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Feedback control of 2-product workstation with setups and piecewise
constant arrival rates 

Flexible manufacturing systems can be considered as a network of workstations which serve different 
types of jobs. Switching between these types of jobs often requires a setup. Having non-negligible setup 
times leads to serial batching and results in a piecewise-constant flow of jobs leaving the workstation. 
In a network setting all workstations receive jobs at a piecewise-constant rate. To control such a system, 
we are interested in an optimal steady state process cycle for the system. Next, we would like to derive 
a feedback control that makes the system behavior converge towards this optima! steady state process 
cycle. 

Assignment 
To control a network of workstations (or servers), a new method for controlling switched linear systems 
is proposed in the paper "Feedback control of 2-product server with setups and bounded buffers" by Van 
Eekelen, Lefeber and Rooda. In this paper the basic ideas of how to design a controller are illustrated 
by considering a single workstation with constant arrival rates. As mentioned above, in a network of 
workstations which processes different types of jobs, a piecewise-constant arrival rate of jobs at a work
station is inevitable. To obtain better insight into the phenomena within such a network of workstations, 
the same basic ideas can be applied. Consider the smallest system possible: a single workstation which 
serves two different types of jobs. Extend the results presented in the above mentioned paper to the set
ting of piecewise-constant arrival rates. First determine an optima} steady state process cycle. Second, 
derive a feedback controller which steers the system towards the desired behavior. 

First, a literature review is required. Next, an optimal process cycle and feedback law must be looked 
for. Furthennore, the derived optimal process cycle and feedback law must be validat with a (x- or 
Matlab-)model where useful. Finally, results must be presented in a report includin uggestions for 
future work. 

Prof.dr.ir. J.E. Rooda 

Systems 

Engineering Department of Mechanica! Engineering 
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Summary 

The use of flexible manufacturing systems in production facilities has a large advantage. 
Different products can be manufactured with a limited number of machines. In order 
to have a good customer response the flow t ime must be short , what means the work in 
proces (wip) levels have to be low and scheduling of tasks within the system becomes 
important. In the literature, models of queueing networks and fluid approximation 
models are used to analyse the optimal wip level within a given scheduling policy for a 
flexible manufacturing machine. In [Eek06a] an approach is discussed which does the 
opposite. First it determines the optimal wip level and second a controller is proposed 
which steers the system to this optimum. This approach finds, as long as the total 
utilization of the system is less than one, a minimal weighted time averaged wip level 
for a manufacturing machine with setups and processing two product types arriving at 
constant rates. Having non-negligible setup times leads to serial batching and results 
in a piecewise constant departure rate for each type of product. A second machine in 
series receives these products at a piecewise constant rate. 
This study uses the approach of [Eek06a] to determine an optimal wip level, but with one 
constant arrival rate and one piecewise constant arrival rate. Two important conditions 
have to be met before applying the theory in this report. The first condition is a sum 
of time fractions that each product needs to be processed is less than one and second, 
the length of one process cycle has to match the periodic behavior of the piecewise 
constant arrival pattern. The length of the periodic behavior also has a lower bound 
which has to be satisfied. If these conditions are satisfied, a solution in finding a 
minimal weighted time averaged wip level is guaranteed. Different optimal process cycles 
are obtained. The computation of optimal process cycle depends on the relationship 
between the maximum arrival rate of the piecewise constant arrival pattern and the 
maximum process rate of type same product type. Two situations are possible after 
determination of the cycli. These situations depend on the same relationship between 
the maximum arrival rate and the maximum process rate. In the first situation, the 
maximum arrival rate is larger than the maximum process rate. In the second situation , 
where the maximum arrival rate is less than the maximum process rate, a distinction 
is made. The distinction is based on the slow mode(s) (time intervals where the actual 
process rate is lowered to the arrival rate) that occur in the optimal process cycle. 
Eventually all possible trajectories of the process cycles are divided in three situations. 
For each of these three situations a feedback control law is proposed which steers the 
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Vl Summary 

system to its specific optimal process cycle. An analytica! proof is presented which shows 
that the controller always steers the system to its desired trajectory. These controllers 
have been tested in a simulation study. In this study the workstation is simulated by 
means of a hybrid fluid model and by means of a discrete event model. The system 
starts with arbitrary buffer levels, an arbitrary machine state and an arbitrary point 
in the cyclic piecewise constant arrival pattern. From this starting point a controller 
has to steer the system to the optimal process cycle. All simulation results confirm 
convergence of the system to the desired trajectories . The controllers are very robust. 
If disturbances occur but the parameter setting stays the same, the same controller 
always steers the system back to the desired trajectory. So as long as the system meets 
the two conditions mentioned above, a robust feedback control law steers the system to 
a process cycle with a minimal weighted time averaged wip level and keeps it there. 



Summary (Dutch) 

Het gebruik van flexibele productie systemen in fabricage systemen heeft een groot 
voordeel. Een beperkt aantal machines is nodig voor het produceren van verschillende 
producten. Om accuraat te kunnen handelen naar de wensen van de klant moeten door
looptijden kort zijn. Dit betekent dat de hoeveelheid onderhanden werk in het systeem 
laag moet worden gehouden en het belangrijk wordt orders te gaan plannen. In de lit
eratuur zijn wachtrij theorieën en vloeistof modellen gevonden voor flexibele productie 
systemen. De theorieën geven een analyse van de hoeveelheid onderhanden werk nadat 
een planningsst rategie is toegepast. In [Eek06a] is de aanpak juist andersom. Eerst 
wordt de hoeveelheid onderhanden werk geoptimaliseerd en daarna wordt een regelaar 
voorgesteld die het systeem naar dit optimum toe dirigeert. De aanpak is gehanteerd 
op een machine met omsteltijden en welke twee typen producten produceert die met 
een constante aankomst arriveren. Daarbij moet gelden dat de bezettingsgraad van de 
machine kleiner blijft dan één. De niet te verwaarlozen omsteltijden zorgen voor het 
produceren van dezelfde producten in serie. Dit resulteert in een stuksgewijs constant 
pa troon van producten die de machine verlaten . Als twee machines in serie st aan ont
vangt een tweede machine deze producten met een stuksgewij s constant patroon. 
Deze studie gebruikt de aanpak uit [Eek06a] om de opt imale hoeveelheid onderhanden 
werk te bepalen voor een system met een stuksgewij s constant aankomstpatroon en een 
patroon met const ante aankomst. Om de minimale hoeveelheid onderhanden werk te 
vinden, zijn eerst de systeemeigenschappen en de aankomstpatronen gedefinieerd. De 
theorie in dit verslag kan worden gebruikt als aan twee condit ies wordt voldaan. Ten 
eerste moet de totale bezettingsgraad kleiner zijn dan één en ten tweede, de lengte van 
één proces cyclus moet even lang zijn als het periodieke gedrag van het stuksgewij ze 
const ante aankomstpatroon. Tevens moet het periodieke gedrag ook voldoen aan een 
ondergrens. Als aan deze condities wordt voldaan, kan een gewogen gemiddelde hoeveel
heid onderhanden werk over tijd worden bepaald. Hierbij zijn verschillende optimale 
proces cycli gevonden. De berekening van een optimal proces cyclus is afhankelijk van 
de relatie tussen de maximale aankomstsnelheid en de maximale productiesnelheid van 
hetzelfde type product. Na het bepalen van een cyclus zijn er twee situaties denkbaar. 
In de eerste situatie is de maximum aankomstsnelheid groter dan de maximale pro
ductiesnelheid. In het tweede geval, waar de maximale aankomstsnelheid lager is dan 
de productiesnelheid, is een onderverdeling gemaakt . Deze is gebaseerd op welke pro
ducten worden geproduceerd met een gematigde snelheid ( de actuele productiesnelheid 
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verlaagd naar de aankomstsnelheid) gedurende de optimale cyclus. Uiteindelijk zijn 
alle mogelijke t rajectories onderverdeeld in drie situaties . Voor alle drie de situaties 
is een regelaar met terugkoppeling voorgesteld , welke het systeem naar de optimale 
cyclus toe moet dirigeren. Met een analytisch convergentiebewijs is bewezen dat de 
regelaar het systeem altijd naar de bijbehorende gewenste trajectorie zal regelen. De 
regelaars zijn getest aan de hand van simulaties. Het systeem is gesimuleerd met een 
vloeistof model en met een model in een discrete event omgeving. Het systeem start 
met willekeurige buffer groottes, een willekeurige toestand waarin de machine verkeert 
en op een willekeurig punt ergens op het cyclisch gedrag van het stuksgewij ze aankom
stpatroon van de machine. Vanuit dit st artpunt moet de regelaar het systeem naar de 
optimale cyclus sturen . Alle simulatie resultaten bevestigen convergentie van het sys
teem naar de gewenste trajectories. De regelaars zijn zeer robust. Als er verstoringen 
optreden waarbij de systeem parameters niet veranderen , zal de regelaar het systeem 
altijd terug regelen naar de gewenste cyclus. Kortom, zolang het systeem voldoet aan 
de twee eerdergenoemde condities, zal een robuuste regelwet met terugkoppeling het 
systeem altijd dirigeren naar de proces cyclus met daarin het minimale gewogen gemid
delde van de hoeveelheid onderhanden werk over tijd. Tevens weet de regelaar het 
systeem ook op deze optimale t rajectorie te houden. 
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Chapter 1 

lntroduction 

Manufacturing companies want to satisfy as much costumers as possible. Each costumer 
has its own demands. Different demands may lead to different types of products. In 
order to prevent a large machinery, manufacturers want to process different types of 
products with a single machine. Before such a machine can process another type of 
product , it usually requires a setup. By processing different products in a network of 
flexible manufacturing machines, a manufacturer can use a limited number of machines 
which can process at a relatively high degree of capacity utilization. A disadvantage of 
processing multiple products at a flexible manufacturing system (FMS) is the complexity 
of scheduling. The difficulties lie in the different nonconstant flows between different 
workstations. If machines process all products of each product type one by one, almost 
every machine copes with a piecewise- and/or constant arrival rate. To control all 
product flows in the network, a global controller can schedule all tasks that need to be 
performed and send these tasks to each machine. A manufacturer can apply different 
optimization criteria in controlling the workstations within his network. Besides the 
criterion of a high throughput, manufacturers want a short flow time for fast customer 
response. This can be established with minimized work in process levels. 
To get good insights of how such a controller must operate and steers a machine, the 
focus of this research is finding a suitable controller for a single workstation which 
operates in a network of flexible manufacturing systems. 

Objective 

To obtain a better insight into the phenomena within a network of workstations, the 
smallest network possible is considered. The goal is to analyze one workstation with 
setups that processes two types of products/jobs. One type of product arrives with a 
piecewise constant arrival pattern and the other product type arrives with a constant 
arrival pattern. For this system the optimization criterion is to find an optimal trajec
tory where the costs of products residing at one workstation are minimized. Next, a 
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2 Chap ter 1. Introduction 

feedback controller has to be obtained which steers the system to this optimal trajectory. 
Convergence to the desired trajectory must be proven analytically. In different simula
tion experiments the proposed controllers have to be tested. These tests show that the 
controller works in the setting of a hybrid fluid model and in a discrete event setting as 
well. If the initial conditions of both experiments is the same, the convergence of the 
system to the desired trajectory must be the same. Finally a conclusion has to be drawn 
about the optimal trajectories and proposed controllers and the recommendations must 
be discussed . 

Valorization 

For companies tha t process a lot of different products in a network of flexible manufac
turing machines this research can be very valuable. The use of this theory minimizes 
work in process levels, what results in lower flow times for better customer service. 
When this theory is applied , a manufacturer has less capital in its production process 
and is able to provide its customers with a better service. Eventually this can lead to 
a payoff for both manufacturer and consumers. 
Another advantage of less work in process is the reduction of the probability products 
pass their due date. The feedstock is used more efficient what results in less residue 
and lower production costs. On moral grounds, consumers and governments support 
companies who process in an environment-friendly marmer. By keeping the residues 
low, a company produces less waste and therefore reduces the chance to suffer its loss 
of face to the public. 

Approach 

A lot of research is performed wit h respect to servers through which different types of 
jobs flow. A flexible manufacturing system is an example of a network of servers. Other 
examples in these studies are data flows between computers, call-centers or an urban 
road network of crossings through which cars flow. In these studies different policies 
are used to optimize single systems and entire networks. Most theories opt imize the 
system afterwards. In this study the system is optimized the ot her way around. First 
the desired (optimal) trajectory is determined and second the policy that converges the 
system to its desired behavior. This approach is applied in [Eek06a] also and therefore 
very useful. In Chap ter 2 earlier performed research is described which results in the 
reason for the research objective and approach in t his report . In Chapter 3 the properties 
of a two product workstation with accompanying product arrival pa tterns are discussed. 
Here the criteria of the system are established. If the system satisfies the conditions of 
Chapter 3, the optimal trajectory can be est ablished in Chapter 4. When the t rajectory 
is determined , a mat ching feedback controller is determined in Chapter 5. Simulations 
are performed to validate convergence of the controller to its desired trajectory. The 
simula tions, presented in Chapter 6, contain continuous and discrete event simulations. 
Finally, the report ends with conclusions and recommendations for further research. 



Chapter 2 

Analysis of flexible 
manufacturing systems 

A single flexible manufacturing machine or a network of flexible manufacturing machines 
are systems through which different types of jobs flow. Other kind of systems through 
which different types of jobs flows are: an urban road network of crossings with traffic 
lights through which cars flow, or a network of computers or telecommunication systems 
through which different data flows are present. To obtain a good overview of the different 
approaches that have been used to analyse these systems, this chapter discusses earlier 
performed researches. 

In this study a server or workstation is considered with one constant arrival rate at one 
buffer and a second buffer where products arrive with a cyclic piecewise constant arrival 
rate. The scheduling of the system, i.e. when to process which product, is based on 
minimization of the time averaged weighted work-in-process (wip) level. First an opti
mal process cycle is obtained. Then a feedback law is proposed which steers the system 
to this optimal cycle. Within this study the assumption is made that the duration of 
one process cycle equals the length of the periodic behavior of the piecewise constant 
arrival pattern. Furthermore, the setup costs are not taken into account. 

Queueing networks 

As mentioned above, the system that is considered has an arrival rate which varies 
over time. The complexity of time-varying rate problems in queueing networks has 
resulted in less literature compared to equilibrium behavior of queues with constant 
arrival rates. Alnowibet and Perros [Aln06] and Massey [Mas02] regard the analysis 
of ( tele-) communication models with time varying arrival rates in queuing networks. 
Massey analyzed different queueing theory models with time varying rates to maximize 
the profit of call centers for instance. The performance modeling of telecommunication 
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4 Chapter 2. Analysis of B.exible manufacturing systems 

systems starts with an offered load model. An offered load describes the number of 
communication resources requested by arriving customers. The theory in combination 
with the system properties, the mean, variance, covariance and time lag between the 
peak arrivals and peak load for the system are measured. To deal with a system with 
fini te resources, the offered load model is replaced with a loss queue model. The analysis 
of a loss queue model with time varying rates is performed with a pointwise stationary 
approximation (PSA) model (see [Gre91] and [Gre97]) and a modified offered load ap
proximation (MOL) model (see [Jag75]). Depending on the shape of the time-varying 
arrival pattern, one of the approximation models provides the most accurate est imation 
of the performance of a system. In case of loss models the approximation models also 
estimate the probability of blocking. Blocking might occur due to the finite recourses 
available .. Alnowibet and Perros also analyze a nonstationary queueing network. The 
network contains multi-rate loss queues and population constraints, where the external 
arrival rates area periodic function of time. The analysis is not based on PSA or MOL 
but based on the fixed-point approximation (FPA) method for a nonstationary queue
ing network with multi-rate loss queues. For further details on the FPA algorithm, the 
reader is referred to [Aln04]. The FPA algorithm calculates the mean number and the 
blocking probability of each class of product or customer in each queue, without the 
need to solve any differential equations. When the number of customers in a loss queue 
depends on the number of customers in other loss queues, customers may share com
mon communication channels, what is known as a queueing network with population 
constraints. In case of the presence of population constraints, Alnowibet and Perros 
introduce an iterative approximation algorit hm based on the FPA method. The result 
of the method is an approximate t ime-dependent blocking probability function for the 
system, obtained after a relative short CPU time in comparison with the simulations 
which are needed to obtain the same probability function. 
Bekker et al. [Bek04] provides an analysis with a workload-dependent arrival rate in a 
single-server queue. The goal is to control the arrival of jobs to optimize server perfor
mance. Proportionality relations between the workload distribution of two queues with 
the same ratio of arrival rate and process rate are derived. With these relationships 
results of a whole class of models can be obtained from the analysis of one model. 
All these approaches use time-dependent arrival rates, often represented as a Poisson 
distribution, but none of them uses piecewise constant arrival pattern as discussed at 
the start of this Chapter. 
In this report the system is optimized to the time averaged weighted wip level. In 
literature several optimization problems are encountered for a queueing network. In 
Azaron et al. [Aza06] a multi-objective optimal control problem is developed. Azaron 
et al. use the longest path analysis in a queuing network. In the analysis the den
sity functions are determined of t he time spent in a service station and the queuing 
network is transformed into a stochastic network. Finally the distribution function is 
obtained of the longest path in the stochastic network. The distribution function is 
applied in the multi-objective flow time control problem which minimizes the average 
flow t ime, the variance of the flow time and the total costs of the system per period. 
To solve the multi-objective, nonlinear programming (NLP) problem, a variation of the 
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goal programming technique (see [Ign76]) is used. The downside of this theory is that 
the individual arrivals are independent Poisson processes with equal rates. So again no 
piecewise constant arrival pattern is included. 

F luid approximat ion models 

Other studies performed the analysis of applications with multiple data flows with fluid 
approximation models. Ridley et al. [Rid03] proposed a fluid approximation model 
for a priority call center with t ime varying arrivals. The system has two customer 
classes, high priority calls and low priority calls (Figure 2.1) . When a low priority call 

À1 ( t) High priority 

1 1 CD 
@ 

• -• 
• À2(t) 

@ 
Low priority 

Figure 2.1: The two-customer class call center with n operators 

is not completed within a given amount of time, the call switches from the low priority 
queue to the high priority queue. The arrival rate of the customers is exponentially 
distributed. With the model Ridley et al. estimate the mean number of costumers 
waiting. Eventually this number is used to estimate the overall staffing level (n). So 
the process rate of the server is adapted to the arrival rate. In this report this luxury is 
not available, the server has a fixed maximum capacity. Another fluid model is used by 
Lan and Olsen [Lan06]. They discuss a multi product, single server production system 
with setup times and casts. With a nonlinear programming model a lower bound on 
the long-run average production casts per unit time is established. Lan and Olsen show 
it is the lower bound of performance for a single stochastic server with Poisson arrivals. 
The theoretical lower bound can not always be reached. T he lower bound is established 
for fluid systems. The more a deterministic system converges to a fluid system the 
closer the lower bound can be reached. Lan and Olsen provide heuristics for stochastic 
production systems in order to optimize the performance. 
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Deterministic systems 

Except for the piecewise constant arrival pattern, Savkin and Somlo consider a similar 
type of problem for solving flexible manufacturing scheduling problems of a determinis
tic system [Som06] . They use a hybrid dynamical approach (HDA) to find time periods 
of periodic motions. The HDA is supported with tools provided by the qualitative 
theory of hybrid dynamical systems of Matveev and Savkin [MatO0]. The use of these 
tools makes the planning more effective and it widens the application field of HDA. The 
paper presents a model with the task to process different part types during a given time 
period on a fixed number of machine groups. The essence of the HDA is working on a 
part type and when the conditions to switch are reached, perform a setup and process 
another part until the next switch condition is reached. The hybrid dynamical approach 
is performed for a simple (two part types) problem and a complex (multi-part types, 
multi-machine groups). The results are periodic schedules which show performances 
close to the optimal. Although the theory provides schedules for the transient and pe
riodic behavior, these schedules are predetermined and can not cope with disturbances 
within the system. Furthermore, the theory does not reduce the number of jobs in the 
system even when the buffers contain more jobs than necessary. 

Most of the literature just mentioned, contains systems which are optimized after a 
given policy is applied . The most considered policies are: Clear-the-Largest-Buffer-Level 
(CLB) Policy, Clear-a-Fraction (CAF) Policies and Clear-the-Largest-Work (CLW) Pol
icy [Per89]. In order the achieve a robust scheduling policy that can handle disturbances 
and is able to reach its desired trajectory at all times, first the optimal process cycle has 
to be obtained, and second a feedback control is derived which steers the system to the 
optimal process cycle. In [Lef06] this method is applied for a network of servers through 
which many types of jobs flow. In [Eek06a] this theory is applied for the smallest system 
possible: a single workstation which serves two types of jobs with type specific setup 
times. For the workstation an optimal process cycle is derived and a feedback law is 
proposed that steers the system to this optimal process cycle. In the optimal cycle 
'slow modes' can occur (also referred to as 'idling' [Cha92] or 'cruising' [Lan06]). In a 
slow mode products are processed at a rate that equals the current arrival rate. The 
output of such a workstation is a piecewise constant departure rate. So a workstation 
behind this workstation receives products with a piecewise constant arrival rate. This 
report discusses the same workstation as described in [Eek06a] except it has one cyclic 
piecewise constant arrival rate. 

Different approaches of solving a flexible manufacturing system have been presented. 
Each approach has its own advantages and disadvantages. The choice of approach for 
a system with one constant arrival rate at one buffer and a second buffer where prod
ucts arrive with a piecewise constant arrival pattern is the same as used in [Lef06] 
and [Eek06a]. The approach holds to obtain first the optimal process cycle and second 
determine the feedback control for the optimal process cycle. This approach is used 
throughout the rest of this report. In the next chapter the system specifications of the 
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workstation are discussed. Afterwards the optimal process cycle, feedback control and 
simulations of the feedback control laws are discussed. 
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Chapter 3 

System specifications of a two 
product workstation with setups 

In a flexible manufacturing system, workstations are able to process different types of 
products. The way products are processed depends on the buffers and machines in a 
workstation, the arrival pattern of product s and on the properties of the manufacturing 
machine itself. All these parts together form the system properties. With these prop
erties preconditions are established. If the preconditions are met, the system can be 
optimized with respect to the time averaged weighted wip level and a way to control 
the system can be determined. To obtain these condit ions the system properties have 
to be defined first. In this chapter the characteristics and dynamics of a workstation 
with two buffers are defined. First the characteristics of the system are discussed. Here 
the structure of the workstation, the arrival patterns and the time fractions that each 
product needs to be processed are considered. In the second section the dynamics of 
the workstation are discussed. With these dynamics come constraints that result in a 
system with a desired cyclic sequence. 

3.1 Characteristics 

In this section the characteristics of a manufacturing workstation with two buffers are 
presented. As mentioned in Chapter 1, the workstation serves two types of products 
where one product type arrives at a constant rate and one product type at a piecewise 
constant rate, the structure of the workstation is discussed first . Next, the arrival 
patterns andtime fractions that each product needs to be processed in the system are 
discussed. 

9 
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Structure of the workstation 

When products (jobs) arrive at a workstation, these products can be of a different type. 
Each type is stored in a separate buffer. The capacity of the buffers are assumed infinite 
and work on parallel first-in-first-out (FIFO) basis. Products are processed like discrete 
events. Because it is easier to analyse a hybrid fluid model than a discrete event model 
of the workstation, this report discusses the analysis of a hybrid fluid model of the 
workst ation. In Figure 3.1 such a workst ation is presented. The number of products 

À1 (t) X 1 

CJ 
-

À2 - =- -
X2 0"1 2, 0"21 

Figure 3.1: Manufacturing machine 

in each buffer is denoted by Xi . The subscript i refers to the type of product . In this 
case two types of products arrive so: i E {1 , 2}. The workstation can process one 
producttype at a time. This means the machine has to switch between both types to 
prevent large buffer levels. Switching between processing type 1 and 2, and vice versa , 
requires a setup with setup times of respectively: 0"1 2 and 0"21 hours. Without loss of 
generality, the time uni t is set to 'hours ' in this report . The arrival rate of products 
at the workstation is denoted with À1 and À2 (in products/hour). The rates can be 
time dependent. In this report one time dependent arrival rate À1 ( t) for type 1 and a 
constant arrival rate À2 for type 2 is used. The worksta tion is able to process products 
of type 1 and 2 at rate between zero and a maximum rate of µ1 and M products/hour 
respecti vely. 
Using a hybrid fluid model instead of a discrete event model changes the character of the 
buffer levels. The buffer levels become: Xi E [O, Ni] where i E {1 , 2} and Ni represents 
t he maximum capacity of each buffer. The special situa tion with infinite buffer levels 
( N i = oo) is assumed in the rest of this report. 
The parameters presented in Figure 3.1 are all parameters of the system. This includes 
the machine parameters, the buffer levels and the properties of the arrival patterns. 
Different aspects of the system and its parameters are discussed in the next parts. 

Piecewise constant arrival pattern 

As mentioned in the previous part, À1(t) is time dependent. Ina network of two product 
workstations, switching between the two product types is necessary to avoid very large 
buffer levels in one of t he buffers. lf the workstation has non-negligible setup times this 
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leads to serial batching, what results in a piecewise constant flow of one type of products 
leaving the workstation. For workstations behind this first workstation, products of each 
type arrive at a piecewise constant pattern. In this report the piecewise constant arrival 
pattern is assumed cyclic. The result of such arrival pattern takes on two values for 
>. 1(t): 0 or >.1 . The pattern is presented in Figure 3.2. The upper part of Figure 3.2 

1 1 

.1 . • . . . . .. . . .1 .. . . . . 
1 1 

1 1 

1 1 t 

~(t) î 1 1 
1 1 
1 1 
1 1 p !--~ 

t 

Figure 3.2: Definition of >. 1(t) and ~(t) 

presents the arrival pattern of type l. T he piecewise constant arrival pattern repeats 
itself after a period. Each period has a length denoted with P hours and a mean arrival 
rate denoted with >. 1 products/hour, which is computed with: 

i rp 
>-1 = p Jo >-1 (t)dt. 

Buffer 1 receives products when >.1 = >. 1 where >. 1 represents the rate of arrivals. The 
t ime span during which these products arrive is a fraction of one period. The t ime 
fraction is denoted as O < </>1 :S l. This results in a mean arrival rate of: 

! fop >-1(t)dt = !(fo<PiP >-1dt+ l~p Odt) = !(</)1P>-1), 

what results in: 

(3.1) 

Remark 3.1.l. Parameter cp1 > 0, otherwise no products arrive during a period and the 
machine has only 1 type of product to process. If cp 1 = 1 the arrival pattern becomes 
constant. The case </)1 = 1 has been dealt with in [Eek06a]. 
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The approach in [Eek06a] is used as a guide line for this report. Therefore, the appear
ance of slow modes is very common. 

Definition 3.1.2. (Slow mode). A slow mode occurs when the machine processes a 
type of product at a rate equal to the arrival rate, under the condition that the arrival 
rate is less than the maximum process rate for that specific type of product. 

Remark 3.1.3. If a slow mode appears in the first workstation , the arrival pattern, as 
presented in Figure 3.2, changes at the second workstation. In the rest of the analysis 
in this report this behavior is excluded, but it is discussed in Chapter 7. 

In the remainder let b. denote the remaining time until the piecewise constant arrival 
rate is turned off again. The resulting evolution of b.(t) is presented in the lower part 
of Figure 3.2. 

Process times of the workstation 

The production capacity of a system has to be sufficient to process all products that 
arrive at the system. If the capacity is insufficient buffer levels increase in time. In 
general increasing buffer levels are undesirable. For that reason also a workstation 
which processes two types of jobs and performs setups must be stable. In order to 
obtain a stable system, the machine needs the ability to process as many products as 
products that arrive during a specific time span. The length of such specific time span 
is discussed in another part of this chapter. Each type of product needs a specific time 
fraction of a specific time span. To obtain a stable system, the sum of time fractions for 
a workstation without setup times is less than or equal to 1. Fora 2-product workstation 
with setups, the sum of time fractions of each producttype has to be strictly less than 1. 
If the sum equals or becomes larger than 1, the system becomes unstable because there 
is no time to process products that arrive during a setup. An unstable workstation 
reveals itself by exploding buffer levels when time goes to infinity. To obtain the sum 
of time fractions of each product that needs to be processed, the time fractions of the 
separate types of products must be determined. These individual time fractions are 
defined as 

where : iE{l,2}. (3.2) 

One of the arrival rates in time dependent , therefore equation 3.2 uses mean arrival 
rates (>.i) what results in time dependent time fractions (Pi)- If an arrival pattern is 
time independent then Ài = Ài and Pi = Pi· The sum of time fractions that each product 
needs to be processed is indicated by p: 

2 

p = I>i < i. (3.3) 
i=l 
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At this point, all characteristics of the workstation are defined. In the next section 
these parameters are used to describe the dynamics of the system. At a later stage, the 
workstation has to be controlled. A controller imposes different tasks on the machine. 
The controller sends an input signal to the machine, in which it tells the machine what 
to do. The decision making is done by the controller. To make these decisions properly, 
the dynamics of the system has to be clear. 

3.2 State, input and dynamics 

The system, as described in previous section has to process different product types and 
has to perform setups. An input signal tells the machine which task has to be per
formed. In this section the state and input vector of the machine are explained. The 
state and input signals are used to describe the dynamics of the system. In the last 
part of this section the desired periodic behavior of a process cycle is defined. 

The state of the system consists of different elements. Besides the buffer levels x 1 and 
x2 and the value of~, also a remaining setup time xo and the modem are present. The 
workstation has two modes denoted by m E {1, 2}. The mode presents which type of 
product the machine is currently either serving or being setup for. These five variables 
determine the state of the system at time t: 

x(t) = [ x1(t) x2(t) xo(t) ~(t) m(t) r E JR.t X {1 , 2}. (3.4) 

The machine can process products of type 1 or 2, perform a setup or become idle. A 
controller which supervises the system determines, based on the state of the system, an 
input vector for the machine. The input vector consists of three signals. Signal u 1 and 
u2 represent the rate at which the machine has to process. These input signals must 
be less than or equal to maximum process rate µ1 and µ2 respectively. The third input 
signal u0 determines which activity must be performed. The possible activities are: 

uo= 0 : 
uo= CD: 
uo =@ : 
uo = @: 

setup to type 1 
process type 1 
setu p to type 2 
process type 2 

Also 'idling' forms an activity. This activity can be performed in combinations with 
other parameters of the input vector. The input vector of the machine is: 

(3 .5) 

With the input vector and state of the system, the hybrid dynamics of the system 
are described in two parts. The first part contains the discrete event dynamics of the 
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system: 

x o := 0"21 , m := 1 if uo = o, m=2. 

Xo := 0"12, m:=2 if uo =@, m= l. (3.6) 

6:=P if 6=0. 

Jumps of variables xo and m can occur when the input signal uo changes. In that case, 
both the mode and the remaining setup change. Besides the possible jumps of variables 
when uo E {O,@}, variable 6 always shows jumps. Variable ~ decreases when time 
goes by. If 6 = 0 it is reset to~ = P. The second part of the hybrid dynamics contains 
the continuous dynamics. 

±o(t) = { -1 for uo(t) E {O,@} 
0 for uo(t) E {(D, @} 

(3.7) 

A(t) = -1. 

Furthermore, at each time instant the input is subject to the constraints: 

uo E {O,@}, U1 = 0, u2 = 0 for xo > 0 
uo E {(D, @}, 0 :S U1 :S µ1 , u2 = 0 for xo = 0, Xl > 0, m= 1 
uo E {(!), @}, 0 :S U1 :S À1(t) u2 = 0 for xo = 0, Xl = 0, m= 1 
uo E {O,@}, U1 = 0, 0 :S u2 :S µ2 for xo = 0, X2 > 0, m=2 
uo E {O,@}, U1 = 0, 0 :S u2 :S >-2 for xo = 0, x2 = 0, m=2. 

The input signal u0 contains 2 activities. These are the activit ies that can be performed. 
Given the current state the first constraint represents the situation where a setup is being 
performed. As long as xo > 0 no products can be processed (u1 = 0; u2 = 0). During 
the setup, an intervention may cause a switch to an other product type. In that case the 
ongoing setup is interrupted and the new setup starts. The second and third constraint 
represent the processing of type 1. As long as the buffer is not empty, the machine 
meets the second constraint and processes at its maximum process rate. Else the third 
constraint holds and its maximum process rate decreases to the rate equal to the arrival 
rate. During processing type 1 the conditions must hold that the machine does not 
process type 2 (u2 = 0). The last two constraints represent the situations where type 2 
is processed. The difference between these two constraints is the maximum process rate. 
If the buffer level is larger than zero the rate can be up to µ2, if the buffer is empty the 
maximum process rate is equal to the arrival rate >-2. When processing type 2, type 1 
can not be processed (u1 = 0). 
The sequence of the four tasks can be performed in the fo llowing order only: 

... ---t process type 1 ---t set up to type 2 ---t process type 2 ---t set up to type 1 ---t .•. 
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In the remainder of this report this cyclic sequence is called the process cycle. In the 
next part the length of the process cycle is defined. 

Steady state process cycles 

This report studies steady state process cycles . Steady state means that the variables of 
a dynamica! system describing its behavior are periodic functions of time or constant . So 
a steady state process cycle shows periodic behavior. The periodic behavior manifests 
itself in cyclic behavior of the buffer levels. Finding a steady state process cycle of a 
two product workstation with setups is only possible if the sum of time fractions that 
each product needs to be processed in the system is less than 1 (3.3). 
During one process cycle, the mean arrival rate of a type is Ài. The machine can process 
the products that arrive during one process cycle at a maximum rate of µi. To obtain 
a steady state process cycle, the machine has to process: 

[hours] i E {1,2}, 

of each product type during one process cycle of T hours. The workstation processes the 
same number of products as the number that arrive during one cycle. So to make sure 
the system has a steady state process cycle, the system needs enough time to process 
type 1, type 2, a setup to 1 and a setup to 2: 

T 
or: 
T > a12 + a21 

- l - p1 - p2. 

By using (3.3), the minimum length of the process cycle is established: 

T. . _ a12 + a21 
mm - l _ 

- P1 - P2 

(3.8) 

Two variables in time are discussed so far. Variable P represents the length of the 
cyclic behavior of the piecewise constant arrival pattern, and T represents the length of 
a process cycle. Both variables play an important role in the desired periodic behavior. 
The relationship of both variables in relation with the periodic behavior is sketched in 
Example 3.2.1. 

Example 3.2.1. In a network of to machine in series, two types of products arrive at a 
constant rate. The network operates in steady state and the arrival of products at the 
first machine is constant. When the products are processed in the first machine, they 
are send to a second machine. These products arrive with a piecewise constant arrival 
pattern at the second machine. Using the parameter setting in Figure 3.3, the following 
values for T and P are determined. 
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>.. f = 2 -
Figure 3.3: Manufacturing machine 

• Machine 1: 
No piecewise constant arrival pattern is present wi th respect to machine 1. 
Using (3.8): 

• Machine 2: 
The piecewise constant arrival pat tern of product types 1 and 2 is equal to the 
length of the process cycle of machine A: PB = TA = 7 h. 
The network operates in steady state. This means the number of products that 
arrive during time span TA a t machine 1 is equal to the number of products 
that leave the machine. So for the second machine holds tha t ;\.f = >.. f where: 
i E {1 , 2}. 

1 + 18 
TB = -~-~ = 28 h. 

l-Î- 2
2s 

Machine 1 has periodic behavior each 7 hours. Machine 2 shows periodic behavior each 
28 hours, because 4PB = TB. 

The example shows the situation when the period PB is smaller than the process cycle 
(PB < TB, min). In other situations it is possible that P ~ Tmin· In those situations 
the length of the periodic behavior becomes T. 

In this report the assumption is made that the desired periodic behavior has a length 
of: 

(3.9) 

In (3.9) the assumption is made that one process cycle T has the same time span as the 
length of one period P. The situation T = T min is precluded. The exclusion is explained 
in Chapter 5 (Remark 5.3.5). When the assumption is met, the process cycle always 
has a steady state and a controller can be found that steers the system to this steady 
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st a te. 

The characteristics, varia bles and dynamics of the system are discussed in this chapter. 
With these properties the length of t he desired periodic behavior / steady state process 
cycle is determined. 
In short , when a two product manufac turing system with one piecewise constant and 
one const ant arrival rate satisfies the following condit ions: 

• Pl + p2 < 1, and 

the theory in this report is usable. The rest of this study focusses on the 'best' steady 
state process cycle possible, how to reach it and how to keep it optimal. The 'best' 
performance of a steady state process cycle can be transla ted into an optimization 
problem. In the next chapter such opt imization problem is established and the steady 
state process cycle is opt imized. 
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Chapter 4 

Optimal process cycle 

In the previous chapter t he characteristics and dynamics of a switching system with one 
piecewise constant and one constant arrival rate have been discussed. The system has 
to meet two conditions: 

• Pl + P2 < 1. 

T he first conditions implies that the sum of t ime fractions that each product needs to be 
processed is never too la rge to find a steady state process cycle. The second condition 
presents the minimum length of a process cycle. If the process cycle is larger than this 
value, one can find a steady state process cycle. In this study the process cycle has to 
be optimized with respect to time averaged weighted work in progress (wip) level. The 
opt imization is performed in different steps. In the first section the optimization objec
tive is fully est ablished. In the second sect ion t he individual buffer levels are described 
analyt ically for a t ime span of one process cycle. Finally the analyt ica! representat ion 
of the total system is optimized in the third section . 

4.1 General analysis of the process cycle 

In this sect ion, the optimization problem is defined. T he objective is to optimize the 
steady state process cycle of t he system with respect to the time averaged cumulative 
costs rela ted to the wip levels of both buffers. As defined in the previous chapter, the 
length of one process cycle T equals one period P hours. Within this time span the 
process cycle is opt imized . The costs of the system are defined as J. Where J is: 

( 4.1) 

19 
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In ( 4.1) variables x 1 and x2 are the buffer levels of respectively type 1 and type 2. 
The weighing factors c 1 and c2 are assumed to be constant factors for type 1 and 2 
respectively. So to minimize costs, the wip level has to be minimized. Minimizing the 
wip-levels of a two product manufacturing system leads to several statements. The 
lemmas which play a role for this system are discussed shortly. The proofs of these 
lemmas are given in [Eek06b]. 

Lemma 4.1.1. When serving type i, optimal policies first serve at the highest possible 
rate, after which they might idle. 

Lemma 4.1.2. For optimal steady state behavior of type i, buffer i is always emptied. 

The analysis in this report focuses on a system where the length of the steady state 
process cycle is equal to the length of the piecewise constant arrival pattern. To fit 
both lengths it is very likely the machine has to stay in a certain mode although the 
buffer is empty. In such a situations the machine has to become idle or the machine has 
to process in a 'slow mode' [Eek06a]. When the system processes in a slow mode, the 
process rate is equal to the arrival rate. If a slow mode becomes active, the machine 
does not use its full capacity but the machine keeps processing instead of become idle or 
performs a setup. The effects of idling and slow modes result in a two new statements. 

Lemma 4.1.3. Optimal policies do not idle . 

Proof. The system holds a constant arrival pattern for type 2 and a piecewise constant 
arrival pattern for type 1. When the machine finished processing type 1 and no products 
of type 1 arrive, the machine can idle. At the same time products of type 2 are arriving 
at buffer 2 continuously. To keep the buffer level of type 2 as low as possible, the machine 
must switch to process type 2 as soon as possible. Idling after type 2 is processed, is 
not an option because products keep arriving and the machine can process in a slow 
mode. D 

So the machine is not allowed to idle. This brings the following statement. 

Lemma 4.1.4. IJ the length of one steady state process cycle is langer than its minimum 
necessary length (I' > T min), the optimal steady state process cycle contains at least one 
slow mode. 

Proof. When the length of a steady state process cycle is longer than the minimum 
length , the machine has more capacity than needed. The machine has to meet Lemma 4.1.1 
but the machine is not allowed to idle (Lemma 4.1.3). The only way to avoid idling if a 
machine has too much capacity is to keep processing lots at the same rate as its arrival 
rate (slow mode) after the buffer is emptied. □ 

The occurrence of slow modes is inevitable when discussing process cycles with a length 
larger than I'inin. In the next section such process cycles are discussed and optimized. 
Before the total system is optimized, the individual buffers are analyzed . 
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4.2 Analysis of separate buffer levels 

In order to get a good insight how the buffer level evolves during one process cycle, the 
buffer levels are analyzed separately in this section. In general, during one process cycle, 
the buffer level increases and decreases over time. These fluctuations are presented and 
explained in this section. First the constant arrival rate of type 2 is discussed. Because 
the arrival pattern is time independent, the fluctuations of the buffer level depend 
only on the state of the system. This makes it possible to analyze both buffer levels 
separately. Therefore, the time span where type 1 is processed (T1), is assumed to be 
constant. Each trajectory is divided in four time spans found earlier, process type 1, 
setup to type 2, process type 2 and setup to type 1 (symbolic respectively: T1, cr12, T2 
and cr21 ). Within the process intervals a subdivision is made between processing with a 
maximum capacity ofµ or at a lower rate equal to the arrival rate À (slow mode). The 
subdivision leads to the following equality: 

i E {1 , 2} (4.2) 

The six time spans together form one process cycle. After the analysis, both trajectories 
of the buffer levels are combined and both buffer levels are optimized over T1. 

4.2.1 Analysis of the buffer level with a constant arrival rate. 

First the buffer with a constant arrival rate is discussed. This situation refers to buffer 
2 of the two product workstation. Because the analysis focusses on the behavior of 
a buffer with no time dependent arrival pattern, the arrival pattern can not influence 
the behavior of the buffer level. The goal is to find the mean wip level of the buffer. 
To reach this objective, the behavior of the buffer level must be determined during 
different process steps. During the whole process cycle the buffer receives products at 
a constant rate of À2 products/hour. The result is an linear increase when the machine 
is not processing type 2. After @ the machine is able to process type 2 ( @ ) and the 
number of products decreases until the buffer is empty. This behavior is presented in 
Figure 4.1. 

Figure 4. 1 shows the optimal behavior within one process cycle with a given time 
span for T1. The figure assumes steady state behavior where the buffer has to be 
emptied (Lemma 4.1.2) and the buffer level at the start of the process cycle is equal 
to the buffer level at the end of the process cycle. In Figure 4.1 the machine processes 
at two speeds. As long as the buffer is not empty the machine processes at a rate of 
µ2 (Lemma 4.1.1). The decrease of products during the time span Tf equals µ2 - À2 
products/hour. Afterwards, a slow mode of type 2 may occur. Appearance of a slow 
mode for type 2 depends on the parameter setting which is discussed in Section 4.3. If 
a slow mode occurs, the process rate equals the arrival rate À2 and has a time span T,i. 
The mean wip level can be computed with an equation like ( 4.1). A specific expression 



22 Chapter 4. Optima] process cycle 
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Figure 4.1: Trajectory of buffer with constant arrival pattern. 

for the mean wip level of buffer 2 ( w2) is: 

w2 = ~ lp x2 (s)ds. (4.3) 

To obtain a relative simple optimization problem , the wip level of type 2 is formula ted 
as a function of T1. To describe the wip level of buffer 2, it means Tf and Ti become a 
function of T1. 

When the machine is in mode O , (!) or @ , buffer 2 receives product at a rate of À2 for 
a time span of (a21 +T1 +a12) hours. During the time span Tf the buffer level decreases 
with an effective rate of (µ 2 - À2)- Because the total number of products tha t arrive 
must equal the number of processed products, the following equality holds: 

Rewriting the equation and int roducing the individual time fractions of type 1 and 2 
result in: 

Tf = MÀ_'!>.2 (a21 + T1 + a 12) 
(4.4) 

= 1~~
2 
(a21 + T1 + a12)-

In these equations the arrival rate is constant , this implies À2 = À 2 and p 2 = p 2 . The 
last step of the determination of the trajectory of the buffer level of type 2 is to find an 
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expression for Tf. In Figure 4.1 variable T,i is the last time interval before the period 
ends. Or: 

and after substitution with ( 4.4) 

(4.5) 

With the expressions for the intervals Tf and T,i , the mean wip level is determined. 
Physically ( 4.3) computes the area underneath the contour of the number of products 
in the buffer (in Figure 4.1) and divides it by P. The triangular area underneath the 
contour is equal to half the length of the base multiplied with the height. The result is: 

w2 
_ ½(P-Ti) he ight 
- p 

(4.6) 

_ 1 .l:!:11!1..( + + )2 - 2P 1-p2 0"21 T1 0"12 

Remark 4.2.1. During processing type 2 the machine needs to process the same number 
of product as arrive during one process cycle. Therefore the length of T1 can not be too 
large. The minimum length of time ( Tfin) to process all products of type 2 arriving 
during one period is to process all products at the machines maximum capacity: 

With the presence of a minimum length for T2 and a fixed length for a process cycle, a 
maximum length or upper bound for T1 is established. Using P = T1 + 0-12 + T2 + 0-21 

and T2 2 p2P, the upper bound for T1 becomes: 

(4.7) 

Equation 4. 7 forms the upper bound for T1 . 

At this moment the mean wip level of type 2 is determined and an upper bound for 
T1 is established. In the next section the upper bound is used as a constraint of t he 
optimization problem. 
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4.2.2 Analysis of the buffer level with a piecewise constant arrival 
rate. 

This part contains the derivation of the mean wip level of a buffer which receives prod
ucts at a piecewise constant rate. The mean wip level is based on a time span of one 
period (P). This situation refers to buffer 1 of the two product workstation. In con
trast with the constant arrival pattern, when a time dependent arrival pattern is used , 
a relationship exists between the time of processing type 1 and the time interval where 
products of type 1 arrive. Thereby, the fraction of a period where products arrive plays 
an important role in the determination of the wip level also. As mentioned in the pre
vious part , T1 is the candidate to be optimized over. So in advance each length where 
T1 > 0 is possible as long as constraint ( 4. 7) is met. Like the established upper bound 
in ( 4. 7) for T1 , also a lower bound can be determined. During one process cycle the 
machine needs enough time to process all products that arrive during one period. For 
the length of T1 this means: 

(4.8) 

Equation 4.8 forms the second constraint for T1 . 

Remark 4.2.2 . A situation where the lower bound is larger than the upper bound is 
not possible without violating the conditions mentioned at the start of this chapter. If 
p1P > (1 - P2)P - (0"12 + 0"21): 

(0"12 + 0"21) > (1 - Pl - P2)P. 

While condition (3.9) must hold which implies : 

These two inequalities are reconcilable with each other. So a situation where T1 can not 
meet both upper and lower bound is not discussed in this report. 

When T1 lies between the upper and lower bound, sufficient time is available to process 
enough products of each type in one process cycle. So with these constraints the wip 
level that has to be determined is: 

l {P 
w 1 = p Jo x 1(s)ds . (4.9) 

The trajectory of the buffer level depends heavily on the arrival rate. If many prod
ucts arrive in a short amount of time (.\1 2: µ1) , a new lemma needs to be introduced 
to define the t rajectory of the buffer level during one period. In the second situation 
where .\1 < µ1 the trajectory depends, besides the Lemmas 4.1.l and 4.1.2 , on other 
relationships too. So two situations are distinguished: 
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Situation I 
Situation II 
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During the remainder of this section these two situations are optimized with respect to 
the rela tion between the piecewise arrival pattern and the moment in time where type 1 
has to be processed. After the determination of these relations the mean wip levels are 
determined. In the next section the mean wip levels of buffer 1 and 2 are combined for 
all different situations and optimized with respect to T1 

Remark 4.2.3 . In case >.1 or </>1 is unknown, a relation exists between these two pa
rameters. This relationship is used in the course of this chapter. The rela tionship is 
performed by substitution of (3.1) and (3.2) for type 1: 

- À.1 
Pl = -and 

µ1 

substituted: 

(4.10) 

Situation I 

Situation I represents the situation where >-1 2: µ1. This means that many products 
arrive in a short amount of time. To obtain a minimum mean wip level in the buffer , 
a relation is established between the st art of processing type 1 and the point in time 
where products of type 1 st art to arrive. 

Lemma 4.2.4. In the situation where a buffer receives lots at a piecewise constant 
arrival rate and the rate of arrivals is higher than the process rate, m inimizing the wip 
level of the buffer during one process cycle m eans a coincidence of the start of processing 
and the point in tim e where lots start to arrive. 

Proof. When a system receives lots at a rate that is higher than the process rate, an 
increase of the buffer level is inevitable. To minimize the number of products in the 
buffer , the rate of increasing must be kept toa minimum. By starting processing when 
lots st art to arrive ( = as soon as possible) the rate of an increasing buffer level is kept to 
a minimum. The minimum increase results in the lowest value possible for the maximum 
buffer level after all products have arrived. Also a lower maximum buffer level results 
in a shorter processing time after the lots stopped arriving. Processing lots as soon as 
possible, as performed here, leads to a minimization of the wip level of type 1. 
Note, this proof uses the constant arrival pattern of type 2. D 

Using Lemma 4.2.4, the start of processing type 1 has to coincide with the st art of 
arrivals of type 1. During the processing of type 1 the buffer level increases until the 
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Figure 4.2: Situation 1: Trajectory of buffer with piecewise constant arrival pattern. 

products stop arriving. Then the buffer level decreases at a rate of µ1. In Figure 4.2 
this behavior is presented. 

In Figure 4.2 the optima! t rajectory of a buffer with piecewise constant arrival pa t tern 
is depicted. As one can see, the machine processes type 1 at its maximum rate as long 
as possible ( Ti) . When the buffer is empty the machine can st ay in CD (still T1 has to 
be optimized in combination wi th buffer 2). But from the moment the buffer is empty 
no products of type 1 arrive nor have to be processed. As mentioned in Lemma 4.1.3 , 
idling is not permitted within an optima! process cycle , so indisputably Ti = T1 and no 
slow mode is active ( T( = 0) . 
To determine the wip level of type 1, the triangular area underneath the contour has to 
be determined and divided by the length of the period P. The base of this triangle is 
Ti = p1P. The height of the triangle is equal to the number of products that arrived 
during time span </>1P minus the number of products that are processed during the same 
time interval. The height becomes: 

Substitution of ~1 with (4.10) results in: 

(4.11) 
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With the use of Ti = p1P and (4.11) the wip level of situation I becomes: 

½ ( Tj)- height 
p 

½ 7'fï P(/'fï -q,1 )µ1 P 
p 
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(4.12) 

As long as the constraint holds that >-1 2'. µ1 , T1 bas a fixed length and is processing 
type 1 in a slow mode not possible, what results in a fixed trajectory for type 1 also. 
So now the mean wip level of type 1 is determined for situation I. In the next part the 
wip level for situation II is discussed. 

Situation II 

In situation II the products of type 1 arrive at a rate less than µ1 , or >. 1 < µ 1. Us
ing (4.10) the following relation can be established: 

Pl 

</>1 
( 4.13) 

Equation 4.13 implies that in this situation if >-1 < µ 1 means that cp 1 > p1 . The rate 
at which products arrive is smaller than the maximum process ra te . As in situation I 
exists a relationship between the arrival rate and processing type 1. Again the optimal 
situation must be obtained. 

Lemma 4.2.5. Optimizing situation II where the highest arrival rate of a piecewise 
constant arrival pattern is less than the process rate, the end of arrivals must coincide 
with the end of processing that type of job. 

Proof. With a given time span for T 1 and a constant arrival rate of the jobs of type 2, the 
systems has to meet different constraints. During one process cycle the buffer level has 
to become zero (Lemma 4.1.2), the machine is not allowed to idle (Lemma 4.1.2), has 
to process ÀiP ; i E {1 , 2} jobs and perform two setups. Within these constraints the 
wip level of the job type with piecewise constant arrival pattern has to be minimized. 
To obtain the lowest mean wip level possible, the buffer bas to be kept empty as long as 
possible . To achieve this objective the buffer bas to be empty during the time interval 
where no jobs arrive. When no jobs arrive, the machine has to process the other job 
type and perform setups. When processing the job type with piecewise constant arrival 
pattern starts, processing this job starts with the lowest buffer level possible. So to 
obtain the largest interval with an empty buffer , the machine has to process the job 
type with piecewise constant arrival pattern until the jobs stop to arrive. □ 
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In one steady state process cycle the number of processed products must equal the 
number of arrived products during one process cycle. So at the end of processing type 1 
a fixed number of products have to be processed. To prevent idling, the machine has 
to finish processing type 1 if the buffer is empty and no products arrive. So the point 
of synchronization of the arrival pattern and process cycle is at the end of processing 
type 1. This leads to a t rajectory presented in Figure 4.3. 

Arrival rate Ài)I. 
point o f synchronizat ion 

l 
p -l~e 

P rocess rate :: l ~ -1 
1 1 1 -
1 

time 

X1 î 

Buffer size 

-time 

Figure 4.3: Situation Il: Trajectory of buffer with piecewise constant arrival pattern . 

Figure 4.3 shows the number of products in the buffer increases when type 1 is not 
processed. The decrease starts when the machine starts CD at a rate of µ1. When the 
buffer is empty and interval cp 1P is not finished yet, the machine process in a slow mode 
until the interval cp1P ends. 
The derivat ion of the mean wip level is similar to situation I, again the area underneath 
the contour has a triangular shape. The width of the base is the length of the interval 
where products arrive (</J1P) minus the interval T{. The height of the triangle is equal 
to the length of cp 1P minus the length of T1 multiplied by the arrival rate. So the height 
becomes: 

. ) ' ( µ1p1 he1ght = (cp1P - T1 )q = </J1 P - T1)Ti (4.14) 

The equation of the width of the base contains the variable T(. This parameter needs 
to be replaced by a function of T1 to simplify the total optimization problem in the next 
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section. A steady state behavior implies that in this situation the number of arrivals 
must equal the number of processed products. Or: 

A À A 

µ1 Ti + À.1 Tl = À.iqJ1 p 

The relation between T1 and Ti' is 

µ À 
T1 = Tl +Tl. 

Combining (4.15) and (4.16): 

Finally, substitution of >. 1 with the use of (4.13) results in: 

( T1 - 75ïP)</J1 

</J1 - Pl 

For the width of the base follows: 

>, </J1P - T1 
(</J1P - T1) = /4 _ <Pl· 

'f'l - Pl 

The expression for Ti is found by substitution of (4.17) in (4.16): 

(</J1P - T1)P1 
T µ - -'------1 -

</J1 - Pl 

(4.15) 

(4.16) 

( 4.17) 

(4.18) 

(4.19) 

With the found expressions for Ti' , Ti and the use of (4.14) the mean wip level for 
situation II becomes: 

(II) _ ½(<t>1P - r{Jheight 
Wl p 

_ 1 p1P-T1 /4 (/4 p ) µ1p1 
- 2P q,1 - pi 'f'l . 'f'l - T1 q,1 

_ 1 µ1p1 (/4 p )2 
- 2P <PI - p1 'f'l - T1 . 

( 4.20) 

With ( 4.20) a mean wip level is found for situation II, for a given T1 as long as its length 
is defined between the lower and upper bound mentioned in (4.8) and (4.7). 

At this point a mean wip level is determined for both situations. During the deter
mination of the trajectories with a piecewise constant arrival pattern, the first step to 
optimization is to synchronize the arrival pattern and the processing of type 1. The 
next step is to combine situations I and II with buffer 2 and optimize the total system 
with respect to T1 . In Section 4.3 these combinations are optimized. 
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4.3 Optimal steady state process cycle 

In the previous section the trajectories of buffer 1 and 2 have been discussed. A fixed 
time span for processing type 1 ( T1) is used during the analysis. With the fixed time 
span, mean wip levels for both buffers are defined as a function of T1 . In this section, the 
trajectories of buffer 1 and 2 are combined and the sum of mean wip levels is minimized 
by optimizing the length of T1 . In the previous section, two situations for type 1 have 
been discussed. In this section these two situations return. The total optimization 
mentioned in 4.1 is rephrased in minimizing the time averaged weighted wip level: 

min 
T] 

s.t. Constraints on T1 

with: r E {I, II} 
( 4.21) 

With the minimization problem come the constraints for T 1 . Besides the lower and upper 
bound, (4.8) and (4.7) respectively, the time interval where products arrive (<jJ1P) plays 
an important role also. In this section the two situations of the previous section are 
optimized and their optimal steady state behavior is presented. 

4.3.1 Situation I (.X1 > µi) 

The behavior of buffer 1 in situation I has been discussed in the previous section, the 
result is a fixed trajectory for buffer 1 where no slow mode is possible because idling 
is forbidden by Lemma 4.1.3. When this behavior of type 1 is combined with the 
trajectory of buffer 2, trajectory of type 2 is captured also. After finishing type 1, the 
machine is not allowed to idle due to Lemma 4.1.3. The machine performs a setup to 
process type 2 and processes at is maximum capacity (Lemma 4.1.1) until the buffer is 
empty. Still Lemma 4.1.3 has to be met when buffer 2 is emptied (Lemma 4.1.2). As 
Lemma 4.1.4 showed, at least one slow mode is active during one process cycle. Because 
no slow mode can exist of type 1 a slow mode for type 2 has to exist. 

Remark 4.3.1. The slow mode of type 2 always exists in the optimal process cycle for 
the situation where >-1 2: µ1. 

Proof. The length of Ti = P - 1_:P
2 

(a21 + p1P + a12), for the constraint of a period 
holds (3.9). Equation (3.9) can be modified into: 

-a12 + a21 > -P(l - P1 - p2). 

Substitution with T,i leads to the following inequality: 

( 4.22) 
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Due to ( 4.22) the optimal process cycle always contains a time interval where a slow 
mode of type 2 is active. D 

The mean wip level of the optimal trajectory is determined by substitution of (4.12) 
and (4.6) in the optimization problem (4.21) where T1 = Ti = p1P. 

( 4.23) 

Equation ( 4.23) presents the lowest time averaged weighted mean wip level possible for 
situa tion I when one period is equal to one process cycle. 

4.3.2 Situation II (À1 < µ1) 

Like situation I, situation II also has to be optimized. In this situation the products 
of type 1 arrive at rate which is less than the maximum process rate of type l. The 
consequence of .X.1 < µ 1, as mentioned in ( 4.13) of the previous section , is tha t </>1 > Pl · 

In situation II Lemma 4.2.5 holds. It means when the products of the piecewise const ant 
arrival pattern stop, the machine has to switch to the other type of products. 

Remark 4.3.2. Besides the coincidence of the end of processing type 1 and the stop of 
arrivals, the length of the process time of type 1 ( T1) can never exceed the length of the 
t ime span where products arrive ( </>1P) . This is only possible if the process rate is less 
than the arrival rate. Due to Lemma 4.1.1 this is not allowed. 

The optimization problem for situation II is written below: 

min 
TI 

S.t . g1(T1) p1P - T1:::::; 0 
( 4.24) 

g2( T1) T1 - (1 - P2)P + (<721 + 0"12) '.S 0. 

Figure 4.4 shows an objective function of the optimization problem ( 4.24). The con
straints (91 and 92) determine the optimum of T1 in this case. The ( constraint) optimum 
in this example is Tt = p1P, while the absolute optimum is Tr 
In optimization problem ( 4.24) the first term of the objective is semi-positive definite 
because </>1 > Pl· The second term is positive definite, what makes the sum of bath terms 
positive definite also. The optimization of a positive definite quadratic function results 
in a parabola which top is a minimum. The constraints form the absolute lower and 
upper bound for T1 . For the determination of the absolute optimum TÎ , the derivative 
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91 92 

Figure 4.4: Optimum for T1 

of the objective function has to be zero: 

where: 

A - C ...l.....1!:1.E.L 
- 1 2P</>1-P1 

This leads to an optimum of: 

C 1-'J PJ +c !:::21!2. 
l,t,1-PT 21-p2 

_ Clll,175î(l - p2)( </>1 P) -c2µ2p2(</>1 - 75ï)(a21 +a12) 
- C1 µ1p1 (l - p2)+c2µ2p2( </>1 -p1) 

--

( 4.25) 

Note: The expression T{ represents the optimal time span needed to process all products 
of type 1 without takin9 the constraints of ( 4.24) into account. 

Taking the constraints into account, three possible scenarios are possible: 

S 1 # -p o ution: T1 = p1 
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Solution: Tf = TÎ 

3. TÎ > g2 

The first scenario represents the situation where the optimal length of processing type 1 
is less than the lower bound. This can be interpreted that it is important to keep the 
mean wip-level of type 2 as low as possible (no slow mode for type 1). Scenario two 
represents a optimal solution where both types have the same importance approximately 
(slow modes for type 1 and type 2). The last scenario represents the situation where 
processing type 1 is requires a lot of time to keep its mean wip level low (no slow mode 
for type 2). 
Remark 4.3.3. The optimal T1 has to be smaller than the time span where type 1 arrives 
(</>1P) as mentioned in Remark 4.3.2. Due to this requirement scenario 3 can only take 
place if <f> 1P is larger than the upper bound of T1. 

Remark 4.3.4. A special case is the situation >.1 = µ1. This situation occurs on the 
boundary of situation I and situation II. In this situation ( 4.24) and ( 4.23) must provide 
the same solution. 

Proof. Due to (4.13) variable </>1 = Pl if >-1 = µ1. Furthermore, T1 = p1P holds in both 
situations. After substitution of </>1 = p1 and T1 = p1P the result is: 

Jr = C1 ½µ1p1 (p1 - P1)P + C2 2~ e~~ (cr21 + P1P + 0"12) 2 

J _ 1 /.1,lPl (- p -p)2+ 1 .l:!:1.E1..( + - P+ )2 II - c1 2p iPi -Pi Pl - Pl c2 2p l-p2 cr21 P1 cr12 

J -J- 1J:!:1.E1..( + - P+ )2 I - II - C2 2P l-p2 0"21 Pl 0"12 · 

The transition of situation I into situation II is good because at the boundary of both 
situations 11 = JII. □ 

By updating the optimal value for T1 with applying the constraints, the optimal trajec
tory is defined for all possible parameter settings which can occur in situation II. 
In the next section the different shapes of possible optimal trajectories are discussed. 

4.4 Optimal steady stat e t rajectories 

All optimal steady state process cycles as described in Section 4.3 have their own char
acteristics. In this section the results of the optimal steady state process cycles are 
translated into the trajectories of the buffer levels during one process cycle. All situa
tions are discussed, including the three possible scenarios for situation II. 



34 Chapter 4. Optima] process cycle 

4.4.1 Trajectory of situation I 

Situation I distinguishes itself, besides the fact that >-1 2: µ1 , by the coincidence of the 
start of arrivals of type 1 with the start of processing type 1. The result is the optimal 
trajectory of the steady state process cycle of situation I in Figure 4.5. The trajectories 

l@I 
1 1 

@ 1 @ 1 
1 1 

1 1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 

- x 1 
0"1 2 Tµ ,>_-+-

2 T2 time 

Figure 4.5: Trajectory of situation I. Left : Periodic orbit. Right: Buffer levels over 
time. 

in Figure 4.5 start at the begin of setup O . The right-hand graphs show the buffer 
levels of type 1 and 2 over time. On the left-hand side the buffer levels are plotted 
against each other. The course of the buffer levels form a counter-clockwise trajectory. 
After setup O is performed, the machine starts processing type 1 at a rate of µ1. At 
the same time products of type 1 start to arrive at a higher rate (>-1). With Regard 
to the trajectory of the periodic orbit, the result is a vector of [>-1 - µ1 , >.2]T as long 
as products of type 1 arrive. When the products stop arriving the new vector becomes 
[- µ1, >-2]T unt il x1 = 0. Then @ is performed immediately (T[ = 0) and afterwards 
type 2 is processed where the vector is [O , -µ1]T until the point is reached where both 
buffers are empty. The machine continues processing type 2 in a slow mode (in point 
(0,0)!). The length of the time intervals of the process rates are determined with (4.4) , 
( 4.5) and the determination of T1 by using the earlier presented lemmas: 

( 4.26) 
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4.4.2 Trajectories of situation II 

In Section 4.3 situation I and II are optimized. The determination of the optimal 
length for processing type 1 has been discussed in that section. The result of the 
optimization problem in situation II are three possible scenarios. Each scenario has its 
own characteristics, these are visible in three different trajectories which are discussed 
here. 

Scenario 1 

In scenario 1 the mean wip level of type 2 is relatively important. This behavior reveals 
itself in a trajectory where processing type 1 in a slow mode is not admitted in the 
optimal process cycle. Such behavior keeps the process time of type 1 as short as 
possible, so the machine can process type 2 as soon as possible and is able to process 
type 2 in a slow mode (Lemma 4.1.4). The optimal trajectory is presented in Figure 4.6 . 
On the right-hand side Figure 4.6 shows the trajectories of both buffer levels against 

x1t 
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1 

x2t 
0 CD ~ @ @ 

X2 

t 
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0 --+- XJ x# Tµ Tµ Ti -1 0"21 1 0"12 2 time 

Figure 4.6: Trajectory for scenario 1 

time. At the left-hand side the buffer levels are plotted against each other. When 
buffer 1 reaches its critical value xf, the machine switches from processing type 2 to 
type 1 ( 0 ). When the machine starts processing, it results in a vector of [>.1 - µ 1 , >-2]T. 

The machine keeps processing type 1 until the buffer is empty. The moment the buffer 
is empty, the arrivals of type 1 stop. After @ the machine processes type 2, first at 
its maximum capacity and later in a slow mode, until the critical value for type 1 is 
reached again . The optimization of T1 resulted in this scenario in the same length as 
in situation I, also in both situations only a slow mode for type 2 exists. Therefore 
the accompanying time intervals Ti, T( , Tf and T( can be determined with the same 
equations as mentioned in ( 4.26). 
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Scenario 2 

In this scenario the optimized length for T1 is positioned between the lower bound 
T1 2 p1P and upper bound T1 :S (1 - p2)P - (CT21 + CT1 2) . The result are process 
times for type 1 and type 2 that are longer than the minimal required lengths (piP 
with: i E {1 , 2} ). So for both types a slow mode exists in the optimal trajectory. 
Such behavior is presented in Figure 4. 7. On the right-hand side Figure 4. 7 shows the 
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1 

Figure 4.7: Trajectory for scenario 2 

trajectories against the time. At the left-hand side the buffer levels are plotted against 
each other. The trajectory of scenario 2 matches the trajectory of scenario 1 except for 
the existence of a slow mode. When buffer 1 is empty the machine keeps processing 
type 1 in a slow mode as long as products keep arriving. The arrivals stop when x2 = xf 
is reached. The length of the time intervals are in accordance with (4.4) , (4.5) , (4.19) 
and (4.17) , where T1 is substituted by (4.25): 

Tf = 1~~2 (CT21 + T1 + CT12) 

T,i = p - 1lp2 (CT21 + T1 + CT1 2 ) 
µ (</)1P-T1)p1 

Tl = -'-'---'<P~ 1- -~Pc=c1'-'--" 

À (T1 - p1P)</)1 
Tl = <PI - p1 

where: 

T = c1 µ1Ti(l - p2)(</J1P)-c2µ2p2( </J1 -Ti)(o-21 +0-12) 
1 c1µ1p1(l-p2)+c2 µ 2p2(</J1-p1) 
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Scenario 3 

The third scenario holds the situation where no slow mode for type 2 exists, but because 
of Lemma 4.1.4 a slow mode of type 1 has to be present. The accompanying trajectory 
is presented in Figure 4.8. In the graph on the left-hand side of Figure 4.8 the buffer 
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Figure 4.8: Trajectory for scenario 3 

levels are plotted against each other. After the setup O , the machine starts to process 
type 1 what results in the vector [.\1 - µ 1, >-2] T . When the buffer is empty it keeps 
processing type 1 in a slow mode until products of type stop arriving. Then setup 
@ is performed and the machine starts to process type 2. When buffer 2 is empty, 
the machine switches immediately to perform setup O again. The accompanying time 
intervals in this situa t ion are: 

Tf = p2P. 
,rÀ - 0 ' 2 - . 
Tµ _ ((q,1 +p2-l)P+(a21 +a12))P1 

1 - <p1- p1 
TÀ _ (( l -Ti-p2)P-(cr21 + al2))q,1 

1 - <p1- p1 

( 4.27) 

Equat ions 4.27 confirm the minimization of the process time of type 2. As long as type 2 
is processed, the machines processes at its maximum rate and processing type 2 in a 
slow mode is not possible. 

Scenario <P1 = 1 

A special scenario is when c/J1, = 1. If c/J1 = 1 the piecewise constant arrival pattern 
disappears what implies that À1 = À1 and Pl = p1 . These properties correspond with 
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the theory as described in [Eek06a]. To proof the scenario is similar, the time averaged 
weighted wip level ( J) in this scenario has to be the same as presented in [Eek06a]. To 
obtain this proof the following recipe has to be performed: 

1. Optimize the active unconstraint problem to T1 and P. 

2. If the solution found the previous step is not possible, implement each constraint 
for T1 separately and optimize the constraint problem to P. 

3. Check when each constraint can be active using the assumption c 1À1 > c2 À2 (made 
in [Eek06a]). 

4. Verify if the time averaged weighted wip level ( 4.24) corresponds with the time 
averaged weighted wip level (7) in [Eek06a]. 

For t he sake of convenience (0-21 + 0-12) is written as a- . Now the different steps of the 
recipe are discussed. 

1. Optimizing the unconstrained problem. 
First the active situation in this scenario is determined. Variable </>i = 1 in combina
tion with (4.13) results in >-1 < µ 1 . This means situation II is active when </J 1 = 1. If 
</J 1 = 1 ( 4.24) becomes: 

Next, the unconstraint problem ( 4.28) is optimized to T1 : 

what results in: 

The value for TÎ has to be substituted in ( 4.28) and P is optimized now: 

~t (T1(PinJ , Pinc) = 0 

what results in: 

or 

( 4.28) 

( 4.29) 

( 4.30) 

These values for the unconstrained Pinc form solutions which are invalid. Both solu
tions do not meet the condition (3.9). This means the optimization problem has to be 
a constrained problem. 
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2. Optimizing the constrained problem where one constraint is active. 
Each constraint has to be checked separately. First the lower bound constraint is dis
cussed. Optimizing ( 4.28) with an active lower bound T1 = p1P subj ected to P results 
in: 

what results in: 

C À U 
(4.31) 

or: 
C À U 

Second, the upper bound is active. Optimizing ( 4.28) with T1 = P(l - p2) - a subjected 
to P results in: 

what results in: 

C À U 
( 4.32) 

or: 
C À U 

Variable P describes a time span, because the first solutions of both Pj,8 and Pû B are 
less than zero, the solutions are rejected. 

3 . Check which constraint is active. 
In [Eek06a] the assumption is made that c1 À1 > c2À2. Furthermore, the minimum 
length of a steady state process cycle is set to P = l -p~ -p

2 
(see also (3.8)). To check 

which constraint is active the following calculations for Pj,8 are performed: 

Substitution of the second solution of ( 4.31) results in: 

c2À2a2 a 2 
-----------~ > ------
C1 À1(l - P1)(l - p2) + c2À2Pi (1 - P1 - P2)2 

For the denominators hold that: 
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1 - 2p1 - P2 
1<-----

1 - Pl 

Finally the following inequality has to hold: 

1 < 1 - P1 - P2 
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( 4.33) 

Equation ( 4.33) can never be satisfied. The constraint is inactive. When a similar 
computation is performed for Pû B· The result is: 

1 - P1 - P2 < 1 ( 4.34) 

Equation ( 4.34) is always satisfied. This makes the upper bound, in case of the assump
tion that c1 À1 > c2 À2 the active constraint. The results are: 

( 4.35) 

4. Verification of the time averaged weighted wip level. 
The values for T1 and P have been determined in the previous step. With the earlier 
made assumptions and substitution of ( 4.35) the following time averaged weighted wip 
level is determined: 

Using Matlab for the substitution of P results in: 

where: 

The cost function (7) in [Eek06a] has to equal the found expression for J. The theory 
in this report deals with systems which contain always a slow mode (Lemma 4.1.4). For 
the theory in [Eek06a] this means determination of variable a with the positive real 
root of equation (9). Next , the variable a is substituted in the equation of the time 
averaged weighted wip level (7) in [Eek06a]: 

-( c2 À2(l-pi) (l - p2)+c1À1PÜ - J(l - p1 - p2) 2C 

( c2 À2 ( l -p1) ( l-p2 )+c1 >-1 p~ ) ( l -p1) 
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Substitution of a in the cost function (performed in Matlab) results in: 

where: 

Both cost functions deliver the same result (J = JAcc) if c1 .À1 > c2 .À2 holds and only a 
slow mode of type 1 occurs in the optimal steady state process cycle. 

Intermezzo: Multiple cycles in one period 

The optimal trajectories found in this chapter, are the result of equalize lengths for 
period P and the duration of one process cycle T. During one period type 1 and type 2 
are processed once. The goal of the optimization is to minimize the weighted m ean wip 
level of the total buffer levels within one period. 
IJ the sum of time fractions that each product needs to be processed in a workstation is 
low, it is possible enough time is available to process type 1 and type 2 twice during one 
period in order to minimize the total mean wip level of the system even further. To keep 
a stable system the following inequality has to be m et: 

( 4.36) 

Equality 4.36 is based on (3.9). New parameter N EN represents the number of cycles 
that are performed in one period, (without violating the inequality). The advantage of 
processing each type N times are lower buffer levels. The disadvantage is the workstation 
setups a factor N langer. An example is introduced to show the infiuence of the weighted 
m ean wip level of the system when multiple cycles in one period occur. 

Example 4.4.1. Assume a workstation with the following parameter setting: 

p1: 0.3 c1: 1 
p2: 0.25 c2: 1 
µ1: 1 lots/hr. P: 1000 hrs. 
µ2: 1 lots/hr. ef>1 : 0.5 

0'12: 50 hrs. 
0'21: 50 hrs. 

Table 4.1: Parameter setting. 

When computing the weighted mean wip level of the workstation in this parameter set
ting with a continuous approximation model. The model is simulated in Matlab where 
the time averaged weighted wip level of the steady state process cycle is determined. 
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The time averaged weighted wip levels result in: 

J (N=l) = 49.1 

Note: The computed value for J (N=2) is not proven to be optimal. 

The example shows that multiple cycles during one period can lead to a better time av
eraged weighted wip level of the system. 
Further analysis of systems with multiple cycles during one period is beyond the scope 
of this report. But it farms an interesting research area in the search for lower time 
averaged weighted wip levels during one period. 

At this point all situations/scenarios have been discussed with respect to a two product 
workstation with one constant and one piecewise constant arrival pattern. Different 
shapes for all the situations and scenarios have been discussed and explained that pro
cess type 1 and type 2 during one period P. 
The essential differences between the trajectories depend on the position of the slow 
modes. Or more precisely, which product is processed in a slow mode. Situation I 
and II can be classified in to three groups by sorting the slow modes: 

l. For situation I only a slow mode for type 2 always exists. {Situation I) 

2. For situation II where type 2 is processed relatively long, the optimal process cycle 
has at least a slow mode for type 2. {Situation II-a) 

3. For situation II where type 1 is processed relatively long, the optimal process cycle 
has at least a slow mode for type l. {Situation II-b) 

With this sorting the three scenarios of situation II and situation I are reduced to three 
different optimized problems where in both situation II-a and II-b two slow modes can 
occur. In the next chapter feedback controllers are defined for these three possible sit
uations. These feedback controllers have to steer the system from an arbitrary point, 
with respect to buffer levels and time, to its desired/optimal trajectory. 



Chapter 5 

Feedback control 

A two product workstation with one constant arrival rate and one piecewise constant 
arrival rate has been discussed in Chapter 4. The result is an optimal steady state 
process cycle for a system which meets the conditions: 

• Pl + P2 < 1. 

For all possible parameter settings that satisfy these inequalities, Chapter 4 provides 
an optimal steady state process cycle with respect to minimal weighted mean wip level. 
Each optimal process cycle describes the 'desired behavior ' of the buffer levels in a 
workstation. It is this behavior which results in a minimal wip level for the workstation. 
In practice workstations are exposed to disruptions. Disturbances like changing arrival 
rates, machine breakdowns or other in- or external factors can influence the buffer levels 
of the workstation. Therefore, it is unlikely a workstation starts processing on its desired 
trajectory and stays on this trajectory. By using a state feedback controller the system 
is steered to the desired trajectory, regardless of the initial buffer levels or point in time. 
The trajectories for all possible parameter settings are classified in to three groups as 
mentioned at the end of Chapter 4. 

1. Situation I (always a slow mode for type 2). 

2. Situation 11-a (at least a slow mode for type 2) 

3. Si tuation 11-b ( at least a slow mode for type 1) 

Dependent on the parameter setting one of these three situations is valid. In this chapter 
a state feedback controller is proposed for a ll three situations. In each section of this 
chapter a controller is presented that deals with one of these three situations. 
In this chapter, each section starts with a description of the desired trajectory. The 
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state of the system (3.4) is determined for different points along the trajectory. These 
states are the reference where the controller has to converge to. Next, a controller is 
proposed that has to steer to the optimal trajectory. Finally a proof of convergence is 
obtained that shows convergence of a system which starts with arbitrary buffer levels 
at any point in time. 

5.1 Feedback control of situation I (~1 > µ 1 ) 

A two product worksta tion in a factory has to deal with undesired behavior caused by 
disturbances. In general a workstation does not process a t the desired trajectory. There
fore, a controller is needed that steers the system to this desired ( optimal) trajectory. 
In this case a controller is proposed for situation I. The most important feature of the 
situation is the short time span where products of type 1 arrive at a high rate (.\1 2: µ1)
The controller has to steer the system to a trajectory as presented in Figure 5.1 in the 
previous chapter. The state of this system at different points on the desired trajectory 
are determined after processing type 1, the setup to type 2, processing type 2 at µ 2 , 

processing type 2 at À2 and after the setup to type 1, respectively Mode 1- 5: 

Afte, Mode 1 [ ; ] [ À2(a21: p,P) ] 

After Mode 2: [ :~ ] [ À2(cr21 + ~1P + a-1 2 ) ] 

.6,. p - a-12 

After Mode 3: [ :~ ] [ ~ 1 
.6,. p _ er _ >- 2(0-21 + TIP+ o-1 2) 

12 µ, 2- >-2 

After Mode 4: [ :~ ] [ ~ ] 
.6.. <hP + a-21 

Afte, Mode 5 [ ; ] [ À;~;' ] 
Note, x o and m are not taken into account in the state of the system. Due to the 
dynamics, discussed in Chapter 3, both parameters always have the same value after 
each mode and do not influence the path to the desired trajectory. In Figure 5.1 the 
states of the system after each mode are visualized. 

When the system runs and after one of its five modes the accompanying values for x 1 , 

x2 and .6.. do not have the desired value, the system does not operate on its desired 
trajectory. To steer from an arbitrary point in time and arbitrary buffer levels to the 
desired trajectory, the following controller is proposed: 
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After Mode 2 

After Mode 1 

After Mode 5 

After Mode 3,4 ---+- "6-----------

- x1 

Figure 5.1: Periodic orbit of situation I. 

45 

Proposition 5 .1.1. The following state feedback control law brings the system with 
)q ~ µ1 to the desired trajectory. 

(0 , 0, 0) if m = 1, Xo > 0 
(CD, µ1, 0) if m= 1, Xo = 0, X1 > 0 
(@, 0, 0) if m= 1, xo = 0, X1 = 0 

(uo ,u1 , u2) = (@, 0, 0) if m=2, xo > 0 (5 .1 ) 
(@, 0, µ2) if m = 2, xo = 0, X2 > 0, b. > </J1 P + ~ + 0-21 

µi 

(@, 0, >-2) if m=2, Xo = 0, X2 = 0, b. > </J1 P + ~ + 0-21 µ1 

(0 , 0, 0) if m=2, XQ = 0, ~ ::; </J1 P + ~ + 0-21 

Remark 5.1.2. An informal description of this controller is: 

• Mode 1: CD as long as x 1 > 0; go to Mode 2. 

• Mode 2: perform @ , after 0-12 go to Mode 3. 

• Mode 3: @ at µ2 as long as both x2 > 0 and b. > </J1P + ~ + 0-21; go to Mode 4. µ1 

• Mode 4: @ at >-2 as long as both x2 = 0 and~> </J1P + ~ + 0-21; go to Mode 5. µ1 

• Mode 5: perform O , after 0-21 go to Mode 1. 

Dependent on the state of the system, the controller starts in one of the five modes. The 
initia[ state always suits one of the modes. From that mode the controller starts. Mode 
3 and Mode 4 might have a duration of zero initially. 
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Assume the n th start after @ . The superscript (n) represents the number of the process 
cycle that takes place. 
Before proving that the controller in Proposition 5.1.1 converges the system towards 
the desired behavior , first two lemmas are formulated. The first step is to prove that 
the system will process type 2. The next step is to prove convergence of buffer level 2 
to its desired trajectory. 

Lemma 5.1.3. The system eventually processes type 2. 

Proof. To process type 2, 6. > </) 1P + ~ + 0"21 after setup @ (using Mode 3 of Proposi
tion 5.1. 1). Assume that 6. < </) 1P + !f + 0"21 after setup @ in each loop. 

µ1 

When Mode 1 is finished for the first t ime: x11
) = 0 and 6_(l) > </)1P. As long as 

6. < </) 1P products of type 1 arrive at a higher rate than they can be processed , so 
X 1 = 0 can occur only if no products arrive. After setup @ , two situations can occur: 

2. X 1 = Ü 

In both situations 6_ (l) < </)1 P + ~ + 0"21 after setup @ can still hold. The duration of 
µ 1 

one loop without processing type 2 is 0"21 + p1P + 0"12 . This means the updated 6_ (2) 

after one loop is: 

Note that (3.9) shows: P - (0"21 + p1P + 0"12) > 0. This results in a linear increase for 
6. as long as the iteration count of loops increases. Therefore, it becomes impossible to 
keep 6. (n) < </) 1P + ~ + 0"2 1 . So type 2 has to be processed. □ 

µ1 

The second step is to prove that the buffer level of type 2 reaches its desired trajectory. 

Lemma 5.1.4. Eventually type 2 is processed in a slow mode and the desired trajectory 
is reached. 

Proof. When the system processes type 2, the controller already has synchronized the 
arrival pattern of type 1 with the processing of type l. This implies that after setup @ 
variables 6. and x 1 follow the desired trajectory: 

Variable x2 is still unknown. Because x 1 and 6. are at their desired trajectory, the 
machine has T2 hours to process type 2 during each loop. Each loop the machine needs 
p2P hours to process type 2. When the buffer level of type 2 is high enough and a slow 
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mode for type 2 exists, the machine is able to process T,f (µ2 - À2) products more than 
needed each loop. The result is a buffer level that decreases until it becomes zero: 

(5.2) 

Equation (5.2) shows a decrease in the buffer level of type 2 if the number of loops 
increases. Eventually the buffer level has to become zero due to Lemma 4.1.4. The 
lemma demands at least one slow mode in the optimal process cycle. A slow mode 
for type 1 is not possible which implies Ti > 0. From the moment the buffer level 
becomes zero, the machine starts processing type 2 in a slow mode and the desired 
trajectory is reached. Note, if the buffer level of type 2 is initially low and the machine 
starts processing type 2, the machine can process type 2 in a slow mode as long as 
~ :S cp 1P + 0-21 holds. Although a slow mode for type 2 occurs, the machine has not 
reached its desired trajectory yet. The desired trajectory is reached when a slow mode 
for type 2 is reached after type 1 is processed for at least one time. □ 

In short , the controller steers t he system from an arbitrary point in time with arbitrary 
buffer levels to the desired ( optimal) trajectory. It first processes type 1 until its buffer 
is empty. Then type 2 is processed until a setup is needed to let the start of the arrivals 
of type 1 coincides with the start of processing type 1 (Lemma 4.2.4). 

5.2 Feedback control of situation 11-a (.X1 < µi) 

The optimal trajectory in this situation has at least a slow mode for type 2. Depending 
on the parameter sett ing, processing type 1 in a slow mode is possible. With the op
tion of possibly two slow modes in the desired trajectory, the controller has six modes. 
These modes are respectively processing type 1 at µ1, processing type 1 at .X.1 , a setup 
to type 2, processing type 2 at µ 2, processing type 2 at À2 and a setup to type 1. The 
state of the Modes 1- 6 are: 
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Af ter Mode 1: 

Af ter Mode 2: 

Af ter Mode 3: 

After Mode 4: 

P - cr12 -

[ ; l [ ~,:~ i l 
[ ;~ l = [ xf ~f/" l · 

u </>1P - + - cr21 
>11 

After Mode 5: 

Af ter Mode 6: 
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a 21 +Tf (1-Ti" )+</>1P+a12 .\2 

M - .\2 

Here Ti is the length the machine processes type 1 at a rate of µ1 and xf is the 
critica! value for the number of products of type 1 in the buffer: 

where: Tf is the optimal process time of type 1 after the constrained optimization 
of (4.24). 

The position of the states after each mode in the periodic orbit are presented in Fig
ure 5.2. 

Proposition 5.2.1. The following state f eedback control law brings the system with 
~1 < µ1 and a slow mode for type 2 to the desired process cycle. 
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After Mode 3 

After Mode 2 

After Mode 1 

After Mode 4 

After Mode 5 

(uo, u1 , u2) = 

After Mode 6 
--+- x1 

Figure 5.2: Periodic orbit of situation II-a. 

(0 , 0, 0) if m = 1, Xo > 0 
(CD,µ1,0) if m= 1, Xo = 0, X1 > 0 
(CD,>-1 , 0) if m= 1, Xo = 0, X1 = 0, 
(@, 0, 0) if m= 1, xo = 0, X1 = 0, 
(@, 0, 0) if m = 2, xo > 0 
(@, 0, µ2) if m=2, XQ = 0, # X1 < X1' 
(@, 0, >-2) if m=2, Xo = 0, # X1 < Xl' 
(0 , 0, 0) if m = 2, Xo = 0, X1 2'. xf 

Remark 5.2.2. An informal description of this controller is: 

• Mode 1: CD as long as x1 > 0; go to Mode 2. 

~ ::S </>1P 
~ > </>1 P 

X2 > 0 
X2 = 0 

• Mode 2: CD as long as both x1 = 0 and ~ ::S </>1 P; go to Mode 3. 

• Mode 3: perform @ , after a12 go to Mode 4. 

• Mode 4: @ at µ2 as long as both x2 > 0 and x1 < xf; go to Mode 5. 

• Mode 5: @ at >-2 as long as both x2 = 0 and x1 < x(; go to Mode 6. 

• Mode 6: perform O , after a21 go to Mode l. 
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(5.3) 

A new parameter is introduced in Proposition 5.2.1 and Remark 5.2.2. New parameter 
xf denotes the critical value for the number of products of type 1 in the buffer. The 
value is determined with the use of the optimal length for T1 and Lemma 4.2.5 . When 
m = 2 and this value is reached, the workstation has to start O immediately. lts value 
is determined with: 

(5.4) 
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To prove convergence first the buffer level of type 1 is steered to its desired trajectory. 

Lemma 5.2.3. When type 1 is processed for the second time, the buffer level of type 1 
follows the desired trajectory. 

Proof. When type 1 is processed for the first time and the buffer is empty, two situations 
can occur: 

1. ~::; </>iP; Switch to Mode 2 and processes type 1 in slow mode until ~ = 0. 

2. ~ > </>1P; Switch to Mode 3. 

In the first situation the arrival pattern of type 1 can be synchronized with the processing 
of type 1 (Lemma 4.2.5). In this situation type 1 follows its desired trajectory already 
after the first time its processed. 
In the second situation the controller switches to Mode 3 immediately. After the setup 
in Mode 3, the controller switches to process type 2 (Mode 4 and 5). The controller 
stays in one of these modes ( depending on the buffer level x2) as long as x1 < xf . 
When x1 2: xf, the controller switches to O and then to CD , where the end of arrivals 
of type 1 coincides with the end of processing type 1. After the second time type 1 is 
processed, x1 and~ are at their desired trajectory because the timing with xf is based 
on Lemma 4.2.5. □ 

After CD is completed for the second time and no slow mode for type 2 has occurred yet, 
type 1 is processed on the desired trajectory but type 2 may not. 

Lemma 5.2.4. Th e desired trajectory is reached ij type 1 is steered to its desired tra
jectory and type 2 is processed in slow mode. 

Proof. In Lemma 5.2.3 type 1 is steered to its desired trajectory. This means ~ and x 1 

follow the desired path. Only x2 is still unknown. The characteristic of situation 11-a is 
the presence of a slow mode of type 2. The desired trajectory contains a slow mode what 
implies the machine is able to process more products than needed when the buffer level 
for type 2 is high. During one time interval of T2 the machine is able to process more 
products for the duration of the slow mode ( Ti). The machine can process Ti (µ2 - >-2) 
products more than needed during one desired trajectory. The buffer level of type 2 
decreases each loop with Tf (µ2 - >-2) products, unless the buffer is emptied earlier: 

If the buffer is empty, the workstation keeps on processing type 2 in slow mode until 
the critical value for type 1 (x1 = xf ) is reached and the workstation needs to switch to 
type 1. After the first time a slow mode for x2 occurs (x2 = 0) , a ll variables (x1, x2, ~) 
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follow their desired trajectory what makes the system follow the desired trajectory. If 
the ini tial buffer level of type 2 is low, the machine processes type 2 in a slow mode as 
long as x1 < xf □ 

In short, the controller lets the workstation empty the buffer of type 1. Next, the 
workstation processes type 2 until the buffer level of type 1 reaches the value xf . If the 
value is reached the workstation switches to O immediately. During the time interval 
where x1 < xf the workstation has to process type 2. 

5.3 Feedback control of situation 11-b (.X1 < µ 1 ) 

The third controller to be discussed, steers a workstation which has at least a slow 
mode for type 1. The approach of finding the controller is similar to that of the first 
two controllers. First the desired trajectory is determined. The desired trajectory is 
reached if buffer levels and il after leaving the Modes 1- 6 have the same values as 
mentioned in the feedback control of situation II-a. 

The position of the state of the system after each mode in the periodic or bit are presented 
in Figure 5.3. 

After Mode 3 

After Mode 2 

After Mode 1 

After Mode 4 

After Mode 5 

--+-

After Mode 6 

Figure 5.3: Periodic orbit of situation II-b. 

~roposition 5.3.1. The following state feedback control law brings the system with 
À1 < µ 1 and at least a slow mode for type 1 to the desired process cycle. 
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(0 , 0, 0) if m= 1, xo > 0 
(CD, µ1, 0) if m= 1, xo = 0, X1 > 0 ~ :S <P1P 
(CD, )q , 0) if m= 1, XQ = 0, X1 = 0, fi :S <P1P 
(@, 0, 0) if m= 1, XQ = 0, fi > <P1P 

(5.5) (uo,u1,u2) = (@, 0, 0) if m=2, XQ > 0 
(@, 0, µ2) if m=2, XQ = 0, X2 > 0 
(@, 0, >.2) if m=2, XQ = 0, # 

X1 < X1 , X2 = 0 
(0, 0, 0) if m=2, xo = 0, X1 2 xf X2 = 0 

Remark 5.3.2. An informal description of this controller is: 

• Mode 1: CD as long as both x1 > 0 and ~ :S ip1 P ; go to Mode 2. 

• Mode 2: CD as long as both x 1 = 0 and ~ :S <jJ 1P; go to Mode 3. 

• Mode 3: perform @ , after o-12 go to Mode 4. 

• Mode 4: @ at µ2 as long as x2 > O; go to Mode 5. 

• Mode 5: @ at À2 as long as both x2 = 0 and x1 < xf; go to Mode 6. 

• Mode 6: perform O , after 0-21 go to Mode 1. 

To prove the convergence for a system with at least a slow mode for type 1, the proof 
starts with synchronization of the piecewise constant arrival rate of type 1 with pro
cessing type 1. 

Lemma 5.3.3. The system eventually processes type 1. 

Proof. When the machine starts processing type 2 it stops when buffer 2 is empty and 
t he buffer level of type 1 is larger or equal to xf. When a setup to type 1 is performed, 
two situations can occur: 

1. fi < <P1P; Type 1 can be processed and the Lemma is proven. 

2. fi 2 ip1P; Type 1 is not processed because no products arrive. The machine 
immediately switches, performs a setup to type 2 and starts processing type 2. 
After a time span of p2(0-21 + 0-12) buffer 2 is empty again and a setup to type 1 
is performed. 

When option 2 is performed the value of~ determines if type 1 is processed or option 2 
has to be performed again. It is only when the time span of option 2 equals a period P 
that option 2 stays valid. In that specific situation fi has the same value each loop. To 
prove option 1 has to occur , the time span in option 2 has to be unequal with P. This 
is always true because the maximum time span for processing type 2 and perform two 
setups is always smaller t han the length of P. Eventually option 1 occurs. D 
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The machine always has a situation where at the start of processing type 1, b. :S q; 1P. 
The end of processing type 1 is reached if products of type 1 stop arriving (b. = 0). 
It is possible buffer 1 is not empty but the machine performs a setup anyway. At this 
point in time, the end of the arrival of products of type 1 is synchronized wit h the end 
of processing type 1. The next step is to prove that both buffer levels end up at the 
desired trajectory. 

Lemma 5.3.4. The desired trajectory is reached after a slow mode of type 2 has oc
curred. 

Proof. In Lemma 5.3.3 the processing of type 1 is synchronized with the arrival rate of 
type 1. One of the characteristics of situation II-b is the presence of a slow mode for 
type 1. The presence of the slow mode of type 1 in the desired trajectory means that the 
system can process more products during one process cycle if the system has initially a 
high buffer level for type 1. The extra number of products that can be processed during 
one process cycle equals the length of the slow mode in the desired trajectory multiplied 
with the process rate minus the arrival rate (T((µ 1 - >.1)). If the initial buffer level of 
type 1 is low, the machine processes in slow mode after emptying the buffer level. After 
buffer 2 is emptied once and type 1 is processed in slow mode for the first time, the 
exact buffer level of type 2 is still unknown. The system performs setup @ and erupties 
buffer 2. During processing type 2, products of type 1 arrive. When buffer level 2 is 
empty, three situations can occur: 

• Xin) < xf ; The machine processes type 2 in slow mode until X in) = xf_ The 
desired t rajectory is reached. 

• X in) = xf ; In this special situation no slow mode for type 2 occurs. Nevertheless 
the desired trajectory is reached. 

• X in) > xf; The machine processed type 2 'too long' with respect to the desired 
trajectory. The machine performs setup O and processes type 1. Because type 2 
was processed ' too long' , less time is available before b. = 0. Although there 
is less t ime, buffer 1 is emptied before b. = 0 (Due to the fact bat h buffers are 
emptied before and T1 + T2 > (p1 + p2)P). When b. = 0, a setup @ is performed. 
Type 1 needed 'less time' to be processed with respect to the desired trajectory 
because the machine stayed less time processing in a slow mode. The result is a 
lower buffer level at the start of processing type 2 again. When the buffer level 
of type 2 is empty, the buffer level of type 1 has decreased with respect to the 
previous cycle Xin+l) < X in) . 

If the third situation occurs, the system repeats this behavior until eventually Xin+l) :S 
xf occurs. Then one of the first two situation holds, meaning the desired trajectory is 
reached. □ 
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R emark 5.3.5. For the proof the convergence of the system with the proposed controllers 
the synchronization of the arrival rate of type 1 and processing type 1 plays an important 
role. When the situation occurs when no slow modes occur (P = T = Tmin) it becomes 
diffi.cult to steer te system. If buffer levels are high a decrease of the buffer levels in 
combination with keeping the synchronization is only possible when the non steady 
state process cycle has a length that equals a multiple duration of P. 

For all possible parameter settings within the scope of this thesis, a state feedback 
control law is obtained. All controllers steer the system from an arbitrary point in 
time and arbitrary buffer levels, to the desired trajectory. In the next chapter, each 
controller is tested in two simulat ions. The first simulat ion is the controller in a hybrid 
fluid approximation model. The second simulation is performed in a discrete event 
model with stochastic inter-arrival t imes and stochastic process times. 



Chapter 6 

Simulation experiments 

In the previous chapter three feedback control laws are proposed and shown to converge 
to the desired trajectory as determined in Chapter 4. To display the convergence of 
the system to its desired trajectory, a simulation is performed. The controller is im
plemented in a hybrid fluid model. With the use of this model, the optimal process 
cycles and trajectories are computed and compared with the optimized trajectories of 
Section 4.4. The results will show the controller steers the system exactly to the optimal 
steady state process cycle as determined in Chapter 4. However, in a real production 
system the inter-arrival times and process times are never constant . For t hat reason a 
discrete event simulation is performed. The simulation model includes stochastic be
havior on the inter-arrival t imes of both product types and bath process times. The 
controller needs to show that it is able to deal with these disturbances. The simulation 
results of the three controllers presented in Chapter 5 are discussed in this chapter. In 
the first section the simulation models are presented. In the other sections the resul ts 
for each controller are discussed separately. 

6.1 Simulation models 

6.1.1 Hybrid fluid model 

The controllers are designed with a hybrid fluid model. The controllers presented in 
Chapter 5 are described in five or six different modes. By following these modes, the 
controller steers the system to the desired trajectory. Translation of these modes into 
a simulation model results in a model, (made with Matlab version 2006b) , with five or 
six cases . Each case represents a mode of the controller. Ini t ially the system has an 
arbitrary state. The values of this state determine in which case the machine starts. 
When a case becomes active, b. and bath buffer levels are analyzed . With this informa
tion, the model calculates the t ime the machine is able to stay in the mode its in . The 
model then calculates b. and the buffer levels at which the mode will be left. Then the 
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controller switches to the next case and the process is repeated. The const raints each 
case hold are similar to the constraints mentioned in the proposition of each controller 
in Chapter 5. A more det ailed explanation of the simulation in Matlab is presented in 
Appendix A. 

6.1.2 Discrete event model 

The second test that is performed uses a discrete event simulation of the worksta
tion with the controller discussed in the previous chapter. In case of a discrete event 
manufacturing worksta tion, a discrete event model gives a better representa tion of a 
manufacturing system than the hybrid fluid approximation model. Within the discrete 
event model mentioned here, stochastic variables are introduced for process t imes and 
inter-arrival times. The arrivals and processing products are assumed to follow a Pois
son process [Mon99] . This characteristic makes it possible to apply an exponential 
distribut ion for the inter-arrival times between products and all process times . The 
discrete event model is modeled in x 0.8 [Bee00], [Hof02]. In the model different pro
cesses are defined. The iconic representation of the system is visualized in Figure 6.1. 
In Figure 6.1 all capita l letters represent a process. Here, the generators are G1 and G2. 

b 

Figure 6.1: lconic model of a two product workstation 

These processes simulate t he arrival patterns of type 1 and type 2 respectively. Process 
B is the buffer which receives products from the generators over channels a and b. The 
buffer contains two buffers where type 1 and type 2 are stored separately. The buffer 
sends the products to the machine M. The machine M receives products of type 1 or 2 
from the buffer over channel c or d. T he controller C receives the number of products 
from the buffer. The controller uses the buffer level information to est ablish an input 
signal u and sends that to the machine. When the machine has processed a product , 
the product leaves the system a t the exit process E. Although different controllers are 
applied , the structure as presented in Figure 6.1 and all processes are maintained during 
all simulations. All processes ( except t he cont rollers) are discussed now. The controllers 
are discussed for each situation separately together with the results. The total x-codes 
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of all three discrete event models in ASCII is presented in Appendix B. 

type lot = nat 

proc Gl(a: !lot),1 ,4>1, P: real)= 
I[ r , s : real, t : -+real 
1 t := exponent ial( I;) 
; * [ true- r := rmod( T , P); s := a-t 

; [ r + s < 4>1P- .6. s; a!l 
j r + s 2: 4>1 p---, .6. ( P - r) 

l 

ll 
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(x-1) 

(x-2) 

Process G1 (x-2) generates a piecewise const ant arrival pattern. The process determines 
first its current point in time within one process cycle (r). Next, a sample for the inter
arrival time is taken from an exponential distribution and added to r . If the sum of 
these time spans is less than the time interval where products can leave the generator , 
the generator waits the time span of the sample and then sends it to the buffer. If the 
sum of time spans is larger than the time interval where lots can leave, the generator 
waits until a new period st arts where it can send lots again. 

Generator G2 (x-3) sends lots of type 2 to the buffer: 

proc G2(a : !lot , >.2: real)= 
I[ t : --+ real 
1 t := exponential( ;

2
) 

; * [ true---, a !2; .6.a-t] 

ll 

(x-3) 

The generator sends a lot to the buffer and waits the time span of a sample taken from 
an exponent ial distribut ion. The time interval represents the inter-arrival t ime between 
two lots. After waiting for a time span t , again the generator sends a lot. 

In the discrete event model only one buffer is modeled . 

proc B( a , b: ?lot , c, d: !lot , e : !nat2, ini1, ini2 : nat) = 
I[ x 1, x2 : lot , xs1, xs2 : nat 
1 XS1 := ini1; XS2 := ini2 
; e!Qxs1, xs2 ~ 
; *[ true- [ true; a?x1---, xs1 := xs1 + 1 

j true; b?x2 - xs2 := xs2 + 1 (x-4) 
j xs1 > O; c!x1 - xs1 := xs1 - 1 
j xs2 > O; d!x2 - xs2 := xs2 - 1 

l 
; e!Q xs1, xs2 ~; fileout ( "buffersize.txt" )!T, "\t", xs1, "\t", xs2, "\n" 

ll 
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T he initialization of t he buffer is to fill both buffers a t a desired initial level and send 
the number of lots in the buffers to the controller. After the init ialization the buffer 
receives lots from generator G1 and G2 over channels a and b and sends lots to the 
machine over channel c or d ( depending on the type of lot) as long as there are lots 
available. If buffer levels change, the new buffer levels are passed on to the controller 
and the new buffer levels and the corresponding time are stored in a text-file. 
The buffer sends, if possible, products to the machine. 

proc M(a , b: ?lot,u: ?nat,c: !lot,µ1,µ2 , cr12 , cr21 : real) = 
I[ x : lot , idle : bool, m : nat, t, trem : real, t1, t2 : -;real 
1 idl e := true; t := 0.0; trem := 0.0 
; t1 := exponent ial( .1.... ); t2 := exponential( .1.... ) 

µ1 µ 2 
; *[ m = 1 /\ idle; a?x --+ t := at1 + T; idle := false 

j m = 1 /\ , idle; b..(t - T)--+ c!x; idle := true 
j m = 2 /\ idle; b?x --+ t := crt2 + T; idle := false (x-S) 
j m = 2 /\ ,idle; b.. (t - T)--+ c!x; idle := true 

ll 

j true u?m --+ idl e := false 
; [ m = 1--+ (trem, t) := (t - T , trem + T + 0"21) 
j m = 2--+ (trem, t) := (t - T , trem + T + 0"12) 

l 

The initial state of the machine (x-5) is assumed to be ready to process lots (' idle') of 
type 1 ('processl '). When the controller does not interfere, the machine asks the buffer 
for a lot , the process t ime is determined by taking an exponential distributed sample. 
If the lot is processed it is send to the exit process . The same principle is applied for 
processing type 2. When the controller gives to the machine its input signal u , process
ing is cut off, the remaining time is stored and the remaining process t ime is recalled 
of t he lot cut off earlier. When a setup is performed, the setup t ime is added to the 
remaining process t ime of the lot that has cut off earlier. When t he machine finished 
the lot, it asks for a new lot from the buffer. Note, expression c! x is located behind 
the arrow. This channel sends products from the machine to the exit-proces. This is 
permitted only when the receiver is able to receive the lots immediately at all times. 

The final process is the exit process (x-6). 

proc E(a: ?lot) = 
I[ x : lot 
1 *[ true; a?x--+ skip] 

ll 

(x-6) 



6.2. Simulation results of the controller for situation I 

The exit process can received processed lots at all times. 
The system-file and xper are presented in (x-7) and (x-8): 

syst S(>.1 , .À2, µ1 , µ2 , <i12 , <i21 ,</>i, P: real,ini1,ini2,xf : nat)= 
I[ a, b, c, J: - lot 
,e : - nat2 

, u: - nat 
IGl(a, >.1 ,</>1, P) Il G2(b, >.2)I 
1 B(a, b, c, e, ini1, ini2) I 
1 M(c, u, f, µ1, µ2, <i12 , <i21)I 
1 C(e, u, </>1, P, xf )I 
1 E(f)I 
ll 

xper (>.1,.À2 , µ1 , µ 2, <i1 2, <i21,<P1, P: real,ini1,ini2,xf : nat)= 

I[ S( >-1 , >-2 , µ1 , µ 2, <i12, <i21 , </>1, P, ini1, ini2, xf) 
ll 
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(x-7) 

(x-8) 

Before the simulation can be performed, the parameter setting has to be uploaded. 
Subsequently, these parameters are used in the different processes as mentioned above. 
The set of parameters is 

Remark 6.1.l. Variable xf has to be computed . It is very unlikely the computed value 
results in a real number , although it does represent a integer in a discrete event setting. 
The system contains at least one slow mode (Lemma 4.1.4). The presence of a slow 
mode implies the machine has more capacity than needed. This makes round up of xf a 

reasonable solution as long as enough capacity is available. However , when xf becomes 
smaller, the larger the error becomes during round up and capacity can become more 
critical. 

At this moment , all processes are explained except for the controllers. The rest of this 
section focusses on the three controller and their discrete event simulation results. 

6.2 Simulation results of the controller for situation I 

The controller , designed for situation I , is checked in this section. The results of the 
simulations have to be buffer levels which converge to the optimal trajectory and keep 
the system there. The desired trajectory found in the simulations has to be similar to the 
optimal steady state trajectory presented in Figure 4.5 of Chapter 4. Before the results 
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are discussed, first the x-syntax of controller 1 is presented in (x-9). 

proc Cl ( a: ?nat2 , u: !na t , </>1, P, µ1 , 0"21: real) = 
I[ x : nat 2, b : bool, m : nat , t : real 
lm := 1 
;u!m 
; *[ true----+ a?x; t := rmod( T , P) 

; [m = 1-----..b := x .0 = 0 /\ t 2": </>1P /\ t < (P- 0"21) 

; [b ----+m := 2;u!m 
j ,b----. skip 

l 
j m = 2-----.. b := (P - t) :S :~ + CT21 

; [b ----+ m := l;u!m 
j ,b----. skip 

l 

(x-9) 

The controller (x-9) is implemented in the discrete event model. The initialization of 
the controller is to send a input signal to the machine. So independent of the state 
of the system, the controller wants the machine to start with O initially. Next the 
controller receives the buffer levels and starts to use the information to send specific 
tasks to the machine. The combination of the moment in time and the buffer levels lead 
to a situation where t he cont roller gives the machine a new input signal or skips. The 
controller switches to type 2 if buffer 1 is empty and switched back to star t processing 
type 1 when products of type 1 start to arrive. 
In the simulation a parameter setting is used that meets all requirements needed in 
situa tion I. In the example the maximum arrival rate of type 1 is larger than the 
maximum process rate (>-i > µ1). The parameter settings that have been used are 
presented in Table 6.1. The results of the hybrid fluid approximation model simulations 

.À1: 0.6 lots/hr. <P l: 0.3 

.À2 : 0.2 lots/hr. xo(t = 0): 0 hrs. 
µ 1: 1.5 lots/hr. x 1(t = 0): 400 lots 
µ 2: 1 lots/hr. x2 (t = 0): 400 lots 

0"12 : 50 hrs. !:l(t = 0): </>1P hrs. 
0"21 : 50 hrs . m(t = 0): 2 

P: 1000 hrs . 

Table 6.1: Parameter setting for situation I 

with the parameter setting of Table 6.1 are presented in Figures 6.2 and 6.4. The 
results of the discrete event model, with the same parameter setting, are presented in 
Figures 6. 3 and 6.5 . The figures on the left-hand side show the buffer levels in time. 
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Figure 6.2: Buffer levels over t ime (Fluid) Figure 6.4: Trajectory (Fluid) 

Figure 6.3: Buffer levels over time (Discrete) Figure 6.5: Trajectory (Discrete) 

Simulation results of the controller for situation I 
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The figures on the right-hand side show the periodic orbit. Both simula tions converge 
to the desired trajectory. The convergence of the system is explained with the use of 
the results of the hybrid fluid approximation model. 
The system has an initial state of: 

x(O) = [ 400 400 0 300 2 r . 
The system is ready to process type 2 but with this state the controller makes the 
system switch to start a setup to type 1 (last condition of Proposition 5.1.1). At the 
same time, products of type 1 are arriving. During this setup products of both types 
arrive. When the setup is completed , (i) st arts. During the processing of type 1 products 
keep arriving. The buffer level of type 1 keeps increasing, but now at a lower rate. In 
Figure 6.4, the difference can be recognized as a different angle of increasing buffer 
levels. In point A variable t::.. becomes 0 and products of type 1 stop arriving. Still 
x 1 > 0 so the machine stays processing type 1 until the buffer is empty. When the 
buffer is empty @ is performed. After the setup, type 2 is processed until point B is 
reached. In this point the controller knows that after an interval with a length of 0"21 

products of type 1 will start to arrive. The controller ends @ , starts O and when 
products of type 1 start to arrive, the controller starts (i) also. Here the arrival rate 
and processing type 1 are synchronized. After processing type 1 again, the machine has 
more time to process type 2 because less products of type 1 have to be processed to 
empty buffer 1 (Lemma 4.2.4). When type 2 is being processed both buffers become 
empty at a point in time. The system starts to process products of type 2 in a slow 
mode. The slow mode stops if the controller notices that products of type 1 are going 
to arrive soon. At this point the machine processes at its desired ( optimal) trajectory. 
So the controller does steer the system to its desired trajectory. The discrete event 
simulation shows convergence too. Both simulations show great resemblance although 
it takes the discrete event simulation one loop more to reach the desired trajectory. 
In the next section a similar analysis is performed for parameter settings which satisfy 
the conditions of situation II-a. 

6.3 Simulation results of the controller for situation 11-a 

The previous section showed the results of the controller designed for situation I. In 
this section the experimental results with the controller, designed for situation II-a, are 
discussed. The results of the simulations have to be similar to the trajectory presented 
in Figure 4.6 or in Figure 4.7. The parameter setting used in the simulation determines 
if the optimal trajectory has only a slow mode for type 2 or a slow mode for both types. 
The accompanying x -syntax of the controller needed for the discrete event simulation 
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is presented in (x-10) . 

proc C2a(a: ?nat2,u : !nat ,</>1, P: real,xf : nat)= 
I[ x : nat2, b : bool, m : nat, t : real 
Jm: = 1 
;u!m 
; *[ true---. a?x; t := rmod( T , P) 

ll 

; [m = 1----.b := x .0 = 0 /\ t 2: </>1 P 
; [b ---.m := 2;u!m 
j ,b---. skip 

l 
j m = 2----. b := x.0 2: xf 

; [b ---.m := l ;u!m 
j ,b---. skip 

l 
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(x-10) 

The initialization of controller 2 is the same as controller 1. So independent of the state 
of the system, the controller wants the machine to start with O initially. When the 
controller receives the buffer levels after the initialization, it determines the position 
in time within one process cycle. The controller switches to type 2 if no products of 
type 1 arrive anymore and buffer 1 is empty. The controller switches back when the 
critica! value xf is reached. In all other situations the controller skips and waits for a 
new update of the buffer levels. 
In the simulation an example is used where >-1 < µ1 . So in situation II-a the maximum 
arrival ra te of type 1 is less than the maximum process rate of type 1. The parameter 
setting that is used in the simulation is presented in Table 6.2. 

>-1: 0.2 lots/hr. </>1 : 0.8 
>-2: 0.45 lots/hr. xo(t = 0): 0 hrs. 
µ1: 1 lots/hr. x1(t = 0): 400 lots 
µ 2: 1 lots/hr. x2( t = 0): 400 lots 

0'12: 50 hrs . t::.(t = 0): </>1P hrs. 
cr21 : 50 hrs. m(t = 0): 2 

P: 1000 l1rs. 

Table 6.2: Parameter setting for situation II-a 

The results of both simulations with the parameter setting of Table 6.2 are presented 
in Figures 6.6 , 6.8, 6.7 and 6.9. The system starts with an initial state for the system: 

x(O) = [ 400 400 0 800 2 f. 
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Figure 6.6: Buffer levels over t ime (Fluid) Figure 6.8: Trajectory (Fluid) 

..... t··--

Figure 6. 7: Buffer levels over time (Discrete) Figure 6.9: Trajectory (Discrete) 

Simulation results of the controller for situation 11-a 
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Since the buffer level of type 1 exceeds xf. The controller wants the system to start 
processing type 1. First O is performed, during this setup both types arrive, so both 
buffer levels increase. After the setup to type 1 the machine processes type 1 until 
the buffer is empty. When the buffer is empty, the machine keeps processing in a slow 
mode until the arrivals of type 1 stop. At this moment the arrival pattern of type 1 
is synchronized with the processing of type 1. But the buffer level of type 2 is still to 
large. When @ is performed, products of type 2 are processed. Type 2 is processed 
as long as x 1 < xf_ In point A this equality becomes false. Setup O is performed 
and the machine starts processing type 1. Again CD continues until the buffer is empty 
and the arrivals of type 1 stop. This behavior repeats itself until the buffer level of 
type 2 becomes zero (B). In point B type 2 is processed in a slow mode. As long as 

x1 < xf holds, the machine processes type 2 at the same rate as the arrival rate of 
type 2. When the machine starts to process type 2 in a slow mode for the first time, the 
system has reached its optimal steady state process cycle. The results of the discrete 
event simulation show similar behavior again, although the convergence to reach the 
desired trajectory takes longer. From the figures one can not see if there is a slow mode 
for type 1 present. When computing the optimum, with (4.25), TÎ = 160.52 hrs. The 
lower and upper bound are 200 hrs. and 450 hrs. respectively. The result is an optimum 
of T1 = 200 hrs. what implies that only product type 2 has a slow mode. The desired 
trajectory has a similar trajectory like scenario 1 (Figure 4.6) describes. 
The results of the simulations for situation II-a correspond to the optimal trajectory as 
mentioned in Chapter 4. In the next section the last controller is checked by simulation. 
The simulation uses a parameter setting which satisfies the conditions of situation II-b. 

6.4 Simulation results of the controller for situation 11-b 

The previous section showed the results of the controller designed for a desired trajectory 
with at least a slow mode for type 2. This section discusses a system which has at least a 
slow mode for type 1 in its desired trajectory. The desired trajectory that has to evolve 
must be similar to the scenarios 2 and 3 as mentioned in Chapter 4. The parameter 
setting used in this simulation determines with which scenario the results must be 
compared. Before the results are shown the accompanying x-syntax of the controller 
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for situation II-bis presented in (x-11). 

proc C2b(a: ?nat2, u: !nat ,<P1, P: real, xf : nat)= 
I[ x : nat2, b : bool, m : nat , t : real 
lm := 1 
; u!m 
; *[ true---+ a?x; t := rmod( T , P) 

; [ m = 1---+ b := t 2'. <P1P 
; [ b ---+ m := 2; u!m 
j --ib---+ skip 

l 
j m = 2---+ b := x .0 2'. x f /\ x .l = 0 

; [b ---+m := l;u!m 
j --,b---. skip 

l 

(x -11) 

The initialization of the controller (11) contains the assignment to start the setup to 
type 1. So independent of the state of the system, the controller wants to start with 
0 initially. When the controller receives the buffer levels after the initialization , it de
termines the position in time within one process cycle. The controller switches when 
.6. = 0, which is independent of the buffer level of type 1. Next, @ is performed and 
buffer 2 is emptied . After O and products of type 1 arrive, the machine processes them 
until the arrivals stop. In all other situations the controller skips and waits for a new 
update of the buffer levels. A parameter setting for which the simulations have to per
formed correct is presented in Table 6.3. The results of both simula tions with the 

)'1: 0.5 lots/hr. <P l: 0.9 
À2: 0.15 lots/hr. xo(t = 0): 0 hrs. 
µ 1: 1 lots/hr. x 1(t = 0): 400 lots 
µ 2: 1 lots/hr. x2 (t = 0): 400 lots 

0-12: 50 hrs. .6.(t = 0): <P1P hrs. 
0-21: 50 hrs. m(t = 0): 1 

P: 1000 hrs. 

Table 6.3: P arameter setting for situation II-b 

parameter setting of Table 6.3 are presented in Figures 6.10, 6.12, 6.11 and 6.13. The 
system initially start processing type 1 or type 2. In the parameter setting m(t = 0) is 
set to m = 1. So the machine start processing type 1. When the arrivals stop, point A , 
variable .6. is synchronized with the processing of type 1, but the buffer level of type 1 
is not. When .6. = 0 the machine switches to @ and then to processing type 2. When 
buffer 2 is empty, setup O is performed to start with processing type 1. At point B 
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Figure 6.10: Buffer levels over time (Fluid) Figure 6.12: Trajectory (Fluid) 

Figure 6.11: Buffer levels over time (Discrete) Figure 6.13: Trajectory (Discrete) 

Simulation results of the controller for situation 11-b 
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products of type 1 stop to arrive again. This is also the moment to stop processing 
type 1. A setup to type 2 is performed and the system empties buffer 2 again. Parame
ter x1 > xf, this means type 1 needs to be processed. This behavior repeats itself until 
the buffer level of type 1 becomes zero. Now the system performs a loop close to the 
optimal trajectory before it reaches the situation where x2 = 0 and x 1 < xt After a 
short slow mode for type 2, the systems reaches point C. At this point the controller 
has steered the system to its steady state trajectory. Also the discrete event simulation 
reaches the same steady state trajectory. Both steady state trajectories are the same. 
The trajectories have to correspond to either scenario 2 or scenario 3. The results show 
no slow mode for type 2. Computation of the optimal process length of type 1 results 
in a value for T 1 which is equal to the upper bound of the system. So the parameter 
setting represents an example of the optimal t rajectory presented as scenario 3. The 
controller steers to a correct trajectory. 

All three controllers have been tested. All simulations present controllers which steer 
towards the desired trajectories. The path of convergence is in each simulation the same 
for the hybrid fluid model as for t he discrete event model. The controllers show to be 
robust enough to deal with the disturbances introduced by exponential distributions on 
the inter-arrival t imes and process times. 
In different proofs the presence of the slow mode has been discussed. When initial 
buffer levels are high, time spans for slow modes are replaced by processing at max
imum capacity. The larger these time spans are ( =the longer slow modes are active 
in the desired trajectory) , the larger the difference is between the number of products 
t hat are processed and the number of products that need to be processed. The speed of 
convergence depends on the length of the t ime spans of the slow modes. It is only when 
a slow mode is present the system can keep the synchronization between processing 
type 1 and the arrival pattern of type 1 and catch up with buffer levels which are too 
large. 



Chapter 7 

Conclusions and 
recommendations 

In t his chapter the conclusions of this research are presented in Section 7.1 and the 
recommendations for future research are presented in Section 7.2. 

7 .1 Conclusions 

This report discussed an optimal process cycle and feedback control for a workstation 
serving two product types with setups, one piecewise-constant arrival rate and a con
stant arrival rate . The approach is similar to the approach in [Eek06a]. The system 
is optimized with respect to the weighted t ime averaged work in process (wip) level. 
The theory presented in this report contains a hybrid fluid approximation model which 
gives proper results if the system satisfies two important conditions . The sum of time 
fractions that each product needs to be processed in the system has to be less than one. 
The second condition implies that the length of the periodic behavior equals the length 
of a steady state process cycle. In the steady state process cycle at least one slow mode 
has to occur. If these conditions hold , different optimal process cycles are obtained. 
The differences between the optimal process cycles depend on a relationship between 
the maximum arrival rate and the maximum process rate of type 1 ( the type which 
has a piecewise constant arrival pattern) . After determination of the optimal process 
cycles, one situation described the system if the maximum arrival rate is larger than 
the process rate (.>- 2: µ). The second situation described the system if the maximum 
arrival rate is less than the maximum process rate (.>- ~ µ). In the second situation a 
subdivision is made, based on the slow mode(s) that occur in the optimal process cycle. 
Together these situations cover all parameter settings which meet the two conditions 
mentioned earlier. Eventually three controllers have been proposed which together cover 
all possible optimal process cycles. For these controllers a proof of convergence has been 
established. The analytical proof shows that the controllers always steer a system with 
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arbitrary buffer levels, and st arting at an arbitrary point in time, to the desired trajec
tory and keeps it there. These controllers have been tested in a simulation study. In 
this study the workstation is simula ted with a hybrid fluid approximation model and a 
discrete event model. The simulation results confirmed the convergence to the desired 
trajectories . In spite of determination of the feedback cont roller in a continuous setting, 
the controllers in the discrete event setting, with stochastic distributions for the inter
arrival times and process times, converge in the same way. For the simulation results as 
presented, the controllers are robust enough to deal with the disturbances introduced 
by the exponent ial distributions. The speed of convergence depends on the sum of time 
fractions that each product needs to be processed in the system. The higher the sum 
the slower the system converges and vice versa. 

7.2 Recommendations 

Several items need more at tent ion to obtain a bet ter understanding of the optimal 
behavior of a system with one piecewise constant arrival rate in this research. These 
research objectives are presented below: 

• The approach of this report is similar to the approach in [Eek06a]. The one 
step missing, compared with [Eek06a], is to analyze the system with finite buffer 
capacities . The derived feedback controllers work well for systems with infinite 
buffers. But it is not clear if the worksta tion can synchronize its processing of 
type 1 with the arrival pattern of type 1, due to the buffer restrictions. Especially 
when buffer capacities are relatively small with respect to the maximum buffer 
levels that occur during the optimal steady state process cycle of the system. It 
can become very hard to steer the system to the desired trajectory because the 
synchronization of the arrival pattern of type 1 with the processing of type 1 
often takes time, which may not be available because the other buffer exceeds its 
maximum capacity. 

• If the constraint that one process cycle must equal one period is dropped, it is 
possible to find steady state process cycles with a lower time averaged weighted 
wip level. Good candidates are systems which have a sum of time fractions that 
each product needs to be processed that is small. An example of such a system is 
presented in the intermezzo at the end of Chapter 4. 

• Imagine two workstations in series. The possibility exists that the first workstation 
processes products in a slow mode. For the departure ra te this means products 
of one type leave the workstation at a rate ofµ , >. or 0. This means the piecewise 
constant arrival pattern of the second workst ation contains three possible arrival 
rates also. After the maximum arrival rate, the products can arrive at a lower 
speed before the products stop to arrive and the rate becomes zero. In this report 
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the piecewise constant arrival rate has only two different values (>. and 0). In 
general the new arrival pattern will lead to different process cycles and different 
time averaged weighted wip levels. When these 'new' arrival patterns will be 
analyzed with the possible situations that occur in this report (a system with 
one constant arrival rate and the 'modified ' piecewise constant arrival pattern) , it 
might have a positive effect on situation I. Situation I may approve because the 
system can not keep up wi th the highest arrival rate, if the rate is tempered after 
a while the machine might be able to catch up earlier. How situation II will react 
on such a 'modified ' piecewise constant arrival pattern is hard to determine. Even 
a comparison with situation II may not be realistic because the lemmas used in 
Chapter 4 become useless. 

Another topic that forms an interesting research objective is a workstation with two 
piecewise constant arrival patterns instead of one. This report contains a workstation 
with one piecewise constant arrival pattern and one constant arrival pattern. The next 
step is to perform an analysis for t he same workstation with two piecewise constant 
arrival patterns. Workstations with such arrival patterns occur when two workstations 
are put in series (as mentioned in Example 3.2.1 ). The output of the first machine is for 
both product types piecewise constant. This output pattern forms the arrival pattern 
of the second machine. To opt imize the weighted time averaged work in process in 
the second machine, first the opt imal process cycle for each type of product must be 
determined separately. When the process cycles are combined an overlap in processing 
the optimal cycles of type 1 and 2 may occur. Removing the overlap from the optimal 
process cycle results in extra costs. The optimization that has to be performed needs to 
minimize the extra costs that occurs due to the overlaps. To obtain such a minimum, a 
function for the possible overlaps has to be determined. This function must determine 
which type of product has to be processed first in order the keep the weighted time 
averaged work in process as low as possible. 
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Appendix A 

Fluid models 

This appendix contains all three fluid models discussed in Chapter 6. The appendix 
presents situation I , situation II-a and situation II-b respectively. 

In the appendix the proposed feedback controllers have been modeled as proposed in 
propositions 5.1.1 , 5.2.1 and 5.3.l. Init ially the system has an arbitrary state. The 
values of this state determine in which case t he machine starts. In these simulations the 
system starts with buffer levels of 400 products for each type, a setup to start processing 
type 1 and b. = P. Like the remarks that accompanied each proposition, the models in 
this appendix contain the different modes also. These modes are indicated as cases. All 
conditions in each mode are translated into condit ions for each case in the model. The 
result is the following Matlab-code. A detailed explanation of the models is presented 
after the models. 

Controller for situation I 

1/, controller situation-I 

clc ; clear all; close all; 

lambda1=0 .6; 1/, 

lambda2=0 . 2; 1/, 

mu1=1.5; 1/, 

mu2=1; 1/, 

s12=50; 1/, 

s21=50; 1/, 

c1=1; 1/, 

c2=1; 1/, 

mean arrival rate of type 1 
arrival rate of type 2 
mu_1 
mu_2 
setup time sigma_12 
setup time sigma_21 
weighting factor for type 1 
weighting factor for type 2 

phi=0.3; 
P=1000; 

1/, 
1/, 

time fraction where products of type- 1 arrive . 
length of a period 

r1=lambda1/mu1 ; 1/, mean rho_1 
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r2=lambda2/mu2; ï. rho_2 
lambdalhat= lambdal/phi;Ï. lambda 1 hat 

81max= phi•P•(lambdalhat-mul); 

81=400; 82=400; m=6; 
8=[0,81,82,s21]; 

while length(8) < 40; 
switch m 

case 1 ï.process type 1 

ï.[time, buffer level 1, buffer level 2, remaining setup time] 

ï. Length of simulation 

[d,st] = check(P,phi,8(end,l)); 
if st == 1 

8=[8;8(end,l)+d 8(end,2)+d•(lambdalhat-mul) 8(end,3)+d•lambda2 O]; 
m=l; 

else st == 0 
if d < 8(end,2)/mul 

8=[8;8(end,l)+d 8(end,2)-d•mul 8(end,3)+d•lambda2 0]; 
m=l; 

else 
8=[8;8(end,1)+8(end,2)/mul O 8(end,3)+(8(end,2)/mul)•lambda2 0]; 
m=2; 

end 
end 

case 2 ï. slow mode type 1 
[d,st] = check(P,phi,8(end,1)); 
8=[8;8(end,1) 8(end,2) 8(end,3) s12]; 
m=3; 

case 3 ï. setup from 1 to 2 
[d,st] = check(P,phi,8(end,1)); 
if st == 1 

if d <= 8(end,4); 
8=[8;8(end,l)+d 8(end,2)+d•lambdalhat 8(end,3)+d•lambda2 8(end,4)-d]; 
m=3; 

else 
8=[8;8(end,1)+8(end,4) 8(end,2)+8(end,4)•lambdalhat 8(end,3)+8(end,4)•lambda2 0]; 
m=4; 

end 
else 

if d <= 8(end,4) 
8=[8;8(end,l)+d 8(end,2) 8(end,3)+d•lambda2 8(end,4)-d]; 
m=3; 

else 
8=[8;8(end,1)+8(end,4) 8(end,2) 8(end,3)+8(end,4)•lambda2 0]; 
m=4; 

end 
end 

case 4 ï. process type 2 
[d,st] = check(P,phi,8(end,1)); 
if st == 1 

8=[8;8(end,1) 8(end,2) 8(end,3) 0]; 
m=5; 

else st == 0 
delta=8(end,2)/mul+s21; 
if d > delta & d-delta > 8(end,3)/(mu2-lambda2) 

8=[8;8(end,1)+8(end,3)/(mu2-lambda2) 8(end,2) 0 0]; 
m=5; 

elseif d > delta & d-delta <= 8(end,3)/(mu2-lambda2) 
8=[8;8(end,l)+(d-delta) 8(end,2) 8(end,3)-(d-delta)•(mu2-lambda2) 0]; 
m=5; 

elseif d > delta & d-delta > 8(end,3)/(mu2-lambda2) 
8=[8;8(end,l)+delta 8(end,2) 0 0]; 



m=5; 
else 

B=[B;B(end,1) B(end,2) B(end,3) 0]; 
m=5; 

end 
end 

case 5 %slow mode type 2 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

B=[B;B(end,1) B(end,2) B(end,3) s21]; 
m=6; 

else 
if d > B(end,2)/mu1+s21 & B(end,2) < B1max 

tslow=d-((B(end,2)/mu1)+s21); 
B=[B;B(end,1)+tslow B(end,2) B(end,3) s21]; 
m=6; 

else 
B=[B;B(end,1) B(end,2) B(end,3) s21]; 
m=6; 

end 
end 

case 6 ï.setup from 2 to 1 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if d < B(end,4); 
B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3)+d•lambda2 B(end,4)-d]; 
m=6; 

else d >= B(end,4); 
B=[B;B(end,1)+B(end ,4) B(end,2)+B(end,4)•lambda1hat B(end,3)+B(end,4)•lambda2 0]; 
m=1; 

end 
else 

if d < B(end,4); 
B=[B;B(end,1)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d]; 
m=6; 

else d >= B(end,4); 
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0]; 
m=1 ; 

end 
end 

end 
end 

Controller for situation 11-a 

ï. controller situation-11-a 

clc; clear all; close all ; 

lambda1=0.2; ï. mean arrival rate of type 1 
lambda2=0 .45; ï. arrival rate of type 2 
mu1=1; ï. mu - 1 
mu2=1; ï. mu_2 
s12=50; ï. setup time sigma_ 12 
s21=50; ï. setup time sigma_21 
c1=1; ï. weighting factor for type 1 
c2=1; ï. weighting factor for type 2 
phi=0 .8; ï. time fraction where products of type-1 arrive. 
P=1000; ï. length of a period 
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r1=lambda1/mu1; % 
r2=lambda2/mu2; % 
lambdaihat= lambda1/phi;% 

mean rho_1 
rho_2 
lambda 1 hat 

Appendix A. Fluid models 

%opt tau 
tau1star=((c1*mu1*r1/(phi-r1))*(phi*P)-(c2*mu2*r2/(1-r2))*(s12+s21))/ . . . 
. . . (((c1*mu1*r1)/(phi-r1))+((c2*mu2*r2)/(1-r2))); 
g1=r1*P; 
g2=(1-r2)*P-(s12+s21); 
g3=phi*P; 

% lower bound 
% upper bound 
% time span products arrive 

if tauistar <= g1; 
tau1opt=g1; 

elseif g2 >= g3 & tauistar > g3; 
tau1opt=g3; 

elseif g2 < g3 & tauistar > g2; 
tau1opt=g2; 

else 
tau1opt=tau1star; 

end 
B2max= (tau1opt+s21)*lambda2; 
B1max= (((phi*P-tau1opt)*r1)/(phi-r1))*(mu1-lambda1hat)-(lambda1hat*s21); 

B1=400; B2=400; m=6; 
B=[0,B1,B2,s21]; 

while length(B) < 40; 
switch m 

case 1 %process type 1 

%[time, buffer level 1, buffer level 2, remaining setup time] 

% Length of simulation 

[d , st] = check(P,phi,B(end,1)); 
if st == 1 

if d < B(size(B,1),2)/(mu1-lambda1hat) 
B=[B;B(end,1)+d B(end,2)-d*(mu1-lambda1hat) B(end , 3)+d*lambda2 0); 
m=3; 

else 
B=[B;B(end,1)+B(size(B,1),2)/(mu1-lambda1hat) 0 .. . 
. . . B(end,3)+B(end,2)/(mu1-lambda1hat)*lambda2 0); 
m=2; 

end 
else 

B=[B;B(end,1) B(end,2) B(end,3) 0); 
m=3; 

end 
case 2 % slow mode type 1 

[d,st] = check(P,phi,B(end,1)); 
if st == 1 

B=[B;B(end,1)+d B(end,2) B(end,3)+d*lambda2 s12]; 
m=3; 

else 
B=[B ; B(end,1) B(end,2) B(end,3) s12]; 
m=3; 

end 
case 3 % setup from 1 to 2 

[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if d <= B(size(B,1),4) 
B=[B;B(end,1)+d B(end,2)+d*lambda1hat B(end,3)+d*lambda2 B(v,4)-d]; 
m=3; 

else 
B=[B;B(end,1)+B(end ,4) B(end,2)+B(end,4)*lambda1hat B(end,3)+B(end,4)*lambda2 0); 
m=4; 

end 



else 
if d <= B(end,4) 

B=[B;B(end,1)+d B(end,2) B(end,3)+d*lambda2 B(end,4)-d]; 
m=3; 

else 
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)*lambda2 0] ; 
m=4; 

end 
end 

case 4 'l. process type 2 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if d <= B(end,3)/(mu2-lambda2) & B(end,2)+d*lambda1hat <= B1max 
B=[B;B(end,1)+d B(end,2)+d*lambda1hat B(end,3)-d*(mu2-lambda2) 0]; 
m=4; 

elseif d > B(end,3)/(mu2-lambda2) & B(end,2)+d*lambda1hat <= Blmax 
B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2)+B(end,3)/(mu2-lambda2)*lambda1hat O 0]; 
m=5; 

elseif d <= B(end,3)/(mu2-lambda2) & B(end , 2)+d*lambda1hat > Blmax 
tarrival=max((Blmax-B(end,2))/lambdalhat,0); 
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B=[B;B(end,l)+tarrival B(end,2)+tarrival*lambda1hat B(end,3)-tarrival*(mu2-lambda2) 0]; 
m=5; 

else 
tarrival=max((Blmax-B(end,2))/lambdalhat,0); 
tempty=B(end,3)/(mu2-lambda2); 
if tarrival <= tempty 

B=[B;B(end,l)+tarrival B(end,2)+tarrival*lambda1hat ... 
. . . B(end,3)-tarrival*(mu2-lambda2) 0]; 

else 
B=[B;B(end,1)+tempty B(end,2)+tempty*lambda1hat O O]; 

end 
m=5; 

end 
else 

if d <= B(end,3)/(mu2-lambda2) 
B=[B;B(end,l)+d B(end,2) B(end,3)-d*(mu2-lambda2) 0]; 
m=4; 

else 
B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2) 0 0] ; 
m=5; 

end 
end 

case 5 %slow mode type 2 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if B(end,2) >= Blmax 
B=[B;B(end,1) B(end,2) B(end,3) s12]; 
m=6; 

elseif B(end,2)+d•lambda1hat >= Blmax 
tslow=(Blmax-B(end,2))/lambdalhat; 
B=[B;B(end,l)+tslow B(end,2)+tslow*lambda1hat B(end,3) s12]; 
m=6; 

else 
B=[B;B(end,l)+d B(end,2)+d*lambda1hat B(end,3) 1]; 
m=5; 

end 
else 

if B(end,2) >= Blmax 
B=[B;B(end,1) B(end , 2) B(end,3) s12] ; 
m=6; 

else 
B=[B;B(end,l)+d B(end,2) B(end,3) s12]; 
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m=5; 
end 

end 
case 6 'l.setup from 2 to 1 

[d , st] = check(P,phi ,B(end,1)); 
if st == 1 

if d <= B(end,4) 

Appendix A. Fluid models 

B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3)+d•lambda2 B(end,4)-d]; 
m=6; 

else 
B=[B;B(end,1)+B(end,4) B(end,2)+B(end,4)•lambda1hat B(end,3)+B(end,4)•lambda2 0]; 
m=1; 

end 
else 

if d <= B(end,4) 
B=[B;B(end,1)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d]; 
m=6; 

else 
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0] ; 
m=l; 

end 
end 

end 
end 

Controller for situation 11-b 

'l.'l.'l. controller for situation II-b 

clc; clear all ; close all; 

%%%Parameter Setting 

lambda1=0.5; 'l. 
lambda2=0. 15; 'l. 
mu1=1; 'l. 
mu2=1; 'l. 
s12=50; 'l. 
s21=50; 'l. 
c1=1; 'l. 
c2=1; 'l. 
phi=0 .9; 'l. 
P=1000; 'l. 

r1=lambda1/mu1; 'l. 
r2=lambda2/mu2; 'l. 
lambda1hat= lambda1/phi ; 'l. 

'l.'l.'l.0ptimization of tau1 

mean arrival rate of type 1 
arrival rate of type 2 
mu_1 
mu_2 
setup time sigma_12 
setup time sigma_21 
weighting factor for type 1 
weighting factor for type 2 
time fraction where products of type-1 arrive. 
length of a period 

mean rho_1 
rho_2 
lambda 1 hat 

tau1star=((c1•mu1•r1/(phi-r1))•(phi•P)-(c2•mu2•r2/(1-r2))•(s12+s21))/ . .. 
. . . (((c1•mu1•r1)/(phi-r1))+((c2•mu2•r2)/(1-r2))); 
g1=r1•P; 
g2=(1 - r2)•P-(s12+s21); 
g3=phi•P ; 

if tau1star <= g1; 
tau1opt=g1; 

'l. 
'l. 
'l. 

lower bound 
upper bound 
time span products arrive 

elseif g2 >= g3 & tau1star > g3; 



taulopt=g3; 
elseif g2 < g3 & taulstar > g2; 

taulopt=g2; 
else 

taulopt=taulstar; 
end 
B2max= (taulopt+s21)•lambda2; 
Blmax= (((phi•P-taulopt)•rl)/(phi-rl))•(mul-lambdalhat)-(lambdalhat•s21); 

B1=400; B2=400; m=6; 
B=[0,B1,B2,s12]; 

Initial buffer levels and start mode. 
[time, buffer level 1, buffer level 2, remaining setup time] 

while length(B) < 40; 
switch m 

% Length of simulation 

case 1 %process type 1 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if d < B(end,2)/(mul-lambdalhat); 
B=[B;B(end,l)+d B(end,2)-d•(mul-lambdalhat) B(end,3)+d•lambda2 0]; 
m=l; 

else 
B=[B ;B(end,l)+B(end,2)/(mul-lambdalhat) 0 . .. 
. . . B(end,3)+B(end,2)/(mul-lambdalhat)•lambda2 0]; 
m=2; 

end 
else 

m=2; 
end 

case 2 % slow mode type 1 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

B=[B;B(end,l)+d B(end,2) B(end,3)+d•lambda2 s12]; 
else 

B=[B;B(end,1) B(end,2) B(end,3) s12]; 
end 
m=3; 

case 3 % setup from 1 to 2 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if d <= B(end,4) 
B=[B;B(end,l)+d B(end,2)+d•lambdalhat B(end,3)+d•lambda2 B(end,4)-d]; 
m=3; 

else 
B=[B;B(end,l)+B(end,4) B(end,2)+B(end,4)•lambdalhat B(end,3)+B(end,4)•lambda2 0]; 
m=4 ; 

end 
else 

if d <= B(end,4) 
B=[B;B(end,l)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d]; 
m=3; 

else 
B=[B;B(end,l)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0]; 
m=4; 

end 
end 

case 4 % process type 2 
[d,st] check(P,phi,B(end,1)); 
if st == 1 

if d < B(end,3)/(mu2-lambda2) 
B=[B;B(end,l)+d B(end,2)+d•(lambdalhat) B(end,3)-d•(mu2-lambda2) 0]; 
m=4; 

else 
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end 
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B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2)+(B(end,3)/(mu2-lambda2))•lambda1hat 0 0]; 
m=5; 

end 
else 

if d < B(end,3)/(mu2-lambda2); 
B=[B;B(end,1)+d B(end,2) B(end,3)-d•(mu2-lambda2) 0]; 
m=4; 

else 
B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2) 0 0]; 
m=5; 

end 
end 

case 5 %slow mode type 2 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if B(end,2)+d•lambda1hat >= B1max 
if B(end,2)>= B1max 

tslow=0; 
else 

tslow=(B1max-B(end,2))/lambda1hat; 
end 
B=[B;B(end,1)+tslow B(end,2)+tslow•lambda1hat B(end,3) s21]; 
m=6; 

else 
B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3) 0]; 
m=5; 

end 
else 

if B(end,2) >= B1max 
B=[B;B(end,1) B(end,2) B(end,3) s21]; 
m=6; 

else 
B=[B;B(end,1)+d B(end,2) B(end,3) 0]; 
m=5; 

end 
end 

case 6; ï.setup from 2 to 1 
[d,st] = check(P,phi,B(end,1)); 
if st == 1 

if d <= B(end,4) 
B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3)+d•lambda2 B(end,4)-d]; 
m=6; 

else 
B=[B;B(end,1)+B(end,4) B(end,2)+B(end,4)•lambda1hat B(end,3)+B(end,4)•lambda2 0]; 
m=1 ; 

end 
else 

if d <= B(end,4) 
B=[B;B(end,1)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d]; 
m=6; 

else 
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0]; 
m=1; 

end 
end 

end 

The function-file check.m is defined as: 

function [d,st] = check(P,phi,t) 



while t >= P; 
t=t-P; 

end; 

if t >= phi•P; 
d=P-t; 
st=O; 

else 

st=1; 
end 
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In these Matlab models several parts can be distinguished. First the parameter setting 
is introduced. Next , ( only for situations II) the optimization of T1 is performed which 
results in the computa tion of maximum buffer levels for type 1 and 2 (respectively 
Blmax and B2max). These maximum buffer levels present the maximum level at 
which the system should perform a setup to st art processing the other type of product. 
The init ia! conditions are described and the length of the computation is chosen. In 
these models the initia! buffer levels are 400 lots each, and the machine start in mode 
6 (Setup to type 1) . In the Matlab-code each mode number is presented as a 'Case' 
number. When a case becomes active, the current time is sent to function check .m. 
This file receives the current t ime, the time fraction where products of type 1 arrive 
during one period P and the length of a period P. With these variables it determines 
if lots of type 1 arrive and t he t ime span the current arrival rate maintains. If no lots 
arrive check.m returns st = 0 and the time span where this arrival rate stays zero (d). 
When lots do arrive check .m sends st = 1 and the t ime span the products keep arrive 
at this rate. 
When the variables st and d are known , one of the arguments within the active case 
is met. Performing the argument that is valid, the buffer levels are updated, stored 
and the case number is updated. When the buffer levels are updated, mat rix B stores 
the current time, buffer level 1, buffer level 2 and the remaining setup time. With the 
new value for m the whole process of checking the new situation has to be performed 
again. The simulation stops when the size of matrix B reaches 40. The number of 40 
is determined empirically and represents about 4 process cycles. 
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Appendix B 

Discrete event models 

This appendix contains the ASCII-code of all three complete discrete event models dis
cussed in Chapter 6. The appendix presents situation I , situation II-a and situation II
b respectively. The iconic representa tion of the x-model is presented in Figure B.l. 
The model contains two generators ( Gl and G2). Generator 1 sends products with a 

b 

Figure B.l: Iconic model of a two product worksta tion 

piecewise constant arrival pattern wi th an exponential distribution. Generator 2 sends 
products with a constant arrival pattern with an exponential distribution. Both gener
ators send the lots to the buffer (B). The buffer counts the number of products in each 
buffer and sends the information to the cont roller ( C). The controller uses the infor
mation to determine if the machine (M) has to perform setups or process products. If 
the controller allows production, products are available and a product moves from the 
buffer to the machine for processing. The process t imes of the machine are exponential 
distributed also. After processing a product it is send to the exit process (E) where it 
leaves the system. 
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Controller of situation I 

from std import• 
from fileio import• 
from random import• 

type lot = nat, 

Il Generator of type 1. 
proc G1(a : !lot, b: nat, c,d,e: real) 
1 [r,s:real, t:->real 
lr:=0.0; t:=exponential(llc) 
;•[true -> r : =rmod(time, e); s:=sample t; 

[r+s < d•e -> delta s; a!b 
lr+s >= d•e -> delta e-r 
] 

] 1 

Il Generator of type 2. 
proc G2(a : !lot, b : nat, c: real) 
1 [t:->real 
lt:=exponential(1lc) 
;•[true -> a!b; delta samplet] 

] 1 

11 Buffer 

Appendix B. Discrete event models 

proc B(a,b : ?lot , c,d: !lot, e: !nat~2, buf1ini,buf2ini : nat) 
1 [x1,x2:lot, xs1,xs2:nat 

lxs1:=buf1ini; xs2:=buf2ini; e!<lxs1,xs21> 
;•[true -> [true; a?x1 -> xs1:=xs1 + 1 

] 1 

ltrue; b?x2 -> xs2:=xs2 + 1 
lxs1>0; c!x1 
lxs2>0; d!x2 
] 

-> xs1 :=xs1 - 1 
-> xs2 : =xs2 - 1 

; e!<lxs1,xs21> ;fileout("buffersize . txt")!time, "\t", xs1, "\t", xs2, "\n" 

Il Machine 
proc M(a,b: ?lot, u: ?nat, c : !lot , p1,p2,s12,s21: r eal) = 
1 [x :lot, m:nat, t,trem:real, t1,t2 : ->real, idle :bool 
lt:=0 .0; trem:=0.0; t1:=exponential(1lp1); t2 : =exponential(1lp2); idle : =true 
;•[m=1 and idle; a?x -> t : =sample t1+time; idle:=false 

] 1 

lm=1 and not idle; delta t-time -> c!x; idle:=true 
/m=2 and idle; b?x -> t :=sample t2+time; idle:=false 
/m=2 and not idle; delta t-time -> c!x; idle:=true 
/true; u?m -> idle:=false; 

[m=1 -> <trem,t> : =<t-time,trem+time+s21> 
lm=2 -> <trem,t>:=<t-time,trem+time+s12> 
] 

Il Controller 
proc Cl (a: ?nat ~2, u : !nat, phi,p,mu1,s21: real) 
1 [x: nat~2, b:bool, m: nat, t: real 

/m : =1; u!m 
;•[true -> a?x; t:=rmod(time,p) ; 

[m=1 -> b:= x.O = 0 and t >= phi*p and t < p-s21; 
[b -> m:=2 ; u!m 
/not b -> skip 



lm=2 -> b:= p-t <= x.Olmul+s21 
[b -> m:=1; u!m 
lnot b -> skip 

] 1 

Il Exit process 
proc E(a: ?lot) 
1 [x:lot 

] 

l•[true; a?x ->skip] 
] 1 

clus S() = 
1 [ a,b,c,d,f:-lot, e : -nat"2, u : -nat 

1 Gl(a,1,lambdalhat,phil,P) 11 G2(b,2,lambda2) 
11 B(a,b,c,d,e,buflini,buf2ini) 
11 M(c,d,u,f,mu1,mu2,sigma12,sigma21) 
11 C1(e,u,phi1,P,mu1,sigma21) 
11 E(f) 

] 1 

xper(lambda1hat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P: real, buf1ini,buf2ini:nat)= 
1 [ S(lambdalhat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P,buf1ini,buf2ini) ] 1 

Controller of situation 11-a 

from std import• 
from fileio import• 
from random import• 

type lot = nat, 

Il Generator of type 1. 
proc Gl(a : 1lot, b: nat, c,d,e: real) 
1 [r,s:real, t:->real 

lr:=0 . 0; t:=exponential(llc) 
;•[true -> r:=rmod(time, e); s:=sample t; 

[r+s < d•e -> delta s; a!b 
lr+s >= d•e -> delta e-r 
] 

] 1 

Il Generator of type 2. 
proc G2(a: !lot, b: nat, c: real) 
1 [t : ->real 
lt:=exponential(llc) 
;•[true -> a!b; delta samplet] 

] 1 

Il Buffer 
proc B(a,b: ?lot, c,d: !lot, e: !nat"2, buf1ini,buf2ini: nat) 
1 [x1,x2:lot, xs1,xs2:nat 
lxsl:=buflini; xs2:=buf2ini; e!<lxs1,xs21> 
;•[true -> [true; a?xl -> xsl:=xsl + 1 

ltrue; b?x2 
lxsl>O; c!xl 

-> xs2:=xs2 + 1 
-> xsl:=xsl - 1 
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lxs2>0; d!x2 
] 

Appendix B. Discrete event models 

-> xs2:=xs2 - 1 

; e!<lxs1,xs21> ;fileout( 11 buffersize.txt 11 )!time, 11 \t", xs1, 11 \t", xs2, 11 \n" 

] 1 

Il Machine 
proc M(a,b: ?lot, u: ?nat, c: !lot, pl,p2,s12,s21 : real) = 
1 [x:lot, m:nat, t,trem :real, tl,t2:->real, idle:bool 
lt :=0.0; trem:=0.0; tl:=exponential(llpl); t2:=exponential(llp2); idle:=true 
;• [m=l and idle; a?x -> t:=sample tl+time; idle:=false 

lm=l and not idle; delta t-time - > c!x; idle:=true 
lm=2 and idle; b?x -> t:=sample t2+time; idle : =false 
lm=2 and not idle; delta t-time -> c!x; idle:=true 
ltrue; u?m -> idle :=false; 

] 1 

Il Controller 

[m=l - > <trem,t>:=<t-time,trem+time+s21> 
lm=2 -> <trem,t>:=<t -time,trem+time+s12> 
] 

proc C2a (a : ?nat-2, u: !nat, phi,p : real, xlm: nat) 
1 [x : nat-2, b: bool, m: nat, t : real 

lm:=1; u!m 
;•[true -> t:=rmod(time,p); a?x; 

[m=l -> b:= x.O = 0 and t >= phi•p; 
[b -> m: =2 ; u!m 
lnot b -> skip 
] 

lm=2 -> b:= x.O >= xlm ; 

] 

] 1 

Il Exit process 
proc E(a : ?lot) 
1 [x : lot 

[b -> m:=1; u!m 
lnot b -> skip 
] 

l•[true; a?x - >skip] 
] 1 

clus S() = 
1 [ a,b,c,d,f : -lot , e :-nat -2, u:-nat 

1 Gl(a,1,lambdalhat,phil,P) 11 G2(b,2,lambda2) 
11 B(a,b,c,d,e,buflini,buf2ini) 
11 M(c,d,u,f,mul,mu2,sigmal2,sigma21) 
11 C2a(e,u,phil,P,xlmax) 
11 E(f) 

] 1 

xper(lambdalhat,lambda2,mul,mu2,sigma12,sigma21,phil,P: real, buflini,buf2ini , xlmax:nat)= 
1 [ S(lambdalhat,lambda2,mul,mu2,sigma12,sigma21,phil,P,buflini,buf2ini,xlmax) ] 1 

Controller of situation 11-b 

from std import• 
from fileio import• 



from random import* 

type lot = nat, 

Il Generator of type 1. 
proc Gl(a: !lot, b: nat, c,d,e: real) 
1 [r,s:real, t : ->real 
lr :=0.0; t:=exponential(llc) 
;*[true -> r :=rmod(time, e); s:=sample t; 

[r+s < d*e -> delta s; a!b 
lr+s >= d*e -> delta e-r 
] 

] 1 

Il Generator of type 2. 
proc G2(a: !lot, b : nat, c: real) 
1 [t : ->real 
lt : =exponential(llc) 
;*[true -> a!b; delta samplet] 

] 1 

Il Buffer 
proc B(a,b: ?lot, c,d: !lot, e: !nat·2, buflini,buf2ini: nat) 
1 [x1,x2:lot, xs1,xs2:nat 
lxsl:=buflini; xs2:=buf2ini; e!<lxs1,xs21> 
;*[true -> [true; a?xl -> xsl:=xsl + 1 

] 1 

ltrue; b?x2 -> xs2:=xs2 + 1 
lxsl>O; c!xl 
lxs2>0; d!x2 
] 

-> xsl:=xsl - 1 
-> xs2:=xs2 - 1 

; e!<lxs1,xs21> ;fileout("buffersize . txt") !time, "\t", xsl, "\t" , xs2, "\n" 

Il Machine 
proc M(a,b: 7 lot, u : ?nat, c: !lot, p1,p2,s12,s21: real) = 
1 [x : lot, m:nat, t,trem:real, t1,t2:->real, idle:bool 
lt:=0.0; trem:=0.0; tl:=exponential(llpl); t2:=exponential(llp2); idle:=true 
;*[m=l and idle; a?x -> t:=sample tl+time; idle:=false 

] 1 

lm=l and not idle; delta t-time -> c!x; idle:=true 
lm=2 and idle; b?x -> t:=sample t2+time; idle:=false 
lm=2 and not idle; delta t-time -> c!x; idle:=true 

-> idle:=false; 
[m=l -> <trem,t> :=<t-time,trem+time+s21> 
lm=2 -> <trem,t>:=<t-time,trem+time+s12> 
] 

Il Controller 
proc C2b (a: ?nat·2, u: !nat, phi,p: real, xlm: nat) 
1 [x :nat·2, b : bool, m: nat, t: real 

lm:=1; u!m 
;*[true -> t:=rmod(time,p); a?x; 

[m=l -> b:= t >= phi*p; 
[b -> m:=2; u!m 
lnot b -> skip 
] 

lm=2 -> b : = x . 1=0 and x .O >= xlm; 
[b -> m:=1; u!m 
lnot b -> skip 
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] 1 

// Exit process 
proc E(a: ?lot) 
1 [x:lot 
l•[true; a?x ->skip] 

] 1 

clus S() = 
1 [ a,b,c,d,f:-lot, e:-nat~2, u:-nat 
I G1(a,1,lambda1hat,phi1,P) II G2(b,2,lambda2) 
11 B(a,b,c,d,e,buflini,buf2ini) 
11 M(c,d,u,f,mu1,mu2,sigma12,sigma21) 
11 C2b(e,u,phi1,P,x1max) 
11 E(f) 

] 1 

Appendix B. Discrete event models 

xper(lambda1hat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P: real, buf1ini,buf2ini,x1max:nat)= 
1 [ S(lambda1hat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P ,buf1ini,buf2ini,x1max) ] 1 

In the three discrete event models the buffer levels are stored after each product tha t 
leaves or arrives at the buffer. Besides the buffer levels the time at which the buffer 
levels change is stored also. The data is stored in the text-file 'bu f f ersize.tx t ' . The 
dat a is used to visualize the behavior of the system. 




