
 Eindhoven University of Technology

MASTER

Constraint Based Control for Manipulation in Agro-Robotics

Verhees, E.D.T.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/a9739dcc-84a2-45f2-b6d3-2ec131780235

TU/e Department of Mechanical Engineering
Control Systems Technology Research Group

Constraint Based Control for
Manipulation in Agro-Robotics

Master Thesis

E.D.T. (Elise) Verhees
Student Nr. 0950109

Master Systems and Control
Report Nr. CST2021.056

Supervisors
prof. dr. ir. H.P.J. (Herman) Bruyninckx
dr. ir. M.J.G. (René) van de Molengraft
ir. J.P.F. (Jordy) Senden, PDEng

Eindhoven, Monday 13th September, 2021

February 21, 2020

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis

I have read the TU/e Code of Scientific Conducti.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific
Conduct

Date

…………………………………………………..…………..

Name

…………………………………………………..…………..

ID-number

…………………………………………………..…………..

Signature

…………………………………………………..…………..

Submit the signed declaration to the student administration of your department.

i See: https://www.tue.nl/en/our-university/about-the-university/organization/integrity/scientific-integrity/
The Netherlands Code of Conduct for Scientific Integrity, endorsed by 6 umbrella organizations, including the VSNU, can be found
here also. More information about scientific integrity is published on the websites of TU/e and VSNU

08-09-2021

Elise Verhees

0950109

https://www.tue.nl/universiteit/over-de-universiteit/integriteit/wetenschappelijke-integriteit/
https://www.tue.nl/universiteit/over-de-universiteit/integriteit/wetenschappelijke-integriteit/

Constraint Based Control for
Manipulation in Agro-Robotics

Elise Verhees, Jordy Senden, Herman Bruyninckx, and René van de Molengraft
Department of Mechanical Engineering, Eindhoven University of Technology

Abstract—Robotic solutions in environments with a high
amount of variation and uncertainty require a different con-
trol than mainstream trajectory-based approaches. This paper
integrates guard monitors, the Closed-Loop Inverse Kinematic
(CLIK) method, and Adaptive Gain Adaptive Bias (ABAG)
controllers to achieve a reactive control that is robust against
disturbances. Furthermore, a systematic analysis to identify the
limits of using cobot technology in external force detection and
estimation is provided, including the introduction of Situation
Aware Active Force Sensing (SAAFS) to actively take these limita-
tions into account in this control. The use of disturbance monitors
and SAAFS is experimentally validated through application on
a redundant robotic manipulator, for the agro-robotic use case
of harvesting tomatoes.

I. INTRODUCTION

Within the last decades, enormous progress within the field
of robotics has been made. This has enabled robots to offer
feasible solutions in numerous situations. With appropriate
sensor and actuator technology, robots can execute tasks in
which they have to interact physically with their environ-
ment. These environments can range from factories, where
optimization of the physical interactions is a major design
driver, to environments with a high amount of variations
such as greenhouses (Fig. 1) or hospitals, where safety and
robustness against uncertain and incomplete information are
major challenges.

Fig. 1: A greenhouse is subject to many uncertainties, like
variations in the position, orientation, and geometry of differ-
ent plants.

In agriculture, robots can be used to solve the ever in-
creasing shortage in available human labour and to reduce

high labour costs. This is also apparent from the numerous
companies working on agro-robotic solutions, see Appendix
A for a list of examples. This paper focuses on a particularly
generic use case, namely to make contact with a plant’s stem
and use it to find the connected leaves and crops (Fig. 2). Two
sub-tasks can be distinguished: The former task (#1 to #2 in
Fig. 2) will be referred to as ”ApproachStem”, and the latter
(#2 to #3) as ”FollowStem”. While the list in Appendix A
represents a range of different solutions, the same fundamental
underlying approach is taken: there’s one predefined task to
be executed by one dedicated system, which is often solved
through a trajectory-based method (see Section III). This
paper aims to let go of these restrictions, by recognizing that
reactivity and composability is imperative to creating a robust
system.

Fig. 2: The tomato harvesting use case. The robot approaches
the plant, and then follows the stem of the plant until it reaches
the tomato truss.

The layout of the remainder of the paper is as follows.
First, the problem is defined in Section II, followed by some
related work in Section III. Two main research themes can be
distinguished in this paper: monitor-based control and situation
aware active perception. The proposed control is elaborated on
in Section IV, and the implementation of this, for the tomato
harvesting use case, is explained in Section VI. The required
background information on manipulator kinematics is provided
in Section V. Complementary to the control, perception is
required; an analysis to identify the limits of using cobot
technology in external force estimation is provided in Section
VII. This is followed by suggestions on how to take these into
account, introducing Situation Aware Active Force Sensing
(SAAFS), in Section VIII. This includes an experimental
validation. Lastly, the conclusions and recommendations for
future work are given in Section IX.

1

II. PROBLEM FORMULATION

This section formulates the addressed problem. First, the
term ”task” is elaborated on. Then, some examples of distur-
bances to which the control should be robust against are given.
Lastly, the research questions that are considered in this paper
are introduced.

A. Constrained task control problem

A task can be defined as an objective subject to certain
constraints. The objective usually includes reducing a certain
system error and/or optimising some performance criterion
like time or energy. For the sub-tasks shown in Fig. 2, the
objective includes reducing the distance between the robot
end-effector (EE) and the plant or tomato truss. Furthermore,
the set of constraints that apply is dynamic, i.e. it can change
over the course of the task execution. In general, a robotic
manipulation task compasses different aspects, for example:

T1: Achieving the goal of the task by controlling the
motion and/or forces required accordingly,

T2: Avoiding collisions with known, and possibly also
unknown, obstacles,

T3: Avoiding singular robot configurations as well as
algorithmic singularities,

T4: Ensuring the observability of task-related objects
(through e.g. torque sensors or cameras).

In the remainder of this document, the term sub-task will
be used for T1–T4. These sub-tasks may require different
objectives subject to different constraints, both varying based
on the current state. The extend to which different sub-tasks
can be executed simultaneously is an important topic of this
paper.

B. Uncertainties in the greenhouse

The control to solve the constrained task control problem(s)
as described in the previous subsection, must be robust against
disturbances. Below two examples of disturbances in the
tomato harvesting use case (Fig. 2) are described. Both require
a more reactive method than the mainstream trajectory-based
approaches can offer.

Example 1. Recall respectively the ApproachStem and
FollowStem tasks (Fig. 2). The position of respectively the
plant and tomato truss (goal region) relative to the robot EE
is not exactly known beforehand, because this will vary from
plant to plant and measurement uncertainties occur. �

Example 2. When another plant or object blocks the
current motion of the EE, sub-task T2 is required on top of
sub-task T1. However, this is not necessarily known before
the start of the task execution. Moreover, trajectory planning
fixes all Degrees of Freedom (DoF), which compromises
composability of multiple partial motion specifications [4];
partial task specifications could possibly allow superimposing
T2 on T1. �

C. Research questions

The challenges presented in the previous subsections require
(i) clear definition of (sub-)tasks, (ii) discrete control for the
scheduling of these tasks, (iii) continuous control for comput-
ing control inputs for the robot, and lastly (iv) acquisition of
the right sensor data. This gives rise to the following research
questions that need to be answered to realize the desired
control:

P1: How to formulate an incomplete task specification
(e.g. as required in Example 2)?

P2: How to resolve incomplete task specifications, i.e.
solve redundancy in case of remaining free DoF?

P3: How to combine several task specifications (e.g. as
required in Example 2)?

P4: How to resolve contradicting constraints? In other
words, the opposite of P2, so how to decide what to
do when not enough DoF are available to satisfy all
the constraints?

P5: How to coordinate different tasks (discrete con-
trol): which variables need to be monitored, when
do events need to be triggered, and which state
transitions need to be taken when these events are
generated?

P6: How can the limits of (proprioceptive) sensors be
actively taken into account into the control (T4)?

III. RELATED WORK

For robotic manipulation tasks in controlled world settings,
a lot of research already exists. Most of these approaches are
trajectory-based; [8] gives an overview of path and trajectory
planning algorithms that can be used in the field of robotics.
Generally speaking, first a sensing action is performed,
then a trajectory is calculated, and finally this trajectory
is accurately tracked without any higher level feedback.
This is an effective solution for industrial machines, i.e.
high precision motion control in a controlled world. These
trajectory-based approaches are most often applied blindly
in other contexts too – [2], [3], and [5] use trajectory-based
approaches in agro-robotics usecases – although the needs
in these contexts are very different, due to variation and
uncertainty in the environment: (i) the area of arrival at the
end of a motion is what counts, not the exact trajectory
towards that area, and (ii) during the motion other tasks
should be realised, such as pointing sensors actively in
particular directions. A shift is thus required in the trade-off
between accurate tracking and robustness against disturbances.

Furthermore, trajectory-based approaches often lack
reactivity. [12] introduces a Model Predictive Control
(MPC) based joint velocity controller that modulates the
joint velocity constraints in real-time. MPC has become
a very popular approach to join reactivity to trajectory-
based motion, by re-computing new trajectories every
time ”significantly new” sensor data has been received. In
its Hybrid Constrained Optimization (HCO) form, MPC

2

moreover allows multiple tasks to be computed at the
same time, because the core primitives of MPC, namely
objective functions and constraints, are highly composable.
Although this is a significant improvement with respect
to mainstream trajectory-based approaches, it often easily
becomes computationally complex. To reduce this complexity,
[9], [14], [19], and [10] relax the desired trajectory to a
desired region, and thus minimize a cost function in which the
minimally required output to keep the state within a bounded
zone is calculated. However, in robotics, control is often more
a satisfaction problem than an optimization problem, i.e. until
some constraint is violated, the robot may move without
any interventions of the controller. With this in mind, [1]
introduces a ”lazy” control, to control an anthropomorphic
robotic arm to open a drawer. This control also expands a
trajectory to an acceptable region of motion, and moreover
monitors interaction with the environment, to detect contact
with the drawer, to trigger events that govern the controller’s
behavior. The explicit monitoring of state variables can be
used in a broader sense, to monitor all active constraints, as
is done in [13]. Note however, that the approach given by
[13] is still limited by thinking in terms of moving from A
to B (instead of moving relative to task-related objects). This
paper aims to develop a monitor-based control without this
restriction.

Force feedback is required when the interaction between
the robot and the environment needs to be monitored. This
can be acquired through mounting an external force sensor,
but these are expensive, and in many cases overkill. [11]
reviews model-based algorithms for real-time collision detec-
tion, isolation, and identification that only use proprioceptive
sensors. These methods are used in commercial cobots, for
example to calculate the external wrench on the EE, but in
many configurations such an estimate is not possible (due to
mathematical singularities). This paper tries, where possible,
to make smart use of partial sensor data to circumvent this. In
conclusion, the contributions are formulated as follows:

C1: A methodology to design controllers robust against
disturbances, such as measurement uncertainties, or
non-nominal contacts or motions. The method is
based on two complementary insights: to add a
monitor for each disturbance one wants the task to
be robust against, and to adapt, pro-actively, to the
force sensing capabilities of the robot to reduce the
impact of the expected disturbances.

C2: Experimental validation of C1, on a redundant
”cobot” manipulator realising the tomato harvesting
use case of Fig. 2.

IV. PROPOSED DISCRETE AND CONTINUOUS CONTROL

This section introduces the primary characteristics of the
control: reactivity, limited computational expenses, partial
(motion) specifications, and composability. This constitutes the
first part of C1 and aims to lay the foundation for solving P1–
P5. First, an explanation is given on the concept of guarded

motions [4], which is suggested for the discrete control.
Furthermore, the proposed complementary continuous control
is introduced, and lastly the use of a Closed-Loop Inverse
Kinematics (CLIK) scheme as part of this continuous control,
to solve for the control inputs in a computationally efficient
manner, is suggested.

A. Discrete control: guarded motions & disturbance monitors

Reactivity is increased, with respect to trajectory-based
approaches, by adding a tolerance constraint for each of the
disturbances one wants the task execution to be robust against.
So, the generated motions (see later Subsection IV-B) have a
guard that triggers when one of these tolerances is violated,
so that the discrete control can take the appropriate decision
to react to this disturbance. The input of the discrete control
thus includes (i) guards and (ii) dependency relations, such
as the order in which different (sub-)tasks must be executed,
while the output is the trajectory. All the constrained variables
are monitored in an online fashion. This approach can also
be applied to resolve the problem illustrated by Example 1:
By simply setting the robot EE in motion in the direction of
its goal region, and actively monitoring when it is reached
[1] (while also monitoring disturbances), makes pre-planning
the trajectory unnecessary. The implementation of this will
be discussed in more detail in Section VI-A.

Furthermore, the described use of guarded motions leads
to explainable decision-making, because it can be traced back
based on why specific guards are triggered. Also, a guarded
motion specification allows to only constrain those DoF that
are relevant for creating a good enough behavior (through a
partial motion specification). This implies that not all DoF
have to be specified at the start of execution [4]. Only when
necessary, constraints are enforced, resulting in a tube-like
control. Not constraining the full task space in combination
with run-time re-configurability, generally leaves more options
for the composition of multiple partial specifications. This is
valuable in many situations, including the one in Example 2.

B. Continuous control: Hybrid Constrained Optimization

The continuous control is formulated as a HCO problem,
which is suitable due to the composable nature of the primi-
tives used. The formulation of a HCO problem includes [4]:

• State variables, i.e. the continuous state of the system,
including task space and joint space variables.

• Desired state variables. Not only those that specify the
nominal task of the robot, but also those of the ”back-
ground” tasks, such as optimizing the internal posture of
the robot to maximize its sensitivity to expected contacts.

• Objective function. This represents the desired dynamics
of how the actual state variables must evolve towards
the desired ones. This representation comes in the form
of a ’cost function’ to optimize, taking into account the
constraints below.

3

• Inequality constraints and their tolerances. Not only the
ones connected to the nominal state evolution, but also
one for each of the disturbance monitors.

In the context of the proposed continuous control, hybrid
means that the solver also reacts to monitor events, and then
(possibly) switches its algorithm. The computation of the
solution thus requires:

• Monitors; algorithms that compute the values of the
tolerances, and turn these into events to initiate switching
when necessary.

• Solver; computes the instantaneous control input, based
on the problem formulation as described above.

The next Subsection IV-C elaborates on the solver used.

C. Solver: kinematics vs. dynamics

A CLIK scheme [6] is used to compute the control inputs
(joint velocities or torques) for the robot. CLIK offers a
computationally faster algorithm than a dynamics solver (for
example [15], [17]), because a less complex model is used,
e.g. using unity masses. The resulting motion is expected to
still be good enough, because the required accuracy for the
tasks considered in this paper is relatively low (compared to
e.g. industrial machines). Especially for robots with build-in
gravity compensation; gravity acting on the robot is usually the
biggest contributor to inertial effects. Furthermore, implement-
ing a Jacobian transpose control law [6] in the CLIK scheme
offers a good middle ground between a purely kinematic
solver (no forces or accelerations) and a full dynamics solver,
since control inputs, realising certain virtual forces on the
robot, can still be applied without a very extensive model.
Moreover, often (some of) the dynamics parameters of the
system are either inaccurate or not known at all. In this case,
it simply does not give any performance advantages anymore
to implement a more complex (dynamics) model. Thus, CLIK
and implementing a Jacobian transpose control law offer a
good enough approach for the use case considered in this
paper.

V. BACKGROUND: KINEMATICS

This section aims to provide the reader with some back-
ground information for understanding the continuous control
that is used in this paper. Kinematics is the study of the motion
of bodies, solely based on geometric constraints, i.e. no forces
or accelerations are taken into account. First, the basics of the
kinematic equations of a robot manipulator are summarized.
Then, a quick introduction to quasi-dynamic relations as an
alternative to the purely kinematic equations is given. Lastly,
the concept of CLIK schemes is explained using a simple
example.

A. Manipulator kinematics

A task specification is generally given in Cartesian space.
Therefore, a mapping from Cartesian to joint space must be
made. Given the (n× 1) joint vector q and the (m× 1) task

space vector p, a (static) geometric mapping g between the
two is given by:

p = g(q), (1)

which is also known as the forward kinematics. Eq. (1) can
be differentiated with respect to time to obtain the forward
velocity kinematics:

ṗ = J(q)q̇. (2)

This is the mapping between joint velocity vector q̇ and
task velocity vector ṗ, through the (m × n) configuration
dependent Jacobian matrix J(q). When m = n, it is possible
to invert Eq. (2) to obtain the backward or inverse velocity
kinematics, which can be used to compute the desired joint
velocities.

However, if m < n, a manipulator is said to be kinemati-
cally redundant with respect to its task, and in this case it is not
possible to simply invert Eq. (2). A common way of solving
redundancy is using the Moore-Penrose psuedo-inverse, i.e.:

q̇ = J(q)†ṗ, (3)

which minimizes the joint velocities [18]. Here J(q)†

indicates the pseudo-inverse of J(q), a (n × m) matrix
defined as J† = JT (JJT)−1, where dependency of J on q is
omitted for clarity. However, other solutions than minimizing
the joint velocities may be useful. Moreover kinematic
singularities are not avoided using Eq. (3). [6]

Lastly, when m > n, the system is over-constrained. In
this case it is physically impossible to resolve the motion
of the robot without violating one or more constraints. Thus
contradicting constraints must be weighted or prioritized.

B. Quasi-dynamics

Velocity-resolved schemes using the Moore-Penrose
pseudo-inverse, as described in Subsection V-A, have two
disadvantages: they introduce numerical problems around
singularities, and they are computationally expensive with
their O(n3) numerical complexity (with n being the number
of joints in the robot). The reason for this is that they require
to calculate a matrix inverse. This can be avoided by using
the transpose of the the Jacobian (with O(n2)):

τ = J(q)TF. (4)

Here, a vector of forces and moments F applied at the EE is
transformed to a vector of joint torques τ . Eq. (4) represents
a static relation, meaning it is instantaneous, hence the term
quasi-dynamics. It can be easily derived through the principle
of virtual work. The reader is referred to section 4.10 of [16]
for this derivation.

C. Closed-loop Inverse Kinematics

The motion models mentioned in sections V-A and V-B
are open loop solutions mapping task space variables to
robot space variables. By defining a tracking error which is
consistent with the task, it is possible to close the loop which

4

results in a CLIK scheme. An example of such a scheme for an
unconstrained (redundant) manipulator is given by Fig. 3 [6].
In this figure, xee,d and xee represent respectively the desired
and actual EE position, eee the tracking error, Kee a positive
definite gain matrix, JT

ee(q) the transpose of the EE Jacobian,
and gee(q) the forward kinematics of the robot.

eeexee;d +

−

Kee JT
ee(q)

R

gee(q)

_q q

xee

Fig. 3: CLIK scheme for an unconstrained EE task [6]

The CLIK scheme in Fig. 3, uses the position of the EE to
calculate the tracking error for the feedback control system,
according to the following ”control law” [6]:

q̇ = JT
ee(q)Keeeee. (5)

However, other control laws can be chosen depending on the
task specification, robot control interface, or programmer’s
preference. Note that the term Keeeee in Eq. (5) is equivalent
to a (virtual) force pulling the EE to follow the desired
trajectory.

VI. CONTROL IMPLEMENTATION

This section describes the suggested implementation of the
control introduced in section IV, for the tomato harvesting use
case seen in Fig. 2. It therefore also constitutes the first part of
C1, and presents solutions to P1–P5. First, the implementation
of the guarded motions is discussed. Next, task descriptions for
the two tasks of the tomato harvesting use case are elaborated
on, followed by the CLIK scheme for the continuous control.

A. Finite State Machine

Guarded motions, as described in Section IV-A, can be
implemented through a Finite State Machine (FSM), with a
guarded motion specification in each state. An FSM for the
tomato harvesting use case is provided in Fig. 4. On a lower
level, one state in this FSM can be implemented as another
FSM itself. The need for this becomes apparent when different
sub-tasks (Section II-A) of the task need to be coordinated,
for instance as required in Example 2. When multiple sub-
tasks, that require the same resources, need to be executed
(partially) simultaneously, the standard FSM can be extended
to a Petri Net [4]. A Petri net contains tokens, that enable
transitions to multiple states, or places. When constraints
are contradicting, inconsistency is solved by prioritization
based on the dependency relations (Subsection IV-A). E.g., in
Example 2, safety (T2) has priority over progressing towards
the plant/truss (T1).

Fig. 4: High level FSM for the tomato harvesting use case.
The implementation of the grey states is outside the scope of
this paper. For the first task, a force constraint to detect the
stem is proposed. Similarly, for the second task, another force
constraint to detect the peduncle is proposed. Once a guard is
satisfied, the task execution continues to the next task or state.

B. Task descriptions

An example of a (partial) task description for respectively
the ApproachStem and FollowStem task is provided in this
subsection. In Fig. 4 these task descriptions live in their
respective state.

Task description 1: The first task is depicted in Fig. 5. The
approximate location of the point on the stem closest to the
robot is assumed to be known from a perception skill that falls
outside the scope of this paper. Furthermore, the assumption
is made that this point is located below the tomato truss. The
initial pose of the robot EE is assumed to be similar to the
pose shown in Fig. 5. Translation in the direction of the plant
is simply generated based on the delta in position between the
EE and the output of the perception skill, through Fig. 7 (next
subsection), instead of calculating some optimal solution.

Fig. 5: ApproachStem task: approaching the tomato plant with
the EE is not restricted to a certain path (in 6 DoF task space),
so the desired path is relaxed to a desired region or tube.
Possible (position) paths are displayed by the dashed blue
arrows. The guard indicating that the task is completed, a
force felt due to contact with the plant, is shown by the orange
dashed arrows.

The robot motion is subject to a set of constraints. Firstly,
the higher level force guard indicating contact with the plant
(see Fig. 5). Furthermore, bounds on the orientation of the
EE with respect to the plant are enforced, such that at the
end of the task, the gripper is faced towards the stem of the

5

plant correctly. However, the constraints on the orientation
are position dependent (no effort has to be wasted on this
when the EE is still relatively far away from the plant). Also,
bounds on the position of the EE are chosen based on the
lay-out of the greenhouse: the plant spacing, row spacing, and
height of the stem and trusses. These environment dependent
variables are given in Table I, for a standard Dutch (vine
tomato) greenhouse.

TABLE I: Greenhouse geometry

Property Value

Plant spacing 45 [cm]
Row spacing 1.6 [m]
Height (max. ripe truss) 0–1.8 [m]

Task description 2: The second task is depicted in Fig. 6. At
the beginning of the task, the EE is located where it was at the
end of the ApproachStem task, which is assumed to be below
the tomato truss. Translation in the direction of the truss can
thus be generated by moving the EE upwards. Furthermore,
following the stem, without damaging it, requires controlling
the interaction force between the EE and the plant. So contrary
to the ApproachStem task, for this task, a continuous feedback
loop is closed between external force on the EE and the
position of the EE, which influences motion in the plane
perpendicular to the direction of the velocity of the EE, such
that:

Fmin < Fexternal,⊥v < Fmax (6)

Fig. 6: FollowStem task: for approaching the tomato truss with
the EE, through following the stem of the plant, the path may
be within a certain region (which is moreover subject to force
constraints, to prevent damaging the stem), for example as
indicated by the shaded area. A possible path is displayed
by the blue dashed arrow. The guard indicating that the task
is completed, a force felt due to contact with the peduncle
(attachment of the truss), is shown by the vertical orange
dashed arrow.

Other constraints include the higher level force guard in-
dicating contact with the peduncle (see Fig. 6). Furthermore,
there are angular force constraints to limit twisting of the stem

of the plant. Lastly, constraints on the position still apply, due
to the environment and geometry of the greenhouse.

C. Closed-Loop Inverse Kinematics scheme

The proposed control scheme mapping Cartesian space
specifications, which follow from the task descriptions in
Subsection VI-B, to joint space control inputs, is depicted in
Fig. 7. A CLIK scheme, as was introduced in Subsection V-C,
is used. The following ”control law”, note the similarity with
Eq. (4), is implemented:

τd = J(q)TFvirtual(e). (7)

The loop is closed through a virtual force Fvirtual that is
dependent on the system error e. For example, in case of
proportional control, Fvirtual(e) becomes Ke (similar to Eq.
(5)). The virtual force is mapped to desired joint torques τd,
which are sent to the robot. Here, e and thus also Fvirtual

(≤6 DoF in Cartesian space) on the EE do not have to be
position-based, as is the case in Eq. (5). They can even be
based on a combination of motion and/or force constraints in
Cartesian space, as is required for the FollowStem task.

error e
Control

virtual
force F

τd = JT (q)F Robot

torques τd

_p = J(q) _q joint velocities _q

joint positions q

Cartesian velocity _p

pose TTask specification;

Force estimation
measured torques τsensorforce Fext

control

Forward kinematics

external

Desired state vars

Constraints

Tolerances

Monitors

...

Fig. 7: CLIK scheme to compute control inputs τd. The ”Task
specification” block contains all the information (inputs to
the hybrid constrained optimization problem, section IV-B)
required for computing the tracking error and for creating
events to inform the higher level discrete control when to
switch (part of) the task specification.

A 1D controller for each of the specified elements in the
(≤ 6) × 1 error e is implemented, in order to convert e
to a virtual force or torque on the EE in the corresponding
direction. The example in Fig. 3 (section V-C), uses linear
proportional feedback regulators, as defined on the diagonal
of Kee, to try and drive each element in eee to zero. This
paper however, includes tolerances. One way of implementing
this is pre-processing e, as shown in Appendix B. Fig. 8
shows measurement results of the integration of this in linear
proportional control in a CLIK scheme. Here, the robot EE is
sent to a hard-coded position (or region due to the tolerances).
The controller does not react well to a step in the desired
position, so feedforward control is added to gradually increase
the EE velocity, and thus avoid a step in the control signal.

6

Fig. 8: Measurement data of sending the robot EE to a certain
goal region, using a CLIK scheme with linear proportional
controllers (K = 10) with tolerances. The start position is
[0.43 0.00 0.79], and the goal region is [0.6 0.0 0.8] (red
dashed lines) with tolerances of [0.1 0.1 0.1] (red lines), all
in the base frame as given in Appendix C. Within the first
few seconds, the system approaches the goal region. From
5 seconds, the system is excited in the Y direction, and as
can be seen, only when the Y position exceeds the bounds, a
virtual force, which is directly related to the control torques,
is realized (in the Y direction).

Alternatively, an Adaptive Bias Adaptive Gain (ABAG) [7]
controller (Appendix D) can be used, which iteratively updates
its control parameters, and therefore has no difficulties with
a step in the desired position, thus eliminating the need for a
pre-planned trajectory. Some other features of ABAG control
include:
• Scalable solution. Due to the fact that the output is

a factor of the maximum control input instead of an
absolute number, it will not ”blow up” for increasing
errors (in contrast to linear proportional controllers). In
this case the maximum control input is the maximum
virtual force allowed in each DoF.

• Adaptions to the effects of unknown and/or non-modelled
dynamics parameters of the controlled system are per-
formed [7]. While the CLIK scheme used does not
include any models of non-instantaneous dynamic effects,
when certain tolerances are exceeded, the ABAG con-
trollers will compensate for these effects, by adapting the
terms in the ABAG algorithm accordingly.

• Tolerances can be implemented by the explicit dead-zones
that are part of the ABAG algorithm (see Appendix D).

• Very low complexity implementation.
The use of ABAG control is thus advised. Implementation of
this remains future research.

The feedback loop is completed by using data from the
robot state to construct e (grey block in Fig. 7). Using the
forward kinematics g(q) and the manipulator Jacobian J(q),
the EE pose T and Cartesian velocity ṗ can be found based
on measured joint positions and velocities (q, q̇). The external
force on the EE is moreover required for force feedback. This
is further investigated in sections VII and VIII.

VII. FORCE FEEDBACK USING PROPRIOCEPTIVE SENSORS

This section provides a systematic analysis to identify the
limits of using cobot technology in external force detection
and estimation. The system used in this paper is the Panda
redundant cobot manipulator by Franka Emika (FE). The
implementation in the previous section requires some form
of force sensing for two complementary purposes: (i) the
monitoring of force guards, e.g. to trigger the state transitions
as shown in Fig. 4 and (ii) continuous force feedback control,
e.g. to follow the stem of the plant. Here (i) is less demanding,
in terms of (dynamic) force feedback, than (ii). First, the
accuracy of the wrench estimates (combination of a 3 DoF
force and a 3 DoF torque) given by the Franka Control
Interface (FCI) is discussed, followed by an investigation of
the subset of robot configurations in which a wrench estimate
can be provided. Lastly, some conclusions are drawn.

A. External force estimates

The accuracy of the force estimates by the FCI is investi-
gated by attaching a known load to the EE of the robot in some
weight measuring experiments. The FCI provides wrench esti-
mates, for the external wrench acting on the robot’s EE, based
on its proprioceptive sensors. For a detailed explanation of
how these calculations are done, the reader is referred to [11].
Three different loads, of respectively 0.5, 1.0 and 2.0 kg are
attached to the EE of the robot. Measurements are conducted
in two different robot configurations as shown in Fig. 9,
such that possible configuration dependency can be observed.
Configuration 1 is well within the robot’s workspace, while
configuration 2 is more close to its workspace boundary. The
results of the measurements are plotted in Fig. 10.

To help interpret the measurement results, note that the
torque ~τi felt in joint i, caused by (external) force ~F =

7

(a) Configuration 1 (b) Configuration 2

Fig. 9: Configurations in the weight measuring experiments

Fig. 10: Results of the weight measuring experiments. Around
t = 2 seconds, the load is felt by the robot. The estimated
weight on the Y-axes of the plots is calculated by dividing the
estimated external wrench in the vertical direction (i.e. zee in
Fig. 17, Appendix C) by a gravitational acceleration of 9.81
m/s2.

[Fx Fy Fz]T on the EE, with position vector ~ri, is defined
by1:

~τi = ~ri × ~F . (8)

Here ~ri is a vector from joint i, about which the torque is
measured, to the the EE, where the force is applied. The
projection of Eq. (8) on the motor axis in joint i is given
by:

τi = (~ri × ~F) · n̂i, (9)

where n̂i is a unit vector representing the direction of the
motor axis. Provided that ~ri, F , and n̂i are defined in the

1Note that Eq. (8) only considers a force on the EE, while in principle,
also a torque around the EE may be applied. However, in the context of the
current experiment, it will suffice to only include a force, because the weights
will (mainly) merely exert a force on the EE.

base coordinate system (Fig. 17, Appendix C), F only has
one non-zero component, namely Fz . This reduces Eq. (9) to:

τi = ri,yFzni,x − ri,xFzni,y, (10)

which after substitution of Fz = −mg results in:

τi = −ri,ymgni,x + ri,xmgni,y, (11)

where m is the mass of the load and g is the gravitational
acceleration.

Assumption 1. Note that for the configurations in Fig. 9
ri,y << ri,x applies. It is therefore assumed that the second
term in Eq. (11) has the most significant influence on τi. �

When the estimated external torque in joint i increases in
magnitude, i.e. when the torque τi as defined in Eqs. (9)–(11)
increases in magnitude, this has two expected results:
• An offset in the estimated external torque, e.g. due to un-

modelled or incorrectly modelled effects like friction or
gravity compensation, becomes relatively smaller.

• The sensor resolution stays the same, so the ”percentual
change” in joint torque that can be measured improves.

Therefore, the external wrench estimates, which are calculated
through the external torque estimates, are expected to be more
accurate for higher τi, and after taking Assumption 1 into
account, thus for:

H1: Configurations which have, on average, larger
ri,xni,y (for a constant load).

H2: A higher load mg (for a constant configuration).

In order to investigate whether the above holds, the plots
in Fig. 9 are summarized in Table II. For both configurations,
the Steady State (SS) values (at t = 8 seconds) and relative
changes ∆ (value at t = 8 seconds minus value at t = 0
seconds) are provided for each of the loads. Furthermore,
percentual errors are given, which are calculated as:

percentage =
measurement− weight

weight
· 100. (12)

TABLE II: Steady State (SS) weight values and weight
increase (∆) values, of the weight measuring experiments.
Percentual errors are provided between brackets.

Weight Configuration 1 Configuration 2

SS (%) ∆ (%) SS (%) ∆ (%)

0.5 0.58 (16) 0.45 (-10) 0.54 (8) 0.45 (-10)
1.0 1.06 (6) 0.88 (-12) 1.00 (0) 0.91 (-9)
2.0 2.05 (2.5) 1.88 (-6) 1.96 (-2) 1.85 (-7.5)

From Table II, it can be concluded that the SS estimates
in the experiments with configuration 2 are more accurate
(both absolute as well as percentual), which is in accordance
with hypothesis H1. Furthermore, the SS estimates for larger

8

loads are more accurate as well (with the exception of the
experiment with a load of 1.0 kg in configuration 2), as
predicted by H2.

One could argue to look at the weight increase ∆ instead of
the SS values, because at t = 0 the estimated weight is never
actually 0. Also, when comparing the plots for configuration
1 and 2 in Fig. 9, the whole plot for the respective load is
shifted down, which could suggest an offset is present which
must be subtracted. However, the expected configuration
dependency (H1) and load dependency (H2) are not visible
anymore in the ∆ data, except for a decreased percentual error
for larger loads, see Table Table II. A possible explanation
for this is that the suspected offset, which is likely caused
by inaccuracies in the models used, is expected to be both
configuration and load dependent. On top of that, because
both values are subject to model inaccuracies, the error when
subtracting these values could be accumulated. Thus, it is not
possible to simply subtract the value at t = 0 from the value
at t = 8 seconds.

Note that only the accuracy, i.e. the closeness of measure-
ment data to the real value, in this case the known load, as re-
quired for qualitative analysis, is considered in this subsection.
Not the precision, i.e. the closeness of measurement data to
itself or variation, which is required to be of such small mag-
nitude that measurements are not dominated by it. While the
precision is expected to be lower for higher average ri,xni,y
and higher loads (noise is magnified), the measurement data
does not show huge differences. However, because the sensor
data is low-pass filtered, no further comments can be made
regarding this.

B. Configuration dependency

There exist configurations where the FCI does not provide
any external wrench estimates (note that external joint torque2

estimates are always available though). According to FE, this
is an implicit error signal indicating that the robot is near or
in a singular configuration. This is confirmed by looking at
the singular value decomposition of the manipulator Jacobian:
(some of) the singular values are indeed small when the FCI
fails to output external wrench estimates, i.e. the Jacobian
becomes rank deficient. Near singular configurations, bad
numerical conditioning is thus expected to be the cause of
the established limits, which this subsection will further
investigate.

Considering that there are no wrench estimates available
near the singular configurations, the ”inverted” problem is
investigated: in some configurations, giving control inputs τi
that correspond to a(n increasing) virtual force on the EE
does not move the robot. This behavior is expected to have
the same cause as the inability to estimate external forces in

2The torques as measured by the torque sensors, minus torques resulting
from e.g. user input or gravity compensation. In other words, the torques
resulting from external forces acting on the robot.

some configurations and can be easier investigated, because
a known virtual force can be realized on the EE.

An interactive experiment is set up, such that the robot’s
response can immediately be felt by the user. After the robot
is initialized, the user will pull the robot EE away from its
initial position, to which the robot reacts by calculating the
required virtual force on the EE and corresponding control
inputs to counter this, see Appendix E for the controller used.
When the robot is initialized in configuration 1, see Fig. 9,
the virtual force will move the robot EE back as expected.
When the robot is initialized in configuration 3 however, see
Fig. 11, upon perturbing the EE in the X direction (of the
base frame, as depicted in Fig. 17, Appendix C, or Fig. 11),
no resistance is felt, and the robot will not move the EE back.
The remainder of this subsection provides an explanation for
this.

Fig. 11: Configuration 3. The joints (green) are numbered for
easy reference, and the base coordinate frame is drawn.

Eq. (9) still applies, but in this context τi is the torque
about the motor axis in joint i corresponding to the virtual
force F = Fvirt. Again, provided that ~ri, Fvirt, and n̂i are
defined in the base coordinate system, F has one dominant
component, namely Fx,virt, which means that Eq. (9) can be
approximated by:

τi = ri,zFx,virtni,y − ri,yFx,virtni,z. (13)

To simplify the calculations in Eq. (13), joint 6 (see Fig. 11)
is investigated. The reason for this is that for this joint n̂i =
[0 1 0]T , resulting in:

τ6 = r6,zFx,virt. (14)

Joint 6 is moreover close to the EE, limiting error propagation
in the measurement results.

The results of the experiments are plotted in Fig. 12. The
first row shows the desired virtual force as a result of a per-
turbation in the X direction. The corresponding desired joint
torque in joint 6, as calculated by the controller (Appendix
E), is given in the second row. For configuration 3, almost no

9

resulting torque is visible. To understand this, first Eq. (14) is
inverted to:

Fx,virt =
τ6
r6,z

, (15)

of which the result is plotted in the third row of Fig. 12.
This approximation of the virtual force resembles the actual
desired virtual quite well, meaning that the approximation of
Eq. (13) is reasonable, and that the torques in row two may
be approximated by Eq. (14). In the fourth row of Fig. 12,
the force arm r6,z of the virtual force in the X direction is
plotted3. For configuration 3, r6,z is smaller, resulting in a
smaller joint torque through Eq. (14), which thus explains the
low resistance felt in the X direction.

Fig. 12: Results for the configuration dependency experiments.
The left column presents data for configuration 1. The right
column for configuration 3.

To conclude, the following is expected to be true: When
r6,z approaches zero, when applying a virtual force Fvirt,x on
the robot EE, (the part of) τ6 (contributing to direction x) will
approach zero as well, independent of the magnitude of the
virtual force. Based on the same underlying principle, when
r6,z approaches zero, τ6 resulting from an external force Fx

also decreases, and an estimate of Fx becomes less accurate,
until eventually no estimate can be calculated anymore at

3Here r6,z is calculated as the difference between the EE position and the
joint position of joint 6 along the Z-axis of the base frame.

r6,z = 0. This is due to the bad numerical conditioning
resulting from dividing by a small number, which is measured
using an encoder with finite resolution. This can be generalized
to the multidimensional case.

C. Conclusions of sensor analysis

The results shown in Subsection VII-A look promising
for using the proprioceptive sensors in a cobot to measure
external wrenches on the EE. The external wrench estimates
are accurate enough to use in the monitoring of forces to detect
the stem of the plant and the peduncle. A truss, for example,
weighs around 0.4-0.6 kg, which should be detectable based
on the results from the weight measuring experiments. Further
research should be directed towards application specific tests
and dynamic weight measuring experiments. Especially to
investigate whether continuous (so dynamic) force feedback
control, to realize stem following, is possible. Moreover,
both monitoring and feedback control are also complicated
by the results found in Subsection VII-B, because for some
configurations no external wrench estimates can be calculated.
The next section (Section VIII) will suggest a solution to this.

VIII. SITUATION AWARE ACTIVE FORCE SENSING

This section provides suggestions on how to take the con-
figuration dependent force sensing limitations, as identified
in Subsection VII-B, into account in the developed control,
and hereby offers a solution to P6. It thus constitutes the
second part of C1. Also, experimental results showing an
implementation of this for the tomato use case are included in
this section, constituting C2.

A. Partial force sensing

This paper suggests to control the pose of the robot
such that partial force feedback is possible to circumvent the
sensing limitations. Instead of calculating a full 6 DoF wrench
estimate, (some of) the joints are configured such that at least
the relevant partial force feedback is possible. This ”method”
is from now on referred to as Situation Aware Active Force
Sensing, or SAAFS for short. The next Subsection VIII-B
exemplifies this through the tomato use case.

The motivation behind SAAFS is that in many configura-
tions, some relevant partial force estimates can still be calcu-
lated. In these cases, SAAFS eliminates the need to design a
singularity avoidance algorithm. This is advantageous because
singularity avoidance, which in current research is often solved
by designing some kind of artificial manipulability metric
to optimize, might in many cases be unnecessary or even
disadvantageous, due to the increased (computational) effort
and the compromised robot workspace. Note however that
this is a ”spectrum”, i.e. SAAFS in more DoF approaches the
same computational effort and limited workspace as singu-
larity avoidance. This is essentially a trade-off between force
estimation in more DoF and workspace.

10

B. Experimental validation: set-up

The following experiment illustrates SAAFS in combination
with the use of disturbance monitors (as introduced in Subsec-
tion IV-A). The tomato use case (Fig. 2) is imitated using the
experimental set-up with a dummy plant as shown in Fig. 13.
For simplicity, in this experiment, the ApproachStem task is
reduced to a hard-coded4 point-to-point movement, and the
focus lies on the FollowStem task. Continuous force feedback
to follow the stem, in 6 DoF Cartesian space, is not possible
in many configurations (see Subsection VII-B). Therefore,
SAAFS is applied as follows. An extra state, to actively search
for the stem, is added to the FollowStem task, see Fig. 14.
The robot is rotated around its base (joint 1, Fig. 11), and
using the knowledge that a reaction force from the plant is
expected, force feedback, in 1 DoF joint space, in that same
direction is used to monitor whether the stem is still being
followed. Similarly, 1 DoF force feedback (joint 6, Fig. 11) is
used to find the tomato. Here, the assumption is made that no
other disturbances are present. This shows that this method’s
limitations include that solely based on the torque feedback,
it is not possible to determine the source of the force. To
conclude, SAAFS is used because continuous 6 DoF Cartesian
wrench feedback failed to provide sufficient information; the
results can be found in the following subsection.

Fig. 13: Experimental set-up with dummy plant and Panda
cobot. The dummy plant consists of a garden hose with a
mock tomato attached, at a height of 88 cm measured from
the table. The ”stem” is suspended from a height of about
3 times that. Furthermore, because the dummy plant is very
light-weight, a weight of 3 kg is used to pre-tension the ”stem”.
This is enough to keep the stem fixed at both ends during the
experiment. The EE is mounted with rollers that smoothly roll
along the dummy plant stem.

C. Experimental validation: results

This subsection gives the results of the experiment described
in Subsection VIII-B. Fig. 15 shows the nominal case: the
system starts in state 1, and then switches between the two
states until the guard on the torque in joint 6 is triggered,
indicating that the robot EE has reached the tomato. Fig. 16

4In future work this could be determined using for example a camera.

Fig. 14: FSM for the FollowStem task. The grey states are not
part of the experiment. For the torque guards, the estimated
external torque in a joint with joint axis perpendicular to the
direction of the expected force is monitored.

on the other hand, illustrates the influence of a disturbance
moving the stem out of the robot’s grasp: during the third
iteration of state 2 (after 14 seconds), the torque guard on
joint 1 is not triggered, and instead of continuing to state 1
again, a recovery task (which falls outside the scope of this
paper) is to be initiated. Appendix F discusses some more
details that can be seen in the plots, for the interested reader.
These are not considered very relevant for the main aspects
that this experiment illustrates. The results show a successful
implementation of disturbance monitors and SAAFS.

Fig. 15: Results of the FollowStem task, where the task is
terminated after the tomato is reached. State transitions are
indicated by the vertical black dashed lines. The torque guards
on respectively joint 1 and 6 are indicated by the horizontal
blue and orange dashed lines.

IX. CONCLUSIONS AND RECOMMENDATIONS

In this paper, a methodology to design controllers robust
against disturbances is introduced, as stated in C1. So-called
”lazy” control, i.e. allowing the robot to do only what is
sufficient, which leaves more room for robustness, contributes
to C1. The tube-like monitor-based control described in

11

Fig. 16: Results of the FollowStem task, showing a prema-
turely terminated task. The stem is pulled away, so the robot
cannot detect it anymore with its current sensors.

Subsection IV-A, is one way of creating such a lazy control,
because of the ”good enough” approach. For the continuous
control as described in Subsection IV-B, something similar
applies. While the problem is formulated as a constrained
optimization problem, all solutions that fall within the
tolerances as specified in the task specification are acceptable.
In other words, the first feasible control input is chosen.
Lastly, Subsection IV-C is also in line with the lazy vision,
because the kinematics solution is considered to be good
enough. Moreover, reducing computational expenses, which
in itself is also a lazy behavior, is achieved by the described
lazy behaviors. Note that essentially precision is traded for
robustness. This means that lazy control is only desirable in
situations where the latter is more important then the former,
which is the case in this paper. Where precision plays an
important role though, and disturbances are limited, this is
not a great approach.

Furthermore, the results of the experiment given in Section
VIII-C show that monitoring disturbances through smart
interpretation of sensor data can circumvent limitations in
higher DoF force feedback as found in Subsection VII-B.
As for the disturbance monitors, no pre-planned trajectory is
required, because motion can just be generated until a guard
is satisfied (reactivity); in this simple case state 1 and 2 are
repeated until the tomato is found. Significant limitations of
this approach lie in the extend to which task-related objects
can be detected. SAAFS increases the set of configurations
in which task-related force feedback is possible, under the
assumption that no other disturbances act on the used sensors.
Moreover, this does not mean that a 6 DoF force measurement
is possible, it only exploits that in some configurations it is
not necessary to actually have the 6 DoF force measurement.
This means that tasks that need 6 DoF force feedback in all
or many configurations, still require another method.

Future research includes integration of all the aspects of the
proposed control as well as SAAFS on a real (not dummy) use
case. Secondly, SAAFS can be improved by further automating
the control of the pose of the robot in a way that (some
of) the joints are configured such that the relevant partial
force feedback is possible. Also, more research is required
for isolating different sources of disturbances. Lastly, the term
”lazy” needs to be more clearly defined.

X. ACKNOWLEDGEMENTS

I would like to thank my day-to-day supervisor Jordy
Senden for his support during my MSc thesis, his inputs gave
me the opportunity to grow both on a professional as well
as personal level. Furthermore, I want to thank René van de
Molengraft, who continuously helped to keep my research
goals sharp, and reminded me to sometimes take a step back,
and look at my work from a more distant perspective, in
order to prevent derailing from the goal too much. Also, I
would like to thank Herman Bruyninckx, for always critically
looking at my work and giving me valuable feedback and
guidance, which helped me to keep progressing during the
project. Lastly, I want to thank my friends and family, for
encouraging me throughout this project. Especially Pim, who
had to endure me during the most stressful periods, but always
kept patient and supportive.

REFERENCES

[1] J. Avelar, M. J. G.. van de Molengraft, and H. P. J. Bruyninckx. Lazy
control of an anthropomorphic robotic arm, 2019.

[2] C.W. Bac, T. Roorda, R. Reshef, S. Berman, J. Hemming, and E.J.
van Henten. Analysis of a motion planning problem for sweet pepper
harvesting in a dense obstacle environment. Biosystems Engineering,
146:85–97, 2016.

[3] M. Boryga, A. Graboś, P. Kołodziej, K. Gołacki, and Z. Stropek.
Trajectory Planning with Obstacles on the Example of Tomato Harvest.
Agriculture and Agricultural Science Procedia, 7:27–34, 2015.

[4] H. Bruyninckx. Building blocks for the Design of Complicated Systems
featuring Situational Awareness. 2021. Retrieved April, 2021, from
https://robmosys.pages.gitlab.kuleuven.be/.

[5] X. Cao, X. amd Zou, C Jia, M Chen, and Z. Zeng. RRT-based path
planning for an intelligent litchi-picking manipulator. Computers and
Electronics in Agriculture, 156:105–118, 2019.

[6] Pasquale Chiacchio, Stefano Chiaverini, Lorenzo Sciavicco, and Bruno
Siciliano. Closed-Loop Inverse Kinematics Schemes for Constrained Re-
dundant Manipulators with Task Space Augmentation and Task Priority
Strategy. The International Journal of Robotics Research, 10(4):410–
425, 1991.

[7] Antonio Franchi and Anthony Mallet. Adaptive Closed-loop Speed Con-
trol of BLDC Motors with Applications to Multi-rotor Aerial Vehicles.
In 2017 IEEE International Conference on Robotics and Automation
(ICRA), pages 5203–5208, Singapore, 2017.

[8] Alessandro Gasparetto, Paolo Boscariol, Albano Lanzutti, and Renato
Vidoni. path planning and trajectory planning algorithms: A general
overview. pages 3–27, 03 2015.

[9] A. Gonzalez and D. Odloak. A stable mpc with zone control. Journal
of Process Control - J PROCESS CONTROL, 19:110–122, Jan 2009.

[10] P. J. M. de Groot, C. A. Lopez Martinez, M. J. G. van de Molengraft,
and H. P. J. Bruyninckx. Low-cost End-effector and Controller Design
for a Compliant Autonomous Mobile Robot, 2018.

[11] Sami Haddadin, Alessandro De Luca, and Alin Albu-Schäffer. Robot
collisions: A survey on detection, isolation, and identification. IEEE
Transactions on Robotics, 33(6):1292–1312, 2017.

12

https://robmosys.pages.gitlab.kuleuven.be/

[12] Lucas Joseph, Joshua K. Pickard, Vincent Padois, and David Daney.
Online velocity constraint adaptation for safe and efficient human-robot
workspace sharing. IEEE International Conference on Intelligent Robots
and Systems, pages 11045–11051, 2020.

[13] Nicolas Mansard and François Chaumette. Task Sequencing for High
Level Sensor-Based Control. Technical Report 1, 2007.

[14] A. Nikou, C. K. Verginis, and D. V. Dimarogonas. A tube-based
mpc scheme for interaction control of underwater vehicle manipulator
systems. In 2018 IEEE/OES Autonomous Underwater Vehicle Workshop
(AUV), pages 1–6, Nov 2018.

[15] Azamat Shakhimardanov, Herman Bruyninckx, Marieke Copejans, and
Ruben Smits. Popov-Vereshchagin algorithm for linear-time hybrid
dynamics, control and monitoring with weighted or prioritized partial
motion constraints in tree-structured kinematic chains. 2014.

[16] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and
Control. Wiley, 1 edition, 2005.

[17] A. F. Vereshchagin. Modelling and control of motion of manipulational
robots. Soviet journal of computer and systems sciences, 27(5):29–38,
1989.

[18] Daniel E. Whitney. Resolved Motion Rate Control of Manipulators
and Human Prostheses. IEEE Transactions on Man-Machine Systems,
10(2):47–53, 1969.

[19] M. Wuyts. Model Predictive Control Schemes using a Feasible Tunnel
Representation for Motion Planning in an Unstructured Environment.
Master’s thesis, KU Leuven, 2020.

APPENDIX A
CURRENT AGRO-ROBOTIC SOLUTIONS

Table III presents a (non-exhaustive) list of existing au-
tonomous agricultural systems.

TABLE III: Examples of agro-robotic solutions

Project (year) Location Fruit

Abundant Robotics (2015) Hayward, CA, USA Apple
Dogtooth (2014) Royston, England Strawberry
FFRobotics (2014) Bnei Darom, Israel Apple
Fieldwork Robotics (2017) Plymouth, England Raspberry
Octinion (2014) Leuven, Belgium Strawberry
Priva (2016) De Lier, Netherlands Tomato
Ripe Robotics (2018) Shepparton, Vic, Australia Various fruits
Root AI (2018) Somerville, MA, USA Tomato
Saia (2017) Wageningen, Netherlands Tomato
Tevel (2017) Tel Aviv, Israel Apple

APPENDIX B
TOLERANCES AND REFERENCE REGIONS

Including tolerances in the error signals, realizes a reference
region instead of a reference trajectory. The error is multiplied
by 0 while it remains within the specified tolerance, and
by 1 when it is not. Gradual changes in the error, to avoid
discontinuities in the control signal, are realized by using
sigmoid functions. The function used is the logistic function.
The pseudo-code is presented in Algorithm 1. Note that the
tolerance σe can be made variable, e.g. it can be made
dependent on the current position. Furthermore, this algorithm
gives a symmetric tolerance around ek, which can be changed
by using two different σe’s.

Algorithm 1: Implement tolerance, such that when the
error value is within the tolerance the error is zero (for
a 1 DOF system error)
Input : ek // System error
Output : e∗k // System error after tolerance
Parameters: L // Maximum of the S-curve

k // Steepness of the S-curve
σe // Midpoint of the S-curve, tolerance

Variables : fe // Multiply error by this factor

1 // Error scaling factor computation
2 if ek > 0 then
3 fe = L/(1 + exp(−k ∗ (ek − σe)));
4 else
5 fe = L/(1 + exp(−k ∗ (−ek − σe)));

6 // Error after tolerance applied
7 e∗k = ek ∗ fe;

13

https://www.abundantrobotics.com/
https://dogtooth.tech/
https://www.ffrobotics.com/
https://fieldworkrobotics.github.io/
http://octinion.com/
https://meetphil.priva.com/
https://riperobotics.com/
https://root-ai.com/
https://www.saia-agrobotics.com/
https://www.tevel-tech.com/

APPENDIX C
PANDA ROBOTIC MANIPULATOR REFERENCE FRAMES

The reference frames that are used in this document are
given in this appendix. A fixed world frame is attached to the
base of the robot. Furthermore, a frame is attached to the EE.
Both are depicted in Fig. 17.

Fig. 17: Base frame (blue) and EE frame (red)

APPENDIX D
ADAPTIVE BIAS ADAPTIVE GAIN CONTROL

In Algorithm 2 the ABAG controller, as developed by [7],
is presented. The output of the controller is a scaling factor.
This is based on the current and past error signs (the higher the
value for α, the bigger the influence of the past error signs), i.e.
the magnitude of the error is not considered. The scaling factor
is eventually multiplied with the maximum value of the control
input. For a more in-depth explanation of the algorithm, the
reader is referred to [7].

Algorithm 2: ABAG Control Algorithm [7]
Input : ek ∈ R // System error
Output : uk ∈ [0, 1] // Control input scaling factor
Parameters: α ∈ (0, 1) // Error sign filtering factor

ēb ∈ (0, 1) // Bias adaption threshold
δ̄b ∈ (0, 1) // Bias adaption step
ēg ∈ (0, 1) // Gain adaption threshold
δ̄g ∈ (0, 1) // Gain adaption step

Variables : ēk ∈ [−1, 1] // Low-pass filtered error sign
bk ∈ [0, 1] // Adaptive bias term
gk ∈ [0, 1] // Adaptive gain term

1 k = 0, u0 = ē0 = g0 = b0 = 0;
2 while ++k do
3 // Error sign low-pass filtering
4 ēk = αēk−1 + (1− α)sgn(ek);
5 // Adaptive Bias term update
6 bk =sat[0,1](bk−1 + δbhside(|ēk| − ēb)sgn(ēk − ēb));
7 // Adaptive Gain term update
8 gk =sat[0,1](gk−1 + δgsgn(|ēk| − ēg));
9 // Control input scaling factor computation

10 uk =sat[0,1](bk + gksgn(ek));

APPENDIX E
CONFIGURATION DEPENDENCY EXPERIMENT:

FEEDBACK CONTROL LAW

The desired joint torques τd in the configuration dependency
experiment (subsection VII-B) are calculated through Eq.
7 (subsection VI-C), where the virtual force on the EE is
calculated as:

Fvirtual = K(p0 − pc), (16)

resulting in:
τd = JT (q)K(p0 − pc). (17)

Here, Fvirtual is a 3× 1 force vector, K is a 3× 3 diagonal
gain matrix, p0 is a 3× 1 (initial) position vector, and pc is a
3×1 (current) position vector. τd is a 7×1 joint torque vector
and J(q)T is the transpose of the 6× 7 manipulator Jacobian.
The loop is closed around the position5 of the EE, taking the
initial position as reference.

APPENDIX F
FOLLOWSTEM EXTERNAL TORQUE ANALYSIS

This appendix elaborates on some interesting details that
can be seen in the plots of the external torques plotted in
Fig. 15 and Fig. 16, subsection VIII-C. First, The height of
the peaks in the torque in joint 1 during the state 2 iterations
decreases while traveling up the stem. The fake plant is
essentially a string fixed at both ends, meaning that for a
similar displacement, the least force is felt in the middle
of the string. The robot cannot reach above the lower half
of the stem, which could explain the decrease in torque
seen. To strengthen this belief, two similar experiments
are executed. One where the stem is present, and one
where it is removed, see Fig. 18. From this it can be
concluded that the peaks indeed decrease more when there is
interaction with the stem. Except for the last peak, where an
increase is seen (for both experiments); this is probably due
to the fact that the robot has reached the end of its workspace.

Second, the torque in joint 1 increases during the state 1
iterations, creating a ”pre-bump” before the peak in state 2.
Because this bump is also visible in the plots in Fig. 18, it
can be concluded that it is not caused by the dummy plant
dynamics, nor by the roller dynamics. A potential explanation
is thus the robot dynamics. In the upper plot of Fig. 19,
the estimated external joint torque in joint 1 is plotted for
rotating joint 1 in the opposite direction (left instead of right,
when facing the front of the robot). The corresponding lower
plot (in Fig. 19) shows that during the state 1 iterations,
the joint position q1 is more or less constant in both cases,
as expected. The ”bump” in the upper plot is not visible
when rotating left though, which could still imply some
configuration dependency.

5Orientation errors are considered zero in this experiment, because no or
negligible perturbation in the rotational directions is applied

14

Third, there is a slight increase and subsequent decrease in
the torque in joint 6 during the state 1 iterations, so where
the robot EE goes up, i.e. between approximately 6–8, 12–14,
and 18–20 seconds in Fig. 15. This could be caused by inertial
effects from accelerating up.

Fig. 18: FollowStem task with vs. without stem. Note that in
the experiment with stem, no tomato is present, and motion
continues until the end of the robot workspace, similar to the
experiment without stem. Furthermore, the guard on joint 1 is
temporarily turned off, and the rollers are removed from the
EE, i.e. during state 1 there is no contact with the stem.

Fig. 19: FollowStem task, rotating joint 1 in opposite directions
during state 2. To make comparing the plots easier, a mirrored
(in the Y-axis) plot for the external torque in joint 1 when
rotating left is also provided.

15

	Introduction
	Problem Formulation
	Constrained task control problem
	Uncertainties in the greenhouse
	Research questions

	Related Work
	Proposed Discrete and Continuous Control
	Discrete control: guarded motions & disturbance monitors
	Continuous control: Hybrid Constrained Optimization
	Solver: kinematics vs. dynamics

	Background: Kinematics
	Manipulator kinematics
	Quasi-dynamics
	Closed-loop Inverse Kinematics

	Control Implementation
	Finite State Machine
	Task descriptions
	Closed-Loop Inverse Kinematics scheme

	Force Feedback using Proprioceptive Sensors
	External force estimates
	Configuration dependency
	Conclusions of sensor analysis

	Situation Aware Active Force Sensing
	Partial force sensing
	Experimental validation: set-up
	Experimental validation: results

	Conclusions and Recommendations
	Acknowledgements
	References
	Appendix A: Current Agro-Robotic Solutions
	Appendix B: Tolerances and Reference Regions
	Appendix C: Panda Robotic Manipulator Reference Frames
	Appendix D: Adaptive Bias Adaptive Gain Control
	Appendix E: Configuration Dependency Experiment:Feedback Control Law
	Appendix F: FollowStem External Torque Analysis

