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Abstract
Directional drilling is a technique used to construct boreholes with complex geometries. This
is needed to reach unconventional oil and gas reservoirs or to rescue uncontrollable wells.
Drilling is done with the use of a long drill string to which a bottom hole assembly (BHA) is
attached. This BHA contains the bit which is steered by a downhole rotary steerable system
(RSS). Using this setup for drilling often results in borehole spiraling which has negative
consequences for the drilling process and the borehole quality.

To show the existence and predict the onset of borehole spiraling, an analytical three-
dimensional borehole propagation model (BPM) is derived. This model predicts the evo-
lution of the borehole based on the RSS actuation. The evolution is modelled based on three
components, namely (i) the bit-rock interaction (ii) a kinematic model which relates the mo-
tion of the bit to geometric variables describing the borehole and the position of the BHA,
and (iii) a static model of the BHA.

The BHA consists of several stabilizers which center the drillstring in the borehole. An
ideal stabilizer always contacts the borehole wall which implies that the drillstring is per-
fectly centered within the borehole at those stabilizers. In practice, however, the stabilizers
are smaller than the borehole wall, making them so-called non-ideal stabilizers. This implies
that the stabilizer either contacts the borehole wall on an arbitrary point or it floats free
from the wall. This behavior has influence on the contact force. If the stabilizer floats, the
contact force is zero. If there is contact, there should be a contact force. This contact force
is calculated using a nonlinear complementarity approach. The BPM model which has been
derived, incorporates any number of non-ideal stabilizer where each stabilizer is within a
circular borehole. The BPM can be classified as a nonlinear delay complementarity system
where the delay stems from the delayed influence of the borehole geometry on the deforma-
tion of the BHA.

The derived model is validated by comparison to simulations performed in literature. The
simulations which are considered are responses of the borehole evolution to a step in actua-
tion force. This is a useful analysis since such an open-loop control technique is also used in
practice to steer the BHA towards its target. After a step in actuation force, the borehole
evolves with a constant curvature, if the length scale is sufficiently long. These simulations
also showed the onset of oscillations, which are related to borehole spiraling, after a step
in actuation force. Depending on a key dimensionless parametric group, these oscillations
damp out or grow unbounded since the bit-tilt is not saturated. This group includes, the
active weight on the bit, properties of the BHA, bit properties including bluntness and steer-
ing resistances. Further numerical analysis showed that the inclusion of non-ideal stabilizers
affects the response of the BPM significantly.

The borehole propagation model extends existing models by the inclusion of non-ideal sta-
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bilizers via the framework of nonlinear complementarity problems. Moreover, it has been
shown that the modeling of non-ideal stabilizers significantly affects the borehole evolution
and are, therefore, crucial for the understanding of the directional drilling processes. In this
model, the model is used to predict the onset of oscillations which could lead towards bore-
hole spiraling. The prediction of the onset could serve as a basis for the design of the drilling
system and also for its controls. One of the potential usages of this model is to predict
the RSS force required to realize a certain borehole trajectory. Another usage could be to
serve for model-based feedback controller design with the aim to accurately track borehole
trajectory.
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1 Introduction

Directional drilling is a technique developed to construct boreholes that generate complex
trajectories. Directional drilling happens on a large scale meaning that it drills holes reaching
several kilometers in length. One can imagine that this is a time-consuming and expensive
process. In this chapter, the application area of directional drilling is given. Then, the
setup which is used for directional drilling is described. Next, the importance of modelling
for directional drilling is discussed followed by a survey of the existing models. Finally, the
research objectives of this project and the outline of this thesis are discussed.

1.1 Application of Directional Drilling

The application area in which directional drilling is used is relatively wide. Figure 1.1.1 shows
six different application areas that all are related to the extraction of oil, gas, and mineral
resources at hard-to-reach wells. The first application, depicted in Figure 1.1.1a, shows that
directional drilling allows reaching wells which are located underneath obstacles such as cities
and forests. The second application, visualized in Figure 1.1.1b, is to drill multiple wells from
the same rig. This is beneficial because the rig only needs to be set up once which saves
time and reduces costs. Thirdly, Figure 1.1.1c shows that directional drilling can be used to
increase the pay zone of the reservoir. This is mainly used in the exploitation of shale gas
because this requires a horizontal borehole due to the horizontal nature of these reservoirs.
In Figure 1.1.1d, it is shown that directional drilling can be used to improve the drainage in
fractured reservoirs. This is mainly done by drilling perpendicular to the fractures. Often
these fractures are commonly aligned which implies that a maximum number of fractions is
penetrated. Figure 1.1.1e shows that directional drilling can be used in hazardous situations
to drill relief wells. One of the most famous examples of this application is the disaster that
happened at the Deepwater Horizon platform in the Gulf of Mexico in 2010 [10]. After the
platform called Deepwater Horizon exploded, BP drilled a relief well at 5500m below sea
level using directional drilling. The objective of this relief well was to seal the troubled well
that was leaking oil. In Figure 1.1.1f, it is shown that directional drilling can be used to
install underground facilities when excavation is not an option. The installation of water,
gas, and electricity supply needs the installation of pipes. To this end, directional drilling
is an enabling technique. Another application of directional drilling is avoiding geological
fractures in the earth mass since this could create damage on the well due to the earth’s
tectonic movement [27]. Besides these, directional drilling can also be used to drill around
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1.1. APPLICATION OF DIRECTIONAL DRILLING CHAPTER 1. INTRODUCTION

(a) Drilling of a borehole un-
derneath obstacles such as
cities or forests.

(b) Drilling multiple bore-
holes from the same rig.

(c) Increase the pay zone of a
reservoir by drilling hori-
zontally.

(d) Drilling to improve the
drainage in a fractured
well.

(e) Drilling to rescue uncon-
trollable wells.

(f) Installment of under-
ground facilities.

Figure 1.1.1: Various applications of directional drilling. Figures reprinted from [12].
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1.2. DIRECTIONAL DRILLING SETUP CHAPTER 1. INTRODUCTION

hard rock formations in order to prevent the drill bit from wearing fast, which saves money
and time due to the expensive process of replacing the drill bit. Lastly, directional drilling is
used in the geothermal and mining industries [23].

1.2 Directional Drilling Setup

The directional drilling setup consists of several components, as described next. Figure 1.2.1a
shows the setup, which consists of a rig, drillstring and bottom hole assembly (BHA). The
drillstring is a hollow slender tube typically of order of 1-10km in length. This string is
suspended at the rig which is located at the earth’s surface area. The rig imposes the rotary
speed and axial force (hook-load) on the drillstring. Due to its own weight, most of the
drillstring is in tension. Only the bottom part of the drillstring is under compression due to
the weight of the drillstring and its own weight and it is called the bottom hole assembly
(BHA). The BHA is typically a couple hundred metres long. It is important that this part
is under compression in order to apply a high enough pressure onto the drill bit. There
are several components in the BHA which play an important role in the borehole evolution.
Firstly, the stabilizer’s function is to centre the BHA in the middle of the borehole. Usually
a BHA is equipped with three to five stabilizers. A stabilizer is a short element with a
larger diameter, as depicted in Figure 1.2.1d. The second important element is the Rotary
Steering System (RSS), which is a semi-automated tool that is able to steer the BHA while
rotating. There are two main types of RSS. The first is a push-the-bit system which only
applies a lateral force, pushing against the borehole via extensible pads. The other system
is a point-the-bit system where the bit is tilted into a certain orientation such that the
desired trajectory is achieved. In Figure 1.2.1b, a push-the-bit RSS system is depicted. In
Figure 1.2.1c, the push-the-bit RSS is depicted, axially. This tool is placed between the bit
and the first stabilizer. At the end of the BHA, a polycrystalline diamond compact (PDC)
drill bit, visualized in Figure 1.2.1e, is located to drill into the rock formation. This type of
bit is favorable for directional drilling for its ability to drill large curvature boreholes.

1.3 Borehole Propagation Modelling for Directional Drilling

Directional drilling is a time-consuming and expensive process. To optimize the drilling pro-
cedure in terms of reducing time and costs and enhancing accuracy the drill bit should go to
the desired location in a fast and accurate manner. A borehole propagation model contributes
positively to optimize the drilling process. A borehole propagation model predicts the evo-
lution of the borehole into the earth based on known forces and actuation forces. Using such
a model, the root cause of observed behavior in practice can be analyzed. Potentially, if the
root cause is understood, the BHA design or control can be improved such that undesired
phenomena do not occur anymore or their occurrence is reduced.
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1.3. BOREHOLE PROPAGATION MODELLING CHAPTER 1. INTRODUCTION

(a)

(b)

(c)

(d)

(e)

Figure 1.2.1: Overview of a directional drilling system. Subfigure (a) shows the complete
drilling system, subfigure (b) shows the push-the-bit Rotary Steering System
(RSS) used for steering, subfigure (c) shows an axial view of the RSS, subfigure
(d) shows a stabilizer equipped on the BHA and subfigure(e) shows the poly-
crystalline diamond compact (PDC) bit used for cutting into rock formations.
Figures reprinted from [23] and [15].
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1.3. BOREHOLE PROPAGATION MODELLING CHAPTER 1. INTRODUCTION

An interesting undesired behavior observed in measured field data is self-excited, instability-
induced borehole oscillations, called borehole spiraling, visualized in Figure 1.3.1. This figure
shows that the borehole has a corkscrew-like shape in three dimensions (3D). The 2D projec-
tion of this 3D phenomenon is called borehole rippling, which consists of oscillations in the
xz-plane as visualized in Figure 1.3.1a. The borehole spiraling phenomenon measured from
field data, is shown in Figure 1.3.1b.

Borehole spiraling is undesired because it has a lot of negative consequences. The first
consequence is that the corkscrew-shaped borehole makes it more difficult to insert a casing.
This casing is important to make sure the borehole does not collapse. A second consequence
is increased drag forces which leads to a low rate-of-penetration which makes the process
more time consuming. This low rate-of-penetration does accelerate the bit wear which de-
creases efficiency and thus results in larger costs. Also changing the bit because it has worn
too much is a time consuming and costly process. Thirdly, the accuracy of reaching the
desired target position is reduced.

A second phenomenon different from spiraling is that the trajectory is sometimes coun-
terintuitive where the borehole tends to steer opposite to what is intended by the RSS [23].
This could be a negative phenomenon, but can also be exploited if understood. As aforemen-
tioned, the root cause of these phenomena could be analyzed in a model. If this root cause
is known, the BHA design or BHA control could be improved such that these phenomena
disappear or decrease in intensity.

Another use of a borehole propagation model is to design feedback controllers that track
a certain borehole trajectory as done by [7, 19, 27, 30]. One way to regulate the borehole
orientation in an open-loop manner by an operator [19], is via command messages to the
RSS based on the downhole measurements. These messages contain a desired inclination
and azimuth angle. Then, the command messages are converted into a constant RSS force
which is subsequently applied. A constant RSS actuation leads to a borehole with constant
curvature if the length scale is sufficiently long. This way of controlling has the consequence
that deviations from the target location can occur which have to be corrected by the operator.
This also implies that the experience of drill-operators is highly important. A model could
be used to develop a model-based controllers, for example, robust controllers [27] or model
predictive control [30]. If the borehole evolution can be controlled in this way, the costs could
be reduced because the system becomes more autonomous [7]. The performance of model-
based controllers depends on the accuracy of the borehole propagation model. Therefore,
it is important to develop models that capture, or at least predict, the occurrence of the
aforementioned phenomena.
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(a) (b)

Figure 1.3.1: Illustration of borehole spiraling. In (a) borehole spiraling is shown in three
dimensions (x, y, z), and also the two-dimensional (xz-plane) equivalent called
rippling is depicted. In (b), a reconstruction of borehole spiraling from measured
data is shown. Figure (a) reprinted from [15] and (b) from [26].

1.4 Literature Survey

The literature survey gives an overview of the different type of models which already exist.
There are two main types of borehole propagation models derived in the past, namely nu-
merical and analytical. The numerical models make use of finite-element methods to predict
the trajectory of the borehole [2, 4–6,9, 17, 18, 21, 24]. These models do not provide essential
insights into relevant parameters of directional drilling and, therefore, give limited insight
into the physics of borehole propagation, caused by the parameters not having a physical
meaning. Consequently, such models lack transparency in terms of the effect of model pa-
rameters and RSS actuation on the borehole propagation.

The models which do give more insight into the essential underlying physics of the bore-
hole propagation are the analytical models. The first step towards these analytic models
is made by Lubinski and Woods [14]. They derived an analytical model for the interaction
between the bit and the rock and the interaction between the BHA and its surroundings.
Later on, Neubert and Heisig [20] derived the equations governing the borehole evolution
in directional drilling for cases where a point-the-bit RSS actuation is used. For the BHA
model, they used an Euler-Bernoulli beam model instead of a finite-element model that were
used in the numerical models. This model was altered by Downton and Ignova [8]. They
derived a model that is restricted to small rotations with respect to the borehole evolution.

Analytical models that derive the equations governing the evolution of the directional drilling
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1.5. RESEARCH OBJECTIVES CHAPTER 1. INTRODUCTION

have been derived later on. An overview of these models is given in Figure 1.4.1. The first
model, derived by [22], describes the borehole evolution in two dimensions. This model is
indicated with A in the figure. In this propagation model, the evolution of the borehole is
described by a set of delay differential equations where the states are chosen to be the incli-
nation and the azimuth of the borehole. An extension to this model is done by [23] to the
three-dimensional case, indicated by B. The models A and B can predict instability-induced
oscillatory behavior, that can be related to the onset of the borehole rippling and spiraling.
These oscillations, however, grow unbounded in models A and B because the bit tilt can not
saturate. These models, however, do not incorporate bit tilt saturation which is shown to
be observed in practice according to [15]. Bit tilt is the orientation difference between the
bit and the borehole at the bit as visualized in Figure 1.4.2. Therefore, the inclusion of bit
tilt saturation in borehole propagation models is done in both two and three dimensions by
respectively [22] and [15] leading to models A∗ and B∗. Due to the inclusion of the bit tilt
saturation in models A∗ and B∗, these models are able to predict steady-state oscillations
that are related to borehole rippling and spiraling. This prediction is made based on a linear
stability analysis performed in [16].

The models A∗ and B∗ consider the case with idealized stabilizers, which always make contact
with the borehole walls. In practice, however, the stabilizers are smaller than the borehole
wall. This is due to undergauged stabilizer by design, hole enlargement by erosion of the
mud and whirling of the BHA. Therefore, non-ideal stabilizers need to be incorporated in
the model. A non-ideal stabilizer is a stabilizer that either touches the borehole wall or not
at all as visualized in Figure 1.4.2. A model that includes non-ideal stabilizers instead of
ideal ones is derived by [26], indicated with C in the figure. In that work, a two-dimensional
model with the inclusion of bit tilt saturation and an arbitrary number of non-ideal stabilizers
model is derived. In addition to capturing the steady-state oscillations related to borehole
rippling, model C shows significantly different behavior, including the counter-intuitive be-
havior discussed earlier, when the non-ideal stabilizer either touches or stays clear from the
borehole. Furthermore, due to the inclusion of non-ideal stabilizers, this model also shows
that under application of a constant RSS force, there exist different attractive steady-state
solutions. In [26], the model for the BHA is presented completely analytically in the form of
a so-called linear complementarity system [3]. Independently, non-ideal stabilizers are also
modeled in the three-dimensional case by [29]. In that work, the authors also use the linear
complementarity problem framework to model non-ideal stabilizers. Their method, however,
approximates the intersection of the drilled borehole to be square, rather than a circle or
ellipsoid which would be closer to reality.

1.5 Research Objectives

As aforementioned, modeling directional drilling serves multiple purposes such as understand-
ing behavior which is observed in practice and the design of model-based feedback controllers.
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A A∗ C

B B∗ D

Perneder,
Marck,
Detournay

Perneder

Perneder,
Marck,
Detournay

Marck

Shakib,
Detournay
van de Wouw- 2D

- Ideal stabilizers
- No bit

tilt saturation

- 3D
- Ideal stabilizers
- No bit

tilt saturation

- 2D
- Ideal stabilizers
- Includes bit

tilt saturation

- 3D
- Ideal stabilizers
- Includes bit

tilt saturation

- 2D
- Non-ideal

stabilizers
- Includes bit

tilt saturation

- 3D
- Non-ideal

stabilizers
- Includes bit

tilt saturation

Zallahoglu
(Square Borehole)

Figure 1.4.1: An overview of analytic borehole propagation models.

RSS

Non–Ideal Stabilizers

Ideal Stabilizer

Bit Axis

Borehole Axis

Bit Tilt

Bit Tilt Boundaries

Figure 1.4.2: Overview of the geometry of the BHA showing the non-ideal stabilizers, the
definition of bit tilt, and the bit tilt saturation.
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The current model labeled with C in Figure 1.4.1 describes the borehole propagation of di-
rectional drilling with the inclusion of non-ideal stabilizers and bit tilt saturation in a 2D
plane. As aforementioned, model C is modeled with the use of linear complementarity prob-
lem which has an advantage that it provides, for any number of stabilizers, a closed-form
expression for the dynamics governing the borehole evolution.

In reality, however, the drilling process happens in three dimensions. Therefore, it is re-
quired to extend the model C from the planar case to the three-dimensional case into model
D. This extension is partly done by [29]. That model, however, considers the stabilizers to
be in a square borehole, which is not realistic, instead of a circular or ellipsoidal borehole. It
is important that the non-ideal stabilizers are modelled in the circular borehole. The insight
gained from such a model can then be used to improve the design of the BHA and for con-
troller design.

The objectives of this thesis are as follows:

� Model the borehole evolution in three dimensions, including any number of non-ideal
stabilizers, where the stabilizers are located in a circular/ellipsoidal borehole. This is
model D in Figure 1.4.1.

� Perform a numerical study to validate the derived borehole propagation model with
existing models in literature.

� Perform a numerical study to predict the onset of oscillations in a 3D scenario, related
to borehole spiraling.

The inclusion of the bit tilt saturation is out of the scope of this thesis and is a left for future
work.

1.6 Outline

The equations governing the borehole evolution are described in Chapter 2. This is based on
a BHA containing an arbitrary number of non-ideal stabilizers, to obtain model D. Then, in
Chapter 3, a numerical validation of the model is done by comparison to the two-dimensional
model from [26]. Furthermore, this chapter also discusses the influence of the non-ideal stabi-
lizers on the borehole evolution. Lastly, this chapter also discusses what the potential usage of
the model is. In Chapter 4 the conclusions of the research is given and also recommendations
for future work.
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2 Borehole Propagation Model

This chapter presents the derivation of the borehole propagation model. Firstly, the modeling
assumptions are mentioned in Section 2.1. This is followed by Section 2.2, which describes
the geometry of the borehole and the BHA. Subsequently, Section 2.3 describes the forces
and moments which act on the BHA. Then, Section 2.4 elaborates on the different model
components and the relation between those components. This section also gives a detailed
explanation of each component. Fifthly, Section 2.5, describes the derivation of the BHA
model. Lastly, Section 2.6 describes the borehole propagation model model.

2.1 Modeling Asssumptions

To model the borehole propagation, assumptions and hypotheses are needed. An overview,
mainly taken from [23], of these assumptions is given in this section. These assumptions are
commonly used in borehole propagation models [15,26].

The first hypothesis adopted is that the propagation of the drilling process can be aver-
aged over several revolutions. This is justified by the time scale at which the propagation
process takes place. The bit penetration per revolution is of order O(1 mm/revolution). The
model resolution is of order O(10−1 m) which corresponds with the dimension of the bit.
Due to this large difference in order magnitude, it is justified that the process is averaged
over several revolutions. This also implies that the axial angular position of the bit is not
important. Another consequence of this hypothesis is that dynamical processes at a time
scale smaller than a revolution of the bit can be disregarded. They either do not influence
the drilling direction or they can be lumped into parameters of the model. Stick-slip oscil-
lations of the bit and whirling of the bit are examples of such dynamical processes that are
neglected [26].

The second hypothesis adopted is that the propagation direction is rate independent for
a range of bit angular velocity of order O (10 ∼ 100 revolutions/min). This is justified by
the rate-independent nature of the bit/rock interface laws [22]. In these laws, the dominant
variable is the amount of rock removed per revolution. An important consequence of this
hypothesis is that time is not a suitable variable to track the evolution of the borehole. In-
stead, the borehole length is used to track the evolution hole shape.

10



2.1. MODELING ASSSUMPTIONS CHAPTER 2. BPM

Lastly, to model borehole propagation in directional drilling, it is sufficient to consider only
the BHA. The effect of the drillstring is lumped into contact forces at the upper boundary of
the BHA, corresponding to the position of the last stabilizer. In practice, it is seen that the
lateral forces and moments at the bit influence the drilling direction predominantly. These
forces and moments at the bit are mainly affected by the first three or four stabilizers.

Alongside these hypotheses, a set of assumptions is adopted to idealize the model:

� The bit-rock interface laws pertain to homogeneous and isotropic rock formations. This
means that the properties of the rock formation do not change over the borehole length
and the drilling direction.

� The BHA has a uniform distributed weight and uniform flexural rigidity. The BHA is
modeled from the bit to the last stabilizer.

� All stabilizers are (potentially) non-ideal, except for the last one, which means that each
stabilizer either touches the borehole wall or not at all. These contacts are modeled
as contact points and thus do not transmit any moment between the BHA and the
borehole wall.

� The internal moment at the last stabilizer is assumed to be zero.

� The stabilizers, RSS, and the bit are the only contact points between the borehole wall
and the BHA. It is assumed that there is no additional contact between the BHA and
the borehole wall. This assumption is valid as long as the deformation of the BHA is
sufficiently small to avoid additional contact points.

� The RSS is a push-the-bit system which implies that it applies a lateral force on the
BHA. This assumption is valid as long as the pads of the RSS are not fully extended.
If all the pads would be fully extended, the RSS would form a displacement constraint.
The RSS is located between the bit and the first stabilizer.

A second set of assumptions is adopted to simplify and linearize the mathematical formula-
tion:

� The radius of curvature of the borehole is large compared to the length of the BHA.
Only the first 20 ∼ 30(∼ 100ft) meters significantly influence the drilling tendency.
In industry, the borehole curvature is measured by a so-called built-rate, which is the
increase of inclination over a length of ±30 meter of the borehole. For a push-the-bit
RSS, the maximum built rate is 6◦/100ft ≈ (6◦/30m) which corresponds to a curvature
radius of 280 m. Therefore, the contact forces can be assumed to be orthogonal to the
undeformed reference configuration of the BHA, which simplifies the BHA modeling.
Furthermore, the direction of gravity (relative to the BHA axis) can be taken constant
over the entire BHA.

� The BHA axis is a small perturbation of the borehole axis at the length scale of the
BHA. This assumption is justified by the small clearance of order O(1 cm) between
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2.2. GEOMETRY CHAPTER 2. BPM

the BHA and the borehole walls compared to the length of the BHA. This observation
combined with the previous assumptions implies that the geometrical nonlinearity in the
BHA is negligibly small. As a consequence, the Euler-Bernoulli theory for the bending
of a beam is adopted to model the deformation of the BHA inside the borehole.

� The axial force and torque on the BHA are at least an order of magnitude smaller than
the loads that would induce buckling of the BHA. The typical axial strains of the BHA
are of order O(10−4) which allows assuming that the BHA is not extensible.

2.2 Geometry

An overview of the geometry description is given in Figure 2.2.1. At the rig, an earth-
fixed frame ~e is defined such that ~ez points in the direction of gravity. The vectors ~ex and
~ey span a square on the surface area. The borehole is a cylindrical object defined by its
central axis B and its varying cross section. The central axis B is parameterized by the
curvilinear coordinate S. For S, it holds that S = 0 is located at the rig and 0 ≤ S ≤  L,
where  L is the increasing length of the borehole and also the evolution variable of the BPM.
The central axis B is formally defined as the trajectory of the reference point at the bit,
which is incorporated in the vectorial function ~R(S). This function is continuous in S but
only piecewise continuously differentiable as sudden changes in orientation can occur. The
tangent to the borehole

~I1 =
d~R

dS
(2.2.1)

uniquely defines the inclination Θ(S) ∈ [0, π] and the azimuth Φ(S) ∈ [0, 2π). The inclination
is measured with respect to ~ez and the azimuth with respect to ~ex in a clockwise direction as
can be seen in Figure 2.2.1. The local reference frame ~I, attached to the borehole, is defined
according to a rotation matrix AI(Φ,Θ) which relates ~I = AI~e. This matrix is given as

AI(Φ,Θ) =

 cΘ sΘ 0
−sΘ cΘ 0

0 0 1

1 0 0
0 cΦ sΦ

0 −sΦ cΦ

1 0 0
0 c− 1

2
π s− 1

2
π

0 −s− 1
2
π c− 1

2
π

c− 1
2
π 0 −s− 1

2
π

0 1 0
s− 1

2
π 0 c− 1

2
π


=

cΦsΘ sΦsΘ cΘ

cΦcΘ sΦcΘ −sΘ

−sΦ cΦ 0

 ,
(2.2.2)

where respectively s and c represent the sin and cos function with the argument as in the
subscript. Initially, the frame ~I needs a permutation with respect to ~e, such that ~I1 is coaxial
with ~ez, ~I2 with ~ex, and ~I3 with ~ey. This permutation accounts for the two constant ma-
trices in (2.2.2). Then, two elementary rotations are performed that are characterized by
the rotation matrix AI . The first elementary rotation is a rotation of azimuth Φ around ~e1,

12
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followed by a second elementary rotation of inclination Θ around ~e3. With this definition for
~I, ~I1 is tangent to the borehole, ~I2 is in the same vertical plane as ~I1 and for ~I3 holds that
~I3 = ~I1 × ~I2.
The BHA axis, D, is a small perturbation of the borehole axis B. For a certain borehole
length  L, D is parameterized by the curvilinear coordinate s with the origin at the bit. It
is described by the vectorial function ~r(s,  L). The function ~r is continuously differentiable
with respect to s, but only piecewise continuously differentiable with respect to  L. At the
bit, where s = 0, a local reference frame ~i is attached. The unit vector ~i1 is tangent to the
BHA axis D and in itself a small perturbation of ~I1. This tangent vector~i1 has an inclination
of θ(s,  L) ∈ [0, π] and azimuth φ(s,  L) ∈ [0, 2π). Furthermore, the frame ~i is also defined
by a rotation matrix Ai(φ, θ), characterizing a rotation of ~i with respect to the earth-fixed
frame ~e at the position of the rig. This rotation matrix is the same as (2.2.2), however,
evaluated at θ and φ rather than Θ and Φ, respectively. For ~i, it also holds that ~i1 is the bit
axis tangent to the BHA axis, ~i2 is in the same vertical plane as~i1 and~i3 is given by~i3 =~i1×~i2.

Finally, a third reference frame is defined
~̂
I with respect to the BHA. The forces and moments

acting on the bit are expressed in this frame. In this frame,
~̂
I1 is aligned with chord C1, which

is the link between the center of the borehole at the bit ~r(0,  L) and at first stabilizer ~r(s1,  L).

Vector
~̂
I2 is in the same vertical plane as

~̂
I1 and

~̂
I3 =

~̂
I1 × ~̂

I2. The inclination and azimuth
of chord C1 are respectively 〈Θ1〉 and 〈Φ1〉.

In total, three frames are introduced, namely ~I, ~i and
~̂
I. Reference frame ~I is introduced

to track the borehole geometry. This frame is defined by the inclination and azimuth angles
Θ and Φ. On the one hand, angle Θ measures the angle between ~ez and ~I1, on the other
hand, angle Φ measures the angle between ~ex and the projection of ~I1 in the (~ex, ~ey) plane.

Bit frame ~i is used to express the forces and moments acting on the bit. Besides that, it
also defines the orientation of the bit within the borehole. This frame is defined by the
inclination and azimuth angles θ and φ, respectively. On the one hand, angle θ measures
the angle between ~ez and ~i1, on the other hand, angle φ measures the angle between ~ex and

the projection of ~i1 in the (~ex, ~ey) plane. The BHA frame
~̂
I is used to express the forces and

moments acting on the BHA. This frame is defined by the inclination and azimuth angles
〈Θ〉 and 〈Φ〉, respectively. On the one hand, angle 〈Θ〉 measures the angle between ~ez and
chord C(1), on the other hand, angle 〈Φ〉 measures the angle between ~ex and chord C(1) in
the (~ex, ~ey) plane.

2.3 Loading on BHA

The BHA is considered as a slender elastic object subject to external forces and moments.
The stabilizers are numbered from 1 until n starting with the stabilizer closest to the bit.
A schematic overview of a n-stabilizer BHA in both the (~I1, ~I2) and (~I1, ~I3) plane, including

13
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Figure 2.2.1: The geometry description of the BHA.

these forces and moments is given in Figure 2.3.1. The distance between the bit and the first
stabilizer is defined as `(1). Subsequently, the distance between the (i−1)− th and the i− th
stabilizer is defined as `(i) for i = 2, . . . , n. Since the BHA is inextensible, the curvilinear
coordinate s remains the arc length and thus the position of the i-th stabilizer is always given
by

si =
i∑

k=1

`(k) for i = 1, 2, . . . , n. (2.3.1)

A chord C(1) is defined as the straight line segment between the bit and the center of the bore-
hole at the first stabilizer. Subsequently, chords C(i), for i = 2, 3, . . . , n, define the straight
line segment between the borehole centers at si−1 and si. Each chord has its own inclination
〈Θ〉(i) and azimuth 〈Φ〉(i), which is the average inclination and azimuth, respectively, of the
borehole over the BHA segment between si−1 and si. The inclination and azimuth alter over
the evolution variable, which is the borehole length denoted with  L. The average inclinations
and azimuths can be calculated by

〈Θ〉(i) ( L) :=
1

`(i)

si∫
si−1

Θ0( L− s)ds, (2.3.2)

14
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Figure 2.3.1: Schematic overview of a n-stabilizer BHA in both the (
~̂
I1,

~̂
I2) plane and the

(
~̂
I1,

~̂
I3). The forces and moments are included as well as some distances and

inclinations.
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〈Φ〉(i) ( L) :=
1

`(i)

si∫
si−1

Φ0( L− s)ds. (2.3.3)

For the modeling of the BHA, an undeformed reference configuration is assumed, which im-
plies that the chords C(i), for i = 2, 3, . . . , n, are aligned with the chord C(1). This is valid
as long as the angle difference 〈Θ〉(1) − 〈Θ〉(i) and 〈Φ〉(1) − 〈Φ〉(i) is small. Consequently, all

the lateral forces on the BHA are orthogonal to
~̂
I1, respectively. The axial forces are in line

with the chord C(1), which is in the
~̂
I1 direction.

The RSS actuator is located at a distance ∆`(1) from the bit where ∆ ∈ (0, 1). The ac-
tuator force is defined as

~FRSS = [FRSS,1 FRSS,2 FRSS,3]
~̂
I =

(
F Î
RSS

)> ~̂
I. (2.3.4)

It is assumed that the actuator force is perpendicular to
~̂
I1, which implies that FRSS,1 = 0.

As aforementioned, the last stabilizer is modeled as an ideal one which means that the
stabilizer and the borehole have the same diameter and thus their centers must coincide. As
a consequence, there is a wall contact force ~Fn. In reality, the diameter of the stabilizer is
smaller than the diameter of the borehole because of bit over-gauging and BHA whirling. This
also implies that the stabilizers can move arbitrarily within the boundaries of the borehole.
The stabilizers can either touch the wall at one point or not touch the wall at all. At each
point s, the BHA has a certain deflection with respect to chord C(1). This deflection is a

function of s along the BHA and of the borehole length  L, which is denoted by ~h(s,  L).
The variable  L is also the evolution variable. At the stabilizer positions, this deflection

is evaluated at s = si which is denoted as ~hi = [hi,1 hi,2 hi,3]
~̂
I =

(
hÎi

)> ~̂
I. Since the

position of the stabilizer along the curvilinear coordinate s does not change during borehole
propagation, one can state that hi,1 = 0. A schematic representation of this scenario is given

in Figure 2.3.2. At each stabilizer a lateral contact force ~Fi is defined as

~Fi = [Fi,1 Fi,2 Fi,3]
~̂
I =

(
F Î
i

)> ~̂
I, (2.3.5)

which is also represented in Figure 2.3.2. The axial component Fi,1, for i = 1, 2, . . . , n − 1,
is zero at each non-ideal stabilizer. At the ideal stabilizer at the end of the BHA, i.e., at
i = n, the axial component represents the effect of the upper part of the drillstring on the

BHA. Lastly, the force at the bit, ~F0 = [−F0,1 F0,2 F0,3]
~̂
I =

(
~F Î

0

)> ~̂
I, and the moment

at the bit, ~M0 = [M0,1 M0,2 M0,3]
~̂
I =

(
~M Î

0

)> ~̂
I are defined. For the BHA model, the

forces are expressed in
~̂
I, which should be taken into account when combining different com-

ponents. The last force which is introduced is gravity acting on the BHA. This force acts
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Undeformed Configuration Non-Ideal Stabilizer

Deformed Configuration Non-Ideal Stabilizer

hk,3
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�hk
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�̂
I2

�̂
I3

Figure 2.3.2: Schematic overview of the deformed BHA compared to an undeformed BHA at
s = sk. The difference in center points is represented by the vector ~h, whilst rk
is the radius of the stabilizer.

in the ~ez direction of the earth-fixed frame, which means that the total weight is defined as

~W = w
n∑
k=1

`(k)[cos(〈Θ〉(1)) − sin(〈Θ〉(1)) 0] =
(
W Î
)> ~̂

I where w is the distributed weight

of the BHA. The angles 〈Θ〉(1) and 〈Φ〉(1) can be used since it is assumed that the BHA is
aligned with chord C(1).

The BHA is split into n + 1 segments starting from the bit. The different segments cor-
respond to shear force discontinuities and are indicated with S(i), for i = 0, 1, . . . , n, are
defined as

S(i) =


{s ∈

[
0,∆`(1)

]
} for i = 0,

{s ∈
[
∆`(1), si

]
} for i = 1,

{s ∈ [si−1, si]} for i = 2, 3, . . . , n.
(2.3.6)

Variables which have brackets around their index, for example the segment variable S(i),
indicate that the variable corresponds to the segment instead of a separate point. Without
those brackets, the variable refers to a specific stabilizer.

2.4 Model Components

The model to predict the propagation of the borehole consists of three interrelated compo-
nents, as visualized in Figure 2.4.1. The complete model combines a BHA model, the bit-rock
interface laws, and the bit kinematics. The bit kinematics relate the movement of the bit
through the rock formation to the local geometry of the borehole. The bit-rock interface laws,
relate this movement to the forces and moments which act on the bit. Then, the BHA model
relates the forces and moments at the bit, as well as other external forces, to the deflection
of the BHA. This deflection determines the bit orientation.

17
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Figure 2.4.1: The interaction between the three model components of the borehole propaga-
tion model.

2.4.1 Kinematics

The kinematics of the bit are defined by its instantaneous velocity ~v and spin ~ω. The
rotation of the bit around the ~i1 axis is characterized by angular velocity vector ~Ω = Ω~i1.
The penetration vector ~d and angular penetration ~ϕ are defined as

~d =
2π~v

Ω
and ~ϕ =

2π~ω

Ω
. (2.4.1)

These vectors can be decomposed in the reference frame ~i into axial penetration d1, lateral
penetrations d2 and d3 and angular penetrations ϕ2 and ϕ3 when projected on the system
axes~i1. The penetration vector ~d defines the drilling direction at the bit, thus ~d = d~I1 where
d =

√
d2

1 + d2
2 + d2

3, i.e., ~d is in the direction along which the borehole evolves. Angular

penetration ~ϕ defines the instantaneous change of orientation of the bit. Both ~d and ~ϕ are
velocities that measure bit propagation per revolution of the bit.

The bit tilt angles are defined by the relative orientation of ~I1 with respect to the bit axis
~i1. Since ~d is aligned with ~I1, the bit tilt angles can be expressed in terms of ~d. The bit tilt
angles correspond to the relative inclinations of the projection of ~d in the planes (~i1, ~i2) and

(~i2, ~i3). The angles are measured from the projection of ~d to ~i1 around, respectively, -~i3 and
~i2. Calculating the inclination angle of the projection leads to the bit tilt angles

ψ2 = − arctan

(
d2

d1

)
≈ −d2

d1

, and ψ3 = − arctan

(
d3

d1

)
≈ −d3

d1

, (2.4.2)

where the small angle approximation arctan(α) ≈ α is used. This is valid since d1 � d2

and d1 � d3 as bits are designed to drill dominantly in the axial direction. By using
~d = [d1 d2 d3]~i ≈ d~I1 and the expression ~I = AIi(Φ, φ,Θ, θ)~i, where

AIi(Φ, φ,Θ, θ) = AI(Φ,Θ)Ai(φ, θ)
> =

sΘsθcφ−Φ + cθcΘ cθsΘcφ−Φ − sθcΘ −sΘsφ−Φ

cΘsθcφ−Φ − cθsΘ cθcΘcφ−Φ + sθsΘ −cΘsφ−Φ

sθsφ−Φ cθsφ−Φ cφ−Φ

 ,
(2.4.3)
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the bit tilt angles can be expressed in terms of ~i as

ψ2 ≈ −
d2

d1

≈ −cθsΘcφ−Φ − sθcΘ

sΘsθcφ−Φ + cθcΘ

≈ sθ−Θ

cθ−Θ

≈ θ −Θ,

ψ3 ≈ −
d3

d1

≈ −sΘsφ−Φ

sΘsθcφ−Φ + cθcΘ

≈ sΘsφ−Φ

cθ−Θ

≈ sΘ(φ− Φ),

(2.4.4)

where the facts |θ − Θ| � 1 and |φ − Φ| � 1 have been applied to do the approximations,
stemming from the fact that the bit axis D is a small perturbation of the borehole axis B. In
conclusion, (2.4.4) relates the penetration variables and the bit tilt in terms of the bit and
borehole inclination and azimuth. The change of inclination and azimuth at the bit can be
computed by using (2.4.1) and the definition of the spin vector ~ω =

[
0 −dφ

dt
sin θ dθ

dt

]
~i such

that [
0 ϕ2 ϕ3

]
~i =

2π

Ω

[
0 −dφ

dt
sin θ dθ

dt

]
~i =

2π

Ω

[
0 − dφ

d L
d L
dt

sin θ dθ

d L
d L
dt

]
~i, (2.4.5)

which, by using d L
dt

= ||~v||, leads to

ϕ2

d1

≈ −dφ
d L

sin θ, and
ϕ3

d1

≈ dθ

d L
, (2.4.6)

where there is used that d1 is the time derivative of the borehole length, i.e., d1 = d L
dt

.

2.4.2 Bit/rock Interface Laws

The interface laws are represented with respect to one reference point on the bit. This
reference point is located at the lower boundary of the BHA model along ~i1. The bit/rock
interaction forces are reduced to generalized forces averaged over a bit revolution, namely
a force acting on the bit and moment acting at the reference point on the bit and being

orthogonal to the bit axis ~i1. The force at the bit is defined as
~̂
F0 =

[
−F̂0,1 F̂0,2 F̂0,3

]
~i =(

F̂ i
0

)>
~i and the moment at the bit location is defined as

~̂
M0 =

[
M̂0,1 M̂0,2 M̂0,3

]
~i =(

M̂ i
0

)>
~i. The forces and moments acting on the bit are related to the penetration vector ~d

and angular penetration vector ~ϕ by the bit/rock interface laws [23], which can be expressed
as follows:

F̂0,1

F̂0,2

F̂0,3

M̂0,2

M̂0,3


= −


G1

0
0
0
0

−

H1 0 0 0 0
0 H2 H3 0 0
0 −H3 H2 0 0
0 0 0 H4 H5

0 0 0 −H5 H4




d1

d2

d3

ϕ2

ϕ3

 . (2.4.7)
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�i1

�d

Figure 2.4.2: Visualisation of the bit walk angle, adopted from [15].

The term G1 is a measure for the bluntness of the bit and is always positive. The coefficients
Hi, for i = 1, 2, ..., 5, depend on the bit geometry, the rock strength and parameters of the bit
itself. The parameters Hi, for i = 1, 2, . . . , 5, could be interpreted as damping coefficients. A
walk angle $ is defined as the difference in angle between the lateral penetration d2 and d3

and the lateral force F2 and F3 and is defined as follows

$ := arctan
H3

H2

. (2.4.8)

If $ = 0, the lateral forces and penetrations are aligned, which causes the bit to have a
neutral walk tendency. If $ > 0 the bit has a right walk-tendency, whilst $ < 0 implies
the bit has a left-walk-tendency. For PDC bits, walk angles of ±10◦ are not uncommon [15].
The bit walk is visualized in Figure 2.4.2. The bit walk angle is the angle between the lateral
penetration, defined as ~dl := d2

~i2 +d3
~i3, and the lateral forces, defined as ~Fl := F̂0,2

~i2 + F̂0,3
~i3

pointing in the direction of~i1. Besides the bit walk, also bit flip ς is defined. This ς, analog to
the bit walk, is the difference in orientation between the moments at the bit ~Mb = M2

~i2+M3
~i3

and the change of bit orientation ~ϕb = ϕ2
~i2 + ϕ3

~i3. In terms of H4 and H5, the bit flip is
defined as

ς := arctan
H5

H4

. (2.4.9)

The active weight on the bit W can be derived from the first equation of (2.4.7) and is
W = H1d1 = −G1 − F̂0,1.

Next, the bit/rock interface laws (2.4.7), the definition of the active weight W and the
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kinematic relations (2.4.4), (2.4.6) are combined to derive[
F̂0,2

F̂0,3

]
= d1

[
H2 H3

−H3 H2

] [
ϕ2

ϕ3

]
= W

[ H2

H1

H3

H1

−H3

H1

H2

H1

] [
ψ2

ψ3

]
, (2.4.10)[

M̂0,2

M̂0,3

]
= d1

[
H4 −H5

−H5 −H4

][ dφ

d L sin(θ)
dθ

d L

]
= W

[ H4

H1
−H5

H1

−H5

H1
−H4

H1

][ dφ

d L sin(θ)
dθ

d L

]
. (2.4.11)

2.4.3 Scaling of Variables

To generalize the modeling and analysis of the borehole propagation model, scaling of the
variables is introduced. Both the forces and moments, as well as the lengths are scaled.
To scale the length, the reference length `(1) is used. Using this scale, a couple of different
dimensionless parameters are introduced. The first is λ(i), for i = 1, 2, . . . , n, which is defined
as λ(i) := `(i)/`(1). This parameters indicates the distance between two consecutive stabilizers.
This definition implies that λ(1) = 1. The dimensionless total length of the BHA is defined

as λ :=
n∑
k=1

λ(k). Secondly, the dimensionless total borehole length ξ is defined as ξ :=  L
`(1)

.

Thirdly, the arc length along the BHA starting from the bit is defined as s̃ := s
`(1)

on which

the stabilizer positions are defined as s̃i := si
`(1)

. Using these scaled parameters, the segments

of the BHA can be written as

S̃(i) =


{s̃ ∈ [0,∆]} for i = 0,
{s̃ ∈ [∆, 1]} for i = 1,
{s̃ ∈ [s̃i−1, s̃i]} for i = 2, 3, . . . , n.

(2.4.12)

The deflection of the stabilizers, denoted by ~hi, is scaled to be ~̃hi :=
~h
`(1)

= [h̃i,1 h̃i,2 h̃i,3]
~̂
I =(

h̃
Î

i

)>
~̂
I.

To scale the forces and moments, the characteristic force F ? := 3 EI
`2
(1)

is defined, where

EI is the flexural stiffness. With this characteristic force, several dimensionless forces

are defined. The first scaled force is the force at the bit, which is scaled to be ~̃F0 =

~F0

F ? =
[
−F̃0,1 F̃0,2 F̃0,3

]
~̂
I =

(
F̃
Î
)>

~̂
I. Similarly, the contact forces are defined as ~̃Fk =

~Fk

F ? =
[
F̃d F̃k,2 F̃k,3

]
~̂
I =

(
F̃
Î

k

)>
~̂
I. The actuator force is scaled to be ~̃FRSS =

~FRSS

F ? =[
F̃RSS,1 F̃RSS,2 F̃RSS,3

]
~̂
I =

(
F̃
Î

RSS

)>
~̂
I. Lastly, the distributed weight of the BHA is

scaled to be w̃ = w
`(1)
F ? . To scale the moment at the bit, the characteristic moment M? =

F ?`(1) is defined leading to ~̃M0 =
~M0

M? =
[
M̃0,1 M̃0,2 M̃0,3

]
=

(
M̃

Î

0

)>
~̂
I. These definitions
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can be applied to obtain the scaled version of (2.4.10)

[
F̃0,2

F̃0,3

]
=

[
F̂0,2

F ∗
F̂0,3

F ∗

]
=
W

F ∗

√
H2

2 +H2
3

H1

 H2√
H2

2+H2
3

H3√
H2

2+H2
3

− H3√
H2

2+H2
3

H2√
H2

2+H2
3

[ψ2

ψ3

]
= Πη

[
cos($) sin($)
− sin($) cos($)

] [
ψ2

ψ3

]
,

(2.4.13)

where the scaled active weight on the bit is defined as Π := W
F ∗ and the lateral steering

resistance η :=

√
H2

2+H2
3

H1
is introduced. This steering resistance η is a positive number which

indicates the difficulty of lateral penetration in comparison to axial penetration. Scaling can
also be applied to the equation of the moments in (2.4.11) leading to

[
M̃0,2

M̃0,3

]
=

[
M̂0,2

M∗
M̂0,3

M∗

]
=
W

F ∗

√
H2

4 +H2
5

H1`(1)

 H4√
H2

4+H2
5

− H5√
H2

4+H2
5

− H5√
H2

4+H2
5

− H4√
H2

4+H2
5

[ dφ

d L sin(θ)
dθ

d L

]

= −Πχ

[
− cos(ς) sin(ς)
sin(ς) cos(ς)

][dφ
dξ

sin(θ)
dθ
dξ

]
. (2.4.14)

In this equation, the angular steering resistance χ :=

√
H2

4+H2
5

H1`2(1)
is introduced. This steering

resistance is a positive number which measures the relative difficulty of imposing an angular
penetration.

2.5 BHA Model Derivation

The BHA model relates the deflection of the BHA to the forces and moments which act on
it, given that the bit and borehole orientations are known. The BHA can be modeled as a
static beam which is supported at the bit and submitted to contact forces at the stabilizers
and RSS actuator. Therefore, the static equilibrium equations∑ ~̃F = ~0,

∑ ~̃M = ~0 (2.5.1)

must hold. The forces and moments, however, are statically indeterminate; i.e., the defor-
mation of the BHA should be considered to determine the forces and moments acting on the
BHA.

For an n-stabilizer BHA, the equilibrium equations (2.5.1) are derived based on Figure 2.3.1
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and are given as follows:

∑ ~̃F =

(
F̃
Î

0 + F̃
Î

RSS +
n−1∑
k=1

F̃
Î

k + F̃
Î

n +W Î

)
~̂
I

=


−F̃0,1 + F̃d + w̃λ cos 〈Θ〉(1)

F̃0,2 + F̃RSS,2 +
n∑
k=1

F̃k,2 − w̃λ sin 〈Θ〉(1)

F̃0,3 + F̃RSS,3 +
n∑
k=1

F̃k,3

 ~̂I = ~0,

(2.5.2)

∑ ~̃Mw.r.t.bit = M̃
Î

0
~̂
I − M̃ Î

n
~̂
I +

−∆
0
0

> ~̂I × (F̃
Î

RSS
~̂
I)> +

n∑
k=1

−s̃k0
0

> ~̂I × (F̃
Î

k
~̂
I)> +

−λ
2

0
0

> ~̂I × (W
~̂
I)>

=


−M̃n,1 + M̃0,1

M̃0,2 + ∆F̃RSS,3 +
n∑
k=1

s̃kF̃k,3

M̃0,3 −∆F̃RSS,2 −
n∑
k=1

s̃kF̃k,2 + 1
2
w̃λ2 sin 〈Θ〉(1)

 ~̂I = ~0.

(2.5.3)

The deflection at stabilizers i = 1, 2, . . . , n− 1, earlier defined as ~hi, is the distance between
the chord C(1) and the BHA at the position of stabilizer i. This deflection corresponds to
an angle, the angle between chord C(1) and the tangent to the BHA axis at s = sk, defined
as Hj(s̃,  L), for j ∈ [2, 3]. Angle H3(s̃,  L) corresponds to the angle between chord C(1) and

the tangent to the BHA in the (
~̂
I1,

~̂
I2) plane and angle H2(s̃,  L) corresponds to the angle

between chord C(1) and the tangent to the BHA in the (
~̂
I1,

~̂
I3) plane. The deflection and its

corresponding angle can be used to solve the scaled Euler-Bernoulli equation

3M̃2 = −d
2h̃3(s̃,  L)

ds̃2
= −dH2(s̃, ,  L)

ds̃
, 3M̃3 =

d2h̃2(s̃,  L)

ds̃
=
dH3(s̃,  L)

ds̃
, (2.5.4)

where the relations

H2(s̃,  L) =
dh̃3(s̃,  L)

ds̃
, H3(s̃,  L) =

dh̃2(s̃,  L)

ds̃
, (2.5.5)

are applied.

The relative inclinations and azimuths, H2(s̃,  L) and H3(s̃,  L), are determined by integrat-
ing the Euler-Bernoulli equations. The first step in solving the equation is to obtain an
expression for the internal moment in the BHA, which is obtained by the method of intersec-

tions [11]. The internal moment is defined as ~̃M(i)(s) =
[
M̃(i),1 M̃(i),2 M̃(i),3

]
~̂
I = M̃

Î

(i)
~̂
I,

for i = 0, 1, . . . , n. First, the moment equilibrium is defined for section S(n), followed by the
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moment equilibrium for section S(n−1). This process continues up to S(0), leading to

M̃(i)(s̃) =



 ?

M̃(i+1,2)

M̃(i+1,3)

+ (∆− s̃)

 ?

−F̃RSS,3
F̃RSS,2

 for i = 0, ?

M̃(i+1,2)

M̃(i+1,3)

+ (s̃i − s̃)

 ?

−F̃i,3
F̃i,2

 for i = 1, 2, . . . , n− 1,

(λ− s̃)

 ?

−F̃i,3
F̃i,2

−
 ?

0
1
2
w̃(λ− s̃)2 sin 〈Θ〉(1)

 for i = n.

(2.5.6)

The internal moments in the direction of
~̂
I1 are indicated with a ? because these are irrelevant

for the deflection of the BHA in the
~̂
I2 and

~̂
I3 direction. Using the relation (2.5.4), the relative

inclinationH(i)(s̃) =
[
? H(i,2) H(i,3)

] ~̂
I and the deflection ~̃h(i)(s̃) =

[
? h̃(i,2) h̃(i,3)

]
~̂
I with

respect to the chord C1 can be found per segment (i) by integration:

H(i)(s̃) = 3
s̃∫

0

M̃(i)(τ)dτ + H̄i for s̃ ∈ S̃(i),

h̃(i)(s̃) =
s̃∫

0

H(i)(τ)dτ + h̄i for s̃ ∈ S̃(i),

(2.5.7)

for i = 0, 1, . . . , n, and with the integration constants H̄i and h̄i, which leads to

H(i)(s̃) =



 ?
H(1,2)

H(1,3)

 (s̃) + 3(∆s̃− s̃2

2
)

 ?

F̃RSS,3
F̃RSS,2

+

 ?
H̄(0,2)

H̄(0,3)

 for i = 0, ?
H(i+1,2)

H(i+1,3)

 (s̃) + 3
(
s̃s̃i − s̃2

2

) ?

F̃i,3
F̃i,2

+

 ?
H̄(i,2)

H̄(i,3)

 for i = 1, 2, . . . , n− 1,

3(λs̃− s̃2

2
)

 ?

F̃n,3
F̃n,2

−
 ?

0
3
2
w̃
(
λ2s̃− λs̃2 + 1

3
s̃3
)

sin(〈Θ〉(1))

+

 ?
H̄(n,2)

H̄(n,3)

 for i = n,

(2.5.8)
for the relative inclination Hs̃,3(s̃) and azimuth Hs̃,2(s̃). From this, an expression for the
relative deflection can be computed by integration:

h̃(i)(s̃) =



 ?

h̃(1,2)

h̃(1,3)

 (s̃) + (3
2
∆s̃2 − s̃3

2
)

 ?

F̃RSS,2
F̃RSS,3

+

 ?
H̄(0,3)

H̄(0,2)

 s̃+

 ?
h̄(0,2)

h̄(0,3)

 for i = 0, ?

h̃(i+1,2)

h̃(i+1,3)

 (s̃) +
(

3s̃2s̃i
2
− s̃3

2

) ?

F̃i,2
F̃i,3

+

 ?
H̄(i,3)

H̄(i,2)

 s̃+

 ?
h̄(i,2)

h̄(i,3)

 for i = 1, 2, . . . , n− 1,

3
2
(λs̃2 − s̃3

3
)

 ?

F̃n,2
F̃n,3

−
 ?

3
2
w̃
(
λ2s̃2

2
− λs̃3

3
+ s̃4

12

)
sin(〈Θ〉(1))

0

+

 ?
H̄(n,3)

H̄(n,2)

 s̃+

 ?
h̄(n,2)

h̄(n,3)

 for i = n.

(2.5.9)
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One should be aware that these deflections and relative inclinations are only valid when
evaluated in the corresponding segment, thus s̃ ∈ S̃(i). The number of unknowns in this

problem is 8n + 9. These unknowns consists of three forces
(
F Î

0

)> ~̂
I, as well as three mo-

ments
(
M Î

0

)> ~̂
I, at the bit. These unknowns can be obtained from the static equilibrium

equations, which were derived earlier in equations (2.5.2) and (2.5.3) under the assumptions
that the moments and axial force at the last stabilizer are known. The next three unknowns

are the contact forces at the last ideal stabilizer
(
F Î
n

)> ~̂
I, which follow from the deflection at

the last stabilizer. For the n− 1 non-ideal stabilizers, a nonlinear complementarity problem,
which is treated later on, is formulated to solve for these 4(n− 1) unknowns. The remaining
4(n + 1) unknowns are the integration constants H̄i and h̄i for i = 1, 2, . . . , n, which can
be found by imposing continuity of the beam, bit centering, and the relation between the
average angles 〈Θ〉(1) and 〈Φ〉(1) and the relative angles formulated in (2.5.8). The aim of
imposing these constraints is to find an expression in closed form for the deflection of the
BHA at its segments.

The first constraint is to impose that the relative inclination and azimuth are continuous
along the BHA. At the RSS locations s̃ = ∆ and at each stabilizer positions s̃ = s̃k, it holds
that [

H(1,2)

H(1,3)

]
(∆) =

[
H(0,2)

H(0,3)

]
(∆), (2.5.10a)[

H(i+1,2)

H(i+1,3)

]
(s̃i) =

[
H(i,2)

H(i,3)

]
(s̃i) for i = 1, 2, . . . , n− 1. (2.5.10b)

Constraint (2.5.10a) leads to [
H̄(1,2)

H̄(1,3)

]
=

3

2
∆2

[
F̃RSS,3
F̃RSS,2

]
, (2.5.11)

and for i = 1, 2, . . . , n− 1, the constraint (2.5.10b) leads to[
H̄(i,2)

H̄(i,3)

]
= −3

2
s̃2
i

[
F̃i,3
F̃i,2

]
. (2.5.12)

A similar continuity constraint can be imposed on the deflection, which is expressed as follows:

[
h̃(1,2)

h̃(1,3)

]
(∆) =

[
h̃(0,2)

h̃(0,3)

]
(∆), (2.5.13a)[

h̃(i+1,2)

h̃(i+1,3)

]
(s̃i) =

[
h̃(i,2)

h̃(i,3)

]
(s̃i) for i = 1, 2, . . . , n− 1. (2.5.13b)

25
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Constraint (2.5.13a) leads to [
h̄(1,2)

h̄(1,3)

]
=

1

2
∆3

[
F̃RSS,2
F̃RSS,3

]
, (2.5.14)

and for i = 1, 2, . . . , n− 1, the constraint (2.5.13b) leads to[
h̄(i,2)

h̄(i,3)

]
=

1

2
s̃3
i

[
F̃i,2
F̃i,3

]
. (2.5.15)

The next constraint which is considered is the fact that the bit is centered in the borehole
and thus the deflection should be zero, i.e,[

h̃(0,2)

h̃(0,3)

]
(0) =

[
0
0

]
. (2.5.16)

which results in
n∑
k=0

[
h̄(k,2)

h̄(k,3)

]
=

[
0
0

]
, (2.5.17)

from which can be deduced that[
h̄(n,2)

h̄(n,3)

]
= −1

2

(
∆3

[
F̃RSS,2
F̃RSS,3

]
+

n−1∑
k=1

s̃3
k

[
F̃k,2
F̃k,3

])
. (2.5.18)

The next constraints are related to the bit orientation. From the definition, it follows that the
inclination and azimuth at the bit are given by the angles θ0 and φ0. The relative inclination
is defined as the inclination difference between the inclination 〈Θ〉(1) of chord C(1) and the
inclination θ0 of the bit leading to

H(0,3)(0) = 〈Θ〉(1) − θ0. (2.5.19)

Analog to the inclination, the relative azimuth at the bit is defined by the azimuth 〈Φ〉(1) of
chord C(1) and the azimuth φ0 of the bit. However, since the angles 〈Φ〉(1) and φ0 are defined
in the (~e1, ~e2) plane, an additional term is needed, which projects the BHA and the bit onto
the plane (~e1, ~e2). This leads to the relation

H(0,2)(0) =
(
〈Φ〉(1) − φ0

)
sin 〈Θ〉(1) . (2.5.20)

By using (2.5.19) and (2.5.20), one can state that[
H(0,2)

H(0,3)

]
(0) =

n∑
k=0

[
H̄(k,2)

H̄(k,3)

]
=

[(
〈Φ〉(1) − φ0

)
sin 〈Θ〉(1)

〈Θ〉(1) − θ0

]
, (2.5.21)

from which another integration constant can be solved leading to[
H̄(n,2)

H̄(n,3)

]
=

3

2

(
∆2

[
F̃RSS,3
F̃RSS,2

]
+

n−1∑
k=1

s̃2
k

[
F̃k,3
F̃k,2

])
+

[(
〈Φ〉(1) − φ0

)
sin 〈Θ〉(1)

〈Θ〉(1) − θ0

]
. (2.5.22)
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Now, all integration constants are found and expressed in (2.5.11), (2.5.12), (2.5.14), (2.5.15),
(2.5.18) and (2.5.22) The deflection of the BHA at the n− th stabilizer with respect to chord
C(1) can be expressed as[

h̃(n,2)

h̃(n,3)

]
(λ) =

n∑
k=2

[
〈Θ〉(1) − 〈Θ〉(k)(

〈Φ〉(1) − 〈Φ〉(k)

)
sin 〈Θ〉(1)

]
λ(k). (2.5.23)

In this expression, the small angle approximation is used. This expression can be equated to
the expression which follows from (2.5.9), which leads to[

h̃(n,2)

h̃(n,3)

]
(λ) = λ3

[
F̃n,2
F̃n,3

]
−
[

3
8
w̃λ4 sin(〈Θ〉(1))

0

]
+

[
H̄(n,3)

H̄(n,2)

]
λ+

[
h̄(n,2)

h̄(n,3)

]
= λ3

[
F̃n,2
F̃n,3

]
+ λ

[
〈Θ〉(1) − θ0(

〈Φ〉(1) − φ0

)
sin 〈Θ〉(1)

]
−
[

3
8
w̃λ4 sin(〈Θ〉(1))

0

]

+
1

2

(
∆2 (3λ−∆)

[
F̃RSS,2
F̃RSS,3

]
+

n−1∑
k=1

(
s̃2
k (3λ− s̃k)

[
F̃k,2
F̃k,3

]))
.

(2.5.24)

From this, the contact force at the last ideal stabilizer can be determined to be[
F̃n,2
F̃n,3

]
= − 1

λ3

n∑
k=1

λ(k)

[
〈Θ〉(k) − θ0(

〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

]
+

[
3
8
w̃λ sin(〈Θ〉(1))

0

]

+
1

2λ3

(
∆2 (∆− 3λ)

[
F̃RSS,2
F̃RSS,3

]
+

n−1∑
k=1

(
s̃2
k (s̃k − 3λ)

[
F̃k,2
F̃k,3

]))
.

(2.5.25)

It remains to find expressions for the contact forces at the non-ideal stabilizers. The inte-
gration constants which are found are similar to the those listed in [26]. The next section
describes the derivation of the nonlinear complementary problem to find the contact forces
at the non-ideal stabilizers.

2.5.1 Modelling of Non-Ideal Stabilizers

The contact forces at the non-ideal stabilizers depend on the deflection of the BHA at each
stabilizer with respect to the borehole center. In order to find such an expression, first an
expression for the last BHA segment is needed because the other segments depend on this
expression recursively, as observed in (2.5.9).

To find this expression, the contact forces F̃n,k for k = 2, 3, found in (2.5.25) and the inte-
gration constants h̄(n,k) and H̄(n,k) for k = 2, 3, from (2.5.18) and (2.5.22) are substituted in
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the expression in (2.5.9) for i = n. This procedure leads to the concise formulation[
h̃(n,2)

h̃(n,3)

]
(s̃) =

[
〈Θ〉(1) − θ0(

〈Φ〉(1) − φ0

)
sin(〈Θ〉(1))

]
s̃+

n∑
k=1

ζk(s̃)

[
〈Θ〉(1) − θ0(

〈Φ〉(k) − φ0

)
sin(〈Θ〉(k))

]
+

n−1∑
k=1

ζk+n(s̃)

[
F̃k,2
F̃k,3

]
+ ζ2n(s̃)

[
F̃RSS,2
F̃RSS,3

]
+ ζ2n+1(s̃)

[
sin(〈Θ〉(1))

0

]
(2.5.26)

with the functions ζi(s̃), for i = 1, 2, . . . , 2n+ 1, defined as

ζk(s̃) :=
s̃2(s̃− 3λ)

2λ3
λ(k) for k = 1, 2, . . . n, (2.5.27a)

ζk+n(s̃) :=
s̃2
k

4λ3

(
s̃2 (3λ− s̃) (s̃k − 3λ) + 2λ3 (3s̃− s̃k)

)
for k = 1, 2, . . . , n− 1, (2.5.27b)

ζ2n(s̃) :=
∆2

4λ3
(s̃2(3λ− s̃)(∆− 3λ) + 2λ3(3s̃−∆)), (2.5.27c)

ζ2n+1(s̃) :=
1

16
w̃s̃2(−3λ+ 2s̃)(λ− s̃). (2.5.27d)

Then, the deflection at stabilizer i for i = 1, 2, ..., n− 1, can be derived by evaluating (2.5.9)
at s̃ = s̃i, resulting in[

h̃i,2
h̃i,3

]
:=

[
h̃(i,2)

h̃(i,3)

]
(s̃i)

=

[
〈Θ〉(1) − θ0(

〈Φ〉(1) − φ0

)
sin(〈Θ〉(1))

]
s̃i +

n∑
k=1

ζk (s̃i)

[
〈Θ〉(1) − θ0(

〈Φ〉(k) − φ0

)
sin(〈Θ〉(k))

]

+ζ2n (s̃i)

[
F̃RSS,2
F̃RSS,3

]
+ ζ2n+1 (s̃i)

[
sin(〈Θ〉(1))

0

]
+

i∑
k=1

(
ζk+n (s̃i)

[
F̃k,2
F̃k,3

])

+
n−1∑
k=i+1

(
ζi+n (s̃k)

[
F̃k,2
F̃k,3

])
.

(2.5.28)

One should notice that this expression makes use of the following equality [26]:

ζk+n (s̃i) +
1

2
(s̃k − s̃i)3 = ζi+n (s̃k) , for k > i. (2.5.29)

The deflection of the stabilizer with respect to the borehole center is defined as ~δi = [0 δi,2 δi,3] ~I =(
δIi
)> ~I. The components of δIi can be computed as[

δi,2
δi,3

]
:=

[
h̃i,2
h̃i,3

]
−

i∑
k=2

[
〈Θ〉(1) − 〈Θ〉(k)(

〈Φ〉(1) − 〈Φ〉(k)

)
sin(〈Θ〉(k))

]

=
i∑

k=1

(
ζk+n (s̃i)

[
F̃k,2
F̃k,3

])
+

n−1∑
k=i+1

(
ζi+n (s̃k)

[
F̃k,2
F̃k,3

])
+

[
q̃i,2
q̃i,3

]
(2.5.30)
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Non–Ideal Stabilizer Locations

Ideal Stabilizer

C(1)

〈Θ〉(1)

δn,2 =

n
∑

k=2

(

〈Θ〉1 − 〈Θ〉(k)

)

λ(k)

〈Θ〉(i)
C(1)

C(2)

C(i)

C(i+1)

C(n)

〈Θ〉(i+1)

〈Θ〉(n)

Figure 2.5.1: The last stabilizer is centered in the borehole, which defines a deflection for
the last stabilizer as visualized. The drillsting, the non-ideal stabilizers and the
RSS actuator are left out in this figure, which has been taken from [25].

where[
q̃i,2
q̃i,3

]
:=

i∑
k=1

(
λ(k)

[
〈Θ〉(k) − θ0(

〈Φ〉(k) − φ0

)
sin(〈Θ〉(1))

])
+

n∑
k=1

(
ζk (s̃i)

[
〈Θ〉(k) − θ0(

〈Φ〉(k) − φ0

)
sin(〈Θ〉(k))

])

+ ζ2n (s̃i)

[
F̃RSS,2
F̃RSS,3

]
+ ζ2n+1 (s̃i)

[
sin(〈Θ〉(1))

0

]
.

(2.5.31)

The term which is subtracted in the first line of (2.5.30) represents the borehole center with
respect to the reference configuration of the BHA at stabilizer i, visualized by Figure 2.5.1.
By subtracting this term, the deflection with respect to the borehole center can be computed.
This expression can be written concisely as

δ1,2
...

δn−1,2

δ1,3
...

δn−1,3


︸ ︷︷ ︸

δ

= K−1



F̃1,2
...

F̃n−1,2

F̃1,3
...

F̃n−1,3


︸ ︷︷ ︸

Fk

+



q1,2
...

qn−1,2

q1,3
...

qn−1,3


︸ ︷︷ ︸

q

, (2.5.32)

where K−1 is given by the inverse of (2.5.39).

All stabilizers have to comply with Signorini’s contact law, which is an ideal unilateral
contact law [13]. This law prevents the stabilizers from penetrating the borehole wall by
imposing complementarity relations between the contact force and the contact distance. If
the magnitude of the gap between a stabilizer and the borehole wall is denoted with Mg and
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�I2

�I3

δi,2

δi,3
δi

r

R

gi

F̃i

Figure 2.5.2: Visual representation of the gap variable at stabilizer i.

the magnitude of the contact force with MF , then Signorini’s contact law, which should hold
for each individual stabilizer, states that

Mg ≥ 0, MF ≥ 0 and MgMF = 0. (2.5.33)

The magnitudes of the contact forces are contained in a column Λ ∈ Rn−1. The direction of
the contact force is determined by the gap variable gi, for i = 1, 2, . . . , n− 1, which indicates
the closest distance between the borehole wall and the stabilizer i as visualized in Figure 2.5.2.
In the case of a circular borehole, the gap variable gi(δ) is a function of the deflection δi,
which was defined in (2.5.30) and is defined as

gi(δi) := (R− r)−
√
δ2
i,2 + δ2

i,3 for i = 1, 2, ..., n− 1, (2.5.34)

in which R is the borehole radius, r the stabilizer radius and the difference between the two
is the maximal clearance. The directional information of the contact forces is contained in a
matrix W , which is defined as

W =

(
∂g(δ)

∂δ

)>
, (2.5.35)

where g(δ) is a column containing all the gap variables gi. The magnitudes of the contact

forces are contained in a column Λ = [Λ1 . . .Λn−1]>. By combining the directional information
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and the magnitudes, the contact forces can be written as

WΛ =



−2 δ1,2√
δ21,2+δ21,3

. . . 0

...
. . .

...

0 . . . −2 δn−1,2√
δ2n−1,2+δ2n−1,3

−2 δ1,3√
δ21,2+δ21,3

. . . 0

...
. . .

...

0 . . . −2 δn−1,3√
δ2n−1,2+δ2n−1,3


︸ ︷︷ ︸

W

 Λ1
...

Λn−1


︸ ︷︷ ︸

Λ

. (2.5.36)

By rewriting (2.5.32) and the relation F k = WΛ, the deflection can be written as

K∗δ = Q+WΛ, (2.5.37)

with

[
K 0n−1×n−1

0n−1×n−1 K

]
︸ ︷︷ ︸

K?



δ1,2
...

δn−1,2

δ1,3
...

δn−1,3


︸ ︷︷ ︸

δ

=

[
K 0n−1×n−1

0n−1×n−1 K

]


q1,2
...

qn−1,2

q1,3
...

qn−1,3


︸ ︷︷ ︸

Q

+WΛ, (2.5.38)

where

K =


ζn+1(1) . . . ζn+1(s̃i) . . . ζn+1(s̃n−1)

...
. . .

...
. . .

...
ζn+1 (s̃i) . . . ζn+i (s̃i) . . . ζn+i (s̃n−1)

...
. . .

...
. . .

...
ζn+1(s̃n−1) . . . ζn+i(s̃n−1) . . . ζ2n−1(s̃n−1)



−1

. (2.5.39)

The contact forces cannot be calculated by solving a LCP, as done in [26] and [29]. For
an LCP formulation, two relations are needed, namely; (i) a linear equation expressing the
gap’s magnitude Mg as a function of the contact forces’ magnitude Λ and the external forces’
magnitude and; (ii) a complementarity relation as defined in (2.5.33). A necessity is that
both the linear equation and the complementarity relation are written in terms of the mag-
nitude of the gap and forces. The main obstacle to arrive to an LCP formulation is to write
(2.5.37) in terms of the magnitudes, whilst preserving linearity between the magnitude vari-
ables. In [29], the author did derive such a linear equation on magnitude level. In that work,
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however, a square borehole was considered rather than a circular one.

To compute the contact forces for a circular borehole a different approach is used. For a
circular borehole, the relation between the magnitude of the contact forces and the mag-
nitude of the gap is nonlinear. Hence, a nonlinear complementarity problem is considered.
This nonlinear complementarity problem is solved via a proximal point approach which allows
solving with efficient numerical methods. With the proximal point approach, the formulation
of the unilateral contact law is converted into a proximal point formulation [1, 28]. In the
following intermezzo, the concept of a proximal point is explained.

Intermezzo: Proximal Point
Consider a set C which contains all the possible values for a certain variable, which for this
problem are all the non-negative reals: C = R+. Then, the proximal point z = proxR+(x) of a
point x is the closest point from x to the set C, which is formulated as follows:

� if a point x is located in C, then the proximal point z is the point itself, i.e., z = x.

� if a point x is located outside of the set C, then the proximal point z is on the boundary
of C. Then, two cases can be distinguished

– if z is located on a smooth part of the boundary, then z is the proximal point for a
outward ray to the set C starting in z.

– if the point z lies on a non-smooth part of the boundary, then z is the proximal point
for a whole cone of points constructed by the tangents to point z, starting at z.

In the remainder of this section, points z and x have no further meaning, but the concept of
the proximal point formulation is used.

Signorini’s contact law can be written in a proximal point formulation by the expression [28]:

Λi = proxR+ (Λi − rgi) with r > 0. (2.5.40)

By evaluating this expression, one can conclude that this proximal point formulation is the
same as the complementarity relation, namely

� if there is a contact force, the contact force is in the set R+ which means that the
proximal point Λi equals the argument of the proximal point function. For this to be
the case, the term rgi should be zero. This can only be the case if the gap variable is
zero since r > 0 implying Λi > 0 → Λi ∈ interior(R+) → Λi = proxCN

(Λi) → gi =
0 since r > 0,

� if there is no contact force, the proximal point function should map to zero which is
the case for all points −rgi ≤ 0. Since r > 0, this should imply that gi ≥ 0. Λi = 0→
0 = proxCN

(−rgi), r > 0→ 0 = proxR+(−rgi), r > 0→ gi ≥ 0 since r > 0.

Thus, the contact forces in this nonlinear complementarity problem can be computed using
the proximal point formulation. In this formulation, the contact forces are calculated using
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the proximal point function (2.5.40), for i = 1, 2, . . . , n − 1, where the input arguments
depends on the gap function defined in (2.5.34) which contains the nonlinearity. The gap
function is subject to the equation for the deflection defined in (2.5.37).

2.6 Borehole Propagation Model

The differential equation governing the propagation of the borehole can be obtained by
combining the model components. From the force equilibrium, defined in (2.5.2) and (2.5.3),
an expression can be found for the forces and moments at the bit after substitution of the
contact forces at the last stabilizer, in (2.5.25). This procedure leads to the expressions

[
F̃0,2

F̃0,3

]
=

−F̃RSS,2 −
n∑
k=1

F̃k,2 + w̃λ sin 〈Θ〉(1)

−F̃RSS,3 −
n∑
k=1

F̃k,3

 (2.6.1)

= − 1

2λ3

(
2λ3 + ∆3 − 3λ∆2

) [F̃RSS,2
F̃RSS,3

]
− 1

2λ3

(
n−1∑
k=1

2λ3 + s̃3
k − 3λs̃2

k

[
F̃k,2
F̃k,3

])

+
1

λ3

(
n∑
k=1

λ(k)

[
〈Θ〉(k) − θ0(

〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

])
+

[
5
8
w̃λ sin(〈Θ〉(1))

0

]
,

[
M̃0,2

M̃0,3

]
=

 −∆F̃RSS,3 −
n∑
k=1

s̃kF̃k,3

∆F̃RSS,2 +
n∑
k=1

s̃kF̃k,2 − 1
2
w̃λ2 sin 〈Θ〉(1)

 (2.6.2)

=
∆

2λ2
(2λ−∆) (λ−∆)

[
−F̃RSS,3
F̃RSS,2

]
+

1

2λ2

(
n−1∑
k=1

s̃k (2λ− s̃k) (λ− s̃k)
[
−F̃k,3
F̃k,2

])

− 1

λ2

(
n∑
k=1

λ(k)

[
−
(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

〈Θ〉(k) − θ0

])
−
[

0
1
8
w̃λ2 sin(〈Θ〉(1))

]
.

The equations for the forces and moments at the bit are expressed in frame ~I. The expression
obtained from the bit/rock interface is expressed in~i. Since the difference between the angles

related to ~I and~i is small, the transformation matrix AIi(Φ, φ,Θ, θ), given in (2.4.3), is close
to identity. Therefore the equations expressed (2.6.1) and (2.6.2) are substituted directly
into (2.6.3) and (2.6.11), without any transformation.

The equation obtained for the moment at the bit ~̃M0 is substituted into (2.4.14), leading
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to the differential equation[
dφ
dξ

sin(θ)
dθ
dξ

]
=

1

Πχ

[
cos(ς) − sin(ς)
− sin(ς) − cos(ς)

]−1 [
M̃0,2

M̃0,3

]
. (2.6.3)

The inverse of the matrix in (2.6.3) is always defined since the determinant is equal to 1
irrespective of ς. Hence, from (2.6.3) can be deduced that dφ

dξ
sin(θ) is determined to be

dφ

dξ
sin(θ) =

n∑
k=1

ak

(
cς

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1) + sς

(
〈Θ〉(k) − θ0

))
(2.6.4)

+
n−1∑
k=1

bk

(
sςF̃k,2 + cςF̃k,3

)
+ c1

(
sςF̃RSS,2 + cςF̃RSS,3

)
+ sςc2 sin 〈Θ〉(1) ,

in which the abbreviations cς = cos ς and sς = sin ς are used, and the term dθ
dξ

is determined
to be

dθ

dξ
=

n∑
k=1

ak

(
cς

(
〈Θ〉(k) − θ0

)
− sς

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

)
(2.6.5)

+
n−1∑
k=1

bk

(
cςF̃k,2 − sςF̃k,3

)
+ c1

(
cςF̃RSS,2 − sςF̃RSS,3

)
+ cςc2 sin 〈Θ〉(1) ,

where,

ak =
λ(k)

λ2Πχ
, (2.6.6)

bk = − s̃k
2λ2Πχ

(2λ− s̃k) (λ− s̃k) , (2.6.7)

c1 = − ∆

2λ2Πχ
(2λ−∆) (λ−∆) , (2.6.8)

c2 =
1

8Πχ
w̃λ2, (2.6.9)

where the contact forces F̃ = WΛ are found by solving the system of equations in (2.5.40)
and (2.5.34), subject to the linear relations (2.5.37). The coefficients in (2.6.6) - (2.6.9) are
similar to [25] when it is assumed that ε = ξ

η
.

The derivative of the average borehole inclinations 〈Θ〉′(i) and azimuths 〈Φ〉′(i) for i = 1, 2, . . . , n,
is given by

d 〈Θ〉(i) (ξ)

dξ
=

Θi−1 −Θi

λ(i)

,
d 〈Φ〉(i) (ξ)

dξ
=

Φi−1 − Φi

λ(i)

, (2.6.10)
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which are the ξ-derivatives of (2.3.2) and (2.3.3).

Expressions for the inclination Θ0 and azimuth Φ0 of the borehole at the bit can be found
by substituting (2.4.4) in (2.4.13) and rewriting these expressions to[

ψ2

ψ3

]
=

1

ηΠ

[
cos($) sin($)
− sin($) cos($)

]−1 [
F̃0,2

F̃0,3

]
. (2.6.11)

In this equation, the inverse of the matrix is always defined since the determinant is equal
to 1. Using this expression, one can derive Θ0 to be

Θ0 =θ0 −
c$F̃0,2 − s$F̃0,3

ηΠ
(2.6.12)

θ0 +
n∑
k=1

āk

(
c$

(
〈Θ〉(k) − θ0

)
− s$

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

)
+

n−1∑
k=1

b̄k

(
c$F̃k,2 − s$F̃k,3

)
+ c̄1

(
c$F̃RSS,2 − s$F̃RSS,3

)
+ c̄2c$ sin 〈Θ〉(1)

and sin(〈Θ〉(1))Φ0 to be

sin(〈Θ〉(1))Φ0 = sin(〈Θ〉(1))φ0 −
s$F̃0,2 + c$F̃0,3

ηΠ
(2.6.13)

sin(〈Θ〉(1))φ0 +
n∑
k=1

āk

(
s$

(
〈Θ〉(k) − θ0

)
+ c$

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

)
+

n−1∑
k=1

b̄k

(
s$F̃k,2 + c$F̃k,3

)
+ c̄1

(
s$F̃RSS,2 + c$F̃RSS,3

)
+ c̄2s$ sin 〈Θ〉(1)

with coefficients

āk =−
λ(k)

ηΠλ3
, (2.6.14)

b̄k =
1

2ηΠ

(
2λ3 + s̃3

k − 3λs̃2
k

)
, (2.6.15)

c̄1 =
1

2ηΠ

(
2λ3 + ∆3 − 3λ∆2

)
, (2.6.16)

c̄2 =− 5w̃λ

8ηΠ
. (2.6.17)

These coefficients are the same as in [25].

To concisely formulate the borehole propagation model, a summary of the leading equations
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is given. The borehole propagation model is given by the set of delay differential equations
namely

dφ

dξ
sin(θ) =

n∑
k=1

ak

(
cς

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1) + sς

(
〈Θ〉(k) − θ0

))
(2.6.18)

+
n−1∑
k=1

bk

(
sςF̃k,2 + cςF̃k,3

)
+ c1

(
sςF̃RSS,2 + cςF̃RSS,3

)
+ sςc2 sin 〈Θ〉(1)

dθ

dξ
=

n∑
k=1

ak

(
cς

(
〈Θ〉(k) − θ0

)
− sς

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

)
(2.6.19)

+
n−1∑
k=1

bk

(
cςF̃k,2 − sςF̃k,3

)
+ c1

(
cςF̃RSS,2 − sςF̃RSS,3

)
+ cςc2 sin 〈Θ〉(1) ,

d 〈Θ〉(i) (ξ)

dξ
=

Θi−1 −Θi

λ(i)

,
d 〈Φ〉(i) (ξ)

dξ
=

Φi−1 − Φi

λ(i)

. (2.6.20)

with coefficients, ak, k = 1, . . . n in (2.6.6), bk, k = 1, . . . , n − 1 in (2.6.7), c1 in (2.6.8), and
c2 in (2.6.9). The output equations of the system, being the inclination and azimuth at the
bit, are derived to be

Θ0 = θ0 +
n∑
k=1

āk

(
c$

(
〈Θ〉(k) − θ0

)
− s$

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

)
(2.6.21)

+
n−1∑
k=1

b̄k

(
c$F̃k,2 − s$F̃k,3

)
+ c̄1

(
c$F̃RSS,2 − s$F̃RSS,3

)
+ c̄2c$ sin 〈Θ〉(1) ,

sin(〈Θ〉(1))Φ0 = sin(〈Θ〉(1))φ0 +
n∑
k=1

āk

(
s$

(
〈Θ〉(k) − θ0

)
+ c$

(
〈Φ〉(k) − φ0

)
sin 〈Θ〉(1)

)
(2.6.22)

+
n−1∑
k=1

b̄k

(
s$F̃k,2 + c$F̃k,3

)
+ c̄1

(
s$F̃RSS,2 + c$F̃RSS,3

)
+ c̄2s$ sin 〈Θ〉(1) .

with coefficients, āk, k = 1, . . . n in (2.6.14), b̄k, k = 1, . . . , n − 1 in (2.6.15), c̄1 in (2.6.16),
and c̄2 in (2.6.17). In both the differential equations (2.6.18) - (2.6.20) as well as the output
equations (2.6.21) and (2.6.22) the contact forces are calculated based on the NCP which is
written as in a proximal point formulation. The proximal point formulation solves simulta-
neously the following set of equations:

Λi = proxR+ (Λi − rgi) with r > 0, (2.6.23)
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gi(δi) := (R− r)−
√
δ2
i,2 + δ2

i,3 for i = 1, 2, ..., n− 1, (2.6.24)

K∗δ = Q+WΛ. (2.6.25)

with K∗ and Qdefined in .

The model which is obtained is a so-called delay differential equations subject to set-valued
force laws for the unilateral contact of non-ideal stabilizers. The delay nature stems from the
fact that the deflection of the BHA depends on the historical values of its orientation. The
unilateral contact law stems from the fact that the stabilizers in the borehole have to comply
with Signorini’s contact law.
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3 Analysis of Borehole Propagation
Model

This chapter presents the analyses of the borehole propagation model that has been devel-
oped in Chapter 2. The first analysis is a verification of the derived model by comparison
with the results in [26] as described in Section 3.1. Recall that [26] is a two-dimensional
model. Subsequently, the effect and validation of the extension to three dimensions is made.
Also the onset of oscillations which potentially could lead to borehole spiraling are discussed
in this section. Then in Section 3.2, the effect of the inclusion of the non-ideal stabilizers is
shown by altering the diameter of the borehole. Lastly, in Section 3.3, a potential use case
of the model is presented by considering a certain actuation path.

In these analyses, a so-called benchmark model is considered, taken from [25]. This model
is a two-stabilizer model, which implies that the BHA has one ideal stabilizer at the end (at
the interface with the drill-string) and one non-ideal stabilizer. The length of the segments is
`(i) = 3.66m, for i = 1, 2. The RSS actuator is located 0.6m behind the bit. The parameters
which characterize the behavior of the BHA are the distributed weight w = 1.08 · 103 N

m
and

the flexural stiffness EI = 7.2 ·106Nm2. The active weight on the bit is chosen in the interval
W ∈ [20, 45]kN. The RSS actuator has actuation limits of ±16kN. The maximum distance
between the stabilizer and the overgaged borehole, referred to as the clearance R?, is the
radius of the borehole R minus the radius of the stabilizer r. The clearance is within the
interval R? ∈ [0.1, 1] · 10−2m. In practice, this clearance varies over the borehole length ξ. In
this analysis, however, a constant clearance over the evolution variable ξ is considered.

Scaling these parameters following the scaling described in Section 2.4.3, leads to a BHA
segment length λ(i) = 1 for i = 1, 2, where the RSS actuation pads are located on ∆ = 1

6

behind the bit. Scaling of the lengths also implies that the scaled maximum clearance is
R̃? ∈ [0.27, 2.7] · 10−3. To reduce complexity, in the analysis, the maximum clearance of
R̃? = 0.01 for the non-ideal stabilizer. Based on the characteristic force F ∗ = 1.61 · 103kN,
the distributed weight on the BHA is determined to be w̃ = 2.45 · 10−3. The active weight,
characteristic force and the parameter choice for the bit yield to the dimensionless group
ηΠ ∈ [3.7, 8.37] · 10−1. The RSS actuation limits scale to be ±10−2. Furthermore, the di-
mensionless parameter ε is defined to be ε = χ

η
which is measure of the relative difficulty

to impose an angular penetration to the bit with respect to a lateral penetration. This pa-
rameter is chosen to be ε = 0.1. An overview of all the (scaled) variables is shown in Table 3.1.
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Table 3.1: The variables and their scaled counterparts used in the analyses.

Description Variable Value [unit]
Scaled
Equivalent

Value

Segment Length `(i) 3.66 [m] λ(i) 1
Position RSS actuation - 0.6 [m] ∆ 1

6

Distributed weight w 1.08 · 103[N
m

] w̃ 2.45 · 10−3

Flexural stiffness EI 7.2 · 106[Nm2] - -
Active weight on bit W [20,45] [kN] ηΠ [3.7, 8.37] · 10−1

Actuation limits - ± 16kN - ±10−2

Maximum clearance R? [0.1, 1] ·10−2[m] R̃? [0.27, 2.7]·10−3

The simulations are done with a numerical scheme in Matlab Simulink. This numerical
scheme is built up based on the derived equations as depicted in Figure 3.0.1. The model
computes the derivatives θ0 and sin(Θ)φ0 of the inclination and azimuth using (2.6.4) and
(2.6.5) and integrates these with respect to evolution variable ξ. The model output equations
(2.6.12) and (2.6.13) are calculated to infer Θ0 and Φ0. Then these values are stored and
used to compute their delayed variants required in the computation of the average inclination
〈Θ〉(i) and average azimuth 〈Φ〉(i). The model makes use of a ODE45 solver with variable
step sizes. This step size is chosen such that the relative and absolute tolerance are met
which are both set at 10−12.

The contact forces are calculated using the proximal point formulation as described in subsec-
tion 2.5.1. Numerically, this is solved using a fixed point iteration. In a fixed point iteration,
the algorithm searches for a solution x such that xk+1 = g(xk) where g(x) is a system of
nonlinear equations. Implementation of this numerical method leads to the Algorithm 1.
One should notice that the proximal point function can be seen as max function of the input
argument Λi − rgi and zero.

3.1 Validation of the model

Validation of the model can be numerically performed by comparing a 2D-scenario taken
from [25] with the simulation results given by the 3D-model. If the parameters ς and $ are
chosen such that the off-diagonal terms in (2.6.3) and (2.6.11) are zero, then the behavior
in the Θ direction is independent from the behavior in the Φ direction and vice versa. This
scenario can be obtained by choosing ς = 0 and $ = 0. Then, considering the (x, z)-plane
should yield the output for Θ0 and the contact forces for dθ

dξ
and ψ2.

The scenario which is considered is a borehole which initially starts vertically, thus Θ0 = 0
[rad] and θ0 = 0 [rad]. Since only the (x, z)-plane is considered, the azimuths are set to zero,
thus Φ0 = 0 [rad] and φ0 = 0 [rad]. At ξ = 1, there is a step in actuator force F̃RSS,2 from 0
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Algorithm 1 Fixed-point iteration to solve the nonlinear complementarity problem for the
case of one non-ideal stabilizer.

Assume Λ = 0
Calculate deflection for Λ = 0 based on (2.5.37)
Calculate gap based on (2.5.34)
if g1 > 0 then

F̃1 = 0
else

Calculate W based on (2.5.36)
iteration variable j = 0
while Λ not converged do

j = j+1
Calculate deflection based on (2.5.37)
Calculate gap based on (2.5.34)
Calculate Λ1 = max(Λ1 − r · g1, 0)
error Λi(j)− Λi(j − 1)
if error < tolerance then

Λi is converged
F̃1 = WΛ

else
Λ1 not converged

end if
end while

end if

θ0,φ0

θ′
0
,φ′

0

∫

〈Θ〉
′

, 〈Φ〉
′

〈Θ〉 , 〈Φ〉

Delay
Θ0,Φ0 Θ,Φ

F̃RSS F̃ F̃

θ0,φ0

〈Θ〉 , 〈Φ〉

F̃RSS

F̃RSS 〈Θ〉 , 〈Φ〉

θ0,φ0

Eq. (2.5.40)

Eq. (2.6.10)
Eq. (2.6.12)

Eq. (2.6.4)

Eq. (2.5.34)

Eq. (2.6.13)

Eq. (2.6.5)

Eq. (2.5.37)

Figure 3.0.1: The setup of the numerical scheme used to compute the response of the borehole
propagation model. In this scheme the columns Θ := [Θ0, . . . ,Θn]> ∈ Rn+1

and Φ := [Φ0, . . . ,Φn]> ∈ Rn+1 account for the delayed borehole inclinations
and azimuths. The parameters 〈Θ〉 := [〈Θ〉(1) , . . . , 〈Θ〉(n)]

> ∈ Rn and 〈Φ〉 :=

[〈Φ〉(1) , . . . , 〈Φ〉(n)]
> ∈ Rn represent the average inclination and azimuths.
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to 2 · 10−2. The simulation is compared for three different scenarios by altering ηΠ. In Fig-
ure 3.1.1, the response of the system is shown for ηΠ = 0.5, ηΠ = 0.2 and ηΠ = 0.05, up to
the borehole length ξ = 10. In [25], is stated that the short length scale response corresponds
to the first unit length in ξ after application of the step in RSS force. In the simulation,
the step in actuation force happens at ξ = 1, which implies that the short length scale is for
1 ≤ ξ < 2. The delay terms Θi and Φi for i = 1, 2, are all constant in the short length scale.
As a consequence, the borehole evolution is then a solution of a non-delay complementarity
system for ξ < 1.

The medium length scale, ranging from 2 ≤ ξλ + 1 starts when the first non-ideal stabilizer
passes through the kink created by the RSS actuation at ξ = 1 and runs until all stabilizers
have passed through this initial kink. For each ξ = s̃i + 1 for i = 1, 2, . . . , n, a stabilizer
passes through the initial kink. The stabilizer induces a new kink in the borehole curvature
at the bit, creating a discontinuity in the inclination (and azimuth). This discontinuity, due
to the geometric feedback, could lead to self-induced oscillations. After all stabilizers have
passed through the kink, its effect diminishes, and the borehole evolves along a borehole with
a constant curvature and asymptotically along a constant inclination [25].

As aforementioned, these simulations are also done in [25] with an identical result which
validates the derived model in this work, at least partially. The simulations and a linear
(local) stability analysis in [25] evidentially show the occurrence of a Hopf-bifurcation de-
pending on the variable ηΠ. A Hopf-bifurcation happens when the first pair of complex poles
passes through the imaginary axis, leading to oscillations in the borehole trajectory being
amplified or suppressed. For this scenario, it has been numerically determined in [25] that
a Hopf-bifurcation happens for a critical value of ηΠ, namely ηΠ? = 0.147, meaning that at
least one pair of complex poles is in the complex right half plane for ηΠ < ηΠ?.

The top plot of Figure 3.1.1, for ηΠ = 0.5 � ηΠ? shows that the oscillations damp out
fast, since no oscillation is observed in the borehole trajectory. This is because the complex
poles are far into the complex left half plane (CLHP). In this case, the non-ideal stabilizer
only has contact with the upper borehole wall since the contact force is smaller than 0.

The middle plot, for ηΠ = 0.2 which is closer to the point where Hopf-bifurcation happens,
shows oscillations which do damp out over the increasing borehole length. These oscillations
are present since complex pair of poles are all located fairly close to the imaginary axis, but
are still in the CLHP. Also in this scenario, one can notice that the stabilizer only contacts
the upper wall, also showing an oscillatory contact force.

The bottom plot shows the scenario where ηΠ = 0.05 � ηΠ?. As a consequence, the
response of the system is growing in an oscillatory fashion. Since bit tilt saturation is not
included in the derived model, this oscillations grows unbounded, which is unrealistic. This
oscillation is the consequence of at least one complex pair of poles being in the complex right

41



3.1. VALIDATION CHAPTER 3. ANALYSIS OF BPM

Figure 3.1.1: Response of the model to a step in RSS force for respectively ηΠ = 0.5, ηΠ = 0.2
and ηΠ = 0.05 and ς = 0 and $ = 0.
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half plane. In the plot of the contact forces, one can see that the stabilizer starts bouncing
between the top and bottom borehole wall. During a bounce between the top and the bot-
tom, the contact force is constant at zero which implies that the complementarity relation
imposed, holds. When the contact forces starts to increase or decrease again, the stabilizer
is in contact with the wall. These oscillations could lead to borehole spiraling. In this sim-
ulations this does not happen since the bit-tilt is not saturated, which allows the bit-tilt to
grow unbounded. If the bit-tilt is saturated, the growth of the oscillations is bounded which
could lead to a limit cycle, which is known as borehole spiraling.

Furthermore, on the short length scale, these simulations show the discontinuities induced
by the stabilizer moving through the initial kink, at ξ = [2, 3] since the step in RSS actuation
force takes place at ξ = 1 and λ(1) = λ(2) = 1. Later on in the response, these discontinuities
vanish if the oscillations also damp out which is the case for ηΠ = 0.5 and ηΠ = 0.2. In the
case where the oscillations start to grow, the discontinuities tend to grow along, which is the
case for ηΠ = 0.05. It can be seen that for these scenarios the azimuth Φ is independent
of the behavior of the inclination Θ. Since there is no external loading in all cases, i.e.,
F̃RSS,3 = 0, this results in the azimuth staying constant at zero.

Both the model derived in this thesis as the simulations in [25], have the same output for the
borehole inclination Θ0 and the contact force F̃RSS,2. Besides that, the model derived in this
thesis is capable of predicting instability correctly based on the parameter group ηΠ, in line
with to the results found in [25]. This is important in order to predict borehole spiraling.
Based on these fact, the model is assumed to be validated, when it concerns the inclination
Θ without bit walk and bit flip.

The next goal of this section is to validate whether the model outputs the correct azimuths
Φ0 and corresponding contact forces F̃RSS,3. The validation is done in a similar fashion, thus
also for ηΠ = 0.5, ηΠ = 0.2 and ηΠ = 0.05. It is assumed that the flexural stiffness of
the drillstring in all directions is the same. Furthermore, the same Euler-Bernoulli equation
applies. Besides that, the external loading in both directions is the same, apart from the
loading due to gravity. Lastly, the step in RSS actuation is similar F̃RSS,2 = F̃RSS,3 = 2 ·10−2.
Together, this should imply that the response in both directions should be identical if the
distributed loading due to gravity is assumed to be zero, i.e., w̃ = 0, under the condition that
ς = 0 and $ = 0. In Figure 3.1.2, it can be seen that it is indeed the case that the behavior
in both directions is identical which implies that the model is validated.

A more involved aspect in the comparison between a 2D model and a 3D model is the
existence of bit walk and bit flip in the 3D model. The bit walk is an imposed angle between
the lateral forces of the bit and the lateral penetration at the bit which implies, for example,
that a contact force F̃2 contributes to the behavior of both the inclination and azimuth.
The bit flip is a change in orientation between the plane in which the moment on the bit
occurs and the plane in which the bit changes orientation. This implies that the behavior of
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Figure 3.1.2: Response of the model to a step in RSS actuation force in both directions, thus
F̃RSS,2 = F̃RSS,3 = 2 · 10−2 where w̃ = 0.

both directions do interfere with each other, resulting in a more complex borehole evolution.
In Figure 3.1.3, the same experiment as previously described is conducted, this time with
gravity, i.e., w̃ = 2.45 · 10−3 to show the effect of the bit walk and bit flip. For this scenario,
both the bit flip and bit walk are chosen to be ς = $ = −15 deg. This simulation shows that
the response in both directions is again oscillatory, similar to those in Figure 3.1.1, but now
there forms a phase delay between the variables in the two directions. It would make sense
that this is caused by the bit walk and bit flip since these are the two altered parameters.
A more in depth analysis on the bit walk and bit flip parameters is out of the scope of this
thesis.

3.2 Effect of Non-Ideal Stabilizers

The implementation of the non-ideal stabilizers leads to differences in behavior compared to
borehole propagation models that only contain ideal stabilizers. In the case of an ideal stabi-
lizer, the stabilizer always makes contact with the borehole wall. The inclusion of non-ideal
stabilizers, also introduces different scenarios which each have their different behavior. To
analyze this effect, a simulation is ran of different values for the maximal borehole clearance,
namely R̃? ∈ {0, 1, 1.5, 2} ·10−3. The case where R̃? = 0, implies that the non-ideal stabilizer
has no clearance and thus behaves as an ideal stabilizer. The outcome of this simulation is
taken as baseline. The clearance is varied to see the effect of a larger borehole. The simu-
lation is, again, based on a initially vertical borehole, with a step in FRSS,2 = FRSS,3 from
0 to 0.7 · 10−3 in actuator force at ξ = 1. In Figure 3.2.1, the borehole inclination and the
azimuth at the bit, the bit tilt and the contact forces as a function of ξ, are displayed. By
enlarging the borehole, the BHA tends to bend more. This larger bending is a consequence
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Figure 3.1.3: Response of the model to a step in RSS actuation force in both directions, thus
F̃RSS,2 = F̃RSS,3 = 2 · 10−2. Also ς = $ = −15 deg.

Figure 3.2.1: The effect of varying the maximum clearance to see the effect of the inclusion
of the non-ideal stabilizers.
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F̃RSS,2

Regular borehole

Smaller Borehole

�i1
�I1

ψ2

Figure 3.2.2: This figure visualizes that the BHA tends to bend more when the borehole
radius is larger, i.e., it takes longer for the stabilizer to hit the borehole wall.

of the stabilizer traveling further before it contacts the borehole wall which is visualized in
Figure 3.2.2. This is evidenced by the results in Figure 3.2.1, which show that, for a larger
R̃?, the non-ideal stabilizers contacts the borehole wall for the first time at a larger distance
ξ. Consequently, the bit tilt becomes larger for a larger R̃?, which, in turn, leads to a larger
growth of Θ0 and θ0. For R̃? = 0.0015 and R̃? = 0.002, the BHA behaves as a one stabilizer
model in the intervals at which the contact force is zero. In conclusion, non-ideal stabiliz-
ers affect the response of directional drilling systems significantly. It can both affect the
constant tendency and also the oscillatory response. Keeping in mind that in practice any
stabilizer exhibits more clearance, embedding these elements is of crucial importance in the
understanding of drilling processes.

3.3 Potential Usage of Derived Borehole Propagation
Model

The way in which directional drilling is currently controlled is by sending command mes-
sages, containing desired inclinations, to the RSS based on downhole measurements [19].
This desired inclination is converted into a constant RSS actuation force which is subse-
quently applied by the RSS actuator. Studies have shown that a constant actuation force
could lead to a borehole that evolves with a constant curvature and, asymptotically, with
a constant inclination, under the condition that the length scale is sufficiently long [25]. In
practice, deviations from the desired trajectory can happen for various reasons including rock
variations, bit wear and actuator imperfections. These deviations have to be corrected man-
ually in an open-loop fashion at the drill rig by an operator. In order to take these deviations
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Figure 3.3.1: The long range response to an actuation path. The dashed lines indicate the
actuation path which is applied. This path is different in the two directions.
For this simulation, $ = 0deg].

into account, the borehole propagation model can be used to predict the trajectory of the
borehole under a constant RSS actuation force. This prediction can be used by an operator
or to compute what actuation force should be applied to correct. By a sequence of different
actuation forces, the borehole can be steered into any desired direction.

An RSS actuation path is designed to see what the long time response is to several ac-
tuation steps. This path consist of several sections at which the actuation in one direction is
constant, respectively F̃RSS,2 ∈ {2, 1,−1, 0} · 10−3 and F̃RSS,3 ∈ {−3,−1.5, 1.5, 0} · 10−3. In
Figure 3.3.1, the response to this path of actuation is shown. In this plot, also the actuation
path itself is shown. In this analysis, the borehole clearance is chosen as R = 1 · 10−3. At
each instant where there is a step in actuation which is at ξ ∈ {0, 400, 800, 1200}, the model
shows oscillations which damp out since ηΠ = 0.2 > ηΠ? with ηΠ? the critical value of ηΠ
at which the Hopf-bifurcation occurs. After the oscillations have damped out, the borehole
shows a constant curvature as expected from [25]. This simulation shows that the contact
forces change with a increasing borehole length depending on the inclination and azimuth at
that borehole depth. Furthermore, it can be seen that the contact forces tend to decrease
in magnitude during the period of constant curvature. In the last section, where there is no
actuation force, there is also no contact force, implying that the non-ideal stabilizer does not
contact the borehole wall.

In conclusion, the derived borehole propagation model is a function of BHA parameters,
bit parameters, borehole clearance and the RSS actuation force. The model is capable of
predicting the long term behavior of the borehole evolution. Eventually for the purpose of
reaching a desired location in an open-loop fashion, the ‘inverse’ model could be used, that
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takes a desired path or target as input and outputs the RSS actuator force that realizes the
desired path or target. Examples of such scenario’s can be found in [26]. In addition, the
current model could be used to design model-based feedback controllers with the aim to track
a desired path in an autonomous fashion, as done in [7, 19, 27].

3.4 Discussion

This chapter described the analysis which was done with the model. The first step was a
validation step by numerical comparison of a step in RSS actuation force to the 2D-model
of [25]. This step showed that the 3D model can be viewed as two 2D models by choosing
the right bit walk and bit flip. It has been shown that the model behaves exactly the same
as in [25] for the considered scenarios, which validates both the inclination and azimuth di-
rections. Furthermore, it has been shown that the model is capable of predicting the onset
of oscillations depending on the key model parameter for ηΠ. Based on the parameter ηΠ,
these oscillations damp out or grow unbounded, potentially leading to borehole spiraling.
The oscillations grow unbounded, if the bit-tilt is not saturated. Subsequently, by altering
the parameter controlling the maximum clearance between the non-ideal stabilizer and the
borehole wall, the borehole evolution altered both in the constant tendency as in the oscil-
latory behavior. Lastly, the analysis showed that it is capable of predicting the long term
behavior under application of a constant RSS force.
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4 Conclusion and Recommendations

This section describes the conclusions which can be drawn from this thesis based on the ob-
jectives formulated in Chapter 1 and also discusses recommendations for further extensions
and analysis of the model.

4.1 Conclusions

The first goal was to derive a three-dimensional model for borehole propagation. This model
should be an extension of the model B with the inclusion of non-ideal stabilizers. The non-
ideal stabilizer account for a realistic scenario because the size of the stabilizers in general
does not match the size of the borehole radius. The second objective was to perform a nu-
merical study in order to validate the model by comparison with results in [25]. Thirdly, the
goal was to perform a numerical study which predict the onset of oscillations in a 3D scenario.

The results of the first research objective is a borehole propagation model that includes
any number of non-ideal stabilizers. This model is in analytical form, and can predict the
azimuth and inclination as response of system as a function of the actuation parameters.
There are three model components which constitute the borehole propagation model. The
first is a bit-rock interface component which relates the forces and moments acting on the bit
to the rock penetration and bit tilt following from this. The second component relates the
kinematics of the bit to the evolution of the borehole geometry. Lastly, a static BHA model
which relates external loading as well as constraints imposed by the stabilizers to the forces
and moments acting on the bit. These components combined form the borehole propagation
model. The derived model falls in the class of nonlinear delay complementarity systems.
The delay comes from the fact that the the deformation of the BHA depends on the current
and delayed borehole inclinations and azimuth, i.e., the shape of the drilled borehole. The
complementarity relations stem from the fact that the non-ideal stabilizers have to comply
with Signorini’s unilateral contact law.

The main contribution of this work is in the modeling of non-ideal stabilizers in the three-
dimensional case. The calculation of contact forces was previously done by [25] for the
two-dimensional case using the framework of linear complementarity systems. In the three-
dimensional case, non-ideal stabilizers were previously modeled by [29]. The authors, how-
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ever, considered the intersection of the borehole to be square which deviates from the cir-
cular/ellipsoidal shape of a borehole in reality. In order to model non-ideal stabilizers, the
more generic framework of nonlinear complementarity problems is considered. This because,
the magnitude of the gap between the non-ideal stabilizer and the borehole wall does not
attain a linear relationship with the magnitude of the forces experienced by the non-ideal
stabilizer. In a nonlinear complementarity problem, the relation between the magnitude of
the gap variable and the magnitude of the contact forces can remain nonlinear and is com-
pleted by complementarity relations following from Signorini’s unilateral contact law.

The second objective was to validate the derived model by comparison with numerical results
from the two-dimensional model in [25], particularly, the borehole inclination and contact
forces for various scenarios. To compare the 2D model with the 3D model from this work, the
inclination and azimuth direction need to be decoupled. This can be done by choosing the
appropriate values for the bit walk and the bit flip. This way, the 3D model becomes a set
of two 2D models. The model derived in this work predicts exactly the same borehole incli-
nation as the model from [25], which implies that the model for the inclination is validated.
Furthermore, the azimuth direction was validated by comparison to the inclination direction.
With the same external loading, which implies excluding gravity, both the inclination and
azimuth direction should yield the same output variables.This was also proven to be correct
and with that, the model is validated.

The last objective was to perform a numerical study which predict the onset of oscillations
that lead to borehole spiraling. In [25] is stated that self-induced oscillations, for example
by an step in actuation force, can possibly lead to borehole spiraling. To show these self-
induced oscillations, the evolution of the borehole after a step in actuation force is simulated
for different values for a key dimensionless group. These simulations showed the occurrence
of a Hopf-bifurcation based on the location of the pair of complex poles. The presence of this
complex pair of poles is the reason the system starts oscillating and stems from the geometric
feedback that the stabilizers receive from the borehole walls. If the key dimensionless group
is larger than a critical value determined in [25], the oscillations damp out, meaning borehole
spiraling does not occur. If the key dimensionless group is smaller than the critical value,
then the oscillations grow unbounded. In [25], is shown that these unbounded oscillations
converge to a limit cycle with the inclusion of the bit-tilt saturation. The bit-tilt saturation
prevents the oscillations from growing unbounded. In conclusion, the model is able to pre-
dict the onset of oscillations, which either damp out or grow unbounded depending on a key
dimensionless group.

Next, the influence of the non-ideal stabilizer was studied by comparing the response of
the borehole propagation model with non-ideal stabilizer to a model with ideal stabilizers.
Simulations showed that the BHA tends to bend more, because the stabilizer travels longer
before hitting the borehole wall. After the step in RSS is made, it takes longer for the stabi-
lizer to reach the borehole wall which means that the contact forces is zero for a longer period
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of time. As a consequence, the bit-tilt increases for a wider borehole, which leads to a larger
growth of inclination and azimuth. Therefore, it is concluded that the borehole evolution is
significantly influenced by the inclusion of the non-ideal stabilizers.

Lastly, the long-range behavior of the borehole propagation model was studied. It is con-
cluded that the model response tends to an inclination and azimuth that increase/decrease
with an almost constant rate if the RSS actuation force is kept constant.

The borehole propagation model extends existing models by the inclusion of non-ideal sta-
bilizers via the framework of nonlinear complementarity problems. In particular, we showed
that the modeling of non-ideal stabilizers significantly affects the borehole evolution and
are, therefore, crucial for the understanding of the directional drilling processes. One of the
usages of this model is to predict the RSS force required to realize a certain borehole tra-
jectory. Another usage is to serve for model-based feedback controller design with the aim
to accurately track borehole trajectory. One of the usages of this model is to predict what
the actuation force needs to be in order to follow a certain trajectory. The other usage is
to design model-based feedback controllers which could lead the BHA to a target faster and
more accurate.

4.2 Recommendations

The first natural recommendation is to include bit-tilt saturation in the model formulation.
As aforementioned, bit-tilt saturation is an important aspect in borehole spiraling as it allows
capturing borehole spiraling, rather than only predicting the onset, as shown in literature.
The numerical studies show that the oscillations in the inclination and azimuth grow unre-
alistically unbounded, which allows to only partially predict the borehole evolution. With
the inclusion of bit-tilt saturation, the model can potentially also capture the evolution of
steady-state oscillation, related to borehole spiraling. Similar to non-ideal stabilizer, the
bit-tilt saturation is also described by set-valued force laws. Therefore, it is expected that a
similar modeling approach based on nonlinear complementarity problems can be utilized to
model bit-tilt saturation.

The second recommendation for future work is to analyze further what the effect of the
bit walk and bit flip is on the evolution of the borehole. As shown in the numerical studies,
these parameters create a delay between the response of the inclination Θ and the azimuth
Φ. How this delay relates to these variables should be investigated. Besides the effect of the
walk bit and the bit flip, a qualitative analysis should be done to identify classes of solutions
and their stability. This analyses could be done analytically as done previously in literature.

Thirdly, the model should be used in the design of a model-based controller. If the drilling
of a desired path could be done autonomously, this would reduce costs of directional drilling
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since the operator is not necessary anymore. Also this model-based controller could be used
to make directional drilling faster and to avoid the occurrence of borehole spiraling. Then,
the objective should be to robustly track a pre-specified borehole path, whilst rippling and
spiraling is avoided. To design a controller based on a nonlinear complementarity system is
an open challenge.

Lastly, a comparison should be done with field data to further validate the model. In this
comparison, one could see if the model is representative enough to model reality. An impor-
tant aspect of this is the prediction of borehole spiraling. It is important to check whether or
not the model can predict these oscillations correctly, such that they can possibly prevented
by changing the design or the model-based controller. Such a comparison should be done in
cooperation with the industry.
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