
 Eindhoven University of Technology

MASTER

Vision-Based Reinforcement Learning Controller Of Robotic Arm Manipulator
Buzz Wire Demonstrator

Sriram, Tarun Bhargav

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/24b41cba-f423-40c6-be9c-e97876b3e601

Vision-Based Reinforcement Learning Controller Of

Robotic Arm Manipulator

Buzz Wire Demonstrator

Graduation Project Report

Tarun Bhargav Sriram
Student Number: 1444646

Master of Science in Systems and Control
Department of Electrical Engineering

Control Systems Group

This report was made in accordance with the TU/e Code of Scientific Conduct for the Master thesis

Supervisors Lennart van Bremen (DEMCON)
Stefan Heijmans (DEMCON)
Bas Vet (DEMCON)
Maarten Schoukens (TU/e)
Roland Toth (TU/e)

Eindhoven
August 30, 2021

Abstract

This report presents the implementation of a vision-based control system for the Buzz-Wire Demon-
strator Project, carried out at Demcon Advanced Mechatronics, in collaboration with the Eindhoven
University of Technology. The demonstrator setup is the buzz-wire game where a metal loop is moved
along a curved metallic wire while avoiding contact between the two. A vision-based reinforcement
learning controller with feature extraction from image observations is presented. The design and
construction of the deep-learning-based feature extraction system and the Deep Q-Learning-based
reinforcement learning agent in the vision-based control pipeline are discussed. The control policies
obtained are evaluated and compared for their performance in completing the 2D buzz-wire game. An
end-to-end vision-based reinforcement learning control model is also investigated. This model makes
action decisions based on raw pixel inputs. The results for its performance in the 2D buzz-wire task
are outlined, along with the challenges presented in obtaining such a model.

Contents

1 Introduction 2
1.1 The Buzz Wire Experiment . 5
1.2 Problem Statement . 7
1.3 Organization of The Report . 7

2 Reinforcement Learning and Computer Vision 8
2.1 Neural Networks . 8
2.2 Reinforcement Learning . 9

2.2.1 Deep Q-Networks . 11
2.3 Computer Vision . 12

2.3.1 Convolutional Neural Networks . 13

3 The 2D Simulation Environment 14
3.1 Experimental Setup . 14

3.1.1 Environment and Observation . 14
3.1.2 Agent . 15
3.1.3 States . 16
3.1.4 Action . 16
3.1.5 Reward and Episode Termination . 17

3.2 Observation and Control . 17
3.2.1 Feature Extractor Network . 17
3.2.2 Deep-Q Network . 18
3.2.3 Measuring Performance . 19

4 Experimental Results 20
4.1 Training Phases . 20
4.2 Training results . 21
4.3 Policy Evaluation . 23

4.3.1 Noise in Images . 25
4.4 End-To-End RL Model . 25

4.4.1 Changes in Training Experiment . 26
4.4.2 Training Results For End-To-End Model . 27

5 Conclusion and Recommendations 29
5.1 Conclusion . 29
5.2 Recommendations and Future Work . 30

A Actions and Indices 31

References 32

1

Chapter 1

Introduction

Robotics and automation have become ubiquitous in manufacturing processes due to the advantages
of speed in production while maintaining accuracy over repetitive tasks. These advantages are also
being explored in other domains like personal assistance, surveillance, and in agriculture, where the
need for increased productivity, precision, performance, and overall competitiveness is highly sought
after.

Ensuring suitable behaviour and performance of robotic systems has been the subject of intense
study in domains like automatic control and allied fields. Classical notions of control and system
modelling heavily rely on first-principles methods based on the known physics of the system, or, in
case of frequency response methods, require linear system behaviour. This can become cumbersome
and prone to modelling errors based on approximations [1]. These limitations have been addressed
by modern and advanced control techniques that take into account the various changes the system
experiences during its operation and provide suitably optimized solutions online. The use of artificial
intelligence (AI) as a platform for developing systems that make complex decisions automatically,
has been researched in various domains for increasing throughput. The use of data-driven techniques
for both system identification and control have seen increased popularity over recent years [2]. In
particular, machine learning methods have gained attention due to their application in perception
(computer vision [3]) and control of robotic sytems [4, 5].

At DEMCON Advanced Mechatronics, one such application being explored is that of a fruit-
picking robot (Figure 1.1). This robot is an arm manipulator that reaches for a fruit hanging from a
plant, plucks it, and places it in a container. The robot has to first sense the object (fruit) in its right
location in the environment, and with a camera sensor that provides RGB images, this is done using
object detection algorithms. The arm is then moved to that location and the fruit is picked by means
of actuating servomotors present in the arm’s joints. Furthermore, the robot must navigate while
avoiding obstacles like twigs or branches and other foliage around the fruit, which do not have a fixed
location. Additionally, external forces like wind or other disturbances might move these obstacles for a
given localised fruit. Such a high-level task within an uncertain environment requires the development
of robust and generalized solutions, which can be constructed using machine learning algorithms.

Figure 1.1: Fruit picking robot [6].

2

Machine Learning (ML) is concerned with developing algorithms and techniques that allow com-
puters to create structure from available data. A statistical model is estimated to describe a mapping
between two variables, and this mapping can be used to extrapolate to new and unseen data points,
with reasonable accuracy. The input-output data of the system in question can be used to make a
machine learning model with the inherent behaviour of the system (system identification), which can
then substitute the real system in simulations for designing a controller. This ML model can also
encapsulate system behaviour which may not have been modelled using first-principles, due to lack
of system insight or high system complexity. ML models also provide the advantage of learning the
control behaviour that is input to the system based on a reference trajectory, without requiring the
construction of complex control structures by hand [7].

A particularly interesting branch of machine learning is the paradigm of Reinforcement Learning,
where an agent learns the decision-making mechanism based on interactions with the surrounding
world. The agent interacts with the environment by taking actions (Figure 1.2). An action can be
defined as a high level reference trajectory that the agent has to follow (e.g., joint angle positions in an
arm manipulator, position or velocity of the wheels of a mobile robot, valve positions in a pneumatic
system, etc.). The agent then observes information about the state of the environment, as well as
a reward that tells the agent about the quality of the action taken. Based on this information a
subsequent action is chosen that, according to the agent, is likely to provide a higher reward signal.
The series of actions and perceived information form the agent’s experience and the decision-making
process is solely based on this experience of former interactions and their resulting rewards. The
objective of reinforcement learning is for the agent to devise a strategy (policy) to maximize its
reward and achieve necessary performance [8].

Environment

Agent

ObserverAction	

Image

State

Reward

Figure 1.2: Reinforcement Learning Framework.

Reinforcement learning provides a general and intuitive robotic control framework for autonomous
learning and sequential decision making under uncertainty and is scalable to many different operating
conditions as well as applications [9]. The need for sophisticated prior knowledge is overcome, and all
required information to achieve a particular goal is obtained through multiple trials.

While reinforcement learning provides the advantage of high-level decision-making, it also comes
with challenges in development, especially in deep RL techniques. Most RL algorithms require a
large dataset as well as considerable memory and computational resources. Experience data can
be challenging to obtain in case of physical systems like robot learning due to time taken for the
experiment. In case of transfer learning from a simulation to a real world setup, obtaining a policy
from simulations that can easily generalize to a physical experiment can be difficult [10]. Formulation
of a suitable reward function is crucial in RL training since the reward is the only signal with which
the agent learns quality of its actions, and thus the overall policy [9]. These, along with sensitivity
of RL algorithms to hyperparameter choices, are some challenges seen in RL, described in [10] and
[11]. However, the generalized decision-making that results from learning trial-and-error experience is
a powerful advantage to consider [12].

Reinforcement Learning techniques in control applications are attracting increased interest due to
the similarities seen in the domain of optimal control [13], where these methods can be applied to
systems with nonlinearities and uncertain or unknown dynamics. A tabular method of storing trial-
and-error experience and assessing the quality of decisions made using this experience is the Q-learning
algorithm [8]. Deep Reinforcement Learning replaces tabular methods with a neural network that
approximates quality of actions taken. Deep Q-Learning [14] is one of these algorithms that naturally

3

extends from Q-Learning, where a neural network approximator (Deep Q-Network) is used. This
reduces memory complexity for high-dimensional input information and for continuous control actions
[15]. An appropriate example for such a continuous control/large state and action dimension task is
that of controlling an arm manipulator, which is a component of the fruit-picking robot application.
Different deep RL methods are explored in common arm manipulation tasks of pick-and-place and
reach in [16].

Apart from the controller design, an in-depth analysis and a suitable implementation of the ob-
server need to be made. The sensors that gather information from the environment do not necessarily
present information that is directly useful to the agent, either qualitatively (type of data) or quantita-
tively (need for scaling, frequency of sampling). Hence an intermediate step of translating the sensor
data to information that is useful in the decision-making process is required. Vision systems are
commonly employed in robotics due to the ease of installation and the observation being information-
rich. Relevant data can be extracted from an image using prevalent techniques in image processing
and computer vision. Such an implementation is called Vision-In-The-Loop (VITL), where the image
sensing and conversion to relevant features are performed in sequence with the robot action. The
camera sensors can output data in formats like colour images, depth information, etc. The type of
sensor (or the type of sensor data) used depends on the specific use case and the cost of purchase.

Early methods of feature extraction from images used standard image processing techniques to
extract information from the image based on detailed knowledge of the environment. However, these
methods do not scale well to factors like changes in the environment or for re-usability in other
applications. Robot vision applications tend to operate in environments with many features in the
surroundings (eg. agriculture [17]) and it is crucial to extract the right information. Computer Vision
(CV) based on machine learning provides this flexibility due to the data-driven, general-purpose
learning procedures [18]. Convolutional Neural Networks (CNNs) have been widely used in object
detection and classification tasks. They consist of successive filters which learn the mapping between
image data to specific features. CNNs have shown to perform better than hand-made feature detectors
in object detection and segmentation [19]. They are also very versatile and can support transfer
learning, where the convolutional layers trained for a specific task can successfully be used to solve
other problems [20] [21].

The use of vision in robotic arm manipulation has been the subject of study in the domain of visual-
servoing. There are two main methods prevalant in visual servoing (VS) - Position-Based (PBVS)
and Image-Based (IBVS) [22]. PBVS utilizes known geometric models of the target to determine its
pose (position and orientation) with respect to the camera from the observations. The robot is then
moved to that location through the joint controller. IBVS directly uses image features to control the
motion of the robot, without first estimating the pose. This method is advantageous since it does not
depend on the accuracy of camera calibration and the pose is implicitly encoded with respect to the
target in the observations. This can be used when the robot task is more generalised and targets are
not fixed, which is inherent in fruit picking tasks.

Control
Mechanism

Image Processing/
Feature Extraction ImageFeatures

Reference

Robot Arm
with Camera Sensor

Figure 1.3: Vision-in-the-loop system for controlling a robotic arm

Combining the flexible feature extraction capability of computer vision and generalized action
selection (control) of reinforcement learning for a arm manipulator task leads to vision-based rein-

4

forcement learning control (or vision-in-the-loop RL control, Figure 1.3). This system shown in the
figure consists of a camera mounted on the robot arm’s wrist. The camera observes a local region of
interest, from which relevant features are extracted. These features are fed to the controller which
decides on what action the arm has to take based on this information.

Simple tasks like reaching, where the controller provides path planning for the arm to reach a goal
position in space has been implemented with the help of Deep-Q Networks where images are directly
fed as state inputs to the network [23].

The design of visual perception components using computer vision techniques in robotic control
are often considered as a separate task from the controller design, where feature engineering is a
crucial step. However, the use of reinforcement learning has shown that the perception component
can be integrated in the action decision pipeline to give a single visual control block. These algorithms
provide “end-to-end” policies, where control actions are output directly from the raw input pixel data.
Such policies showed better performance compared to splitting the vision and path-plannning tasks for
select examples as seen in [24]. They also show the ability to eliminate the need for feature engineering.
However, these techniques so far are application specific without much evidence of generalizability to
other tasks.

Interesting results on vision-based control using RL are presented in [25] which shows the complex
behavioural skill of door opening, and in [26] where CNN based deep RL is used to achieve the task
of grasping different objects based only on image observation. These results show how the end-to-end
nature of RL methods for combining the perception and control in a single unit can be used in complex
tasks.

The fruit-picking application presents a similar challenging task as outlined previously. However,
in order to gain competence in developing a complex application like fruit picking, a simplified problem
is first considered. This includes the challenges presented by fruit picking in terms of path planning
and perception, while having reduced complexity in terms of creating a visual observation of the envi-
ronment and an experimental setup that can be easily assembled to demonstrate the technology used.
Such an experimental setup is the Buzz-Wire game which can emulate the challenges of perception
and generalized path planning as in the fruit picking application, while having a simple construction.

1.1 The Buzz Wire Experiment

The Automated Buzz Wire Experiment serves as a simple, but challenging test-bed for dynamic path
planning, Computer Vision, and Machine Learning Control. In this experiment, the goal is to move
a circular loop from one end of the wire to the other, without touching the wire. The loop and wire
are generally made of metal, such that when they come in contact a circuit is completed, and an
indication of the contact is made either by a buzzing sound or by a light source. To make the problem
challenging, the loop progresses over an arbitrarily bent wire. This task is automated using a robot
arm that holds the loop at its end-effector and has to sense the wire using a camera mounted on its
penultimate link.

Figure 1.4: Buzz Wire Setup [27]. Figure 1.5: Niryo One Arm.

5

The metallic loop is attached to the end effector of a robot arm-manipulator that has sufficient
range to traverse the wire trajectory. The robot arm chosen in this project is the Niryo One (Figure
1.1), which is a six-axis arm manipulator [28]. The arm is controlled using a reinforcement learning
agent, which maps state observations (position and orientation of the loop, future goal point) and
rewards, to actions that the robot needs to take to achieve the next state. These actions are defined in
terms of the position that the end-effector of the arm needs to take, and underlying commands for the
joint movements are calculated in the development suite provided by Niryo. Appropriate commands
for joint motor forces are sent to the arm, which then physically moves along the wire. The agent is
trained on different wire shapes and the resulting control policy is then evaluated on an arbitrarily
bent wire, the shape of which is unknown to the controller.

Training an RL algorithm requires experience data based on trial-and-error with the environment.
While a real-world system provides the most accurate representation of the experience, obtaining
this data can be challenging and time consuming. Constant human supervision is necessary to ensure
proper operation of the components in the setup, and this may become cumbersome. Hence, simulation
environments are created, where the training data obtained is faster. However, care must be taken to
include as much information that occurs in the real setup as possible to reduce the sim-to-real gap
explained previously. Constructing a 3D simulation environment is still quite complex where creating
large number of three-dimensional objects as the different wire confgurations is difficult, and ensuring
proper behaviour of the various objects based on physics requires considerable effort. Therefore, the
buzz wire experiment is further simplified to a 2D simulation environment, which is the main focus of
this project, and in which the algorithms for solving the buzz-wire problem are developed.

Vision-based reinforcement learning control for the buzz-wire experiment is studied in [29] and
[30]. The difference noted between these two studies is the positioning of the camera sensor. In [29],
the camera is placed on the robot arm, which observes the agent locally. [30] uses a global frame of
reference, from which a local image is extracted. The output at the end of the vision stage is the same
as shown in Figure 1.6(c).

The features used in both articles are shown in Figure 1.6(b), where the image of the local obser-
vation of the wire and the loop is downsampled to a 5×5 matrix (local observation in Figure 1.6(c)
used in [29]). The image is then one-hot encoded to four objects - the wire, the loop, background,
or future goal point. This results in a 5 × 5 × 4 feature matrix that is fed to an agent trained with
Q-learning [8] or a modified Q-learning algorithm [30].

(a) Experimental setup. (b) Global feature space. (c) Local observation.

Figure 1.6: The Buzz-Wire experiment as described in [30].

Both articles provide the same feature extraction methods using standard image processing tech-
niques (greyscale conversion, morphology - dilation and erosion, encoding).

While the current project deals with similar aspects of vision-based RL as explained in the previous
articles, the main differences are two-fold. First, unlike the previous cases, the current project deals
with dynamic trajectory tracking without complete prior knowledge of the trajectory to be followed.
In this case, the vision sensor provides only local observation around a small region of the end-effector
of the arm. Second, while previous articles have dealt with estimating actions directly from highly
downsampled images through a policy network, in this project the network is designed to extract
relevant position and orientation features from the images that describe the agent’s location and

6

future goal. These features are fed to the subsequent RL agent, thus resulting in a more generalized
vision-in-the-loop control policy for the buzz-wire task, without losing information by downsampling
the observation. Different training cases of the RL agent, where observations are either extracted
features or direct pixel inputs, are investigated and the performance of these methods are compared.

These tasks will help in gaining insight into the objective of designing a controller for the more
complex fruit-picking problem, where subtasks like object detection, localisation and locomotion are
employed in the control pipeline. The method under investigation presents a unified approach to solve
these tasks in a simple manner.

The positioning of the problem under consideration with respect to existing literature has been
explained thus far. A formal definition of the problem and the main deliverables of the project are
discussed in the following section.

1.2 Problem Statement

The goal of this project is to design a vision based reinforcement learning controller that enables the
robot arm to play the buzz-wire game successfully for arbitrary wire trajectories. The 2D Simulation
is of primary interest in this project to understand how to construct the vision and control algorithms
and gain insight into how they may be adapted to more complex simulation environments. The main
research question can be formulated as:

How to design and develop a vision-based reinforcement learning controller for
a 6-axis robot arm, that decides on actions from observed images, to follow the
trajectory of a buzz-wire?

This overall problem can be divided into two sub-tasks: Feature Extraction and Decision Making,
which fits into the robot control framework as shown in Figure 1.3, where the control mechanism
represents what actions are to be taken at a given time step. The following sub-problems enumerate
the intermediate steps to be taken to achieve the goal of constructing the vision-based controller for
the 2D buzz wire game.

1. How to construct machine learning models for extracting features from images (feature extrac-
tion) and the RL controller (decision making) subtasks?

2. Can the separate models be merged to provide a single pipeline for obtaining action decisions
from images and perform vision-based control task suitably well? Is there any modification or
further training necessary for obtaining the required performance?

3. How to quantify and measure performance of the vision-based controller?

4. How to construct a reinforcement learning controller that takes actions based directly on image
information, without the need for an intermediate feature extraction step? What challenges occur
and what alterations need to be made to the algorithm?

1.3 Organization of The Report

Chapter 2 provides background into the concepts of reinforcement learning and computer vision, which
are used in the experiments. Chapter 3 explains the 2D Simulation environment and its different
components that were built for this project and the experimental framework for the vision-based
reinforcement learning control as the separate problems of observation (computer vision) and control
(reinforcement learning). Chapter 4 lists the experimental results and the behaviour of the RL policies
are analysed in detail. Chapter 5 gives concluding arguments and a summary of the primary objectives
of the project. A brief recommendation for future work to be carried out is also given. Appendices
are provided and referenced as necessary throughout the report.

7

Chapter 2

Reinforcement Learning and Computer
Vision

The major themes in this project are the use of machine learning methods in control and vision,
especially of reinforcement learning for controlling a robot arm and the use of neural networks in both
control and vision. The following sections present a brief introduction to these concepts and discuss
some of the literature that are relevant to this project.

2.1 Neural Networks

A neural network is a collection of interconnected neurons in multiple layers, that provides a mapping
between input and output variables. It consists of an input layer that collects the input variables,
hidden layers that consist of neurons, and an output layer that provides the network output based on
internal neuron operations. The most basic unit of a neural network is the neuron shown in Figure
2.1(b). The strength of the connection between two neurons is referred to as a weight. In the neuron,
a weighted sum of it’s inputs is calculated and passed through an activation function, which is usually
a nonlinear function (sigmoid, tanh, ReLU, etc.).

(a) Neural Network.

Output

Activation
Function

Bias

Inputs

Weights

(b) Operations of a neuron.

Figure 2.1: Neural Network and Neuron Operations.

A neural network is referred to as a ‘deep’ network when it has many hidden layers in it’s archi-
tecture. The neural network learns the input-output mapping by altering it’s weights over multiple
training steps. A reference signal at the output of the network gives an error signal, and the learn-
ing algorithm seeks to minimize this error for a given input by changing these weights through the
backpropagation algorithm [31].

Neural networks have been used in function approximation [32] as well as in image classification
tasks [3]. Thus, neural networks form the basis for deep reinforcement learning, where a value function
is approximated, and computer vision, which utilizes convolutional networks to extract features from
an input image.

8

2.2 Reinforcement Learning

As mentioned in Chapter 1, Reinforcement Learning (RL) is concerned with making decisions or
actions that maximises a reward signal. This decision making ability is learnt through direct interaction
between an agent and its environment over several experiments, and the experience that is gained from
these experiments is used to choose optimal actions that obtain maximum rewards for the given task,
and eventually reaching the goal [8].

The Deep Q-learning algorithm is the RL algorithm of choice for this project since it builds on the
results of the previous literature with Q-learning, and is naturally applied to a more complex setting
with larger images and features as well as a larger action space. Deep Q-Learning is also among the
simpler deep RL techniques.

This also allows the coupling of the convolutional neural network based feature extraction mech-
anism of the observer with the agent network that decides the actions, to form a single network that
maps images observed from the camera to actions that the robot has to take. To understand the
working of the Deep Q-Learning algorithm, the following terms are first introduced which deal with
setting up the reinforcement learning problem in general.

Reinforcement Learning experiments are modelled as Markov Decision Processes (MDP, Figure
2.2). At time t ∈ N the set of natural numbers, the agent receives information about the environments
state st ∈ S, where S is the space of all possible states of the agent in the environment, and the quality
of the state as reward rt ∈ R (real number space). The agent then performs an action at ∈ A, selected
from the space of all possible agent actions A and the state of the environment changes to st+1 ∈ S in
the next sampled time step t+ 1, and consequently a reward rt+1 is obtained for this new state. The
probability that the environment moves to state st+1 given the action at from the current state st is
denoted as p(st+1|st, at). This probability defines the dynamics of the MDP. A sequence of events in
the MDP gives rise to a trajectory defined as (s0, a0, r1, s1, a1, r2, s2, a2, . . .).

Figure 2.2: Markov Decision Process schematic [8].

The goal of the agent is to obtain a policy (π) that maps states to actions, such that the cumulative
reward signal is maximised over a given time horizon in the experiment. In formal terms, the problem
statement translates to finding the optimal policy π? : S → A that is given by

π? = arg max
π

N∑
t=0

rt (st, π (st)), (2.1)

with N the maximum number of steps taken in the environment and where rt, and st denote the
reward, and state at time t ∈ N, respectively. π(st) represents the action taken under policy π given
the agent is in state st.

In case of a partially observable environment, where the problem becomes a Partially Observable
MDP (POMDP), the policy is a function of the observation ot ∈ O (observation space), which is a
subset of the state space S. For simplicity, we define the following terms considering fully observable
state.

Value Functions

The reward signal is a good metric for determining the quality of the state in the immediate time step.
However, since we wish to maximise the reward over multiple time steps and because this information
is not easily available, an estimate of the cumulative reward that can be obtained by the agent must

9

be calculated, from the given state. This leads to the value function V defined for a state s in the
state-space under a given action-selection policy π [8] as

Vπ(s) = Eπ

[∞∑
k=0

γkrt+k+1 | st = s

]
for all s ∈ S, (2.2)

where γ ∈ [0, 1] is a reward discount factor that determines the importance of future rewards on the
quality of the current state. This value function represents how good a state (s) is for the agent to be
in, and is the expected total reward for an agent starting from the current state s.

The action-value function Q, or simply, the Q-function [8], gives information about the quality of
the action that an agent can take, given a policy π and the current state s. This is defined as

Qπ(s, a) = Eπ

[∞∑
k=0

γkrt+k+1 | st = s, at = a

]
for all s ∈ S and for all a ∈ A. (2.3)

The objective in RL is to find an optimal policy π∗ that maximises these expected returns Vπ(s)
and Qπ(s, a). There may be more than one optimal policy π∗, but they have the same optimum
returns V∗(s) and Q∗(s, a) given by

V∗(s) = max
π

Vπ(s) for all s ∈ S and Q∗(s, a) = max
π

Qπ(s, a) for all s ∈ S and for all a ∈ A. (2.4)

where Vπ(s) and Qπ(s, a) are defined in (2.2) and (2.3) respectively. The value functions can be written
as a relationship between the value of a state and the value of successor states, looking ahead from
the current state. The Bellman optimality equation given by

V∗(s) = max
a

∑
s′,r

p
(
s′, r | s, a

) [
r + γV∗

(
s′
)]

(2.5)

tells us that the value of a state under an optimal policy π∗ must equal expected return for the best
action from that state. Similarly, the Bellman optimality equation for the action-value function is

Q∗(s, a) =
∑
s′,r

p
(
s′, r | s, a

) [
r + γmax

a′
Q∗
(
s′, a′

)]
. (2.6)

This method of estimating the value functions from the Bellman equations is difficult to perform when
there is no knowledge of the system dynamics. An alternate method for the same is to incrementally
update the value function for every time step, rather than at the end of a sequence of events (episode).
The update rule for the incremental update is given generally as

New Estimate ← Old Estimate + Step Size × [Target − Old Estimate]. (2.7)

The update equation for the state value function is given accordingly as

Vπ (st) = Vπ (st) + α [rt+1 + γVπ (st+1)− Vπ (st)] (2.8)

where α is the step size parameter (α ∈ R set of real numbers).

Action Selection

The quality of the action that an agent takes can be evaluated based on the action-value function
and the given policy. It is desired that the action taken results in the highest reward at the end
of the experiment. The agent can choose a random action from the action-space and accummulate
information regarding the quality of various actions (exploration). The agent can also take the action
that it knows from experience to result in the highest reward at that instant (exploitation). However,
if the agent only exploits, it may ignore actions that it has not yet known to provide a higher reward,
and if the agent only explores, then it may not maximise its return at the end of the experiment. Hence

10

the agent must create a balance between exploration and exploitation. One method that incorporates
this alternation between exploration and exploitation is the ε−greedy method, where the agent takes
a random action with a probability ε ∈ [0, 1] and otherwise takes the greedy action, i.e., the action
that results in highest reward at that instant. This ε−greedy method is depicted as

at =

{
argmaxaQπ(a) with probability 1− ε
a random action with probability ε

(2.9)

2.2.1 Deep Q-Networks

Instead of evaluating the quality of the state reached in successive steps, the quality of the actions
taken from the current state can be used to obtain the optimal policy π∗. In this case, the action-value
function, or Q-function can be used and updated incrementally as

Qπ (st, at) = Qπ (st, at) + α
[
rt+1 + γ maxat+1Qπ (st+1, at+1)−Qπ (st, at)

]
. (2.10)

The objective of Q-learning is to learn the Q value of all state-action pairs in the environment.
For finite and discrete state and action spaces, this information can be easily stored in Q-tables and
as the agent obtains new information about the expected reward for an action given a state, this table
is updated to reflect the experience from the action. The agent explores several actions over multiple
experiments until an optimum is reached for each state-action pair. This information is then used
to define an optimal policy that maximises the cumulative rewards in the experiment. Q-learning is
an iterative off-policy method, where the Q-table is updated regardless of the type of action selection
policy used.

In case there are a large number of states and actions in the system, or even a continuous state
and action space, forming a Q table becomes infeasible. A neural network function approximator can
be used to estimate the Q value for a given state-action pair. With many hidden layers, the network
becomes ‘deep’, which leads to Deep Q-Learning [14] that will be a subject of study in this project
(Figure 2.3).

Figure 2.3: Deep-Q Learning schematic with Target Network [33].

The Deep Q-Network (DQN) approximates the Q value for each action in the action space given
a state input, as the output neurons of the network, and the action with the highest Q value is
chosen by the agent in a greedy policy scheme. The parameters of the network are updated through
backpropagation based on the Temporal Difference (TD) Loss given by

Lt (θt) = Est,at,rt,st+1∼D

[
(yt −Q (st, at; θt))

2
]
, (2.11)

where yt = r + γ maxat+1Q (st+1, at+1; θt−1) is the TD target return and yt − Q is the TD error
calculated at the output of the Q-network. The parameters of the Q-network at a given time step
is θ. However, using this loss to update the Q-network implies the target is continuously changing
as the parameters of the Q network change, which makes the target unstable and training difficult.
To avoid this, the use of a target network was proposed in [34], which has the same architecture as
the main Q-network, but the parameters of the target network are updated with a given frequency,
usually more than every iteration of the Q-network update. The Q-network is updated every step of

11

the simulation and these parameters are copied to the target network at a given number of steps. This

leads to the TD target yt = r + γ maxat+1Q
(
st+1, at+1; θtargett

)
where θtarget are the parameters of

the target network, which makes the target return more stable leading to better training of the agent.
Experience Replay is also introduced in the training process [35][36], where the state transitions,

rewards and actions for a number of episodes are stored and the agent is trained on mini-batches of
this data. This avoids overfitting the agent to only recent experiences and reuses past transitions to
avoid catastrophic forgetting. Table 2.1 summarizes the deep-Q learning algorithm.

Deep Q-Learning with Experience Replay and Target Network

Initialize primary network Qθ, target network Qθtarget , replay buffer D
for each iteration (epoch):
Data Collection -
for each environment step:

Observe state st and select action at based on policy π(at, st)
Execute at and observe next state st+1 and reward rt
Store (st, at, rt, st+1) in replay buffer D

Network Training -

for each update step:
sample experience et = (st, at, rt, st+1) D
Compute target value:

yt = r + γ maxat+1Q
(
st+1, at+1; θtargett

)
Perform gradient step with loss (Q∗(st, at)−Qθ(st, at))2

Update target network weights: θtarget ← θ

Table 2.1: Deep Q-Learning algorithm summarized.

2.3 Computer Vision

The input to the RL agent is the feature vector that is extracted from the image observation. This
is achieved through computer vision, where a convolutional neural network is trained on various
example images and corresponding feature vector references. An example of such a convolutional
neural network is shown in Figure 2.4, where an object recognition task is portrayed. To understand
how a convolutional neural network is constructed, the following concepts are introduced.

Figure 2.4: Convolutional Neural Network (CNN) architecture used for image classification [37].

A camera is attached to the penultimate link of the robot arm and acts as the main sensor to
observe the system state, which is the agent (loop) located at a given pose with respect to the wire.
The camera provides RGB images, from which specific information must be extracted and fed to the RL
agent. This feature information can be the end-effector position and orientation of the arm, and a local

12

goal that the arm should achieve (new position), etc. A natural first step would be to explore standard
image processing techniques where transformations (‘smoothing’, ‘sharpening’, etc.) are applied to
the image to result in an output from which the ‘features’ are easily extracted. The features can be
defined based on the specific problem as particular regions in the image or values calculated from
image characteristics. However, defining these transformations are quite specific to the use case, and
with a change in environments, new transformations have to be calculated. Hence, these techniques
are not scalable to feature extraction tasks in more complex images, and not flexible to changes
in environments. This problem is addressed in the use of machine learning-based computer vision
techniques, which provide a common framework for different feature extraction problems, thereby
providing both scalability and flexibility for use cases.

Neural Networks have been extensively used for image classification and feature extraction tasks.
The most common example is the classification of handwritten digits [38] which acts as a benchmark
for different machine learning algorithms. Convolutional Neural Networks (CNNs) are widely used
for feature extraction and classification in cases like document recognition [3], image classification [39]
and in more advanced visual cognition tasks.

2.3.1 Convolutional Neural Networks

A convolutional neural network (CNN) consists of three main types of layers: convolutional layers,
pooling layers, and densely-connected layers.

A convolutional layer consists of multiple filters (kernels) whose values are trainable. These filters
are applied to the input matrix (image), through the convolution operation, and the output is the
filtered image in the different filter channels. These trained filters provide information about the local
pixel relationships, like edges and contours, and more complex relations in deeper layers.

The pooling layers are usually alternated with convolutional layers. These layers down-sample the
input matrix (image), thus reducing its dimensionality. Pooling is done in various ways, like max,
min, or average pooling, where the maximum, minimum or, the average value of the selected region
is chosen as output and the rest discarded.

105 102 100

103 99 103

101 98 104

99 101 106 104 102

104 104 104 102 100

97 96

101 102

102 100

0 -1 0

-1 5 -1

0 -1 0

=

89

(a) Convolution.

12 30

34 37

8 12

20

2 0

0

112 100

70

25 12

4

2 2 Max Pool
with stride 2

20 30

112 37

(b) Pooling.

Figure 2.5: Convolution and Pooling Operations.

Dense layers (fully-connected) can be applied at the end of convolutional layers and are used to
project the features encoded in the output of convolutional layers to higher dimensions, which is then
used to estimate the output label.

The advantages that CNN’s bring compared to regular densely connected neural networks is the
reduced number of trainable parameters, due to shared parametrization in the filters. This reduces
training time and can avoid over-fitting. The filters learned and applied on the image produce spatial
feature maps, that provide information about the relationship between nearby pixels in an image.
These can provide insight into the complex intermediate transformations occurring in the feature
encoding, that may not have been arrived at using standard image processing methods.

13

Chapter 3

The 2D Simulation Environment

Reinforcement Learning techniques require a lot of data to train the agent for obtaining an optimal
policy, due to the trial-and-error nature of learning. This may not be feasible when training a real-
world agent since number of experimentation cycles may be limited, executing a sequence of actions
may require relatively higher experimentation time, and damage occurring in the hardware to wear
or some unforeseen actions. It is therefore crucial to begin development of a reinforcement learning
solution through simulation, which can provide faster experimentation time while being able to run
a large number of experimental episodes, and also provide a platform to understand and eliminate
analytical errors that may have been ignored in designing the problem.

A trade-off exists between how well the simulation mimics the real-world behaviour of all compo-
nents of the experiment and how simplistic the simulation can be to test the algorithms for control
and observation. Understanding this sim-2-real gap is necessary in designing the workflow of the
development and defining checkpoints from where knowledge from a simpler experiment can be used
in a more complex one. For the buzz wire experiment in particular, a two dimensional simulation of
the environment is chosen as the starting point. This provides enough freedom to depict complexity
in terms of sufficiently identifying the different objects in consideration, like the metallic loop and
the wire, and in terms of applying the reinforcement learning and machine vision techniques. It was
shown that the RL policy generated from the 2D Simulation explained below is able to be successfully
applied on a hardware setup, with certain assumptions [40].

In this section, the 2D Simulation setting is explained and the different components of this simula-
tion are shown in detail. Experimental results for generating the RL policies as well as their evaluation
in the 2D Buzz Wire Problem are shown in the following chapter.

3.1 Experimental Setup

The 2D Simulation experiment for the buzz wire experiment should be framed in terms of the Markov
Decision Process setting as in Figure 2.2. The different components of this setting is explained in
the following sections. The environment was constructed using the Open AI Gym toolkit [41], which
can be used to develop and compare reinforcement learnig algorithms by abstracting the experimental
setting through APIs. The agent and the training process were created using the TF-Agents toolkit
[42], which provides APIs for implementing, training and deploying RL agents.

3.1.1 Environment and Observation

The global view of the simulation environment is shown in Figure 3.1. This consists of the wire between
two walls, coloured in red, that depicts the region where the agent must not hit. The agent or the
loop is coloured in blue (top half) and green (bottom half) so that conflicts in detecting angle of the
agent that are 180◦ apart are resolved. This enables the inclusion of wire shapes that turn backward
in the global view, and the differential colouring lets the agent know which direction is forward along
the wire. The wires can be arbitrarily shaped in the environment as well as randomly rotated. The
given example in Figure 3.1 shows a ramped sinusoidal wave.

14

Figure 3.1: Global view of 2D Buzz Wire Simulation environment.

In the given environment, the eye-in-hand configuration of the camera is simulated, where the
camera is situated on the wrist-link of the robot arm. The robot then observes only a local region
around the agent. To simulate this in the 2D environment, the following example of a local observation
is seen in Figure 3.1.1. The image size is 256×256×3 for the three colour channels.

Figure 3.2: Local observation with agent and a portion of the surrounding wire.

3.1.2 Agent

The agent itself is constructed to include thickness due to the material of the loop and a hollow part
as shown in Figure 3.3. The two ends of the agent are solid to simulate material thickness, which
is considered equal to the width of the agent. Figure 3.4 shows the loop in a 3-Dimensional setting
where the wire (in grey) passes through the hollow part of the loop (in red).

Figure 3.3: Agent construction (solid and hollow parts). Figure 3.4: 3D View of hollow part of agent.

15

In the local observation, the agent is allowed to move in the rotational degree of freedom (θ), which
simulates the placement of the camera on the wrist link of a 6-axis arm manipulator.

3.1.3 States

The underlying state that is extracted from the observation model is explained as follows. Specific
information like the agent’s location, orientation and a local goal to be reached is extracted from the
local observation as seen in Figure 3.1.1. The choice of these features was the subject of study in [43].
These features are encoded in a one-hot encoding (OHE) scheme, so that the feature extraction stage
is a classification problem, which is a common task in machine learning-based vision. In the OHE
scheme, the labels are vectors of zeros with a single one placed in the relevant position of the class
occurrence. This is reformulated into predicting the agent pose, orientation and future orientation.

(a) Agent Location. (b) Agent Orientation. (c) Future-wire Orientation.

Figure 3.5: Encoded Features.

Feature Hyperparameter One-Hot-Encoded vector

1 - agent location front edge (BD) # sections = 7 [0, 0, 0, 1, 0, 0, 0, 0]T

2 - agent location back edge (AC) # sections = 7 [0, 0, 0, 1, 0, 0, 0, 0]T

3 - agent orientation # sections = 21 [0, 0, 0, 0, 0, 0, 1, 0, 0, · · · , 0, 0, 0]T

4 - future wire orientation
radius = 5

[0, 0, 0, 0, 0, 1, 0, 0, 0]T
sections = 9

Table 3.1: One-Hot-Encoded features for example in Figure 3.5[43].

This feature formulation results in four multi-class classification problems, where one class (encod-
ing) is to be predicted in each of the four features.

These OHE vectors are chosen as the state of the system as they provide low dimensional feature
input to the reinforcement learning agent that gives the advantage of reduced computation time as
well as greater speed of learning. Concise agent properties like distance of loop corners from the wire,
angle of the agent (in radians), and future orientation was also considered in the feature extraction
problem. However, since these quantities are real valued and obtained from SVD operations, they are
not accurately estimated by neural networks, and the classification problem is a much easier task with
CNNs. Hence, the OHE features are chosen as the input to the reinforcement learning model.

In a single step, the agent can take a discretized action in +1, 0, or -1 times the step-size of motion.
This combination of three possible movements for the three degrees of freedom gives 27 possible actions
in a given step. These actions are indexed as 0 to 26 as shown in Appendix A.

3.1.4 Action

The agent in the 2D Simulation has three degrees of freedom: translation along longitudinal axis of
the loop (u), translation along lateral axis of loop (w), and rotation around loop centre (θ). Figure
3.6 depicts the directions in which the agents can move.

16

Figure 3.6: Action directions [40].

3.1.5 Reward and Episode Termination

The reward scheme used in this project is derived from [40], where the policies obtained with a dense
reward scheme based on euclidean distance and a sparse reward scheme were tested. It was found that
the policy obtained from the sparse reward experiment performed better generalization compared to
the dense reward. This is likely due to the fact that the euclidean distance based reward does not
encode information regarding the path taken along the wire. Instead the absolute distance between
agent location and reference point, which may vary for wires of different amplitudes, frequency and
shape. In this project, the sparse reward is chosen due to it’s proven performance. The reward function
at a given time step k is given by

rk =

rhit if agent hits wire,
rfinish if agent reaches finish point,
0, else.

(3.1)

In the following experiments rhit = −100 and rfinish = 2000. The reward for hitting the wire is
accumulated from current time step at which agent hits the wire up to the 400th step in that episode.
Episode termination occurs either when the agent reaches the goal or at 400 steps in the episode.

This cumulative negative reward gives an idea of how much distance is left to travel along the wire
before the goal is reached. However, in case of no action taken, where the reward accumulated is zero,
there is no progress along the wire. A negative reward of higher magnitude implies the agent is closer
to the finish.

3.2 Observation and Control

The previous sections provide a brief explanation of the experimental setting of the 2D buzz wire
simulation. These components are constructed in the Open AI Gym toolkit and the algorithms in the
following sections are developed for obtaining a vision-based reinforcement learning control solution.

The vision-based control task is divided into two components as shown in Figure 1.3, where the
vision system is a convolutional neural network that extracts relevant features from the image ob-
servation and the controller consists of a path planning module using reinforcement learning for the
actions mentioned previously.

3.2.1 Feature Extractor Network

The construction of the feature extractor network was the subject of study in [43]. The relevant
features extracted by this network and the choice of the network architecture are discussed and the
results are briefly mentioned. The Feature Extractor Network (FENet) has the architecture shown in
Figure 3.7.

17

Figure 3.7: Feature Extractor Network (FENet) Architecture.

The branching network gives rise to four separate classification problems that are suitable for
simultaneously producing one-hot encoded feature estimates that are required for the observations as
seen in Figure 3.5. All layers use the ReLU activation function, except the final output layer which
uses the softmax function suitable for classification. This network was trained on a dataset of image
examples and corresponding feature outputs as explained in [43], and shows a reasonably good feature
extraction performance as shown in Table 3.2.

Feature # of classes Accuracy %

1 - Forward Edge 9 80
2 - Back Edge 9 80
3 - Orientation 21 98

4 - Future Point Orientation 11 70

Table 3.2: Feature Extraction Accuracy of FENet.

This forms the vision system that provides relevant information to the following stage in the control
pipeline, the path planning and control module that is characterized as a deep-Q network.

3.2.2 Deep-Q Network

As explained in Section 2.2.1, the RL algorithm of choice is the Deep-Q Learning algorithm, in which
the Deep-Q Network (DQN) is an integral part. This DQN is the agent that performs the path planning
and control in the 2D Buzz-Wire simulation control pipeline. The architecture of the DQN trained
from ground truth features was investigated in [40] and the same architecture will be used to evaluate
the control performance in the vision-based control system where the features are now estimated by
the FENet. Figure 3.8 shows the DQN architecture used in the 2D simulation experiments.

Figure 3.8: Deep-Q Network Architecture.

18

The DQN agent is trained on various sinusoidal wire confgurations with randomized amplitude,
frequency, phase and global orientation, within reasonable bounds of the agent (loop) being able to
traverse along the wire. The input to the DQN agent is the ground truth features calculated by hand
in the simulation environment. These ground truth features provide the most accurate representation
of the required features. The result of the training process is a policy(control mechanism) with which
the agent chooses actions given a particular observed state.

3.2.3 Measuring Performance

To understand how well a policy generated from training performs on the buzz wire task, it must be
evaluated on example wires to see whetehr the agent is able to travel along the wire and reach the goal,
without hitting the wire. For this a set of 50 fixed sinusoidal wire confgurations are sampled from the
same distribution of sine waves with randomized amplitude, frequency, phase and global orientation
are chosen. The performance of a policy is then measured in the number of evaluation wires it is able
to complete. If the policy is able to complete more number of wires in this set, the policy is able to
generalize well to the sinusoidal buzz wire cases. If it is able to complete only a few number, such a
policy is deemed poor.

A policy must accommodate for imperfect observations by the vision system (FENet) in order to
navigate the wire. Additionally, noise can be added externally to the observations. The robustness
of a policy is also tested by inducing these noisy conditions. If a policy is able to complete many
wires under this artificial noise, it is considered robust. Further, to measure a policy’s generalizability
beyond the training set, it is evaluated on 50 multisinusoidal wires with 10 sine components. These
wire configurations are not part of the training set, and a policy is considered generalizable to the 2D
buzz wire task if it completes many multisinusoidal wires.

With this method of performance measurement, absolute performance of a policy cannot be esti-
mated. It can only be compared with the performance of another policy. This is because the number
of wire configurations that can be sampled from the sinusoidal class of waves with randomised param-
eters mentioned earlier are infinite. It is impossible to truly measure absolute performance over the
infinite number of configurations. Hence, a set of 50 wires are chosen that represent various levels of
difficulty and the policies are compared over this set.

19

Chapter 4

Experimental Results

In this chapter, the different training phases are explained, where vision-based RL models with feature
engineering and without are generated. The policies obtained from these training phases are evaluated
and their behaviour is analysed. Policy πGT is generated by training the RL agent in an environment
where the observations are calculated from the ground truth location and orientation of the loop.
Policy πEF is generated by training the agent in an environment with observations extracted from
local images of the environment, as explained in Chapter 3. The end-to-end policy is obtained by
training a DQN model with convolutional layers on image observation data. These policies are then
compared for their performance.

4.1 Training Phases

The two networks explained in the previous chapter (Figures 3.7 and 3.8) were trained separately on
their respective datasets and their performance for given sub-tasks has been recorded in [40], where
the policy πGT was obtained, and [43], where the feature extraction mechanism was constructed. The
combination of the two to provide a vision-based controller is studied in this project. Figure 4.1 shows
the resulting vision-based controller with the FENet and DQN as part of the control pipeline.

Figure 4.1: Combined vision-based reinforcement learning controller.

The two components trained separately must first be evaluated for their performance when they are
directly coupled with each other. This presents the first training phase, where the feature observations
in the environment are the output of the FENet and the DQN trained on ground truth features
estimates the action that has to be taken for navigating the 2D buzz wire. The control policy of the
DQN in this case is denoted as πGT . This policy is expected to perform poorly since the output of the
FENet is not completely accurate and estimation noise creeps in with some erroneous features being
used. The robustness of the control policy can also be tested in this case.

The next training phase is where the DQN is trained on the noisy observations of the environment
that are output by the FENet and not the ground truth, for the same training dataset of randomised
sinusoidal wires. This control policy is denoted as πEF , and its performance with estimation noise
and artificially added noise (to test robustness) is compared with that of policy πGT .

Both policies are then evaluated on wires made of multisines, which were not part of the original
training dataset, to test how well they can generalize over unseen scenarios.

20

The final training phase investigated in this project is that of an end-to-end architecture, where
the tasks of feature extraction and action selection are performed by a single model. This eliminates
the feature engineering step and allows the agent to decide what features are useful in completing the
goal. Figure 4.2 shows the architecture of the end-to-end model.

Figure 4.2: End-to-end visual reinforcement learning controller.

Obtaining πGT was the subject of study in [40]. The results from this study are carried forward
in this project. The following section shows the training result for obtaining πEF .

Table 4.1 summarizes the different training phases considered in the 2D buzz-wire experiment.

Training Phase Description

Direct Coupling Policy πGT evaluated on agent in environment with
FENet output observation

DQN trained on es-
timated features

Policy πEF evaluated on agent in environment with
FENet output observation

End-to-end training Agent trained on environment with image observation

Table 4.1: Training Phases.

4.2 Training results

The most important hyperparameters used in the training experiment to generate the policy πEF are
shown in Table 4.2. The exploration rate ε induces randomness in selecting an action from the action
space in an ε-greedy algorithm. A high rate of exploration was chosen as the starting value so that
the agent can get fairly good estimates on how good taking all possible actions are. This probability
is decayed linearly over the experiment and the policy becomes more greedy towards the final epochs,
choosing only the best actions and reinforcing their action value estimate. The rewards chosen for
this experiment were

Hyperparameter Value

ε - Probability of random actions 1.0→ 0.0001 (linear decay)
α - learning rate 10−2 → 10−4 (linear decay)
γ - Discount factor 0.4
Replay buffer capacity 107

Batch Size 256
Target network update frequency 100
Experience collection steps per epoch 2000
Training steps per epoch 100
Number of training epochs 2500
Evaluation examples 50
Number of training epochs after which evaluation occurs 10

Table 4.2: Hyperparameters chosen for the training experiment in generating πEF .

21

A small reward discount factor (γ) means the agent estimates rewards more into the immediate
future steps and is beneficial in case of POMDPs where the end goal is not visible at the outset. A large
γ weights the reward estimates well into the future and is suitable for finite horizon episode lengths.
A central value of γ = 0.4 was chosen by considering the trade-off provided by both the extreme
conditions. A large replay buffer capacity is beneficial in Q-learning since more historical data can be
stored, and the agent can be trained on experiences that are well into the past. Before training the
network, some considerable amount of trial-and-error experience needs to be accumulated, where the
agent can test its ability to make the correct action decisions over multiple steps in an episode. For
this a value of 2000 collection steps was a reasonable choice. After the data collection is done, the
agent is trained over the experience data in the replay buffer (Table 2.1). This is done for 100 training
steps. With a batch size of 256, the DQN is trained over 25600 examples during the training phase in
epoch of the Deep Q-Learning algorithm.

If the target network is updated very frequently, it presents a moving target problem where the
main Q-network tries to adapt itself to its past value, causing unstable learning. A slow target network
update frequency, however, causes slow learning and convergence of the policy. Based on this trade-off
the target update frequency chosen was 100 steps.

The training progression for generating πEF is shown in Figure 4.3. Since one training epoch
consists of 100 training steps, the x-axis of the graphs show a total of 250000 data points for 2500
epochs. The number of environment steps taken in an episode is shown in Figure 4.3(a). The finish
point for the sinusoidal wires used in the training dataset is around 140 steps (can vary due to
different amplitude wires). A stable episode length around this value shows that the agent’s policy is
able to complete wire trajectories. The Figures 4.3(b), 4.3(d) and 4.3(c) show average, minimum and
maximum cumulative returns in each set of episodes used in training. The training data consists of
multiple episodes where the agent performs actions in the environment, and among the maximum and
minimum return over all these episodes are recorded. The average return is the numerical average of
the returns obtained in all the episodes recorded between training points. The objective is to stabilize
the number of steps taken in an episode to complete the wire and to maximize the returns, which
results in the agent completing the buzz wire.

(a) Episode Length. (b) Average Returns.

(c) Maximum Returns. (d) Minimum Returns.

Figure 4.3: Training progression for Policy πEF . Blue shows the training curve and orange shows the
evaluation curve (plots from TensorBoard).

22

Initially, the agent has a high probability of exploration (ε ∼ 1.0). This makes the agent choose
actions which do not result in completing the wire. Hence a maximum of 400 episodic steps are taken
in the environment (Figure 4.3(a)). These episode steps pertain to the data collection phase in the
Deep Q-Learning algorithm (Table 2.1). Correspondingly in the returns graphs, the training returns is
negative, which implies the agent hits the wire. At around 90k training steps, the agent learns to find
positive rewards, i.e., the agent completes wires. This is seen in the maximum returns graph where
the training returns is at the maximum of 2000. As the training progresses, we see the average returns
becoming increasingly positive, which signifies multiple configurations of wires being completed and
the agent achieves a degree of generalization. The policy state with maximum average return is saved
for the same reason and used in further evaluation experiments.

4.3 Policy Evaluation

The policies obtained in the two experiments are evaluated for a set of 50 evaluation wires with ran-
domised frequency, amplitude, phase and rotation. The evaluation environment used to test these
policies consists of the observations that are output from the feature extractor network. The perfor-
mance of these policies can be seen for an example wire in the evaluation set in the following two
videos, where the policies are evaluated on the same wire.

πGT evaluation on example wire (click to view)

πEF evaluation on example wire (click to view)

The two policies show distinct behavioural difference in the way they navigate the wire. πGT shows
jittery actions, but continuous forward motion along the wire. In contrast, πEF shows smoother motion
along the wire without the jitter. This evidence is also seen in the frequency of actions taken as shown
in Figure 4.4.

(a) Frequency of actions with πGT . (b) Frequency of actions with πEF .

Figure 4.4: Frequency of actions with different policies over 50 evaluation wires.

These plots show the cumulative number of times a particular action is taken as listed in Table
A.1 when the policies are evaluated in the 50 test wires. Comparing Figures 4.4(a) for πGT and 4.4(b)
for πEF , we see that actions 15 and 17 (from Table A.1) are more frequent in the former case than
the latter. This explains the consecutive forward and backward rotations of the agent when moving
forward in πGT , and the smoother motion in πEF is shown by the lower freuency in these actions and
a more dominant frequency of action 16 which is forward motion without rotating the agent.

Policy πGT also makes the agent position itself more towards its edges, with respect to the wire, and
is hence at risk of hitting the wire more frequently. Contrarily, policy πEF causes the agent position
with respect to the wire to be more at the agent centre, and hence takes more cautious actions than
policy πGT .

Over the 50 evaluation wires, πEF performs better in terms of number of wires completed as
compared to πGT . Table 4.3 shows the number of wires completed in the evaluation by each of these

23

https://drive.google.com/file/d/1RwdyR4_evJHe5AYFL6tKHfqBj9UxVd_5/view?usp=sharing
https://drive.google.com/file/d/18EF55dDe-n14_nODhSBE45NzoLVgH21Z/view?usp=sharing

policies. πGT performs considerably poor with only 7 wires completed among the 50 evaluation wires.
In fact, evaluating πGT on this environment with estimated feature observations is the direct coupling
training phase. The poor performance shows the need for further training, with the DQN agent trained
on the noisy observations due to the FENet. This forms the next training phase where the DQN agent
is trained on estimated feature observations. Noise is artificially added to the observations based on
the noise profile shown in Figure 4.5, to test the robustness of the DQN agent to more erroneous
observations. It is observed that πGT is unable to complete any evaluation wire (Table 4.3 column:
Sine Noisy), and is hence not robust to noise in observations, whereas πEF performs considerably
better (38 wires completed). This is because the policy is obtained from training the agent on noisy
observations, hence feature noise is a part of the dataset, unlike in πGT .

Environment with Estimated Features

Sine Sine Noisy

πGT 7 0
πEF 45 38

Table 4.3: Performance over 50 sine wires ex-
pressed as number of wires completed.

Environment with Estimated Features

Multisine Multisine Noisy

πGT 0 0
πEF 30 20

Table 4.4: Performance over 50 multisine wires
expressed as number of wires completed.

Figure 4.5: Noise profile used in inducing artificial noise.

The generalizability performance of the policies is also tested by evaluating them on multisinusoidal
wires, that was not part of the training data. This multisine evaluation set also consists of 50 wires,
where each wire is a sum of 10 sine waves with random amplitude, frequency, phase. The resulting
multisine wave also has a random global orientation in 2D space. The results of these evaluation
experiments are shown in Table 4.4. πGT is unable to complete any of the multisine wires and hence
has poor generalizability. πEF on the other hand is able to complete a considerable number of multisine
wires, even with artificial noise added to the observations. The following link shows an example of the
agent completing a multisine wire under πEF .

πEF evaluation on multisine wire (click to view)

Hence, it can be concluded that the direct coupling case does not provide an effective vision-
based reinforcement learning controller in the 2D buzz-wire experiment and further training on noisy
observations is necessary. Doing so results in a more robust and generalized policy that can navigate
the 2D buzz-wire simulation well.

24

https://drive.google.com/file/d/1kdEH-KWHWbQ2jP8SerVzQN0PkdILnYqk/view?usp=sharing

4.3.1 Noise in Images

So far, the robustness of the policies for feature noise have been discussed. This noise occurs after the
feature extraction step of the FENet as seen in Figure 4.1. It is also interesting to observe how the
overall vision system performs in case of noise occuring at the camera sensor, causing imperfect image
input to the FENet. Many noise models exist for artificially inducing noise into images. In this project,
we evaluate the vision-based controller on two particular noise models - Gaussian Blur and Motion
Blur. Gaussian Blur simulates blurring of an image due to the camera being out of focus with respect
to the region of interest and is characterized by a two dimensional normal gaussian distribution with
equal variance in both axes. A bigger kernel results in a bigger variance, and hence more blurring.
Motion Blur occurs due to relative motion of the object of interest and the camera. This kernel is
characterized by two parameters, the degree of motion (speed) and the angle of motion. The degree
dictates the positioning of the mean of the distribution, with a higher degree pushing the mean to
the bottom right of the kernel matrix (top left if motion in reverse direction). The angle of motion
defines how much the main diagonal of the matrix is rotated, which shows the relative angle of motion
between the camera and the object. In the buzz wire experiment, the angle of the kernel is the same
as the angle of motion of the agent, or its orientation.

These kernels are applied to the image that is input to the FENet at each step. The policy that
is evaluated in this case is πEF since πGT is shown to be not very robust. The following videos show
the evaluation of πEF on the blurred image observations for the same wire.

πEF evaluation on images with Gaussian Blur (click to view)

πEF evaluation on images with Motion Blur (click to view)

The same set of sine and multisine evaluation wires as in the previous cases are tested with the
blur kernels applied at the image generation stage. Table 4.5 shows the performance of πEF for various
gaussian kernels, and Table 4.6 shows the same for various motion kernels. It can be observed that
as the degree of blurring increases, the policy is able to complete fewer wires. This is expected as
the feature extraction capability of the network becomes poorer due to less distinctly visible features
caused by the blurring.

Blur Kernel
Gauss
21x21

Gauss
31x31

Gauss
41x41

Sine 32 36 22
Multisine 12 15 4

Table 4.5: Performance of πEF with Gaussian
Blur Kernels expressed as number of wires
completed.

Blur Kernel
Motion
deg=5

Motion
deg=10

Motion
deg=20

Sine 34 17 31
Multisine 10 3 10

Table 4.6: Performance of πEF with Motion
Blur Kernels expressed as number of wires
completed.

4.4 End-To-End RL Model

The previously discussed methods pertain to the vision-based controller with the feature engineering
step as part of the design process. However, in case of more complex environments, where the images
are cluttered with undesired objects or in higher dimensional simulation, defining such features and
creating a dataset for extracting them is difficult. An end-to-end reinforcement learning model can
eliminate this step of feature engineering and allow the agent to learn features that are important for
completing the buzz wire task. The unified model is as shown in Figure 4.2. Constructing this agent
is made by insight obtained from building the vision system and RL agent from the previous training
cases. In fact, the convolutional weights in this network are initialised from those in the FENet.

25

https://drive.google.com/file/d/1UStDN-W2J1hjkF7qBW__abFzwdOE9xrJ/view?usp=sharing
https://drive.google.com/file/d/11fieq9n5ABbUgDQI_hNcIs2WdGtsSxV8/view?usp=sharing

4.4.1 Changes in Training Experiment

Computational Limitations

Several changes were required to be made for this training experiment. Since the agent now takes
in observations that are images of size 256 × 256 × 3 (Figure 4.2) as opposed to the 50 × 1 vector
stored in the feature engineering case (Figure 4.1), the size of a single transition stored in the replay
buffer is more than 3000 times larger. This imposes serious constraints on memory and size of the
replay buffer, thus requiring it to be smaller. A smaller replay buffer leads to only the most recent
transitions being stored and makes the training more temporally correlated since it cannot sample
batches from past experiences. Due to the limited storage space available (16GB RAM), a maximum
of 20000 transitions can be stored in the replay buffer when compared to the previous case where
the capacity of the replay buffer was 107 transitions (without reaching maximum memory on 16GB
RAM). Similarly, the batch size used to train the network was also reduced due to the same reasons
from 256 examples to 16.

Additionally, with the previous reward formulation, the agent would hit the wire and the next
steps up to the 400th step are kept constant to give a large negative reward. This results in transitions
that are repeated many times, leading to inefficient use of the replay buffer. Hence, a new scheme
for providing a large negative reward on wire hit is required to be made, where a reward of -10000 is
given on wire hit, and the episode is terminated. This leads to efficient use of the replay buffer where
the dataset used for training the DQN is more diverse.

To further increase the size of the replay buffer, so that more history of the agent’s trial and
error experience can be stored, the images stored in the replay buffer were shrunk to 100×100 from
256×256, and a resize preprocessing layer was added to the above network to bring the dimensions of
the image back to 256×256. With this the replay buffer size could be increased to 150000 transitions
from the previously calculated 20000, and the batch size was increased from 16 to 64. While the
effects of blurring caused by shrinking and resizing on the network has not been investigated like
in the previous evaluation experiments with gaussian and motion blur, such an analysis may not be
necessary since the network architecture of the current model is drastically different than the previous
cases. The network is allowed to learn the features from image observations that are resized.

Network Architecture

The architecture of the new DQN agent needed to be changed since simply combining the FENet and
the earlier DQN was not possible due to lack of support for branching networks (as in Figure 3.7) in
the TF-Agents RL development toolkit [42]. This needed redefinition of some intermediate layers and
the weights of the earlier networks could not be utilized due to this. Since a series of dense layers
increases the number of parameters many-fold, and this causes slower rate of learning, the number of
such layers in the new architecture was reduced. A simpler architecture as seen in Figure 4.6 was used
where the weights of the convolutional layers were initialized to those of the trained FENet model and
frozen during the new training process. The size of the hidden dense layers was reduced to just two
layers since experiments with more layers showed very slow rate of convergence.

Figure 4.6: End-to-end DQN model for visual control.

26

Reward Scheme

The reward scheme was also changed to accommodate large negative reward on wire hit and an equally
large positive reward on reaching the goal. It was observed empirically that this sparse reward scheme
was insufficient to promote the motion of the agent along the forward direction of the wire, and
the agent would stay in place and get zero reward. This behaviour is likely taken to overcome an
immediate large negative reward by performing actions such that the wire is hit. The reason for such
behaviour is likely because the large positive reward is well into the horizon from the starting point
of the agent, and is hence diminished in the initial discounted returns. This scenario is also promoted
by the fact that the replay buffer stores a smaller number of recent transitions and it is likely that in
these transitions the agent makes actions where it has not progressed much along the wire. Thus, a
denser reward scheme was required to be made that rewards forward motion of the agent towards the
goal and punishes motion in the backward direction. This was made by using the arc length of the
wire function and the agent’s location on the wire. The reward scheme is then given by

rk =

rhit if agent hits wire
rfinish if agent reaches finish point
rprogress for progress along wire

(4.1)

where rhit = −10000, rfinish = 10000 and rprogress = s ·±
∑n

i=1

√
1 + [f ′(xi)]

2∆xi, where s is a scaling

factor, n is the number of discrete wire elements traversed by the agent, xi is the ith element along the
local x-axis of the wire, δxi is the difference in the x distance between the ith and (i−1)th wire element,
and f ′(x) is the first derivative of the wave function used to represent the wire, and scale = 100. If the
agent moves in the forward direction, towards the goal, this arc length is positive (rprogress = s×

∑
(.))

and is negative if it moves backwards, away from the goal (rprogress = −s ×
∑

(.)). The drawback
with such a reward is prior knowledge of the wave function/trajectory is required to calculate this arc
length.

Action Space

To further improve the action selection mechanism, the action 13 in Table A.1 was removed from the
action space in the end-to-end training phase. This prevents the agent’s policy from being stuck in
a scenario of inaction, where it may be so that the agent believes obtaining no reward by staying in
place without moving is better than moving and hitting the wire. The final layer of the DQN is then
only 26 actions accordingly.

4.4.2 Training Results For End-To-End Model

Table 4.7 shows the important hyperparameters used in generating the end-to-end policy. The starting
value for ε (exploration parameter) is reduced to 0.5 to promote faster learning. A high value of ε
results in a high probability of random actions chosen, which can result in slower learning of the DQN
agent. The replay buffer capacity and batch size were reduced due to the reasons explained above.
The experiment is conducted for a longer period of time with number of epochs at 10000 due to the
slow learning progression.

The training progression for the end-to-end model training is shown in Figure 4.7. It is observed
that the agent still does not receive positive average rewards at the end of 10000 epochs (Figure
4.7(b)). However, there is a steady trend in the maximum returns (Figure 4.7(c)) that show more and
more positive rewards being obtained as the epochs progress. If the experiment is run for longer, it
is likely that a policy is learnt that is able to complete the buzz wire. As the experiment currently
stands, the best policy is still unable to complete the wire, but is able to make a turn as seen in the
following evaluation video.

End-to-end policy evaluated on a sine wire (click to view)

27

https://drive.google.com/file/d/16KVGQIlvc5PW4F_-8E9oxeUNxE-rBKzn/view?usp=sharing

Hyperparameter Value

ε - Probability of random actions 0.5→ 0.0001 (linear decay)
α - learning rate 10−3 → 10−6 (linear decay)
γ - Discount factor 0.4
Replay buffer capacity 150, 000
Batch Size 64
Target network update frequency 50
Experience collection steps per epoch 2000
Training steps per epoch 100
Number of training epochs 10000
Evaluation examples 50
Number of training epochs after which evaluation occurs 10

Table 4.7: Hyperparameters chosen for the training experiment in generating end-to-end model.

(a) Episode Length. (b) Average Returns.

(c) Maximum Returns. (d) Minimum Returns.

Figure 4.7: Training progression for end-to-end policy. Blue shows the training curve and orange
shows the evaluation curve (plots from TensorBoard).

The progress of learning is still quite sluggish in spite of the improvements made in promoting the
agent’s forward motion. This is likely because of the smaller capacity of the replay buffer and the agent
is not trained on data that is sufficiently in the past, i.e., catastrophic forgetting is likely occurring due
to the dataset still being quite recent. More crucially, in the end-to-end case, the observations are of
much higher dimension than in the previous training cases (50×1 feature vector previously, compared
to 256 × 256 × 3 here). The previous observations were also information rich, containing specific
information like the agent position with respect to the wire, it’s orientation, as well as the local goal
to be reached (future point orientation). With the image observations, the DQN agent must learn the
specific information on it’s own and then make action decisions based on these learnt features. While
the convolutional filters are initialised from the previously trained feature extractor network, much of
the feature extraction capability is lost in removing the branched dense layers used for classification,
and thus the agent must still spend a lot of effort to learn to extract relevant features.

28

Chapter 5

Conclusion and Recommendations

5.1 Conclusion

The objective of this project was to build a vision-based reinforcement learning controller for the
2D Buzz Wire simulation where the agent is able to navigate a given wire to the goal point without
coming in contact with the wire. The two sub-tasks of extracting specific features from images and
the reinforcement learning agent making action decisions based on these features have been discussed.
The architecture of the neural networks in both cases has been explained in Chapter 3. It is observed
that the feature extractor network shows reasonably good accuracy in estimating the selected features
from a given local observation in the 2D environment. The DQN agent is able to navigate and
complete a given wire, with a policy trained from ground truth observations. A policy trained with
the feature extractor network output as the observations has been obtained and the two policies have
been compared for their performance.

The performance of the policies have been discussed in the following terms:

� Number of wires completed in an evaluation wire set – The more number of such wires completed
in the environment, the better the policy of the DQN agent.

� Robustness to noisy observations – The policy is considered robust if it is able to navigate con-
siderable numbers of evaluation wires under noisy conditions, where observations are imperfect
due to the accuracy of the FENet and externally added noise.

� Generalizability – Whether the policy is able to navigate a set of unseen multisine wires. A
policy is more generalizable if it is able to complete more of these multisine wires.

Policies are compared with these factors and a better candidate for the 2D buzz-wire task is chosen.
Different training cases have been considered and the policies generated for the feature extraction

training cases are compared. It was observed that the policy generated by training the agent on
noisy observations due to the FENet (πEF) performed better than the policy generated by training on
ground-truth features (πGT) in terms of robustness to external noise and generalizability to new wire
shapes. Thus, πEF is a better candidate policy for the 2D buzz-wire task for the given architecture
of the agent and observer. This policy was also tested for the case of noisy images, with two noise
models considered, and shows considerably good robustness in these cases.

An end-to-end model that makes action decisions based on image observations was constructed
and a training experiment was carried out. Many challenges were faced in terms of efficiently handling
replay buffer data since the observation size is now much larger than in previous cases, thus allowing
only fewer and more temporally correlated examples to be stored and used for training the DQN
agent. The effects of such a change have been discussed with respect to the slow training progression,
and the policy generated is unable to complete the given example of the buzz wire. Changes in the
reward scheme to promote the agent to move towards the goal have been discussed and show better
results than with a sparse reward.

29

5.2 Recommendations and Future Work

While progress has been made in building a vision-based controller in the 2D Simulation, additional
analyses in the same has to be made before moving to more complex environments.

1. In continuing with the developments of this project, constructing a unified end-to-end controller
model for the 2D simulation environment is a natural first step. The problems faced during
training such a model were mainly with respect to memory management, where the replay
buffer capacity had to be reduced by many orders of magnitude. While obtaining better memory
resources by increasing storage space may not be feasible for this problem, a deeper look into
managing the replay buffer more efficiently by storing experience data in a more compact way
can be beneficial.

2. The current problem of storing image data in the replay buffer stems from the fact that the
image size used is too large. Smaller image observation sizes should be explored and their effect
on the performance of the vision-based controller with feature engineering must be investigated
and compared with the performance of the end-to-end model.

3. The Deep-Q learning algorithm provides a simple method for extending Q-learning into larger
observation and action spaces. However, it is also data hungry, requiring large replay buffer
sizes that store historical data from many environment steps in the past. Sample efficient
reinforcement learning must be explored in literature that can overcome the need for such large
replay buffer sizes, and also for faster convergence of the policy. Model-based RL algorithms or
Model-free RL with Self-Predictive Representations [44] can provide such alternatives.

4. From the insight gained in the 2D simulation environment, the 3D environment can be used
to develop a controller for the buzz-wire task. The 3D platform can be used to create a very
close representation of the real world buzz wire setup, with the robot arm included. However,
constructing such an environment with a large number of example wires for the robot arm to
train on can become difficult since modelling these wires in a 3D modelling software can become
quite cumbersome. A method to automate this process for generating randomly shaped wires is
necessary to obtain a generalizable control policy for the robot arm. While this can be overcome
by sequentially training the arm to complete a specific wire shape before moving to the next, the
random wire generation is necessary to reduce experiment time in obtaining such a generalized
policy.

5. An attempt has been made into creating the 3D environment using Pybullet as the physics and
rendering engine. It was observed that some objects, especially the wire object, did not scale
in the same way as other objects. This caused problems in defining the trajectory of the wire,
in the offsets required in placing the robot arm near the wire, and in placing the loop around
the wire in an accurate manner. Extreme care should be taken in making such offsets, since
it results in calculating ground truth features like distance between the loop and the wire, and
future local goal point considerations.

6. Finally, insight from the 2D simulation in constructing vision and RL models can be utilized
in constructing the same for the 3D environment. Transfer learning must first be explored by
applying the same pipeline in the new environment and the simulation gap between the 2D and
3D environments must be judged.

30

Appendix A

Actions and Indices

List of agent actions in x, y and θ degrees of freedom, and corresponding indices in the output of the
Deep-Q Network.

Degree of Freedom
Action Index x y θ

0 -1 -1 -1
1 -1 -1 0
2 -1 -1 1
3 0 -1 -1
4 0 -1 0
5 0 -1 1
6 1 -1 -1
7 1 -1 0
8 1 -1 1
9 -1 0 -1
10 -1 0 0
11 -1 0 1
12 0 0 -1
13 0 0 0
14 0 0 1
15 1 0 -1
16 1 0 0
17 1 0 1
18 -1 1 -1
19 -1 1 0
20 -1 1 1
21 0 1 -1
22 0 1 0
23 0 1 1
24 1 1 -1
25 1 1 0
26 1 1 1

Table A.1: Agent actions in x, y, and θ.

31

Bibliography

[1] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a survey,” Cognitive process-
ing, vol. 12, no. 4, pp. 319–340, 2011.

[2] R. Bars, P. Colaneri, L. Dugard, F. Allgöwer, A. Kleimenov, and C. Scherer, “Trends in theory
of control system design status report prepared by the ifac coordinating committee on design
methods,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 2144–2155, 2008. 17th IFAC World
Congress.

[3] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[4] J. Sarangapani, Neural network control of nonlinear discrete-time systems. CRC press, 2018.

[5] L. Tai, J. Zhang, M. Liu, J. Boedecker, and W. Burgard, “A survey of deep network solutions for
learning control in robotics: From reinforcement to imitation,” 2018.

[6] “The rubion fruit picking robot by octinion.” http://octinion.com/products/

agricultural-robotics/rubion. Accessed: 2021-08-23.

[7] K. Narendra and K. Parthasarathy, “Identification and control of dynamical systems using neural
networks,” IEEE Transactions on Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.

[8] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA:
A Bradford Book, 2018.

[9] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement
learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, p. 26–38, Nov 2017.

[10] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train your robot
with deep reinforcement learning: lessons we have learned,” The International Journal of Robotics
Research, vol. 40, p. 698–721, Jan 2021.

[11] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world reinforcement learn-
ing,” 2019.

[12] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough,” Artificial Intelligence,
vol. 299, p. 103535, 2021.

[13] L. Buşoniu, T. de Bruin, D. Tolić, J. Kober, and I. Palunko, “Reinforcement learning for control:
Performance, stability, and deep approximators,” Annual Reviews in Control, vol. 46, pp. 8 – 28,
2018.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller,
“Playing atari with deep reinforcement learning,” CoRR, vol. abs/1312.5602, 2013.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” 2019.

[16] A. Franceschetti, E. Tosello, N. Castaman, and S. Ghidoni, “Robotic arm control and task training
through deep reinforcement learning,” 2020.

32

http://octinion.com/products/agricultural-robotics/rubion
http://octinion.com/products/agricultural-robotics/rubion

[17] P. Zapotezny-Anderson and C. Lehnert, “Towards active robotic vision in agriculture: A deep
learning approach to visual servoing in occluded and unstructured protected cropping environ-
ments,” IFAC-PapersOnLine, vol. 52, no. 30, pp. 120–125, 2019. 6th IFAC Conference on Sensing,
Control and Automation Technologies for Agriculture AGRICONTROL 2019.

[18] J. Ruiz-del-Solar, P. Loncomilla, and N. Soto, “A survey on deep learning methods for robot
vision,” CoRR, vol. abs/1803.10862, 2018.

[19] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object
detection and semantic segmentation,” CoRR, vol. abs/1311.2524, 2013.

[20] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN features off-the-shelf: an as-
tounding baseline for recognition,” CoRR, vol. abs/1403.6382, 2014.

[21] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A com-
prehensive review,” Neural Comput., vol. 29, no. 9, 2017.

[22] P. Corke, Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer Pub-
lishing Company, Incorporated, 2nd ed., 2017.

[23] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards vision-based deep rein-
forcement learning for robotic motion control,” 2015.

[24] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,”
2016.

[25] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learning for robotic manipulation
with asynchronous off-policy updates,” 2016.

[26] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data collection,” 2016.

[27] “Make your own buzz wire game.” https://www.youtube.com/watch?v=6fmCjeGLe9k&ab_

channel=WMDIY. Accessed: 2021-08-23.

[28] “Niryo one documentation,” Jul 2020. https://niryo.com/docs/niryo-one/.

[29] S. Marx, A. Kanso, and R. Müller, “Unconventional path planning for a serial kinematics robot
with reinforcement learning using the example of the wire loop game,” 07 2020.

[30] R. Meyes, H. Tercan, S. Roggendorf, T. Thiele, C. Büscher, M. Obdenbusch, C. Brecher,
S. Jeschke, and T. Meisen, “Motion planning for industrial robots using reinforcement learn-
ing,” Procedia CIRP, vol. 63, pp. 107 – 112, 2017.

[31] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Representations by Back-
Propagating Errors. Cambridge, MA, USA: MIT Press, 1988.

[32] G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Mathematics of control,
signals and systems, vol. 2, no. 4, pp. 303–314, 1989.

[33] “Learn reinforcement learning (3) - dqn improvement and deep sarsa,” Jul 2019.
https://greentec.github.io/reinforcement-learning-third-en/.

[34] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,”
2015.

[35] L. Lin, “Reinforcement learning for robots using neural networks,” 1992.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep reinforcement
learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

33

https://www.youtube.com/watch?v=6fmCjeGLe9k&ab_channel=WMDIY
https://www.youtube.com/watch?v=6fmCjeGLe9k&ab_channel=WMDIY

[37] “Convolutional neural network.” https://www.mathworks.com/discovery/

convolutional-neural-network-matlab.html. Accessed: 2021-08-29.

[38] Y. LeCun, L. Jackel, L. Bottou, A. Brunot, C. Cortes, J. Denker, H. Drucker, I. Guyon, U. Muller,
E. Sackinger, et al., “Comparison of learning algorithms for handwritten digit recognition,” in
International conference on artificial neural networks, vol. 60, pp. 53–60, Perth, Australia, 1995.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Proceedings of the 25th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’12, (Red Hook, NY, USA), p. 1097–1105, Curran Associates
Inc., 2012.

[40] R. Dorussen, “Learning how to solve the buzz-wire game with a robot arm,” msc thesis report,
Eindhoven University of Technology, 2021.

[41] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” 2016.

[42] S. Guadarrama, A. Korattikara, O. Ramirez, P. Castro, E. Holly, S. Fishman, K. Wang,
E. Gonina, N. Wu, E. Kokiopoulou, L. Sbaiz, J. Smith, G. Bartók, J. Berent, C. Harris,
V. Vanhoucke, and E. Brevdo, “TF-Agents: A library for reinforcement learning in tensorflow.”
https://github.com/tensorflow/agents, 2018. [Online; accessed 25-June-2019].

[43] T. B. Sriram, “Machine learning based vision-in-the-loop system for automated buzz wire demon-
strator,” internship report, Eindhoven University of Technology, 2020.

[44] M. Schwarzer, A. Anand, R. Goel, R. D. Hjelm, A. Courville, and P. Bachman, “Data-efficient
reinforcement learning with self-predictive representations,” 2021.

34

https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://www.mathworks.com/discovery/convolutional-neural-network-matlab.html
https://github.com/tensorflow/agents

	Introduction
	The Buzz Wire Experiment
	Problem Statement
	Organization of The Report

	Reinforcement Learning and Computer Vision
	Neural Networks
	Reinforcement Learning
	Deep Q-Networks

	Computer Vision
	Convolutional Neural Networks

	The 2D Simulation Environment
	Experimental Setup
	Environment and Observation
	Agent
	States
	Action
	Reward and Episode Termination

	Observation and Control
	Feature Extractor Network
	Deep-Q Network
	Measuring Performance

	Experimental Results
	Training Phases
	Training results
	Policy Evaluation
	Noise in Images

	End-To-End RL Model
	Changes in Training Experiment
	Training Results For End-To-End Model

	Conclusion and Recommendations
	Conclusion
	Recommendations and Future Work

	Actions and Indices
	References

