
 Eindhoven University of Technology

MASTER

Feedback control of a 2-product workstation with setups and one piecewise constant arrival
rate

Smolders, A.C.J. (Roy)

Award date:
2007

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a1b93442-7d1a-44bf-9360-8272097606c2

Master's thesis

Feedback control of a 2-product worksta
tion with setups and one piecewise con
stant arrival rate

A.C.J. Smolders

SE 420509

Supervisor: Prof.dr.ir J.E. Rooda
Coaches: Dr.ir. A.A.J. Lefeber

Ir. J.A.W.M. van Eekelen

EINDHOVEN UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

SYSTEMS ENGINEERING G ROUP

Eindhoven, March 2007

FINAL ASSIGNMENT

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Department of Mechanica! Engineering

March 2006

Systems Engineering Group

Student

Supervisor

Advisors

Start

Finish

Title

Subject

Ing. A.C.J. Smolders

Prof.dr.ir. J .E. Rooda

Dr.ir. A.A.J. Lefeber
Ir. J.A.W.M. van Eekelen

March 2006

March 2007

Feedback control of 2-product workstation with setups and piecewise
constant arrival rates

Flexible manufacturing systems can be considered as a network of workstations which serve different
types of jobs. Switching between these types of jobs often requires a setup. Having non-negligible setup
times leads to serial batching and results in a piecewise-constant flow of jobs leaving the workstation.
In a network setting all workstations receive jobs at a piecewise-constant rate. To control such a system,
we are interested in an optimal steady state process cycle for the system. Next, we would like to derive
a feedback control that makes the system behavior converge towards this optima! steady state process
cycle.

Assignment
To control a network of workstations (or servers), a new method for controlling switched linear systems
is proposed in the paper "Feedback control of 2-product server with setups and bounded buffers" by Van
Eekelen, Lefeber and Rooda. In this paper the basic ideas of how to design a controller are illustrated
by considering a single workstation with constant arrival rates. As mentioned above, in a network of
workstations which processes different types of jobs, a piecewise-constant arrival rate of jobs at a work
station is inevitable. To obtain better insight into the phenomena within such a network of workstations,
the same basic ideas can be applied. Consider the smallest system possible: a single workstation which
serves two different types of jobs. Extend the results presented in the above mentioned paper to the set
ting of piecewise-constant arrival rates. First determine an optima} steady state process cycle. Second,
derive a feedback controller which steers the system towards the desired behavior.

First, a literature review is required. Next, an optimal process cycle and feedback law must be looked
for. Furthennore, the derived optimal process cycle and feedback law must be validat with a (x- or
Matlab-)model where useful. Finally, results must be presented in a report includin uggestions for
future work.

Prof.dr.ir. J.E. Rooda

Systems

Engineering Department of Mechanica! Engineering

11 Assignment

Preface

Writing this preface makes me realize I almost finished my final thesis together with a
five years curriculum in Mechanica! Engineering.

I studied Mechanica! Engineering at a School for Higher Vocational Education where I
received my degree as a Bachelor in Mechanica! Engineering in 2000. After graduation
I was not satisfied with the knowledge a gained. I wanted to learn more about the
wonders of Mechanica! Engineering.

This curriculum started for me in August 2000. After a first week of partying and
sleep as little as possible, my life as a student at the TU /e started. A shorter program
was attended to finish my curriculum due to my earlier obtained degree. I started
with second year courses but had to conclude too many wonders reached me too fast.
In January 2001 I decided to quit the short program and pass through the regular
curriculum instead.

After settling in Eindhoven during this period, it was hard to find a good harmony
between study, friends, work and sports. But in the following years I really enjoyed the
different wonders of Mechanica! Engineering combined with a very nice student life. One
of these wonders was the Analysis of Manufacturing Systems. I wanted to explore this
area more thoroughly and decided to enter the Section Systems Engineering supervised
by prof. Rooda. I enjoyed performing the courses and the final project I am about to
conclude.

Many thanks go to my parents. They supported me during all these years. Also I
would like to use this opportunity, to thank all people who made my student life a time
never to forget. A well deserved thanks goes to Jelmer and Sebastiaan, with these guys
I finished a lot of courses with satisfying results. I would like to thank Erjen Lefeber
and Joost van Eekelen for their good coaching and prof. Rooda for his supervising. An
addit ional word of gratitude goes to the students in the SE-lab and the PhD students
who provided a pleasant working environment. Last but not least , I would like to thank
Dirk for his support and wise twaddle.

Roy Smolders - acjsmolders@gmail.com
Eindhoven, March 2007

lll

iv Preface

Summary

The use of flexible manufacturing systems in production facilities has a large advantage.
Different products can be manufactured with a limited number of machines. In order
to have a good customer response the flow t ime must be short , what means the work in
proces (wip) levels have to be low and scheduling of tasks within the system becomes
important. In the literature, models of queueing networks and fluid approximation
models are used to analyse the optimal wip level within a given scheduling policy for a
flexible manufacturing machine. In [Eek06a] an approach is discussed which does the
opposite. First it determines the optimal wip level and second a controller is proposed
which steers the system to this optimum. This approach finds, as long as the total
utilization of the system is less than one, a minimal weighted time averaged wip level
for a manufacturing machine with setups and processing two product types arriving at
constant rates. Having non-negligible setup times leads to serial batching and results
in a piecewise constant departure rate for each type of product. A second machine in
series receives these products at a piecewise constant rate.
This study uses the approach of [Eek06a] to determine an optimal wip level, but with one
constant arrival rate and one piecewise constant arrival rate. Two important conditions
have to be met before applying the theory in this report. The first condition is a sum
of time fractions that each product needs to be processed is less than one and second,
the length of one process cycle has to match the periodic behavior of the piecewise
constant arrival pattern. The length of the periodic behavior also has a lower bound
which has to be satisfied. If these conditions are satisfied, a solution in finding a
minimal weighted time averaged wip level is guaranteed. Different optimal process cycles
are obtained. The computation of optimal process cycle depends on the relationship
between the maximum arrival rate of the piecewise constant arrival pattern and the
maximum process rate of type same product type. Two situations are possible after
determination of the cycli. These situations depend on the same relationship between
the maximum arrival rate and the maximum process rate. In the first situation, the
maximum arrival rate is larger than the maximum process rate. In the second situation ,
where the maximum arrival rate is less than the maximum process rate, a distinction
is made. The distinction is based on the slow mode(s) (time intervals where the actual
process rate is lowered to the arrival rate) that occur in the optimal process cycle.
Eventually all possible trajectories of the process cycles are divided in three situations.
For each of these three situations a feedback control law is proposed which steers the

V

Vl Summary

system to its specific optimal process cycle. An analytica! proof is presented which shows
that the controller always steers the system to its desired trajectory. These controllers
have been tested in a simulation study. In this study the workstation is simulated by
means of a hybrid fluid model and by means of a discrete event model. The system
starts with arbitrary buffer levels, an arbitrary machine state and an arbitrary point
in the cyclic piecewise constant arrival pattern. From this starting point a controller
has to steer the system to the optimal process cycle. All simulation results confirm
convergence of the system to the desired trajectories . The controllers are very robust.
If disturbances occur but the parameter setting stays the same, the same controller
always steers the system back to the desired trajectory. So as long as the system meets
the two conditions mentioned above, a robust feedback control law steers the system to
a process cycle with a minimal weighted time averaged wip level and keeps it there.

Summary (Dutch)

Het gebruik van flexibele productie systemen in fabricage systemen heeft een groot
voordeel. Een beperkt aantal machines is nodig voor het produceren van verschillende
producten. Om accuraat te kunnen handelen naar de wensen van de klant moeten door
looptijden kort zijn. Dit betekent dat de hoeveelheid onderhanden werk in het systeem
laag moet worden gehouden en het belangrijk wordt orders te gaan plannen. In de lit
eratuur zijn wachtrij theorieën en vloeistof modellen gevonden voor flexibele productie
systemen. De theorieën geven een analyse van de hoeveelheid onderhanden werk nadat
een planningsst rategie is toegepast. In [Eek06a] is de aanpak juist andersom. Eerst
wordt de hoeveelheid onderhanden werk geoptimaliseerd en daarna wordt een regelaar
voorgesteld die het systeem naar dit optimum toe dirigeert. De aanpak is gehanteerd
op een machine met omsteltijden en welke twee typen producten produceert die met
een constante aankomst arriveren. Daarbij moet gelden dat de bezettingsgraad van de
machine kleiner blijft dan één. De niet te verwaarlozen omsteltijden zorgen voor het
produceren van dezelfde producten in serie. Dit resulteert in een stuksgewijs constant
pa troon van producten die de machine verlaten . Als twee machines in serie st aan ont
vangt een tweede machine deze producten met een stuksgewij s constant patroon.
Deze studie gebruikt de aanpak uit [Eek06a] om de opt imale hoeveelheid onderhanden
werk te bepalen voor een system met een stuksgewij s constant aankomstpatroon en een
patroon met const ante aankomst. Om de minimale hoeveelheid onderhanden werk te
vinden, zijn eerst de systeemeigenschappen en de aankomstpatronen gedefinieerd. De
theorie in dit verslag kan worden gebruikt als aan twee condit ies wordt voldaan. Ten
eerste moet de totale bezettingsgraad kleiner zijn dan één en ten tweede, de lengte van
één proces cyclus moet even lang zijn als het periodieke gedrag van het stuksgewij ze
const ante aankomstpatroon. Tevens moet het periodieke gedrag ook voldoen aan een
ondergrens. Als aan deze condities wordt voldaan, kan een gewogen gemiddelde hoeveel
heid onderhanden werk over tijd worden bepaald. Hierbij zijn verschillende optimale
proces cycli gevonden. De berekening van een optimal proces cyclus is afhankelijk van
de relatie tussen de maximale aankomstsnelheid en de maximale productiesnelheid van
hetzelfde type product. Na het bepalen van een cyclus zijn er twee situaties denkbaar.
In de eerste situatie is de maximum aankomstsnelheid groter dan de maximale pro
ductiesnelheid. In het tweede geval, waar de maximale aankomstsnelheid lager is dan
de productiesnelheid, is een onderverdeling gemaakt . Deze is gebaseerd op welke pro
ducten worden geproduceerd met een gematigde snelheid (de actuele productiesnelheid

Vil

Vlll Summary (Dutch)

verlaagd naar de aankomstsnelheid) gedurende de optimale cyclus. Uiteindelijk zijn
alle mogelijke t rajectories onderverdeeld in drie situaties . Voor alle drie de situaties
is een regelaar met terugkoppeling voorgesteld , welke het systeem naar de optimale
cyclus toe moet dirigeren. Met een analytisch convergentiebewijs is bewezen dat de
regelaar het systeem altijd naar de bijbehorende gewenste trajectorie zal regelen. De
regelaars zijn getest aan de hand van simulaties. Het systeem is gesimuleerd met een
vloeistof model en met een model in een discrete event omgeving. Het systeem start
met willekeurige buffer groottes, een willekeurige toestand waarin de machine verkeert
en op een willekeurig punt ergens op het cyclisch gedrag van het stuksgewij ze aankom
stpatroon van de machine. Vanuit dit st artpunt moet de regelaar het systeem naar de
optimale cyclus sturen . Alle simulatie resultaten bevestigen convergentie van het sys
teem naar de gewenste trajectories. De regelaars zijn zeer robust. Als er verstoringen
optreden waarbij de systeem parameters niet veranderen , zal de regelaar het systeem
altijd terug regelen naar de gewenste cyclus. Kortom, zolang het systeem voldoet aan
de twee eerdergenoemde condities, zal een robuuste regelwet met terugkoppeling het
systeem altijd dirigeren naar de proces cyclus met daarin het minimale gewogen gemid
delde van de hoeveelheid onderhanden werk over tijd. Tevens weet de regelaar het
systeem ook op deze optimale t rajectorie te houden.

Contents

Assignment i

Preface iii

Summary v

Summary (Dutch) vii

1 lntroduction 1

2 Analysis of flexible manufacturing systems 3

3 System specifications of a two product workstation with setups 9

3.1 Characteristics

3.2 State, input and dynamics .

4 Optimal process cycle

4.1 General analysis of the process cycle

4.2 Analysis of separate buffer levels ..

9

13

19

19

21

4.2.1 Analysis of the buffer level with a constant arrival rate. 21

4.2.2 Analysis of the buffer level with a piecewise constant arrival rate. 24

4.3 Optimal steady state process cycle

4.3.1 Situation I (>'1 ~ µ1) .

4.3.2 Situation II (~1 < µ1)

4.4 Optimal steady state trajectories

lX

30

30

31

33

X

4.4.1 Trajectory of situation I . .

4.4.2 Trajectories of situation II .

5 Feedback control

5.1 Feedback control of situation I (,\1 2': µ1) .

5.2 Feedback control of situation II-a (,\1 < µ1)

5.3 Feedback control of situation II-b (,\1 < µ 1)

6 Simulation experiments

6.1 Simulation models ..

6.1.1 Hybrid fluid model

6.1.2 Discrete event model

6.2 Simulation results of the controller for situation I

6.3 Simulation results of the controller for situation II-a

6.4 Simulation results of the controller for situation II-b

7 Conclusions and recommendations

7.1 Conclusions

7.2 Recommendations

Bibliography

A Fluid models

B Discrete event models

Contents

34

35

43

44

47

51

55

55

55

56

59

62

65

69

69

70

73

75

85

Chapter 1

lntroduction

Manufacturing companies want to satisfy as much costumers as possible. Each costumer
has its own demands. Different demands may lead to different types of products. In
order to prevent a large machinery, manufacturers want to process different types of
products with a single machine. Before such a machine can process another type of
product , it usually requires a setup. By processing different products in a network of
flexible manufacturing machines, a manufacturer can use a limited number of machines
which can process at a relatively high degree of capacity utilization. A disadvantage of
processing multiple products at a flexible manufacturing system (FMS) is the complexity
of scheduling. The difficulties lie in the different nonconstant flows between different
workstations. If machines process all products of each product type one by one, almost
every machine copes with a piecewise- and/or constant arrival rate. To control all
product flows in the network, a global controller can schedule all tasks that need to be
performed and send these tasks to each machine. A manufacturer can apply different
optimization criteria in controlling the workstations within his network. Besides the
criterion of a high throughput, manufacturers want a short flow time for fast customer
response. This can be established with minimized work in process levels.
To get good insights of how such a controller must operate and steers a machine, the
focus of this research is finding a suitable controller for a single workstation which
operates in a network of flexible manufacturing systems.

Objective

To obtain a better insight into the phenomena within a network of workstations, the
smallest network possible is considered. The goal is to analyze one workstation with
setups that processes two types of products/jobs. One type of product arrives with a
piecewise constant arrival pattern and the other product type arrives with a constant
arrival pattern. For this system the optimization criterion is to find an optimal trajec
tory where the costs of products residing at one workstation are minimized. Next, a

1

2 Chap ter 1. Introduction

feedback controller has to be obtained which steers the system to this optimal trajectory.
Convergence to the desired trajectory must be proven analytically. In different simula
tion experiments the proposed controllers have to be tested. These tests show that the
controller works in the setting of a hybrid fluid model and in a discrete event setting as
well. If the initial conditions of both experiments is the same, the convergence of the
system to the desired trajectory must be the same. Finally a conclusion has to be drawn
about the optimal trajectories and proposed controllers and the recommendations must
be discussed .

Valorization

For companies tha t process a lot of different products in a network of flexible manufac
turing machines this research can be very valuable. The use of this theory minimizes
work in process levels, what results in lower flow times for better customer service.
When this theory is applied , a manufacturer has less capital in its production process
and is able to provide its customers with a better service. Eventually this can lead to
a payoff for both manufacturer and consumers.
Another advantage of less work in process is the reduction of the probability products
pass their due date. The feedstock is used more efficient what results in less residue
and lower production costs. On moral grounds, consumers and governments support
companies who process in an environment-friendly marmer. By keeping the residues
low, a company produces less waste and therefore reduces the chance to suffer its loss
of face to the public.

Approach

A lot of research is performed wit h respect to servers through which different types of
jobs flow. A flexible manufacturing system is an example of a network of servers. Other
examples in these studies are data flows between computers, call-centers or an urban
road network of crossings through which cars flow. In these studies different policies
are used to optimize single systems and entire networks. Most theories opt imize the
system afterwards. In this study the system is optimized the ot her way around. First
the desired (optimal) trajectory is determined and second the policy that converges the
system to its desired behavior. This approach is applied in [Eek06a] also and therefore
very useful. In Chap ter 2 earlier performed research is described which results in the
reason for the research objective and approach in t his report . In Chapter 3 the properties
of a two product workstation with accompanying product arrival pa tterns are discussed.
Here the criteria of the system are established. If the system satisfies the conditions of
Chapter 3, the optimal trajectory can be est ablished in Chapter 4. When the t rajectory
is determined , a mat ching feedback controller is determined in Chapter 5. Simulations
are performed to validate convergence of the controller to its desired trajectory. The
simula tions, presented in Chapter 6, contain continuous and discrete event simulations.
Finally, the report ends with conclusions and recommendations for further research.

Chapter 2

Analysis of flexible
manufacturing systems

A single flexible manufacturing machine or a network of flexible manufacturing machines
are systems through which different types of jobs flow. Other kind of systems through
which different types of jobs flows are: an urban road network of crossings with traffic
lights through which cars flow, or a network of computers or telecommunication systems
through which different data flows are present. To obtain a good overview of the different
approaches that have been used to analyse these systems, this chapter discusses earlier
performed researches.

In this study a server or workstation is considered with one constant arrival rate at one
buffer and a second buffer where products arrive with a cyclic piecewise constant arrival
rate. The scheduling of the system, i.e. when to process which product, is based on
minimization of the time averaged weighted work-in-process (wip) level. First an opti
mal process cycle is obtained. Then a feedback law is proposed which steers the system
to this optimal cycle. Within this study the assumption is made that the duration of
one process cycle equals the length of the periodic behavior of the piecewise constant
arrival pattern. Furthermore, the setup costs are not taken into account.

Queueing networks

As mentioned above, the system that is considered has an arrival rate which varies
over time. The complexity of time-varying rate problems in queueing networks has
resulted in less literature compared to equilibrium behavior of queues with constant
arrival rates. Alnowibet and Perros [Aln06] and Massey [Mas02] regard the analysis
of (tele-) communication models with time varying arrival rates in queuing networks.
Massey analyzed different queueing theory models with time varying rates to maximize
the profit of call centers for instance. The performance modeling of telecommunication

3

4 Chapter 2. Analysis of B.exible manufacturing systems

systems starts with an offered load model. An offered load describes the number of
communication resources requested by arriving customers. The theory in combination
with the system properties, the mean, variance, covariance and time lag between the
peak arrivals and peak load for the system are measured. To deal with a system with
fini te resources, the offered load model is replaced with a loss queue model. The analysis
of a loss queue model with time varying rates is performed with a pointwise stationary
approximation (PSA) model (see [Gre91] and [Gre97]) and a modified offered load ap
proximation (MOL) model (see [Jag75]). Depending on the shape of the time-varying
arrival pattern, one of the approximation models provides the most accurate est imation
of the performance of a system. In case of loss models the approximation models also
estimate the probability of blocking. Blocking might occur due to the finite recourses
available .. Alnowibet and Perros also analyze a nonstationary queueing network. The
network contains multi-rate loss queues and population constraints, where the external
arrival rates area periodic function of time. The analysis is not based on PSA or MOL
but based on the fixed-point approximation (FPA) method for a nonstationary queue
ing network with multi-rate loss queues. For further details on the FPA algorithm, the
reader is referred to [Aln04]. The FPA algorithm calculates the mean number and the
blocking probability of each class of product or customer in each queue, without the
need to solve any differential equations. When the number of customers in a loss queue
depends on the number of customers in other loss queues, customers may share com
mon communication channels, what is known as a queueing network with population
constraints. In case of the presence of population constraints, Alnowibet and Perros
introduce an iterative approximation algorit hm based on the FPA method. The result
of the method is an approximate t ime-dependent blocking probability function for the
system, obtained after a relative short CPU time in comparison with the simulations
which are needed to obtain the same probability function.
Bekker et al. [Bek04] provides an analysis with a workload-dependent arrival rate in a
single-server queue. The goal is to control the arrival of jobs to optimize server perfor
mance. Proportionality relations between the workload distribution of two queues with
the same ratio of arrival rate and process rate are derived. With these relationships
results of a whole class of models can be obtained from the analysis of one model.
All these approaches use time-dependent arrival rates, often represented as a Poisson
distribution, but none of them uses piecewise constant arrival pattern as discussed at
the start of this Chapter.
In this report the system is optimized to the time averaged weighted wip level. In
literature several optimization problems are encountered for a queueing network. In
Azaron et al. [Aza06] a multi-objective optimal control problem is developed. Azaron
et al. use the longest path analysis in a queuing network. In the analysis the den
sity functions are determined of t he time spent in a service station and the queuing
network is transformed into a stochastic network. Finally the distribution function is
obtained of the longest path in the stochastic network. The distribution function is
applied in the multi-objective flow time control problem which minimizes the average
flow t ime, the variance of the flow time and the total costs of the system per period.
To solve the multi-objective, nonlinear programming (NLP) problem, a variation of the

5

goal programming technique (see [Ign76]) is used. The downside of this theory is that
the individual arrivals are independent Poisson processes with equal rates. So again no
piecewise constant arrival pattern is included.

F luid approximat ion models

Other studies performed the analysis of applications with multiple data flows with fluid
approximation models. Ridley et al. [Rid03] proposed a fluid approximation model
for a priority call center with t ime varying arrivals. The system has two customer
classes, high priority calls and low priority calls (Figure 2.1) . When a low priority call

À1 (t) High priority

1 1 CD
@

• -•
• À2(t)

@
Low priority

Figure 2.1: The two-customer class call center with n operators

is not completed within a given amount of time, the call switches from the low priority
queue to the high priority queue. The arrival rate of the customers is exponentially
distributed. With the model Ridley et al. estimate the mean number of costumers
waiting. Eventually this number is used to estimate the overall staffing level (n). So
the process rate of the server is adapted to the arrival rate. In this report this luxury is
not available, the server has a fixed maximum capacity. Another fluid model is used by
Lan and Olsen [Lan06]. They discuss a multi product, single server production system
with setup times and casts. With a nonlinear programming model a lower bound on
the long-run average production casts per unit time is established. Lan and Olsen show
it is the lower bound of performance for a single stochastic server with Poisson arrivals.
The theoretical lower bound can not always be reached. T he lower bound is established
for fluid systems. The more a deterministic system converges to a fluid system the
closer the lower bound can be reached. Lan and Olsen provide heuristics for stochastic
production systems in order to optimize the performance.

6 Chapter 2. Analysis of flexible manufacturing systems

Deterministic systems

Except for the piecewise constant arrival pattern, Savkin and Somlo consider a similar
type of problem for solving flexible manufacturing scheduling problems of a determinis
tic system [Som06] . They use a hybrid dynamical approach (HDA) to find time periods
of periodic motions. The HDA is supported with tools provided by the qualitative
theory of hybrid dynamical systems of Matveev and Savkin [MatO0]. The use of these
tools makes the planning more effective and it widens the application field of HDA. The
paper presents a model with the task to process different part types during a given time
period on a fixed number of machine groups. The essence of the HDA is working on a
part type and when the conditions to switch are reached, perform a setup and process
another part until the next switch condition is reached. The hybrid dynamical approach
is performed for a simple (two part types) problem and a complex (multi-part types,
multi-machine groups). The results are periodic schedules which show performances
close to the optimal. Although the theory provides schedules for the transient and pe
riodic behavior, these schedules are predetermined and can not cope with disturbances
within the system. Furthermore, the theory does not reduce the number of jobs in the
system even when the buffers contain more jobs than necessary.

Most of the literature just mentioned, contains systems which are optimized after a
given policy is applied . The most considered policies are: Clear-the-Largest-Buffer-Level
(CLB) Policy, Clear-a-Fraction (CAF) Policies and Clear-the-Largest-Work (CLW) Pol
icy [Per89]. In order the achieve a robust scheduling policy that can handle disturbances
and is able to reach its desired trajectory at all times, first the optimal process cycle has
to be obtained, and second a feedback control is derived which steers the system to the
optimal process cycle. In [Lef06] this method is applied for a network of servers through
which many types of jobs flow. In [Eek06a] this theory is applied for the smallest system
possible: a single workstation which serves two types of jobs with type specific setup
times. For the workstation an optimal process cycle is derived and a feedback law is
proposed that steers the system to this optimal process cycle. In the optimal cycle
'slow modes' can occur (also referred to as 'idling' [Cha92] or 'cruising' [Lan06]). In a
slow mode products are processed at a rate that equals the current arrival rate. The
output of such a workstation is a piecewise constant departure rate. So a workstation
behind this workstation receives products with a piecewise constant arrival rate. This
report discusses the same workstation as described in [Eek06a] except it has one cyclic
piecewise constant arrival rate.

Different approaches of solving a flexible manufacturing system have been presented.
Each approach has its own advantages and disadvantages. The choice of approach for
a system with one constant arrival rate at one buffer and a second buffer where prod
ucts arrive with a piecewise constant arrival pattern is the same as used in [Lef06]
and [Eek06a]. The approach holds to obtain first the optimal process cycle and second
determine the feedback control for the optimal process cycle. This approach is used
throughout the rest of this report. In the next chapter the system specifications of the

7

workstation are discussed. Afterwards the optimal process cycle, feedback control and
simulations of the feedback control laws are discussed.

8 Chapter 2. Analysis of fi.exible manufacturing systems

Chapter 3

System specifications of a two
product workstation with setups

In a flexible manufacturing system, workstations are able to process different types of
products. The way products are processed depends on the buffers and machines in a
workstation, the arrival pattern of product s and on the properties of the manufacturing
machine itself. All these parts together form the system properties. With these prop
erties preconditions are established. If the preconditions are met, the system can be
optimized with respect to the time averaged weighted wip level and a way to control
the system can be determined. To obtain these condit ions the system properties have
to be defined first. In this chapter the characteristics and dynamics of a workstation
with two buffers are defined. First the characteristics of the system are discussed. Here
the structure of the workstation, the arrival patterns and the time fractions that each
product needs to be processed are considered. In the second section the dynamics of
the workstation are discussed. With these dynamics come constraints that result in a
system with a desired cyclic sequence.

3.1 Characteristics

In this section the characteristics of a manufacturing workstation with two buffers are
presented. As mentioned in Chapter 1, the workstation serves two types of products
where one product type arrives at a constant rate and one product type at a piecewise
constant rate, the structure of the workstation is discussed first . Next, the arrival
patterns andtime fractions that each product needs to be processed in the system are
discussed.

9

10 Chapter 3. System specifi.cations of a two product workstation with setups

Structure of the workstation

When products (jobs) arrive at a workstation, these products can be of a different type.
Each type is stored in a separate buffer. The capacity of the buffers are assumed infinite
and work on parallel first-in-first-out (FIFO) basis. Products are processed like discrete
events. Because it is easier to analyse a hybrid fluid model than a discrete event model
of the workstation, this report discusses the analysis of a hybrid fluid model of the
workst ation. In Figure 3.1 such a workst ation is presented. The number of products

À1 (t) X 1

CJ
-

À2 - =- -
X2 0"1 2, 0"21

Figure 3.1: Manufacturing machine

in each buffer is denoted by Xi . The subscript i refers to the type of product . In this
case two types of products arrive so: i E {1 , 2}. The workstation can process one
producttype at a time. This means the machine has to switch between both types to
prevent large buffer levels. Switching between processing type 1 and 2, and vice versa ,
requires a setup with setup times of respectively: 0"1 2 and 0"21 hours. Without loss of
generality, the time uni t is set to 'hours ' in this report . The arrival rate of products
at the workstation is denoted with À1 and À2 (in products/hour). The rates can be
time dependent. In this report one time dependent arrival rate À1 (t) for type 1 and a
constant arrival rate À2 for type 2 is used. The worksta tion is able to process products
of type 1 and 2 at rate between zero and a maximum rate of µ1 and M products/hour
respecti vely.
Using a hybrid fluid model instead of a discrete event model changes the character of the
buffer levels. The buffer levels become: Xi E [O, Ni] where i E {1 , 2} and Ni represents
t he maximum capacity of each buffer. The special situa tion with infinite buffer levels
(N i = oo) is assumed in the rest of this report.
The parameters presented in Figure 3.1 are all parameters of the system. This includes
the machine parameters, the buffer levels and the properties of the arrival patterns.
Different aspects of the system and its parameters are discussed in the next parts.

Piecewise constant arrival pattern

As mentioned in the previous part, À1(t) is time dependent. Ina network of two product
workstations, switching between the two product types is necessary to avoid very large
buffer levels in one of t he buffers. lf the workstation has non-negligible setup times this

3. 1. Characteristics 11

leads to serial batching, what results in a piecewise constant flow of one type of products
leaving the workstation. For workstations behind this first workstation, products of each
type arrive at a piecewise constant pattern. In this report the piecewise constant arrival
pattern is assumed cyclic. The result of such arrival pattern takes on two values for
>. 1(t): 0 or >.1 . The pattern is presented in Figure 3.2. The upper part of Figure 3.2

1 1

.1 . •1
1 1

1 1

1 1 t

~(t) î 1 1
1 1
1 1
1 1 p !--~

t

Figure 3.2: Definition of >. 1(t) and ~(t)

presents the arrival pattern of type l. T he piecewise constant arrival pattern repeats
itself after a period. Each period has a length denoted with P hours and a mean arrival
rate denoted with >. 1 products/hour, which is computed with:

i rp
>-1 = p Jo >-1 (t)dt.

Buffer 1 receives products when >.1 = >. 1 where >. 1 represents the rate of arrivals. The
t ime span during which these products arrive is a fraction of one period. The t ime
fraction is denoted as O < </>1 :S l. This results in a mean arrival rate of:

! fop >-1(t)dt = !(fo<PiP >-1dt+ l~p Odt) = !(</)1P>-1),

what results in:

(3.1)

Remark 3.1.l. Parameter cp1 > 0, otherwise no products arrive during a period and the
machine has only 1 type of product to process. If cp 1 = 1 the arrival pattern becomes
constant. The case </)1 = 1 has been dealt with in [Eek06a].

12 Chapter 3. System speciE.cations of a two product workstation with setups

The approach in [Eek06a] is used as a guide line for this report. Therefore, the appear
ance of slow modes is very common.

Definition 3.1.2. (Slow mode). A slow mode occurs when the machine processes a
type of product at a rate equal to the arrival rate, under the condition that the arrival
rate is less than the maximum process rate for that specific type of product.

Remark 3.1.3. If a slow mode appears in the first workstation , the arrival pattern, as
presented in Figure 3.2, changes at the second workstation. In the rest of the analysis
in this report this behavior is excluded, but it is discussed in Chapter 7.

In the remainder let b. denote the remaining time until the piecewise constant arrival
rate is turned off again. The resulting evolution of b.(t) is presented in the lower part
of Figure 3.2.

Process times of the workstation

The production capacity of a system has to be sufficient to process all products that
arrive at the system. If the capacity is insufficient buffer levels increase in time. In
general increasing buffer levels are undesirable. For that reason also a workstation
which processes two types of jobs and performs setups must be stable. In order to
obtain a stable system, the machine needs the ability to process as many products as
products that arrive during a specific time span. The length of such specific time span
is discussed in another part of this chapter. Each type of product needs a specific time
fraction of a specific time span. To obtain a stable system, the sum of time fractions for
a workstation without setup times is less than or equal to 1. Fora 2-product workstation
with setups, the sum of time fractions of each producttype has to be strictly less than 1.
If the sum equals or becomes larger than 1, the system becomes unstable because there
is no time to process products that arrive during a setup. An unstable workstation
reveals itself by exploding buffer levels when time goes to infinity. To obtain the sum
of time fractions of each product that needs to be processed, the time fractions of the
separate types of products must be determined. These individual time fractions are
defined as

where : iE{l,2}. (3.2)

One of the arrival rates in time dependent , therefore equation 3.2 uses mean arrival
rates (>.i) what results in time dependent time fractions (Pi)- If an arrival pattern is
time independent then Ài = Ài and Pi = Pi· The sum of time fractions that each product
needs to be processed is indicated by p:

2

p = I>i < i. (3.3)
i=l

3.2. State, input and dynamics 13

At this point, all characteristics of the workstation are defined. In the next section
these parameters are used to describe the dynamics of the system. At a later stage, the
workstation has to be controlled. A controller imposes different tasks on the machine.
The controller sends an input signal to the machine, in which it tells the machine what
to do. The decision making is done by the controller. To make these decisions properly,
the dynamics of the system has to be clear.

3.2 State, input and dynamics

The system, as described in previous section has to process different product types and
has to perform setups. An input signal tells the machine which task has to be per
formed. In this section the state and input vector of the machine are explained. The
state and input signals are used to describe the dynamics of the system. In the last
part of this section the desired periodic behavior of a process cycle is defined.

The state of the system consists of different elements. Besides the buffer levels x 1 and
x2 and the value of~, also a remaining setup time xo and the modem are present. The
workstation has two modes denoted by m E {1, 2}. The mode presents which type of
product the machine is currently either serving or being setup for. These five variables
determine the state of the system at time t:

x(t) = [x1(t) x2(t) xo(t) ~(t) m(t) r E JR.t X {1 , 2}. (3.4)

The machine can process products of type 1 or 2, perform a setup or become idle. A
controller which supervises the system determines, based on the state of the system, an
input vector for the machine. The input vector consists of three signals. Signal u 1 and
u2 represent the rate at which the machine has to process. These input signals must
be less than or equal to maximum process rate µ1 and µ2 respectively. The third input
signal u0 determines which activity must be performed. The possible activities are:

uo= 0 :
uo= CD:
uo =@ :
uo = @:

setup to type 1
process type 1
setu p to type 2
process type 2

Also 'idling' forms an activity. This activity can be performed in combinations with
other parameters of the input vector. The input vector of the machine is:

(3 .5)

With the input vector and state of the system, the hybrid dynamics of the system
are described in two parts. The first part contains the discrete event dynamics of the

14 Chapter 3. System specifications of a two product workstation with setups

system:

x o := 0"21 , m := 1 if uo = o, m=2.

Xo := 0"12, m:=2 if uo =@, m= l. (3.6)

6:=P if 6=0.

Jumps of variables xo and m can occur when the input signal uo changes. In that case,
both the mode and the remaining setup change. Besides the possible jumps of variables
when uo E {O,@}, variable 6 always shows jumps. Variable ~ decreases when time
goes by. If 6 = 0 it is reset to~ = P. The second part of the hybrid dynamics contains
the continuous dynamics.

±o(t) = { -1 for uo(t) E {O,@}
0 for uo(t) E {(D, @}

(3.7)

A(t) = -1.

Furthermore, at each time instant the input is subject to the constraints:

uo E {O,@}, U1 = 0, u2 = 0 for xo > 0
uo E {(D, @}, 0 :S U1 :S µ1 , u2 = 0 for xo = 0, Xl > 0, m= 1
uo E {(!), @}, 0 :S U1 :S À1(t) u2 = 0 for xo = 0, Xl = 0, m= 1
uo E {O,@}, U1 = 0, 0 :S u2 :S µ2 for xo = 0, X2 > 0, m=2
uo E {O,@}, U1 = 0, 0 :S u2 :S >-2 for xo = 0, x2 = 0, m=2.

The input signal u0 contains 2 activities. These are the activit ies that can be performed.
Given the current state the first constraint represents the situation where a setup is being
performed. As long as xo > 0 no products can be processed (u1 = 0; u2 = 0). During
the setup, an intervention may cause a switch to an other product type. In that case the
ongoing setup is interrupted and the new setup starts. The second and third constraint
represent the processing of type 1. As long as the buffer is not empty, the machine
meets the second constraint and processes at its maximum process rate. Else the third
constraint holds and its maximum process rate decreases to the rate equal to the arrival
rate. During processing type 1 the conditions must hold that the machine does not
process type 2 (u2 = 0). The last two constraints represent the situations where type 2
is processed. The difference between these two constraints is the maximum process rate.
If the buffer level is larger than zero the rate can be up to µ2, if the buffer is empty the
maximum process rate is equal to the arrival rate >-2. When processing type 2, type 1
can not be processed (u1 = 0).
The sequence of the four tasks can be performed in the fo llowing order only:

... ---t process type 1 ---t set up to type 2 ---t process type 2 ---t set up to type 1 ---t .•.

3.2. State, input and dynamics 15

In the remainder of this report this cyclic sequence is called the process cycle. In the
next part the length of the process cycle is defined.

Steady state process cycles

This report studies steady state process cycles . Steady state means that the variables of
a dynamica! system describing its behavior are periodic functions of time or constant . So
a steady state process cycle shows periodic behavior. The periodic behavior manifests
itself in cyclic behavior of the buffer levels. Finding a steady state process cycle of a
two product workstation with setups is only possible if the sum of time fractions that
each product needs to be processed in the system is less than 1 (3.3).
During one process cycle, the mean arrival rate of a type is Ài. The machine can process
the products that arrive during one process cycle at a maximum rate of µi. To obtain
a steady state process cycle, the machine has to process:

[hours] i E {1,2},

of each product type during one process cycle of T hours. The workstation processes the
same number of products as the number that arrive during one cycle. So to make sure
the system has a steady state process cycle, the system needs enough time to process
type 1, type 2, a setup to 1 and a setup to 2:

T
or:
T > a12 + a21

- l - p1 - p2.

By using (3.3), the minimum length of the process cycle is established:

T. . _ a12 + a21
mm - l _

- P1 - P2

(3.8)

Two variables in time are discussed so far. Variable P represents the length of the
cyclic behavior of the piecewise constant arrival pattern, and T represents the length of
a process cycle. Both variables play an important role in the desired periodic behavior.
The relationship of both variables in relation with the periodic behavior is sketched in
Example 3.2.1.

Example 3.2.1. In a network of to machine in series, two types of products arrive at a
constant rate. The network operates in steady state and the arrival of products at the
first machine is constant. When the products are processed in the first machine, they
are send to a second machine. These products arrive with a piecewise constant arrival
pattern at the second machine. Using the parameter setting in Figure 3.3, the following
values for T and P are determined.

16 Chapter 3. System specifications of a two product workstation with setups

>.. f = 2 -
Figure 3.3: Manufacturing machine

• Machine 1:
No piecewise constant arrival pattern is present wi th respect to machine 1.
Using (3.8):

• Machine 2:
The piecewise constant arrival pat tern of product types 1 and 2 is equal to the
length of the process cycle of machine A: PB = TA = 7 h.
The network operates in steady state. This means the number of products that
arrive during time span TA a t machine 1 is equal to the number of products
that leave the machine. So for the second machine holds tha t ;\.f = >.. f where:
i E {1 , 2}.

1 + 18
TB = -~-~ = 28 h.

l-Î- 2
2s

Machine 1 has periodic behavior each 7 hours. Machine 2 shows periodic behavior each
28 hours, because 4PB = TB.

The example shows the situation when the period PB is smaller than the process cycle
(PB < TB, min). In other situations it is possible that P ~ Tmin· In those situations
the length of the periodic behavior becomes T.

In this report the assumption is made that the desired periodic behavior has a length
of:

(3.9)

In (3.9) the assumption is made that one process cycle T has the same time span as the
length of one period P. The situation T = T min is precluded. The exclusion is explained
in Chapter 5 (Remark 5.3.5). When the assumption is met, the process cycle always
has a steady state and a controller can be found that steers the system to this steady

3.2. State, input and dy namics 17

st a te.

The characteristics, varia bles and dynamics of the system are discussed in this chapter.
With these properties the length of t he desired periodic behavior / steady state process
cycle is determined.
In short , when a two product manufac turing system with one piecewise constant and
one const ant arrival rate satisfies the following condit ions:

• Pl + p2 < 1, and

the theory in this report is usable. The rest of this study focusses on the 'best' steady
state process cycle possible, how to reach it and how to keep it optimal. The 'best'
performance of a steady state process cycle can be transla ted into an optimization
problem. In the next chapter such opt imization problem is established and the steady
state process cycle is opt imized.

18 Chapter 3. System specifications of a two product workstation with setups

Chapter 4

Optimal process cycle

In the previous chapter t he characteristics and dynamics of a switching system with one
piecewise constant and one constant arrival rate have been discussed. The system has
to meet two conditions:

• Pl + P2 < 1.

T he first conditions implies that the sum of t ime fractions that each product needs to be
processed is never too la rge to find a steady state process cycle. The second condition
presents the minimum length of a process cycle. If the process cycle is larger than this
value, one can find a steady state process cycle. In this study the process cycle has to
be optimized with respect to time averaged weighted work in progress (wip) level. The
opt imization is performed in different steps. In the first section the optimization objec
tive is fully est ablished. In the second sect ion t he individual buffer levels are described
analyt ically for a t ime span of one process cycle. Finally the analyt ica! representat ion
of the total system is optimized in the third section .

4.1 General analysis of the process cycle

In this sect ion, the optimization problem is defined. T he objective is to optimize the
steady state process cycle of t he system with respect to the time averaged cumulative
costs rela ted to the wip levels of both buffers. As defined in the previous chapter, the
length of one process cycle T equals one period P hours. Within this time span the
process cycle is opt imized . The costs of the system are defined as J. Where J is:

(4.1)

19

20 Chapter 4. Optimal process cycle

In (4.1) variables x 1 and x2 are the buffer levels of respectively type 1 and type 2.
The weighing factors c 1 and c2 are assumed to be constant factors for type 1 and 2
respectively. So to minimize costs, the wip level has to be minimized. Minimizing the
wip-levels of a two product manufacturing system leads to several statements. The
lemmas which play a role for this system are discussed shortly. The proofs of these
lemmas are given in [Eek06b].

Lemma 4.1.1. When serving type i, optimal policies first serve at the highest possible
rate, after which they might idle.

Lemma 4.1.2. For optimal steady state behavior of type i, buffer i is always emptied.

The analysis in this report focuses on a system where the length of the steady state
process cycle is equal to the length of the piecewise constant arrival pattern. To fit
both lengths it is very likely the machine has to stay in a certain mode although the
buffer is empty. In such a situations the machine has to become idle or the machine has
to process in a 'slow mode' [Eek06a]. When the system processes in a slow mode, the
process rate is equal to the arrival rate. If a slow mode becomes active, the machine
does not use its full capacity but the machine keeps processing instead of become idle or
performs a setup. The effects of idling and slow modes result in a two new statements.

Lemma 4.1.3. Optimal policies do not idle .

Proof. The system holds a constant arrival pattern for type 2 and a piecewise constant
arrival pattern for type 1. When the machine finished processing type 1 and no products
of type 1 arrive, the machine can idle. At the same time products of type 2 are arriving
at buffer 2 continuously. To keep the buffer level of type 2 as low as possible, the machine
must switch to process type 2 as soon as possible. Idling after type 2 is processed, is
not an option because products keep arriving and the machine can process in a slow
mode. D

So the machine is not allowed to idle. This brings the following statement.

Lemma 4.1.4. IJ the length of one steady state process cycle is langer than its minimum
necessary length (I' > T min), the optimal steady state process cycle contains at least one
slow mode.

Proof. When the length of a steady state process cycle is longer than the minimum
length , the machine has more capacity than needed. The machine has to meet Lemma 4.1.1
but the machine is not allowed to idle (Lemma 4.1.3). The only way to avoid idling if a
machine has too much capacity is to keep processing lots at the same rate as its arrival
rate (slow mode) after the buffer is emptied. □

The occurrence of slow modes is inevitable when discussing process cycles with a length
larger than I'inin. In the next section such process cycles are discussed and optimized.
Before the total system is optimized, the individual buffers are analyzed .

4.2. Analysis of separate buffer levels 21

4.2 Analysis of separate buffer levels

In order to get a good insight how the buffer level evolves during one process cycle, the
buffer levels are analyzed separately in this section. In general, during one process cycle,
the buffer level increases and decreases over time. These fluctuations are presented and
explained in this section. First the constant arrival rate of type 2 is discussed. Because
the arrival pattern is time independent, the fluctuations of the buffer level depend
only on the state of the system. This makes it possible to analyze both buffer levels
separately. Therefore, the time span where type 1 is processed (T1), is assumed to be
constant. Each trajectory is divided in four time spans found earlier, process type 1,
setup to type 2, process type 2 and setup to type 1 (symbolic respectively: T1, cr12, T2
and cr21). Within the process intervals a subdivision is made between processing with a
maximum capacity ofµ or at a lower rate equal to the arrival rate À (slow mode). The
subdivision leads to the following equality:

i E {1 , 2} (4.2)

The six time spans together form one process cycle. After the analysis, both trajectories
of the buffer levels are combined and both buffer levels are optimized over T1.

4.2.1 Analysis of the buffer level with a constant arrival rate.

First the buffer with a constant arrival rate is discussed. This situation refers to buffer
2 of the two product workstation. Because the analysis focusses on the behavior of
a buffer with no time dependent arrival pattern, the arrival pattern can not influence
the behavior of the buffer level. The goal is to find the mean wip level of the buffer.
To reach this objective, the behavior of the buffer level must be determined during
different process steps. During the whole process cycle the buffer receives products at
a constant rate of À2 products/hour. The result is an linear increase when the machine
is not processing type 2. After @ the machine is able to process type 2 (@) and the
number of products decreases until the buffer is empty. This behavior is presented in
Figure 4.1.

Figure 4. 1 shows the optimal behavior within one process cycle with a given time
span for T1. The figure assumes steady state behavior where the buffer has to be
emptied (Lemma 4.1.2) and the buffer level at the start of the process cycle is equal
to the buffer level at the end of the process cycle. In Figure 4.1 the machine processes
at two speeds. As long as the buffer is not empty the machine processes at a rate of
µ2 (Lemma 4.1.1). The decrease of products during the time span Tf equals µ2 - À2
products/hour. Afterwards, a slow mode of type 2 may occur. Appearance of a slow
mode for type 2 depends on the parameter setting which is discussed in Section 4.3. If
a slow mode occurs, the process rate equals the arrival rate À2 and has a time span T,i.
The mean wip level can be computed with an equation like (4.1). A specific expression

22 Chapter 4. Optima] process cycle

Arrival rate

-
Process rate

time

:: t-----r ____ r=:1~
1 1 1-

1 time

Buffer size

T A --+-
2 time

Figure 4.1: Trajectory of buffer with constant arrival pattern.

for the mean wip level of buffer 2 (w2) is:

w2 = ~ lp x2 (s)ds. (4.3)

To obtain a relative simple optimization problem , the wip level of type 2 is formula ted
as a function of T1. To describe the wip level of buffer 2, it means Tf and Ti become a
function of T1.

When the machine is in mode O , (!) or @ , buffer 2 receives product at a rate of À2 for
a time span of (a21 +T1 +a12) hours. During the time span Tf the buffer level decreases
with an effective rate of (µ 2 - À2)- Because the total number of products tha t arrive
must equal the number of processed products, the following equality holds:

Rewriting the equation and int roducing the individual time fractions of type 1 and 2
result in:

Tf = MÀ_'!>.2 (a21 + T1 + a 12)
(4.4)

= 1~~
2
(a21 + T1 + a12)-

In these equations the arrival rate is constant , this implies À2 = À 2 and p 2 = p 2 . The
last step of the determination of the trajectory of the buffer level of type 2 is to find an

4.2. Analysis of separate buffer levels 23

expression for Tf. In Figure 4.1 variable T,i is the last time interval before the period
ends. Or:

and after substitution with (4.4)

(4.5)

With the expressions for the intervals Tf and T,i , the mean wip level is determined.
Physically (4.3) computes the area underneath the contour of the number of products
in the buffer (in Figure 4.1) and divides it by P. The triangular area underneath the
contour is equal to half the length of the base multiplied with the height. The result is:

w2
_ ½(P-Ti) he ight
- p

(4.6)

_ 1 .l:!:11!1..(+ +)2 - 2P 1-p2 0"21 T1 0"12

Remark 4.2.1. During processing type 2 the machine needs to process the same number
of product as arrive during one process cycle. Therefore the length of T1 can not be too
large. The minimum length of time (Tfin) to process all products of type 2 arriving
during one period is to process all products at the machines maximum capacity:

With the presence of a minimum length for T2 and a fixed length for a process cycle, a
maximum length or upper bound for T1 is established. Using P = T1 + 0-12 + T2 + 0-21

and T2 2 p2P, the upper bound for T1 becomes:

(4.7)

Equation 4. 7 forms the upper bound for T1 .

At this moment the mean wip level of type 2 is determined and an upper bound for
T1 is established. In the next section the upper bound is used as a constraint of t he
optimization problem.

24 Chapter 4. Optima] process cycle

4.2.2 Analysis of the buffer level with a piecewise constant arrival
rate.

This part contains the derivation of the mean wip level of a buffer which receives prod
ucts at a piecewise constant rate. The mean wip level is based on a time span of one
period (P). This situation refers to buffer 1 of the two product workstation. In con
trast with the constant arrival pattern, when a time dependent arrival pattern is used ,
a relationship exists between the time of processing type 1 and the time interval where
products of type 1 arrive. Thereby, the fraction of a period where products arrive plays
an important role in the determination of the wip level also. As mentioned in the pre
vious part , T1 is the candidate to be optimized over. So in advance each length where
T1 > 0 is possible as long as constraint (4. 7) is met. Like the established upper bound
in (4. 7) for T1 , also a lower bound can be determined. During one process cycle the
machine needs enough time to process all products that arrive during one period. For
the length of T1 this means:

(4.8)

Equation 4.8 forms the second constraint for T1 .

Remark 4.2.2 . A situation where the lower bound is larger than the upper bound is
not possible without violating the conditions mentioned at the start of this chapter. If
p1P > (1 - P2)P - (0"12 + 0"21):

(0"12 + 0"21) > (1 - Pl - P2)P.

While condition (3.9) must hold which implies :

These two inequalities are reconcilable with each other. So a situation where T1 can not
meet both upper and lower bound is not discussed in this report.

When T1 lies between the upper and lower bound, sufficient time is available to process
enough products of each type in one process cycle. So with these constraints the wip
level that has to be determined is:

l {P
w 1 = p Jo x 1(s)ds . (4.9)

The trajectory of the buffer level depends heavily on the arrival rate. If many prod
ucts arrive in a short amount of time (.\1 2: µ1) , a new lemma needs to be introduced
to define the t rajectory of the buffer level during one period. In the second situation
where .\1 < µ1 the trajectory depends, besides the Lemmas 4.1.l and 4.1.2 , on other
relationships too. So two situations are distinguished:

4.2. Analysis of separate buffer levels

Situation I
Situation II

25

During the remainder of this section these two situations are optimized with respect to
the rela tion between the piecewise arrival pattern and the moment in time where type 1
has to be processed. After the determination of these relations the mean wip levels are
determined. In the next section the mean wip levels of buffer 1 and 2 are combined for
all different situations and optimized with respect to T1

Remark 4.2.3 . In case >.1 or </>1 is unknown, a relation exists between these two pa
rameters. This relationship is used in the course of this chapter. The rela tionship is
performed by substitution of (3.1) and (3.2) for type 1:

- À.1
Pl = -and

µ1

substituted:

(4.10)

Situation I

Situation I represents the situation where >-1 2: µ1. This means that many products
arrive in a short amount of time. To obtain a minimum mean wip level in the buffer ,
a relation is established between the st art of processing type 1 and the point in time
where products of type 1 st art to arrive.

Lemma 4.2.4. In the situation where a buffer receives lots at a piecewise constant
arrival rate and the rate of arrivals is higher than the process rate, m inimizing the wip
level of the buffer during one process cycle m eans a coincidence of the start of processing
and the point in tim e where lots start to arrive.

Proof. When a system receives lots at a rate that is higher than the process rate, an
increase of the buffer level is inevitable. To minimize the number of products in the
buffer , the rate of increasing must be kept toa minimum. By starting processing when
lots st art to arrive (= as soon as possible) the rate of an increasing buffer level is kept to
a minimum. The minimum increase results in the lowest value possible for the maximum
buffer level after all products have arrived. Also a lower maximum buffer level results
in a shorter processing time after the lots stopped arriving. Processing lots as soon as
possible, as performed here, leads to a minimization of the wip level of type 1.
Note, this proof uses the constant arrival pattern of type 2. D

Using Lemma 4.2.4, the start of processing type 1 has to coincide with the st art of
arrivals of type 1. During the processing of type 1 the buffer level increases until the

26

Arrival rate

Process rate

Buffer size

Chapter 4. Optima] process cycle

! point of synchronization

~l ~• ~---

P----------•I ~ e

µ1 -------1 ___,

--- </>1R-----(l - </>1)P----+<
1+----- Ti------- (a12 , T2 , a 21)

---- n (@ ,@ , O)
CD

-time

time

Figure 4.2: Situation 1: Trajectory of buffer with piecewise constant arrival pattern.

products stop arriving. Then the buffer level decreases at a rate of µ1. In Figure 4.2
this behavior is presented.

In Figure 4.2 the optima! t rajectory of a buffer with piecewise constant arrival pa t tern
is depicted. As one can see, the machine processes type 1 at its maximum rate as long
as possible (Ti) . When the buffer is empty the machine can st ay in CD (still T1 has to
be optimized in combination wi th buffer 2). But from the moment the buffer is empty
no products of type 1 arrive nor have to be processed. As mentioned in Lemma 4.1.3 ,
idling is not permitted within an optima! process cycle , so indisputably Ti = T1 and no
slow mode is active (T(= 0) .
To determine the wip level of type 1, the triangular area underneath the contour has to
be determined and divided by the length of the period P. The base of this triangle is
Ti = p1P. The height of the triangle is equal to the number of products that arrived
during time span </>1P minus the number of products that are processed during the same
time interval. The height becomes:

Substitution of ~1 with (4.10) results in:

(4.11)

4.2. Analysis of separate buffer levels

With the use of Ti = p1P and (4.11) the wip level of situation I becomes:

½ (Tj)- height
p

½ 7'fï P(/'fï -q,1)µ1 P
p

27

(4.12)

As long as the constraint holds that >-1 2'. µ1 , T1 bas a fixed length and is processing
type 1 in a slow mode not possible, what results in a fixed trajectory for type 1 also.
So now the mean wip level of type 1 is determined for situation I. In the next part the
wip level for situation II is discussed.

Situation II

In situation II the products of type 1 arrive at a rate less than µ1 , or >. 1 < µ 1. Us
ing (4.10) the following relation can be established:

Pl

</>1
(4.13)

Equation 4.13 implies that in this situation if >-1 < µ 1 means that cp 1 > p1 . The rate
at which products arrive is smaller than the maximum process ra te . As in situation I
exists a relationship between the arrival rate and processing type 1. Again the optimal
situation must be obtained.

Lemma 4.2.5. Optimizing situation II where the highest arrival rate of a piecewise
constant arrival pattern is less than the process rate, the end of arrivals must coincide
with the end of processing that type of job.

Proof. With a given time span for T 1 and a constant arrival rate of the jobs of type 2, the
systems has to meet different constraints. During one process cycle the buffer level has
to become zero (Lemma 4.1.2), the machine is not allowed to idle (Lemma 4.1.2), has
to process ÀiP ; i E {1 , 2} jobs and perform two setups. Within these constraints the
wip level of the job type with piecewise constant arrival pattern has to be minimized.
To obtain the lowest mean wip level possible, the buffer bas to be kept empty as long as
possible . To achieve this objective the buffer bas to be empty during the time interval
where no jobs arrive. When no jobs arrive, the machine has to process the other job
type and perform setups. When processing the job type with piecewise constant arrival
pattern starts, processing this job starts with the lowest buffer level possible. So to
obtain the largest interval with an empty buffer , the machine has to process the job
type with piecewise constant arrival pattern until the jobs stop to arrive. □

28 Chapter 4. Optimal process cycle

In one steady state process cycle the number of processed products must equal the
number of arrived products during one process cycle. So at the end of processing type 1
a fixed number of products have to be processed. To prevent idling, the machine has
to finish processing type 1 if the buffer is empty and no products arrive. So the point
of synchronization of the arrival pattern and process cycle is at the end of processing
type 1. This leads to a t rajectory presented in Figure 4.3.

Arrival rate Ài)I.
point o f synchronizat ion

l
p -l~e

P rocess rate :: l ~ -1
1 1 1 -
1

time

X1 î

Buffer size

-time

Figure 4.3: Situation Il: Trajectory of buffer with piecewise constant arrival pattern .

Figure 4.3 shows the number of products in the buffer increases when type 1 is not
processed. The decrease starts when the machine starts CD at a rate of µ1. When the
buffer is empty and interval cp 1P is not finished yet, the machine process in a slow mode
until the interval cp1P ends.
The derivat ion of the mean wip level is similar to situation I, again the area underneath
the contour has a triangular shape. The width of the base is the length of the interval
where products arrive (</J1P) minus the interval T{. The height of the triangle is equal
to the length of cp 1P minus the length of T1 multiplied by the arrival rate. So the height
becomes:

.) ' (µ1p1 he1ght = (cp1P - T1)q = </J1 P - T1)Ti (4.14)

The equation of the width of the base contains the variable T(. This parameter needs
to be replaced by a function of T1 to simplify the total optimization problem in the next

4.2. Analysis of separate buffer levels 29

section. A steady state behavior implies that in this situation the number of arrivals
must equal the number of processed products. Or:

A À A

µ1 Ti + À.1 Tl = À.iqJ1 p

The relation between T1 and Ti' is

µ À
T1 = Tl +Tl.

Combining (4.15) and (4.16):

Finally, substitution of >. 1 with the use of (4.13) results in:

(T1 - 75ïP)</J1

</J1 - Pl

For the width of the base follows:

>, </J1P - T1
(</J1P - T1) = /4 _ <Pl·

'f'l - Pl

The expression for Ti is found by substitution of (4.17) in (4.16):

(</J1P - T1)P1
T µ - -'------1 -

</J1 - Pl

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

With the found expressions for Ti' , Ti and the use of (4.14) the mean wip level for
situation II becomes:

(II) _ ½(<t>1P - r{Jheight
Wl p

_ 1 p1P-T1 /4 (/4 p) µ1p1
- 2P q,1 - pi 'f'l . 'f'l - T1 q,1

_ 1 µ1p1 (/4 p)2
- 2P <PI - p1 'f'l - T1 .

(4.20)

With (4.20) a mean wip level is found for situation II, for a given T1 as long as its length
is defined between the lower and upper bound mentioned in (4.8) and (4.7).

At this point a mean wip level is determined for both situations. During the deter
mination of the trajectories with a piecewise constant arrival pattern, the first step to
optimization is to synchronize the arrival pattern and the processing of type 1. The
next step is to combine situations I and II with buffer 2 and optimize the total system
with respect to T1 . In Section 4.3 these combinations are optimized.

30 Chapter 4. Optimal process cycle

4.3 Optimal steady state process cycle

In the previous section the trajectories of buffer 1 and 2 have been discussed. A fixed
time span for processing type 1 (T1) is used during the analysis. With the fixed time
span, mean wip levels for both buffers are defined as a function of T1 . In this section, the
trajectories of buffer 1 and 2 are combined and the sum of mean wip levels is minimized
by optimizing the length of T1 . In the previous section, two situations for type 1 have
been discussed. In this section these two situations return. The total optimization
mentioned in 4.1 is rephrased in minimizing the time averaged weighted wip level:

min
T]

s.t. Constraints on T1

with: r E {I, II}
(4.21)

With the minimization problem come the constraints for T 1 . Besides the lower and upper
bound, (4.8) and (4.7) respectively, the time interval where products arrive (<jJ1P) plays
an important role also. In this section the two situations of the previous section are
optimized and their optimal steady state behavior is presented.

4.3.1 Situation I (.X1 > µi)

The behavior of buffer 1 in situation I has been discussed in the previous section, the
result is a fixed trajectory for buffer 1 where no slow mode is possible because idling
is forbidden by Lemma 4.1.3. When this behavior of type 1 is combined with the
trajectory of buffer 2, trajectory of type 2 is captured also. After finishing type 1, the
machine is not allowed to idle due to Lemma 4.1.3. The machine performs a setup to
process type 2 and processes at is maximum capacity (Lemma 4.1.1) until the buffer is
empty. Still Lemma 4.1.3 has to be met when buffer 2 is emptied (Lemma 4.1.2). As
Lemma 4.1.4 showed, at least one slow mode is active during one process cycle. Because
no slow mode can exist of type 1 a slow mode for type 2 has to exist.

Remark 4.3.1. The slow mode of type 2 always exists in the optimal process cycle for
the situation where >-1 2: µ1.

Proof. The length of Ti = P - 1_:P
2

(a21 + p1P + a12), for the constraint of a period
holds (3.9). Equation (3.9) can be modified into:

-a12 + a21 > -P(l - P1 - p2).

Substitution with T,i leads to the following inequality:

(4.22)

4.3. Optima] steady state process cycle 31

Due to (4.22) the optimal process cycle always contains a time interval where a slow
mode of type 2 is active. D

The mean wip level of the optimal trajectory is determined by substitution of (4.12)
and (4.6) in the optimization problem (4.21) where T1 = Ti = p1P.

(4.23)

Equation (4.23) presents the lowest time averaged weighted mean wip level possible for
situa tion I when one period is equal to one process cycle.

4.3.2 Situation II (À1 < µ1)

Like situation I, situation II also has to be optimized. In this situation the products
of type 1 arrive at rate which is less than the maximum process rate of type l. The
consequence of .X.1 < µ 1, as mentioned in (4.13) of the previous section , is tha t </>1 > Pl ·

In situation II Lemma 4.2.5 holds. It means when the products of the piecewise const ant
arrival pattern stop, the machine has to switch to the other type of products.

Remark 4.3.2. Besides the coincidence of the end of processing type 1 and the stop of
arrivals, the length of the process time of type 1 (T1) can never exceed the length of the
t ime span where products arrive (</>1P) . This is only possible if the process rate is less
than the arrival rate. Due to Lemma 4.1.1 this is not allowed.

The optimization problem for situation II is written below:

min
TI

S.t . g1(T1) p1P - T1:::::; 0
(4.24)

g2(T1) T1 - (1 - P2)P + (<721 + 0"12) '.S 0.

Figure 4.4 shows an objective function of the optimization problem (4.24). The con
straints (91 and 92) determine the optimum of T1 in this case. The (constraint) optimum
in this example is Tt = p1P, while the absolute optimum is Tr
In optimization problem (4.24) the first term of the objective is semi-positive definite
because </>1 > Pl· The second term is positive definite, what makes the sum of bath terms
positive definite also. The optimization of a positive definite quadratic function results
in a parabola which top is a minimum. The constraints form the absolute lower and
upper bound for T1 . For the determination of the absolute optimum TÎ , the derivative

32 Chapter 4. Optima] process cycle

91 92

Figure 4.4: Optimum for T1

of the objective function has to be zero:

where:

A - C ...l.....1!:1.E.L
- 1 2P</>1-P1

This leads to an optimum of:

C 1-'J PJ +c !:::21!2.
l,t,1-PT 21-p2

_ Clll,175î(l - p2)(</>1 P) -c2µ2p2(</>1 - 75ï)(a21 +a12)
- C1 µ1p1 (l - p2)+c2µ2p2(</>1 -p1)

--

(4.25)

Note: The expression T{ represents the optimal time span needed to process all products
of type 1 without takin9 the constraints of (4.24) into account.

Taking the constraints into account, three possible scenarios are possible:

S 1 # -p o ution: T1 = p1

4.4. Optimal steady state trajectories 33

Solution: Tf = TÎ

3. TÎ > g2

The first scenario represents the situation where the optimal length of processing type 1
is less than the lower bound. This can be interpreted that it is important to keep the
mean wip-level of type 2 as low as possible (no slow mode for type 1). Scenario two
represents a optimal solution where both types have the same importance approximately
(slow modes for type 1 and type 2). The last scenario represents the situation where
processing type 1 is requires a lot of time to keep its mean wip level low (no slow mode
for type 2).
Remark 4.3.3. The optimal T1 has to be smaller than the time span where type 1 arrives
(</>1P) as mentioned in Remark 4.3.2. Due to this requirement scenario 3 can only take
place if <f> 1P is larger than the upper bound of T1.

Remark 4.3.4. A special case is the situation >.1 = µ1. This situation occurs on the
boundary of situation I and situation II. In this situation (4.24) and (4.23) must provide
the same solution.

Proof. Due to (4.13) variable </>1 = Pl if >-1 = µ1. Furthermore, T1 = p1P holds in both
situations. After substitution of </>1 = p1 and T1 = p1P the result is:

Jr = C1 ½µ1p1 (p1 - P1)P + C2 2~ e~~ (cr21 + P1P + 0"12) 2

J _ 1 /.1,lPl (- p -p)2+ 1 .l:!:1.E1..(+ - P+)2 II - c1 2p iPi -Pi Pl - Pl c2 2p l-p2 cr21 P1 cr12

J -J- 1J:!:1.E1..(+ - P+)2 I - II - C2 2P l-p2 0"21 Pl 0"12 ·

The transition of situation I into situation II is good because at the boundary of both
situations 11 = JII. □

By updating the optimal value for T1 with applying the constraints, the optimal trajec
tory is defined for all possible parameter settings which can occur in situation II.
In the next section the different shapes of possible optimal trajectories are discussed.

4.4 Optimal steady stat e t rajectories

All optimal steady state process cycles as described in Section 4.3 have their own char
acteristics. In this section the results of the optimal steady state process cycles are
translated into the trajectories of the buffer levels during one process cycle. All situa
tions are discussed, including the three possible scenarios for situation II.

34 Chapter 4. Optima] process cycle

4.4.1 Trajectory of situation I

Situation I distinguishes itself, besides the fact that >-1 2: µ1 , by the coincidence of the
start of arrivals of type 1 with the start of processing type 1. The result is the optimal
trajectory of the steady state process cycle of situation I in Figure 4.5. The trajectories

l@I
1 1

@ 1 @ 1
1 1

1 1 1
1 1
1 1
1 1
1 1
1 1
1 1

- x 1
0"1 2 Tµ ,>_-+-

2 T2 time

Figure 4.5: Trajectory of situation I. Left : Periodic orbit. Right: Buffer levels over
time.

in Figure 4.5 start at the begin of setup O . The right-hand graphs show the buffer
levels of type 1 and 2 over time. On the left-hand side the buffer levels are plotted
against each other. The course of the buffer levels form a counter-clockwise trajectory.
After setup O is performed, the machine starts processing type 1 at a rate of µ1. At
the same time products of type 1 start to arrive at a higher rate (>-1). With Regard
to the trajectory of the periodic orbit, the result is a vector of [>-1 - µ1 , >.2]T as long
as products of type 1 arrive. When the products stop arriving the new vector becomes
[- µ1, >-2]T unt il x1 = 0. Then @ is performed immediately (T[= 0) and afterwards
type 2 is processed where the vector is [O , -µ1]T until the point is reached where both
buffers are empty. The machine continues processing type 2 in a slow mode (in point
(0,0)!). The length of the time intervals of the process rates are determined with (4.4) ,
(4.5) and the determination of T1 by using the earlier presented lemmas:

(4.26)

4.4. Optimal steady state trajectories 35

4.4.2 Trajectories of situation II

In Section 4.3 situation I and II are optimized. The determination of the optimal
length for processing type 1 has been discussed in that section. The result of the
optimization problem in situation II are three possible scenarios. Each scenario has its
own characteristics, these are visible in three different trajectories which are discussed
here.

Scenario 1

In scenario 1 the mean wip level of type 2 is relatively important. This behavior reveals
itself in a trajectory where processing type 1 in a slow mode is not admitted in the
optimal process cycle. Such behavior keeps the process time of type 1 as short as
possible, so the machine can process type 2 as soon as possible and is able to process
type 2 in a slow mode (Lemma 4.1.4). The optimal trajectory is presented in Figure 4.6 .
On the right-hand side Figure 4.6 shows the trajectories of both buffer levels against

x1t

0"12 x#
1

x2t
0 CD ~ @ @

X2

t
0"21

0 --+- XJ x# Tµ Tµ Ti -1 0"21 1 0"12 2 time

Figure 4.6: Trajectory for scenario 1

time. At the left-hand side the buffer levels are plotted against each other. When
buffer 1 reaches its critical value xf, the machine switches from processing type 2 to
type 1 (0). When the machine starts processing, it results in a vector of [>.1 - µ 1 , >-2]T.

The machine keeps processing type 1 until the buffer is empty. The moment the buffer
is empty, the arrivals of type 1 stop. After @ the machine processes type 2, first at
its maximum capacity and later in a slow mode, until the critical value for type 1 is
reached again . The optimization of T1 resulted in this scenario in the same length as
in situation I, also in both situations only a slow mode for type 2 exists. Therefore
the accompanying time intervals Ti, T(, Tf and T(can be determined with the same
equations as mentioned in (4.26).

36 Chapter 4. Optima] process cycle

Scenario 2

In this scenario the optimized length for T1 is positioned between the lower bound
T1 2 p1P and upper bound T1 :S (1 - p2)P - (CT21 + CT1 2) . The result are process
times for type 1 and type 2 that are longer than the minimal required lengths (piP
with: i E {1 , 2}). So for both types a slow mode exists in the optimal trajectory.
Such behavior is presented in Figure 4. 7. On the right-hand side Figure 4. 7 shows the

0"21

01 CD :CD :@: @ i @
x) : 1

_L _______ _j_

1
1
1
1

Figure 4.7: Trajectory for scenario 2

trajectories against the time. At the left-hand side the buffer levels are plotted against
each other. The trajectory of scenario 2 matches the trajectory of scenario 1 except for
the existence of a slow mode. When buffer 1 is empty the machine keeps processing
type 1 in a slow mode as long as products keep arriving. The arrivals stop when x2 = xf
is reached. The length of the time intervals are in accordance with (4.4) , (4.5) , (4.19)
and (4.17) , where T1 is substituted by (4.25):

Tf = 1~~2 (CT21 + T1 + CT12)

T,i = p - 1lp2 (CT21 + T1 + CT1 2)
µ (</)1P-T1)p1

Tl = -'-'---'<P~ 1- -~Pc=c1'-'--"

À (T1 - p1P)</)1
Tl = <PI - p1

where:

T = c1 µ1Ti(l - p2)(</J1P)-c2µ2p2(</J1 -Ti)(o-21 +0-12)
1 c1µ1p1(l-p2)+c2 µ 2p2(</J1-p1)

4.4. Optima] steady state trajectories 37

Scenario 3

The third scenario holds the situation where no slow mode for type 2 exists, but because
of Lemma 4.1.4 a slow mode of type 1 has to be present. The accompanying trajectory
is presented in Figure 4.8. In the graph on the left-hand side of Figure 4.8 the buffer

x 1t

0-1 2 x#
1

x J 0
CD CD @

X

t
a 21

- x1 Tµ TÀ T.µ -a21 1 1 a12 2 t ime

Figure 4.8: Trajectory for scenario 3

levels are plotted against each other. After the setup O , the machine starts to process
type 1 what results in the vector [.\1 - µ 1, >-2] T . When the buffer is empty it keeps
processing type 1 in a slow mode until products of type stop arriving. Then setup
@ is performed and the machine starts to process type 2. When buffer 2 is empty,
the machine switches immediately to perform setup O again. The accompanying time
intervals in this situa t ion are:

Tf = p2P.
,rÀ - 0 ' 2 - .
Tµ _ ((q,1 +p2-l)P+(a21 +a12))P1

1 - <p1- p1
TÀ _ ((l -Ti-p2)P-(cr21 + al2))q,1

1 - <p1- p1

(4.27)

Equat ions 4.27 confirm the minimization of the process time of type 2. As long as type 2
is processed, the machines processes at its maximum rate and processing type 2 in a
slow mode is not possible.

Scenario <P1 = 1

A special scenario is when c/J1, = 1. If c/J1 = 1 the piecewise constant arrival pattern
disappears what implies that À1 = À1 and Pl = p1 . These properties correspond with

38 Chapter 4. Optima] process cycle

the theory as described in [Eek06a]. To proof the scenario is similar, the time averaged
weighted wip level (J) in this scenario has to be the same as presented in [Eek06a]. To
obtain this proof the following recipe has to be performed:

1. Optimize the active unconstraint problem to T1 and P.

2. If the solution found the previous step is not possible, implement each constraint
for T1 separately and optimize the constraint problem to P.

3. Check when each constraint can be active using the assumption c 1À1 > c2 À2 (made
in [Eek06a]).

4. Verify if the time averaged weighted wip level (4.24) corresponds with the time
averaged weighted wip level (7) in [Eek06a].

For t he sake of convenience (0-21 + 0-12) is written as a- . Now the different steps of the
recipe are discussed.

1. Optimizing the unconstrained problem.
First the active situation in this scenario is determined. Variable </>i = 1 in combina
tion with (4.13) results in >-1 < µ 1 . This means situation II is active when </J 1 = 1. If
</J 1 = 1 (4.24) becomes:

Next, the unconstraint problem (4.28) is optimized to T1 :

what results in:

The value for TÎ has to be substituted in (4.28) and P is optimized now:

~t (T1(PinJ , Pinc) = 0

what results in:

or

(4.28)

(4.29)

(4.30)

These values for the unconstrained Pinc form solutions which are invalid. Both solu
tions do not meet the condition (3.9). This means the optimization problem has to be
a constrained problem.

4.4. Optima] steady state trajectories 39

2. Optimizing the constrained problem where one constraint is active.
Each constraint has to be checked separately. First the lower bound constraint is dis
cussed. Optimizing (4.28) with an active lower bound T1 = p1P subj ected to P results
in:

what results in:

C À U
(4.31)

or:
C À U

Second, the upper bound is active. Optimizing (4.28) with T1 = P(l - p2) - a subjected
to P results in:

what results in:

C À U
(4.32)

or:
C À U

Variable P describes a time span, because the first solutions of both Pj,8 and Pû B are
less than zero, the solutions are rejected.

3 . Check which constraint is active.
In [Eek06a] the assumption is made that c1 À1 > c2À2. Furthermore, the minimum
length of a steady state process cycle is set to P = l -p~ -p

2
(see also (3.8)). To check

which constraint is active the following calculations for Pj,8 are performed:

Substitution of the second solution of (4.31) results in:

c2À2a2 a 2
-----------~ > ------
C1 À1(l - P1)(l - p2) + c2À2Pi (1 - P1 - P2)2

For the denominators hold that:

40

1 - 2p1 - P2
1<-----

1 - Pl

Finally the following inequality has to hold:

1 < 1 - P1 - P2

Chapter 4. Optima] process cycle

(4.33)

Equation (4.33) can never be satisfied. The constraint is inactive. When a similar
computation is performed for Pû B· The result is:

1 - P1 - P2 < 1 (4.34)

Equation (4.34) is always satisfied. This makes the upper bound, in case of the assump
tion that c1 À1 > c2 À2 the active constraint. The results are:

(4.35)

4. Verification of the time averaged weighted wip level.
The values for T1 and P have been determined in the previous step. With the earlier
made assumptions and substitution of (4.35) the following time averaged weighted wip
level is determined:

Using Matlab for the substitution of P results in:

where:

The cost function (7) in [Eek06a] has to equal the found expression for J. The theory
in this report deals with systems which contain always a slow mode (Lemma 4.1.4). For
the theory in [Eek06a] this means determination of variable a with the positive real
root of equation (9). Next , the variable a is substituted in the equation of the time
averaged weighted wip level (7) in [Eek06a]:

-(c2 À2(l-pi) (l - p2)+c1À1PÜ - J(l - p1 - p2) 2C

(c2 À2 (l -p1) (l-p2)+c1 >-1 p~) (l -p1)

4.4. Optima] steady state trajectories 41

Substitution of a in the cost function (performed in Matlab) results in:

where:

Both cost functions deliver the same result (J = JAcc) if c1 .À1 > c2 .À2 holds and only a
slow mode of type 1 occurs in the optimal steady state process cycle.

Intermezzo: Multiple cycles in one period

The optimal trajectories found in this chapter, are the result of equalize lengths for
period P and the duration of one process cycle T. During one period type 1 and type 2
are processed once. The goal of the optimization is to minimize the weighted m ean wip
level of the total buffer levels within one period.
IJ the sum of time fractions that each product needs to be processed in a workstation is
low, it is possible enough time is available to process type 1 and type 2 twice during one
period in order to minimize the total mean wip level of the system even further. To keep
a stable system the following inequality has to be m et:

(4.36)

Equality 4.36 is based on (3.9). New parameter N EN represents the number of cycles
that are performed in one period, (without violating the inequality). The advantage of
processing each type N times are lower buffer levels. The disadvantage is the workstation
setups a factor N langer. An example is introduced to show the infiuence of the weighted
m ean wip level of the system when multiple cycles in one period occur.

Example 4.4.1. Assume a workstation with the following parameter setting:

p1: 0.3 c1: 1
p2: 0.25 c2: 1
µ1: 1 lots/hr. P: 1000 hrs.
µ2: 1 lots/hr. ef>1 : 0.5

0'12: 50 hrs.
0'21: 50 hrs.

Table 4.1: Parameter setting.

When computing the weighted mean wip level of the workstation in this parameter set
ting with a continuous approximation model. The model is simulated in Matlab where
the time averaged weighted wip level of the steady state process cycle is determined.

42 Chapter 4. Optima] process cycle

The time averaged weighted wip levels result in:

J (N=l) = 49.1

Note: The computed value for J (N=2) is not proven to be optimal.

The example shows that multiple cycles during one period can lead to a better time av
eraged weighted wip level of the system.
Further analysis of systems with multiple cycles during one period is beyond the scope
of this report. But it farms an interesting research area in the search for lower time
averaged weighted wip levels during one period.

At this point all situations/scenarios have been discussed with respect to a two product
workstation with one constant and one piecewise constant arrival pattern. Different
shapes for all the situations and scenarios have been discussed and explained that pro
cess type 1 and type 2 during one period P.
The essential differences between the trajectories depend on the position of the slow
modes. Or more precisely, which product is processed in a slow mode. Situation I
and II can be classified in to three groups by sorting the slow modes:

l. For situation I only a slow mode for type 2 always exists. {Situation I)

2. For situation II where type 2 is processed relatively long, the optimal process cycle
has at least a slow mode for type 2. {Situation II-a)

3. For situation II where type 1 is processed relatively long, the optimal process cycle
has at least a slow mode for type l. {Situation II-b)

With this sorting the three scenarios of situation II and situation I are reduced to three
different optimized problems where in both situation II-a and II-b two slow modes can
occur. In the next chapter feedback controllers are defined for these three possible sit
uations. These feedback controllers have to steer the system from an arbitrary point,
with respect to buffer levels and time, to its desired/optimal trajectory.

Chapter 5

Feedback control

A two product workstation with one constant arrival rate and one piecewise constant
arrival rate has been discussed in Chapter 4. The result is an optimal steady state
process cycle for a system which meets the conditions:

• Pl + P2 < 1.

For all possible parameter settings that satisfy these inequalities, Chapter 4 provides
an optimal steady state process cycle with respect to minimal weighted mean wip level.
Each optimal process cycle describes the 'desired behavior ' of the buffer levels in a
workstation. It is this behavior which results in a minimal wip level for the workstation.
In practice workstations are exposed to disruptions. Disturbances like changing arrival
rates, machine breakdowns or other in- or external factors can influence the buffer levels
of the workstation. Therefore, it is unlikely a workstation starts processing on its desired
trajectory and stays on this trajectory. By using a state feedback controller the system
is steered to the desired trajectory, regardless of the initial buffer levels or point in time.
The trajectories for all possible parameter settings are classified in to three groups as
mentioned at the end of Chapter 4.

1. Situation I (always a slow mode for type 2).

2. Situation 11-a (at least a slow mode for type 2)

3. Si tuation 11-b (at least a slow mode for type 1)

Dependent on the parameter setting one of these three situations is valid. In this chapter
a state feedback controller is proposed for a ll three situations. In each section of this
chapter a controller is presented that deals with one of these three situations.
In this chapter, each section starts with a description of the desired trajectory. The

43

44 Chapter 5. Feedback control

state of the system (3.4) is determined for different points along the trajectory. These
states are the reference where the controller has to converge to. Next, a controller is
proposed that has to steer to the optimal trajectory. Finally a proof of convergence is
obtained that shows convergence of a system which starts with arbitrary buffer levels
at any point in time.

5.1 Feedback control of situation I (~1 > µ 1)

A two product worksta tion in a factory has to deal with undesired behavior caused by
disturbances. In general a workstation does not process a t the desired trajectory. There
fore, a controller is needed that steers the system to this desired (optimal) trajectory.
In this case a controller is proposed for situation I. The most important feature of the
situation is the short time span where products of type 1 arrive at a high rate (.\1 2: µ1)
The controller has to steer the system to a trajectory as presented in Figure 5.1 in the
previous chapter. The state of this system at different points on the desired trajectory
are determined after processing type 1, the setup to type 2, processing type 2 at µ 2 ,

processing type 2 at À2 and after the setup to type 1, respectively Mode 1- 5:

Afte, Mode 1 [;] [À2(a21: p,P)]

After Mode 2: [:~] [À2(cr21 + ~1P + a-1 2)]

.6,. p - a-12

After Mode 3: [:~] [~ 1
.6,. p _ er _ >- 2(0-21 + TIP+ o-1 2)

12 µ, 2- >-2

After Mode 4: [:~] [~]
.6.. <hP + a-21

Afte, Mode 5 [;] [À;~;']
Note, x o and m are not taken into account in the state of the system. Due to the
dynamics, discussed in Chapter 3, both parameters always have the same value after
each mode and do not influence the path to the desired trajectory. In Figure 5.1 the
states of the system after each mode are visualized.

When the system runs and after one of its five modes the accompanying values for x 1 ,

x2 and .6.. do not have the desired value, the system does not operate on its desired
trajectory. To steer from an arbitrary point in time and arbitrary buffer levels to the
desired trajectory, the following controller is proposed:

5.1. Feedback control of situation I ()q ~ µ1)

After Mode 2

After Mode 1

After Mode 5

After Mode 3,4 ---+- "6-----------

- x1

Figure 5.1: Periodic orbit of situation I.

45

Proposition 5 .1.1. The following state feedback control law brings the system with
)q ~ µ1 to the desired trajectory.

(0 , 0, 0) if m = 1, Xo > 0
(CD, µ1, 0) if m= 1, Xo = 0, X1 > 0
(@, 0, 0) if m= 1, xo = 0, X1 = 0

(uo ,u1 , u2) = (@, 0, 0) if m=2, xo > 0 (5 .1)
(@, 0, µ2) if m = 2, xo = 0, X2 > 0, b. > </J1 P + ~ + 0-21

µi

(@, 0, >-2) if m=2, Xo = 0, X2 = 0, b. > </J1 P + ~ + 0-21 µ1

(0 , 0, 0) if m=2, XQ = 0, ~ ::; </J1 P + ~ + 0-21

Remark 5.1.2. An informal description of this controller is:

• Mode 1: CD as long as x 1 > 0; go to Mode 2.

• Mode 2: perform @ , after 0-12 go to Mode 3.

• Mode 3: @ at µ2 as long as both x2 > 0 and b. > </J1P + ~ + 0-21; go to Mode 4. µ1

• Mode 4: @ at >-2 as long as both x2 = 0 and~> </J1P + ~ + 0-21; go to Mode 5. µ1

• Mode 5: perform O , after 0-21 go to Mode 1.

Dependent on the state of the system, the controller starts in one of the five modes. The
initia[state always suits one of the modes. From that mode the controller starts. Mode
3 and Mode 4 might have a duration of zero initially.

46 Chapter 5. Feedback control

Assume the n th start after @ . The superscript (n) represents the number of the process
cycle that takes place.
Before proving that the controller in Proposition 5.1.1 converges the system towards
the desired behavior , first two lemmas are formulated. The first step is to prove that
the system will process type 2. The next step is to prove convergence of buffer level 2
to its desired trajectory.

Lemma 5.1.3. The system eventually processes type 2.

Proof. To process type 2, 6. > </) 1P + ~ + 0"21 after setup @ (using Mode 3 of Proposi
tion 5.1. 1). Assume that 6. < </) 1P + !f + 0"21 after setup @ in each loop.

µ1

When Mode 1 is finished for the first t ime: x11
) = 0 and 6_(l) > </)1P. As long as

6. < </) 1P products of type 1 arrive at a higher rate than they can be processed , so
X 1 = 0 can occur only if no products arrive. After setup @ , two situations can occur:

2. X 1 = Ü

In both situations 6_ (l) < </)1 P + ~ + 0"21 after setup @ can still hold. The duration of
µ 1

one loop without processing type 2 is 0"21 + p1P + 0"12 . This means the updated 6_ (2)

after one loop is:

Note that (3.9) shows: P - (0"21 + p1P + 0"12) > 0. This results in a linear increase for
6. as long as the iteration count of loops increases. Therefore, it becomes impossible to
keep 6. (n) < </) 1P + ~ + 0"2 1 . So type 2 has to be processed. □

µ1

The second step is to prove that the buffer level of type 2 reaches its desired trajectory.

Lemma 5.1.4. Eventually type 2 is processed in a slow mode and the desired trajectory
is reached.

Proof. When the system processes type 2, the controller already has synchronized the
arrival pattern of type 1 with the processing of type l. This implies that after setup @
variables 6. and x 1 follow the desired trajectory:

Variable x2 is still unknown. Because x 1 and 6. are at their desired trajectory, the
machine has T2 hours to process type 2 during each loop. Each loop the machine needs
p2P hours to process type 2. When the buffer level of type 2 is high enough and a slow

5.2. Feedback control of situation II-a (.X.1 < µ1) 47

mode for type 2 exists, the machine is able to process T,f (µ2 - À2) products more than
needed each loop. The result is a buffer level that decreases until it becomes zero:

(5.2)

Equation (5.2) shows a decrease in the buffer level of type 2 if the number of loops
increases. Eventually the buffer level has to become zero due to Lemma 4.1.4. The
lemma demands at least one slow mode in the optimal process cycle. A slow mode
for type 1 is not possible which implies Ti > 0. From the moment the buffer level
becomes zero, the machine starts processing type 2 in a slow mode and the desired
trajectory is reached. Note, if the buffer level of type 2 is initially low and the machine
starts processing type 2, the machine can process type 2 in a slow mode as long as
~ :S cp 1P + 0-21 holds. Although a slow mode for type 2 occurs, the machine has not
reached its desired trajectory yet. The desired trajectory is reached when a slow mode
for type 2 is reached after type 1 is processed for at least one time. □

In short , the controller steers t he system from an arbitrary point in time with arbitrary
buffer levels to the desired (optimal) trajectory. It first processes type 1 until its buffer
is empty. Then type 2 is processed until a setup is needed to let the start of the arrivals
of type 1 coincides with the start of processing type 1 (Lemma 4.2.4).

5.2 Feedback control of situation 11-a (.X1 < µi)

The optimal trajectory in this situation has at least a slow mode for type 2. Depending
on the parameter sett ing, processing type 1 in a slow mode is possible. With the op
tion of possibly two slow modes in the desired trajectory, the controller has six modes.
These modes are respectively processing type 1 at µ1, processing type 1 at .X.1 , a setup
to type 2, processing type 2 at µ 2, processing type 2 at À2 and a setup to type 1. The
state of the Modes 1- 6 are:

48

Af ter Mode 1:

Af ter Mode 2:

Af ter Mode 3:

After Mode 4:

P - cr12 -

[; l [~,:~ i l
[;~ l = [xf ~f/" l ·

u </>1P - + - cr21
>11

After Mode 5:

Af ter Mode 6:

Chapter 5. Feedback control

a 21 +Tf (1-Ti")+</>1P+a12 .\2

M - .\2

Here Ti is the length the machine processes type 1 at a rate of µ1 and xf is the
critica! value for the number of products of type 1 in the buffer:

where: Tf is the optimal process time of type 1 after the constrained optimization
of (4.24).

The position of the states after each mode in the periodic orbit are presented in Fig
ure 5.2.

Proposition 5.2.1. The following state f eedback control law brings the system with
~1 < µ1 and a slow mode for type 2 to the desired process cycle.

5.2. Feedback control of situation II-a (>.1 < µ1)

After Mode 3

After Mode 2

After Mode 1

After Mode 4

After Mode 5

(uo, u1 , u2) =

After Mode 6
--+- x1

Figure 5.2: Periodic orbit of situation II-a.

(0 , 0, 0) if m = 1, Xo > 0
(CD,µ1,0) if m= 1, Xo = 0, X1 > 0
(CD,>-1 , 0) if m= 1, Xo = 0, X1 = 0,
(@, 0, 0) if m= 1, xo = 0, X1 = 0,
(@, 0, 0) if m = 2, xo > 0
(@, 0, µ2) if m=2, XQ = 0, # X1 < X1'
(@, 0, >-2) if m=2, Xo = 0, # X1 < Xl'
(0 , 0, 0) if m = 2, Xo = 0, X1 2'. xf

Remark 5.2.2. An informal description of this controller is:

• Mode 1: CD as long as x1 > 0; go to Mode 2.

~ ::S </>1P
~ > </>1 P

X2 > 0
X2 = 0

• Mode 2: CD as long as both x1 = 0 and ~ ::S </>1 P; go to Mode 3.

• Mode 3: perform @ , after a12 go to Mode 4.

• Mode 4: @ at µ2 as long as both x2 > 0 and x1 < xf; go to Mode 5.

• Mode 5: @ at >-2 as long as both x2 = 0 and x1 < x(; go to Mode 6.

• Mode 6: perform O , after a21 go to Mode l.

49

(5.3)

A new parameter is introduced in Proposition 5.2.1 and Remark 5.2.2. New parameter
xf denotes the critical value for the number of products of type 1 in the buffer. The
value is determined with the use of the optimal length for T1 and Lemma 4.2.5 . When
m = 2 and this value is reached, the workstation has to start O immediately. lts value
is determined with:

(5.4)

50 Chapter 5. Feedback contra]

To prove convergence first the buffer level of type 1 is steered to its desired trajectory.

Lemma 5.2.3. When type 1 is processed for the second time, the buffer level of type 1
follows the desired trajectory.

Proof. When type 1 is processed for the first time and the buffer is empty, two situations
can occur:

1. ~::; </>iP; Switch to Mode 2 and processes type 1 in slow mode until ~ = 0.

2. ~ > </>1P; Switch to Mode 3.

In the first situation the arrival pattern of type 1 can be synchronized with the processing
of type 1 (Lemma 4.2.5). In this situation type 1 follows its desired trajectory already
after the first time its processed.
In the second situation the controller switches to Mode 3 immediately. After the setup
in Mode 3, the controller switches to process type 2 (Mode 4 and 5). The controller
stays in one of these modes (depending on the buffer level x2) as long as x1 < xf .
When x1 2: xf, the controller switches to O and then to CD , where the end of arrivals
of type 1 coincides with the end of processing type 1. After the second time type 1 is
processed, x1 and~ are at their desired trajectory because the timing with xf is based
on Lemma 4.2.5. □

After CD is completed for the second time and no slow mode for type 2 has occurred yet,
type 1 is processed on the desired trajectory but type 2 may not.

Lemma 5.2.4. Th e desired trajectory is reached ij type 1 is steered to its desired tra
jectory and type 2 is processed in slow mode.

Proof. In Lemma 5.2.3 type 1 is steered to its desired trajectory. This means ~ and x 1

follow the desired path. Only x2 is still unknown. The characteristic of situation 11-a is
the presence of a slow mode of type 2. The desired trajectory contains a slow mode what
implies the machine is able to process more products than needed when the buffer level
for type 2 is high. During one time interval of T2 the machine is able to process more
products for the duration of the slow mode (Ti). The machine can process Ti (µ2 - >-2)
products more than needed during one desired trajectory. The buffer level of type 2
decreases each loop with Tf (µ2 - >-2) products, unless the buffer is emptied earlier:

If the buffer is empty, the workstation keeps on processing type 2 in slow mode until
the critical value for type 1 (x1 = xf) is reached and the workstation needs to switch to
type 1. After the first time a slow mode for x2 occurs (x2 = 0) , a ll variables (x1, x2, ~)

5.3. Feedback control of situation II-b (>-1 < µ1) 51

follow their desired trajectory what makes the system follow the desired trajectory. If
the ini tial buffer level of type 2 is low, the machine processes type 2 in a slow mode as
long as x1 < xf □

In short, the controller lets the workstation empty the buffer of type 1. Next, the
workstation processes type 2 until the buffer level of type 1 reaches the value xf . If the
value is reached the workstation switches to O immediately. During the time interval
where x1 < xf the workstation has to process type 2.

5.3 Feedback control of situation 11-b (.X1 < µ 1)

The third controller to be discussed, steers a workstation which has at least a slow
mode for type 1. The approach of finding the controller is similar to that of the first
two controllers. First the desired trajectory is determined. The desired trajectory is
reached if buffer levels and il after leaving the Modes 1- 6 have the same values as
mentioned in the feedback control of situation II-a.

The position of the state of the system after each mode in the periodic or bit are presented
in Figure 5.3.

After Mode 3

After Mode 2

After Mode 1

After Mode 4

After Mode 5

--+-

After Mode 6

Figure 5.3: Periodic orbit of situation II-b.

~roposition 5.3.1. The following state feedback control law brings the system with
À1 < µ 1 and at least a slow mode for type 1 to the desired process cycle.

52 Chapter 5. Feedback control

(0 , 0, 0) if m= 1, xo > 0
(CD, µ1, 0) if m= 1, xo = 0, X1 > 0 ~ :S <P1P
(CD,)q , 0) if m= 1, XQ = 0, X1 = 0, fi :S <P1P
(@, 0, 0) if m= 1, XQ = 0, fi > <P1P

(5.5) (uo,u1,u2) = (@, 0, 0) if m=2, XQ > 0
(@, 0, µ2) if m=2, XQ = 0, X2 > 0
(@, 0, >.2) if m=2, XQ = 0, #

X1 < X1 , X2 = 0
(0, 0, 0) if m=2, xo = 0, X1 2 xf X2 = 0

Remark 5.3.2. An informal description of this controller is:

• Mode 1: CD as long as both x1 > 0 and ~ :S ip1 P ; go to Mode 2.

• Mode 2: CD as long as both x 1 = 0 and ~ :S <jJ 1P; go to Mode 3.

• Mode 3: perform @ , after o-12 go to Mode 4.

• Mode 4: @ at µ2 as long as x2 > O; go to Mode 5.

• Mode 5: @ at À2 as long as both x2 = 0 and x1 < xf; go to Mode 6.

• Mode 6: perform O , after 0-21 go to Mode 1.

To prove the convergence for a system with at least a slow mode for type 1, the proof
starts with synchronization of the piecewise constant arrival rate of type 1 with pro
cessing type 1.

Lemma 5.3.3. The system eventually processes type 1.

Proof. When the machine starts processing type 2 it stops when buffer 2 is empty and
t he buffer level of type 1 is larger or equal to xf. When a setup to type 1 is performed,
two situations can occur:

1. fi < <P1P; Type 1 can be processed and the Lemma is proven.

2. fi 2 ip1P; Type 1 is not processed because no products arrive. The machine
immediately switches, performs a setup to type 2 and starts processing type 2.
After a time span of p2(0-21 + 0-12) buffer 2 is empty again and a setup to type 1
is performed.

When option 2 is performed the value of~ determines if type 1 is processed or option 2
has to be performed again. It is only when the time span of option 2 equals a period P
that option 2 stays valid. In that specific situation fi has the same value each loop. To
prove option 1 has to occur , the time span in option 2 has to be unequal with P. This
is always true because the maximum time span for processing type 2 and perform two
setups is always smaller t han the length of P. Eventually option 1 occurs. D

5.3. Feedback control of situation II-b ()q < µ 1) 53

The machine always has a situation where at the start of processing type 1, b. :S q; 1P.
The end of processing type 1 is reached if products of type 1 stop arriving (b. = 0).
It is possible buffer 1 is not empty but the machine performs a setup anyway. At this
point in time, the end of the arrival of products of type 1 is synchronized wit h the end
of processing type 1. The next step is to prove that both buffer levels end up at the
desired trajectory.

Lemma 5.3.4. The desired trajectory is reached after a slow mode of type 2 has oc
curred.

Proof. In Lemma 5.3.3 the processing of type 1 is synchronized with the arrival rate of
type 1. One of the characteristics of situation II-b is the presence of a slow mode for
type 1. The presence of the slow mode of type 1 in the desired trajectory means that the
system can process more products during one process cycle if the system has initially a
high buffer level for type 1. The extra number of products that can be processed during
one process cycle equals the length of the slow mode in the desired trajectory multiplied
with the process rate minus the arrival rate (T((µ 1 - >.1)). If the initial buffer level of
type 1 is low, the machine processes in slow mode after emptying the buffer level. After
buffer 2 is emptied once and type 1 is processed in slow mode for the first time, the
exact buffer level of type 2 is still unknown. The system performs setup @ and erupties
buffer 2. During processing type 2, products of type 1 arrive. When buffer level 2 is
empty, three situations can occur:

• Xin) < xf ; The machine processes type 2 in slow mode until X in) = xf_ The
desired t rajectory is reached.

• X in) = xf ; In this special situation no slow mode for type 2 occurs. Nevertheless
the desired trajectory is reached.

• X in) > xf; The machine processed type 2 'too long' with respect to the desired
trajectory. The machine performs setup O and processes type 1. Because type 2
was processed ' too long' , less time is available before b. = 0. Although there
is less t ime, buffer 1 is emptied before b. = 0 (Due to the fact bat h buffers are
emptied before and T1 + T2 > (p1 + p2)P). When b. = 0, a setup @ is performed.
Type 1 needed 'less time' to be processed with respect to the desired trajectory
because the machine stayed less time processing in a slow mode. The result is a
lower buffer level at the start of processing type 2 again. When the buffer level
of type 2 is empty, the buffer level of type 1 has decreased with respect to the
previous cycle Xin+l) < X in) .

If the third situation occurs, the system repeats this behavior until eventually Xin+l) :S
xf occurs. Then one of the first two situation holds, meaning the desired trajectory is
reached. □

54 Chapter 5. Feedback contra]

R emark 5.3.5. For the proof the convergence of the system with the proposed controllers
the synchronization of the arrival rate of type 1 and processing type 1 plays an important
role. When the situation occurs when no slow modes occur (P = T = Tmin) it becomes
diffi.cult to steer te system. If buffer levels are high a decrease of the buffer levels in
combination with keeping the synchronization is only possible when the non steady
state process cycle has a length that equals a multiple duration of P.

For all possible parameter settings within the scope of this thesis, a state feedback
control law is obtained. All controllers steer the system from an arbitrary point in
time and arbitrary buffer levels, to the desired trajectory. In the next chapter, each
controller is tested in two simulat ions. The first simulat ion is the controller in a hybrid
fluid approximation model. The second simulation is performed in a discrete event
model with stochastic inter-arrival t imes and stochastic process times.

Chapter 6

Simulation experiments

In the previous chapter three feedback control laws are proposed and shown to converge
to the desired trajectory as determined in Chapter 4. To display the convergence of
the system to its desired trajectory, a simulation is performed. The controller is im
plemented in a hybrid fluid model. With the use of this model, the optimal process
cycles and trajectories are computed and compared with the optimized trajectories of
Section 4.4. The results will show the controller steers the system exactly to the optimal
steady state process cycle as determined in Chapter 4. However, in a real production
system the inter-arrival times and process times are never constant . For t hat reason a
discrete event simulation is performed. The simulation model includes stochastic be
havior on the inter-arrival t imes of both product types and bath process times. The
controller needs to show that it is able to deal with these disturbances. The simulation
results of the three controllers presented in Chapter 5 are discussed in this chapter. In
the first section the simulation models are presented. In the other sections the resul ts
for each controller are discussed separately.

6.1 Simulation models

6.1.1 Hybrid fluid model

The controllers are designed with a hybrid fluid model. The controllers presented in
Chapter 5 are described in five or six different modes. By following these modes, the
controller steers the system to the desired trajectory. Translation of these modes into
a simulation model results in a model, (made with Matlab version 2006b) , with five or
six cases . Each case represents a mode of the controller. Ini t ially the system has an
arbitrary state. The values of this state determine in which case the machine starts.
When a case becomes active, b. and bath buffer levels are analyzed . With this informa
tion, the model calculates the t ime the machine is able to stay in the mode its in . The
model then calculates b. and the buffer levels at which the mode will be left. Then the

55

56 Chapter 6. Simulation experiments

controller switches to the next case and the process is repeated. The const raints each
case hold are similar to the constraints mentioned in the proposition of each controller
in Chapter 5. A more det ailed explanation of the simulation in Matlab is presented in
Appendix A.

6.1.2 Discrete event model

The second test that is performed uses a discrete event simulation of the worksta
tion with the controller discussed in the previous chapter. In case of a discrete event
manufacturing worksta tion, a discrete event model gives a better representa tion of a
manufacturing system than the hybrid fluid approximation model. Within the discrete
event model mentioned here, stochastic variables are introduced for process t imes and
inter-arrival times. The arrivals and processing products are assumed to follow a Pois
son process [Mon99] . This characteristic makes it possible to apply an exponential
distribut ion for the inter-arrival times between products and all process times . The
discrete event model is modeled in x 0.8 [Bee00], [Hof02]. In the model different pro
cesses are defined. The iconic representation of the system is visualized in Figure 6.1.
In Figure 6.1 all capita l letters represent a process. Here, the generators are G1 and G2.

b

Figure 6.1: lconic model of a two product workstation

These processes simulate t he arrival patterns of type 1 and type 2 respectively. Process
B is the buffer which receives products from the generators over channels a and b. The
buffer contains two buffers where type 1 and type 2 are stored separately. The buffer
sends the products to the machine M. The machine M receives products of type 1 or 2
from the buffer over channel c or d. T he controller C receives the number of products
from the buffer. The controller uses the buffer level information to est ablish an input
signal u and sends that to the machine. When the machine has processed a product ,
the product leaves the system a t the exit process E. Although different controllers are
applied , the structure as presented in Figure 6.1 and all processes are maintained during
all simulations. All processes (except t he cont rollers) are discussed now. The controllers
are discussed for each situation separately together with the results. The total x-codes

6.1. Simula tion models

of all three discrete event models in ASCII is presented in Appendix B.

type lot = nat

proc Gl(a: !lot),1 ,4>1, P: real)=
I[r , s : real, t : -+real
1 t := exponent ial(I;)
; * [true- r := rmod(T , P); s := a-t

; [r + s < 4>1P- .6. s; a!l
j r + s 2: 4>1 p---, .6. (P - r)

l

ll

57

(x-1)

(x-2)

Process G1 (x-2) generates a piecewise const ant arrival pattern. The process determines
first its current point in time within one process cycle (r). Next, a sample for the inter
arrival time is taken from an exponential distribution and added to r . If the sum of
these time spans is less than the time interval where products can leave the generator ,
the generator waits the time span of the sample and then sends it to the buffer. If the
sum of time spans is larger than the time interval where lots can leave, the generator
waits until a new period st arts where it can send lots again.

Generator G2 (x-3) sends lots of type 2 to the buffer:

proc G2(a : !lot , >.2: real)=
I[t : --+ real
1 t := exponential(;

2
)

; * [true---, a !2; .6.a-t]

ll

(x-3)

The generator sends a lot to the buffer and waits the time span of a sample taken from
an exponent ial distribut ion. The time interval represents the inter-arrival t ime between
two lots. After waiting for a time span t , again the generator sends a lot.

In the discrete event model only one buffer is modeled .

proc B(a , b: ?lot , c, d: !lot , e : !nat2, ini1, ini2 : nat) =
I[x 1, x2 : lot , xs1, xs2 : nat
1 XS1 := ini1; XS2 := ini2
; e!Qxs1, xs2 ~
; *[true- [true; a?x1---, xs1 := xs1 + 1

j true; b?x2 - xs2 := xs2 + 1 (x-4)
j xs1 > O; c!x1 - xs1 := xs1 - 1
j xs2 > O; d!x2 - xs2 := xs2 - 1

l
; e!Q xs1, xs2 ~; fileout ("buffersize.txt")!T, "\t", xs1, "\t", xs2, "\n"

ll

58 Chapter 6. Simulation experiments

T he initialization of t he buffer is to fill both buffers a t a desired initial level and send
the number of lots in the buffers to the controller. After the init ialization the buffer
receives lots from generator G1 and G2 over channels a and b and sends lots to the
machine over channel c or d (depending on the type of lot) as long as there are lots
available. If buffer levels change, the new buffer levels are passed on to the controller
and the new buffer levels and the corresponding time are stored in a text-file.
The buffer sends, if possible, products to the machine.

proc M(a , b: ?lot,u: ?nat,c: !lot,µ1,µ2 , cr12 , cr21 : real) =
I[x : lot , idle : bool, m : nat, t, trem : real, t1, t2 : -;real
1 idl e := true; t := 0.0; trem := 0.0
; t1 := exponent ial(.1....); t2 := exponential(.1....)

µ1 µ 2
; *[m = 1 /\ idle; a?x --+ t := at1 + T; idle := false

j m = 1 /\ , idle; b..(t - T)--+ c!x; idle := true
j m = 2 /\ idle; b?x --+ t := crt2 + T; idle := false (x-S)
j m = 2 /\ ,idle; b.. (t - T)--+ c!x; idle := true

ll

j true u?m --+ idl e := false
; [m = 1--+ (trem, t) := (t - T , trem + T + 0"21)
j m = 2--+ (trem, t) := (t - T , trem + T + 0"12)

l

The initial state of the machine (x-5) is assumed to be ready to process lots (' idle') of
type 1 ('processl '). When the controller does not interfere, the machine asks the buffer
for a lot , the process t ime is determined by taking an exponential distributed sample.
If the lot is processed it is send to the exit process . The same principle is applied for
processing type 2. When the controller gives to the machine its input signal u , process
ing is cut off, the remaining time is stored and the remaining process t ime is recalled
of t he lot cut off earlier. When a setup is performed, the setup t ime is added to the
remaining process t ime of the lot that has cut off earlier. When t he machine finished
the lot, it asks for a new lot from the buffer. Note, expression c! x is located behind
the arrow. This channel sends products from the machine to the exit-proces. This is
permitted only when the receiver is able to receive the lots immediately at all times.

The final process is the exit process (x-6).

proc E(a: ?lot) =
I[x : lot
1 *[true; a?x--+ skip]

ll

(x-6)

6.2. Simulation results of the controller for situation I

The exit process can received processed lots at all times.
The system-file and xper are presented in (x-7) and (x-8):

syst S(>.1 , .À2, µ1 , µ2 , <i12 , <i21 ,</>i, P: real,ini1,ini2,xf : nat)=
I[a, b, c, J: - lot
,e : - nat2

, u: - nat
IGl(a, >.1 ,</>1, P) Il G2(b, >.2)I
1 B(a, b, c, e, ini1, ini2) I
1 M(c, u, f, µ1, µ2, <i12 , <i21)I
1 C(e, u, </>1, P, xf)I
1 E(f)I
ll

xper (>.1,.À2 , µ1 , µ 2, <i1 2, <i21,<P1, P: real,ini1,ini2,xf : nat)=

I[S(>-1 , >-2 , µ1 , µ 2, <i12, <i21 , </>1, P, ini1, ini2, xf)
ll

59

(x-7)

(x-8)

Before the simulation can be performed, the parameter setting has to be uploaded.
Subsequently, these parameters are used in the different processes as mentioned above.
The set of parameters is

Remark 6.1.l. Variable xf has to be computed . It is very unlikely the computed value
results in a real number , although it does represent a integer in a discrete event setting.
The system contains at least one slow mode (Lemma 4.1.4). The presence of a slow
mode implies the machine has more capacity than needed. This makes round up of xf a

reasonable solution as long as enough capacity is available. However , when xf becomes
smaller, the larger the error becomes during round up and capacity can become more
critical.

At this moment , all processes are explained except for the controllers. The rest of this
section focusses on the three controller and their discrete event simulation results.

6.2 Simulation results of the controller for situation I

The controller , designed for situation I , is checked in this section. The results of the
simulations have to be buffer levels which converge to the optimal trajectory and keep
the system there. The desired trajectory found in the simulations has to be similar to the
optimal steady state trajectory presented in Figure 4.5 of Chapter 4. Before the results

60 Chapter 6. Simulation experiments

are discussed, first the x-syntax of controller 1 is presented in (x-9).

proc Cl (a: ?nat2 , u: !na t , </>1, P, µ1 , 0"21: real) =
I[x : nat 2, b : bool, m : nat , t : real
lm := 1
;u!m
; *[true----+ a?x; t := rmod(T , P)

; [m = 1-----..b := x .0 = 0 /\ t 2": </>1P /\ t < (P- 0"21)

; [b ----+m := 2;u!m
j ,b----. skip

l
j m = 2-----.. b := (P - t) :S :~ + CT21

; [b ----+ m := l;u!m
j ,b----. skip

l

(x-9)

The controller (x-9) is implemented in the discrete event model. The initialization of
the controller is to send a input signal to the machine. So independent of the state
of the system, the controller wants the machine to start with O initially. Next the
controller receives the buffer levels and starts to use the information to send specific
tasks to the machine. The combination of the moment in time and the buffer levels lead
to a situation where t he cont roller gives the machine a new input signal or skips. The
controller switches to type 2 if buffer 1 is empty and switched back to star t processing
type 1 when products of type 1 start to arrive.
In the simulation a parameter setting is used that meets all requirements needed in
situa tion I. In the example the maximum arrival rate of type 1 is larger than the
maximum process rate (>-i > µ1). The parameter settings that have been used are
presented in Table 6.1. The results of the hybrid fluid approximation model simulations

.À1: 0.6 lots/hr. <P l: 0.3

.À2 : 0.2 lots/hr. xo(t = 0): 0 hrs.
µ 1: 1.5 lots/hr. x 1(t = 0): 400 lots
µ 2: 1 lots/hr. x2 (t = 0): 400 lots

0"12 : 50 hrs. !:l(t = 0): </>1P hrs.
0"21 : 50 hrs . m(t = 0): 2

P: 1000 hrs .

Table 6.1: Parameter setting for situation I

with the parameter setting of Table 6.1 are presented in Figures 6.2 and 6.4. The
results of the discrete event model, with the same parameter setting, are presented in
Figures 6. 3 and 6.5 . The figures on the left-hand side show the buffer levels in time.

6.2. Simulation results of the controller for si tuation I 61

Figure 6.2: Buffer levels over t ime (Fluid) Figure 6.4: Trajectory (Fluid)

Figure 6.3: Buffer levels over time (Discrete) Figure 6.5: Trajectory (Discrete)

Simulation results of the controller for situation I

62 Chapter 6. Simulation experiments

The figures on the right-hand side show the periodic orbit. Both simula tions converge
to the desired trajectory. The convergence of the system is explained with the use of
the results of the hybrid fluid approximation model.
The system has an initial state of:

x(O) = [400 400 0 300 2 r .
The system is ready to process type 2 but with this state the controller makes the
system switch to start a setup to type 1 (last condition of Proposition 5.1.1). At the
same time, products of type 1 are arriving. During this setup products of both types
arrive. When the setup is completed , (i) st arts. During the processing of type 1 products
keep arriving. The buffer level of type 1 keeps increasing, but now at a lower rate. In
Figure 6.4, the difference can be recognized as a different angle of increasing buffer
levels. In point A variable t::.. becomes 0 and products of type 1 stop arriving. Still
x 1 > 0 so the machine stays processing type 1 until the buffer is empty. When the
buffer is empty @ is performed. After the setup, type 2 is processed until point B is
reached. In this point the controller knows that after an interval with a length of 0"21

products of type 1 will start to arrive. The controller ends @ , starts O and when
products of type 1 start to arrive, the controller starts (i) also. Here the arrival rate
and processing type 1 are synchronized. After processing type 1 again, the machine has
more time to process type 2 because less products of type 1 have to be processed to
empty buffer 1 (Lemma 4.2.4). When type 2 is being processed both buffers become
empty at a point in time. The system starts to process products of type 2 in a slow
mode. The slow mode stops if the controller notices that products of type 1 are going
to arrive soon. At this point the machine processes at its desired (optimal) trajectory.
So the controller does steer the system to its desired trajectory. The discrete event
simulation shows convergence too. Both simulations show great resemblance although
it takes the discrete event simulation one loop more to reach the desired trajectory.
In the next section a similar analysis is performed for parameter settings which satisfy
the conditions of situation II-a.

6.3 Simulation results of the controller for situation 11-a

The previous section showed the results of the controller designed for situation I. In
this section the experimental results with the controller, designed for situation II-a, are
discussed. The results of the simulations have to be similar to the trajectory presented
in Figure 4.6 or in Figure 4.7. The parameter setting used in the simulation determines
if the optimal trajectory has only a slow mode for type 2 or a slow mode for both types.
The accompanying x -syntax of the controller needed for the discrete event simulation

6.3. Simulation results of the controller for situation II-a

is presented in (x-10) .

proc C2a(a: ?nat2,u : !nat ,</>1, P: real,xf : nat)=
I[x : nat2, b : bool, m : nat, t : real
Jm: = 1
;u!m
; *[true---. a?x; t := rmod(T , P)

ll

; [m = 1----.b := x .0 = 0 /\ t 2: </>1 P
; [b ---.m := 2;u!m
j ,b---. skip

l
j m = 2----. b := x.0 2: xf

; [b ---.m := l ;u!m
j ,b---. skip

l

63

(x-10)

The initialization of controller 2 is the same as controller 1. So independent of the state
of the system, the controller wants the machine to start with O initially. When the
controller receives the buffer levels after the initialization, it determines the position
in time within one process cycle. The controller switches to type 2 if no products of
type 1 arrive anymore and buffer 1 is empty. The controller switches back when the
critica! value xf is reached. In all other situations the controller skips and waits for a
new update of the buffer levels.
In the simulation an example is used where >-1 < µ1 . So in situation II-a the maximum
arrival ra te of type 1 is less than the maximum process rate of type 1. The parameter
setting that is used in the simulation is presented in Table 6.2.

>-1: 0.2 lots/hr. </>1 : 0.8
>-2: 0.45 lots/hr. xo(t = 0): 0 hrs.
µ1: 1 lots/hr. x1(t = 0): 400 lots
µ 2: 1 lots/hr. x2(t = 0): 400 lots

0'12: 50 hrs . t::.(t = 0): </>1P hrs.
cr21 : 50 hrs. m(t = 0): 2

P: 1000 l1rs.

Table 6.2: Parameter setting for situation II-a

The results of both simulations with the parameter setting of Table 6.2 are presented
in Figures 6.6 , 6.8, 6.7 and 6.9. The system starts with an initial state for the system:

x(O) = [400 400 0 800 2 f.

64 Chapter 6. Simulation experiments

Figure 6.6: Buffer levels over t ime (Fluid) Figure 6.8: Trajectory (Fluid)

..... t··--

Figure 6. 7: Buffer levels over time (Discrete) Figure 6.9: Trajectory (Discrete)

Simulation results of the controller for situation 11-a

6.4. Simulation results of the controller for situation II-b 65

Since the buffer level of type 1 exceeds xf. The controller wants the system to start
processing type 1. First O is performed, during this setup both types arrive, so both
buffer levels increase. After the setup to type 1 the machine processes type 1 until
the buffer is empty. When the buffer is empty, the machine keeps processing in a slow
mode until the arrivals of type 1 stop. At this moment the arrival pattern of type 1
is synchronized with the processing of type 1. But the buffer level of type 2 is still to
large. When @ is performed, products of type 2 are processed. Type 2 is processed
as long as x 1 < xf_ In point A this equality becomes false. Setup O is performed
and the machine starts processing type 1. Again CD continues until the buffer is empty
and the arrivals of type 1 stop. This behavior repeats itself until the buffer level of
type 2 becomes zero (B). In point B type 2 is processed in a slow mode. As long as

x1 < xf holds, the machine processes type 2 at the same rate as the arrival rate of
type 2. When the machine starts to process type 2 in a slow mode for the first time, the
system has reached its optimal steady state process cycle. The results of the discrete
event simulation show similar behavior again, although the convergence to reach the
desired trajectory takes longer. From the figures one can not see if there is a slow mode
for type 1 present. When computing the optimum, with (4.25), TÎ = 160.52 hrs. The
lower and upper bound are 200 hrs. and 450 hrs. respectively. The result is an optimum
of T1 = 200 hrs. what implies that only product type 2 has a slow mode. The desired
trajectory has a similar trajectory like scenario 1 (Figure 4.6) describes.
The results of the simulations for situation II-a correspond to the optimal trajectory as
mentioned in Chapter 4. In the next section the last controller is checked by simulation.
The simulation uses a parameter setting which satisfies the conditions of situation II-b.

6.4 Simulation results of the controller for situation 11-b

The previous section showed the results of the controller designed for a desired trajectory
with at least a slow mode for type 2. This section discusses a system which has at least a
slow mode for type 1 in its desired trajectory. The desired trajectory that has to evolve
must be similar to the scenarios 2 and 3 as mentioned in Chapter 4. The parameter
setting used in this simulation determines with which scenario the results must be
compared. Before the results are shown the accompanying x-syntax of the controller

66 Chapter 6. Simulation experiments

for situation II-bis presented in (x-11).

proc C2b(a: ?nat2, u: !nat ,<P1, P: real, xf : nat)=
I[x : nat2, b : bool, m : nat , t : real
lm := 1
; u!m
; *[true---+ a?x; t := rmod(T , P)

; [m = 1---+ b := t 2'. <P1P
; [b ---+ m := 2; u!m
j --ib---+ skip

l
j m = 2---+ b := x .0 2'. x f /\ x .l = 0

; [b ---+m := l;u!m
j --,b---. skip

l

(x -11)

The initialization of the controller (11) contains the assignment to start the setup to
type 1. So independent of the state of the system, the controller wants to start with
0 initially. When the controller receives the buffer levels after the initialization , it de
termines the position in time within one process cycle. The controller switches when
.6. = 0, which is independent of the buffer level of type 1. Next, @ is performed and
buffer 2 is emptied . After O and products of type 1 arrive, the machine processes them
until the arrivals stop. In all other situations the controller skips and waits for a new
update of the buffer levels. A parameter setting for which the simulations have to per
formed correct is presented in Table 6.3. The results of both simula tions with the

)'1: 0.5 lots/hr. <P l: 0.9
À2: 0.15 lots/hr. xo(t = 0): 0 hrs.
µ 1: 1 lots/hr. x 1(t = 0): 400 lots
µ 2: 1 lots/hr. x2 (t = 0): 400 lots

0-12: 50 hrs. .6.(t = 0): <P1P hrs.
0-21: 50 hrs. m(t = 0): 1

P: 1000 hrs.

Table 6.3: P arameter setting for situation II-b

parameter setting of Table 6.3 are presented in Figures 6.10, 6.12, 6.11 and 6.13. The
system initially start processing type 1 or type 2. In the parameter setting m(t = 0) is
set to m = 1. So the machine start processing type 1. When the arrivals stop, point A ,
variable .6. is synchronized with the processing of type 1, but the buffer level of type 1
is not. When .6. = 0 the machine switches to @ and then to processing type 2. When
buffer 2 is empty, setup O is performed to start with processing type 1. At point B

6.4. Simulation results of the controller for situation II-b 67

Figure 6.10: Buffer levels over time (Fluid) Figure 6.12: Trajectory (Fluid)

Figure 6.11: Buffer levels over time (Discrete) Figure 6.13: Trajectory (Discrete)

Simulation results of the controller for situation 11-b

68 Chapter 6. Simulation experiments

products of type 1 stop to arrive again. This is also the moment to stop processing
type 1. A setup to type 2 is performed and the system empties buffer 2 again. Parame
ter x1 > xf, this means type 1 needs to be processed. This behavior repeats itself until
the buffer level of type 1 becomes zero. Now the system performs a loop close to the
optimal trajectory before it reaches the situation where x2 = 0 and x 1 < xt After a
short slow mode for type 2, the systems reaches point C. At this point the controller
has steered the system to its steady state trajectory. Also the discrete event simulation
reaches the same steady state trajectory. Both steady state trajectories are the same.
The trajectories have to correspond to either scenario 2 or scenario 3. The results show
no slow mode for type 2. Computation of the optimal process length of type 1 results
in a value for T 1 which is equal to the upper bound of the system. So the parameter
setting represents an example of the optimal t rajectory presented as scenario 3. The
controller steers to a correct trajectory.

All three controllers have been tested. All simulations present controllers which steer
towards the desired trajectories. The path of convergence is in each simulation the same
for the hybrid fluid model as for t he discrete event model. The controllers show to be
robust enough to deal with the disturbances introduced by exponential distributions on
the inter-arrival t imes and process times.
In different proofs the presence of the slow mode has been discussed. When initial
buffer levels are high, time spans for slow modes are replaced by processing at max
imum capacity. The larger these time spans are (=the longer slow modes are active
in the desired trajectory) , the larger the difference is between the number of products
t hat are processed and the number of products that need to be processed. The speed of
convergence depends on the length of the t ime spans of the slow modes. It is only when
a slow mode is present the system can keep the synchronization between processing
type 1 and the arrival pattern of type 1 and catch up with buffer levels which are too
large.

Chapter 7

Conclusions and
recommendations

In t his chapter the conclusions of this research are presented in Section 7.1 and the
recommendations for future research are presented in Section 7.2.

7 .1 Conclusions

This report discussed an optimal process cycle and feedback control for a workstation
serving two product types with setups, one piecewise-constant arrival rate and a con
stant arrival rate . The approach is similar to the approach in [Eek06a]. The system
is optimized with respect to the weighted t ime averaged work in process (wip) level.
The theory presented in this report contains a hybrid fluid approximation model which
gives proper results if the system satisfies two important conditions . The sum of time
fractions that each product needs to be processed in the system has to be less than one.
The second condition implies that the length of the periodic behavior equals the length
of a steady state process cycle. In the steady state process cycle at least one slow mode
has to occur. If these conditions hold , different optimal process cycles are obtained.
The differences between the optimal process cycles depend on a relationship between
the maximum arrival rate and the maximum process rate of type 1 (the type which
has a piecewise constant arrival pattern) . After determination of the optimal process
cycles, one situation described the system if the maximum arrival rate is larger than
the process rate (.>- 2: µ). The second situation described the system if the maximum
arrival rate is less than the maximum process rate (.>- ~ µ). In the second situation a
subdivision is made, based on the slow mode(s) that occur in the optimal process cycle.
Together these situations cover all parameter settings which meet the two conditions
mentioned earlier. Eventually three controllers have been proposed which together cover
all possible optimal process cycles. For these controllers a proof of convergence has been
established. The analytical proof shows that the controllers always steer a system with

69

70 Chapter 7. Conclusions and recommendations

arbitrary buffer levels, and st arting at an arbitrary point in time, to the desired trajec
tory and keeps it there. These controllers have been tested in a simulation study. In
this study the workstation is simula ted with a hybrid fluid approximation model and a
discrete event model. The simulation results confirmed the convergence to the desired
trajectories . In spite of determination of the feedback cont roller in a continuous setting,
the controllers in the discrete event setting, with stochastic distributions for the inter
arrival times and process times, converge in the same way. For the simulation results as
presented, the controllers are robust enough to deal with the disturbances introduced
by the exponent ial distributions. The speed of convergence depends on the sum of time
fractions that each product needs to be processed in the system. The higher the sum
the slower the system converges and vice versa.

7.2 Recommendations

Several items need more at tent ion to obtain a bet ter understanding of the optimal
behavior of a system with one piecewise constant arrival rate in this research. These
research objectives are presented below:

• The approach of this report is similar to the approach in [Eek06a]. The one
step missing, compared with [Eek06a], is to analyze the system with finite buffer
capacities . The derived feedback controllers work well for systems with infinite
buffers. But it is not clear if the worksta tion can synchronize its processing of
type 1 with the arrival pattern of type 1, due to the buffer restrictions. Especially
when buffer capacities are relatively small with respect to the maximum buffer
levels that occur during the optimal steady state process cycle of the system. It
can become very hard to steer the system to the desired trajectory because the
synchronization of the arrival pattern of type 1 with the processing of type 1
often takes time, which may not be available because the other buffer exceeds its
maximum capacity.

• If the constraint that one process cycle must equal one period is dropped, it is
possible to find steady state process cycles with a lower time averaged weighted
wip level. Good candidates are systems which have a sum of time fractions that
each product needs to be processed that is small. An example of such a system is
presented in the intermezzo at the end of Chapter 4.

• Imagine two workstations in series. The possibility exists that the first workstation
processes products in a slow mode. For the departure ra te this means products
of one type leave the workstation at a rate ofµ , >. or 0. This means the piecewise
constant arrival pattern of the second workst ation contains three possible arrival
rates also. After the maximum arrival rate, the products can arrive at a lower
speed before the products stop to arrive and the rate becomes zero. In this report

7.2. R ecommendations 71

the piecewise constant arrival rate has only two different values (>. and 0). In
general the new arrival pattern will lead to different process cycles and different
time averaged weighted wip levels. When these 'new' arrival patterns will be
analyzed with the possible situations that occur in this report (a system with
one constant arrival rate and the 'modified ' piecewise constant arrival pattern) , it
might have a positive effect on situation I. Situation I may approve because the
system can not keep up wi th the highest arrival rate, if the rate is tempered after
a while the machine might be able to catch up earlier. How situation II will react
on such a 'modified ' piecewise constant arrival pattern is hard to determine. Even
a comparison with situation II may not be realistic because the lemmas used in
Chapter 4 become useless.

Another topic that forms an interesting research objective is a workstation with two
piecewise constant arrival patterns instead of one. This report contains a workstation
with one piecewise constant arrival pattern and one constant arrival pattern. The next
step is to perform an analysis for t he same workstation with two piecewise constant
arrival patterns. Workstations with such arrival patterns occur when two workstations
are put in series (as mentioned in Example 3.2.1). The output of the first machine is for
both product types piecewise constant. This output pattern forms the arrival pattern
of the second machine. To opt imize the weighted time averaged work in process in
the second machine, first the opt imal process cycle for each type of product must be
determined separately. When the process cycles are combined an overlap in processing
the optimal cycles of type 1 and 2 may occur. Removing the overlap from the optimal
process cycle results in extra costs. The optimization that has to be performed needs to
minimize the extra costs that occurs due to the overlaps. To obtain such a minimum, a
function for the possible overlaps has to be determined. This function must determine
which type of product has to be processed first in order the keep the weighted time
averaged work in process as low as possible.

72 Chapter 7. Conclusions and recommendations

Bibliography

[Aln04] K.A. Alnowibet and H. Perros. Nonstationary analysis of the loss queue and
of queueing networks of loss queues. ht tp:/ / www. cs c .ncsu .edu/f a culty/
per r os//recentpapers .html , 2004.

[Aln06] K.A. Alnowibet and H. Perros. Nonstationary analysis of circuit-switched
communication networks. Performan ce Evaluation, 63(9-10):892- 909, Octo
ber 2006.

[Aza06] A. Azaron, H. Katagiri, K. Kato, and M. Sakawa. Modeling complex as
semblies as a queueing network for lead time control. European journal of
operational research, 174(1):150- 168, October 2006.

[Bee00] D.A. van Beek and J.E. Rooda. Languages and applications in hybrid mod
elling and simulation: Positioning of X · Control Engineering Practice, 8(1) :81-
91, January 2000.

[Bek04] R. Bekker , S.C. Borst, O.J. Boxma, and 0. Kella . Queues with workload
dependent arrival and service rates. Queueing Systems, 46(3-4):537- 556,
March-April 2004.

[Cha92] C. Chase and P.J. Ramadge. On real-time scheduling policies for flexible
manufacturing systems. IEEE Transactions on automatic control, 37(4):491-
496, April 1992.

[Eek06a] J.A.W.M. van Eekelen, E. Lefeber , and J.E. Rooda. Feedback control of
2-product server with setups and bounded buffers. Proceedings of the 2006
American Control Conference, pages 544- 549, 2006.

[Eek06b] J.A.W.M. van Eekelen, E. Lefeber, and J.E. Rooda. State feedback control
of switching servers with setups. SE Report 2006-03, Eindhoven University of
Technology, Systems Engineering Group, Department of Mechanical Engineer
ing, Eindhoven, The Netherlands, 2006. http : // se . wtb . tue. nl/ sereports .

[Gre91] L.V. Green and P.J . Kolesar. The pointwise stationary approximation for
queues with nonstationary arrivals. Management Sciences, 37:84- 97, 1991.

73

7 4 Bibliography

[Gre97] L.V. Green and P.J. Kolesar. The lagged PSA for estimating peak congestion
in multiserver markovian queues with periodic arrival rates. Management
Sciences, 43:80- 87, 1997.

[Hof02] A.T. Hofkamp and J.E. Rooda. x reference manual. internal re-
port. http : //w3 .wtb.tue.nl/nl/organisatie/systems_engineering/
documentation/ , November 2002.

[Ign76] J.P. Ignizio. Goal Programming and Extensions. Heath, Boston, MA, 1976.

[Jag75] D.L. Jagerman. Nonstationary blocking in telephone traffic. The B ell System
Technical Joumal, 54:626- 661, 1975.

[Lan06] W.L. Lan and T.L. Olsen. Multi-product systems with both setup times and
costs: Fluid bounds and schedules. Operations Research, 54(3):505- 522, May
2006.

[Lef06] E. Lefeber and J .E. Rooda. Controller design for switched linear systems
with setups. Physica A: statistica[mechanics and its applications, 363(1):48-
61, April 2006.

[Mas02] W.A. Massey. The analysis of queues with time-varying rates for telecom
munication models. Telecommunication Systems, 21(2-4):173- 204, December
2002.

[MatO0] A.S. Matveev and A.V. Savkin. Qualitative Theory of Hybrid Dynamica[Sys
tems. Birkhäuser, Boston, MA, 2000.

[Mon99] D.C. Montgomery and G.C. Runger. Applied statististics and probability for
engineers. John Wiley & Sons, Ine. , 2nd edition, 1999.

[Per89] J.R. Perkins and P.R. Kumar. Stable, distributed, real-time scheduling of
flexible manufacturing/ assembly / diassembly systems. IEEE transactions on
automatic control, 34(2): 139- 148, February 1989.

[Rid03] A.D. Ridley, M.C. Fu , and W.A. Massey. Fluid approximations fora priority
call center with time-varying arrivals. In Proceedings of the 2003 Winter Sim
ulation Conference, pages 1817- 1823. Informs Simulation Society, December
2003.

[Som06] J. Somlo and A.V. Savkin. Periodic and transient switched server schedules
for FMS. Robotics and Computer-Integrated Manufa cturing, 22(2):93- 122,
April 2006.

Appendix A

Fluid models

This appendix contains all three fluid models discussed in Chapter 6. The appendix
presents situation I , situation II-a and situation II-b respectively.

In the appendix the proposed feedback controllers have been modeled as proposed in
propositions 5.1.1 , 5.2.1 and 5.3.l. Init ially the system has an arbitrary state. The
values of this state determine in which case t he machine starts. In these simulations the
system starts with buffer levels of 400 products for each type, a setup to start processing
type 1 and b. = P. Like the remarks that accompanied each proposition, the models in
this appendix contain the different modes also. These modes are indicated as cases. All
conditions in each mode are translated into condit ions for each case in the model. The
result is the following Matlab-code. A detailed explanation of the models is presented
after the models.

Controller for situation I

1/, controller situation-I

clc ; clear all; close all;

lambda1=0 .6; 1/,

lambda2=0 . 2; 1/,

mu1=1.5; 1/,

mu2=1; 1/,

s12=50; 1/,

s21=50; 1/,

c1=1; 1/,

c2=1; 1/,

mean arrival rate of type 1
arrival rate of type 2
mu_1
mu_2
setup time sigma_12
setup time sigma_21
weighting factor for type 1
weighting factor for type 2

phi=0.3;
P=1000;

1/,
1/,

time fraction where products of type- 1 arrive .
length of a period

r1=lambda1/mu1 ; 1/, mean rho_1

75

76 Appendix A. Fluid models

r2=lambda2/mu2; ï. rho_2
lambdalhat= lambdal/phi;Ï. lambda 1 hat

81max= phi•P•(lambdalhat-mul);

81=400; 82=400; m=6;
8=[0,81,82,s21];

while length(8) < 40;
switch m

case 1 ï.process type 1

ï.[time, buffer level 1, buffer level 2, remaining setup time]

ï. Length of simulation

[d,st] = check(P,phi,8(end,l));
if st == 1

8=[8;8(end,l)+d 8(end,2)+d•(lambdalhat-mul) 8(end,3)+d•lambda2 O];
m=l;

else st == 0
if d < 8(end,2)/mul

8=[8;8(end,l)+d 8(end,2)-d•mul 8(end,3)+d•lambda2 0];
m=l;

else
8=[8;8(end,1)+8(end,2)/mul O 8(end,3)+(8(end,2)/mul)•lambda2 0];
m=2;

end
end

case 2 ï. slow mode type 1
[d,st] = check(P,phi,8(end,1));
8=[8;8(end,1) 8(end,2) 8(end,3) s12];
m=3;

case 3 ï. setup from 1 to 2
[d,st] = check(P,phi,8(end,1));
if st == 1

if d <= 8(end,4);
8=[8;8(end,l)+d 8(end,2)+d•lambdalhat 8(end,3)+d•lambda2 8(end,4)-d];
m=3;

else
8=[8;8(end,1)+8(end,4) 8(end,2)+8(end,4)•lambdalhat 8(end,3)+8(end,4)•lambda2 0];
m=4;

end
else

if d <= 8(end,4)
8=[8;8(end,l)+d 8(end,2) 8(end,3)+d•lambda2 8(end,4)-d];
m=3;

else
8=[8;8(end,1)+8(end,4) 8(end,2) 8(end,3)+8(end,4)•lambda2 0];
m=4;

end
end

case 4 ï. process type 2
[d,st] = check(P,phi,8(end,1));
if st == 1

8=[8;8(end,1) 8(end,2) 8(end,3) 0];
m=5;

else st == 0
delta=8(end,2)/mul+s21;
if d > delta & d-delta > 8(end,3)/(mu2-lambda2)

8=[8;8(end,1)+8(end,3)/(mu2-lambda2) 8(end,2) 0 0];
m=5;

elseif d > delta & d-delta <= 8(end,3)/(mu2-lambda2)
8=[8;8(end,l)+(d-delta) 8(end,2) 8(end,3)-(d-delta)•(mu2-lambda2) 0];
m=5;

elseif d > delta & d-delta > 8(end,3)/(mu2-lambda2)
8=[8;8(end,l)+delta 8(end,2) 0 0];

m=5;
else

B=[B;B(end,1) B(end,2) B(end,3) 0];
m=5;

end
end

case 5 %slow mode type 2
[d,st] = check(P,phi,B(end,1));
if st == 1

B=[B;B(end,1) B(end,2) B(end,3) s21];
m=6;

else
if d > B(end,2)/mu1+s21 & B(end,2) < B1max

tslow=d-((B(end,2)/mu1)+s21);
B=[B;B(end,1)+tslow B(end,2) B(end,3) s21];
m=6;

else
B=[B;B(end,1) B(end,2) B(end,3) s21];
m=6;

end
end

case 6 ï.setup from 2 to 1
[d,st] = check(P,phi,B(end,1));
if st == 1

if d < B(end,4);
B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3)+d•lambda2 B(end,4)-d];
m=6;

else d >= B(end,4);
B=[B;B(end,1)+B(end ,4) B(end,2)+B(end,4)•lambda1hat B(end,3)+B(end,4)•lambda2 0];
m=1;

end
else

if d < B(end,4);
B=[B;B(end,1)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d];
m=6;

else d >= B(end,4);
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0];
m=1 ;

end
end

end
end

Controller for situation 11-a

ï. controller situation-11-a

clc; clear all; close all ;

lambda1=0.2; ï. mean arrival rate of type 1
lambda2=0 .45; ï. arrival rate of type 2
mu1=1; ï. mu - 1
mu2=1; ï. mu_2
s12=50; ï. setup time sigma_ 12
s21=50; ï. setup time sigma_21
c1=1; ï. weighting factor for type 1
c2=1; ï. weighting factor for type 2
phi=0 .8; ï. time fraction where products of type-1 arrive.
P=1000; ï. length of a period

77

78

r1=lambda1/mu1; %
r2=lambda2/mu2; %
lambdaihat= lambda1/phi;%

mean rho_1
rho_2
lambda 1 hat

Appendix A. Fluid models

%opt tau
tau1star=((c1*mu1*r1/(phi-r1))*(phi*P)-(c2*mu2*r2/(1-r2))*(s12+s21))/ . . .
. . . (((c1*mu1*r1)/(phi-r1))+((c2*mu2*r2)/(1-r2)));
g1=r1*P;
g2=(1-r2)*P-(s12+s21);
g3=phi*P;

% lower bound
% upper bound
% time span products arrive

if tauistar <= g1;
tau1opt=g1;

elseif g2 >= g3 & tauistar > g3;
tau1opt=g3;

elseif g2 < g3 & tauistar > g2;
tau1opt=g2;

else
tau1opt=tau1star;

end
B2max= (tau1opt+s21)*lambda2;
B1max= (((phi*P-tau1opt)*r1)/(phi-r1))*(mu1-lambda1hat)-(lambda1hat*s21);

B1=400; B2=400; m=6;
B=[0,B1,B2,s21];

while length(B) < 40;
switch m

case 1 %process type 1

%[time, buffer level 1, buffer level 2, remaining setup time]

% Length of simulation

[d , st] = check(P,phi,B(end,1));
if st == 1

if d < B(size(B,1),2)/(mu1-lambda1hat)
B=[B;B(end,1)+d B(end,2)-d*(mu1-lambda1hat) B(end , 3)+d*lambda2 0);
m=3;

else
B=[B;B(end,1)+B(size(B,1),2)/(mu1-lambda1hat) 0 .. .
. . . B(end,3)+B(end,2)/(mu1-lambda1hat)*lambda2 0);
m=2;

end
else

B=[B;B(end,1) B(end,2) B(end,3) 0);
m=3;

end
case 2 % slow mode type 1

[d,st] = check(P,phi,B(end,1));
if st == 1

B=[B;B(end,1)+d B(end,2) B(end,3)+d*lambda2 s12];
m=3;

else
B=[B ; B(end,1) B(end,2) B(end,3) s12];
m=3;

end
case 3 % setup from 1 to 2

[d,st] = check(P,phi,B(end,1));
if st == 1

if d <= B(size(B,1),4)
B=[B;B(end,1)+d B(end,2)+d*lambda1hat B(end,3)+d*lambda2 B(v,4)-d];
m=3;

else
B=[B;B(end,1)+B(end ,4) B(end,2)+B(end,4)*lambda1hat B(end,3)+B(end,4)*lambda2 0);
m=4;

end

else
if d <= B(end,4)

B=[B;B(end,1)+d B(end,2) B(end,3)+d*lambda2 B(end,4)-d];
m=3;

else
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)*lambda2 0] ;
m=4;

end
end

case 4 'l. process type 2
[d,st] = check(P,phi,B(end,1));
if st == 1

if d <= B(end,3)/(mu2-lambda2) & B(end,2)+d*lambda1hat <= B1max
B=[B;B(end,1)+d B(end,2)+d*lambda1hat B(end,3)-d*(mu2-lambda2) 0];
m=4;

elseif d > B(end,3)/(mu2-lambda2) & B(end,2)+d*lambda1hat <= Blmax
B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2)+B(end,3)/(mu2-lambda2)*lambda1hat O 0];
m=5;

elseif d <= B(end,3)/(mu2-lambda2) & B(end , 2)+d*lambda1hat > Blmax
tarrival=max((Blmax-B(end,2))/lambdalhat,0);

79

B=[B;B(end,l)+tarrival B(end,2)+tarrival*lambda1hat B(end,3)-tarrival*(mu2-lambda2) 0];
m=5;

else
tarrival=max((Blmax-B(end,2))/lambdalhat,0);
tempty=B(end,3)/(mu2-lambda2);
if tarrival <= tempty

B=[B;B(end,l)+tarrival B(end,2)+tarrival*lambda1hat ...
. . . B(end,3)-tarrival*(mu2-lambda2) 0];

else
B=[B;B(end,1)+tempty B(end,2)+tempty*lambda1hat O O];

end
m=5;

end
else

if d <= B(end,3)/(mu2-lambda2)
B=[B;B(end,l)+d B(end,2) B(end,3)-d*(mu2-lambda2) 0];
m=4;

else
B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2) 0 0] ;
m=5;

end
end

case 5 %slow mode type 2
[d,st] = check(P,phi,B(end,1));
if st == 1

if B(end,2) >= Blmax
B=[B;B(end,1) B(end,2) B(end,3) s12];
m=6;

elseif B(end,2)+d•lambda1hat >= Blmax
tslow=(Blmax-B(end,2))/lambdalhat;
B=[B;B(end,l)+tslow B(end,2)+tslow*lambda1hat B(end,3) s12];
m=6;

else
B=[B;B(end,l)+d B(end,2)+d*lambda1hat B(end,3) 1];
m=5;

end
else

if B(end,2) >= Blmax
B=[B;B(end,1) B(end , 2) B(end,3) s12] ;
m=6;

else
B=[B;B(end,l)+d B(end,2) B(end,3) s12];

80

m=5;
end

end
case 6 'l.setup from 2 to 1

[d , st] = check(P,phi ,B(end,1));
if st == 1

if d <= B(end,4)

Appendix A. Fluid models

B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3)+d•lambda2 B(end,4)-d];
m=6;

else
B=[B;B(end,1)+B(end,4) B(end,2)+B(end,4)•lambda1hat B(end,3)+B(end,4)•lambda2 0];
m=1;

end
else

if d <= B(end,4)
B=[B;B(end,1)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d];
m=6;

else
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0] ;
m=l;

end
end

end
end

Controller for situation 11-b

'l.'l.'l. controller for situation II-b

clc; clear all ; close all;

%%%Parameter Setting

lambda1=0.5; 'l.
lambda2=0. 15; 'l.
mu1=1; 'l.
mu2=1; 'l.
s12=50; 'l.
s21=50; 'l.
c1=1; 'l.
c2=1; 'l.
phi=0 .9; 'l.
P=1000; 'l.

r1=lambda1/mu1; 'l.
r2=lambda2/mu2; 'l.
lambda1hat= lambda1/phi ; 'l.

'l.'l.'l.0ptimization of tau1

mean arrival rate of type 1
arrival rate of type 2
mu_1
mu_2
setup time sigma_12
setup time sigma_21
weighting factor for type 1
weighting factor for type 2
time fraction where products of type-1 arrive.
length of a period

mean rho_1
rho_2
lambda 1 hat

tau1star=((c1•mu1•r1/(phi-r1))•(phi•P)-(c2•mu2•r2/(1-r2))•(s12+s21))/ . ..
. . . (((c1•mu1•r1)/(phi-r1))+((c2•mu2•r2)/(1-r2)));
g1=r1•P;
g2=(1 - r2)•P-(s12+s21);
g3=phi•P ;

if tau1star <= g1;
tau1opt=g1;

'l.
'l.
'l.

lower bound
upper bound
time span products arrive

elseif g2 >= g3 & tau1star > g3;

taulopt=g3;
elseif g2 < g3 & taulstar > g2;

taulopt=g2;
else

taulopt=taulstar;
end
B2max= (taulopt+s21)•lambda2;
Blmax= (((phi•P-taulopt)•rl)/(phi-rl))•(mul-lambdalhat)-(lambdalhat•s21);

B1=400; B2=400; m=6;
B=[0,B1,B2,s12];

Initial buffer levels and start mode.
[time, buffer level 1, buffer level 2, remaining setup time]

while length(B) < 40;
switch m

% Length of simulation

case 1 %process type 1
[d,st] = check(P,phi,B(end,1));
if st == 1

if d < B(end,2)/(mul-lambdalhat);
B=[B;B(end,l)+d B(end,2)-d•(mul-lambdalhat) B(end,3)+d•lambda2 0];
m=l;

else
B=[B ;B(end,l)+B(end,2)/(mul-lambdalhat) 0 . ..
. . . B(end,3)+B(end,2)/(mul-lambdalhat)•lambda2 0];
m=2;

end
else

m=2;
end

case 2 % slow mode type 1
[d,st] = check(P,phi,B(end,1));
if st == 1

B=[B;B(end,l)+d B(end,2) B(end,3)+d•lambda2 s12];
else

B=[B;B(end,1) B(end,2) B(end,3) s12];
end
m=3;

case 3 % setup from 1 to 2
[d,st] = check(P,phi,B(end,1));
if st == 1

if d <= B(end,4)
B=[B;B(end,l)+d B(end,2)+d•lambdalhat B(end,3)+d•lambda2 B(end,4)-d];
m=3;

else
B=[B;B(end,l)+B(end,4) B(end,2)+B(end,4)•lambdalhat B(end,3)+B(end,4)•lambda2 0];
m=4 ;

end
else

if d <= B(end,4)
B=[B;B(end,l)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d];
m=3;

else
B=[B;B(end,l)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0];
m=4;

end
end

case 4 % process type 2
[d,st] check(P,phi,B(end,1));
if st == 1

if d < B(end,3)/(mu2-lambda2)
B=[B;B(end,l)+d B(end,2)+d•(lambdalhat) B(end,3)-d•(mu2-lambda2) 0];
m=4;

else

81

82

end

Appendix A. Fluid models

B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2)+(B(end,3)/(mu2-lambda2))•lambda1hat 0 0];
m=5;

end
else

if d < B(end,3)/(mu2-lambda2);
B=[B;B(end,1)+d B(end,2) B(end,3)-d•(mu2-lambda2) 0];
m=4;

else
B=[B;B(end,1)+B(end,3)/(mu2-lambda2) B(end,2) 0 0];
m=5;

end
end

case 5 %slow mode type 2
[d,st] = check(P,phi,B(end,1));
if st == 1

if B(end,2)+d•lambda1hat >= B1max
if B(end,2)>= B1max

tslow=0;
else

tslow=(B1max-B(end,2))/lambda1hat;
end
B=[B;B(end,1)+tslow B(end,2)+tslow•lambda1hat B(end,3) s21];
m=6;

else
B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3) 0];
m=5;

end
else

if B(end,2) >= B1max
B=[B;B(end,1) B(end,2) B(end,3) s21];
m=6;

else
B=[B;B(end,1)+d B(end,2) B(end,3) 0];
m=5;

end
end

case 6; ï.setup from 2 to 1
[d,st] = check(P,phi,B(end,1));
if st == 1

if d <= B(end,4)
B=[B;B(end,1)+d B(end,2)+d•lambda1hat B(end,3)+d•lambda2 B(end,4)-d];
m=6;

else
B=[B;B(end,1)+B(end,4) B(end,2)+B(end,4)•lambda1hat B(end,3)+B(end,4)•lambda2 0];
m=1 ;

end
else

if d <= B(end,4)
B=[B;B(end,1)+d B(end,2) B(end,3)+d•lambda2 B(end,4)-d];
m=6;

else
B=[B;B(end,1)+B(end,4) B(end,2) B(end,3)+B(end,4)•lambda2 0];
m=1;

end
end

end

The function-file check.m is defined as:

function [d,st] = check(P,phi,t)

while t >= P;
t=t-P;

end;

if t >= phi•P;
d=P-t;
st=O;

else

st=1;
end

83

In these Matlab models several parts can be distinguished. First the parameter setting
is introduced. Next , (only for situations II) the optimization of T1 is performed which
results in the computa tion of maximum buffer levels for type 1 and 2 (respectively
Blmax and B2max). These maximum buffer levels present the maximum level at
which the system should perform a setup to st art processing the other type of product.
The init ia! conditions are described and the length of the computation is chosen. In
these models the initia! buffer levels are 400 lots each, and the machine start in mode
6 (Setup to type 1) . In the Matlab-code each mode number is presented as a 'Case'
number. When a case becomes active, the current time is sent to function check .m.
This file receives the current t ime, the time fraction where products of type 1 arrive
during one period P and the length of a period P. With these variables it determines
if lots of type 1 arrive and t he t ime span the current arrival rate maintains. If no lots
arrive check.m returns st = 0 and the time span where this arrival rate stays zero (d).
When lots do arrive check .m sends st = 1 and the t ime span the products keep arrive
at this rate.
When the variables st and d are known , one of the arguments within the active case
is met. Performing the argument that is valid, the buffer levels are updated, stored
and the case number is updated. When the buffer levels are updated, mat rix B stores
the current time, buffer level 1, buffer level 2 and the remaining setup time. With the
new value for m the whole process of checking the new situation has to be performed
again. The simulation stops when the size of matrix B reaches 40. The number of 40
is determined empirically and represents about 4 process cycles.

84 Appendix A. Fluid models

Appendix B

Discrete event models

This appendix contains the ASCII-code of all three complete discrete event models dis
cussed in Chapter 6. The appendix presents situation I , situation II-a and situation II
b respectively. The iconic representa tion of the x-model is presented in Figure B.l.
The model contains two generators (Gl and G2). Generator 1 sends products with a

b

Figure B.l: Iconic model of a two product worksta tion

piecewise constant arrival pattern wi th an exponential distribution. Generator 2 sends
products with a constant arrival pattern with an exponential distribution. Both gener
ators send the lots to the buffer (B). The buffer counts the number of products in each
buffer and sends the information to the cont roller (C). The controller uses the infor
mation to determine if the machine (M) has to perform setups or process products. If
the controller allows production, products are available and a product moves from the
buffer to the machine for processing. The process t imes of the machine are exponential
distributed also. After processing a product it is send to the exit process (E) where it
leaves the system.

85

86

Controller of situation I

from std import•
from fileio import•
from random import•

type lot = nat,

Il Generator of type 1.
proc G1(a : !lot, b: nat, c,d,e: real)
1 [r,s:real, t:->real
lr:=0.0; t:=exponential(llc)
;•[true -> r : =rmod(time, e); s:=sample t;

[r+s < d•e -> delta s; a!b
lr+s >= d•e -> delta e-r
]

] 1

Il Generator of type 2.
proc G2(a : !lot, b : nat, c: real)
1 [t:->real
lt:=exponential(1lc)
;•[true -> a!b; delta samplet]

] 1

11 Buffer

Appendix B. Discrete event models

proc B(a,b : ?lot , c,d: !lot, e: !nat~2, buf1ini,buf2ini : nat)
1 [x1,x2:lot, xs1,xs2:nat

lxs1:=buf1ini; xs2:=buf2ini; e!<lxs1,xs21>
;•[true -> [true; a?x1 -> xs1:=xs1 + 1

] 1

ltrue; b?x2 -> xs2:=xs2 + 1
lxs1>0; c!x1
lxs2>0; d!x2
]

-> xs1 :=xs1 - 1
-> xs2 : =xs2 - 1

; e!<lxs1,xs21> ;fileout("buffersize . txt")!time, "\t", xs1, "\t", xs2, "\n"

Il Machine
proc M(a,b: ?lot, u: ?nat, c : !lot , p1,p2,s12,s21: r eal) =
1 [x :lot, m:nat, t,trem:real, t1,t2 : ->real, idle :bool
lt:=0 .0; trem:=0.0; t1:=exponential(1lp1); t2 : =exponential(1lp2); idle : =true
;•[m=1 and idle; a?x -> t : =sample t1+time; idle:=false

] 1

lm=1 and not idle; delta t-time -> c!x; idle:=true
/m=2 and idle; b?x -> t :=sample t2+time; idle:=false
/m=2 and not idle; delta t-time -> c!x; idle:=true
/true; u?m -> idle:=false;

[m=1 -> <trem,t> : =<t-time,trem+time+s21>
lm=2 -> <trem,t>:=<t-time,trem+time+s12>
]

Il Controller
proc Cl (a: ?nat ~2, u : !nat, phi,p,mu1,s21: real)
1 [x: nat~2, b:bool, m: nat, t: real

/m : =1; u!m
;•[true -> a?x; t:=rmod(time,p) ;

[m=1 -> b:= x.O = 0 and t >= phi*p and t < p-s21;
[b -> m:=2 ; u!m
/not b -> skip

lm=2 -> b:= p-t <= x.Olmul+s21
[b -> m:=1; u!m
lnot b -> skip

] 1

Il Exit process
proc E(a: ?lot)
1 [x:lot

]

l•[true; a?x ->skip]
] 1

clus S() =
1 [a,b,c,d,f:-lot, e : -nat"2, u : -nat

1 Gl(a,1,lambdalhat,phil,P) 11 G2(b,2,lambda2)
11 B(a,b,c,d,e,buflini,buf2ini)
11 M(c,d,u,f,mu1,mu2,sigma12,sigma21)
11 C1(e,u,phi1,P,mu1,sigma21)
11 E(f)

] 1

xper(lambda1hat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P: real, buf1ini,buf2ini:nat)=
1 [S(lambdalhat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P,buf1ini,buf2ini)] 1

Controller of situation 11-a

from std import•
from fileio import•
from random import•

type lot = nat,

Il Generator of type 1.
proc Gl(a : 1lot, b: nat, c,d,e: real)
1 [r,s:real, t:->real

lr:=0 . 0; t:=exponential(llc)
;•[true -> r:=rmod(time, e); s:=sample t;

[r+s < d•e -> delta s; a!b
lr+s >= d•e -> delta e-r
]

] 1

Il Generator of type 2.
proc G2(a: !lot, b: nat, c: real)
1 [t : ->real
lt:=exponential(llc)
;•[true -> a!b; delta samplet]

] 1

Il Buffer
proc B(a,b: ?lot, c,d: !lot, e: !nat"2, buf1ini,buf2ini: nat)
1 [x1,x2:lot, xs1,xs2:nat
lxsl:=buflini; xs2:=buf2ini; e!<lxs1,xs21>
;•[true -> [true; a?xl -> xsl:=xsl + 1

ltrue; b?x2
lxsl>O; c!xl

-> xs2:=xs2 + 1
-> xsl:=xsl - 1

87

88

lxs2>0; d!x2
]

Appendix B. Discrete event models

-> xs2:=xs2 - 1

; e!<lxs1,xs21> ;fileout(11 buffersize.txt 11)!time, 11 \t", xs1, 11 \t", xs2, 11 \n"

] 1

Il Machine
proc M(a,b: ?lot, u: ?nat, c: !lot, pl,p2,s12,s21 : real) =
1 [x:lot, m:nat, t,trem :real, tl,t2:->real, idle:bool
lt :=0.0; trem:=0.0; tl:=exponential(llpl); t2:=exponential(llp2); idle:=true
;• [m=l and idle; a?x -> t:=sample tl+time; idle:=false

lm=l and not idle; delta t-time - > c!x; idle:=true
lm=2 and idle; b?x -> t:=sample t2+time; idle : =false
lm=2 and not idle; delta t-time -> c!x; idle:=true
ltrue; u?m -> idle :=false;

] 1

Il Controller

[m=l - > <trem,t>:=<t-time,trem+time+s21>
lm=2 -> <trem,t>:=<t -time,trem+time+s12>
]

proc C2a (a : ?nat-2, u: !nat, phi,p : real, xlm: nat)
1 [x : nat-2, b: bool, m: nat, t : real

lm:=1; u!m
;•[true -> t:=rmod(time,p); a?x;

[m=l -> b:= x.O = 0 and t >= phi•p;
[b -> m: =2 ; u!m
lnot b -> skip
]

lm=2 -> b:= x.O >= xlm ;

]

] 1

Il Exit process
proc E(a : ?lot)
1 [x : lot

[b -> m:=1; u!m
lnot b -> skip
]

l•[true; a?x - >skip]
] 1

clus S() =
1 [a,b,c,d,f : -lot , e :-nat -2, u:-nat

1 Gl(a,1,lambdalhat,phil,P) 11 G2(b,2,lambda2)
11 B(a,b,c,d,e,buflini,buf2ini)
11 M(c,d,u,f,mul,mu2,sigmal2,sigma21)
11 C2a(e,u,phil,P,xlmax)
11 E(f)

] 1

xper(lambdalhat,lambda2,mul,mu2,sigma12,sigma21,phil,P: real, buflini,buf2ini , xlmax:nat)=
1 [S(lambdalhat,lambda2,mul,mu2,sigma12,sigma21,phil,P,buflini,buf2ini,xlmax)] 1

Controller of situation 11-b

from std import•
from fileio import•

from random import*

type lot = nat,

Il Generator of type 1.
proc Gl(a: !lot, b: nat, c,d,e: real)
1 [r,s:real, t : ->real
lr :=0.0; t:=exponential(llc)
;*[true -> r :=rmod(time, e); s:=sample t;

[r+s < d*e -> delta s; a!b
lr+s >= d*e -> delta e-r
]

] 1

Il Generator of type 2.
proc G2(a: !lot, b : nat, c: real)
1 [t : ->real
lt : =exponential(llc)
;*[true -> a!b; delta samplet]

] 1

Il Buffer
proc B(a,b: ?lot, c,d: !lot, e: !nat·2, buflini,buf2ini: nat)
1 [x1,x2:lot, xs1,xs2:nat
lxsl:=buflini; xs2:=buf2ini; e!<lxs1,xs21>
;*[true -> [true; a?xl -> xsl:=xsl + 1

] 1

ltrue; b?x2 -> xs2:=xs2 + 1
lxsl>O; c!xl
lxs2>0; d!x2
]

-> xsl:=xsl - 1
-> xs2:=xs2 - 1

; e!<lxs1,xs21> ;fileout("buffersize . txt") !time, "\t", xsl, "\t" , xs2, "\n"

Il Machine
proc M(a,b: 7 lot, u : ?nat, c: !lot, p1,p2,s12,s21: real) =
1 [x : lot, m:nat, t,trem:real, t1,t2:->real, idle:bool
lt:=0.0; trem:=0.0; tl:=exponential(llpl); t2:=exponential(llp2); idle:=true
;*[m=l and idle; a?x -> t:=sample tl+time; idle:=false

] 1

lm=l and not idle; delta t-time -> c!x; idle:=true
lm=2 and idle; b?x -> t:=sample t2+time; idle:=false
lm=2 and not idle; delta t-time -> c!x; idle:=true

-> idle:=false;
[m=l -> <trem,t> :=<t-time,trem+time+s21>
lm=2 -> <trem,t>:=<t-time,trem+time+s12>
]

Il Controller
proc C2b (a: ?nat·2, u: !nat, phi,p: real, xlm: nat)
1 [x :nat·2, b : bool, m: nat, t: real

lm:=1; u!m
;*[true -> t:=rmod(time,p); a?x;

[m=l -> b:= t >= phi*p;
[b -> m:=2; u!m
lnot b -> skip
]

lm=2 -> b : = x . 1=0 and x .O >= xlm;
[b -> m:=1; u!m
lnot b -> skip

89

90

] 1

// Exit process
proc E(a: ?lot)
1 [x:lot
l•[true; a?x ->skip]

] 1

clus S() =
1 [a,b,c,d,f:-lot, e:-nat~2, u:-nat
I G1(a,1,lambda1hat,phi1,P) II G2(b,2,lambda2)
11 B(a,b,c,d,e,buflini,buf2ini)
11 M(c,d,u,f,mu1,mu2,sigma12,sigma21)
11 C2b(e,u,phi1,P,x1max)
11 E(f)

] 1

Appendix B. Discrete event models

xper(lambda1hat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P: real, buf1ini,buf2ini,x1max:nat)=
1 [S(lambda1hat,lambda2,mu1,mu2,sigma12,sigma21,phi1,P ,buf1ini,buf2ini,x1max)] 1

In the three discrete event models the buffer levels are stored after each product tha t
leaves or arrives at the buffer. Besides the buffer levels the time at which the buffer
levels change is stored also. The data is stored in the text-file 'bu f f ersize.tx t ' . The
dat a is used to visualize the behavior of the system.

