
 Eindhoven University of Technology

MASTER

Interpolation and neural network based iterative learning control for coping with new
references without relearning

Erens, G.P.N.

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/72d46112-9a4d-4323-946c-08d43ea66a46

Final Report of the Graduation Project

Interpolation and neural network based iterative learning
control for coping with new references without relearning

Master: Systems & Control
Department: Electrical Engineering
Research Group: Control Systems

Student: G.P.N. Erens
Identitiy Number: 0997906
Thesis Supervisors: Dr. M. Lazar

Prof. Dr. H. Butler
Coach: MSc. M. Bolderman
Date: August 31, 2021

Declaration concerning the TU/e Code of Scientific Conduct
for the Master’s thesis
I have read the TU/e Code of Scientific Conducti.

I hereby declare that my Master’s thesis has been carried out in accordance with the rules of the TU/e Code of Scientific
Conduct

Date

Name

ID-number

Signature

Insert this document in your Master Thesis report (2nd page) and submit it on Sharepoint

i See: http://www.tue.nl/en/university/about-the-university/integrity/scientific-integrity/
The Netherlands Code of Conduct for Academic Practice of the VSNU can be found here also.
More information about scientific integrity is published on the websites of TU/e and VSNU

Version 202007

29/08/2021

Gerben Prins Nicolaas Erens

0997906

i

Contents

I Introduction 1

II Preliminaries 2
II-A System dynamics and control structure . 2
II-B Reference trajectory design . 2
II-C Generating input sequences using ILC . 3
II-D Changing the reference trajectory while using ILC . 5

III Problem formulation 5
III-A Interpolating learned input sequences . 5
III-B Approximating the relationship between reference trajectory and input sequence using neural

networks . 6
III-C Performance metrics used to validate methods . 6

IV Interpolation of ILC sequences 6
IV-A Interpolation of time-phase scaled signals . 6

IV-A1 Results of the Interpolation of Time-Phase Scaled Signals in Simulation 7
IV-B Interpolation of polynomial coefficients . 7

IV-B1 Describing a third-order reference trajectory as a piecewise function of polynomials . . 8
IV-B2 Original references for interpolation of polynomials . 8
IV-B3 Calculation of interpolation coefficients based on polynomial coefficients 8
IV-B4 Results of interpolation of polynomials in simulation . 9

V Feedforward approximation using neural networks 9
V-A Designing the neural network . 9
V-B Results . 9

VI Comparison 10
VI-A Quantitative comparison . 10
VI-B Qualitative Comparison . 11

VII Conclusion 12

1

Abstract - Linear motors are widely used actuators
for high precision systems. This high precision is
achieved through a combination of feedback and
feedforward control. Iterative Learning Control
(ILC) is a form of feedforward control that can
achieve a superior precision on a repeating refer-
ence trajectory. In this work we investigate three
approaches to use learned ILC sequences to ob-
tain a general feedforward controller for reference
trajectories different from the learned trajectories.
Of the three approaches considered in this work,
two focus on interpolating the input sequences
learned through ILC. The first scales the learned
input sequences and the reference trajectories in
time, and then interpolates the time-scaled input
sequences based on their reference trajectories and
the target reference trajectory. The second inter-
polation approach splits a reference trajectory into
segments that can be described by a polynomial
and then interpolates the learned input sequences
based on the polynomial coefficients of the refer-
ence trajectory. In the last approach feedforward
neural networks are used to approximate the re-
lationship between the reference trajectory values
and the input sequence. On a motor model with
a small nonlinear disturbance the interpolation of
time-phase scaled signals achieves a 99.4 % track-
ing error suppression on average with respect to
mass-acceleration feedforward. The interpolation
based on polynomial coefficients achieves a 94.3 %
tracking error reduction. Lastly the neural network
approach achieves a tracking error reduction of
99.5 % These are all favorable results and a close
approximation of the near 100 % tracking error
reduction that is obtained through ILC.

I. Introduction

Linear motors are high precision actuators mainly used
in various semiconductor fabrication and inspection pro-
cesses [1][2]. The main advantages of linear motors over
their rotary counterpart are that they have no mechanical
limitation on velocity and acceleration in the form of
gears or belts and that their mechanical simplicity results
in higher reliability, longer lifetime, less wear, and less
maintenance required.

To achieve precise tracking with linear motors a com-
bination of feedback and feedforward control is used.
The feedback controller compensates for the disturbances
encountered during the operation of the motor and the
feedforward controller compensates for the reference and
disturbances that can be calculated before it affects the
output, which significantly improves performance when
compared to only feedback control [3]. In this work we
will look at a specific strategy for feedforward control:
Iterative Learning Control (ILC). ILC achieves superior
performance by iteratively updating an input sequence
for a repeating reference trajectory. In doing so ILC can

achieve high performance despite large model uncertain-
ties and repeating disturbances [4][5].

While an input sequence obtained using ILC can result
in a low tracking error on the reference it was learned
for, this input sequence does not work for any other refer-
ence trajectories. Not only does it not provide the inputs
necessary to track the new reference, it still provides the
inputs required for an old reference trajectory, resulting
in a feedforward input sequence that is detrimental to
performance [6]. For this reason anytime the reference
changes, the ILC should be reinitiated and relearned. This
is an expensive and time-consuming process during which
the plant can not operate. Therefore we aim to formulate
a general feedforward controller for a range of references,
adapting the ILC generated feedforward sequences as sim-
ple and as fast as possible.

Interpolation between ILC learned input sequences has
been done already in [7]. Here the interpolation is done
between learned inputs based on a slowly changing model
parameter. The choice of interpolation coefficients bears
similarities to gain scheduling control, with common op-
tions given in [8].

A different interpolation has been done in [9], where
the learned ILC input sequence is assigned to a period
of constant jerk. By shifting this period in time and
flipping the sign of the input a set of third order reference
trajectories could be made.

Instead of directly interpolating the data a set of basis
function can also be used. Using an adaptation of the
norm optimal ILC algorithm the interpolation coefficients
of the basis functions are learned instead of the input
sequence [10]. Interesting choices for basis functions are ra-
tional basis functions [11] and FIR models [9], which both
approximate a model inverse using the ILC algorithm.

A different idea is to approximate the relationship
between the reference trajectory and the feedforward in-
put sequence obtained through ILC. Neural networks are
known to be good approximators [12] and have been used
in control before [13][14]. These approaches have also
been linked to ILC. In [15] a neural network was used to
approximate the relation between a reference trajectory
and the ILC obtained inputs. In [16] an ILC like structure
was used, where a neural network was used as a model
to predict the error in the next time step, and a different
neural network was used to calculate a feedforward input
based on the predicted error.

In this work we develop two methods to interpolate be-
tween input sequences learned through ILC by explointing
knowledge about the reference trajectory.

The third approach is to train a neural network to
approximate the input sequence obtained by using ILC
based on the reference trajectory is implemented. This
approach is taken from [15], because it is an interesting
approach that has been succesfully implemented before,
and should provide a fair benchmark to compare the other
methods against.

The structure of this thesis is as follows. In section II
brief preliminaries about iterative learning control are

2

Table I: Parameter values used in the simulation of the
linear motor model.

m 20 kg
fv 135.75 Ns/m

discussed. The problem, using iteartive learning control
on different references without relearning, is formulated
in section III. In section IV we present two different ap-
proaches using interpolation to construct input sequences
for different references. In section V we present a neural
network as function approaximator to construct the input
sequences. The three presented methods are compared
against eachother in section VI. The conclusion and rec-
ommendation is summarized in section VII.

II. Preliminaries
This section provides the necessary knowledge about the

type of system used, the reference trajectory design, and
iterative learning control.

A. System dynamics and control structure
The methodology introduced is valid for linear systems

subject to partially known and partially unknown non-
linear disturbances. As a guiding example we consider
a coreless linear motor as shown in Figure 1, where
known disturbances are friction forces, and unknown ones
are parasitic forces due to electromagnetics. A simplified
dynamical model is obtained via Newton’s second law of
motion as

ÿ(t) = 1
m

(Fu − fv ẏ(t)) , (1)

where m is the identified mass, and fv is the viscous
friction coefficient. The values used for these parameters
is given in Table I. Fu is the actual input force identified
as a function of the desired input u and the position y

Fu(u, y) = α(y)u+ β(y). (2)

The actual force is different from the desired force due to
force ripple, and is caused by imperfection of the commu-
tation algorithm. This effect is modelled using harmonic
series. For details on the modelling process and α(y) and
β(y) see [17].

This system is controlled in closed-loop by the feedback
controller

Cfb(s) = 320s2 + 6912s+ 2.388× 104

3.029× 10−6s3 + 1.658× 10−3s2 + 0.2315 , (3)

designed in [17]. This controller results in a bandwidth of
10.7 Hz. The full control scheme is shown in Figure 2. A
zero-order hold is present before the system model PME ,
and a sampler is used to obtain the output, but these
are omitted for brevity. The controller is discretized using
zero-order hold and a sampling time Ts = 10−3 s.

The control loop tries to make the system output y
track a reference trajectory r. To do this, the feedback
controller Cfb calculates a feedback input ufb based on the
error signal e, and an eventual feedforward controller Cff

calculates a feedforward input uff . Based on these inputs
and possible disturbances d the system moves, resulting in
an output position y.

In this work a mass acceleration (MA) feedforward con-
troller is implemented as a base line feedforward controller.
The feedforward input uff at time t is calculated as

uff (t) = m a(t), (4)

where m is the identified mass of the plant, and a(t) is
the acceleration of the reference trajectory. The value of
m is the same as the one used in the model, and given
in Table I. An example of the resulting tracking error
when using the mass acceleration feedforward is shown in
Figure 3.

Figure 1: Picture of the coreless linear motor considered
in this work.

Cfb PME

d

Cff

r e ufb

uff

y

−

Figure 2: A basic negative feedback control loop with
feedforward control.

B. Reference trajectory design
The reference trajectories used in this project are third-

order reference trajectories satisfying velocity, accelera-
tion, and jerk constraints [18]. The reference trajectory
consists of a back and forth motion of 0.1 m. An example
of the reference trajectories used is shown in Figure 6.
Since the position step is equal in all reference trajecto-
ries, each reference trajectory r is fully characterized by
parameters p1, p2, and p3, describing maximum jerk, max-
imum acceleration, and maximum velocity respectively.
This approach is in principle applicable for any finite
number of parameters. Such that r = π(p1, p2, p3), with
π : R3 → RN , and N is the amount of samples in

3

Figure 3: Tracking error obtained using mass acceleration
feedforward

a reference trajectory. A parametrized space P ⊂ R3

is defined as P :
∏3

i [Li,Ui] where Li,Ui ⊂ R with
i = 1, 2, 3 are the lower and upper bounds on parameter pi,
describing all reference trajectories of interest. The values
of the lower and upper bounds used in this work are given
in Table II. We define two sets of references, R, T ∈ P,
which are respectively the set of original references ro

used to obtain input sequences via ILC, and the set of
target references rt used to test the effectiveness of the
approaches:

R = {ro,1, · · · , ro,nR
} , (5)

T = {rt,1, · · · , rt,nT
} . (6)

In (5) R consists of 27 references, with their parameters
shown in Figure 4. T in (6) consists of 729 reference
trajectories in P, as shown in Figure 5.

Table II: Lower and upper bounds on reference parame-
ters.

Parameter Lower bound L Upper bound U
Velocity 0.1 m/s 0.2 m/s
Acceleration 1 m/s2 5 m/s2

Jerk 500 m/s3 1500 m/s3

C. Generating input sequences using ILC
The basic ILC structure is shown in Figure 7. The

system is controlled by a feedback controller Cfb and a
feedforward input sequence uff stored in memory. For an
iteration of a reference trajectory, all tracking errors will
be stored in memory and will be used after the iteration
to update uff for the next iteration.

The ILC approach used in this project is model inverse
ILC [19]. This approach is more reliable to tune using the
inverse of the linear model, than the manually tuning of
a P(I)D-type ILC. This approach is less memory intensive
than a design based on the lifted system form such as
quadratically optimal ILC, which uses matrixes of size N×
N for both the system model and the cost function [4].

In this case the update rule for the input sequence uff

is given as
uff,k+1 = Q (uff,k + Lek) , (7)

Figure 4: The reference parameters of R shown in
space P.

Figure 5: The reference parameters of T shown in
space P.

0 0.5 1 1.5 2 2.5

Time [s]

0

0.02

0.04

0.06

0.08

0.1

R
e
fe

re
n
c
e
 p

o
s
it
io

n
 [
m

]

Figure 6: Example of a reference trajectory used to visu-
allize the results of the different approaches.

where k is the iteration index, ek is the tracking error, L
is a learning filter, and Q is a robustness filter. Assuming
the reference rk = 0, we can use the transfer function
from feedforward input to tracking error of a system PME

controlled in closed-loop by controller Cfb,

ek = −PME

1 + PMECfb
uff,k, (8)

which is the negative of the process sensitivity. We can

4

MEMORY

Cfb

MEMORY

PMEd

ILC update rule

Calculated offline between iterations

r e ufb

e uff

uff

uff

y

−

Figure 7: Control loop structure when using ILC as a
feedforward controller.

elimite uff :

ek+1 = −PME

1 + PMECfb
uff,k+1, (9)

= −PME

1 + PMECfb
Q (uff,k + Lek) , (10)

= Q

(
1 + −PME

1 + PMECfb
L

)
ek. (11)

This shows the propagation of the error signal from run
to run. Convergence will take place if:∣∣∣∣∣∣∣∣Q(1− PME

1 + PMECfb
L

)∣∣∣∣∣∣∣∣
∞
< 1. (12)

This makes the inverse of the process sensitivity L =
1+PMECfb

PME
seem like a good candidate. Since the process

sensitivity is normally strictly causal, this inverse is non-
causal. This is not a problem, since the whole error signal
is known already, so it can be evaluated noncausally. If
the process sensitivity contains non-minimum phase zeros
there is a problem, since the inverse will be unstable. In
that case a stable approximate inverse is used, such as
the ZPETC or ZMETC [20][21]. The robustness filter Q is
designed such that the inequality (12) is satisfied even with
approximate inverse, and such that high frequent noise is
filtered out of the input. Non repeating disturbances can
be handled by adding a scaling factor the learning filter
L = α

1+PMECfb

PME
, where α ∈ (0, 1]. This results in inputs

that are based more on the average error over multiple
iterations, with a higher α learning more quickly, and a
lower α resulting in a better averaging and less effect of
nonrepeating disturbances.

In this work the design was as follows:

• The discretized version of the plant

PME(z−1) = 2.494× 10−8z−1 + 2.489× 10−8z−2

1− 1.993z−1 + 0.9932z−2

• The discretized version of the feedback controller

Cfb(z−1) =

8.128× 104z−1 − 1.608× 105z−2

+ 7.954× 104z−3

1− 2.52z−1 + 2.098z−2 − 0.5785z−3

• α = 0.8
• Q is a second order butterworth lowpass filter with a

breaking frequency of 300 Hz

Q(z−1) = 0.3913 + 0.7827z−1 + 0.3913z−2

1 + 0.3695z−1 + 0.1958z−2

• The process sensitivity PME

1+PMECfb
is nonminimum

phase, making the resulting learning filter stable.
Thus it was not neccesary to use a stable approxi-
mation of the inverse.

This method of ILC is used on all reference trajectories
in R and T for 20 iterations, converging to an input
sequence. These input sequences are used to construct 2
sets. The set of input sequences learned for the original
references:

UR = {u∗o,1, · · · ,u∗o,nR
}, (13)

which is used to generate new input sequences. The set of
input sequences learned for the target references:

UT = {u∗t,1, · · · ,u∗t,nT
}, (14)

which is only used to validate the methods used, and is
not used by the methods as a basis to generate new input
sequences from.

The input sequence obtained for the reference shown
in Figure 6 is plotted to visualize a typical result in
Figure 8. Applying this input to the system model resulted
in the tracking error shown in Figure 9. The maximum
tracking error during the motion is 4.54× 10−8 m, which
is significantly smaller than the maximum tracking error
with mass acceleration feedforward of 8.00× 10−4 m.

0 0.5 1 1.5 2 2.5

Time [s]

-150

-100

-50

0

50

100

150

In
p
u
t
[N

]

Figure 8: Input sequence learned using ILC on a reference
trajectory.

5

0 0.5 1 1.5 2 2.5

Time [s]

-5

0

5

T
ra

c
k
in

g
 e

rr
o
r

[m
]

10
-8

Figure 9: Resulting tracking error when using the input
sequence obtained through ILC.

D. Changing the reference trajectory while using ILC
ILC is a very powerful control technique, generating

inputs for close to perfect tracking in a few iterations,
but it does come with a big drawback: if your reference
trajectory changes, the learned feedforward input sequence
is not correct for the new reference trajectory. An example
of this is given for the situation in which the reference
changes to one with a higher constant velocity as in
Figure 10. Figure 11 shows that using an input sequence
obtained with ILC on a different reference trajectory can
result in a higher average tracking error, than not using
feedforward control at all.

0 1 2 3

Time [s]

0

0.02

0.04

0.06

0.08

0.1

P
o

s
it
io

n
 [

m
]

Trajectory 1

Trajectory 2

Figure 10: The two references used for visializing the
effect of changing references on ILC.

5 10 15 20

Iteration

0

1

2

3

4

5

R
o

o
t

m
e

a
n

 s
q

u
a

re
tr

a
c
k
in

g
 e

rr
o

r
[m

]

10
-4

Base error reference 2

Base error reference 1

Trajectory Change

Figure 11: Error over iterations when changing the
reference trajectory.

III. Problem formulation

While using an ILC as feedforward controller results in
near-perfect tracking on a learned reference trajectory it
is not beneficial for slightly different reference trajecto-
ries. Obtaining an ILC input sequence on every possible
reference trajectory in parameter space P is not a viable
approach, but it would still be desirable to have ILC like
performance for all reference trajectories in P. Therefore
investigating a method to construct an input sequence
resulting in ILC like performance for references in P based
on a finite amount of input sequences obtained through
ILC on references in P would be interesting. This results
in the main problem considered in this thesis.

Problem 1 (Find a generalized feedforward controller):
Construct a function f : (RN×1,RN×nR ,RN×nR)→ RN×1

such that
û = f(rt, R, UR), (15)

which should generate a feedforward input sequence û for
a target reference rt ∈ P based on learned ILC inputs UR

and the corresponding reference trajectories in R.
In this work we approach this problem in three different

ways:
• Two methods for interpolating learned input se-

quences.
• One method approximating the relationship between

reference trajectories and the input sequences ob-
tained from ILC using neural networks.

A. Interpolating learned input sequences

The first way of tackling this problem is to use the
reference trajectories in R and the set of input sequences
learned through ILC UR, and interpolate between the
input sequences UR to create a new feedforward û. This is
easier said than done, as it introduces two new problems.

The first problem is practical. Due to different velocities,
accelerations, and jerk two different trajectories might not
have the same length or might be behaving differently at
the same time step (one might be accelerating while the
other is moving at a constant speed). For the interpolated
input sequence to be sensible the behaviour of the signals
to be interpolated should be the same.

Problem 2 (Interpolating signals with different amounts
of samples): Construct a function h:

xo,s = h(xo, xt), (16)

where h maps an original signal xo to a new signal xo,s,
which matches a target signal xt in length and behaviour
in terms of constant velocity, acceleration or jerk.

The second problem is an optimization problem. Since
we want to interpolate inputs such that the approximation
is as close as possible to the input obtained through ILC,
without knowing the true input obtained through ILC.

Problem 3 (Calculating the interpolation coefficients):
Calculate interpolation coefficients stacked in a vector

6

[k1(t), k2(t), · · · knR
(t)], sucht that the input approxima-

tion is given by:

û(t) =
∑

i

ki(t)u∗i (t) (17)

such that the approximation û is within a small bound ε
of the ILC input u∗:

||û− u∗||2 ≤ ε. (18)

B. Approximating the relationship between reference tra-
jectory and input sequence using neural networks

A different approach from analytically calculating a new
feedforward input sequence for a reference rt would be to
approximate the relationship between reference trajectory
and input sequence. Feedforward neural networks can
approximate any continuous function with arbitrary accu-
racy within a domain [12]. We want to use this property
to approximate the relationship between the reference
trajectories ro and the input sequence obtained through
ILC u∗o. Then this relationship is used to approximate new
input sequences û for a target reference trajectory rt ∈ P.

Problem 4 (Create a neural approximator based on
obtained ILC data): Use the reference data ro and the
calculated ILC input sequences u∗o to obtain a relationship
g minimizing the approximation error

nR∑
i=1
||uo,i − g(ro,i)||2. (19)

This relationship can then be used for nonlearned rt ∈ P
to construct an approximate input sequence

ût = g(rt). (20)

C. Performance metrics used to validate methods
The developed methods are tested against all reference

trajectories and learned input sequences in the target set
T . For each of the methods, an example of the differ-
ence in input sequence compared to the sequence learned
through ILC, and the resulting tracking error compared
to the tracking error obtained through ILC is shown. This
reference trajectory is shown in Figure 6, and the input
sequence obtained through ILC is shown in Figure 8.

We also define four key metrics, summarizing the per-
formance of a method for a certain reference, as follows:
• The average approximation of the input sequence:

ζu = max
(

0,
(

1− ||u
∗ − û||22
||u∗||22

)
· 100%

)
. (21)

• The maximum input difference:

∆u,max = max (|u∗ − û|) . (22)

• The root mean square error:

eRMS = ||e||2. (23)

• The average error reduction:

ζ = max
(

0,
(

1− ||e||2
||eMA||2

)
· 100%

)
. (24)

Where e is the tracking error obtained with the
feedforward input sequence, and eMA is the tracking
error with mass acceleration feedforward control.

• The peak error over the signal samples:

emax = max (|e|) (25)

IV. Interpolation of ILC sequences
The following two methods aim to perform interpolation

on the input sequences obtained through ILC on the
learned reference set in order to obtain a new input
sequence for a non-learned reference trajectory.

A. Interpolation of time-phase scaled signals
A third-order reference trajectory can be split into

different phases, categorized by the lowest constant ref-
erence derivative active. This results in position, velocity,
acceleration, and jerk phases. When the maximum values
for reference derivatives p1, p2, and p3 are different, the
duration and starting time of these phases do not match
anymore. For a sensible interpolation, the reference tra-
jectories should be in the same phase at each time step.
A possible way to align the phases is to scale each phase
in time such that the phases’ duration and starting point
match up.

Given a signal x, a function pi is defined, which assigns
a phase to each time index i of a signal x

pi,x : {i ∈ N|1 ≤ i ≤ Nx} → {y ∈ N|1 ≤ y ≤ nphase},
(26)

where nphase is the total amount of phases in a third order
profile and Nx is the length of signal x. A function d is
defined, which assigns a duration to each phase

dx : {i ∈ N|1 ≤ i ≤ nphase} → {y ∈ R+}. (27)

Lastly a function s is defined, which assigns a starting
index to each phase

si,x : {i ∈ N|1 ≤ i ≤ nphase} → {y ∈ N|1 ≤ y ≤ Nx}.
(28)

An algorithm has been developed to scale a signal such
that it matches a target signal in both phase and length.
The steps are given in Algorithm 1, and the algorithm has
been visualized in Figure 12. The algorithm is applied with
the original reference position ro, velocity vo, acceleration
ao, and learned input u∗o of each of the nR original
trajectories. This results in nR sets of time-phase scaled
sequences rs, vs, as, and u∗s . Now that all of the original
signals have the same length, and are in the same phase
for each time step, we can interpolate between the signals.

Given the output of Algorithm 1 the next step is
to calculate the interpolation coefficients. Since the true
input that would be obtained using ILC is not known,
the interpolation coefficients are based on the value of
the reference signal and its derivatives. Due to the scaling
in time of the time-phase scaling algorithm the physical
link between the signals is broken. The scaled velocity is
no longer the first derivative of the scaled position, the

7

Algorithm 1: Time-phase scaling of signals.
Input: An original signal xo, and the phase index

over time of the target signal pit
Output: A time-phase scaled signal xo,s, that is

aligned with the traget signal in terms of
phase profile.

1 Initiate xo,s to be a vector of zeros with the size of
the domain of pt

2 for i = 1 to length(xo,s) do
3 p index = pi,t(i) ; // Find index of current

phase of the target signal

4 γ = do(p index)
dt(p index) ; // Find the scaling ratio based

on durations
/* Find index j of xo to be used as xo,s(i) */

5 jaux1 = i− si,t(p index) ; // Shift with the
starting index in target to align start of the
signal with 0

6 jaux2 = γ · jaux1 ; // Scale with ratio γ

7 j = jaux2 + si,o(p index) ; // Shift with
starting index in original

8 xo,s(i) = xo(round(j)) ; // Ensure integer and
use index

9 return xo,s

O1

Original

Target

O5O4O3O2

T2T1T3

O1 O2 O3 O1 O2 O3 O4

T3 T2T1 T3T1 T2 T4 T5

Scaled
O1O1O5 O2 O3O1 O4O1 O3 O2 O3

round(2/3*5) = round(3.33) = 3 round(4/5*3) = round(2.4) = 2
round(2/3*4) = round(2.67) = 3

Figure 12: Visualization of the time-phase scaling algo-
rithm.

scaled acceleration is no longer the second derivative, and
so forth. For this reason the time-phase scaled values of
the original reference derivatives should be taken into con-
sideration when calculating the interpolation coefficients
in order to obtain a sensible approximation. We allow
for time varying interpolation coefficients, such that we
compute the input û at time i as

û(i) =
[
u∗1,s(i) · · · u∗n,s(i)

]
k(i), (29)

where

k(i) = arg min
k(i)

∥∥∥∥∥∥
rt(i)

vt(i)
at(i)

−
r1,s(i) · · · rn,s(i)

v1,s(i) · · ·vn,s(i)
a1,s(i) · · ·an,s(i)

k(i)

∥∥∥∥∥∥
2

(30)
1) Results of the Interpolation of Time-Phase Scaled

Signals in Simulation: An example of the error between
the interpolated input sequence and the input sequence
obtained through ILC is shown in Figure 13. The resulting
tracking error is shown in Figure 14. As can be seen, the
input is approximated quite well in most phases of the

signal, but the difference between inputs peaks during the
jerk phase. These peaks also cause spikes in tracking error,
which is corrected for by the feedback controller. Because
the time-phase scaling algorithm does not conserve the
physical properties of the signal, the time-phase scaled
input output trajectories are no longer solutions of the
system. This means that the interpolation can at best give
a decent approximation, but can not give a theoretically
optimal result.

The arithmetic mean of all metrics over the references
in T is given in Table III. Interesting to note is that
while the average input is only 98.08 % accurate, the error
reduction with respect to mass acceleration feedforward is
still 99.37 %. This shows that a generalized feedforward
controller can result in accurate tracking, even if it does
not perfectly replicate the ILC input sequences.

Table III: Mean of performance metrics of the time-phase
scaled interpolation.

ζu 98.08 %
∆u,max 10.22 N
ζ 99.37 %
eRMS 1.85× 10−6 m
emax 11.45× 10−6 m

Figure 13: Input error difference ILC and time-phase
scaled interpolation.

Figure 14: Tracking error comparison ILC and time-phase
scaled interpolation.

B. Interpolation of polynomial coefficients
In the interpolation of polynomials approach the aim

is still to obtain an input sequence that will give ILC

8

like performance. Different from the time-phase scaled
interpolation approach, this approach tries to conserve the
physical properties of the reference signal, and we exploit
the fact that all of the seperate phases of the reference can
be described using polynomials.

1) Describing a third-order reference trajectory as a
piecewise function of polynomials: A third-order reference
trajectory can be seen as a piecewise function of third-
degree polynomials. Each of these pieces is one of the
phases discussed in the previous section. Instead of scaling
a signal in time and interpolating for each timestep, we can
calculate the interpolation coefficients of a phase based on
the coefficients of the polynomial describing the position
during the said phase. The input sequence can then be
interpolated using the same coefficients.

This does however not solve the problem of the phases
being of a different length. To solve this we pose a con-
dition on the original reference trajectories to be used for
polynomial interpolation: The duration of each phase of
each original reference has to be longer than the longest
duration of the corresponding phase in all possible target
trajectories. For this reason, the interpolation of polyno-
mials uses the set of original references Rpoly instead of
R.

2) Original references for interpolation of polynomials:
The constraint that each phase of each original reference
needs to be at least as long as the same phase in the
target reference is placed on the original reference set
because otherwise there would be no input data at the
end of the time series. If a phase has m samples in the
target reference, then the first m input samples from each
original input sequence are used, as shown in Figure 15.
To satisfy this constraint the new reference set Rpoly is
defined, with the parameters as shown in Figure 16. Due
to the constraint on the duration Rpoly * P.

Original

Target

*k *k *k

Figure 15: Point selection for polynomial interpolation.

3) Calculation of interpolation coefficients based on
polynomial coefficients: Any phase of a third order po-
sition profile can be fitted as a third order polynomial.

ri(t) = dit
3 + cit

2 + bit+ ai

Figure 16: The reference parameters of the 27 references
in Rpoly, shown with space P.

given at least four original reference trajectories which
coefficients are linearly independent,

r1−nRpoly
(t) =

d1 c1 b1 a1
d2 c2 b2 a2
...

...
...

...
dnR,poly

cnR,poly
bnR,poly

anR,poly

︸ ︷︷ ︸

P

t3

t2

t1

1

where rank(P) ≥ 4,

any third order target reference can be made through a
linear combination of the original references

rt(t) =
[
dt ct bt at

]︸ ︷︷ ︸
pt

t3

t2

t1

1

 (31)

=
[
k1 k2 · · · knRpoly

]
︸ ︷︷ ︸

k

r1−nRpoly
(t), (32)

k = arg min
k

kkT subject to pt = kP (33)

Using this knowledge a target reference trajectory can
be split into the same phases as in section IV-A, and
for each of these phases the polynomial coefficients can
be calculated. The same can be done for the original
references, after which for each phase the interpolation
coefficients ki can be calculated using formula (33).

Using the calculated interpolation weights ki,phase for
each phase an input sequence ûi,phase can be calculated
as

ûi,phase =

 u∗1[t1,i,phase]
...

u∗nR,poly
[tnR,poly,i,phase]

kT
i,phase, (34)

where the used indices are given as

tj,i,phase = [sj(i, phase) . . . sj(i, phase) + dt(i, phase)]
∀j ∈ [1, nR,poly] (35)

and where u∗i is the input sequence obtained after 20
iterations for the references in Rpoly, and for each phase

9

we take as many input values as there are time steps in
the target reference rt for the current phase, starting from
the starting index of the same phase in the corresponding
original reference trajectory.

The benefit of this constraint is that there are always
samples in the original reference and input sequence to use,
and it does preserve the physical properties of the signal.
The downsides are that the origin references in Rpoly are
slower than the target references in P, meaning inputs
are extrapolated, instead of interpolated. Since the final
inputs of a phase are discarded, eventual preactuation for
the next phase is no longer active.

4) Results of interpolation of polynomials in simulation:
An example of the error between the interpolated input
sequence and the input sequence obtained through ILC is
shown in Figure 17. The resulting tracking error is shown
in Figure 18. The arithmetic mean of all metrics over the
729 references in T is given in Table IV.

The interpolation of polynomials does not result in
correct inputs during the switching of phases, resulting in
larger input errors when the reference profile switches from
phase. This can be seen by the spikes in Figure 17. This
is presumably because the tail end of the input sequence
of the previous phase is discarded, causing a discrepancy
between the internal state of the original signals in Rpoly,
and the actual internal state of the system in the target
reference.

Table IV: Mean of performance metrics of the interpola-
tion of polynomials.

ζu 89.19 %
∆u,max 54.04 N
ζ 94.30 %
eRMS 16.46× 10−6 m
emax 120.92× 10−6 m

Figure 17: Input error between ILC and the interpolation
of polynomials.

V. Feedforward approximation using neural
networks

Both interpolation methods take an analytical approach
at constructing new input sequences. In this section a
different kind of approach is taken, where input sequences
obtained through ILC are used to train a neural network

Figure 18: Tracking error comparison ILC and interpola-
tion of polynomials.

approximator, instead of being analytically combined.
This approach is simpler, since it does not require system
knowledge or any new methods. The downside are that
neural networks are not deterministic, there is no one size
fits all recipe for creating good approximators, and not
implementing system knowledge can lead to worse results.

A. Designing the neural network
A feedforward neural network with sigmoidal activation

functions is known as a universal approximator [12]. It is
used to approximate the relation g in

u∗(t) = g(r(t), ṙ(t), r̈(t), ...
r (t)). (36)

An example of this has been implemented in [15]. This
approach has also been implemented in this project to
compare the approach to the interpolation methods. The
neural network structure used in this project is visualized
in Figure 19. It consists of two hidden layers with four neu-
rons with a sigmoidal activation fuction each, and a linear
output layer. This design gave the best consistent results
for the linear motor model in simulation. Other networks
tested consisted of both larger and smaller networks, and
also tried linear and ReLU activation functions.

The neural network is trained using the data from the
27 references in R as input, and the corresponding input
sequences in UR as the desired neural network output.
divided into 70 % training data, 15 % validation data,
and 15 % test data.

Sigmoid

Output:
Linear

1 neuron

Position

Velocity

Acceleration

Jerk

Sigmoid

Figure 19: Structure of the neural network approximator.

B. Results
The trained neural network feedforward controller is

implemented on the model and tested for all reference

10

trajectories in T . An example of the error between the
interpolated input sequence and the input sequence ob-
tained through ILC is shown in Figure 13. The resulting
tracking error is shown in Figure 14. The mean of the four
performance metrics for all 729 trajectories in T is given
in Table V.

Table V: Mean of performance metrics using the neural
network approximator.

ζu 98.20 %
∆u,max 9.35 N
ζ 99.51 %
eRMS 1.42× 10−6 m
emax 6.61× 10−6 m

Figure 20: Input error between ILC and NN generated
input.

Figure 21: Tracking error comparison ILC and NN gener-
ated input.

VI. Comparison
In this section, the different methods are compared.

Firstly their results are compared quantitatively, then the
methods are compared qualitatively.

A. Quantitative comparison
All 3 methods are trained on a basis of 27 original ref-

erences. The neural network approach and the time-phase
scaled interpolation are trained on reference trajectory
set R, and the interpolation of polynomials is based on
original reference trajectory set Rpoly. All 3 methods are
tested on the 729 references in T . The average metrics of

all three methods discussed are presented in Table VI. The
neural network and the interpolation of time-phase scaled
signals performed the best over all metrics, with an input
approximation accuracy of over 98 % on average, and an
average error reduction of over 99 %. Both the methods
perform better than the mass acceleration feedforward.
The interpolation of polynomials method performs not as
well over all metrics but still reduces the error with than
94.30 %.

A few boxplots have been made to visualize how the
mean of the performance metrics over all 729 reference
trajectories in T is distributed. In these plots the red line
shows the median of the data, the box shows the interquar-
tile range, going from the 25th percentile to the 75th,
and the whiskers show the minimum and maximum. The
whiskers have a maximum length of 1.5× the interquartile
range and observations outside the maximum length of the
whiskers are shown separately.

Figures 22 and 23 show the input approximation prop-
erties of the methods. Here we can see that both the neural
network approach and the time-phase scaled interpolation
perform very similarly. Both have a very similar median,
but the neural network approach has a higher spread, mak-
ing it less reliable for input approximation. Figures 25, 24,
and 26 show the tracking performance of the different
methods. We can see here that while the neural network
approach had a higher spread in the input approximation,
the tracking error of the neural network approach has a
smaller spread. Both the neural network approach and the
time-phase scaled interpolation have a similar maximum
in the error reduction ζ, and a similar minimum in the
peak error, but the smaller spread of the neural network
approach makes it such that it is slightly better on average.
We can also see that both methods are better than the
rigid body feedforward for most of the references.

The interpolation of polynomials is not complete and
should take into account the internal state of the system
when switching states. At the moment it does not, and
because of that the performance is not as good as the other
methods or the rigid body feedforward.

Table VI: Comparison methods of multiple reference ILC.
Method: ζu ∆u,max ζ
Time phase scaled

interpolation 98.08 % 10.22 N 99.37 %
Interpolation of

polynomials 89.19 % 54.04 N 94.30 %
Neural networks 98.20 % 9.35 N 99.51 %
MA feedforward - - 0 %

Method: eRMS emax
Time phase scaled

interpolation 1.85× 10−6 m 11.45× 10−6 m

Interpolation of
polynomials 16.46× 10−6 m 120.92× 10−6 m

Neural networks 1.42× 10−6 m 6.61× 10−6 m
MA feedforward 296.63× 10−6 m 619.28× 10−6 m

11

T
im

e
-p

h
a

s
e

 s
c
a

le
d

 i
n

te
rp

o
la

ti
o

n

N
e

u
ra

l
N

e
tw

o
rk

s

95

96

97

98

99

100

In
te

rp
o

la
ti
o

n
 o

f

 p
o

ly
n

o
m

ia
ls

40

50

60

70

80

90

100

Figure 22: Comparison of the input approximation ζu per
approach.

T
im

e
-p

h
a

s
e

 s
c
a

le
d

 i
n

te
rp

o
la

ti
o

n

N
e

u
ra

l
N

e
tw

o
rk

s

0

10

20

30

40

50

M

a
x
im

u
m

 i
n

p
u

t
e

rr
o

r
[N

]

In
te

rp
o

la
ti
o

n
 o

f

 p
o

ly
n

o
m

ia
ls

0

100

200

300

400

500

Figure 23: Comparison of the maximum input error
∆u,max per approach.

B. Qualitative Comparison
The time-phase scaled interpolation is not theoretically

optimal, since the time-phase scaling algorithm does not
conserve the physical properties of the signal. The perfor-
mance was approximation was accurate on the setup used,
but there are no guarantees for other setups. This method
is simple in implementation since the steps are always the
same regardless of the system. This method also conserves
the original references’ data. This means that if one of the
original references is the target reference, the ILC input
sequence can be reconstructed exactly.

The interpolation of polynomials is theoretically more
sound since the properties of the signals are conserved.
When taking the initial conditions into account correctly
we might even be able to prove it to be optimal for
linear systems. The interpolation of polynomials has the

T
im

e
-p

h
a
s
e
 s

c
a
le

d

 i
n
te

rp
o
la

ti
o
n

N
e
u
ra

l
N

e
tw

o
rk

s

1

2

3

4

5

6

7

10
-6

In
te

rp
o
la

ti
o
n
 o

f

 p
o
ly

n
o
m

ia
ls

 M
a
s
s
 A

c
c
e
le

ra
ti
o
n

 f
e
e
d
fo

rw
a
rd

0

1

2

3

4
10

-4

Figure 24: Comparison of the root mean square of the
tracking error per approach.

T
im

e
-p

h
a
s
e
 s

c
a
le

d

 i
n
te

rp
o
la

ti
o
n

N
e
u
ra

l
N

e
tw

o
rk

s

98

98.5

99

99.5

100

In
te

rp
o
la

ti
o
n
 o

f

 p
o
ly

n
o
m

ia
ls

65

70

75

80

85

90

95

100

Figure 25: Comparison of the reduction of the tracking
error per approach.

constraint that each phase of all the original references
has to be longer than the corresponding phase in all of
the target references. This causes the original references
of the interpolation of polynomials to be significantly
slower than the target references, forcing extrapolation
over interpolation. This should not be an issue for linear
systems but will be an issue for nonlinear systems or
disturbances. This method is the same for every system, so
implementation is consistent. This method does conserve
the original references’ data.

The neural network approach is almost always an ap-
proximation, just like the time-phase scaled interpolation.
Only if the true function from the neural network inputs is
a linear combination of instances of the activation function
it can become optimal, which is not often the case. The
neural network approach results in the best performance

12

T
im

e
-p

h
a

s
e

 s
c
a

le
d

 i
n

te
rp

o
la

ti
o

n

N
e

u
ra

l
N

e
tw

o
rk

s

0

1

2

3

4

M
a

x
im

u
m

 E
rr

o
r

[m
]

10
-5

In
te

rp
o

la
ti
o

n
 o

f

 p
o

ly
n

o
m

ia
ls

 M
a

s
s
 A

c
c
e

le
ra

ti
o

n

 f
e

e
d

fo
rw

a
rd

0

2

4

6

8

10
-4

Figure 26: Comparison of the maximum tracking error
emax per approach.

in this implementation, but the implementation of the
neural network approach is not consistent. Depending on
your system the activation function, amount of layers, and
amount of neurons per layer that gives a satisfactory result
might vary, making the implementation more difficult.
This method does not conserve the original references’
data. This means that even when one of the original
references is the target reference the constructed input
sequence is an approximation.

All of the methods discussed in this paper can be
calculated offline using the reference trajectory. The two
interpolation methods are a bit more memory and com-
putationally intensive, since they have to save all of the
original reference trajectories and input sequences in mem-
ory, and solve the optimization problems to create a new
input sequence. The neural network approach learns a
set of weights and biases based on the original references
trajectories and input sequences. After learning the neural
network approach only has to save the weights and biases
and the calculation consists of simple arithmetic and eval-
uation of the activation functions. This makes the neural
network more computationally and memory-efficient than
the interpolation methods.

VII. Conclusion

In this thesis, we investigated three approaches to
achieve ILC like performance on a range of reference
trajectories, without learning an input sequence for all
possible reference trajectories. This assumes that we have
a set of references with converged ILC on the system in
question.

All results have only been tested in simulation on the
linear motor model. The findings of this thesis should be
confirmed on more models to investigate if the results are
consistent.

The time-phase scaled interpolation provided good re-
sults, with the performance metrics being relatively close
to the neural network approach, while having the benefit of
conserving the original reference data and input sequences
and having a consistent implementation.

The interpolation of polynomials did not result in a
desirable input sequence, since the internal system state
was not taken into account correctly. A method should be
developed that does take this method into account to see
how well it can perform. The method does conserve the
original reference data and input sequences.

The neural network approach gave the best results con-
sidering error reduction. It also is the least computation-
ally and memory intensive implementation once trained.
The exact network and activation function that will give
good results will be dependant on the system, so the
implementation is not consistent. The original reference
data and input sequence are not conserved, thus there will
even be an approximation error on trained references.

Future research can proceed in the following directions:
• Take the internal system state into account in the

interpolation of polynomials approach, such that the
switching of phases does not give as big of an error
as it does now.

• Investigate the use of different AI approximators,
like for example Gaussian processes, recurrent neural
networks, reinforcement learning strategies, etcetera.

• Develop a method to integrate the interpolation
methods with artificial intelligence, providing the
same relation to data as current interpolation meth-
ods, but hopefully improve the performance.

13

References
[1] C. Rohrig and A. Jochheim. “Identification and com-

pensation of force ripple in linear permanent magnet
motors”. In: Proceedings of the 2001 American Con-
trol Conference. (Cat. No.01CH37148). Vol. 3. 2001,
pp. 2161–2166. doi: 10.1109/ACC.2001.946068.

[2] Anorad Inc. Linear Motor Reference Manual. 1999.
[3] M.L.G. Boerlage, M. Steinbuch, P.F. Lambrechts, et

al. “Model-based feedforward for motion systems”.
In: 2003 IEEE International Conference on Control
Applications (CCA), Turkey, Istanbul. Vol. 2. United
States: IEEE, 2003, pp. 1158–1163. isbn: 0-7803-
7729-X. doi: 10.1109/CCA.2003.1223174.

[4] D.A. Bristow, M. Tharayil, and A.G. Alleyne. “A
survey of iterative learning control”. In: IEEE Con-
trol Systems Magazine 26.3 (2005), pp. 96–114. issn:
10010920. doi: 10.1109/mcs.2006.1636313.

[5] J. Xu and Y. Tan. “Linear and Nonlinear Iterative
Learning Control”. In: Lecture Notes in Control and
Information Sciences 291 (2003). issn: 01708643.
doi: 10.1007/3-540-44845-4.

[6] D.J. Hoelzle, A.G. Alleyne, and A.J. Wagoner John-
son. “Basis task approach to iterative learning con-
trol with applications to micro-robotic deposition”.
In: IEEE Transactions on Control Systems Technol-
ogy 19.5 (2011), pp. 1138–1148. issn: 10636536. doi:
10.1109/TCST.2010.2063030.

[7] D.J. Hoelzle and K. Barton. “Flexible iterative
learning control using a library based interpolation
scheme”. In: Proceedings of the IEEE Conference on
Decision and Control 2 (2012), pp. 3978–3984. issn:
01912216. doi: 10.1109/CDC.2012.6425808.

[8] B. Hencey and A.G. Alleyne. “A robust controller
interpolation design technique”. In: IEEE Transac-
tions on Control Systems Technology 18.1 (2010),
pp. 1–10. issn: 10636536. doi: 10.1109/TCST.2008.
2009121.

[9] M.C.J. Baggen, M.F. Heertjes, and M.J.G. Molen-
graft, van de. Setpoint variation in iterative learning
schemes. English. DCT rapporten. DCT 2006.098.
Technische Universiteit Eindhoven, 2006.

[10] J.J.M. Wijdeven, van de and O.H. Bosgra. “Using
basis functions in iterative learning control : anal-
ysis and design theory”. English. In: International
Journal of Control 83.4 (2010), pp. 661–675. issn:
0020-7179. doi: 10.1080/00207170903334805.

[11] J.J. Bolder, T.A.E. Oomen, and M. Steinbuch. “Ex-
ploiting rational basis functions in iterative learning
control”. English. In: Proceedings of the 52nd Confer-
ence on Decision and Control, 10-13 December 2013,
Florence, Italy. 2013, pp. 7321–7326.

[12] K. Hornik, M. Stinchcombe, and H. White. “Multi-
layer Feedforward Networks are Universal Approxi-
mators”. In: Neural Networks 2 (1989), pp. 359–366.
doi: 10.1016/b978-0-08-051433-8.50011-2.

[13] K. J. Hunt, D. Sbarbaro, R. Zbikowski, et al. “Neural
networks for control systems-A survey”. In: Auto-

matica 28.6 (1992), pp. 1083–1112. issn: 00051098.
doi: 10.1016/0005-1098(92)90053-I.

[14] O. Sørensen. “Additive feedforward control with
neural networks”. In: IFAC Proceedings Volumes
32.2 (1999), pp. 1378–1383. issn: 14746670. doi: 10.
1016/s1474-6670(17)56233-3.

[15] S. Bosma, “The generalization of feedforward control
for a periodic motion system”. MSc thesis. Delft
University of Technology, 2019.

[16] K. Patan, M. Patan, and D. Kowalów. “Neural
networks in design of iterative learning control for
nonlinear systems”. In: IFAC-PapersOnLine 50.1
(2017), pp. 13402–13407. issn: 24058963. doi: 10 .
1016/j.ifacol.2017.08.2277.

[17] T.T. Nguyen. “Identification and compensation of
parasitic effects in coreless linear motors Identifica-
tion and Compensation of Parasitic Effects in Core-
less Linear Motors”. PhD thesis. Eindhoven Univer-
sity of Technology, 2018. isbn: 9789038645865.

[18] R. Zanasi and R. Morselli. “Third order trajectory
generator satisfying velocity, acceleration and jerk
constraints”. In: IEEE Conference on Control Ap-
plications - Proceedings 2.1 (2002), pp. 1165–1170.
doi: 10.1109/cca.2002.1038770.

[19] M. Steinbuch and R. van den Molengraft. “Iterative
Learning Control of Industrial Motion Systems”. In:
IFAC Proceedings Volumes 33.26 (2000), pp. 899–
904. doi: https://doi.org/10.1016/S1474-6670(17)
39259 - 5. url: http : / / www . sciencedirect . com /
science/article/pii/S1474667017392595.

[20] M. Tomizuka, T.C. Tsao, and K.K. Chew. “Analysis
and synthesis of discrete-time repetitive controllers”.
In: Journal of Dynamic Systems, Measurement and
Control, Transactions of the ASME 111.3 (1989),
pp. 353–358. issn: 15289028. doi: 10 . 1115 / 1 .
3153060.

[21] J.A. Butterworth, L.Y. Pao, and D.Y. Abramovitch.
“The effect of nonminimum-phase zero locations on
the performance of feedforward model-inverse con-
trol techniques in discrete-time systems”. In: Pro-
ceedings of the American Control Conference (2008),
pp. 2696–2702. issn: 07431619. doi: 10.1109/ACC.
2008.4586900.

https://doi.org/10.1109/ACC.2001.946068
https://doi.org/10.1109/CCA.2003.1223174
https://doi.org/10.1109/mcs.2006.1636313
https://doi.org/10.1007/3-540-44845-4
https://doi.org/10.1109/TCST.2010.2063030
https://doi.org/10.1109/CDC.2012.6425808
https://doi.org/10.1109/TCST.2008.2009121
https://doi.org/10.1109/TCST.2008.2009121
https://doi.org/10.1080/00207170903334805
https://doi.org/10.1016/b978-0-08-051433-8.50011-2
https://doi.org/10.1016/0005-1098(92)90053-I
https://doi.org/10.1016/s1474-6670(17)56233-3
https://doi.org/10.1016/s1474-6670(17)56233-3
https://doi.org/10.1016/j.ifacol.2017.08.2277
https://doi.org/10.1016/j.ifacol.2017.08.2277
https://doi.org/10.1109/cca.2002.1038770
https://doi.org/https://doi.org/10.1016/S1474-6670(17)39259-5
https://doi.org/https://doi.org/10.1016/S1474-6670(17)39259-5
http://www.sciencedirect.com/science/article/pii/S1474667017392595
http://www.sciencedirect.com/science/article/pii/S1474667017392595
https://doi.org/10.1115/1.3153060
https://doi.org/10.1115/1.3153060
https://doi.org/10.1109/ACC.2008.4586900
https://doi.org/10.1109/ACC.2008.4586900

	Introduction
	Preliminaries
	System dynamics and control structure
	Reference trajectory design
	Generating input sequences using ILC
	Changing the reference trajectory while using ILC

	Problem formulation
	Interpolating learned input sequences
	Approximating the relationship between reference trajectory and input sequence using neural networks
	Performance metrics used to validate methods

	Interpolation of ILC sequences
	Interpolation of time-phase scaled signals
	Results of the Interpolation of Time-Phase Scaled Signals in Simulation

	Interpolation of polynomial coefficients
	Describing a third-order reference trajectory as a piecewise function of polynomials
	Original references for interpolation of polynomials
	Calculation of interpolation coefficients based on polynomial coefficients
	Results of interpolation of polynomials in simulation

	Feedforward approximation using neural networks
	Designing the neural network
	Results

	Comparison
	Quantitative comparison
	Qualitative Comparison

	Conclusion

