣∣Gn(2ia/n)

2ia/n
− 1

∣∣∣∣ ≥M

)
≤ ε

2
. (A.1.43)

By the Fréchet inequalities, we find that for n > N

P

(
sup
x∈(0,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < 2M + 3

)
≤ P

(
sup

x∈(0,a/n)
Gn(x) ≥ 2M + 3

)
(A.1.44)

+ P

(
sup

x∈(a/n,1)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥ 2M + 3

)
(A.1.45)

≤ ε. (A.1.46)
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Therefore we can conclude that

sup
x∈(0,α0)

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ = Op(1), (A.1.47)

for n→∞. Hence we can conclude that indeed

sup
x∈(0,1)

∣∣∣∣Gn(x)

x

∣∣∣∣ = Op(1), (A.1.48)

for n→∞. �

In the proof of Lemma 2.5 we made use of Lemma A.1. The proof of that lemma is
given below and concludes this section.

Proof of Lemma A.1. Choose x according to the hypothesis and let y ∈ (x, 2x). Then∣∣∣∣Gn(y)

y
− 1

∣∣∣∣ ≤ Gn(y)

y
+ 1. (A.1.49)

Since Gn(x) is monotonically increasing and 1/x is decreasing, we have

Gn(y)

y
+ 1 ≤ Gn(2x)

x
+ 1 = 2 · Gn(2x)

2x
+ 1. (A.1.50)

However,
Gn(2x)

2x
< M + 1, (A.1.51)

so we conclude that ∣∣∣∣Gn(y)

y
− 1

∣∣∣∣ < 2M + 3. (A.1.52)

�

A.2 Proof of Lemma 2.12

Recall that Lemma 2.12 says that for all ε, k > 0 there exist K > 0 and N ∈ N such that
for all n ≥ N we have

P

(
sup
x>K/n

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k

)
> 1− ε, (A.2.1)

where Gn is the eCDF for the uniform distribution on [0, 1].
This proof is similar to the proof of Equation (A.1.3) from the proof of Lemma 2.5. We

start by a short discussion of the difference between the results. The first key difference is
that this time we can not choose the bound within the probability, which we can do when
proving that something is Op. For this reason, no part of the proof of that lemma shows
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the result from this lemma. The second key difference is that this time we can choose K
based on k. In the proof of Lemma 2.5, we split the interval (0, 1) into two parts: (0, a/n]
and (a/n, 1). The proof involving the latter is what is similar to the proof of this lemma.
However, this a was chosen in such a way that the first interval was stochastically bounded
and could not be changed in the proof of the second interval. Therefore the proof of this
lemma does not show the result necessary in the proof of Lemma 2.5.

The proof strategy will again include stochastically bounding a sequence of points and
showing that this implies that everything between the points is bounded too. The difference
with the proof of lemma 2.5 will be that we have to choose the distance between the points
of the sequence based on k. We will now give a short overview of the proof. Afterwards
we give the detailed proof.

By Chebyshev’s inequality we know that for any x, k0 > 0 and n ∈ N

P
(∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥ k0

)
≤ 1

nxk20
. (A.2.2)

We will bound the supremum of
∣∣∣Gn(x)x

− 1
∣∣∣ by first bounding it on the sequence (biK/n)i∈N,

where b > 1 and K > 0. The probability of being larger than some k0 > 0 in all of
these points is less than 1/(Kk20(1 − 1/b)). We can choose b and k0 such that it is also
bounded between the points. Then we choose K such that the probability is small enough,
completing the proof.

Proof of Lemma 2.12. Fix ε, k > 0. We start by bounding a sequence of points. In the
proof of Lemma 2.5, we used Chebyshev’s inequality to show Equation (A.1.31). This
result tells us that for any x, k0 > 0 and n ∈ N we have

P
(∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ ≥ k0

)
≤ 1

nxk20
. (A.2.3)

Let b > 1 and K, k0 > 0. Then for any n ∈ N we have

P

(
sup

i∈N∪{0}

∣∣∣∣Gn(biK/n)

biK/n
− 1

∣∣∣∣ ≥ k0

)
≤

∞∑
i=0

P
(∣∣∣∣Gn(biK/n)

biK/n
− 1

∣∣∣∣ ≥ k0

)
(A.2.4)

≤
∞∑
i=0

1

biKk20
(A.2.5)

=
1

Kk20(1− 1/b)
. (A.2.6)

Now we want to bound everything between the points as well. If for some x > 0 and n ∈ N
we have ∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k0, and

∣∣∣∣Gn(bx)

bx
− 1

∣∣∣∣ < k0, (A.2.7)
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then for y ∈ [x, bx] we have

Gn(y)

y
− 1 ≤ Gn(by)

y
− 1 (A.2.8)

= b

(
Gn(by)

by
− 1

)
+ b− 1 (A.2.9)

< bk0 + b− 1, (A.2.10)

and

Gn(y)

y
− 1 ≥ Gn(y)

by
− 1 (A.2.11)

=
1

b

(
Gn(y)

y
− 1

)
+

1

b
− 1 (A.2.12)

> −k0
b

+
1

b
− 1. (A.2.13)

We want to have ∣∣∣∣Gn(y)

y
− 1

∣∣∣∣ < k, (A.2.14)

for all y ∈ [x, bx] Thus we want to fix b > 1 and k0 > 0 such that

bk0 + b− 1 < k, (A.2.15)

and

− k0
b

+
1

b
− 1 > −k. (A.2.16)

We could for instance fix b = 1 + k/2. Then

bk0 + b− 1 = (k0 + 1)(1 + k/2)− 1 =
k0k

2
+ a+

k

2
, (A.2.17)

which is less than k if and only if

k0 <
k

k + 2
. (A.2.18)

We also have

− k0
b

+
1

b
− 1 =

1− k0
1 + k/2

− 1, (A.2.19)

which is greater than −k if and only if

k0 <
k

2
(k + 1). (A.2.20)

Since
k

2
(k + 1) > 0, and

k

k + 2
> 0, (A.2.21)
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we can fix

k0 ∈
(

0,min

{
k

2
(k + 1),

k

k + 2

})
. (A.2.22)

With the given definitions of b and k0, we now find that if for some x > 0 and n ∈ N
Equation (A.2.7) holds, then for any y ∈ [x, bx] we have∣∣∣∣Gn(y)

y
− 1

∣∣∣∣ < k. (A.2.23)

All that is left is to fix K such that we have the right bound on the probability.
Fix

K >
1

εk20(1− 1/b)
. (A.2.24)

Then

K > 0, and
1

Kk20(1− 1/b)
< ε. (A.2.25)

If for some n ∈ N we have

sup
i∈N∪{0}

∣∣∣∣Gn(biK/n)

biK/n
− 1

∣∣∣∣ < k0, (A.2.26)

then for all i ∈ N we have∣∣∣∣Gn(bi−1K/n)

bi−1K/n
− 1

∣∣∣∣ < k0, and

∣∣∣∣Gn(biK/n)

biK/n
− 1

∣∣∣∣ < k0, (A.2.27)

and therefore using Equation (A.2.23) we find that

sup
x>K/n

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k. (A.2.28)

Thus for any n ∈ N we have

P

(
sup
x>K/n

∣∣∣∣Gn(x)

x
− 1

∣∣∣∣ < k

)
≥ P

(
sup

i∈N∪{0}

∣∣∣∣Gn(biK/n)

biK/n
− 1

∣∣∣∣ < k0

)
(A.2.29)

≥ 1− 1

Kk20(1− 1/b)
(A.2.30)

> 1− ε. (A.2.31)

�
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A.3 Maximum likelihood estimators in 2D

In this section we will give the proof of the fact that

(λ̂n, µ̂n) := arg max
(x1,x2)∈(0,1)2

(
log

(
Fn(x1, x2)

α(x1, x2)

)
Fn(x1, x2)

+ log

(
1− Fn(x1, x2)

1− α(x1, x2)

)
(1− Fn(x1, x2))

)
,

(A.3.1)

and
θ̂n := Fn(λ̂n, µ̂n), (A.3.2)

are the MLEs for λ0, µ0 and θ0, as was mentioned in Section 3.1. This proof is completely
analogous to Section 2.1. To compute the MLEs, we first look at the likelihood

Ln(λ, µ, θ) =
n∏
i=1

f(Xi, λ, µ, θ) (A.3.3)

=
∏

Xi∈L(λ,µ)

β(λ, µ, θ)
∏

Xi∈R(λ,µ)

γ(λ, µ, θ) (A.3.4)

= (β(λ, µ, θ))nFn(λ,µ)(γ(λ, µ, θ))n(1−Fn(λ,µ)). (A.3.5)

Therefore the log-likelihood divided by n is given by

`n(λ, µ, θ) = log

(
θ

α(λ, µ)

)
Fn(λ, µ) + log

(
1− θ

1− α(λ, µ)

)
(1− Fn(λ, µ)). (A.3.6)

First we want to find the MLE for θ. The partial derivative of Equation (A.3.6) with
respect to θ is given by

∂`n
∂θ

(λ, µ, θ) =
Fn(λ, µ)

θ
− 1− Fn(λ, µ)

1− θ
. (A.3.7)

The zero of this equation is given by Fn(λ, µ). To check whether this is actually the MLE,
we compute the second order partial derivative of Equation (A.3.6) with respect to θ and
evaluate it in θ = Fn(λ, µ). This yields

∂2`n
∂θ2

(λ, µ, Fn(λ, µ)) = − 1

Fn(λ, µ)
− 1

1− Fn(λ, µ)
(A.3.8)

=
−1

Fn(λ, µ)(1− Fn(λ, µ))
. (A.3.9)

We know that Fn(λ, µ)(1 − Fn(λ, µ)) > 0 for any values of λ and µ. Therefore Equation
(A.3.9) is negative. We can conclude that

θ̂n := Fn(λ̂n, µ̂n) (A.3.10)
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is the MLE for θ0, where λ̂n and µ̂n are the MLEs for λ0 and µ0 respectively.
Now we want to find the MLEs for λ0 and µ0. To do this, we will fill in the MLE for

θ0 into Equation (A.3.6). This yields

`n(λ, µ, Fn(λ, µ)) = log

(
Fn(λ, µ)

α(λ, µ)

)
Fn(λ, µ)

+ log

(
1− Fn(λ, µ)

1− α(λ, µ)

)
(1− Fn(λ, µ)).

(A.3.11)

Since the MLE maximises this function, we can write

(λ̂n, µ̂n) := arg max
(x1,x2)∈(0,1)2

(
log

(
Fn(x1, x2)

α(x1, x2)

)
Fn(x1, x2)

+ log

(
1− Fn(x1, x2)

1− α(x1, x2)

)
(1− Fn(x1, x2))

)
.

(A.3.12)
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Appendix B

Basic concepts and theorems

Basic analysis and probability theory knowledge is assumed. There are a couple of key
concepts and theorems that will be mentioned due to their relevance. First we will look at
two ways to characterise limiting behaviour of real functions and give a few properties of
these characterisations.

Definition B.1 (Big O). Let f, g : A→ R where A ⊂ R. Then we write

f(x) = O(g(x)), (B.0.1)

for x→∞ if there exist M,N > 0 such that for all x > N we have

|f(x)| ≤M · |g(x)|. (B.0.2)

When a ∈ R we write
f(x) = O(g(x)), (B.0.3)

for x→ a if there exist δ,M > 0 such that

0 < |x− a| < δ =⇒ |f(x)| ≤M · |g(x)|. (B.0.4)

Definition B.2 (Small O). Let f, g : A→ R where A ⊂ R. Then we write

f(x) = o(g(x)), (B.0.5)

for x→∞ if for every ε > 0 there exists N > 0 such that for all x > N we have

|f(x)| ≤ ε · |g(x)|. (B.0.6)

When a ∈ R we write
f(x) = o(g(x)), (B.0.7)

for x→ a if for every ε > 0 there exists δ > 0 such that

0 < |x− a| < δ =⇒ |f(x)| ≤ ε · |g(x)|. (B.0.8)
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Remark. Statements with big O or small O notation such as Equation B.0.5 can not truly
be interpreted as equalities. It is more appropriate to interpret it as f being an element in
the set of all functions that are o(g). This will be important when working with expressions
that include such notation, such as the properties in the next theorem.

Theorem B.1 (Some properties of big and small O). In each of the properties that we
will mention, the limit that o and O are refer to will be the same. However, it does not
matter what these actually are, as the properties always hold. With f, g, f1, f2, g1, and g2
we denote functions.

• If g1 = o(f1) and g2 = O(f2), then g1 · g2 = o(f1 · f2).

• If g = o(f), then g = O(f).

• If g1 = o(f1) and g2 = f2 · g1, then g2 = o(f1 · f2). The same property holds for big
O.

• If g1 = o(f) and g2 = o(f), then g1 + g2 = o(f). The same property holds for big O.

We continue by considering random variables. First we will define three relevant types of
convergence of sequences of random variables and state a relation between them. Then we
consider two ways of characterising asymptotic behaviour of sequences of random variables.
These two characterisations are the probabilistic equivalents of big O and small O as
defined in Definitions B.1 and B.2. We then proceed by stating some well-known theorems
in probability theory that will be useful later on.

Definition B.3 (Convergence in distribution). Let (Xn)n∈N and X be random variables.
Let (FXn)n∈N and FX be the corresponding cumulative distribution functions. Then Xn is
said to converge in distribution to X if for all continuity points x ∈ R of FX we have

lim
n→∞

FXn(x) = FX(x). (B.0.9)

This is also denoted as
Xn

d−→ X. (B.0.10)

Definition B.4 (Convergence in probability). Let (Xn)n∈N and X be random variables.
Then Xn is said to converge in probability to X if for all ε > 0 we have

lim
n→∞

P(|Xn −X| > ε) = 0. (B.0.11)

This is also denoted as
Xn

p−→ X. (B.0.12)

Definition B.5 (Almost sure convergence). Let (Xn)n∈N and X be random variables.
Then Xn is said to converge almost surely to X if

P
(

lim
n→∞

Xn = X
)

= 1. (B.0.13)
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Theorem B.2. Almost sure convergence implies convergence in probability and conver-
gence in probability implies convergence in distribution.

Definition B.6 (Big O in probability). Let (Xn)n∈N be a sequence of random variables.
Let (an)n∈N be a sequence of real numbers. Then we write

Xn = Op(an), (B.0.14)

for n→∞ if for every ε > 0 there exist M > 0 and n ∈ N such that for all n ≥ N

P
(∣∣∣∣Xn

an

∣∣∣∣ > M

)
< ε. (B.0.15)

Definition B.7 (Small O in probability). Let (Xn)n∈N be a sequence of random variables.
Let (an)n∈N be a sequence of real numbers. Then we write

Xn = op(an), (B.0.16)

for n→∞ if for every positive ε

lim
n→∞

P
(∣∣∣∣Xn

an

∣∣∣∣ > ε

)
= 0. (B.0.17)

Remark. Statements with big O or small O notation such as Equation B.0.16 can not
truly be interpreted as equalities. It is more appropriate to interpret it as (Xn)n∈N being
an element in the set of all sequences of random variables that are op(an). This will be
important when working with expressions that include such notation.

Theorem B.3 (Continuous mapping theorem). Let M and N be metric spaces. Let
(Xn)n∈N and X be random variables defined on M . Suppose that g : M → N is a function
such that P(X ∈ Dg) = 0 where Dg is the set of discontinuity points of g. Then

Xn
d−→ X =⇒ g(Xn)

d−→ g(X), (B.0.18)

and
Xn

p−→ X =⇒ g(Xn)
p−→ g(X). (B.0.19)

Definition B.8 (Empirical cumulative distribution function). Let (Xi)i∈N be an i.i.d.
sequence of random variables. Then the empirical cumulative distribution function or
eCDF for a sample of size n ∈ N is given by

1

n

n∑
i=1

1Xi≤x, (B.0.20)

and denotes the fraction of the random variables Xi that are less than or equal to any
number.
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Theorem B.4 (Glivenko-Cantelli theorem). Let (Xi)i∈N be an i.i.d. sequence of random
variables sampled from a distribution with CDF F (x). For all n ∈ N let Fn(x) be the eCDF
for X1, . . . , Xn. Then

sup
x∈R
|Fn(x)− F | a.s.−−→ 0. (B.0.21)

Theorem B.5 (Chebyshev’s inequality). Let X be a random variable with finite expected
value µ and finite non-zero variance σ2. Then for any k > 0

P (|X − µ| ≥ kσ) ≤ 1

k2
. (B.0.22)

Theorem B.6 (Fréchet inequalities). Let (Ai)i∈N be a sequence of events. Then for all
n ∈ N

n∑
i=1

P(Ai)− (n− 1) ≤ P

(
n⋂
i=1

Ai

)
≤ min{P(A1), . . . ,P(An)}, (B.0.23)

and

max{P(A1), . . . ,P(An)} ≤ P

(
n⋃
i=1

Ai

)
≤

n∑
i=1

P(Ai). (B.0.24)

To finish this section, we will define uniform continuity and state the Heine-Cantor
theorem as these might not be known by all students.

Definition B.9 (Uniform continuity). Let (M,d1) and (N, d2) be metric spaces. Then a
function f : M → N is called uniformly continuous if for every ε > 0 there exists δ > 0
such that for all x, y ∈M with d1(x, y) < δ we have d2(f(x), f(y)) < ε.

Theorem B.7 (Heine-Cantor theorem). Let M and N be metric spaces. If f : M → N is
continuous and M is compact, then f is uniformly continuous.
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