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Abstract

Multiphase pumping in the oil and gas industry is the ability to boost pressure without sepa-
rating the liquid and the gas phases. This gives opporzunities to process the different phases
centrally when using multiple well sites, or processing on land for an offshore well. No sep-
aration of the phases and only one pipeline have to be used. For optimal performance of a
twin screw pump a small liquid fraction is necessary to seal the internal clearances of a twin
screw pump. 100 percent gas void fractions can be pumped for a short period of time when
arrangements are made to recirculate fluid, to scal the clearances. This makes the internal
design of a twin screw pump an engineering challenge. To gain more insight of the flow in a
twin screw pump a CFD model can be used.

The goal of this graduation report is to predict the leakage flow rate in a twin screw pump
with a three-dimensional model of the pump and a commercial CFD package. This goal can
be divided in three parts. The leakage flow rate first for non-rotating screws and single-phase
flow, secondly for rotating screws and single-phase flow, and finally considering multiphase
flow with rotating screws. In this report the first part is considered, and recommendations
are given for the other parts.

The leakage flow rate is simplified in two different cases. The first case is flow through
an annulus with inner rotating cylinder, this represents the flow between the screw and
housing (liner) of a twin screw pump. The second case is flow through a straight-through
labyrinth seal. The screw thread viewed in axial direction is similar to a labyrinth seal.
Recirculation and throttling of fluid in the screw cavities can be expected. For these two
cases the performance of the turbulence model is evaluated and coupled to requirements for
the dimensionless wall distance in the first cell near the wall.

To simulate the flow in a twin screw pump the flow domain has to be meshed, the mesh must
have a limited number of cells to perform calculations with normal PC requirements in a rea-
sonable amount of time. The number of cells in the clearance between the tips of the screw and
the liner is estimated. The number of cells with an unstructured tetrahedral mesh is too large
to perform CFD simulations. Structured hexahedral cells can be used, however these cells
have to be elongated in axial and tangential direction to reduce the number of cells. A struc-
tured grid with hexahedral cells is created by layering cross-sections perpendicular to the axial
direction. The cells on a cross-section are placed along gradient lines of the Laplace problem
solved for this cross-section. The Laplace problem is solved, for an unstructured triangular
mesh of the cross-section, with a mesh generator and solver of a commercial CFD package.
Gradient lines never cross each other, so a robust two-dimensional grid is created. For the
next cross-section, a small displacement in axial direction, the screws are rotated slightly and
the Laplace problem is solved again. Merging the cross-sections gives a three-dimensional grid



of the screws of a twin screw pump. The quality of this three-dimensional grid is examined.
The low screw pitch gives a relatively large tangential displacement compared to the axial
displacement, resulting in highly skewed cells. This reduces the applicability of this grid for
turbulent flows. Elongating the screws in axial direction (higher pitch) gives a better quality
grid, however the original geometry is lost.

The leakage flow through a twin screw pump has two paths, first, leakage through the clear-
ance between the screw and the liner, and secondly between the screws itself. The leakage
flow through the twin screw pump is simulated for a differential pressure of up to 10 kPa per
screw thread (seal) on the three-dimensional grid. For higher differential pressures the simu-
lation does non converge. The simulated leakage flow rate in the clearance between screw and
liner is approximately the same as the analytic laminar leakage flow rate through a stationary
annulus. The relation between differential pressure and leakage flow rate is determined for
low axial Reynolds numbers, and for higher axial Reyriolds numbers using an elongated grid
in axial direction.

The static numerical simulation of the flow in a twin screw pump show realistic flow features.
The differential pressure per screw thread has to be increased to simulate real pump per-
formance. The numerical model is created with the ability to add a dynamic mesh, this to
simulate the rotation of the screws. Also multiphase models can be added to predict leak-
age flow characteristics with liquid-gas mixtures. For these extensions to the current model
recommendations are given.



Nomenclature

Symbol Description [Unit]

a edge length of cell (]

Ad projected area of clearance between screw and liner per-  [m?
pendicular to the axial direction

Aliner area of two joined circles [m?]

p: p— area of screw cross-section [m?)

D outer diameter screw [m]

dy, hydraulic diameter [n]

e elongation of grid [-]

far aspect ratio of cell edges []

h center distance screws [rn]

hy height of screw cavity [m]

GVF gas void fraction [-]

L length (]

L screw thickness [mn]

m mass flow rate [kg/s|

Ma Mach number [-]

N rotation speed [rpm]

N number of axial cells [-]

Neell number of cells in radial direction [-]

Ntan number of tangential cells -]

Norew number of screw threads (revolutions) -]

Nstr number of structured cells []

T number of unstructured cells [-]

R outer radius of screw [m]

/i inner radius of screw [m]

Riiner radius of liner [m]

Re axial Reynolds number [-]

Re,, tangential Reynolds number -]

s clearance between screw and liner [mn]

p absolute pressure [Pa]

Ap pressure difference [Pa)

q grow rate -]

r pitch of one screw thread [m/rev)

Q.l leakage flow rate in clearance between screw and liner  [m®/s]

iii



Symbol Description [Unit)
Q leakage flow rate of pump [m3/s]
Qr realized flow rate of pump [m3/s]
Q theoretical flow rate of pump [m3/s]
Ur friction velocity [m/s]
v fluid velocity [m/s]
{(Vaz) mean axial velocity [m/s]
Ve volume of clearance between screw and liner [m3)
Vb screw displacement volume per revolution [m3/rev]
Vie volume of hexahedral cell [m3)
Viei volume of tetrahedral cell [m3)
y* dimensionless wall distance -]

Greek symbols

Symbol Description [Unit]

¢ angle [rad)

A resistance coefficient [-]

i dynamic viscosity [kg/(ms)]
v kinematic viscosity [m?/s]

T shear tensor [N/m?]
i wall shear stress [N/m?]
o potential [-]

p density [kg/m?]
w angular velocity of the screw [rad/s]
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Chapter 1

Introduction

Screw pumps are a special type of rotary positive displacement pump in which the flow
through the pumping element is axial. The liquid is carried between screw threads on one
or more screws and is displaced axially as the screws rotate and intermesh (see figure 1.1).
In all other rotary pumps the liquid is forced circumferentially, thus giving the screw pump
its unique axial flow pattern and low internal velocities a number of advantages in many
applications where liquid agitation or churning is not desired. Another property for a twin
screw pump, as opposed to centrifugal pumps is the capability of handling mixtures of liquid
and vapour. In this report only twin screw pumps are considered.

The applications of screw pumps cover a diversified range of markets including navy, marine,
and utilities fuel oil services; marine cargo; industrial oil burners; lubricating oil services;
chemical processes; petroleum and crude oil industries; power hydraulics for navy and machine
tools; and many others. The screw pump can handle liquids in a range of viscosities, from
molasses to gasoline, as well as synthetic liquids in a pressure range from 3.5 to 350 bar and
flows up to 1820 m3/h. In this report only crude oil transportation is considered .

Because of relatively low inertia of their rotating parts, screw pumps are capable of operating
at higher speeds than other rotary or reciprocating pumps of comparable displacement. Screw
pumps, like other rotary positive displacement pumps, are self-priming and have a delivery
flow characteristic, which is essentially independent of pressure, provided there is sufficient
viscosity in the liquid being pumped.

Twin screw pumps are available in two configurations: single end and double end (see figure
1.2). Reference is made to [1] with respect to this chapter.

— @%%@ =
N7

(a) (b)

(@) O))

Figure 1.1: Diagrams of screw and gear clements, showing (a) axial and (b) circumferential
flow
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Figure 1.2: Twin screw pump with double-end arrangement and internal timing gears

1.1 Theory of screw pumps

In screw pumps, it is the intermeshing of the threads on the screws and the close fit of the
surrounding housing (liner) that create one or more sets of moving seals in a series between
the pump inlet and outlet. These sets of seals act as a labyrinth and provide the screw
with its positive pressure capability. The successive sets of seals form fully enclosed cavities
that move continuously from inlet to outlet, providing a smooth flow. Because the screw
pump is a positive displacement device, it will deliver a definite quantity of liquid every
revolution of the screws. This delivery can be defined in terms of displacement volume V),
which is the theoretical volume displaced per revolution of the screws and is dependent only
upon the physical dimensions of the screws. This delivery can also be defined in terms of
theoretical capacity or flow rate @; measured in cubic meters per second, which is a function
of displacement volume and speed N (rpm):

Qu=gsVoN (L1)
If no internal clearances existed, the pump’s actual delivered or net flow rate @, would equal
the theoretical flow rate. Clearances, however, do exist with the result that whenever a pres-
sure differential occurs, there will always be internal leakage from outlet to inlet. This leakage
@, varies depending upon the pump type or model, the geometry of the clearance, the liquid
viscosity, the rotation speed of the screws, and the differential pressure. The delivery flow rate
or net flow rate is the theoretical flow rate minus the leakage flow rate: Q, = Q; — @,. If the
differential pressure is almost zero, the leakage flow rate may be neglected and @, = @;. The
theoretical flow rate is not dependent on the differential pressure over a positive displacement
pump, sce figure 1.3(a).

The theoretical flow rate of any pump can readily be calculated if all essential dimensions
are known, see figure 1.3(b) for the screw dimension parameters. For any particular thread
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N = constant
(
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Ap g
(a) Theoretic and realized volume flow rate (b) Parameters

against differential pressure for positive displace-
ment pumps

Figure 1.3: Twin screw pump

configuration, assumning geometric similarity, the size of cach cavity mentioned earlier is pro-
portional to its length and cross-sectional area. The thread pitch » measured in terms of
the same nominal diameter, which is used in calculating the cross-sectional area, defines the
length. Therefore, the volume flow rate of each cavity is proportional to the cube of this
nominal diameter and the speed of rotation N (rpm):

Q. = kD3N (1.2)
or writing it in terms of pitch,
Qi=ky-r-D’:N (1.3)

where r = kD/k, with k£ and k; being constants.

Thus, for a given geometry, it can be seen that a relatively small increase in pump size
can provide a large increase in flow rate. This is also true for centrifugal pumps which scale
according to ¢ = ,—\%:r = constant. The theoretical flow rate of centrifugal pumps is influenced
by the differential pressure over the pump, this is in contrast to positive displacement pumps
like screw pumps.

The leakage flow rate can also be calculated, but it is usually estimated based on empirical
values obtained from extensive testing. These test data are the basis of the design parameters
used by every pump manufacturer. The leakage flow rate generally varies approximately with
the square of the nominal diameter and linearly with the pressure difference. When neglecting
the effect of rotation of the screws on the leakage flow rate, the net flow rate @, can be written
as:

» =kD?*N — kyApD? (1.4)

with & and ko empirical constants depending on the geometry and the working fluid.

1.2 Construction of screw pumps

Design concepts The pressure gradient in the pump elements of all the types of screw
pumps produces various hydraulic reaction forces. The mechanical and hydraulic technique
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employed for absorbing these reaction forces are one of the differences in the types of screw
pumps produced by various manufacturers. Another fundamental difference lies in the method
of engaging, or meshing, the screws and maintaining the running clearances between them.
Two basic design approaches are used:

e The timed screws approach is based on an external means for phasing the mesh of the
treads and for supporting the forces acting on the screws. In this concept, theoretically,
the threads do no come into contact with each other nor with the housing bores in which
they rotate.

o The untimed screws approach is based on the precision and accuracy of the screw forms
for the proper mesh and transmission of rotation. They utilize the housing bores as
journal bearings supporting the pumping reactions along the entire length of the screws.

Timed screw pumps require separate timing gears between the screws and separate support
bearings at each end to absorb the reaction forces and maintain the proper clearances. Un-
timed screw pumps do not require gears or external bearings and thus are considerably simpler
in design.

Double-end screw pumps The double-end arrangement is basically two opposed, single-
end pumps or pump elements of the same size with a common driving screw that has an
opposed, double-helix design with one casing. As can be seen from figure 1.2, the fluid enters
a common inlet with a split flow going to the outboard ends of the two pumping elements and
is discharged from the middle or center of the pumping elements. The two pump elements are,
in effect, pumps connected in parallel. For low-pressure applications, the design can pump
backwards when the direction of screw rotation is reversed. In either of these arrangements,
all axial loads on the screws are balanced, as the pressure gradients in each end are equal and
opposite. The double-end screw pumps construction is usually limited to low- and medium
pressure applications, with 28 bar being a good practical limit to be used for planning pur-
poses. Double-end pumps are generally employed where large flows are required or where
highly viscous liquids are handled.

Timed design Timed screw pumps having timing gears and screw support bearings are
available in two general arrangements: internal and external. The internal version has both
the gears and the bearings located in the pumping chamber and the design is relatively simple
and compact. This version is generally restricted to the handling of clean lubricating fluids,
which serve as the only lubrication for the timing gears and bearings.

The external timing arrangement is the most popular and is extensively used. It has both
the timing gears and screw support bearings located outside the pumping chamber. This
type can handle a complete range of fluids, both lubricating and non-lubricating, and, with
proper materials, has good abrasion resistance. The timing gears and bearings are oil-bath-
lubricated from an external source. This arrangement requires the use of four stuffing boxes
or mechanical seals, as opposed to the internal type, which employs only one shaft seal.

The main advantage of the timed screw pump is that the timing gears transmit power to the
screws with no contact between the screw threads, thus promoting long pump life. The gears
and screws are timed at the factory to maintain the proper clearance between the screws.
The timing gears can be either spur or helical, herringbone, hardened-steel gears with tooth
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profiles designed for efficient, quiet, positive drive of the screws. Antifrictional radial bearings
are usually of the heavy-duty roller type, while the trust bearings, which position the screws
axially, are either double-row, ball-thrust or spherical-roller types.

The housing can be supplied in a variety of materials, including cast iron, ductile iron, cast
steel, stainless steel, and bronze. In addition, the screw bores of the housing can be lined
with industrial hard chrome for abrasion resistance.

Since the screws are not generally in metallic contact with the housing or with one another,
they can also be supplied in a variety of materials, including cast iron, heat-treated alloy steel,
stainless steel, Monel, and nitralloy. The outside of the screws can also be covered with a
variety of hard coating materials such as nickel based alloys, tungsten carbide, chrome oxide,
or ceramic.

1.3 Special multiphase applications

Screw pumps have been used with gas-entrained application for many years, but recent process
changes in oilfield technologies have created requirements for pumping multiphase fluids,
containing more than just nominal amount of gases. In many oil well applications, the liquid
oil flow eventually degenerates into all sorts of difficult multiphase mixtures of oil, gas, water,
and sand. In the past, it was common for the gas to be separated and flared off at the well
head with only the liquid product to be retained for further processing. If the gas is to be
processed as well, separators, compressors, and dual pipelines are required to handle the gas
phase. Therefore, a pump which can handle these difficult liquids with high gas contents,
can save significant equipment costs as well as operating costs. Under various conditions, the
well output can vary from 100 percent liquid to 100 percent gas, while maintaining the full
discharge pressure.

When pumping multiphase products with high gas void fractions, the pump must be designed
with a small pitch to provide a sufficient number of seals. The key to pumping multiphase
products is to ensure that some liquid is always available to seal the screw clearances and
reduce the leakage flow rate. Even a small amount of recirculated liquid is sufficient to
provide this seal and enable the screw pump to operate with GVFs approaching 100 percent.
Depending on a number of factors, the volume of liquid required to seal and cool the screws
can be three to six percent of the total inlet volume flow rate. In order to ensure that sufficient
liquid is available at conditions of high GVF's, a separate liquid flush can be provided or a
separator type of body pump can be used. This type of body includes a special chamber
that can separate some liquid from the multiphase mixture being pumped. This liquid can
be recirculated back to the screws and mechanical seals to provide sealing and cooling liquid
at times when the product is almost all gas.

When pumping liquids, the leakage flow rate through the internal clearances is proportional
to the differential pressure and inversely proportional to the viscosity (assuming laminar flow
through the clearances). However, in multiphase applications, as the void fraction increases,
the leakage flow rate decreases. See figure 1.4(a) for the typical pump performance when
pumping multiphase mixtures. Leakage flow compresses the gas in the upstream screw cavity.
While the screw cavities move downstream, the gas void fraction reduces by the increased
pressure. Some leakage flow fills the reduction in gas volume in the cavity, and a smaller
leakage flow progresses to the next upstream cavity. This is clearly visible in figure 1.4(b).
When the leakage flow rate is smaller, the differential pressure over a clearance is also smaller.
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The leakage flow rate through the most upstream clearance is the total leakage flow rate of a
twin screw pump for multiphase applications.

Q

Q . Qr
? GVF = 095
GVEF=0

Q1
Ap L ~ ~_ — |

(a) Typical twin screw pump performance (b) Gas compression by the leakage flow
curve (N=constant)

Figure 1.4: Multiphase application of a twin screw pump

1.4 Goal and outline

The aim of the research is to predict the leakage flow rate of a multiphase twin screw pump by
numerical simulations of the internal flow. This rescarch can be divided in three stages: first,
single phase flow in a non-rotating pump. Secondly, single phase flow in a rotating pump and
thirdly, multiphase flow in a rotating pump. This report is restricted to the first stage and
mainly focusses on the method to generate a suitable computational grid.

In chapter 2, the characteristics of the leakage flow are studied by considering two simpler
cases: the flow through an annulus with rotating inner cylinder, and the flow through a
straight-through labyrinth seal. Recommendations for the grid and turbulence model are
given. In chapter 3, a method to create a three-dimensional grid of the screw pump and
mesh methods for rotating screws is presented. It is used in chapter 4 to construct a three-
dimensional grid of the twin screw pump. In chapter 5, the generated grid is used to simulate
the leakage flow rate for non-rotating screws and single-phase flow with the three-dimensional
grid. Finally in chapter 6, the conclusion of the developed mesh method and simulated leakage
flow rate arc discussed. Also recommendations to expand the model for time-dependent flow
simulations and multiphase flow are discussed in this chapter.



Chapter 2

Simplified leakage flow in a twin
sCrew pump

In section 2.1 the flow regime in the clearances of the screw is considered and the corresponding
Reynolds number is estimated. The leakage flow in a twin screw pump is dependent on two
phenomena. First, the leakage flow rate is dependent on friction in the small clearance
between the tips of the rotating screw and the stationary liner. Secondly, the leakage flow
rate is dependent on the flow resistance of the inlet and outlet of this clearance. These two
phenomena in the leakage area of a twin screw pump are represented by two characteristic
flow cases. First, the flow in an annulus with rotating inner cylinder. Secondly, flow through
a stationary labyrinth seal. In section 2.2 the flow in an annulus with rotating inner cylinder
is simulated for the corresponding Reynolds number of a twin screw pump. In section 2.3 the
leakage flow through a stationary labyrinth seal is simulated for the corresponding Reynolds
number of a twin screw pump. For the annulus with rotating inner cylinder and the labyrinth
seal the simulated flow is compared with experimental results and recommendations for grid
and turbulence model are given. In section 2.4 the simplified flow from section 2.1 and 2.2
is applied for a twin screw pump to estimate the leakage flow rate for a complete twin screw
pump. In section 2.5 recommendations are made for the grid and turbulence model.

2.1 Reynolds number in twin screw pump

The Reynolds number is an important parameter for the flow regime. For pipe flow a Reynolds
number smaller than 2100, based on hydraulic diameter and mean velocity, represents laminar
flow and a higher Reynolds number represents turbulent flow in general. In the clearance area
between screw and liner of a screw pump two directions of fluid motion are present. First the
leakage flow in axial direction and secondly the tangential motion of fluid in the clearance.
The axial Reynolds number Re and the tangential Reynolds number Re,, are defined as:

Re = M (2.1)
L
e, = D04 (2.2)

L
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where (vq,) is the mean axial flow velocity, R the outer screw radius, w the angular velocity
of the screw, s the clearance between screw and liner, p the density of the medium, and p the
dynamic viscosity. The axial Reynolds number is normally based on the hydraulic diameter
d;, = 2s but in equation (2.1) the notation of [11] is used. Note that with this notation a
axial Reynolds number larger than 1050 represents turbulent flow in a pipe.

From these equations it is clear that the Reynolds numbers are dependent on dynamic viscosity
and density of the medium, and the clearance. The tangential Reynolds number is dependent
on the circumferential speed of the screw, while the axial Reynolds number depends on the
axial velocity, which is in turn dependent on the differential pressure over the screw. The
variables not concerning the geometry of the screw will be discussed point wise:

Viscosity A multiphase twin screw pump designed for pumping crude oil is considered. The
dynamic viscosity of crude oil varies between 1.4 - 1073 — 20 1073 kg/(ms) L.

Tangential velocity The tangential velocity is dependent on the outer radius of the screw
and the rotational speed of the screws. The maximum rotational speed typical for twin screw
pumps designed for non-lubricating liquids is 1750 rpm 2 and for lubricating liquids 2900
rpm 3

Axial velocity The mean axial leakage velocity for Hagen-Poiseuille flow in a cylindrical
annulus is given in equation (2.3). This value of (v,,) may serve as a first estimate since no
axial movement of the annulus is taken into account. Also laminar flow is considered in this
estimation. When the leakage flow is turbulent, the turbulent flow profile and the rotation of
the screw produces deviations from this estimated mean axial velocity. Reference is made to
(2] for this equation.

Aps?
12pL

where L is the length of the annulus, Ap the pressure difference, s the clearance, and g the
dynamic viscosity.

With this mean axial velocity (v,,) and the twin screw pump dimensions the axial Reynolds
number can be estimated. The differential pressure over one seal is the total pressure build
up divided by the number of seals, considering single phase flow. The total number of seals is
dependent on the number of screw threads. In figure 2.1 a schematic view and a photograph
of two screw threads are given. The cavities A and B in this figure are connected. To seal one
cavity at least 2 screw threads are necessary, but normally just over 2 screw threads are used
to ensure proper sealing. For example: 5% screw threads seal 4 cavities. Thus the typical
total pressure build up over the pump is 16 bar 2 3 at maximum. Assuming 4 seals, this
gives a differential pressure Ap of 4 bar per seal.

The axial Reynolds number Re is estimated at 10,000 and the tangential Reynolds number
Re, is 3000 for crude oil with the parameters given in table 2.1.

In this estimation of the axial Reynolds number the following phenomena are neglected:

(Vaa) = (2.3)

o Axial flow profile is turbulent, resulting in an even higher axial velocity and Reynolds
number.

e No inlet and outflow resistances are considered, and the axial velocity will be lower
resulting in a lower axial Reynolds number.

reference to http://www.engineeringtoolbox.com
?Houttuin 216.10 screw pump, http://houttuin.nl/contents/21610bro.pdf
YHouttuin 249.40 screw pump, http://houttuin.nl/contents/24940bro.pdf
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B
(a) Schematic view (b) Photograph

Figure 2.1: Two threads of twin screw pump

Table 2.1: Parameters for Reynolds numbers of a twin screw pump

7 1.4-107° kg/(ms)
p | 800 kg/m?
N | 1350 rpm

Ap | 4 bar
L 22 mm
R 147 mm

0.25 mm

V)

e The screw translates opposite to the leakage flow, so the axial flow profile will be differ-
ent. The mean axial velocity will be lower resulting in a lower axial Reynolds number.
The axial screw velocity is given by (N/60) - r, where IV is the rotational speed in rpm,
and r the screw pitch in m. The axial screw velocity is 1.35 m/s at 1350 rpm and a
screw thread of 60 mm. This is low compared to the estimated mean axial velocity of
69.3 m/s.

e The screw rotates and this leads to a tangential motion of the fluid and, at high rotation
speeds, to the occurrence of Taylor vortices in the fluid. This secondary flow leads to an
additional resistance and a lower axial velocity and axial Reynolds number. In section
2.2 this rotation is considered.

2.2 Annulus with rotating inner cylinder
The resistance of a water flow in an annulus with a rotating inner cylinder is studied experi-

mentally in [11]. For the CFD simulations, these experiments will serve as a test-case which
will give recommendations for grid properties and turbulence model.
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2.2.1 Experiment

The geometry of the test set-up used in [11] is given in figure 2.2. In this figure the fluid
flows from left to right. The pressure is measured at three locations (Ny, Ny and Nyyy) and
also the flow rate is measured. As is apparent from the figure, the pressure is measured at
some distance from the inlet to minimize inlet flow effects. At every measuring location four
holes of 0.4 mm in diameter and 90° apart in the outer cylinder are connected to minimize
measuring errors.

Anticipating a turbulent flow, the pressure drop Ap over the annulus is written as:

AP _ L ) <'Uu:r>2
L~ (hgp+ b)) el (2.4)

with A the resistance coefficient, §;, the resistance factor for the inlet and the outlet, L
the axial length, s the clearance between inner and outer cylinder of the annulus, (v,.) the
mean axial velocity, and p the density. In figure 2.3, the resistance coeflicient A of various
experiments with tangential Reynolds number Re, between 1000 and 20000 are given for axial
Reynolds numbers Re in the range 100 to 25000. The axial Reynolds number for leakage flow
in the clearances between screw and liner is more accurately estimated with equation 2.4. A
dio of 1.5 is chosen according to [8] for the resistance of the in- and outlet. The axial Reynolds
number is estimated at 2230.

For flow in an annulus with rotating inner cylinder, there are no inlet and outlet resistances,
and §;, 1s set to zero.
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Figure 2.2: Experimental set-up of an annulus with rotating inner cylinder (dimensions in
mm)

In table 2.2 the dimensions of the smallest annulus considered in the experimental study are
given, and compared with typical dimensions of a screw pump. The clearance ratio s/R of a
screw is much smaller than that of the annulus. It can be concluded that the clearance ratio
does have an effect on the resistance coefficient A (see figure 2.3). Therefore, the leakage flow
rate of a screw pump can not be accurately determined from the measurements. However,
this difference has no influence on recommendations for grid and turbulence model, because
the exact geometry of the annulus is used in the numerical simulations.

2.2.2 Numerical simulation

For Re = 2230 and Re, = 3000 a numecrical simulation of flow in an annulus with rotating
inner cylinder is performed with the commercial CFD-package Fluent. These Reynolds num-
bers indicate a turbulent flow. This is a steady axisymmetric problem, and is solved using



2.2 Annulus with rotating inner cylinder 11

o

SO0
— S bro— —

WA 0O L
QNN

Figure 2.3: Relation between resistance coefficient A and tangential Reynolds number Re,

for various & and axial Reynolds number Re

Table 2.2: Clearance ratio s/R for a twin screw pump and an annulus with rotating inner
cylinder

Radius R [mm] | Clearance s [mm] | Clearance ratio s/R |[-]
Annulus 31.72 0.43 0.0136
Screw pump | 147.25 0.25 0.0017

the segregated solver and implicit formulation. The segregated solver is used because in Flu-
ent this solver is capable of adding multiphase models. The alternative, a coupled solver, is
not capable of adding multiphase models. The coupled solver in Fluent solves the governing
equations of continuity, momentum, and if necessary energy simultaneously as a set of equa-
tions. The segregated solver solves the governing equations sequentially (segregated from one
another). The segregated solver can only be used with implicit formulation in Fluent. The
continuity and momentum equations solved by the segregated solver are given in differential
form and cylindrical coordinates as:

9 10 10 3
P\t "or T o0 e T ) T 22 (o) e+ Ter —
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where p is the density, u the fluid velocity, 7 the shear tensor, and p the pressure. The term
2% is zero for axisymmetric problems. In case of steady state calculations the 2% term is also
zero. The equations of continuity and momentum are implemented in the SIMPLE method
(Semi Implicit Method for Pressure Linked Equations). This method calculates the flow field
with an estimate of the pressure. After this, the pressure is corrected with the solution of the
flow field to form a new estimate of the pressure. In this way iteratively a solution for the
flow field and the pressure can be calculated that satisfies both continuity and momentum
equations. The equations of the SIMPLE method are solved with the Gauss-Seidel algorithm
for an Algebraic MultiGrid (AMG). Discussing these methods falls outside the scope of this
report. In [4] and [7] these methods are discussed.

Numerical models have two approaches to model turbulent flow behaviour near solid walls;
wall functions and near-wall modeling approaches. Wall functions use semi-empirical formulas
to resolve the flow in large cells near the wall. Near-wall modeling uses small cells near the
wall to resolve the flow. The approaches each have different requirements on the size of the
first cell at the wall. This is expressed in the dimensionless wall distance y™, defined as:

Yy = pury/p (2.6)

where y is the distance of the center of the element to the wall, 4 the dynamic viscosity and u,
the friction velocity given by , /I;)'L where 7, is the wall-shear stress defined as 7, = u (3:—;) o
y:

The required y* for the wall function approach is 30 < y™ < 200. A value closer to the lower
bound is most desirable. The required y* for near-wall modeling is of the order of 1. The
upper bound is yT < 4 ~ 5. Another criterion for near-wall modeling is that there are at least
10 cells within the viscosity-affected boundary layer. In [4] en [6] these methods are discussed
extensively.

In the remainder of this section, numerical results will be compared with results from ex-
periments as given in figure 2.3. Values of resistance coeflicient A at intermediate Reynolds
numbers are determined by linear interpolation. In the simulations, two near-wall approaches
will be considered: first wall functions will be evaluated, and secondly near-wall modeling.

Wall functions

With the & — € model with standard wall functions, the value of y* is calculated for grids
with different number of cells in radial direction. The value of y* is solution dependent: it
will vary slightly for different turbulence models, but it gives a good idea of the dimensionless
wall distance with that grid. In table 2.3 the dimensionless wall distance is given for different
number of cells nqey in radial direction. The required dimensionless wall distance 30 < y* <
200 is not reached with these Reynolds numbers (Re = 2230 and Re,, = 3000). The calculated
resistance coefficient does not seem to be influenced much by the dimensionless wall distance.
To maintain some radial cells in the annulus and to keep the value of y* close to the required
value, n..y = 5 is chosen to determine the accuracy of the different turbulence models.
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Table 2.3: Dimensionless wall distance y* and resistance coefficient A for different grids of
the annulus problem determined with the standard k& — € model and standard wall function
(Re = 2230, Re,, = 3000)

Neell y+ /\num
4 22 | 0.0455

) 18 | 0.0461
6 15 | 0.0464
7 13 | 0.0466
8 11 | 0.0466

In table 2.4 the calculated resistance coefficient A is given for the & — € and k — w turbulence
models with various model options and wall functions. Furthermore, the difference between
the calculated and the experimental value of the resistance coefficient A is given. A struc-
tured grid with equilateral edges is used, sce figure 2.5(a). The axial length of the structured
elements is not considered of importance due to the axial nature of the flow. Additional
numerical simulations with elongated cells in axial direction (2, 5 and 10 times) give the same
resistance coeflicients A.

Table 2.4: Resistance coefficient A for various turbulence models with wall functions deter-
mined for the annulus problem (neen = 5,y% = 18, Aegp = 0.0579,Re = 2230, Re,, = 3000)

turb. model | version option wall function Anum | dev (%]
k—e€ standard standard 0.0461 | 20.4
non-equilibrium | 0.0477 | 17.6
RNG standard 0.0447 | 22.8
non-equilibrium | 0.0463 | 20.0
differential standard 0.0421 | 27.3
non-equilibrium | 0.0442 | 23.7
swirl standard 0.0442 | 23.7
non-equilibrium | 0.0459 | 20.7
diff+swirl standard 0.0419 | 27.6
non-equilibrium | 0.0422 | 27.1
realizable standard 0.0452 | 21.9
non-equilibrium | 0.0469 | 19.0
k—w standard 0.0554 | 4.3
shear flow corr. 0.0544 | 6.0
SST 0.0553 | 4.5

The k — w turbulence models are most accurate in this situation. In figure 2.4 the y™*-
dependency for the Standard and SST k& — w model is given, using grids with different values
of neey. Also the results for the standard k& — e turbulence model are given in this figure.



2.2 Annulus with rotating inner cylinder 14

The dependency on y' is obvious, over prediction for low y! values and under prediction for
higher y ! values, for the & — w turbulence model. Still, these models can be used because
the deviation is smaller than with the & — ¢ models. In [6] this dependency on y' was also
mentioned for k& — w turbulence models.
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Figure 2.4: Relation between deviation of calculated and experimental resistance coeflicient.
A for different 3! values for the annulus problem (Re = 2230, Re,, = 3000, standard wall
function)

The standard k& — w model is used to calculate the resistance coefficient for different axial
and tangential Reynolds numbers. The deviation with the experimental results and the
dimensionless wall distance are given in table 2.5. There is a high deviation at y' = 10.5
which could be explained by the linear (laminar) law that Fluent employs for turbulent
boundary layers at approximately y' < 11.

Table 2.5: Resistance coefficient A\ for different Re combinations with standard k& — w model
and wall functions (ne.y = 6)

Re Re, | y! Anum | Aeap dev %]
1000 | 2000 | 10.5 | 0.105 0.076 38
3000 | 12 0.112 0.098 14
6000 | 17 0.135 0.152 11

2500 | 2000 | 17 0.0522 | 0.0457 | 14
3000 | 18 0.538 0.543 1

6000 | 21 0.0616 | 0.068 9
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(a) wall function (neen = 5) (b) near-wall modeling (neenr = 15)

Figure 2.5: Partial mesh of the annulus with rotating inner cylinder for different wall ap-
proaches

Near-wall modeling

Similar to the previous section, first the dimensionless wall distance will be calculated for
different grids, while keeping in mind that the total number of cells should be kept as low as
possible. Three different grids are considered, n..; equal to 10, 15 and 20 and a smooth grid
refinement towards the solid walls (figure 2.5(b)). In table 2.6 the corresponding y™ values of
the different grids are given. For Re = 2230 and Re, = 3000 the dimensionless wall distance
with ney = 10 is too high. Another criterion states that there are at least 10 cells in the
viscosity affected region [4]. This would bring the total number of cells up, so simulations are
performed to test this criterion. For n..; = 15 the resistance coeflicient is determined for the
different turbulence models with near-wall modeling, results are given in table 2.7.

Table 2.6: Dependency of dimensionless wall distance y™* for different grids determined with
standard k — w turbulence model and near-wall modeling for the annulus problem

Neell y+ )“num

10 7 0.0517
15 3.2 | 0.0548
20 1.7 | 0.0632

2.3 Labyrinth seal

Leakage flow in a twin screw pump has a stream path that is similar to the stream path through
a ’straight-through labyrinth seal’. The results of numerical simulations are compared with
the experimental results to give recommendations for the grid and turbulence model.

2.3.1 Experimental set-up

Airflow through a stationary straight-through labyrinth seal is studied experimentally in [5].
In this study, air flows through the seal with axial Reynolds numbers in a range of 300 to 7500
in the seal clearance. In figure 2.6 a schematic view of the labyrinth seal is given. In table
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Table 2.7: Resistance coeflicient A for various turbulence models with near-wall modeling for
the annulus problem (neey = 15,y = 3, Aexp = 0.0579, Re = 2230, Re,, = 3000)

turb. model | version option p— dev. [%]
k—e¢ standard 0.0572 | 1.2
RNG 0.0573 | 1.0
differential 0.0578 | 0.2
swirl 0.0574 | 0.9
diff+swirl 0.0578 | 0.2
realizable 0.0578 | 0.2
k—w standard 0.0548 | 5.4
shear flow corr. | 0.0506 | 12.6
SST 0.0543 | 6.2

2.8 the dimensions of the labyrinth seal and the twin screw pump are given. The clearance
s and the diameter of the labyrinth seal D are similar to the screw pump, the length of the
clearance L and the pitch r are considerably smaller than for the screw pump. Inlet and
outflow resistances are the main sealing principle of a labyrinth seal. For a twin screw pump
the sealing between screw cavities is also established by a relatively long sealing clearance.
The total leakage flow rate of the screw pump can not be estimated directly with the leakage
flow rate through the labyrinth scal, because of this difference in sealing principle and the
non-rotating seal. The larger sealing length of the clearance has to be taken into account to
estimate the leakage flow rate in a screw pump. However, this difference has no influence on
recommendations for grid and turbulence model.

station | L 5 station 2
outlet
1 Labyrinth | Twin screw
seal pump
by s [mm] | 0.36 0.25
D D [mm] | 356 295
L [mm] | 0.25 22
r  [mm] |6 60
\ W 777777 Ll - hi [mm] |6 85
Figure 2.6: Experimental set-up of straight-  Table 2.8: Dimensions of straight-through
through labyrinth seal labyrinth seal and twin screw pump

2.3.2 Numerical simulation

A numerical simulation in Fluent is performed to calculate the mass flow rate through the
labyrinth seal for Re equal to 1572 and 2195. The Mach number Ma is a measure for the
variation of density, according to Ma? & Ap. A density variation smaller than ten percent is
present here, and compressibility is neglected in the numerical simulation. Different turbu-
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Table 2.9: Experimental results labyrinth seal

p1 [kPa] | p2 [kPa] | m [kg/s] | p [kg/m?] | Re [] | Ma []
100.695 | 92.503 0.027303 | 1.1738 1572 ] 0.20
108.793 | 93.806 0.038118 | 1.2680 2195 ] 0.28

lence models are evaluated with the grid given in figure 2.7. This is a structured quadrilateral
grid with 5 radial cells in the seal clearance. In Fluent a steady axisymmetric problem is
solved with the segregated solver and implicit formulation using standard wall function for
incompressible flow. Anticipating the results presented in chapter 3, it is concluded that the
number of cells should be kept as low as possible. Therefore, only wall functions are consid-
ered for the simulation of flow through a labyrinth seal. In table 2.10 the calculated mass flow
rate and the deviation with the experimental mass flow rate is given. The flow through the
labyrinth seal results in a vortex in the seal cavity, which is clearly visible at the streamlines
of the flow in the labyrinth secal, given in figure 2.8.
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Figure 2.7: Structured quadrilateral grid of straight-through labyrinth seal

Table 2.10: Mass flow rate in a stationary labyrinth seal for various turbulence models using
wall functions

Re =1572,y" > 11, | Re = 2195,y > 14,
m = 0.0273 m = 0.0381
m lkg/s| | dev [%] | 1 [kg/s] | dev [%)]
k — ¢ | Standard | 0.0281 2.9 0.0399 4.7
RNG 0.0294 7.7 0.0421 10.4
Realizable | 0.0299 9.5 0.0428 12.3
k —w | Standard | 0.0267 2.2 0.0379 0.6
SST 0.0304 114 0.0437 14.6

2.4 Leakage flow in twin screw pump

The flow through an annulus gives an idea of the leakage flow rate in the clearances between
the screw and the liner of a screw pump. In this section the leakage flow is estimated with
the method to calculate the mean axial flow through a stationary annulus and an annulus
with rotating inner cylinder. The difference in clearance ratio s/R between the twin screw
pump and the annulus with rotating inner cylinder is neglected.
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Figure 2.8: Streamlines of the flow in a straight-through labyrinth seal

The leakage flow rate through the clearance between screw and liner Q. of a twin screw pump
is approximately given by the following equations:

Qa = (Vaz) Act (2.7)
A (47r — 4 cos (%)) Rs (2.8)

where h is the distance between the centers of the screws, s the clearance between screw and
liner, R the outer radius of the screw, and A, the projected area of the clearance on a plane
perpendicular to the axial direction.

The ratio between the total leakage flow rate and the theoretical pumped volume flow rate
of a screw is an important pump performance parameter. The leakage flow rate through the
clearance between screw and liner is part of the total leakage flow, and is considered in the
ratio ./ Q. For the theoretical flow rate @, reference is made to chapter 1. The theoretical
volume flow rate is given by:

1
= —VpN 2.(
Qr 50 Vb (2.9)
VD = (A[ine'r =2 Asc'r("m) T (210)

where N is the rotational speed of the screws in rpm, Vp the displacement volume for one
revolution, r the screw pitch, A.rew the area of the cross-section of the screw, A, the area
of the cross-section of the liner.

The displacement volume Vp for the screw is determined by the dimensions of the screw and
liner. For the screw given in appendix B, the Agerew = 37+ 10“37712, and Ajiner = 124-1073m?2.
This gives a displacement volume Vp of 3- 1073 m3/rev.

The leakage flow rate in a twin screw pump is estimated in three ways. First, using equa-
tion (2.3) assuming laminar leakage flow through a stationary seal without inlet and outlet
resistances. Secondly, using equation (2.4) for a turbulent leakage flow through an annulus
with rotating inner cylinder, also without inlet and outlet resistances. Thirdly, using equation
(2.4) for a turbulent leakage flow through an annulus with rotating inner cylinder, now with
a value of 1.5 for the inlet and outlet resistance d;,. For the annulus with rotating inner
cylinder an iterative procedure is applied, since the resistance coeflicient A depends on axial
Reynolds number, and thus on the leakage flow rate. In table 2.11 the leakage flow rate is
given for the different methods.
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Table 2.11: Estimated leakage flow of oil through a twin screw pump (app. B) for Re, =
3000, Ap = 4 bar, N = 1350 rpm

(Var) | Re Qq Qe Qet/Qu

[m/s] | [-] [m*/s] | [m?/s] | (%]
stationary + laminar 69.3 10,000 | 0.0675 | 0.0246 | 36.4
rotating + turbulent 22.3 | 3220 0.0675 | 0.0079 | 11.7

rotating + turbulent + inlet/outlet losses | 15.7 | 2230 0.0675 | 0.0056 | 8.3

2.5 Conclusion

The leakage flow in the clearance between screw and liner of a twin screw pump is dependent
on two phenomena. First, the leakage flow rate is dependent on friction in the small clearance
between the tips of the rotating screw and the stationary liner. Secondly, the leakage flow
rate is dependent on the flow resistance of the inlet and outlet of this clearance. These two
phenomena in the leakage area of a twin screw pump are represented by two characteristic
flow cases. First, the flow in an annulus with rotating inner cylinder. Secondly, flow through
a stationary labyrinth seal. The axial Reynolds number in the clearance is determined by the
flow in an annulus. Anticipating the results as presented in chapter 3 it is concluded that the
number of radial cells must be limited and that near-wall modeling is not preferable.

The k& — w turbulence model performs best for the flow in an annulus with rotating inner
cylinder using wall functions, and performs good for the flow in an annulus using near-wall
modeling. The standard k£ — w and standard k& — € turbulence model perform best for the
flow in a labyrinth seal. In [6], the flow phenomena in an internal combustion chamber were
represented by two characteristic flow cases: the backward facing step and the free jet flow.
Based on different grid refinements and different turbulence models, it was concluded that
the standard k — w model performs good, but has a grid dependency. In this study, however,
it is shown that this dependency has little effect on the accuracy to represent the leakage flow
rate in an annulus with rotating inner cylinder.

The k — € turbulence model performs best for flow in an annulus using near-wall modeling.

Near-wall modeling is not preferred, and the standard k — w turbulence model with wall func-
tions is preferred for the simulation of flow in a twin screw pump.

The axial Reynolds number in the clearance between screw and liner is estimated in three
ways. First, considering laminar flow in a stationary annulus with rotating inner cylinder
without inlet and outlet resistances. Secondly, considering turbulent flow in an annulus with
rotating inner cylinder without inlet and outlet resistances. Thirdly, turbulent flow in an
annulus with rotating inner cylinder with inlet and outlet resistances. The axial Reynolds
number reduces when rotation and inlet and outlet resistances are considered.



Chapter 3

Method of three-dimensional
meshing

In chapter 2, two-dimensional leakage flow in screw pumps is discussed. For three-dimensional
flow calculations the number of cells can be very high. The calculation time is dependent, on
the number of cells used to simulate the flow in a screw pump. Therefore, a limited number
of cells is desirable. Furthermore the quality of the grid has to be acceptable to perform
meaningful flow calculations. In the first section of this chapter the number of cells for an
unstructured, and a structured grid is estimated assuming cells with perfect quality (based on
skewness). A time-dependent simulation of flow in a twin screw pump requires the screws to
rotate, thereby the cavities between the screws progress to the pump outlet. This requires a
dynamic mesh. Methods for a dynamic mesh are discussed in section 3.2. While the screws are
rotating, the inlet and outlet remain stationary. This could give problems connecting those
regions if nodes should always coincide. A non-conformal grid does not require that nodes
coincide on the combined faces. This is discussed in section 3.3. Finally, recommendations
are made to set-up a time-dependent simulation of a screw pump in section 3.4.

3.1 Number of cells in the clearance region

The number of cells in the clearance region of a screw pump is estimated because the axial
distance L of the clearance is high compared to the radial distance s of the clearance between
screw and liner. Therefore, the number of cells in the clearance constitutes a substantial part
of the total number of cells to describe a complete twin screw pump. First the number of cells
in the clearance is estimated in case an unstructured tetrahedral mesh is used. After this,
the number of cells is estimated in case a structured mesh is used. The approximate volume
of the clearance region (figure 3.1(a)) is given by the following equation:

Vet = nrevLAg (31)

where n,e, is the number of screw threads, L the (axial) screw thickness, and A, the cross-
sectional area of the clearance, given in equation (2.8).

In an unstructured tetrahedral mesh of high quality, all cells are truly tetrahedral with edges
of equal length. The volume of such a regular tetrahedral cell Vi, is given by:

1
Viet = Eaﬂfz (3.2)
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Figure 3.1: Twin screw pump

where a is the edge length of the cell. The length a is determined from the required number
of cells in radial direction from screw to liner, n... The height h of a regular tetrahedral
cell is h = %\/6 In figure 3.2 the height A is given by h = . This gives the following
expression for a:

Neell

3s
V6 Neell

The estimated number of unstructured cells in the clearance between screw and liner is given
by:

(3.3)

a =

Nynstr = “_/il‘ =] _7l‘,.e‘U'P"'A' 2 (34)
‘/tel 1—12'0,‘3\,/5

With a from equation (3.3), and ng = 5 according to chapter 2, the number of unstructured

cells in the clearance ny,g;, is approximately 1.5 10” cells for a twin screw pump. The global

dimensions of the twin screw pump are given in table 2.1 and in appendix B a complete

drawing of the twin screw pump is given.
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Figure 3.2: Triangular cells in clearance between screw and liner

The number of structured cells in the clearance between screw and liner is estimated, similar
to the unstructured case. The skewness of structured hexahedral cells is not affected by the
aspect ratio of the edges of the cell far. In figure 3.3 the structured mesh is given.

The volume of a hexahedral cell is given by:
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Figure 3.3: Hexahedral cells in clearance between screw and liner with aspect ratio fap

The length a of the edge of a cell is determined by clearance s, the number of cells in radial
direction across the clearance, neey, and the chosen value for the aspect ratio fap. The length
a is then given by:

s JaR (3.6)
Neell

a =

The estimated number of structured cells in the clearance between screw and liner is given

by:

‘/cl _ TL’I‘(?’UbA(‘[fAR
Ve a’

(3.7)

With a from equation (3.6), Vg from equation (3.1), far = 10, and neey = 5, the number of
unstructured cells in the clearance ng, is approximately 3.3 - 108 cells.

3.2 Dynamic mesh

In this section the distortion of the mesh is considered. In Fluent a dynamic mesh can be
achieved by repositioning of nodes. The nodes can be repositioned by smoothing, dynamic
layering and remeshing. Another dynamic mesh method is the use of ALE-calculations, this is
not a method to reposition the nodes. ALE-calculations are a method to perform calculations
on cells with nodes moving in time, while maintaining the grid topology. Still an initial mesh
has to be generated before repositioning and ALE-calculations can be performed. For ALE-
calculations, grids have to be generated with the same grid topology for every time step.

3.2.1 Smoothing

In the spring based smoothing, the edges between any two mesh nodes are idealized as
a network of interconnected springs. The initial spacings of the edges before any boundary
motion constitute the equilibrium state of the mesh. A displacement at a given boundary
node will generate a force proportional to the displacement along all the springs connected
to the node. For non-tetrahedral cell zones (non-triangular in 2D), the spring-based method
is recommended when the following conditions are met:

e The boundary of the cell zone moves predominantly in one direction (i.e., no excessive
anisotropic stretching or compression of the cell zone).

e The motion is predominantly normal to the boundary zone.
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If these conditions are not met, the resulting cells may have high skewness values, since not
all possible combinations of node pairs in non-tetrahedral cells (or non-triangular in 2D) are
idealized as springs.

Laplacian smoothing is the most commonly used and the simplest mesh smoothing method.
This method adjusts the location of each mesh node to the geometric center of its neighboring
nodes. This method is computationally inexpensive but it does not guarantee an improve-
ment on mesh quality, since repositioning a node by Laplacian smoothing can result in poor
quality elements. To overcome this problem, Fluent only relocates the node to the geometric
center of its neighboring nodes if and only if there is an improvement in the mesh quality
(i.e., the skewness has been improved).

3.2.2 Dynamic layering method

In prismatic (hexahedral and/or wedge) mesh zones, one can use dynamic layering to add
or remove layers of cells adjacent to a moving boundary, based on the height of the layer
adjacent to the moving surface. The dynamic mesh model in Fluent allows to specify an ideal
layer height on each moving boundary. The layer of cells adjacent to the moving boundary
is split or merged with the layer of cells next to it based on the height of the cells in layer
attached to the moving boundary.

3.2.3 Remeshing

On zones with a triangular or tetrahedral mesh, the spring-based smoothing method is nor-
mally used. When the boundary displacement is large compared to the local cell sizes, the cell
quality can deteriorate or the cells can become degenerate. This will invalidate the mesh (e.g.,
result in negative cell volumes) and consequently, will lead to convergence problems when the
solution is updated to the next time step. To circumvent this problem, Fluent agglomerates
cells that violate the skewness or size criteria and locally remeshes the agglomerated cells or
faces. If the new cells or faces satisfy the skewness criterion, the mesh is locally updated with
the new cells (with the solution interpolated from the old cells). Otherwise, the new cells are
discarded. Fluent includes several remeshing methods that include local remeshing, local face
remeshing (for 3D flows only), face region remeshing, and 2.5D surface remeshing (for 3D
flows only). The available remeshing methods in Fluent work for triangular-tetrahedral zones
and mixed zones where the non-triangular/tetrahedral elements are skipped. The exception
is the 2.5D model, where the available remeshing method only work on wedges extruded from
triangular surfaces.

Using the Local remeshing method, Fluent marks cells based on cell skewness and min-
imum and maximum length scales as well as an optional sizing function. Fluent evaluates
each cell and marks it for remeshing if it meets one or more of the following criteria:

o |t has a skewness that is greater than a specified maximum skewness.

It is smaller than a specified minimum length scale.

It is larger than a specified maximum length scale.

Its height does not meet the specified length scale (at moving face zones, e.g., above a
moving piston).
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Face region remeshing method

In addition to remeshing the volume mesh, Fluent also allows triangular and linear faces on a
deforming boundary to be remeshed. Fluent marks deforming boundary faces for remeshing
based on moving and deforming loops of faces. For face region remeshing, Fluent marks the
region of faces on the deforming boundaries at the moving boundary based on minimum and
maximum length scales. Once marked, Fluent remeshes the faces and the adjacent cells to
produce a very regular mesh on the deforming boundary at the moving boundary.

3.2.4 Arbitrary Lagrangian-Eulerian calculations (ALE)

The Arbitrary Lagrangian-Eulerian method is a method allowing time-dependent CFD. It is
a mix between the Lagrangian and the Eulerian methods.

The Lagrangian method is a time-dependent CFD method in which the calculation grid moves
with the local fluid velocity. It has a particular advantage that advective terms effectively
disappear in the flow equations. It is however severely limited by tangling of the grid in
multidimensional problems, especially when vortices occur.

In the Eulerian method, the calculation grid is stationary. It obviously is not hampered by
tangling grids, but is incapable of representing moving domain boundaries.

The ALE method is a mix of both methods in that it allows the grid to move with a velocity
that is independent of the flow solution. The ounly limitations are the need to have a valid
grid at each time step, and the restriction that the grid topology must be maintained. The
latter means that the only allowed action on the grid is a free movement of the nodes.

To discretize the Navier-Stokes equations in ALE-formulation with a finite-volume technique,
the velocity of the boundaries of the control volumes u;, must be known for each time step.
The boundary velocity can be calculated from the position of the nodes at subsequent time
steps separately from the Navier-Stokes equations. At the present, commercial CFD packages
are available that can handle ALE calculations. In equation (3.8) the Navier-Stokes equations
are given. Reference is made to [10] for these equations.

0
geometric conservation law — (7( dV) —f u,-dS =0,
ot \Ja a0

dp
serva t f ass L P, s = 0
conservation of mass o + 0x(p(u uy)) .
0 0 0
conservation of momentum % + a(pu(u —u) —T)+ B_i =0, (3.8)

where p is the density, u, the velocity vector of the cell boundary, u the fluid velocity vector,
7 the shear tensor, and p the pressure.

For the twin screw pump this ALE-method has a particular advantage. The positioning of the
nodes only has to be performed once for one screw thread. Rotation of the screws equals axial
displacement of the grid. The last layers can be removed and added to the front to complete
the grid. More screw threads are easily added due to periodicity, this is also applicable for
the initial grid of other meshes.
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3.3 Non-conformal mesh

While the screws are rotating, the inlet and outlet remain stationary. Connecting those
regions could give problems if nodes should always coincide. A non-conformal grid does not
require that nodes coincide on the combined faces. In Fluent it is possible to use a grid
composed of cell zones with non-conformal boundaries. That is, the grid node locations need
not to be identical at the boundaries where two subdomains meet. Fluxes across the grid
interface are computed using the faces resulting from the intersection of the two interfaces,
not from the two interfaces separately.

3.4 Conclusion

From the estimation of the number of cells in the clearance between screw and liner, an
unstructured mesh of the clearances between screw and liner is impossible due to the large
number of needed cells. The total number of cells to describe the twin screw pump has to
be less than a few million cells, to be solvable with normal PC performance and memory.
The clearance between screw and liner can be represented with structured hexahedral cells.
The aspect ratio of the hexahedral cell has to be larger than 10 to make a model of the total
twin screw pump with a few million cells. The inlet and outlet of the pump can be connected
with a non-conformal mesh interface, or special care has to be taken to make the nodes at
the interface coincide. To develop a dynamic mesh, smoothing and remeshing can be used,
even when the topology of the mesh changes in time. ALE-calculations for a dynamic mesh,
without change in topology, are preferred above smoothing and remeshing because of the lower
demands on PC performance. ALE-calculations are performed for twin screw compressor in
[9], so this method is considered feasible for a twin screw pump.



Chapter 4

Construction of structured grid

For a CFD calculation of a twin screw pump, the need for a structured grid is twofold. First
the number of elements needs to be kept within limits and secondly the quality of the grid
needs to be well controlled. To create a CFD simulation that is solvable with normal PC
performance and within a reasonable time, the number of elements has to be smaller than a
few million. The representation of small clearances between screws and the liner can be done
using many unstructured elements, but also with a limited number of well positioned elements,
see chapter 3. Therefore, structured elements are preferred to unstructured elements.

In this chapter a method to divide a twin screw pump in structured hexahedral cells is dis-
cussed. This method consists of the layering of two-dimensional cross-sections, perpendicular
to the axial direction, to form a three-dimensional grid. In section 4.1 quadrilateral cells
will be placed on this cross-section, and in section 4.2 some refinements will be applied to
this quadrilateral two-dimensional grid. In section 4.3 the quality of the two-dimensional
and three-dimensional grid will be evaluated. In section 4.4 grid quality improvement by
placing the nodes on another cross-section is evaluated. In section 4.5 conclusions about the
applicability of the grid are discussed.

4.1 Basic structure

The algorithm described here, positions the nodes based on the solution of the Laplace equa-
tion in a two-dimensional section of the flow domain (see figure 4.1). The Laplace solution
is obtained on an unstructured grid (figure 4.2(a)) of a cross-section normal to the axial di-
rection with well-chosen boundary conditions. At this stage the boundary conditions for the
potential @ are: ® = 0 for the liner, ® = —1 for the left screw, and ¢ = 1 for the right screw.
After solving this problem, equipotential values of this problem are given in figure 4.2(b). A
valuable characteristic of the solution of the Laplace equation is that the equipotential lines
never cross. Furthermore, the direction of the gradient V& is perpendicular to the potential
lines. With the present boundary conditions these gradient lines are also perpendicular to the
boundaries. A grid based on equipotential and gradient lines can obtain high quality almost
everywhere, except near the bottom and top cusp. Highly distorted cells are generated near
the cusps since the potential line & = 0 does not end in the top and bottom cusp. This is
corrected with small adjustments in section 4.2. To expand this two-dimensional grid to three
dimensions, two-dimensional grids with small axial distance apart are computed as described
above. These two-dimensional grids have an equal number of radial and tangential nodes.
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Now nodes with equal index are connected to form a three-dimensional mesh of hexahedral
cells.

The position of the grid nodes are calculated with the CFD-program Comsol with MATLAB
interface. The nodes are written in a mesh file suited for calculation with Fluent. Faces are
grouped in inlet, outlet, screw and liner. In [9] and [10] methods to create a structured mesh
are described. More detailed information of the screw is given in appendix B. Furthermore a
theoretical screw profile without clearance is described in appendix A, to gain more insight
in the shape of the screw. In table 4.1 the characteristic dimensions of the screw are given.

Figure 4.1: Cross-section of a twin screw pump, indicating top (T) and bottom (B) cusps
(not to scale)

=0
(a) Unstructured mesh of cross-section of a twin (b) Contourlines of potential value, with boundary
screw pump conditions constant along each separate wall

Figure 4.2: Unstructured mesh and potential flow solution of cross-section of twin screw pump

4.2 Refinements

4.2.1 Dividing line

The equipotential line ® = 0 does not give a satisfactory dividing line between the left and
right screw. A smooth dividing line from top to bottom cusp is created by: firstly changing the
boundary conditions, and secondly, defining a line with a potential dependent on the vertical
coordinate y. The boundary condition on the liner becomes a linearly changing potential
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Table 4.1: Dimensions of twin screw pump

Screw outer radius R 147.25 mm
Screw inner radius i 62.5 mm

Liner radius Riiner | 147.5 mm
Center offset h 210 mm
Clearance screw - liner s 0.24 — 0.265 mm
Clearance screw - screw 0.29 — 0.38 mm
Pitch of the screw r 60 mm

Number of threads Tty 5%

Radius rounded edges 0.5 mm

from &7 to ®g. The boundary conditions of the screws remain the same. The values of &
and ¢ p are chosen iteratively so that the line with constant potential ($7 or ®5) departing
from the cusp edge lies between the two tangents of the liner, represented by the dashed line
in figure 4.3(a). The dividing line with a varying potential ®p, so that a smooth line from
top to bottom cusp arises (see figure 4.3(b)), is defined as:

; B8
1 s
y < a dp = CI)B<_+C(;;(Q)>

a<y<l—-a ¢p= 0 (4.1)

1—y)- B
1+ cos(g—gl—"‘)
y>l—a dp= &op- —
where y is the normalized vertical distance, see figure 4.1. The parameter y changes from zero
in cusp B to one in cusp T. The constants o and 8 are chosen to create a smooth dividing
line, here &« = 0.345 and 8 = 0.67 are chosen.

4.2.2 Smoothing of nodes on gridline starting on the cusps

The radial gridlines starting on the cusps have an equidistant node placement, and this results
in non-orthogonal cells (sce figure 4.4(a)). It suffices to move these nodes to a spline created
from neighboring cells on the same tangential line. This movement gives a grid near the top
cusp as given in figure 4.4(b).

4.2.3 Non-equidistant node placement

On the liner and the dividing line, nodes are placed equidistantly. From these nodes, gridlines
towards the screws emerge, which are directed along the potential gradients. These gridlines
are then partitioned equidistantly to obtain the nodes of the structured two-dimensional
grid. Since the potential does not have a constant value on the liner and the dividing line, the
resulting gridlines are not orthogonal to the wall, nor are the grid cells orthogonal themselves.
However the deviation turns out to be small in practice.
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(a) Potential lines near the top cusp in (b) Dividing line between top and bottom cusps, with
a cross-section of a twin screw pump linear varying boundary condition on the liner from ®p
to @5 (not to scale)

Figure 4.3: Radial line near cusp

(a) No adjustment of radial gridline starting in (b) Adjusted radial gridline starting in cusp
cusp

Figure 4.4: Gridlines near the top cusp in a cross-section of a twin screw pump

Gridlines, starting at points on the dividing line, towards the left and right screw have different
lengths. With equidistant placement of the nodes, a discontinuity in cell volume exists. A
refinement to the cquidistant placing of the nodes is applied. The longest gradient line is
divided in elements with a linear grow rate ¢, see figure 4.5. To avoid a discontinuity in cell
volume for cells at the transition of dividing line and liner, nodes on gridlines starting at
points on the liner are also placed non-equidistant.

In figure 4.6 the two-dimensional grid for a cross-section is given. The discontinuity in the
area of the cells, near the dividing line, is clearly visible with equidistant node placement.
Non-equidistant node placement reduces this discontinuity significantly. The linear grow
rate ¢ is limited, this to prevent the formation of extremely large cells at the screw surface
and discontinuities in cell volume in other parts of the domain than near the dividing line.
With non-equidistant node placement, a three-dimensional grid of the twin screw pump is
generated, the surface mesh of the screws is displayed in figure 4.7.
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T T T T 1 T T T T equidistant
l l l 1 l l l l non-equidistant
- a— a1 >
a aq aq
left screw dividing line right screw

Figure 4.5: Equidistant and non-equidistant node placing
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(a) Equidistant node placement (b) Non-equidistant node placement

Figure 4.6: Refined quadrilateral grid of a cross-section of a twin screw pump

4.3 Grid evaluation

The two-dimensional and the three-dimensional grid will be evaluated on skewness, and the
three-dimensional grid also on volume ratio of neighboring cells. First the theory of the two
methods is discussed in section 4.3.1 and applied in section 4.3.2.

4.3.1 Theory
A normalized measure of skewness is EquiAngle Skew (Qgr4s), which is defined for an indi-

vidual grid cell as:

gnmx - geq geq o gmin (4 2)
180 — O¢q Beq '

QEas = max

where Onax and Oy, are the maximum and minimum angles (in degrees) between the edges
of the cell, and 0., is the characteristic angle corresponding to an equilateral cell of similar
form. For triangular and tetrahedral cells, 8., = 60. For quadrilateral and hexahedral cells,
0cq = 90. It can be applied to two-dimensional as well as three-dimensional grids.

By definition,
0<QEpas <1 (4.3)

where Qras = 0 describes an equilateral cell, and Qgas = 1 a degenerated cell. Table 4.2
outlines the overall relationship between QQpag and cell quality.
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Figure 4.7: Three-dimensional structured screw surface mesh for one thread of a twin screw
pump (color indicating axial coordinate)

Table 4.2: Qpas vs. Mesh Quality

Q/;,\g Qll‘dlity

QRras =0 Equilateral (Perfect)
0<Qpras <0.25 Excellent

0.25 < Qpas < 0.5 | Good

0.5 < Qeas <0.75 | Fair

0.75 < Qpras < 0.9 | Poor

0.9 < Qras < 1.0 | Very Poor
Qras=1 Degenerate

In general, high-quality meshes have an average Qs value of 0.1 for two-dimensional grids,
and 0.4 for three-dimensional grids.

Volume ratio VR only applies to three-dimensional cells. A common method to calculate the
volume of hexahedral cells in numerical simulations is to estimate the volume of a tetrakis
hexahedron. The volume of a tetrakis hexahedron is given by equation (4.4). A tetrakis
hexahedron are 24 tetrahedrals that form a hexahedral. The numbering of the nodes is given
in figure 4.8. For derivation of this equation reference is made to [3].

1—,<1(‘t [(F7—F1),(Fs— Ta)s(T7— Tq) + (T3 — 7o)l (4.4)
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Figure 4.8: Tetrakis hexahedron with face-centered vertices (subdivision of front and back
faces not drawn)

The volume ratio VR is defined as the maximum ratio of the volume of an cell with the volume
of adjacent cells normalized between 0 and 1, according to:

min AT .
VR = ; (mm (V’W)) (4.5)

where 7 are the neighboring cells. A volume ratio of 1 represents cells with equal volume.

4.3.2 Evaluation

In figure 4.9 the values for Qg as are given for a two-dimensional grid of a cross-section and for
one slice of three-dimensional cells. Mean value for the skewness in the two-dimensional and
three-dimensional grids is 0.12 and 0.43 respectively. These mean values for Qgas normally
represent a good quality grid, but from the distributions of Qgas (figure 4.9(d)) it is clearly
visible that there are a large number of highly skewed cells in the three-dimensional grid. So,
the grid is not as good as the average value of Qpas wants us to believe. Highly skewed cells
in the two-dimensional grid are on radial lines starting near the cusps. Further refinements
of the two-dimensional meshing method can improve the mesh. Near the flanges of the screw
also highly skewed cells are created in the three-dimensional mesh. The skewness near the
flanges cannot be improved by changing the grid of a cross-section. The number of skewed
cells near the flanges is much larger than near the cusp, so no further refinements are made to
the two-dimensional grid of a cross-section. The effect of elongation in axial direction on the
skewness of the three-dimensional grid is evaluated. Elongation of the screw pump in axial
direction improves the cell skewness. In table 4.3 the mean skewness Qrag for elongated
structured three-dimensional grids of a twin screw pump is given. In figure 5.2 the skewness
for a 2.5 and a 5 times elongated grid is given. The overall skewness improves, however some
highly skewed cells remain present near the highly curved part of the screw (red area in figure
4.9(d)).

The volume ratio VR is low at the dividing line near the cusps of the twin screw pump, see
figure 4.11. Changing the two-dimensional grid of a cross-section can improve the volume
ratio. The grow rate g of cells on radial lines (section 4.2.3) is limited to ensure a high volume
ratio in most part of the mesh, but is responsible for this discontinuity in volume at the
dividing line.
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Figure 4.9: Skewness Qg as

4.4 Three-dimensional basis structure

The quality of the two-dimensional grid is not the limiting factor. The expansion to three
dimensions gives skewed cells. This favours the idea of solving the potential problem in three
dimensions, and using the equipotential surfaces and gradient lines as a basis for a three-
dimensional grid. Gradient lines depart perpendicular to the wall, so grid skewness should be
improved. To solve the three-dimensional potential problem, first a three-dimensional grid of
the screw is needed. A potential problem is known to pose less stringent demands to the grid
quality. Therefore, the skewed three-dimensional structured grid can be used. Secondly, the
improvement of the grid has to be evaluated. To determine the quality of the grid, a cross-
section in axial direction of the twin screw pump is made and the potential problem is solved
in two dimensions with the following boundary conditions: liner ® = 0 and screw ¢ = 1. In
figure 4.12(a) gradient lines are drawn. These lines are not ideal, since many lines accumulate
in the center of the cavity. By changing the boundary conditions this can be prevented.
Dividing the gradient lines equidistantly gives quadrilateral cells, sce figure 4.12(b). In figure
4.12(c) the distribution of skewness Qg ag is given for this grid. The skewness for this two-
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Table 4.3: Mean skewness Qpags for elongated grids in axial direction

Elongation e | mean skewness Qg as
1 0.43
2 0.35
2.5 0.33
5 0.26
10 0.21

dimensional section in axial direction is similar to the three-dimensional structured grid of the
twin screw pump already described. Placing nodes on basis of the three-dimensional potential
problem therefore does not improve the quality of the mesh much, and is not employed.

4.5 Conclusion

A method to describe a twin screw pump with structured hexahedral cells is developed. Two-
dimensional structured grids of cross-sections perpendicular to the axial direction are layered
to a structured three-dimensional grid. The two-dimensional grid on a cross-section is placed
along gradient lines of the Laplace problem. The Laplace problem is solved on an unstructured
grid of the cross-section with suitable Dirichlet boundary conditions. Some adjustments are
made to improve the quality of the two-dimensional grid. All two-dimensional grids have the
same topology, this is required to combine all two-dimensional grids to a three-dimensional
grid. The quality of the three-dimensional grid, in terms of skewness, deteriorates due to the
high surface curvature of the geometry, compared to the quality of the two-dimensional grid.
Placing the gridlines along the equipotential surfaces and gradient lines of a three-dimensional
Laplace problem gives a skewness similar to the three-dimensional grid created with the
layering method, so this is no improvement of the grid.
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Figure 4.10: Skewness Qa5 of an elongated twin screw pump in axial direction
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Figure 4.12: Cross-section in axial direction of one screw thread



Chapter 5

CFD computations with structured
grid

5.1 Numerical set-up

With the structured grid generated in chapter 4, three-dimensional flow calculations are
performed. The grid consists of one screw thread of the twin screw pump and each screw
has 10 radial cells, 300 tangential cells, and 180 axial cells (see figure 4.7). Thus the total
number of hexahedral cells is approximately 1 million. The leakage flow rate through periodic
stationary screws is calculated for a fixed pressure drop over the screw thread. The flow is
simulated with the steady segregated solver and implicit formulation, turbulence is modeled
with the standard k — w model with standard wall function. For the initial condition the
velocity and the turbulent kinetic energy are set to zero in the complete domain, and the
specific dissipation rate of the turbulence to one. Water is taken as the leakage medium. Also
calculations on an elongated twin screw pump are performed to evaluate the effect of screw
geometrie and skewness of the grid.

5.2 Results

There are three cases tested. First, the leakage flow through a twin screw pump is simulated
at low axial Reynolds numbers. The axial Reynolds number varies from 19 to 381 in the
clearances between screw and liner. Secondly, the leakage flow is simulated for an elongated
twin screw pump in axial direction at approximately equal Reynolds number in the clearance
between screw and liner. Thirdly, for a 5 times elongated grid of a twin screw pump the
leakage flow is simulated for axial Reynolds numbers up to 1514.

The total leakage flow rate is compared with the leakage flow rate through the clearances
between screw and liner. In figure 5.1(a) the clearance between the screw and liner is given
by region 2. Also the mean axial velocity through the clearance between screw and liner is
compared with the analytical equation for laminar flow in an annulus with and without inlet
and outlet resistances, given in equation (2.4).

The low quality of the grid results in non converging solutions with the standard parameters.
By lowering the under-relaxation factors and taking a low differential pressure per screw
thread, a converged leakage flow rate is calculated. A under-relaxation factor reduces the
change of the variable for the next iteration.
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(a) Regions of leakage: 1 between screws and 2 between screw and (b) Cross-section B-
liner. Cross-section A-A given in figure 5.2(a) (not to scale) B

Figure 5.1: Cross-sections of twin screw pump

In the first case of the three-dimensional flow simulations the pressure drop is set from 300
to 9600 Pa over one screw thread. For water the differential pressure should be approx-
imately 130 kPa over one screw thread for realistic flow and a axial Reynolds number of
2230. At a higher differential pressure than 9600 Pa over one screw thread the solution is
non-converging, even with low under-relaxation factors. The used pressure difference per
seal is low, resulting in a low axial leakage velocity, and a low dimensionless wall distance.
The effect of the dimensionless wall distance on the turbulence model is discussed in chap-
ter 2 and should be greater that 11 for wall functions. The dimensionless wall distance in
the clearance is lower than the required value, it varies from 0.5 to 3 for the different axial
Reynolds numbers. No accurate solution of the numerical simulation can be expected, but
some tendencies are visible. In table 5.1 the simulated leakage flow rate for a stationary
twin screw pump is given for different differential pressures over the screw. The leakage
percentage of fluid through the clearance between the screw and the liner compared to the
total leakage flow rate rig /1, is higher at a higher differential pressures over the screw. The
simulated mean axial velocity in the clearance between screw and liner is compared to the
flow rate in an annulus from equation (2.4) with and without in- and outlet resistances. For a
non-rotating stationary annulus, the resistance coefficient is A = 48 Re~! [11] for laminar flow.

In the second case the grid is elongated, the elongation of the grid changes the dimensions
of the two leakage regions (figure 5.1(a)). First region 1, the clearance between the screws
gets larger and the flow resistance reduces. Elongation in axial direction reduces the flow
resistance from region R to S in figure 5.1(b). Secondly region 2, the length of the clearance
between screw and liner gets larger and thus becomes a larger flow resistance. Elongation in
axial direction increases the length of the clearance between region O and P in figure 5.2(a).
In table 5.2 the leakage flow rate is given for elongated screws with a laminar leakage flow
rate in the clearances between screw and liner.

In the third case a 5 times elongated grid in axial direction is used and the differential
pressure over the screw is varied. The axial Reynolds number in the clearance between
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(a) Cross-section A-A in axial direction of two threads (black: screw/liner, white: (b) Cross-section
fluid) C-C  (not to
scale)

Figure 5.2: Cross-sections of twin screw pump

screw and liner varies from 20 to 1500. There is no converged solution found for higher
axial Reynolds numbers. In table 5.3 the simulated leakage flow rate through the twin screw
pump is given. The mean axial velocity in the clearance (v,,) is given for the simulation and
calculated with equation (2.4), with a value of 1.5 for in- and outlet resistance §;,. In [11], the
resistance coefficient for a stationary annulus is given as: A = 48Re™"! for laminar flow, and
A = 0.26Re~%%* for turbulent flow. The mean axial velocity of the numerical simulation and
equation (2.4) are similar for laminar flow up to a Reynolds number of approximately 500.
At higher axial Reynolds numbers, the simulated and calculated mean axial velocity deviate
from each other. The dimensionless wall distance for an axial Reynolds number of 1514 on a
5 times elongated grid is given in figure 5.3. The value of the dimensionless wall distance y™
in the clearance and in the cavity are approximately 8 and 1000 respectively.

Table 5.1: Water leakage flow rate for three-dimensional stationary twin screw pump simu-
lations with various pressure differences per screw thread, (vq.) in clearance between screw
and liner

(Vaz) [m/s]

Ap [Pa] | m [kg/s] | eq. (2.4) ;o =0 | eq. (2.4) d;p = 1.5 | numeric | Re | ra / m [%)]
300 0.7 0.072 0.072 0.074 19 |4.0

600 0.9 0.144 0.142 0.145 37 | 5.7

1200 1.4 0.29 0.28 0.277 70 | 7.0

2400 2.1 0.58 0.54 0.51 129 | 8.6

4800 3.2 1.15 1.0 0.90 227 | 10.8

9600 4.8 2:3 1.8 1.51 381 | 11.1

5.3 Conclusion

The quality of the used grid is low, lowering under-relaxation factors only results in converged
solutions for a low differential pressure over the twin screw pump. This low differential pres-
sure results in a low leakage velocity and the dimensionless wall distance dependent on this
velocity is too low to calculate an accurate solution with the k& — w turbulence model with
wall functions. From the simulations some conclusions can be draw. First: elongation of the



5.3 Conclusion 40

Table 5.2: Water leakage {low rate for three-dimensional stationary twin screw pump simula-
tions with 5000 Pa/m pressure difference for elongated grid in axial direction (Re &~ 19)

e | lkg/s] | (vaz) [m/s] | tha [ 1 [%)]
1 0.7 0.0740 4.0
2 1.6 0.0762 1.7
2.5 2.1 0.0762 1.3
D 4.7 0.0745 0.6
10 | 8.0 0.0731 0.3

Table 5.3: Water leakage {low rate for three-dimensional stationary twin screw pump simu-
lations for a 5 times elongated grid in axial direction, (v4.) according to equation (2.4) with
in- and outlet resistance for laminar and turbulent definition of A

(Vag) [m/s]
Ap [kPa] | v [kg/s] | laminar | turbulent | numeric | Re | 1ha / 1 [%)]
1.5 4.7 0.072 0.38 0.0745 19 0.6
3 6.6 0.14 0.57 0.15 38 0.8
6 9.4 0.29 0.84 0.29 73 1.1
12 12.9 0.57 1.2 0.57 144 1.6
24 18.3 1.1 1.8 1.08 273 | 2.1
48 26.2 2.2 2.7 1.9 482 | 2.6
96 37.6 4.1 4.0 2.9 740 | 2.8
192 52.4 7.3 0.8 4.0 1005 | 2.7
288 62.5 10.2 7.3 5.0 1262 | 2.8
384 75 12.7 8.6 6.0 1514 | 2.8

screws in axial direction results in a larger leakage flow for the same diflerential pressure over
the screw thread. The leakage flow rate in the clearance between screw and liner reduces,
however the leakage flow rate between the serews incrcases, even more than the decrease in
the other region. Secondly: increasing the differential pressure per screw thread changes the
leakage flow ratio between the two regions.

The leakage flow rate through the clearances between the serew and liner has a larger portion
of the total leakage flow rate at a higher differential pressures for laminar flow. This can
be expected from analytical equations. The relation between differential pressure and axial
velocity is given in equation (2.4) for flow in an annulus. The differential pressure is approx-
imately linearly proportional to the axial leakage velocity for laminar flow. For an expansion
in the diameter of a pipe the relation between differential pressure and axial velocity is given
in [8] and is Ap = [\’%pvg. where K is a constant for turbulent flow. In the numerical simu-
lations the value of I also remains approximately constant, even for laminar flow. In a twin
screw pump the leakage flow between the screw and liner is similar to flow in an annulus,
however the leakage flow between the screws is similar to a expansion in the diameter of a
pipe. This expansion between the screws is most clearly visible in the cross-section given in
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Figure 5.3: Dimensionless wall distance for ¢ = 5 and pressure difference of 384 kPa over one
thread for a twin screw pump (Re in the clearance is 1514)

figure 5.2(b) between region A and B, and also in figure 5.1(b) between region R and S.

At higher axial Reynolds numbers the ratio between leakage flow rate through the clearances
and the total leakage flow rate is found constant in the numerical simulations. This indicates
a constant resistance coefficient A for axial Reynolds numbers above a certain number or a
negligible effect of sealing length compared to in- and outlet resistances.



Chapter 6

Conclusions and recommendations

6.1 Final conclusion

To model the flow in a twin screw pump a grid of the screw pump has to be made. This grid
has to describe the geometrie of the pump well. Also the turbulence model poses requirements
on the dimensionless wall distance of the first cell at solid walls. To obtain a solution for the
flow in a twin screw pump with normal PC performance and in reasonable time, the number
of cells must be limited. A grid of the twin screw pump is made and the leakage flow through
the twin screw pump is simulated for a low differential pressure over the pump.
The demands of the turbulence model are evaluated by comparison with the results of two
experiments. First, the low through an annulus with rotating inner cylinder is modeled. Near-
wall modeling and wall functions are considered for the different variants of the k —e and k —w
turbulence model. Secondly, the flow through a stationary straight-through labyrinth seal is
simulated. Here only wall functions are considered for the different turbulence models. The
standard k& — w model gives the most accurate results when simulating with wall functions.
Jall functions are needed to keep the total number of cells limited. The dimensionless wall
distance y™ has to be larger than 11 to give accurate results with wall functions.
A mesh method is constructed that generates a structured hexahedral grid by layering of
cross-sections perpendicular to the axial direction. The quality of the two-dimensional grid
of a cross-section is good, however the three-dimensional grid has poor quality. The three-
dimensional cells have a high skewness in some regions.

Between the screw and the liner structured cells with elongated sides in axial and tangential
direction have to be used to keep the total number of cells limited. Numerical simulations
proved that this elongation has no influence on the flow through an annulus with inner rotating
cylinder. Gradients of the solution in axial and tangential direction are low compared to the
radial direction.

From the simulations some conclusions can be drawn. First: elongation of the screws in axial
direction results in a large leakage flow for the same differential pressure per screw thread.
The leakage flow rate in the clearance between screw and liner reduces, however the leak-
age flow rate between the screws increases, even more than the decrease in the other region.
Secondly: increasing the differential pressure per screw thread changes the leakage flow ra-
tio between the two regions for the laminar flow regime. The leakage flow rate through the
clearances between the screw and liner has a larger portion of the total leakage flow rate
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at higher differential pressures. Besides the numerical result this is also expected from the
analytical equations for the relation between differential pressure and axial fluid velocity in
the two regions. At higher axial Reynolds numbers the leakage flow ratio between the two
regions is approximately constant.

The static twin screw pump simulation shows realistic flow features at a low differential pres-
sure over the pump. Expanding the simulation to a differential pressure present in industrial
screw pumps gives a better understanding of the flow in a twin screw pump. The static sim-
ulations can be extended to a dynamic simulation with multiphase flow to obtain a complete
model of the twin screw pump.

6.2 Recommendations

e The constructed three-dimensional grid has highly skewed cells, the grid quality has to
be improved to allow accurate CFD simulations. On the existing grid small improve-
ments can be made but it remains questionable if the quality will improve enough to
perform accurate CFD simulations. There is another method of meshing the twin screw
pump, while fulfilling the demands set in this report. This method consists of a hybrid
grid, meaning a mixed grid of hexahedral and tetrahedral cells. The clearance between
the screw and liner can be meshed with a structured hexahedral mesh and the interior
with unstructured tetrahedral cells. The nodes on the interface either have to coincide,
or a non-conformal interface (section 3.3) can be used.

e For comparison of twin screw pump simulations with experiments, measurements of the
flow in the twin screw pump are needed.

e There are some small improvements possible on the construction of the cross-sectional
mesh. Like: automatic determination of ®7, ®p, correctly describe the round-off of the
screw tips, and curvature dependent distribution of nodes at the dividing line. This
mesh can be used, for example, for a twin screw pump with a larger screw pitch.

e The multiphase modeling packages in Fluent should be tested on validation cases, to
determine which model is the most accurate for flow in a twin screw pump.

e To create a time-dependent simulation, use can be made of smoothing and remeshing
in Fluent. Smoothing and remeshing can deteriorate the mesh. When the mesh dete-
riorates beyond a certain limit, a new mesh can be used and the old solution can be
interpolated on the new grid. This method has proven its applicability on a completely
unstructured mesh of one screw thread of a twin screw pump with large clearances of 6
mm at consulting company Bunova Development BV.

e Validate behaviour of turbulence models for laminar flow in the clearance between screw
and liner. There is laminar flow present when more viscous oil is pumped. A turbulence
model is needed because in a dynamic simulation there are regions with turbulent flow.

e The first cells near the wall in a cavity are too large, resulting in a high dimensionless
wall distance. So, adjustment of the grid in the cavities is necessary.
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Appendix A

Theoretical Screw profile

The screw profile is described with a cross-section normal to the axial direction of the twin
screw pump, see figure A.1. In this figure profile A and B are visible.

Figure A.1: Cross-section twin screw pump

The profile A is an involute profile (z and y) and described by the following equations:

s = ar (A.1)
Te = TCOSQ (A.2)
Ye = rsinw (A.3)

T = .+ ssina (A.4)

Y = Yo— ScCOSQ (A.5)

where r < r;, with r;, the screw inner diameter. x. and y. are construction points on the
circle with radius r. In figure A.1, r is equal to r;. The other variables of profile A are defined
in Figure A.2.

The profile B is described in polar coordinates § and R by equations (A.6:A.10). The variables
of profile B are defined in Figure A.3.

a = T,C08Q (A.6)
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Figure A.2: Variables for profile A

h = r,sina (A7)
b = y—a (A.8)
R = Vb2+h? (A.9)
6 = m+a+tan"(h/b) (A.10)

Figure A.3: Variables for profile B



Appendix B

Screw profile Houttuin
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