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Abstract

There is a wave of advancement approaching the automotive industry, with the impetus shifting
from manually-driven to automated driving systems. The role of the driver is steadily being
decreased by incorporating automated driving systems in the vehicle. The levels of automation
have brought about ADAS systems such as adaptive cruise control and lane assists. These complex
systems could utilize maps as a sensor to make real-time decisions. OEMs will need to rely on the
quality of maps and sensor data to ensure their systems are safe and reliable in different operating
conditions.

The thesis is aimed at observing the impact of the map on the functional safety of automated
driving. A safety analysis, System Theoretic Process Analysis (STPA), is conducted on a SAE
Level 2/3 automated driving vehicle using maps. The objective of the analysis is to estimate the
different unsafe scenarios caused due to map data. The identified list of scenarios is validated
using TomTom’s data sources. The list of scenarios is further used to identify safety-critical map
features, which would serve as the focus of the simulation. Uncertainties in the map, by injecting a
Gaussian noise signal, are simulated using an autonomous driving simulator, CARLA. The safety
of the vehicle is evaluated by setting key performance indicators and recording their respective
values in different test cases.

The results of this thesis would aid in the identification of safety-critical features of the map.
The proposed methodology can be reapplied to vehicles possessing higher levels of automation.
Furthermore, conclusions drawn from the simulation would emphasize the requirement of safety
and quality management systems for maps.
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Chapter 1

Introduction

In this chapter, a brief introduction to the stakeholders responsible for this project, i.e., TomTom,
is provided. TomTom’s map production system is presented following the introduction. The results
of the background information concerning different safety analysis techniques are presented. This
is followed by describing the given problem statement. Research questions are identified from the
given problem definition and are presented in this section. In closing, the outline of the report is
discussed.

1.1 Introduction to TomTom

TomTom is the leading location technology provider and is shaping mobility with highly accur-
ate maps, navigation software, real-time traffic information, and services [1]. TomTom is well
recognized for developing a variety of navigation products such as Advanced driver-assist system
(ADAS) and High definition (HD) maps [2]. In addition to HD and ADAS Maps, TomTom also
provides point cloud maps that could be used by others for third-party map generation [1].

1.2 Map production system at TomTom

TomTom develops an array of navigation products such as ADAS and HD maps. In addition
to HD and ADAS Maps, TomTom also provides point cloud maps that could be used by others
for third-party map generation. Gaming and driving automation simulations could be run by
using the products created by TomTom. ADAS maps are utilized for driving various driver assist
systems such as adaptive cruise control, whereas HD maps are designed specifically for a SAE level
3 autonomous vehicle [3]. The map consists of a wide variety of features such as road gradients,
lane information, traffic signs, speed limits which would aid in driving a vehicle of such level
of automation [4]. To produce the map, a system has been established which is responsible for
data sourcing, map production, and delivery. The output of the system yields a map that can
be delivered to the customers and OEMs. The architecture of the HD map production system is
illustrated in Figure 1.1.

Observational data from roads is gathered from various sources. TomTom utilizes its self-
developed sourcing technology with the help of the Mobile Mapping (MoMa) System [5]. Vehicles
equipped with multiple sensors such as LiDAR, cameras, radar, IMU are driven across various
roads. Data gathered from these vehicles is assessed by conducting quality checks. Once it is
approved, the data is ingested through the ingestion process [6]. The assessed data is uploaded
to the TomTom Cloud. This is followed by a real-time assessment of the uploaded data. The
processed data is now supplied to the map production system.

The map production system is responsible for extracting all the appropriate features from the
processed data and update the current map repository, which has already been established [3].
Initially, stationary features such as traffic lights, speed limits are identified. This is followed by
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CHAPTER 1. INTRODUCTION

the classification of these features based on their type, i.e, grouping all the speed limit signs. The
methods used for grouping features vary with the type of observation [3]. The grouped features
are then quantified. The quantification of features aids in their storage in the observation archive.
Grouped observations present in the archive are selected based on time, location, and confidence,
accuracy levels. The selected observations are fused to yield observations with higher levels of
accuracy and confidence. Reality changes can be detected after receiving a single high confidence
observation or many less confident observations of the same changed reality. If the changes are
not detected, then either reality hasn’t changed, or insufficient checks were performed. Once this
step has been completed, the map is compiled according to the defined rules related to the data
model and capturing. The initial map is developed, and updates are applied over it based on any
detected reality changes.

The maps are delivered to customers and OEMs through two main sources, AutoStream and
NDS Cloud delivery. AutoStream is a map streaming method in which the maps are streamed
along the route of the car [4]. The software can stream a varying layer of maps (HD/ADAS)
depending on the functionality available on the car.

Figure 1.1: Architecture of TomTom’s High Definition (HD) Map production system.
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1.3 Methods of safety analysis

Automated driving vehicles present a tremendous challenge in ensuring the reliability in perform-
ance and safety for not just the passengers but the surrounding vehicles. These modern vehicles
consist of complex mechanical systems, which work in unison with other software-driven systems
[7]. However, the performance of such vehicles depends heavily on the availability of maps [8].
Automated driving vehicles utilise various features of the map, such as the lane features. Advanced
Driver assist systems (ADAS) such as adaptive cruise control use map features about “speed limit”
data to ensure the vehicle not only maintains a specified distance concerning the vehicle ahead,
but also a set speed. Automation of the driving process is achieved by depending on a fusion of
map and vehicle sensor data. Thus, the safety of the automated driving systems and maps being
provided must be ensured. Safety of systems are analysed using different types of safety analysis
techniques.

They can be categorised based on the flow of analysis, which are as follows:

1. Top-down approach

In this approach, the goal of the analysis is to identify the failure modes of a system at the
highest level. This is followed by a low-level abstraction of the system, which is used to
identify the remaining failure modes of the system occurring at lower levels in the system.
Examples of top-down approaches are System Theoretic Process Analysis (STPA), and Fault
Tree Analysis (FTA).

(a) STPA is a safety analysis method based on extended model of accident causation. STPA
works under the assumption that accidents can occur not only due to system failures,
but due to unsafe interactions between different components of the system [9]. This
can be applied in the early design stages of a system. The system continues to perform
its functions as per specification, however a hazard is still encountered. It includes
software and human operators in the analysis, thus ensuring that all possible causal
factors for the occurrence of losses are included [9].

(b) FTA is a hazard identification tool. It utilises a top-down approach. It is used to solve
a wide range of problems. FTA is performed by constantly asking the question: how
can a specific hazard occur, and what are the potential causes of this event [10]. FTA
is a graphical logical rendition of fault events that may occur in a given system [11].

2. Bottom-up approach

In this approach, the goal of the analysis is to identify the failure modes of a system at
the lowest level. This process is extended to higher levels in the system. An example of
bottom-up approach is Failure mode effect analysis (FMEA).

FMEA is a bottom-up reliability analysis method. The analysis starts from unit-level and
moves upwards towards a system-level view of the system [12]. FMEA relies on brainstorming
to identify different failure modes and their effects on higher levels of the system [13]. There
are several types of FMEA which can be performed such as process FMEA, design FMEA,
and system FMEA. The goal of FMEA is to identify failures at a unit level of the system
which could lead to vehicle-level hazards. The failures detected are used for deriving safety
requirements.

Conventional safety analysis techniques such as Failure mode effect analysis (FMEA) and Sys-
tem Hazard analysis (SHA) are applied particularly on mechanical or hardware-driven systems
[14]. Furthermore, they rely on probability theory, to identify the effects of each components’
malfunction on the remaining components [15]. As the level of technology in vehicles advance, the
components of the vehicle driven using software-driven components will also increase [16]. There
will be multiple communication protocols in place to ensure smooth communication between dif-
ferent systems. Unsafe interaction between these software-driven components can occur, which
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would result in unsafe scenarios for the vehicle. These scenarios would remain undetected if con-
ventional analysis techniques were applied to these systems. Figure 1.2 presents the commonality
between both the approaches presented above with respect to the identified failure modes. There-
fore, performing a top-down approach technique such as STPA would be a useful addition to the
existing safety analysis techniques.

Figure 1.2: Identification of failure modes using STPA and FMEA.

1.4 Problem definition

In the automotive sector, conventional safety analysis techniques such as FMEA are applied to
developed systems. The results of the analysis are implemented within these systems to ensure
safety against failures occurring in the lower levels of the system [13]. An automated driving vehicle
comprises multiple complex software-driven systems, which communicate with each other [7].
Unsafe scenarios could occur in these channels, which would go unnoticed in a conventional safety
analysis. As illustrated in Figure 1.2, FMEA does not yield scenarios occurring due to unsafe
interaction between systems. Therefore, an improved method of safety analysis must be performed
to ensure the all-around safety of the system. This would make sure the system implemented
performs optimally in a variety of scenarios, thereby keeping the driver and the passengers safe.

This project aims to study the HD map production system developed by TomTom and how
can maps lead to unsafe scenarios in automated driving system. The level of automation under
consideration is Level 2/3 as per the defined SAE standards for automation in vehicles [17]. The
study is performed from the point of view of map-makers. The map production system was studied
to develop an understanding of the products created by TomTom. The method of safety analysis
selected is System Theoretic Process analysis (STPA). The research can be broken down into
two main elements, the safety analysis and the simulation. A safety analysis is conducted using
the selected technique, STPA, of a given SAE Level 2/3 automated driving vehicle, which uses
map in the automation process [17]. This is followed by performing simulations in an autonomous
driving simulator, to observe the impact of map uncertainty on the functional safety of the vehicle.
The given problem statement has been broken down into two research questions. The research
questions are as follows:

1. In what scenarios does the traffic and lane features of the map impact the functional safety
of automated vehicles?

2. In the event of camera failure, what is the dependency of lateral control of an automated
driving vehicle on the quality of accurate maps?
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1.5 Thesis outline

This report is split into four parts. Chapter 2 consists of the background information, which
gives a detailed description about the selected safety analysis technique, STPA, and the choice of
autonomous driving simulator. Chapter 3 consists of the methodology, which presents the applic-
ation of STPA and autonomous driving simulator to the given problem statement. In chapter 4,
the results of the safety analysis are presented. This chapter includes the validation of the results
of the safety analysis. Chapter 5 presents the results of the simulations of map uncertainty conduc-
ted in CARLA. Key remarks and observations drawn from the chapters 4 and 5 are presented in
Chapter 6, which is titled discussions. Furthermore, the limitations of the project are highlighted
in this chapter. Chapter 7, which is titled Conclusions and future works, is used to describe the
conclusions drawn from this thesis. This is followed by discussing the future works of the project.
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Chapter 2

Background Information

In this chapter, a detailed description about the selected safety analysis technique, which is System
Theoretic Process analysis (STPA), is given. This is followed by a discussion of different self-driving
simulators available, which is used in the selection of a simulator for the given application. The
various features of the selected simulation environment, which are used in this study, are presented.

2.1 System Theoretic Process Analysis

System-Theoretic Process Analysis (STPA) is a hazard analysis technique based on an extended
model of accident causation [9]. In addition to the failure of components, STPA works under the
assumption that accidents can be caused by unsafe interactions of system components, none of
which may have failed. In the STPA framework, a system will not enter a hazardous state unless
an unsafe control action has been performed by the controller. The steps performed in the STPA
approach have been represented in Figure 2.1. Each of the steps will be explained in further detail
in the upcoming sections.

Figure 2.1: Steps undertaken in STPA.

2.1.1 Define purpose of analysis

STPA is performed on a system for a given purpose. The purpose of this approach must be defined
with clarity, which would aid in yielding appropriate results. The scope of the approach must be
defined along with its purpose. The scope of the analysis pertains to the system which is under
investigation. System definition consists of identifying the elements of the system which will be
analysed through this approach. The definition of the system must include the system boundary
and its interactions with other systems and the environment. The system boundaries are identified
by considering parts of the system over which the system designer has some control [9]. The
system can be visualised using a hierarchical control structure which would capture the feedback
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control loops [13]. The steps followed while defining the purpose of the analysis are highlighted in
Figure 2.2.

Figure 2.2: First step of STPA.

Identification of Losses: A loss involves something of value to the stakeholders [9]. Losses
may include a loss of human life or human injury, property damage, environmental pollution, or
any other loss that is unacceptable to the stakeholders [9]. The goal of this approach is to prevent
losses. The analysis begins by identifying all the involved stakeholders. This is followed by defining
goals for each stakeholder, which is then translated into a loss. If multiple losses are present for
each stakeholder, they can be ranked based on their importance [15]. STPA can be performed
specifically to prevent losses which are objectionable. The next step is to define hazards related
to these losses.

Identification of hazards: A hazard is a system state or set of conditions that, together
with a set of worst-case environmental conditions, will lead to a loss [9]. Using the defined system
and its boundaries, system-level hazards can be listed by identifying system states or conditions
that will lead to a loss in the worst case environmental condition [18]. A hazard can be traced to
multiple losses. Criteria considered whilst defining hazards are as follows:

1. Hazards are system states or conditions.

2. Hazard must describe the state or conditions to be prevented at the system-level and not
sub-system or component level.

3. Hazards will lead to a loss in some worst case environmental condition.

Identification of System-level constraints: A system-level constraint specifies system con-
ditions or behaviors that need to be satisfied to prevent hazards [9]. The defined system-level
hazards are inverted to define their respective constraints. Each constraint can be traced to mul-
tiple hazards. As stated previously, hazards can also be traced to multiple losses. Therefore, a
constraint can directly prevent one or more losses. Furthermore, constraints must be not defined
in the form of a particular solution. Specifying of a solution during constraint definition could
lead to better solutions being overlooked.

2.1.2 Model Control structures

The second step of the analysis consists of modelling control structures which will be used for
identifying control actions, unsafe control actions and the controller constraints. A hierarchical
control structure is a system model that is composed of feedback control loops [9]. A hierarchical
control structure is composed of control loops. A control loop is formed when a controller provides
control actions to control some process and to enforce constraints on the behaviour of the controlled
process. The types of elements considered while modelling control structures are as follows [9]:

1. Controllers
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2. Controlled processes

3. Control actions

4. Feedback

5. Other inputs and outputs from components within the system

The control structure must be modelled with a defined set of rules. The vertical axis of the control
structure is used for indicating control and authority within the system. The element at the top
of the control structure possesses the highest level of authority. Each element has the authority
to control elements below it. Downward arrows from system represent control actions and upward
arrows represent feedback.

The modelling of control structure begins with a high-level abstraction of the system under
analysis, thereby aligning with the top-down approach followed in STPA. High-level abstraction
of the system refers to the modelling of the system and its interactions with other systems and
the environment. The high-level abstraction is followed up by modelling control structures at the
subsystem or lower level. With each iteration of the control structure, more details are added.
This leads to a finer and accurate representation of the system and its components. The steps
performed following the modelling of control structures are presented in Figure 2.3.

Figure 2.3: Steps II and III of STPA.

Identification of control actions: Modelled control structures are used for defining the
functions performed by each entity in the structure. These functions are referred to as control
actions. Control actions can be split into the following categories:

1. System control actions are control actions that are performed by elements in the system
[9]. An example of a system control action would be an action performed by a controller to
control a given process.

2. Human control actions are control actions that are performed by human actors in the system
[9]. An example of a human control action would be an action which is performed by a human
actor present in the system.

Control actions are listed out by describing the function performed by the element in the system
and the communication of its resultant output with the other elements in the system. A controller
can make decisions using its defined control algorithm and feedback from the controlled process.
Thus it is vital to include feedback identification during the listing of control actions.

2.1.3 Identification of Unsafe Control Actions (UCA)

The listing of control actions is followed by the identification of unsafe control actions. An Unsafe
Control Action (UCA) is a control action, that in a particular context and worst case environment,
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will lead to a hazard [9]. There are four ways in which a control action can be termed as unsafe
[9][15]:

1. Not providing the control action leads to a hazard:

This consists of cases wherein the system or elements of the system do not provide a required
control action.

2. Providing the control action leads to a hazard:

This consists of cases wherein the system or elements of the system provide a control action,
but it still leads to a hazard. The following cases could be considered in this step:

(a) The control action may not be safe given the situation the system is in.

(b) The control action performed by the system utilises an incorrect input or provides an
incorrect output.

(c) The control action performed by the system may be insufficient or excessive.

(d) The control action performed by the system may result in an output in the opposite or
unsafe direction.

3. Providing a potentially safe control action but too early, too late, or in the wrong
order:

This consists of cases wherein the system performs a control action outside of its required
timing bounds. The system may perform a function before the scenario warrants such action
from it.

4. The control action lasts too long or is stopped too soon (for continuous control
actions, not discrete ones).

This consists of cases wherein the system performs a control action for too long or too short
a period before the system reaches the required state, thus endangering the system. The
system may provide the required output for a duration longer or shorter than expected,
thereby putting the system at risk of causing a hazard.

Unsafe control actions are identified along with the respective hazards they would be causing.
This provides traceability of hazards with the unsafe control actions. Hazards can be considered
as the backbone of the analysis since all the steps can be traced back to them.

Identification of controller constraints:
The list of unsafe control actions can be translated into controller constraints. This process is

similar to what has been described in Section 2.1.1. Unsafe control actions are inverted to yield
constraints for each system which would perform them given the worst case environment. By
listing out constraints, the controller would be prevented from performing unsafe control actions
which would compromise the overall safety of the system.

2.1.4 Identification of loss scenarios

Loss scenarios describe the situation that can lead to the unsafe control actions to and to hazards
[9]. The two types of scenarios which are identified in this step are:

1. Why would unsafe control actions occur?

Scenarios in this category can be identified by selecting an unsafe control action and moving
backwards to understand what could be the reason behind the controller providing or not
providing the control action. Unsafe control actions could also be provided due to unsafe
behaviour exhibited by the controller. There are four reasons which can be traced to unsafe
controller behaviour, which are [9]:
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(a) Failures related to the controller (physical controllers)

(b) Unsafe Control input

(c) Inadequate control algorithm

(d) Inadequate Process model

Unsafe control actions could occur in situations wherein inadequate information or feedback
is provided to controllers. Feedback comes from controlled processes via sensors and other
components. Incomplete or missing feedback could lead to an incorrect control output being
executed by the controller, which inadvertently leads to a hazard. Thus, it is vital to identify
scenarios concerning the following [9]:

(a) Feedback or information is not received.

(b) Inadequate feedback is received.

2. Why would control actions be improperly executed or not executed, leading to
hazards?

As mentioned earlier in Section 2.1.3, hazards are caused by unsafe control actions. Fur-
thermore, hazards can also be caused by control actions which have not been executed in
the manner they are required to be. Thus, scenarios must be created considering factors
affecting the control path as well as the controlled process. The control path is responsible
for transferring control actions from the controller to the controlled process. The defined
control path could include a simple actuator or may involve a series of actuators, thus there
could be a simple or complex path. Irrespective of the type of control path used, issues in
the control path leading to improper control action execution must be identified. Scenarios
related to control path may include:

(a) Control action is not executed.

(b) Control action is improperly executed.

A control action may be properly executed by the controller, however it may not be trans-
ferred or applied correctly to the controlled process. The control action issued by one
controller could be overridden by another controller. Scenarios related to problems faced in
the controlled process are:

(a) Control action is not executed.
The control action is received by the controlled process, but the process does not respond
to the input.

(b) Control action improperly executed.
There could be two possibilities in this case:

i. The control action is received by the controlled process but the controlled process
responds incorrectly.

ii. The controlled process does not receive the control action but responds as if a
control action has been received by it

Therefore, by following the above mentioned process, loss scenarios are obtained for a given sys-
tem. The identification of loss scenarios concludes the steps undertaken in STPA.

Categorisation of loss scenarios
The process of listing out loss scenarios results in the estimation of a large pool of cases. However,
each case in the pool may not have the same level of importance and thus can be considered as
a lower priority. Thus, the loss scenarios must be ranked based on their severity and probability
of exposure [19]. The severity represents an estimate of the potential harm in a particular driving
situation, while the probability of exposure is determined by the possibility of occurrence of the
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situation [20]. The levels of severity are set in a range between 0 and 3, where 0 is the least severe
and 3 is the most severe. A similar approach has been considered for the probability of exposure,
where 0 is the least probable and 3 is the highly probable case. The product of the two sets of
values, as illustrated in Equation 2.1, are used for estimating the priority of any given scenario
[21]. Scenarios, which have a product of severity and exposure equal to 9, are considered as high
priority scenarios.

Priority (p) = Probability of exposure(E) ∗ Severity(S) (2.1)

2.2 Selection of autonomous driving simulator

A highly reliable autonomous driving vehicle requires testing of autonomous characteristics in
every possible scenario [22]. The design, implementation, and testing of vehicles in a wide range
of use cases, in realistic traffic and weather conditions are not only costly but also time-consuming
[22]. Replicating a given worst-case environment or condition to test an autonomous driving
vehicle is a challenging task. A suitable solution for autonomous driving software testing is a
virtual platform in the form of an autonomous driving simulator.

Autonomous driving simulators provide an environment within which different functions of the
AD system can be deployed and tested [22]. Software deployment of such systems can be performed
on such platforms. An autonomous driving simulator is used for testing an autonomous vehicle
within a defined virtual environment [23]. Key performance indicators are used to compare the
performance of the vehicle in different scenarios. To select an appropriate simulator, a criterion
for evaluation has been drawn, which are as follows:

1. License Mode: The simulator will have a license that is either open-source or commercially
available. If the license is commercially available, the license must be available within the
list of software provided by the university.

2. Operating system: The simulator can be executed on either Linux or Windows OS. This
criterion is informative and will not be used in the decision-making process.

3. Customization of Simulation environment/ World: Making modifications to the ex-
isting simulation environment or world is a hard requirement. These modifications would
aid in simulating varying scenarios. This includes controlling the weather, traffic, and ped-
estrians. It also comprises the choices of vehicle assets that could be used in simulations.
The following features of the simulation environment to be investigated are:

(a) Importing new worlds

(b) Varying traffic and weather conditions

(c) Control over pedestrians

(d) Multiple vehicle choices

4. Setup and Execution time for simulation: Setup time refers to the time taken for
setting up the simulation. This includes initiating the build process for the simulator and
inputting the parameters for simulations. Execution times refer to the time taken by the
simulator for running a simulation given a set of parameters.

5. Customization of control strategies: The simulation environment must provide scope for
adjusting control algorithms utilized behind the functioning of autonomous driving systems.
Different types of control strategies must be employed to demonstrate the impact of maps
on varying strategies.

6. Production of videos: The simulator must serve as a visual aid to further the under-
standing of the objective of the simulation. By producing videos of good quality, we can
demonstrate the results of the analysis visually.
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Simulators have been reviewed by TomTom based on a set of hard and soft requirements [24]. The
simulator would be used for testing the self-developed stack present in its self-driving unit. Hard
requirements are mainly associated with providing simulation data, ROS interfacing, performance
on currently utilized hardware, the possibility of executing regression tests, and lastly physical
model of the vehicle and the world. Soft requirements are related to the quality of vehicle, world,
and weather and daytime simulation, usability, collision detection, and avoidance, and built-in
ROS-interfaces. The price of the license, if commercially available, is also a factor that has been
considered. Since the requirements coincide with those which are needed for the given application,
the results of this review can be utilized.

Simulators that have been reviewed by TomTom are CARLA [25], Gazebo [26], Airsim [27],
DeepDrive [28], Udacity Self-Driving car simulator [29], GTA V [30], AutonoVi [31], CarSim [32],
IPG Carmaker [33], V-Rep, aiSim [34], VTD [35], PreScan [36], Webots [37] and LG Simulator
[38]. Majority of the mentioned simulators are commercially available whose licenses aren’t owned
either by TomTom or TU/e, thus are out of consideration. Simulators that have been shortlisted
by TomTom are as follows:

1. CARLA

2. Webots

3. LGVSL

To finalize an autonomous driving simulator for this project, an evaluation of the shortlisted
options must be conducted. Table 2.1 describes the comparison conducted on the simulators
available based on the criterion mentioned above.

Table 2.1: Comparison of autonomous driving simulators.

SR.No Criterion CARLA TomTom’s Software LG Simulator Webots

1. License mode Open Source Owned by TomTom
- Open Source
- Limited
documentation

- Open Source
- Limited
documentation

2. Operating system
Windows
and Linux

Linux
Windows and
Linux

Windows (Partially)
and Linux

3.
Customization of
Simulation
Environment/World

3(a). Importing new worlds

Using OpenDrive
standards, worlds
can be made in
RoadRunner

Directly imported
through AutoStream
plugin

Formats supported
are:
Lanelet2, Apollo
5.0 HD, and
OpenDRIVE Map

OpenStreet map editor
can be used for editing
worlds.

3(b).
Control over traffic
and weather
conditions

Yes
Traffic can be updated,
weather remains the same

Yes Yes

3(c).
Control over
Pedestrian/ obstacles

Yes Yes Yes
No pedestrians are
present

3(d). Choices of Vehicle 31 vehicles available
Single vehicle
(Toyota Prius)

5 vehicles

3 types of vehicles
based on propulsion
(Combustion, Electric,
and Hybrid)

4
Setup and Execution
times for simulation

Low setup and
execution times.

Linux OS and 8 core
processor are
minimum
requirements.

Low setup and
execution times.

Low setup and
execution times since
system requirements
are relaxed in
comparison to other
simulators.

5
Customization of
control strategies

They can be
programmed using
C++, python API.

They can be
programmed
with ROS.

They can be
programmed using
C++, python API.

They can be programmed
using C, C++, Python,
MATLAB, or ROS.

6 Production of videos
Unreal engine
produces
high-quality visuals.

Good quality videos
can be produced using
the given API.

Unity engine
produces
high-quality visuals.

Good quality videos
can be produced using
the given API

From Table 2.1, we can confirm the selection of CARLA. CARLA will be used for conducting
autonomous driving simulations. An autonomous vehicle will be controlled in the CARLA in a
defined environment and tests will be conducted on the same.
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2.3 Introduction to CARLA

CARLA is an open-source autonomous driving simulator created to support development, training,
and validation of autonomous driving systems [25]. Furthermore, CARLA provides open-source
digital assets such as vehicles, buildings, and layouts of worlds which can be used freely by the
developers. The simulation environment supports flexible specification of sensor suites, environ-
mental conditions, full control over all static and dynamic actors, and maps generation[25].

CARLA is built on Unreal Engine to run the simulation environment. It uses the OpenDrive
standard (1.4) to define roads and urban settings. The simulator consists of a scalable client-server
architecture [39]. The server is responsible for tasks conducted within the simulation environment
such as sensor rendering, computation of physics, and updates on the world-state. The client side
consists of multiple client modules which are responsible for controlling the logic of actors on the
scene and setting the world conditions. The client-server communication is achieved through the
CARLA API (Python or C++) [40]. The defined structure is illustrated in Figure 2.4.

SIMULATOR

Python Client

Python Client

Python Client

Unreal Engine
CARLA API

C++

Figure 2.4: Architecture of CARLA.

In the following sub-sections, the various elements of the autonomous driving simulator are
presented. The process of connecting a world, followed by the spawning of actors such as sensors
and vehicles, has been described.

2.3.1 Initialization of world in CARLA

As discussed in the previous section, CARLA is built on an Unreal Engine foundation [25]. This
functions as the server in the defined architecture. To connect to the server side of the simulator,
a “client” object must be created. This is done by providing an IP address and the port number
of a running instance to the CARLA API. Following the creation of the object, a timeout must be
set to limit networking operations and to ensure the client is not blocked forever. A world object
is created using the defined client object to retrieve the existing world.

The world in CARLA represents the loaded map and contains the required functions needed
for converting a blueprint into a living actor. Access to the road map and functions for changing
the weather conditions have also been provided using the CARLA API. The world is modelled
using Unreal Engine. The loaded map includes both a 3D model of a town and its road definitions.
The map is made from an OpenDrive file which describes the road layout [41]. The CARLA API
enables high-level querying for navigating through the roads defined in the map.

Currently, CARLA provides 8 different maps, which corresponds to 8 different worlds [42]. The
blueprint for each town is available in CARLA’s blueprint library. Different maps can be loaded
in the server by changing the input to the name of the town needed using the CARLA API [40].
However, if a different map is loaded, the server must be rebooted and created from scratch.
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The map defined in the blueprint contains features such as landmarks, junctions, lanes, and
waypoints. Landmarks refer to the traffic signs and traffic lights which have been defined in the
OpenDrive file [42]. The orientation, type and location can be queried using the Landmark object.
The properties of lanes such as the type, color, lane width, and the thickness of the marking can
be accessed using the LaneMarking object. A waypoint in CARLA refers to a 3D-directed point
in the world. They contain some information regarding the lane containing that point such as the
left and right lane markings. Using these features, a vehicle is navigated through a defined route
in a world in CARLA.

2.3.2 Selection and control of vehicles

Following the creation of the world, actors must be spawned in the world to perform different
functions [40]. There are multiple kinds of actors that can be spawned in the world such as
sensors, spectators, vehicles and walkers. A vehicle is a special type of actor in CARLA. This
actor is used in simulating the physics of a wheeled vehicle. In CARLA, there are 2-wheeled and
4-wheeled vehicles. 2-Wheeled vehicles consist of bikes and motorcycles models such as Yamaha
and Harley Davidson [43]. 4-Wheeled vehicles consist of cars manufactured by OEMs such as
Audi, Chevrolet, Dodge, Lincoln, Tesla, and Mercedes [43].

The process for spawning a vehicle in a map is similar to that used for an actor in CARLA.
The model for the vehicle must be filtered out from the blueprint library [40]. Once the model has
been selected, a given spawning location and vehicle orientation must be provided. The vehicle
is spawned using the selected model and its’ spawning location. The process used for spawning a
vehicle has been highlighted in Figure 2.5.

Vehicle
LibraryBlueprint

Library

Vehicle
Model

World

Vehicle's spawning
location and
orientation

CARLA API

CARLA 
API

Figure 2.5: Process for vehicle spawning in CARLA.

A vehicle is controlled in CARLA by providing throttle, brake, and steer values. The brake,
throttle and steer values are float by type. The handbrake and reverse inputs are boolean by
type. The vehicle is set to reverse by changing the state of the boolean variable. Furthermore,
CARLA provides a hard-coded autopilot mode, which is a of boolean type [40]. By enabling
autopilot mode, the vehicle is controlled by the defined traffic manager. These values must be
taken into consideration during the design of a controller for lateral and longitudinal movement.
The properties utilised for controlling a vehicle and their respective ranges are presented in Table
2.2.
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Table 2.2: List of vehicle properties in CARLA.

Vehicle property Type Range
Throttle Float [-1,1]
Brake Float [0,1]
Steer Float [-1,1]
HandBrake Bool True/False
Reverse Bool True/False
Autopilot Bool True/False

2.3.3 Route planning in CARLA

To drive a vehicle on a defined route, a set of waypoints must be used. A waypoint in CARLA
refers to a 3D directed point. The waypoints are listed using the global coordinate system of the
map. The global coordinate system for the map is presented in Figure A.2. They can be retrieved
from the OpenDrive file which is used for the creation of the simulation environment. Waypoints
have a set of methods to connect with other waypoints and form a road flow [40]. These points
are created in accordance with the road rules, thereby ensuring the vehicle can track a legal path.

Before a route can be generated, an instance of the map must be created. The map is generated
in an XODR format, which is then parsed to the created map object. The user must specify the
initial location and final destination [42]. The two sets of coordinates received will then be used
in the route generation process.

Generate a map of
the world (XODR

format)

Enter initial and final
location for the

vehicle

Generate the
topology of the world

using specified
sampling distance Generate a route using

the topology and route
information

XODR File of
world

GlobalRoutePlannerDAO function

GlobalRoutePlanner function
Route for vehicle

Route Generation Process

Set of waypoints

Figure 2.6: Process of route generation used in CARLA.

The route generation process has been carried out using the GlobalRoutePlanner provided in
the CARLA API [40]. Before using the above defined function, data must be fetched from the
server. This is achieved by executing the GlobalRoutePlannerDAO function [40]. This function
retrieves topology from the server in the form of a list of road segment as pairs of waypoint
objects. The sampling distance, the distance between two defined waypoints, must be specified
as an input to this function. Depending on the level of granularity required, the user can request
a data set with small step size (order of centimeters) or a larger step size (order of meters). The
data gathered from this step is then used for tracing a route from the initial to final location. The
function yields a set of waypoints which can be used for navigating the vehicle. The process is
illustrated in Figure 2.6.
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2.3.4 Selection of path following controller

This section presents the selection of the controller used for driving the vehicle autonomously
within the defined world in CARLA. The controller calculates the error between the current path
and the trajectory to be followed to produce a control action. The control action consists of a
normalised steering angle which is given as an input to drive the vehicle. The control models
which are used extensively for the lateral control of an autonomous vehicle are as follows:

1. Pure pursuit controller: Pure Pursuit method is based on the geometric model of the
vehicle. The pure pursuit approach is a method of geometrically determining the curvature
that will drive the vehicle to a chosen path point, termed the goal point. This goal point is
a point on the path that is one look-ahead distance from the current vehicle position [44].

2. Stanley controller: This method comes from the robot system Stanley that won the
DARPA Grand Challenge [45]. This method defines the steering control law as a non-linear
function of the cross-track error (taken from front axle here), that is, the distance between
the front axle of the vehicle and the nearest point on the path.

3. Proportional-Integral-Derivative Controller (PID): It is one of the most popular
control loop feedback mechanism for implementing cruise control and lateral control of a
vehicle. The process variable considered is steering angle and the manipulated variable
as steering input (for both simulated vehicle and realistic vehicle). Thus, according to PID
control theory, the error term, that is a difference between the set point and process variable,
controls the steering input of the vehicle proportionally.

The simulation will be conducted at low speeds at which the Pure Pursuit and Stanley controllers
would provide optimal results [46]. A PID steering controller is not recommended at low speeds due
to high sensitivity to gains [46]. It is difficult to tune the look-ahead distance for PID controller [47].
Furthermore, the level of performance of a PID controller is dependent on the tuning of the
parameters, which could serve as a time-consuming process [48]. For a pure pursuit controller,
the starting point, whether it starts on the path or off it, plays an instrumental role [47]. The
tuning of a Pure Pursuit controller can be accomplished by varying a single parameter, look-ahead
distance [46]. After careful consideration based on given time constraints and the discussion above,
we can conclude on the selection of a Pure Pursuit controller for the lateral control of the vehicle.

The implementation of the pure pursuit algorithm is a simple task. Flowchart indicating the
algorithm is presented in Figure A.3, which has been attached to Appendix in Section A.3. The
algorithm has the following steps [44]:

1. Determine the current location of the vehicle: The position of the vehicle is reported
using a Global Positioning sensor (GPS) mounted on the vehicle spawned in CARLA. An
Inertial Measurement unit (IMU) has also been attached to provide information regarding
the heading of the vehicle

2. Find a path closest to the vehicle: In a geometrical sense, the point must be located
within one instance of the defined look-ahead distance. If there are multiple coordinates
within the defined interval, the closest point to the vehicle must be selected. The next point
must be selected in the second instance of the look-ahead distance.

3. Find the goal point: The goal point is estimated while moving on the defined path and by
calculating the distance between the vehicle’ current location and the next point estimated
in the previous step.

4. Transform the goal point to vehicle coordinates: On finding the goal point, the
coordinate must be converted to the vehicle’s local coordinate system. The location of
the path point are available in global coordinates, thus must be converted. The vehicle’s
coordinate system is illustrated in Figure A.1, which is placed in Section A.1 of the Appendix.
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Figure 2.7: Diagram indicating calculation of steering angles for a vehicle.

5. Calculate the curvature needed to meet the goal point and estimate the steering angle needed:
The desire vehicle curvature is estimated using the equation below. Figure 2.7 represents
the calculation of the steering angle for the vehicle. The curvature obtained is translated to
a steering angle for the front wheels [49].

δ = arctan(
2Lsinα

ld
) (2.2)

where:
δ = Steering angle of the vehicle
Ld = Wheelbase of the vehicle
α = Difference between vehicle’s body heading and look-ahead line

6. Normalise the steering angle based on the required input to be given to the vehicle
model: As explained in Section 2.3.2, the steering input provided to the vehicle model must
be within -1 and 1. Thus, the steering output from the controller must be normalised using
the maximum steering angle available for each vehicle model. Cases could be encountered
wherein the steering angle generated is higher than the maximum steering angle of the
vehicle. In these cases, the steering angle must be clipped to the maximum available steering
angle. Once the angle has been clipped and then normalised, it can be passed as an input
to the algorithm, which then generates a steering input in the required intervals.

7. Update the vehicle’s position: The steering input is provided to the vehicle, and it makes
the required manoeuvre using the new inputs. This results in a change of vehicle position
which is then fed back to the system and the algorithm repeats itself.

The implementation of the above-mentioned algorithm has been split into two different func-
tions, with one function tailored for the estimation of the goal point and the second one for control
output generation. The functions have been attached to the Appendix in Section C.1.
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Methodology

In this chapter, the methodology which has been used in the thesis is presented. The previous
chapter described how can STPA be applied to a given system. The application of STPA to
the defined problem statement is described. This is followed by the description of the tasks to be
performed in the CARLA, which includes the processes involved in conducting tests and gathering
information for post-processing.

3.1 System Theoretic Process Analysis of automated driv-
ing

The processes involved in performing System Theoretic Process Analysis (STPA) on a given system
has been documented in Section 2.1. STPA was performed on a level 2 or 3 autonomous vehicle
[17]. STPA was conducted on the vehicle from the point of view of the map manufacturer,
TomTom [1]. The safety analysis starts by defining the system, followed by its boundaries. System
definition includes the formulation of the high-level system architecture which was used to depict
the communication with external systems. This was followed by the identification of stakeholders
and their respective values, which was inverted to create a list of losses. The analysis was aimed
towards eliminating the losses for the defined stakeholders.

After identifying the list of losses, hazards and the system constraints, the system was modelled
in the form of control structures. The high-level abstraction of the system made in the previous
step was broken down further to form multiple low-level control structures. Functions and feedback
between sub-systems and systems was also modelled in this step. Control actions performed by
each subsystem and their respective issuer was identified in each control structure. The list of
control actions were used for identifying unsafe control actions based on the criterion mentioned in
Section 2.1.3. Unsafe control actions were inverted to formulate controller constraints to prevent
the occurrence of unsafe control actions in a given subsystem.

STPA was aimed at preventing or minimising the losses from occurring in the system, therefore
the context behind the occurrence of an unsafe control action must be identified [9]. This was
done by identifying loss scenarios for the given pool of unsafe control actions. Since the analysis
was performed from the point of view of the map manufacturer, TomTom, control actions related
to the map features were assigned a higher priority. Unsafe control actions identified from the
categorised control actions were used for the scenario identification process. Scenarios are listed
using the defined categories mentioned in Section 2.1.4. The process flow of the results obtained
is illustrated in Figure 3.1.

Lastly, the list of loss scenarios was categorised based on the respective severity and probability
of exposure [20]. The product of the severity and probability of exposure was used to ascertain
the priority of each scenario. A root cause analysis of the list of high priority scenarios was
performed to understand the context, entities, and the different triggers present in the scenario
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[50]. Furthermore, the map feature and its respective key performance indicators which would be
required by the vehicle in each scenario, to prevent the occurrence of a hazard, were identified.

Losses

Control structures

Control Actions

Unsafe Control Actions

Loss scenarios

STPA Result flowchart

High Priority 
Loss scenarios

Figure 3.1: Flow of results of STPA.

3.2 Validation of loss scenarios

Loss scenarios were identified for the autonomous driving vehicle to describe the causal factors
that can lead to the unsafe control actions and to hazards [9]. Loss scenarios were categorised
based on their respective severity and probability of exposures. The scenarios with the highest
levels of severity and probability of exposure were labelled as high priority. However, the priorities
calculated for each scenario in the list of scenarios must be verified. By having a validated list of
scenarios, the priority placed on a given scenario in the list can be justified. The verification was
conducted using customer feedback, i.e, clients who purchase TomTom’s products. Each client
has their own set of requirements which are met by TomTom. Each client may not necessarily use
the product in the same manner, thus resulting in a diverse list of use cases.

The validation process was marked by pooling together the use cases provided by each cus-
tomer.This has been illustrated in Figure 3.2. This resulted in the formation of two sets of
scenarios. Scenarios are validated by either finding a match between the two lists or by finding
commonality in the description of the scenarios. Commonality in scenarios refers to a common
map feature such as lane markings between scenarios, which has been highlighted in both lists
of scenarios. Two scenarios concerning incorrect traffic sign positioning were considered to be a
match since they had commonality with respect to the map feature, traffic sign. The definition
of the scenarios may be different. The lists were placed alongside each other and matches with
respect to map features and scenario description were found.

In addition to the customer feedback, TomTom’s measurement data, which is used for produ-
cing maps, was also used in the validation of loss scenarios. Sensor data from the Mobile Mapping
(MoMa) vehicle was coupled with the High Definition (HD) map data on TomTom’s proprietary
software. This software was used for identifying scenarios resulting from the irregularities in the
streamed map features or the sensor data gathered from the data. Since the MoMa vehicle has
covered a large proportion of the available roads, large number of use cases on different types of
roads were covered. The process of validation is illustrated in Figure B.6.
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Figure 3.2: Sources of data used for scenario validation.

3.3 Simulation of uncertainty in map in CARLA

The results of the safety analysis yielded a list of scenarios in which the vehicle performs an unsafe
control action, which subsequently leads to a hazard and a loss. The map feature involved in each
high priority scenario was determined. Furthermore, a study on the importance of the map in a
worst-case environment was conducted by performing tests. The impact of noise in a selected map
feature on the positional accuracy of the vehicle in a defined world was estimated. This study was
performed in a simulation environment, CARLA.

A high definition (HD) map in CARLA contains both a 3D model of a town and its road
definition [40]. In a simulation environment, a map is an identical replica of the physical world.
However, when a map is built using ground truth data, errors are generated whilst replicating
those features in a model. The vehicle uses the fusion of map data and sensor data to make
decisions whilst driving in autonomous mode. Thus, errors in the map could play a fundamental
role in the decision-making process for the vehicle. The impact of these errors on the vehicle’s
lateral control must be ascertained. The quality of the map must be ensured by setting a defined
accuracy during the production process. The accuracy of the map is classified in two categories,
which are as follows:

1. Absolute accuracy: Closeness of reported position values to the values accepted as or
being true [51].

2. Relative accuracy: Closeness of relative positions of features in a data set to their respect-
ive relative positions accepted as or being true [51].

The requirements set on the accuracy of the map can be analysed by studying the impact of varying
levels of accuracies on the vehicle’s lateral performance. The feature of the high definition (HD)
map in CARLA taken into consideration are waypoints [40]. The set of waypoints generated from
a high definition (HD) map in CARLA can be considered to be equivalent to the lane geometry
feature of TomTom’s map. Since waypoints in CARLA are generated in the center of the lane,
lines created using these points can be compared to the lane centerline. The route generated in
CARLA yields a list of waypoints. The identified waypoints can be printed in the world using the
CARLA API [40].

The set of waypoints generated in CARLA are present at the center of the lane, which would
represent the ideal case. To depict a case of a map made from ground truth data, noise was
injected in the waypoints. The noise injection process is highlighted in Figure 3.5.
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Figure 3.3: Top view of lane centerlines with Gaussian Noise.

Figure 3.4: Top view of lane centerlines with a bias only.

An OpenDrive file is used for creating the world in CARLA [42] [41]. For the given application,
pre-defined OpenDrive files provided in the build of CARLA were utilised. This OpenDrive file
was used for the generation of waypoints, which was utilised in route generation. A vehicle model
was selected from the Blueprint library in a parallel manner, which was prepared for simulation.
The generated noise signal was injected in the route used for path tracking by the vehicle. The
noise signal has a mean noise and jitter component that was varied as per the parameters set for
the given simulation.
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Figure 3.5: Block diagram representing simulation in CARLA.
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By varying the magnitude of noise injected in the waypoints, maps of different quality levels
were generated. The injected noise signal comprised a bias and jitter component. The bias refers
to the mean of the distribution of noise. The signal will be generated using a normal distribution.
Figures 3.3 and 3.4 represent the top view of lane centerlines in which a gaussian noise distribution
with and without a standard deviation have been injected respectively. The function created for
injecting noise into the list of waypoints has been attached to the appendix in Section C.2.

CARLA can be used for performing multiple types of autonomous driving simulations [25].
Since the focus of the project was solely on the impact of the map on the functional safety of an
automated driving vehicle, certain assumptions regarding the simulation environment were made
to limit the scope. The assumptions were decided based on the list of scenarios obtained from
the STPA analysis conducted. Furthermore, the assumptions should aid in the depiction of a
worst-case condition for the autonomous vehicle in a defined environment. The set of assumptions
defined for the simulation are as follows:

1. Vehicle is operating/driving in automated driving mode.

2. Vehicle is reliant only on GPS, IMU, and map data for manoeuvring a given route.

3. The vehicle has perfect localization, minimal errors in the positional estimate made by the
GPS and IMU.

4. Camera and LiDAR have been disabled to portray a worst-case environment for the vehicle’s
automated driving (AD) system.

Before conducting simulations in CARLA, a criteria for evaluating each case simulated must
be defined. The criteria was defined in the form of key performance indicators (KPIs). They were
used to estimate and evaluate the impact of uncertainty on the safety of the vehicle in different
scenarios. In a given worst-case situation, the vehicle can be considered to be in a safe state if
it not only follows the system-generated path with minimal errors, but also does not exit the
currently occupied lane. Using this information, the defined KPIs are presented below. The key
performance indicators are presented in Figure 3.6. The key performance indicators (KPI’s) are
as follows:

1. Mean absolute error (MAE):

MAE = Mean (V ehicle′s location − Coordinates of the route w/o bias) (3.1)

The error generated in tracking a path, which has an element of bias introduced in it. The
error is estimated by taking the average of the difference of the vehicle’s location with respect
to the original route (bias=0). Mean absolute error is presented graphically in Figure 3.6.

2. Sensitivity:

Sensitivity =
∆MAE

∆Bias
(3.2)

Sensitivity refers to the change of mean absolute error with respect to the change in mean
noise injected in the map feature. 1 unit of sensitivity is equal to the ratio of 1 unit of
change in mean absolute error to a change in a single unit of mean noise. This was used
to understand the effectiveness of the noise injected on the mean absolute error for a given
case.

3. Lane invasions:
It refers to the number of occasions the vehicle cuts a lane. The function prints the number
of times the vehicle cuts a given lane and the type of lane it cuts into. This parameter was
used to compare performance of the vehicle in difference cases of bias. Furthermore, the
positions at which lanes are cut by the vehicle are also observed.
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Figure 3.6: Key Performance Indicators (KPI) for simulation in CARLA.

Simulations were conducted using different sets of parameters and data concerning the above-
mentioned KPI’s was gathered. Following the completion of the tests, the data gathered was
analysed, and a conclusion was drawn regarding the behaviour of the KPI’s with respect to the
parameters. Thus, the above-stated methodology was applied to the selected SAE Level 2/3
automated driving vehicle.
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Chapter 4

Vehicle-level Safety analysis

In this chapter, the results of the STPA applied to an automated driving vehicle using maps is
discussed. The results is presented from the point of view of the map provider and focus is placed
upon the usage of maps.

4.1 Introduction to selected automated driving system

The vehicle under consideration is a Level 2/3 as per SAE standards of automation [17]. The
vehicle has a human machine interface (HMI) which is used by the driver for triggering different
modes of operation. The emergency brakes can also be activated using the HMI. The driver
must start the vehicle and drive it manually. The vehicle’s software system begins to run when
the vehicle is in motion. This ensures obstacles can be detected on the fly, thus enabling the
engagement of the collision avoidance system when required. The actuators for automated driving
will be activated once the mode of operation has been set to automated by the driver. The driver
can switch the state of the vehicle only after a set time period (mode transition) has lapsed. In
the event of malfunctioning subsystems, take-over requests (TORs) will be issued to the driver,
which he/she must accept. The following sensors are mounted on the vehicle:

1. Inertial measurement unit (IMU) - POS LV 125

2. Global navigation satellite system (GNSS) - u-blox GNSS

3. Camera - Sekonix SF3325 and SF3324

4. LiDAR - Ibeo Lux 4L and Velodyne VLP 16

5. Radar - Smart Micro UMRR-8F

4.2 Vehicle-Level losses and initial hazards

STPA begins by identifying the stakeholders present in the system. This is followed by listing
out the goals of each stakeholder, which were then inverted to formulate losses. The stakeholders
present in the system are as follows:

1. Driver and Passengers (users) of the Autonomous Vehicle (AV)

2. Automated driving Vehicle Manufacturers (OEMs)

3. Map Providers (TomTom)

4. Government and other legislating bodies (Road Safety organisations)
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Using the list of stakeholders, losses were ascertained. The goal of STPA was to mitigate the
losses formulated. The losses are listed in Table 4.1.

Table 4.1: List of losses identified from Step I of STPA.

Loss ID Loss definition
L1 Loss of Life or injury
L2 Loss of or Damage caused to road infrastructure
L3 Loss of vehicle type approval/certification
L4 Loss of longitudinal control of vehicle
L5 Loss of lateral control of vehicle
L6 Loss in completeness of maps
L7 Loss in positional accuracy of maps
L8 Loss in thematic accuracy of maps
L9 Loss in logical consistency of maps
L10 Losses in timeliness in supply of maps
L11 Lack of feedback to map providers

The identified losses were used for defining hazards. In this analysis, the system consists of
the automated driving vehicle. The vehicle utilizes an automated driving system and maps to
automate the driving process. The scope of this project was limited to these elements. Human
operators of the system refer to the driver and passengers in the vehicle. Furthermore, the OEMs
responsible for manufacturing the vehicle and the map providers were also considered. Before es-
tablishing the system-level hazards, system-level states had to be set. The states of the automated
driving system are as follows:

1. The vehicle can either be in motion or at rest (parked).

2. The vehicle in motion can be in three possible modes of operation: Automated, manual or
transitional.

Using these states, system-level hazards were identified. Each hazard has been further broken
down into sub-hazards which could be caused by the system. The identification of each loss
caused by the hazard has been mentioned after defining the hazard. This has been done to ensure
traceability of losses with respect to the hazards. The hazards have been listed in Table 4.2. In
the table below, AV stands for automated driving vehicle.

Table 4.2: List of hazards identified in Step I of STPA.

Hazard ID Hazard Definition
H1 The AV violates spacing requirements on the road. [L 1,2,4]
H1.1 Excessive acceleration is done by the AV whilst navigating through traffic.
H1.2 Insufficient deceleration is done when approaching another car in traffic.

H2
The vehicle engages autonomous mode in restricted areas of the map.
[L 1,2,3,4,5,6]

H3 The AV follows the wrong trajectory. [L 1,2,5,7,8,10,11]
H3.1 The AV follows the defined path based on map data.
H3.2 The AV follows a path based on sensor observations.
H4 The vehicle cannot establish a working data connection. [L 10,11]
H5 The AV initiates a wrong take over request (TOR). [L 1,2,3,4,5,6]
H5.1 The vehicle in autonomous mode issues a wrong TOR.
H5.2 The driver unexpectedly assumes control of the car.
H6 The AV cannot visualize the surrounding environment. [L 1,2,3,4,5,11]
H6.1 The AV is unable to make any observations.
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Table 4.2: List of hazards identified in Step I of STPA.

Hazard ID Hazard Definition
H6.2 The AV cannot utilize the maps.
H7 The AV drives erratically on the road. [L 1,2,3,4,5,6,7,8,9]
H7.1 The AV cannot follow the defined speed limit.
H7.2 The AV accelerates and decelerates very abruptly.
H7.3 The AV cuts across the defined lanes.
H7.4 The AV stops abruptly
H8 The AV is unable to switch between different modes of operation. [L 1,2,3]
H8.1 The vehicle remains in autonomous mode and does not revert to manual mode

H8.2
The vehicle remains in the manual mode despite initiating the
autonomous mode.

Following the identification of hazards, constraints on the system behaviour were estimated by
inverting the hazard. These are listed out using the methodology described in section 2.1.1. The
complete list of system-level constraints, Table B.1, has been added to the Appendix in Section
B.1. Constraints identified for the two hazards are listed below:

1. The automated driving vehicle (AV) must maintain spacing between neighbouring vehicles
based on defined requirements. Since the hazard has been broken down into two sub-hazards,
the constraints derived from them are as follows:

(a) For the hazard H1.1:

i. The AV must maintain the required speed based on the speed limit data obtained
from the HD maps.

ii. The AV must follow a uniform acceleration profile to maintain the required levels
of comfort for the passengers of the vehicle.

(b) For the Hazard H1.2:
The AV must initiate quick deceleration in the case of an emergency.

2. The hazard H2 has two system constraints placed on it, which are as follows:

(a) The AV must engage autonomous mode only in regions/ road areas specified in the HD
map.

(b) In case of an error in mode detection, the AV must initiate a takeover request (TOR)
immediately.

4.3 Detailed control structure diagram

Following the system level constraints, control structures of the system will be developed. Control
is established from higher to lower blocks. Control and data flows from block to block. Human op-
erators have also been incorporated within the given control loop. The identified control structures
for the automated driving system have been described below.

4.3.1 High-Level (HL) control structure of automated driving vehicle
using maps

Figure 4.1 describes the high-level architecture of the automated driving system. The vehicle
under analysis is a SAE level 2/3 automated driving vehicle which utilizes high definition (HD)
maps [17]. The highest level of control is established by the driver who is in control of the vehicle,
which is manufactured by an OEM. The OEM defines a scope of the map based on which the
mapmakers must develop a map. The automated driving vehicle (AV) is under the control of the
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driver until the engagement of the autonomous mode. If the software system issues a take-over
request, the driver must oblige and assume control of the vehicle. The AV uses HD map data to
drive autonomously. Features of the map were read by the vehicle software system. HD maps
were sourced from the environment, wherein features crucial for automated driving were filtered.
Vehicle data is constantly uploaded to mapmakers, which were used for validating and updating
existing maps.

Autonomous Vehicle

Drivers and Passengers

HD Maps

Start/turn off vehicle 
Initiate Autonomous Mode 
Destination data 
Accept Take over Request 
Driver intervention

Take over Request

Map Data upload 
xFCD & FCD Upload

Map Features 

Sensor Observations

Vehicle data

Visual feedback

OEM

Scope
of Map

Road infrastructure features

High-Level Structure 

Environment

TerrainRoads

Neighboring
vehicles 

Traffic

Weather
Surrounding
Infrastructure

Figure 4.1: HL control structure of automated driving with maps.

4.3.2 Control structure of automated driving system

Figure 4.2 illustrates the software architecture of the vehicle. The vehicle HMI is the command
center for the vehicle. The HMI is designed to aid the driver in establishing control of the vehicle.
Furthermore, it displays vital data that the driver must observe to ensure the system is working
smoothly. The inputs from the driver are communicated to the vehicle software system. The
vehicle software system is responsible for executing commands from and providing feedback to the
HMI. The vehicle software system receives input from sensors mounted on the vehicle. It receives
HD map data from the map providers.
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Autonomous Vehicle

Vehicle HMI

Autonomous sensing
unit

Sensor  
observations

Mode of Operation 
- Emergency Stop
- Autonomous Mode
- Take Over Request

Vehicle Software

Vehicle data 
- Speed 
- RPM 
- Gear 
- Mode of Operation (Autonomous/ manual) 
- Current Location

Motion Control

- Autonomous
Actuation 
- Manual
activation

Destination Data

Readings
from sensors

Driver and Passengers

Environment

HD MAPS

Figure 4.2: Control structure of automated driving system.

4.3.3 Low—Level (LL) Control structure for the vehicle software system

Figure 4.3 represents the low-level control structure of the vehicle software system. The software
system were broadly split into 4 distinct layers. The topmost layer which consists of routing
is responsible for receiving the output of and communicating data to the HMI. Based on the
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input received from the driver, a route is generated. To follow a given route, the vehicle must
generate a path. This is done by the path-planning subsystem. This constitutes the second layer
of the system. In the third layer; perception, localization, and control are present. Perception is
responsible for gathering data from the autonomous vehicle sensing unit. Localization utilizes the
collected data from the perception unit and the HD map to estimate the vehicle’s current pose.
The current location of the vehicle is also estimated using this data. The control subsystem is
responsible for engaging or disengaging the motion control unit of the vehicle which consists of
the power unit, brakes, steering, and transmission. The final layer consists of motion control and
AV sensing units. The AV sensing unit consists of sensors such as LiDAR, radar, camera, IMU,
and GNSS receivers. This unit is crucial for deploying AV systems. Data is gathered from the
environment and communicated to higher levels of control within the software system.

Figure 4.3: LL control structure of vehicle software system.

The remaining modelled control structures have been attached to the Appendix in Section B.2.
Brief descriptions of each modelled control structure has also been provided.
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4.4 Control actions, Unsafe control actions and controller
constraints

Modelled control structures are used for listing out control actions, which are issued by different
controllers in systems or sub-systems. Control actions are listed based on the origin of the con-
trol and the function which was being executed. Furthermore, the controller which receives the
output of the control action has been highlighted. This ensures communication between different
controllers in the system has been appropriately indicated and would aid in the further analysis
of the same. In addition to the description of the control action, the table includes the details of
the system/ sub-system which receives the output of this control action. This aids in tracing the
impact of a control action on subsequent systems which are dependent on it. The type of depend-
ency of each control action has been split into two categories: Map dependent and automated
driving (AD) system dependent. A map dependent control action depends on the availability and
quality of map data provided by the map delivery system. An automated driving (AD) system
dependent function relies mainly on the output gathered from vehicle’s sensors and controllers. In
Tables 4.3 and 4.4, control actions performed by the perception algorithm are highlighted. The
control structure from which the control actions below have been identified are observed in Figure
B.2.

Table 4.3: Control action (CA): Detect lane markings and other road markings.

Control action (CA) Detect lane markings and other road markings
Controller responsible Perception algorithm
System receiving output of control action Path Planning Memory Unit

Description
The perception algorithm detects the lanes and lane
markings on the road using map data and observational
data received from the data storage unit (DSU).

Type of Dependency Automated driving (AD) system and Map-Dependent

Table 4.4: Control action (CA): Detect traffic signs.

Control action Detect traffic signs
Controller responsible Perception algorithm
System receiving output of control action Path Planning Memory Unit

Description
The perception algorithm detects the traffic signs using
map data and observational data received from the
data storage unit (DSU).

Type of Dependency Automated driving (AD) system and Map-Dependent

Unsafe control actions are listed out using the defined control actions as an input. The four
categories mentioned in Section 2.1.3 were applied to each of the identified control actions. Table
4.5 highlights the results of applying the categories to the control action defined in Table 4.3.
Each cell followed by the defined category is an unsafe control action which is performed by the
controller. The resulting hazards caused due to the unsafe control actions have been identified at
the end of each unsafe control action’s description.

As mentioned in Section 2.1.3, unsafe control actions are inverted to form constraints which
are then applied to the controller causing them. Table 4.6 highlights the constraints which have
been identified for perception algorithm which performs the control action mentioned in Table 4.3.
The identified constraints are enforced on the controller to prevent the occurrence of the identified
unsafe control actions. Since the project aligned towards the identification of loss scenarios, the
process of controller constraint identification was not given an impetus when compared to the
remaining processes which have been conducted.
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Table 4.5: Unsafe Control actions (UCA) for Detect lanes and other lane markings.

Control action Detect lanes and other lane markings
Unsafe Control action Categories

Not Providing causes a hazard
1. The perception algorithm cannot detect lane markings
on the road during autonomous operation.[H 1,3,7]
2. The perception algorithm cannot detect lane crossings
on the road during autonomous operation.[H 6,7]

Providing causes a hazard
1. The perception algorithm detects incorrect lane
positions during autonomous operation.[H 1,3,6,7]
2. The perception algorithm yields incomplete lanes
during autonomous mode.[H 3,6]
3. The perception algorithm detects incorrect lane
centerlines.[H 3]

Too early, too late or out of order
The perception algorithm detects lanes too late during
autonomous operation.[H 1,6,7]

Stopped too soon or applied too long NA

Table 4.6: List of controller constraints (CC) for the defined unsafe control actions (UCA): Detect
lanes and other lane markings.

UCA description CC description
The perception algorithm cannot detect
lane markings on the road during
autonomous operation.[H 1,3,7]

The perception algorithm must detect lane markings
with the defined confidence during
autonomous operation of the vehicle.

The perception algorithm cannot detect
lane crossings on the road during
autonomous operation.[H 6,7]

The perception algorithm must detect crossings
with the defined confidence during the autonomous
operation of the vehicle.

The perception algorithm detects incorrect
lane positions during
autonomous operation.[H 1,3,6,7]

The perception algorithm must detect lane markings
with the defined confidence during the autonomous
operation of the vehicle.
If the perception algorithm is detecting lanes with
a lower confidence level, the VSS must issue a TOR
to the driver and must disable the autonomous
mode (AM).

The perception algorithm yields
incomplete lanes during autonomous
mode.[H 3,6]

The perception algorithm must yield complete
lane markings for the PP subsystem to
validate and generate a new path.

The perception algorithm detects
incorrect lane centerlines.[H 3]

The perception algorithm must use the lane
centerlines in map data if the ASU cannot
yield lane centerlines with the appropriate confidence.

The perception algorithm detects
lanes too late during autonomous
operation.[H 1,6,7]

The perception algorithm must detect lanes within
the defined timing bounds.
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4.5 Loss scenarios and their categorisation

In the previous sub-sections, control actions, unsafe control actions and their respective controller
constraints were identified for the automated driving system. Scenarios have been identified for the
above defined unsafe control actions. This step has been conducted to list out possible situations
wherein the system will provide the unsafe control action, which would lead to a hazard. The
automated driving system receives map and its sensor information in the form of a data stream.
Since the focus has been placed on data, the two categories which were used for listing of scenarios
are as follows:

1. Lack of information/feedback

2. Inadequate feedback/information is received

Scenarios were listed out for the control actions having a map dependency. Control actions
which had an automated driving system and map dependency were also considered whilst identify-
ing loss scenarios. Scenarios identified for the control actions mentioned in Table 4.3, are presented
in Table 4.7 below. The list of scenarios identified for the control action in Table 4.4 are presented
in Table B.2, which has been attached to the Appendix in Section B.3.1.

In Figure 4.4, the second scenario from Table 4.7 is presented. The vehicle in automated
driving mode (AM) approaches a road with missing lane markings. Due to the lack of information
regarding lane markings on the road, the perception algorithm cannot detect lanes. The inability
to provide lane information results in the localization system’s failure to estimate the vehicle’s
lateral position with respect to the lane markings. As a result, the vehicle loses its lateral tracking
momentarily. To track the path further, the vehicle must rely on the map data to drive to a location
where the control can safely be handed over to the driver. If the vehicle receives inaccurate lane
centerline information, the vehicle would cause a hazard such as H3, highlighted in Table 4.2.

Scenario Context:  
Vehicle is driving on a road

Trigger: 
Missing Lane Markings 
Vehicle loses lateral
control

Sidewalk
Field of View of
Lane detection

system

Vehicle drives using the lane
centerline information in the
map

Scenario: When the vehicle is operating in automated driving mode (AM) on inner city roads,
it encounters missing lane markings. The routing subsystem must combine the vehicle's
relative position with the lane dividers and the map's lane centerline information for route
generation. 
Scenario ID: LS 4

Figure 4.4: Loss scenario concerning missing lane markings on the road.
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Table 4.7: List of scenarios for Control Action: Detect lanes and other lane markings.

Unsafe Control action Scenario classification Scenario

The perception algorithm cannot detect
lane markings on the road during
autonomous operation.[H 1,3,7]

Inadequate information
/feedback is received

When the vehicle is operating in autonomous mode in dimly
lit conditions, the autonomous sensing unit (ASU)
cannot view lane markings with the required confidence levels.
Due to low confidence levels of observational data, the
perception algorithm cannot detect lane markings.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide lane borders, trajectories
features for lane detection

Lack of information

When the vehicle is operating in automated driving mode (AM),
the road has missing lane markings. The autonomous
sensing unit (ASU) cannot observe any lane markings,
thus the perception algorithm cannot detect lane markings
and must rely on the road features provided within the map.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide required map features for lane
detection

The perception algorithm cannot detect
lane crossings on the road during
autonomous operation.[H 6,7]

Inadequate information
/feedback is received

When the vehicle is driving in automated driving mode (AM) on
an inner-city road, it contains faint/old markings at lane
crossings. The perception algorithm cannot detect
incomplete/old markings on the road thus does not stop at
any crossing in its defined path.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide required map features for lane
detection

Lack of information

When the vehicle is operating in automated driving mode (AM)
during heavy rain, it drives through an underpass where
the roads are covered/flooded with water. The flooding
covers the lane markings completely, which cannot be
identified by the ASU.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide lane borders features for lane
detection

The perception algorithm detects
incorrect lane positions during
autonomous operation.[H 1,3,6,7]

Inadequate information
/feedback is received

When the vehicle is in automated driving mode (AM), the
perception algorithm uses obscured camera data
(due to foggy, rainy, snowy conditions) for the detection
of lanes with respect to lane features in the map.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide lane features required for lane detection

Lack of information

When the vehicle is driving in automated driving mode (AM), the
camera encounters lane markings which are difficult to process
(yellow-colored lane markings) thus forcing the routing subsystem
to use line features from the map data for route generation.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide lane features required for lane detection

The perception algorithm yields
incomplete lanes during autonomous
mode.[H 3,6]

Inadequate feedback
/information is received

When the vehicle is in automated driving mode (AM), due to
inadequate street lighting, the ASU can observe the lane
markings only in instances when sufficient light is available.
This results in incomplete lane markings being identified by
the perception algorithm.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide required map features for lane detection

The perception algorithm detects
incorrect lane centerlines.[H 3]

Inadequate feedback
/information is received

When the vehicle is in automated driving mode (AM), the map
delivery system provides inaccurate lane features to the
perception algorithm for the detection of the lane centerlines.
This results in incorrect lane centerlines being followed by the
vehicle.
Vehicle intent: Detect and follow lanes on the road
Role of map: Provide required map features for lane detection

The perception algorithm detects
lanes too late during autonomous
operation.[H 1,6,7]

Inadequate feedback
/information is received

When the vehicle is in automated driving mode (AM), the ASU
provides lane observation data later than expected due to
environmental conditions such as low lighting and rainy
conditions.
Vehicle intent: Detect and follow lanes on the road
Role of the map: Provide required map features for lane detection

Inadequate feedback
/information is received

When the vehicle is in automated driving mode (AM), the
vehicle navigation system (VNS) requires longer processing
time for reading the road features required for lane detection by
the perception algorithm.
Vehicle intent: Detect and follow lanes on the road
Role of map: Provide required map features for lane detection
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Figure 4.5 illustrates the loss scenario, LS 5, which occurs due to incorrect speed limit inform-
ation retrieved from the map. The blue and red vehicles are driving in the outer and inner lanes
respectively. The red vehicle blocks the blue vehicle from detecting the speed limit sign, which is
a 30 kph restriction. The blue vehicle retrieves map information regarding the missed speed limit,
which is inaccurate. The blue vehicle begins speeding up to ensure it meets the required speed
limit as per the map data, which results in it outpacing the red vehicle. In this scenario, the blue
vehicle could encounter a hazard, H1, presented in Table 4.2.

Scenario Context:  
Blue vehicle is driving in
the inner lane while the red
vehicle enters the outer
lane

Trigger: 
Red Vehicle obstructs
the blue vehicle from
detecting speed limit
sign

Sidewalk

Field of View 
of vehicle's

sensors

Event: 
Blue vehicle continues to
drive at a higher speed 
Red vehicle slows down to
the speed limit

Event: 
Blue vehicle retrieves
inaccurate speed limit
information from the map.
The vehicle begins to drive
beyond the speed limit.

Speed
Limit

30

Scenario: When the vehicle is operating in automated driving mode (AM), the HD map delivery system provides a higher
(inaccurate) speed restriction.This enables the path planning control unit (PPCU) to generate a path requiring a greater
speed. 
Scenario ID: LS 5

Figure 4.5: Loss scenario resulting from incorrect speed limit information received from map.

Figure 4.6 illustrates the loss scenario, LS 6, which occurs due to incorrect road curvature
information in the map. The vehicle is driving in AD mode and is about to encounter a road with
a defined radius of curvature. There is no traffic sign indicating the magnitude of the incoming
curvature. Thus, the vehicle utilizes the required radius of curvature information from the map.
However, the data received from the map is larger than the expected radius. The vehicle begins
to manoeuvre a path which takes the vehicle close to the lane borders. This causes the vehicle to
encounter a hazard, H7 and H3, presented in Table 4.2.

Scenario Context:  
Vehicle is driving on a road

Trigger: 
Vehicle is approaching
a curvature.

SidewalkField of View of
Lane detection

system

Vehicle receives incorrect
road curvature from the
map.

Vehicle makes a sharp turn
using the incorrect curvature
information

Scenario: When the vehicle is operating in automated driving mode (AM) on a highway, the path planning control unit
(PPCU) receives inaccurate incoming road curvature information. The path planning control unit (PPCU) generates a
sharper path to be taken by the vehicle. 
Scenario ID: LS 6

Figure 4.6: Loss scenario resulting from incorrectly received road curvature from map.
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Figure 4.7 illustrates the loss scenario, LS 14. The blue vehicle is operating in AD mode in the
outer lane and the inner lane is occupied by the red vehicle. The stop sign is placed at a blind spot,
which goes undetected for the blue vehicle. The blue vehicle continues to operate at its selected
speed limit without being aware of the incoming stop line. The red vehicle begins to slow down as
it approaches the stop line. The blue vehicle utilises the map data to retrieve information about
incoming or past traffic signs. It receives the stop sign information and also detects the incoming
stop line. The blue vehicle engages the brakes, therefore narrowly comes to a halt at the defined
stop line.

Scenario Context:  
Blue vehicle is driving in
the inner lane while the red
vehicle enters the outer
lane

Trigger: 
Red Vehicle obstructs
the blue vehicle from
detecting stop sign

Sidewalk

Field of View 
of vehicle's

sensors

Event: 
Blue vehicle continues to
drive at a higher speed 
Red vehicle slows down to
stop at the indicated line

Blue vehicle uses the map
data to retrieve stop sign
information. It slows down
to stop before the yield
line detected by the lane
detection system.

Speed
Limit

STOP

Scenario: When the vehicle is in automated driving mode (AM), the traffic sign is located in a blindspot due to surrounding
traffic. The autonomous sensing unit (ASU) cannot detect the traffic sign, thus requiring the traffic sign features from the map. 
Scenario ID: LS 14

Figure 4.7: Loss scenario resulting from blocking of camera.

Scenario Context:  
Vehicle is driving on a road
and encounters a low
visbility area

Trigger: 
Vehicle cannot detect lane
markings due to incoming
fog on the road (low
visbility)

SidewalkField of View of
Lane detection

system

Vehicle drives using the lane
border information from the
map

Scenario: When the vehicle is in automated driving mode (AM), the perception algorithm
uses obscured camera data (due to foggy, rainy, snowy conditions) for the detection of lanes
with respect to lane features in the map. 
Scenario ID: LS 9

Lane
Markings

Figure 4.8: Loss scenario resulting from low visibility caused by foggy weather.
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Figure 4.8 illustrates the loss scenario, LS 9. The vehicle is operating in AD mode during
which it approaches a foggy area. The vehicle enters the low visibility area and cannot detect lane
markings with the required confidence. This leads to a drop in the performance of the lane-keeping
of the vehicle. The vehicle must retrieve lane border information from the map to ensure it stays
within the defined lanes for the entirety of the given fog covered area.

4.5.1 Categorisation of loss scenarios:

As mentioned in Section 2.1.4, scenarios are categorised based on their severity and probability
of exposure. Each scenario in the pool of scenarios was assigned a value of severity and exposure.
The highest level of severity and probability of exposure is 3. The product of the severity and
exposure was used to estimate the priority of a given scenario. A scenario is considered to be
highly probable and most severe if the product of severity and probability of exposure is 9 and
the opposite holds true. Table 4.8 presents the level of priority for different products of exposure
and severity. A short list of high-priority scenarios is presented in Table 4.9.

Table 4.8: Levels of priority based on product of severity and probability of exposure.

Level of Priority Product of probability of exposure and severity

Low Priority 1
Medium Priority 2,3,4,6
Highest Priority 9

Table 4.9: List of high-priority scenarios.

Scenario ID Scenario Description

LS 4

When the vehicle is operating in automated driving mode (AM) on inner city
roads, it encounters missing lane markings. The routing subsystem must
combine the vehicle’s relative position with the lane dividers and the map’s lane
centerline information for route generation.
Vehicle intent: Use map data for generating a route
Role of map: Provide required map data needed for generation of a route
KPI of features: Positional (Absolute and relative) accuracy, completeness of
lane borders, trajectories

LS 5

When the vehicle is operating in automated driving mode (AM), the HD map
delivery system provides a higher (inaccurate) speed restriction. This enables the
Path planning Control unit (PPCU) to generate a path requiring a greater speed.
Vehicle intent: generate a path using the selected route
Role of map: Provide speed restrictions features for path generation
KPI of features: Thematic accuracy and completeness (false positive and
negatives) of speed restrictions

LS 6

When the vehicle is operating in automated driving mode (AM) on a highway, the
Path planning Control unit (PPCU) receives inaccurate incoming road
curvature information. The PPCU generates a sharper path to be taken
by the vehicle.
Vehicle intent: generate a path using the selected route
Role of map: Provide point features (incoming road curvature) for path
generation
KPI of features: Heading accuracy and absolute accuracy of curvature

Each of the above-mentioned scenarios are presented in Figures 4.4, 4.5, and 4.6. The complete
list of high-priority scenarios is attached in B.3. The breakdown of scenarios with respect to
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features in the map has been presented in Table 4.10. Lane features and traffic features have the
most high-priority scenarios in comparison with the remaining features of the map.

Table 4.10: Number of scenarios for each feature present in the map.

Map feature Number of high-priority scenarios
Lane Features 7
Traffic features (signs and lights) 7
Speed restrictions 1
Overhead structures 2

4.5.2 Root-cause analysis of high-priority loss scenarios

Following the classification process, a root-case analysis was performed on the list of scenarios.
The analysis was performed to understand the type of scenario, different entities present, and the
events occurring in the given scenario [50]. The results of the analysis performed for scenarios
highlighted in the previous section are presented in Table 4.11. The complete list of results are
presented in Table B.4, which is placed in the Appendix in Section B.3.3.

Table 4.11: Root-cause analysis of high-priority scenarios (LS4, LS5 and LS 6).

Loss
scenario
ID

Unforesee
-able

Foresee-
able

Dynamic
Entities

Static
Entities

Events

LS 4 NA Unpreventable

Road
features
(lane
markings)

Vehicle,
traffic

Missing lane markings
→ failure to identify
lanes

LS 5 NA Preventable

Speed
limit signs,
Road
features

Vehicle,
traffic

Inability to read speed
limit signs → Incorrect
speed limit received
from map

LS 6 NA Unpreventable

Road
features,
(curvature
signs)

Vehicle,
traffic

Incorrect road
curvature information
received from map

Loss scenarios, LS4 and LS6, are classified as unpreventable scenarios whereas LS5 has been
classified as a preventable scenario. LS 4 is an unpreventable scenario since it occurs when the
vehicle drives on a road with missing lane markings. This can occur at any given moment of
time when the vehicle is in motion. Similarly, LS 6 occurs if inaccurate curvature information
is provided to the vehicle from the map. Since the map data is provided to the vehicle directly,
this situation is termed as unpreventable. Furthermore, this could be considered as a preventable
scenario only if daily updates concerning the curvature are provided to the map .This would aid
in preventing the occurrence of the scenarios.

Static entities refer to those actors which remain in their current positions in the scenario [50].
The static entities in the scenarios are the features of the road such as lane markings, traffic signs
such as speed limit and incoming road curvature signs. Dynamic entities refer to those actors in
a scenario which experience a state change [50]. The dynamic entities in the scenarios are the
automated driving vehicle and traffic which includes the vehicles driving in the neighbouring lanes
and pedestrians.

The event or trigger in a scenario is the cause for the scenario or what initiates the scenario.
LS 4 is initiated when no lane markings are present on the road. This causes a failure of the lane
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detection system due to which the vehicle must use lane centerline information to negotiate the
given area. Similarly, LS 6 is triggered by receiving inaccurate road curvature information from
the map. LS 5 is triggered by the inability to observe traffic signs. The vehicle utilises map data to
retrieve the speed limit information, however the information received is inaccurate. In a similar
manner, the remaining scenarios present in the list have been analysed.

4.6 Loss scenario validation

STPA yielded a list of high-priority loss scenarios in which an unsafe control action may be
executed, resulting in the occurrence of a hazard. The analysis was performed to understand the
usage of map from the point of view of an automated driving system. Scenario validation was
performed to ensure that the loss scenarios are relevant and have been appropriately identified.

The process of validation begun by pooling the scenarios obtained from STPA performed,
TomTom’s client data, and TomTom’s measurement data. STPA yielded a list of 17 loss scenarios,
obtained after performing the categorisation. Table B.3 has been attached to the Appendix in
Section B.3.2. The list of scenarios identified from TomTom’s clients are presented in Table B.5,
which has been attached to the Appendix in Section B.4.2. The list of scenarios identified using
TomTom’s measurement data are presented in Table B.6, which is attached to the Appendix in
Section B.4.3.

The list of scenarios validated using the sources of data are presented in Table 4.12. The ID
of each validated scenario, the source of the scenario, and the number of scenarios validated using
that given source is mentioned in the table below.

Table 4.12: List of validated scenarios using sources of data.

Source of scenarios ID of Validated scenarios (LS)
Number of validated
scenarios

TT Client data 5,6,7,9,10,13,15,17 8
TT MoMa data 1,2,5,8,9,11,12,14,15,16 10
TT client + MoMa data 5,9,15 3

Figure 4.9 presents a Venn chart of the scenarios which have been validated using the two
sources of data. Each source of data has validated almost half the scenarios identified from STPA.
A total of 15 scenarios have been validated using either TomTom’s client data or MoMa data,
which accounts for more than 80% of the scenarios identified from STPA.

Figure 4.9: Venn diagram for validated scenarios.
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Table 4.13 presents the validation of scenario LS 5 using TomTom client’s data. STPA yields
a scenario in which the vehicle receives inaccurate speed restriction information from the map.
This results in the vehicle generating a path requiring a higher speed, which makes it an unsafe
maneuver. The scenario identified by TomTom’s client revolves around receiving inaccurate speed
limit data from the map. Since both scenarios identify the same aspect about the map feature,
speed limit data, LS 5 is considered as validated.

Table 4.13: Scenario validated using TomTom (TT) Client information.

Source of
scenario

Scenario Description

STPA

When the vehicle is operating in automated driving mode (AM), the HD map
delivery system provides a higher (inaccurate) speed restriction. This enables
the Path Planning Control unit (PPCU) to generate a path requiring a
greater speed.

TT Client
data

The vehicle receives an incorrect speed limit from the map data.

Table 4.14 presents the validation of scenario LS 13 using TomTom Mobile Mapping (MoMa)
data. The scenario describes the failure to detect traffic signs when there is excessive glare on a
bright sunny day. Due to the excessive brightness, the camera cannot provide observational data
required for sign detection. The AD system must rely on traffic sign information provided in the
map. The scenario identified using MoMa data also presents the failure to detect traffic signs on
a sunny day. Since both the sets of scenarios revolve around the failure to detect traffic signs in a
given environmental setting, scenario LS 13 is considered as validated.

Table 4.14: Scenario validated using TomTom (TT) Mobile Mapping Vehicle (MoMa) data.

Source of
scenario

Scenario Description

STPA
When the vehicle is operated in automated driving mode (AM), the cameras are
unable to capture the traffic signs due to excessive glare (bright sunny day).
The perception algorithm must rely on traffic sign features provided in the map

TT MoMa
data

The vehicle cannot detect traffic signs under sunny conditions.

Table 4.15: Scenario validated using TomTom Mobile Mapping Vehicle (MoMa) and Client data.

Source of
scenario

Scenario Description

STPA

When the vehicle is operating in automated driving mode (AM) during heavy
rain, it drives through an underpass where the roads are covered/flooded with
water. The flooding covers the lane markings completely, which cannot be
identified by the autonomous sensing unit (ASU).

TT MoMa
data

The vehicle is unable to detect lanes under conditions of heavy rain

TT Client
Data

The vehicle approaches an underpass which is flooded due to incessant rainfall.

Table 4.15 presents the validation of scenario LS 8 using both TomTom’s client and MoMa
data. STPA identifies a scenario in which the vehicle cannot identify lane markings whilst driving
through an underpass due to incessant rainfall. The vehicle’s AD system utilises the lane features
in the map to navigate through the underpass. TomTom’s client partially validates the scenario by
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identifying the same operating condition as mentioned in STPA. TomTom’s MoMa data identifies
the failure of lane detection when driving in heavy rain. Thus, both scenarios cumulatively validate
LS 8.

The completion of the validation process concludes the safety analysis. The focus of the
analysis was on identifying unsafe scenarios for the AD system. This led to the identification of
205 scenarios. These were further categorised to yield 17 high-priority scenarios. Fifteen scenarios
were validated using either TomTom’s client or measurement data.
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Chapter 5

Results of CARLA simulator

In this chapter, the results obtained from the tests conducted in CARLA simulator are presented.
The list of parameters which have been varied in each test are discussed. Observations drawn
from each plot are presented in this chapter.

Using the list of high priority scenarios, the feature of the map which was deemed safety-
critical for the vehicle was the lane features. The lane features of the map consist of the lane
centerlines and borders. Furthermore, CARLA provided coordinates for navigation in the form
of waypoints. In Section 3.3, a comparison was drawn between waypoints in CARLA and lane
centerlines on the road. We have utilised the availability of lane centerline information in CARLA
for conducting simulations. Thus, lane centerlines was the focus of the tests conducted in CARLA.
The parameters which were taken into consideration whilst performing simulations in CARLA are
presented in Table 5.1.

Table 5.1: List of parameters considered in simulations.

Parameters Range of values
Type of Noise Gaussian
Bias (Mean Noise) [-0.60, 0.60] meters
Jitter (Standard Deviation) [0,0.20] meters
Curvature of road [0,100] meters
Speed of vehicle 28-30 kmph
Vehicle models Prius, Cybertruck, Model 3
Sampling size [0.15, 2.5] meters

The range of bias and jitter injected in the waypoints are varied from the Table 5.1. The range
of bias and jitter was selected based on the quality levels set by TomTom for their products. A
gaussian noise signal with the required bias and jitter was generated. The route for the vehicle
has been generated using the method proposed in Section 2.3.3. Following the creation of the
route, the noise was injected into the list, element by element. Therefore, each element in the list
deviates from its original route. The vehicle attempts to follow the noise injected path, and the
key performance indicators (KPIs) are measured and stored for each case. Before conducting the
simulation, scenarios were selected for the vehicle. The first scenario taken under consideration is
the vehicle is driving on a straight road. The second scenario is the vehicle manoeuvres a path
with a defined curvature. The radius of curvature was varied within the range set in Table 5.1.
The range of curvature was selected based on the maximum radii of roads available in CARLA’s
pre-defined maps. The results obtained by varying the set parameters has been presented in the
upcoming sections.
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5.1 Variation of sampling size of map

In this section, the sampling size or accuracy of the map generated in CARLA was varied. The
sampling size is used as an input for generating a route for the vehicle [40]. The sampling size
was varied in steps of 0.5 meters at higher magnitudes, followed by a variation of 0.25 meters at
lower magnitudes of sampling size. The parameters considered for simulation are listed in Table
5.2. The vehicle of selection was driven on a straight road with the accuracy of the map being
varied. The KPI, mean absolute error, was measured and is presented below in Figure 5.1.

Table 5.2: Parameters used in variation of accuracy.

Parameter Value
Vehicle Prius
Noise Nil
Vehicle speed 30 kph
Map accuracy [0,2.5] m

In Figure 5.1, we can observe the decrease in the mean absolute error with a decrease in the
sampling size of the map. The decrease in mean absolute error is much larger when the sampling
size of the map is decreased from 2.5 to 2 meters as compared to a decrease from 1.5 to 1 meter.
The rate of decrease in mean absolute error is lower when the step size approaches a value of 0.25
meters. When the sampling size is decreased below 0.25 meters, the mean absolute error stabilises.

Figure 5.1: Plot of Mean absolute error vs Accuracy/ Sampling size of map on a straight road.

5.2 Variation of bias and jitter in lane waypoints on a straight
road

The route taken by the vehicle is presented in Figure 5.2. Lateral noise was injected in the route.
The speed of the vehicle was set to 30 kph and the vehicle model is Toyota Prius. A bias of the
range -0.60 to 0.60 meters was coupled with an element of jitter ranging from 0.05 to 0.20 meters,
to generate the required noise signal. The noise signal was injected in the vehicle’s route and the
data concerning KPIs was recorded.
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Figure 5.2: Route generated for the first scenario.

The results obtained for the cases having a jitter of 0.05, 0.10, 0.15, and 0.20 meters are
presented in Figure 5.3 and Figure 5.4. The mean absolute error increases with increasing bias
injected in the map. The mean absolute error peaks when the bias is set to 0.60 or -0.60 meters.
In Figure 5.4, we observed higher number of lane invasions at higher magnitudes of bias injected
in the lane centerlines. Higher lane invasions is observed in cases in which low values of bias are
coupled with high values of jitter.

Figure 5.3: Plot of Mean Absolute error (MAE) vs Bias injected in lane centerlines (m) for a
straight road.
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Figure 5.4: Plot of Lane invasions vs Bias injected in lane centerlines (m) for a straight road.

5.3 Variation of bias and jitter in lane waypoints on roads
with curvature

In this sub-section, the second scenario has been tackled. The vehicle was driven on road with a
defined curvatures. The route was created for the vehicle by adding a straight road which then
leads up to the curvature. The vehicle drives straight forward and makes a left turn on the road
with the set curvature. The curvatures are selected from the range provided in Table 5.1.

1. Radius of curvature = 6.5 m

Figure 5.5: Route generated for road with radius of curvature = 6.5 m.

The vehicle manoeuvred a road with a radius of curvature equal to 6.5 meters. This radius

48 Maps and their impact on the functional safety of automated driving



CHAPTER 5. RESULTS OF CARLA SIMULATOR

was selected to replicate a sharp inner city turn. The route followed by the vehicle is
presented in Figure 5.5. The speed of the vehicle was set to 30 kph and the vehicle model
was Toyota Prius.

Figure 5.6: Plot of Mean Absolute error (MAE) vs Bias injected in lane centerlines for road with
6.5 meters curvature.

Figure 5.7: Plot of Lane Invasions vs Bias injected in lane centerlines for road with 6.5 meters
curvature.

In Figure 5.6, we observed the increase in mean absolute error when the magnitude of bias
injected in the lane centerlines was increased. When the bias is increased from 0 to 0.60
metres, the impact of varying jitter was minimal. When the bias is increased from -0.60
to 0 metres, the mean absolute error increases with increasing jitter. The mean absolute
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error peaked at a bias of 0.60 metres. In Figure 5.7, the number of lane invasions increased
with increasing jitter. However, the maximum number of lane invasions was limited to two
despite increasing jitter in the noise signal.

2. Radius of curvature = 62 m

The vehicle manoeuvred a road with a radius of curvature equal to 62 meters. The route
followed by the vehicle is presented in Figure 5.8. The speed of the vehicle was set to 30 kph
and the vehicle model was Toyota Prius.

Figure 5.8: Route generated for road with radius of curvature = 62 m.

Figure 5.9: Plot of Mean Absolute error (MAE) vs Bias injected in lane centerlines for road with
62 meters curvature.

The results obtained for the cases having a jitter of 0.05, 0.10, 0.15, and 0.20 meters are
presented in Figure 5.9 and Figure 5.10. The mean absolute error increased with increasing
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bias injected in the map. The mean absolute error peaked when the bias was set to 0.60
or -0.60 meters. The mean absolute error peaked to higher value at -0.60 meters of bias
when compared to 0.60 meters. In Figure 5.3, we observed the increase in the peak of mean
absolute error with increasing standard deviation or jitter.

Figure 5.10: Plot of Lane invasions vs Bias injected in lane centerlines for road with 62 meters
curvature (m).

In Figure 5.10, maximum lane invasions are observed for a bias and jitter of -0.60 and 0.20
centimeters, respectively. The number of lane invasions increased when the magnitude of
jitter was raised from 0.05 to 0.20 meters. In Figures 5.10 and 5.4, a vertical parabolic shape
(U-shaped) was observed. The vertical parabolic shape moved towards the Y axis,i.e lane
invasions, with an increase in jitter, which is observed in Figure 5.10.

3. Radius of curvature = 102 m

Figure 5.11: Route generated for road with radius of curvature = 102 m.
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The vehicle manoeuvred a route with a radius of curvature equal to 102 meters. The route
followed by the vehicle is presented in Figure 5.11. The curvature was selected to emulate a
scenario where the vehicle drives on a highway where the radius of curvature of the roads are
large. The speed of the vehicle was set to 30 kph and the vehicle model was Toyota Prius.

Figure 5.12: Plot of Mean Absolute error vs Bias injected in lane centerlines for road with 102
meters curvature (m).

Figure 5.13: Plot of Lane invasions vs Bias injected in lane centerlines for road with 102 meters
curvature (m).

In Figure 5.12, we observe the rise of mean absolute error with increasing bias present in
the noise signal injected in the route. The mean absolute error peaked at a bias and jitter
of -0.60 and 0.20 meters, respectively. The behaviour of mean absolute error with respect
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to bias remained the same despite an increase in jitter. In Figure 5.13, the number of lane
invasions increase at higher orders of bias in the noise signal injected in the route. At higher
values of jitter, the number of lane invasions increased at lower values of bias. Maximum lane
invasions were observed at a bias and jitter of 0.60 and 0.20 meters, respectively. Figures
5.7, 5.10, and 5.13 illustrate a vertical parabolic behaviour of lane invasions with respect to
bias injected in the lane centerlines. Lane invasions increase when the bias injected in the
map is raised beyond -0.30 or 0.30 meters.

In this section, we have observed the linear relationship of mean absolute error with the bias
injected in the lane centerlines. Lane invasions remain constant within a defined range of -0.2 and
0.2 meters, after which it increases with increasing bias. The increase in jitter present in the noise
signal led to an increase in lane invasions. However, the increase in jitter does not have a similar
impact on the mean absolute error.

5.4 Variation of vehicle models and bias injected in lane
centerlines

In this section, the tests conducted in the previous sections are performed on 3 different models
of vehicles. This was done to benchmark the performance of the vehicle selected in the previous
sections and to observe the behaviour of different types of vehicles. The three categories of
vehicles considered for this application were compact, mid-size, and multi-purpose [52]. The list
of available vehicles in CARLA was filtered and the three vehicles mentioned below were shortlisted
for conducting the required tests. Results are presented for a given vehicle model selected from
CARLA blueprint library [43]. Simulations have been conducted for three different vehicle models,
which are as follows:

1. Toyota Prius

2. Tesla Cybertruck

3. Tesla Model 3

Each vehicle was tested in 2 scenarios. The vehicle was driven on a straight road and on a
road with a defined radius of curvature. The mean absolute error and lane invasions for each case
has been presented with respect to the bias injected in the vehicle’s route. The jitter was set to
a fixed value to draw a comparison between noise injection performed in different scenarios with
the same noise signal.

1. Straight road

Gaussian noise with a varying bias and jitter of 0.15 meters was injected in the lane center-
lines. The speed of the vehicle was set to 30 kph. The route taken by the vehicles is
illustrated in Figure 5.2.

In Figure 5.14, we observe the mean absolute error increased with increasing bias injected
in the lane centerlines. The same behaviour was observed in all vehicle models. Cybertruck
had the maximum mean absolute error at a bias of 0.60 meters. However, the peaks of mean
absolute error for all three vehicle is comparable.

In Figure 5.15, lane invasions increase with increasing bias injected in the lane centerlines.
The number of lane invasions remain constant till a bias of -0.3 or 0.3 meters was exceeded.
The Cybertruck encountered the highest number of lane invasions at a bias of -0.4 meters.
On a straight road, the Cybertruck had the highest mean absolute error and the most lane
invasions amongst the three vehicles.
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Figure 5.14: Plot of Mean Absolute error (MAE) vs Bias injected in lane centerlines (m) for
straight road for 3 different vehicles.

Figure 5.15: Plot of Lane Invasions vs Bias injected in lane centerlines for straight road for 3
different vehicles.

2. Roads with defined radius of curvature

In the second scenario, the selected vehicle models were driven on routes with a defined
radius of curvature. The routes were illustrated in Section 5.3. The results obtained from
the simulation conducted are presented below.
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(a) Radius of curvature = 62 m

Gaussian noise with a varying bias and a jitter of 0.15 meters was injected in the route
followed by the vehicles. The route taken by the vehicles is illustrated in Figure 5.8.
The speed of the vehicle was set to 30 kph.

Figure 5.16: Plot of Mean Absolute error (MAE) vs Bias injected in lane centerlines for road with
62 meters curvature (m) for 3 different vehicles.

Figure 5.17: Plot of Lane Invasions vs Bias injected in lane centerlines for road with 62 meters
curvature (m) for 3 different vehicles.

In Figure 5.16, mean absolute error increases with increasing bias. In the left half
(negative bias) of the plot, an offset was observed in the mean absolute error, with the
highest being Model 3 followed by Cybertruck and Prius. In the right half (positive
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bias) of the plot, we observed an overlap in the mean absolute error for all three vehicles.
Mean absolute error for Cybertruck peaked at a bias of -0.6 meters.

In Figure 5.17, lane invasions increase with increasing bias. Lane invasions remained
constant in the range between -0.2 and 0.2 meters of bias. Cybertruck and Model 3
yielded the highest number of lane invasions at a bias of -0.6 and 0.6 meters respectively.

(b) Radius of curvature = 102 m

Gaussian noise with a varying bias and a jitter of 0.15 meters was injected in the route
followed by the vehicles. The route taken by the vehicles is illustrated in Figure 5.11.
The speed of the vehicle was set to 30 kph.

Figure 5.18: Plot of Mean Absolute error (MAE) vs Bias injected in lane centerlines for road with
102 meters curvature (m) for 3 different vehicles.

In Figure 5.18, mean absolute error increases with an increase in bias. This behaviour
was observed for all three vehicle models taken into consideration. In the left half of the
plot, the mean absolute errors for each vehicle are at an offset, with Model 3 producing
the highest values. In the positive half of the plot, the curves for each of the vehicle
models merge. However, at the peaks of bias injected in the lane centerlines, Model 3
yielded the highest mean absolute error.

In Figure 5.19, higher lane invasions are observed for a positive bias injected in the
lane centerlines. The number of lane invasions remained relatively constant within the
range of -0.2 to 0.2 meters. Maximum lane invasions were observed at a bias of 0.6
meters for Model 3.

In this section, we have observed that the behaviour of vehicles with respect to the
increase in bias remains the same. Cybertruck yielded the highest mean absolute error
on a straight road, but in the second scenario, Model 3 produced a higher mean absolute
error. The number of lane invasions in the second scenario exceeded those recorded in
the first scenario. Furthermore, we observed the formation of the U-pattern in lane
invasions when the bias in the lane centerlines was increased.
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Figure 5.19: Plot of Lane Invasions vs Bias injected in lane centerlines for road with 102 meters
curvature (m) for 3 different vehicles.

5.5 Variation of sensitivity with respect to bias injected in
lane centerlines

The preceding sections presented the impact of bias on the mean absolute error and lane invasions.
Vehicle models were varied to observe the impact of bias on their performance. Sensitivity was
estimated for a range of bias and a fixed value of jitter. The vehicle of selection, Prius, was driven
on routes with different radius of curvatures. In this section, the sensitivity of mean absolute
error with respect to different curvatures has been presented. Initially, lateral noise was injected
in the lane centerlines. Furthermore, combinations of noise injected in the lateral and longitudinal
direction were investigated. Each combination was tested using a fixed jitter component while
varying the radius of curvature. Combinations of noise injection which have been applied to the
lane centerlines are as follows:

1. Lateral noise injection

2. Lateral noise and longitudinal bias

3. Noise in lateral and longitudinal direction

Figure 5.20 presents the estimated sensitivity when noise is injected only in the lateral direction
of the route. At a small radius of curvature (6.5 m), the vehicle at 0.2 meters jitter has the highest
sensitivity. At higher radii of curvature, sensitivity remained the same at different values of jitter.
The sensitivity observed at 58 and 62 meters is relatively higher than that observed at 102 meters.

Figure 5.21 presents the estimated sensitivity for different combinations of noise injection in
the lane centerlines. The jitter was set to 0.1 meters. Maximum sensitivity was observed when
noise is injected in both the lateral and the longitudinal directions. The case with lateral noise
and bias in the longitudinal direction yielded a sensitivity that is relatively close to the former.
The output for the two cases almost overlap each other at higher radii of curvature. When lateral
noise was injected in lane centerlines, the least sensitivity was obtained.
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Figure 5.20: Plot of Sensitivity vs Radius of curvature (m) for jitter.

Figure 5.21: Plot of Sensitivity vs Radius of curvature (m) for different combinations of noise
injection with a jitter of 0.1 meters.

Figure 5.22 presents the estimated sensitivity for different combinations of noise injection in
the lane centerlines at a jitter of 0.2 meters. Maximum sensitivity was observed when a lateral
noise and a longitudinal bias were injected in the map. Noise in both lateral and longitudinal
directions yielded a marginally lower sensitivity as compared to the previous case. At a radius of
6.5 meters, the sensitivity remains the same for both cases however the two cases drift apart at
higher radii of curvature. Lateral noise injection yielded the lowest sensitivity amongst the three
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considered combinations.

Figure 5.22: Plot of Sensitivity vs Radius of curvature (m) for different combinations of noise
injection with a jitter of 0.20 meters.

In this section, we have observed the effect of injecting noise in the vehicle’s route on the
sensitivity of the mean absolute error. The case consisting of lateral and longitudinal noise injection
yielded the highest sensitivity when the jitter was set to 0.1 meters. However, the case where lateral
noise coupled with longitudinal bias yielded the highest sensitivity when the jitter was set to 0.20
meters. The case with only lateral noise injection yielded the least sensitivity amongst the three
considered cases at both the values of jitter.
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Discussions

In this chapter, the results which have been presented in the previous two chapters are discussed.
Key results are identified and analysed further to garner a conclusion.

6.1 Safety analysis findings

The safety analysis was performed from the point of view of map manufacturers, to develop an
understanding regarding the usage of maps by autonomous vehicles. The architecture of the
autonomous driving system was selected considering the current state of autonomous driving in
the automotive market. Stakeholders were identified, and their respective losses were listed out,
with an impetus being on the losses concerning the quality of map provided and the vehicle
performance. Four primary stakeholders were determined from the problem statement, and 11
losses were ascertained. Hazards were identified in this process which may occur in the standard
operation of the system. These hazards could have gone unnoticed in conventional safety analysis
since they do not occur due to the failure of any given subsystem. Eight potential hazards were
identified and their respective system constraints were set.

Figure 6.1: Hazard dependency chart
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Figure 6.1 illustrates the dependency of hazards identified from the safety analysis performed
on the automated driving vehicle. The hazards are presented in Table 4.2. A dependency was
established between the hazard H3 and hazards H2, H7, and H1. H3 occurs when the vehicle
follows an incorrect trajectory. If the vehicle follows the wrong trajectory, the vehicle could
approach an area that exceeds the Operational design domain (ODD) of the AD system. The
AD mode may remain activated in a restricted area, which results in hazard H2. The vehicle
following an incorrect path could result in the erratic performance of the vehicle. Thus, hazard
H3 could cause the H7. Moreover, H3 results in the violation of spacing requirements concerning
neighbouring vehicles, which in turn causes hazard H1. Thus, multiple hazards may occur due to
the occurrence of a single hazard, which was identified from the analysis.

Functions performed by different sub-systems were listed out to understand the role each
sub-system plays in meeting the goal of automation. In addition to defining the functions, the
sub-system responsible for performing the function and the subsystem requiring the output was
also listed. This ensures the chain of communication between sub-systems has been reviewed
sufficiently. A high-level control structure of the automated driving system was modelled, which
was followed up by low-level modelling of all the required sub-systems. Eight control structures
were modelled to represent the system and its subsequent sub-systems. Sixty five control actions
were listed out using the modelled control structures. The control actions were filtered based on
their dependence on the autonomous vehicle or the map.

The list of identified control actions were then translated to unsafe control actions using the
fur different categories mentioned in Section 2.1.3. This process yielded 322 unsafe control actions.
Unsafe control actions were inverted to set controller constraints on the AD system, which resulted
in 383 system constraints. Unsafe control actions were filtered based on their dependency on map
features, which were used in the identification of loss scenarios.

By performing the safety analysis on the autonomous vehicle, we were able to identify different
aspects of the system which could cause an unsafe scenario. This process yielded 225 loss scenarios.
Using the process of categorisation based on severity and exposure, the pool of scenarios was
shortened to form a concise and high-priority list of 17 scenarios.

The root-cause analysis categorised 60 % of high-priority scenarios as unavoidable scenarios.
The safety of the passengers in such cases can be ensured by placing a higher confidence level on
the map data as compared to sensor data. To complement the higher reliance on map data, the
map provided must be regularly updated and must meet the required quality. If inaccurate map
data is provided to the vehicle, it could compound the existing scenario and put the vehicle into a
hazardous situation. The given situation can be explained further by using a scenario identified,
LS 1, which is presented in Table B.3. The vehicle encounters a foggy or low-visibility environment
within which the sensors of the vehicle cannot picture the lanes at the required confidence levels.
Map data consisting of lane features must be provided to the vehicle to ensure the vehicle stays
on the same course. If the vehicle receives inaccurate lane features, the vehicle may shift lanes
and could cause a hindrance to the vehicles in the neighbouring lanes, thus becoming a hazard.

In the above-mentioned scenario, the dependency of an autonomous driving system on the
map was demonstrated. In a worst-case scenario, the dependence on map data aids in ensuring
the safety of the passengers. However, complete dependence on sensors or maps for autonomous
driving would not be optimal in such situations. In the loss scenario, LS 6, the vehicle received
inaccurate speed limit information. This forced the vehicle to drive at a speed higher than the
defined limit, which lead to the occurrence of a hazard. Thus, the vehicle must have a safe
level of dependency on map features. Using the simulation platform, we have demonstrated the
dependency of a vehicle’s lateral control on the quality of map. This has been discussed in the
next section.

6.2 CARLA simulation findings

Simulations were conducted on an autonomous driving vehicle in CARLA [25]. Key performance
indicators (KPI) were defined and used in the evaluation of the impact of different parameters on
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the vehicle’s performance. In addition to the sampling size, the bias and jitter were also varied.
The noise signal generated was injected in the waypoints, which are used for navigation. KPI’s were
observed and measured for each of the scenarios and have been presented in the previous section.
The impact of uncertainty in the map was observed in two scenarios. The two key scenarios which
have been tested are on a straight path and a path with a defined radius of curvature. The key
results presented in the previous section regarding each KPI will be discussed.

From the study conducted on the variation of the sampling size of the map, we can ascertain
that the mean absolute error (MAE) is linearly proportional to the sampling size of the map.
The MAE of the vehicle decreases when the sampling size of the map is decreased. However, the
change in performance of the vehicle is minimal at lower magnitudes of sampling size. The mean
absolute error begins to stabilise when the sample size of the map is set to 0.25 meters. The slope
of mean absolute error with respect to the sampling size remains consistent between 1.5 and 0.25
meters. On decreasing the sampling size below 0.25 meters, the slope decreases.

From the scenarios which have been tested, we observed that the mean absolute error (MAE)
of the vehicle was linearly proportional to the amount of bias injected in the lane centerlines.
Jitter does not exhibit a similar impact on the MAE as compared to bias. The linear relationship
exhibited between MAE and bias is due to the vehicle tracking a noise injected path. Since the
noise injected path was at a varying but almost constant distance from the original centerline, the
vehicle’s location shifts by that given distance to the original centerline. The MAE recorded was
not equal to the amount of bias injected in the centerlines, since a gaussian noise signal with a
bias and jitter was injected in it. The noise signal was injected into the route element-wise, thus
affecting all the elements of the route.

Lane invasions exhibited a non-linear relationship with bias. There are minimal lane invasions
observed within a range of -0.2 and 0.2 meters. This behaviour was observed for all three vehicle
models tested. When the bias injected was increased beyond this range, lane invasions increased.
Jitter injected in the lane centerlines led to a higher number of lane invasions. A higher magnitude
of jitter in the noise signal led to higher lane invasions. A noise signal with a higher magnitude of
jitter resulted in the vehicle having snappy steering. The vehicle drove in a wavy pattern, which
resulted in more lane invasions being recorded. If lower magnitudes of jitter were coupled with
higher magnitudes of bias, a high number of lane invasions would be detected since the vehicle is
positioned very close to the lane borders. The probability of the vehicle cutting the lane borders
would be high, thus resulting in higher number of lane invasions.

Sensitivity exhibits a linear relationship with the radius of curvature. In the figures presented,
we observed an increase in sensitivity with the increase in the radius of curvature. There was a
slight dip in the sensitivity when the radius of curvature is set to 58 and 62 meters. However, the
trend of sensitivty with respect to curvature was linear. Maximum sensitivity was observed when
bias and jitter were injected on a straight road. When a vehicle drives on a straight road, there
is minimal steering input to keep the vehicle heading straight. However, when noise containing a
high order of bias and jitter, was injected on a straight road, the vehicle generated a high amount
of steering, which resulted in a high MAE. On a path with curvature, the steering output generated
by the vehicle remains relatively the same. Minor changes in steering output correspond to a lower
mean absolute error, which in turn led to low sensitivity.

Thus, we have observed the impact of map uncertainty on the performance of a vehicle. Using
the defined KPIs, we have evaluated the performance of different vehicles in varying scenarios.
Mean absolute error was used to evaluate the lateral positioning of the vehicle while tracking a
route with different noise signals. Lane invasions were used to understand the number of occasions
the vehicle does not stay in its lane. A vehicle that yielded multiple lane invasions would serve as
a hazard to all the vehicles in the neighbouring lanes. Thus, lane invasions have been used as a
measure to evaluate the safety of noise injected in the map.
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6.3 Limitations

The research conducted does have limitations, which have been addressed in this section. The
architecture of the AD system has been selected using literature, which is simplistic. AD systems
employed by OEMs may have a greater level of complexity, which could yield a larger pool of
results. Each of the shortlisted simulation environments cater to the testing and development of
autonomous driving systems. They are not built from the perspective of testing a state-of-the-art
AD system for a given map, which serves as a limitation to this research. An autonomous driving
simulator must be adapted to perform the simulations from a mapmakers’ point of view, which
may not necessarily be the best approach.

The selected simulation environment, CARLA, has limitations in terms of available routes
present in the inbuilt maps. In this study, the maximum available radius of curvature provided
in CARLA has been utilized. However, in reality, the radius of curvatures of highways are much
larger in magnitude, in the order of kilometres, as compared to those provided in the simulation
environment which is in the order of meters. CARLA does provide an OpenDrive standalone
mode to import OpenDrive files. However, the ability to tune parameters of the road surface in
the map such as friction are unavailable, which causes unstable vehicle behaviour at higher speeds.
There is a lack of complementary documentation concerning these features, which makes the task
tedious and challenging. CARLA provides limited functionalities regarding navigation in a defined
map. CARLA provides navigation for vehicles in the form of waypoints. It does not provide any
other map features, such as traffic signs, for navigation in the defined world. Thus, having only
waypoints as the single source for navigating a given vehicle serves as a limiting factor.
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Conclusions and future works

In this thesis, the impact of the map on the functional safety of an automated driving vehicle was
observed by performing two key tasks, the first being the safety analysis and the second being
simulation of map uncertainty in a self-driving environment. The safety analysis was primarily
aimed at identifying scenarios in which an AD system could encounter a hazard and thus put the
safety of the vehicle at risk. Simulations were performed to visualise the impact of the uncertainty
on the lateral control of the vehicle. Results of both the tasks are presented and discussed in the
previous sections. During the course of the thesis, two research questions were identified, whose
answers will be addressed below.

In what scenarios does the traffic and lane features of the map impact the func-
tional safety of automated vehicles?

The functional safety of an automated driving (AD) vehicle is impacted by maps in a diverse
set of scenarios. Loss scenarios were identified for the AD system which occurs due to unsafe
interactions between different components of the system. When a given scenario occurs, the
sensing unit continues to perform as required, however, the input needed to make decisions is not
received. This forces the vehicle to rely more on the map to make real-time decisions. Thus, we
have established a level of dependency between the vehicle and the map in a worst-case scenario.

The loss scenarios identified from the analysis occur despite the optimal functioning of each
sensor. This justifies the selection of the safety analysis technique since the AD system enters a
hazardous state without the failure of a given system or sub-system. The safety analysis conducted
on the AD system yielded loss scenarios concerning different factors. Majority of the high-priority
scenarios concerned lane features and traffic signs present in the map or on the road. Lane features
and traffic sign-related loss scenarios were encountered when issues in the road infrastructure,
weather, or vehicle positioning were faced. These scenarios relied on utilising the provided map
data to ensure the safe movement of the vehicle. However, loss scenarios were also identified
in cases wherein incorrect map data was provided to the vehicle’s AD system. These scenarios
occurred despite receiving optimal sensor feedback, however, the dependence on map data resulted
in a hazard. Thus, complete reliance on map data when the vehicle is in its operating domain
would not be optimal and safe.

Therefore, we can conclude that an automated driving vehicle cannot completely rely on either
sensor data or map data. Complete reliance on either of the two could result in the occurrence of
hazards, which compromises the safety of the AD system. The AD system must use a fusion of
sensor and map data. In a given worst-case environment, the vehicle can rely on minimal sensor
data and map features to navigate the vehicle to a safe location. However, this is dependent on
the quality and accuracy of map data provided to the vehicle. The level of dependence on given
map features must be established based on the availability and quality of data delivered to the
vehicle. If the level of quality of map data provided is not as per requirements, a take-over request
must be issued to the driver. This would ensure control of the system is handed back to the driver,
thus maintaining the level of safety of the system. The Operational Design Domain (ODD) of the
AD system could either be limited or broadened based on the accuracy of map data provided to
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it, thereby preventing the occurrence of loss scenarios due to inaccurate data.
In the event of camera failure, what is the dependency of lateral control of an

automated driving vehicle on the quality of accurate maps?
The aim of conducting simulations in a self-driving simulator was to observe the impact of

the uncertainty of the map on the lateral performance of the vehicle. Lateral performance was
measured using three key performance indicators, which were the mean absolute error (MAE),
lane invasions, and sensitivity. A gaussian noise signal composed of a bias and jitter component
was injected into the map to simulate uncertainty. From the initial tests conducted, we observed
that the AD vehicle was able to negotiate the selected paths successfully with minimal lateral
errors. Thus, we can conclude that in a given worst-case environment, a vehicle can manoeuvre
a given path using minimal sensor and map data. However, this is possible only if the map is of
high quality and does not have large noise signals ingested in it.

A map can never be a perfect replica of reality since reality will undergo constant change.
There will always be an element of noise in the map features provided to the vehicle. However,
the magnitude of noise present in the map may differ based on the quality checks conducted by
mapmakers during the production and delivery of maps. Through simulations, we have observed
the impact that uncertainty in a map can have on the lateral control of the vehicle. Bias, the
mean of the noise, has the largest impact on lateral performance when compared to jitter. Bias
has the largest impact since it forces the vehicle to shift positions laterally, which results in lower
lateral performance. On the other hand, the impact of jitter is magnitude-dependent. At lower
orders of jitter, there is minimal impact on the lateral performance. However, excessive jitter
results in drunk-driver behaviour, which leads to lower comfort and safety for the passengers and
the neighbouring vehicles.

Besides the element of noise, the sampling size of the map plays a crucial role in the lateral
performance of the vehicle. The mean absolute error of the vehicle decreases linearly with the
decrease in sampling size. However, the improvement in mean absolute error decreases as the
sampling size is decreased beyond a given threshold. Thus, a map with a lower sampling size
may yield similar mean absolute errors as compared to that obtained at a comparatively higher
sampling size. Furthermore from a mapmakers’ point of view, the costs that are incurred in
producing a map of such sample sizes would outweigh the benefits that are obtained in lateral
performance. Thus, a break-even must be established between the required lateral performance,
cost of production, and the production capability of the map production system.

7.1 Recommendations and Future works

This project mainly focused on analysing the impact of maps on the safety of a vehicle. The scope
of research conducted can be broadened to analyse the impact on not just the safety, but the
overall performance of the vehicle. KPIs were defined to observe the impact of map uncertainty
on the overall safety of the vehicle. KPIs can be defined which could be used to evaluate the
different aspects of vehicle performance such as vehicle slip. Moreover, this could aid in enhancing
the given requirements placed on the map production system.

The vehicle modelled in CARLA has minimal sensor functionalities. The given vehicle model
is equipped with a functional GPS and an IMU. However, the camera and LiDAR have been
deactivated to represent a worst-case scenario for the AD system. The scope of the vehicle’s
AD system must be broadened to include a lane assist and a cruise control system. This would
facilitate the appropriate representation of a vehicle equipped with advanced driver assist systems
(ADAS). The lateral control method has been selected based on given time constraints and the
required performance at lower speeds. The results obtained from this study can be benchmarked
by employing different lateral control strategies. Simulations have been conducted considering
an inner-city application of maps, which is limited to 30 kph. The speed of the vehicle must be
increased to 140 kph, which would facilitate simulating scenarios encountered on highways. This
would lead to a wider range of scenarios that can be tested in the given environment.

Simulations were conducted to analyse the impact of map uncertainty on the safety of the
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vehicle. A vehicle would be spawned and driven in the world, on a pre-determined route using a
given lateral control algorithm. Bias and jitter were injected in the route and KPIs were recorded.
The impact on traffic safety can be analysed even further by extending the application to include
multiple vehicles, which are being driven in the vicinity of the ego vehicle. This would provide
an opportunity to observe, first-hand, the impact of bias and jitter in the ego vehicle’s path on
the neighbouring vehicles. The maximum level of bias and jitter needed to induce a crash with a
vehicle in the neighbouring lane can be estimated by executing an optimisation script that would
utilize the parameter, lane invasions, as an input.
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Appendix A

CARLA

A.1 Vehicle Coordinate system

Figure A.1 illustrates the co-ordinate system for a vehicle in CARLA. This coordinate system is
used as a reference for generating a steering input.

Figure A.1: Coordinate system for the vehicle
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A.2 Map coordinate system

Figure A.2 illustrates the co-ordinate system for a world in CARLA. The top view of the map
has been used to present the coordinate system of the world. This coordinate system is used as a
reference for injecting a noise in the waypoints, which are used for navigation by the vehicle.

Figure A.2: Global coordinate system for the map (Top view).

A.3 Pure Pursuit controller

In this section, the algorithm applied in the implementation of Pure Pursuit controller is presented
in the form of a flow chart.
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Find the goal point

Find a path closest to the vehicle

Determine the current location of
the vehicle

Transform the goal point to
vehicle coordinates

Calculate the curvature needed
and the required steering input

Normalize the steering input

Flowchart for Pure  
Pursuit Controller 

Figure A.3: Process flow chart for the pure pursuit controller.
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STPA Results

B.1 List of system constraints

Table B.1 presents the list of system constraints identified from the list of hazards. These are
identified in the first step of the safety analysis conducted on the Level 2/3 Automated driving
Vehicle (AV). The constraints are at a high-level and are aimed at preventing the occurrence of
hazards due to unsafe interactions at the highest level of the system. In the table, the constraints
defined for given hazards (in square brackets) have been listed below.

Table B.1: List of system constraints identified from STPA.

SC ID System constraint

1
The AV must maintain spacing between neighboring vehicles based on
defined requirements.[H1]

1.1
A. The AV must maintain the required speed based on the speed limit data
obtained from the HD maps.[H1.1]

1.1
B. The AV must follow a uniform acceleration profile to maintain the
required levels of comfort for the passengers of the vehicle. [H1.1]

1.2 The AV must initiate quick deceleration in the case of an emergency. [H1.2]

2.1
The AV must engage autonomous mode only in regions/ road areas
specified in the HD map.[H2]

2.2
In case of an error in mode detection, the AV must initiate a takeover
request (TOR) immediately.[H2]

3
The AV must follow the path created from the fusion of the HD map
and observational data.[H3]

3.1
A. The AV must communicate Floating car data to the map producer regarding
wrong curvature detection. [H3.1]

3.1
B. The AV must generate a new path based on observational data to
a safe state.[H3.1]

3.2
The AV must initiate emergency braking or a TOR to prevent
collision with other cars/ pedestrians.[H3.2]

4.1
The AV must preload map data in its cache to protect the vehicles
in case of a sudden loss of data connectivity. [H4]

4.2
The AV must have multiple data connections in place as a
fail-safe measure.[H4]

5.0
A. The AV must issue TORs only if observations needing such
action are drawn. [H5]

5.0
B. The AV should issue a TOR if the automated system is exiting the
specified automated driving area. [H5]
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Table B.1: List of system constraints identified from STPA.

SC ID System constraint
5.1 The AV must issue a TOR only if the criterion has been satisified. [H5.1]

5.2
The mode transition of the vehicle must be performed with least amount
of delay.[H5.2]

6.0 A. The AV must be parked in a safe state immediately.[H6]

6.0
B. The AV must issue a TOR to the driver if the visualization system
cannot be activated again. [H6]

6.1 The AV must issue a TOR to the driver as soon as possible. [H6.1]
6.2 A. The AV must issue an error message followed by a TOR to the driver. [H6.2]

6.2
B. The AV must be parked in a safe state in case TOR is rejected
by the driver. [H6.2]

7
The AV must slow down to a velocity at which the system
can drive uniformly. [H7]

7.1
A. The AV must utilize the defined speed limit data provided in the
HD maps. [H7.1A]

7.1
B. If speed limit data is unavailable, the AV must drive at a system
defined safe speed. [H7.1]

7.2
The AV must initiate a TOR to the driver within the given
timeframe if control cannot be established. [H7.2]

7.3
The AV must utilize the lane features provided within the HD maps to
establish lateral control. [H7.3]

7.4 A. The AV must stop instantaneously only when an obstacle is detected. [H7.4]

7.4
B. The AV must stop instantaneously when the emergency brakes have been
activated by the driver/ autonomous driving system. [H7.4]

8
The vehicle must have a defined safe mode, in which the
vehicle parks itself in a safe state when such a situation is detected. [H8]

8.1
If the vehicle is stuck in the autonomous mode, it must be set to a safe state,
followed by a system reboot. [H8.1]

8.2
The autonomous mode must remain disabled till the vehicle has been
switched off and a complete reboot has been performed. [H8.2]
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B.2 Control structures

Figure B.1 presents the control structure for the environment. The environment can be split into
the following categories; road infrastructure, weather, terrain, and water bodies. Weather can
be used to describe the state of atmosphere. This is crucial for autonomous driving systems.
Foggy conditions are very difficult to navigate through due to a reduction in levels of visibility.
Water bodies will also be present in an environment along which bridges, and passes have been
built. Road infrastructure consists of roads, traffic and surrounding infrastructure. Roads can be
categorized into highways, local roads, and intersections. The characteristics of roads such as lane
groups, types, borders, trajectory and centerlines are also considered. Traffic consists of vehicles
occupying lanes, pedestrians, and traffic signs and lights. Surrounding infrastructure includes
overhead structures such as bridges, tunnels and other structures or landmarks such as buildings
and pavements.

Weather

Neighboring
vehicles

TrafficRoads Surrounding
infrastructure

Roads : 
highways, local roads,
Intersections,crossings, junctions,
speed bumps 
Road characteristics: 
lane group, type, border,
centerlines

Traffic signs, 
traffic lights

Bridges, tunnels, 
 buildings, pavements, 

Mountains, Ridges, 
 canyons

Types of weather:
Rain, snow, sunny,
cloudy, foggy

Road Infrastructure

Pedestrians

ENVIRONMENT

Terrain Water bodies

Streams, rivers, 
canals,lakes,oceans

Figure B.1: Control structure of environment

Figure B.2 illustrates the perception system. Its main function is to identify physical objects
such as obstacles, neighboring vehicles, overhead structures, traffic signs, and lights. The data
storage unit contains the HD MAP and observational data. Data is requested from the DSU by
the perception algorithm. The data is utilized for performing the following functions:

1. Detect surrounding structures using HD map data

2. Detect traffic signs and lights

3. Detect neighboring vehicles

Incoming obstacles are communicated to the control unit to activate the collision avoidance system.
Furthermore, regions with detected overhead structures are utilized for restricting autonomous
driving functionality.
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Road features Traffic signs

Read Lane Features: 
- Lane borders, types
- Lane centerlines
- Lane trajectories

Area features

Read regions of the map: 
- Junction area
- speed bumps
- Road area
- Road crossing
- Road gradients

Annotated traffic 
signs

Overhead
Structures

Bridges, tunnels, 
sign boards

HD Map data

Perception control unit

AV Sensing unit

Data Storage Unit (DSU)
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in HD Maps 
- Detect surrounding structures using HD Map data 
- Detect traffic signs, lights 
- Detect neighboring vehicles

Request data from DSU

Output:  
lanes, overhead structures, obstacles,  
traffic lights,signs

Perception subsystem 

Figure B.2: Control structure of perception system

Figure B.3 illustrates the control structure employed in the Localization system. Control is
established from the localization algorithm. Data from the HD map is pooled into the data
storage unit. The data storage unit is shared between the localization and perception system. By
pooling all the data into one memory unit, the need for multiple memory units can be eliminated.
Observational data from the mounted sensors are gathered in the perception sub-unit. This data is
communicated to the data storage unit in the localization system. IMU and GPS data is utilized
to estimate the vehicle’s current pose. It is also used to estimate the current location of the
vehicle with respect to the detected lanes. The coordinates of the vehicle are communicated to
the path-planning system.

Road features

Read Lane Features: 
- Lane borders, types
- Lane centerlines
- Lane trajectories

Area features

Read regions of the map: 
- Junction area
- Speed bumps
- Road area
- Road crossing
- Road gradients

Data storage unit (DSU)

Store data from HD Maps
Store recorded 
observations

Localisation control unit

 
- Estimate current pose of vehicle 
- Estimate distance from neighboring vehicles, traffic signals,obstacles 
- Estimate pose of vehicle w.r.t lanes 
- Compare detected lanes with lane data of HD maps

- Current vehicle pose 
- Distance w.r.t lanes, neighboring vehicles

HD Map data

Localisation Subsystem

Request data from 
data storage unit

AV Sensing unit

Store observational data: 
- IMU 
- GPS

Perception
Subsystem

Detected lanesControl subsystem

Vehicle Actuator
Data

Figure B.3: Control structure of localization system
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Figure B.4 presents the control structure of the vehicle control system. The vehicle control
system comprises of the motion control unit and the control algorithm. The control algorithm
receives mode of operation, detected obstacle data, generated path and HD map data in the form
of traffic signals, lights and speed limits as inputs. It yields control commands which is fed to
the motion control unit. The motion control unit is responsible for driving the vehicle. This unit
receives inputs from the control unit which triggers the subsequent elements of the system. The
Motion control unit (MCU) has been simplified into two forms of control; lateral and longitudinal
control. Lateral and longitudinal control is utilized for controlling the lateral and longitudinal
dynamics of the vehicle respectively. The actuators can be split into four subsystems; power unit,
transmission, brakes, and steering. The power unit is responsible for generating the required
torque output based on control inputs. The torque is fed to the transmission system to obtain the
target speed. The speed may be limited based on speed limit data received from the HD map. The
speed can also be restricted based on the expected road curvature. The brakes can be engaged or
disengaged based on the maneuvering of the vehicle. The detected obstacle data will be used for
triggering the emergency braking system (EBS). Furthermore, steering can be engaged based on
the vehicle path pre-determined in the maps.

Motion Control Unit

Lateral Control

Steering

Longitudinal control

Transmission BrakesPower Unit

Actuate motion 

Throttle Output 
Torque input

Wheel, Motor RPM 
Differential settings 
Gear status 
Vehicle speed

Brake Torque 
Brake Actuation 
EBS state

Steering wheel angle 
Yaw angle 
Yaw velocity 
Ackermann percentage 
Roll angle

Activate
steering

Disengage/Engage
brakes 

Shift gears

Start Power unit 
Generate required 

torque 
Limit torque input

Activate
transmission

Initiate
Longitudinal

control

Initiate Lateral
control

Control algorithm

Set mode of operation (AD or MD) 
Follow generated path 

Stop vehicle on obstacle detection

Inputs:
- Mode of operation
- Obstacle data (perception)
- Generated path
- HD Map data (Traffic lights, signs, speed limits)

Control subsystem

Disengage/Engage EBS

Figure B.4: Control structure of vehicle control system

Figure B.5 describes the path planning and routing subsystems. Using the outputs from the
perception, localization and control subsystems, the path planning control unit verifies whether
the vehicle is following the defined path. The results of this verification are communicated to the
routing subsystem. The routing subsystem requests map data from the data storage unit. The
requested data is utilized for analyzing whether the vehicle is still on the right route to the selected
destination. If the vehicle strays out of the defined route, the subsystem defines a new route which
is communicated to the Path planning control unit. The routing subsystem analyses the detected
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obstacles with the detected overhead structures in the map data. Based on the comparison, the
autonomous mode can be enabled or disabled. If the disabling instruction is issued, a TOR is
issued. Instructions regarding choice of destination and mode of driving issued by the driver from
the HMI are communicated to the routing subsystem.

Path Planning Memory Unit

Perception Localization

Provide estimated vehicle
coordinates based on
map data 
Provide road curvature 

Provide location of
detected obstacles,
detected vehicles

Provide road features

Control

Follow newly generated path 
Switch mode of driving 
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Provide sensor 
output from actuators

Routing subsystem

Path Planning Control unit

Provide required observational data 
Provide road features from DSU

Provide Map data from DSU

Road features

Traffic signs

Read Lane Features: 
- Lane borders, types
- Lane centerlines
- Lane trajectories

Area features

Read regions of the map: 
- Junction area
- speed bumps
- Road area
- Road crossing
- Road gradients

Annotated traffic 
signs

Overhead
Structures

Bridges, tunnels, 
sign boards

DSU

Generate new route based on output 
Provide detected obstacles 

Path Planning and Routing subsystems

Communicate data to HMI 
Issue take over requestInput Co-ordinates of destination

Generate path based on route
selected 

Enable/disable autonomous mode

Provide detected obstacles 

Figure B.5: Control structure of path planning system
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B.3 Loss scenarios

B.3.1 List of loss scenarios

Table B.2 represents the loss scenarios identified for the control action: Detect traffic signs. Each
unsafe control action, which is dependent on map features, has been used in listing out loss
scenarios.

Table B.2: List of scenarios for Control Action: Detect traffic signs.

Unsafe Control action Scenario classification Scenario

The perception algorithm cannot
identify traffic signs during
autonomous operation.

Inadequate information
/feedback is received

When the vehicle is in autonomous mode (AM), the
HD map delivery system provides traffic sign features
which have incorrect positions. The ASU cannot
capture the traffic signs at the defined positions, resulting
in no traffic signs being identified.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection

Lack of information

When the vehicle is in autonomous mode (AM), the
traffic signs have been installed temporarily on a road
due to ongoing road works. This does not appear in the
point features thus cannot be validated using map data.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection

Lack of Information

When the vehicle is operated in autonomous mode(AM),
the cameras are unable to capture the traffic signs due to
excessive glare (bright sunny day). The perception algorithm
must rely on traffic sign features provided in the map.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection

The perception algorithm incorrectly
identifies traffic signs on the road.

Inadequate feedback
/information is received

When the vehicle is in autonomous mode (AM), the HD map
delivery system provides inaccurate traffic sign features to the
perception algorithm for the validation of observational data.
This causes incorrect identification of traffic signs on the road.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection

Lack of information

When the vehicle is in autonomous mode (AM), the
perception algorithm receives map data with insufficient
features (missing traffic signs features) for validation of signs
detected by the camera.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection

The perception algorithm identifies
traffic signs too late.

Inadequate feedback/
information is received

When the vehicle is in autonomous mode (AM), the ASU
detects a traffic light. But the validation of the traffic light
with map features requires a longer period due to issues faced
in reading map features.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection

B.3.2 List of high priority loss scenarios

The complete list of loss scenarios obtained after performing the categorisation has been mentioned
in this section below. There are 17 loss scenarios which have been labelled as high prioirty. These
scenarios have been validated using the sources of use cases.
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Table B.3: List of high priority scenarios from STPA.

Loss scenario ID Loss scenario Description

LS 1

When the vehicle is operating in autonomous mode (AM) under
streetlights or in the foggy conditions, the performance of the camera is
hampered. This causes a delay in the lane detection process, which
affects the vehicle’s localization process.
Vehicle intent: Provide vehicle relative location w.r.t lanes to the Path
Planning subsystem
Role of map: Provide lane borders, trajectories features needed for
estimating the vehicle’s location w.r.t lanes
KPI of features: Positional accuracy (absolute and relative),
completeness of lane features

LS 2

When the vehicle is operated in autonomous mode (AM), the overhead
structure is out of range for the autonomous sensing unit (ASU), thus
cannot be observed by the sensors. The perception algorithm must
utilize the overhead structures features to cope with the missing
observational data.
Vehicle intent: Detect overhead structures/obstacles
Role of map: Provide required features needed for identifying
overhead structures.
KPI of features: Positional accuracy (Absolute), completeness of
overhead structures

LS 3

When the vehicle is operating in autonomous mode (AM) in
foggy/snowy/heavy rain conditions, the performance of the ASU is
heavily hampered. The ASU may not have sufficiently accurate
observational data required for detecting overhead structures. The
perception algorithm must rely on overhead structures features from
the map.
Vehicle intent: Detect overhead structures/obstacles
Role of map: Provide overhead structures features needed for
identifying incoming overhead structures
KPI of features: Positional (absolute) accuracy and
completeness (false positives and negatives)

LS 4

When the vehicle is operating in autonomous mode (AM) on
inner city roads, it encounters missing lane markings. The routing
subsystem must combine the vehicle’s relative position with the lane
dividers and the map’s lane centerline information for route generation.
Vehicle intent: Use map data for generating a route
Role of map: Provide required map data needed for generation of
a route
KPI of features: Positional (Absolute and relative) accuracy,
completeness of lane borders, trajectories

LS 5

When the vehicle is operating in autonomous mode (AM), the HD
map delivery system provides a higher (inaccurate) speed
restriction. This enables the Path planning Control unit (PPCU) to
generate a path requiring a greater speed.
Vehicle intent: generate a path using the selected route
Role of map: Provide speed restrictions features for path generation
KPI of features: Thematic accuracy and completeness
(false positive and negatives) of speed restrictions
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Table B.3: List of high priority scenarios from STPA.

Loss scenario ID Loss scenario Description

LS 6

When the vehicle is operating in autonomous mode (AM) on a
highway, the Path planning Control unit (PPCU) receives inaccurate
incoming road curvature information. The PPCU generates a sharper
path to be taken by the vehicle.
Vehicle intent: generate a path using the selected route
Role of map: Provide point features (incoming road curvature)
for path generation
KPI of features: Heading accuracy and absolute accuracy of
curvature of lanes

LS 7

When the vehicle is operating in autonomous mode (AM) in dimly
lit conditions, the autonomous sensing unit (ASU) cannot view lane
markings with the required confidence levels. Due to low confidence
levels of observational data, the perception algorithm cannot
detect lane markings.
Vehicle intent: Detect and follow lanes on the road
Role of map: Provide lane borders, trajectories features for
lane detection
KPI of features: Positional (Absolute and relative) accuracy,
completeness

LS 8

When the vehicle is operating in autonomous mode (AM) during
heavy rain, it drives through an underpass where the roads are
covered/flooded with water. The flooding covers the lane
markings completely, which cannot be identified by the ASU.
Vehicle intent: Detect and follow lanes on the road
Role of map: Provide lane borders features for lane detection
KPI of features: Positional accuracy (absolute), completeness

LS 9

When the vehicle is in autonomous mode (AM), the perception
algorithm uses obscured camera data
(due to foggy, rainy, snowy conditions) for the detection of
lanes with respect to lane features in the map.
Vehicle intent: Detect and follow lanes on the road
Role of map: Provide lane features required for lane detection
KPI of features: Positional, thematic accuracy and completeness
of lane features

LS 10

When the vehicle is driving in autonomous mode (AM), the
camera encounters lane markings which are difficult to process
(yellow colored lane markings) thus forcing the routing subsystem
to use line features from the map data for route generation.
Vehicle intent: Detect and follow lanes on the road
Role of map: Provide lane features required for lane detection
KPI of features: Positional, thematic accuracy and completeness

LS 11

When the vehicle is operating in autonomous mode (AM) in
heavy rain/snowy/foggy conditions, the autonomous sensing
unit (ASU) has limited view of the environment.
This results in missing traffic signs on the road and relying
on traffic sign features in the map.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide traffic signs features
KPI of features: Coverage, completeness and thematic accuracy
of traffic signs
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Table B.3: List of high priority scenarios from STPA.

Loss scenario ID Loss scenario Description

LS 12

When the vehicle is in autonomous mode (AM), the traffic
signs have been installed temporarily on a road due to
ongoing road works. This does not appear in the point features
thus cannot be validated using map data.
Vehicle intent: Detect and follow traffic signs on the road
Role of map:
1. Provide point features for traffic signs in areas having
sufficient levels of quality
2. Provide areas that have lower levels of map quality
KPI of features: Completeness and coverage of traffic signs

LS 13

When the vehicle is operated in autonomous mode (AM),
the cameras are unable to capture the traffic signs due to
excessive glare (bright sunny day). The perception
algorithm must rely on traffic sign features provided in the map.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection
KPI of features: Coverage and Thematic accuracy of traffic signs

LS 14

When the vehicle is in autonomous mode (AM), the traffic
sign is located in a blind spot due to surrounding traffic.
The autonomous sensing unit (ASU) cannot detect the traffic
sign, thus requiring the traffic sign features from the map.
Vehicle intent: Detect and follow traffic signs on the road
Role of map: Provide point features for traffic sign detection
KPI of features: Completeness and thematic accuracy of traffic signs

LS 15.1

When the vehicle is operating in autonomous mode (AM),
the traffic light is out of range of detection for the autonomous
sensing unit (ASU). The vehicle stops at an angle w.r.t the traffic
light, which makes its hard to detect.
Vehicle intent: Detect and follow traffic lights on the road
Role of map: Provide traffic lights information
(Geometrical information of the bounding box)
KPI of features: Positional accuracy of traffic lights

LS 15.2

When the vehicle is operating in autonomous mode (AM),
the traffic light is out of range of detection for the autonomous
sensing unit (ASU). The vehicle stops in front of the
traffic light, which makes it hard to detect the traffic light.
The vehicle must move backward to get into position to
detect the traffic light appropriately.
Vehicle intent: Detect and follow traffic lights on the road
Role of map: Provide traffic lights information
(Geometrical information of the bounding box)
KPI of features: Positional accuracy of traffic lights
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Table B.3: List of high priority scenarios from STPA.

Loss scenario ID Loss scenario Description

LS 16

When the vehicle is operating in autonomous mode (AM),
the routing subsystem generates a route for the vehicle to
follow in an inner city environment. However, after this point,
the autonomous sensing unit (ASU) pinpoints the vehicle’s
current position inaccurately due to multiple buildings on
each side of the road.
Vehicle intent: Use map data for generating a route
Role of map: Provide required map data needed for generation
of a route
KPI of features: Positional accuracy of traffic signs

B.3.3 Root-cause analysis of high priority scenarios

In this section, a root-cause analysis of the scenarios has been conducted . Each scenario has
been split into two main categories: unforeseeable and foreseeable [50]. Furthermore, the type of
entities present in the scenario along with the event occurring in the scenario has been listed [50].
This has been performed for all the high priority scenarios mentioned in the previous subsection.

Table B.4: Root-cause analysis of high-priority scenarios.

Loss
scenario
ID

Unforesee
-able

Foresee-
able

Dynamic
Entities

Static
Entities

Events

LS 1 NA Preventable
Road
features

Vehicle,
traffic

Foggy conditions →
camera performance
hindered

LS 2 NA Preventable

Overhead
structures,
Road
features

Vehicle,
traffic

Failure to identify
overhead structures

LS 3 NA Unpreventable

Road
features,
Overhead
structures

Vehicle,
traffic

Foggy conditions →
camera performance
hindered

LS 4 NA Unpreventable

Road
features
(lane
markings)

Vehicle,
traffic

Missing lane markings
→ failure to identify
lanes

LS 5 NA Preventable

Speed
limit signs,
Road
features

Vehicle,
traffic

Inability to read speed
limit signs → Incorrect
speed limit received
from map

LS 6 NA Unpreventable

Road
features,
(curvature
signs)

Vehicle,
traffic

Incorrect road
curvature information
received from map

LS 7 NA Preventable

Road
features
(lane
markings)

Vehicle,
traffic

Poor lighting conditions
→ inability to observe
lane markings
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Table B.4: Root-cause analysis of high-priority scenarios.

Loss
scenario
ID

Unforesee
-able

Foresee-
able

Dynamic
Entities

Static
Entities

Events

LS 8 NA Unpreventable

Road
features
(lane
markings)

Vehicle,
traffic

Heavy rain inside an
underpass → Flooded
lane markings

LS 9 NA Unpreventable

Road
features
(lane
markings)

Vehicle,
traffic

Weather conditions →
Inability to observe
and detect lanes

LS 10 NA Unpreventable

Road
features
(Yellow
lane
markings)

Vehicle,
traffic

Yellow lane markings →
Failure of detection
algorithm

LS 11 NA Unpreventable
Road
features,
traffic signs

Vehicle,
traffic

Weather conditions →
Failure in observing
and detection of traffic
signs

LS 12 Yes NA

Road
features,
traffic signs,
construction
elements

Vehicle,
traffic,
construction
workers

Inability to detect
construction signs/
boards → Continued
movement of vehicle

LS 13 NA Unpreventable
Road
features,
traffic signs

Vehicle,
traffic,
pedestrians

Weather conditions →
Compromising of
performance of cameras

LS 14 NA Unpreventable

Road
features,
traffic
signs

Vehicle,
traffic

Larger vehicle occupies
neighboring lane →
Blocking of FOV of
vehicle’s camera

LS 15.1 NA Preventable

Road
features,
traffic
lights

Vehicle,
traffic
lights,
pedestrians

Vehicle is positioned at
an angle → Delay in
traffic light estimation

LS 15.2 NA Preventable

Road
features,
traffic
lights

Vehicle,
traffic
lights,
pedestrians

Vehicle stops at traffic
light below the traffic
light → Delay in traffic
light estimation

LS 16 NA Unpreventable

Buildings,
Road
features,
traffic signs

Vehicle,
traffic
lights,
pedestrians

Vehicle enters a region
with multiple buildings
→ GPS is compromised
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B.4 Scenario validation

B.4.1 Process for scenario validation

Figure B.6: Process for validation of scenarios.

B.4.2 List of scenarios identified by TomTom’s clients

Table B.5: List of scenarios identified by TomTom’s clients.

Scenario ID Scenario description
AP1 The vehicle receives an incorrect speed limit from the map data.
AP2 The vehicle receives inaccurate lane features such as lane width and lane curvature.

AP3
The vehicle receives a map with lane features containing lateral
inaccuracies or disjointed curves

AP4
The vehicle drives in autonomous mode during lightning or heavy rain conditions
resulting in the failure of the lane detection system. The vehicle uses map data
that contains lateral inaccuracies.

AP5
The vehicle receives inaccurate area features from the map concerning a toll
booth area, resulting in no take over being issued by the system.

AP6
A construction zone in bright stadium lighting/floodlights or at sunrise or in
snowy conditions cannot be detected by the vehicle

AP7.1
The vehicle drives into an underpass or an overhead structure with artistic
lighting (unconventional lighting patterns).
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Table B.5: List of scenarios identified by TomTom’s clients.

Scenario ID Scenario description

AP7.2
A. The vehicle approaches an underpass which is flooded due to incessant rainfall
B. The vehicle hydroplanes due to excessive waterlogged on the road

AP8
The vehicle drives on a road with missing lane markings on the road edge/ lane
markings are non-existent.

AP9
The vehicle approaches a service road which is present laterally next to the
highway lane.

AP10
There are multiple barriers placed one behind the other at the sides of the road.
The vehicle fails to detect the second barrier placed.

AP11
The vehicle approaches a toll booth area which at the exit, has missing lane
markings.

AP12
The vehicle drives into a single-lane tunnel but the map detects an incoming
toll booth

.

AP13 The vehicle approaches an area with stacked flyovers/highways.

B.4.3 List of scenarios identified using TomTom’s Measurement data

Table B.6: List of scenarios identified using TomTom’s measurement data.

Scenario ID Scenario description

MM1
The vehicle’s camera is obstructed from observing/detecting traffic signs
by vehicles in the neighboring lane

MM2
The vehicle cannot detect lanes on exiting a road below an overhead
structure due to sudden change in brightness

MM3 The vehicle is unable to detect lanes under conditions of heavy rain.

MM4
The vehicle encounters a false positive whilst detecting lanes resulting in
two sets of lanes detected on the same side

MM5
The vehicle encounters an area with missing or faded/dull lane markings,
which results in no lanes being detected by the Lane detection system.

MM6
The vehicle’s lane detection system produces irregular output whilst driving
on a straight road.

MM7
When the vehicle exits the highway, it encounters a splitting of lanes which
are detected as two sets of lanes.

MM8 The vehicle cannot detect traffic signs under sunny conditions

MM9
The vehicle’s location estimation deviates when it is at the below ground
level on exiting an underground tunnel/highest elevation of
overhead structure.

MM10
When the vehicle is driving in a tunnel, the lane detection system works
ineffectively due to insufficient lighting or yellow lighting.

MM11
When the vehicle is driving on an overhead structure, the lateral accuracy
of the vehicle’s location estimate decreases.

MM12
The vehicle cannot detect a traffic sign due to graffitti art on it.
(False negative)

MM13
The vehicle detects a false positive traffic sign whilst driving behind a
truck.

MM14
When the vehicle is driving in a tunnel, it cannot stream lane border
information correctly resulting in an incorrect overlay with the
detected lane markings

MM15
Lane border information streamed by the vehicle is at an offset to the lane
markings on the road
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Table B.6: List of scenarios identified using TomTom’s measurement data.

Scenario ID Scenario description

MM16
The vehicle streams lane border information incorrectly, resulting in lane
borders matching with lane centerlines on the road

MM17
The vehicle streams traffic sign information which contains false positives
(no traffic sign present at the defined location)

MM18
The vehicle streams traffic sign information with the bounding box placed
incorrectly over the traffic signs mounted on the road.

MM19
The vehicle streams traffic sign information with missing traffic
sign information in it.
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Python Code

C.1 Functions for Pure Pursuit control

C.1.1 Estimation of goal point using defined look-ahead distance

#func t i on f o r gene ra t ing the next waypoint v e h i c l e must f o l l ow
de f get next waypo int ( world , v eh i c l e , waypoints ) :

v e h i c l e l o c a t i o n = veh i c l e . g e t l o c a t i o n ( )
min d i s tance = 50 #i d e a l l y s e t i t to 200 f o r t e s t i n g t h r o t t l e = 0 . 5 , 300
next waypoint = None

f o r waypoint in waypoints :
waypo in t l o ca t i on = waypoint . trans form . l o c a t i o n

#Only check waypoints that are in the f r on t o f the v eh i c l e ( i f x i s
negat ive , then the waypoint i s to the r ea r )

#TODO: Check i f t h i s a pp l i e s f o r a l l maps
i f ( waypo in t l o ca t i on − v e h i c l e l o c a t i o n ) . x > 0 or ( waypo in t l o ca t i on −

v e h i c l e l o c a t i o n ) . y < 0 :
#Find the waypoint c l o s e s t to the veh i c l e , but once v eh i c l e i s c l o s e to

upcoming waypoint , s earch f o r next one
i f v e h i c l e l o c a t i o n . d i s t ance ( waypo in t l oca t i on ) < min di s tance and

v e h i c l e l o c a t i o n . d i s t ance ( waypo in t l o ca t i on ) > 0 . 0 5 : #de f au l t was 5
metres

min d i s tance = v e h i c l e l o c a t i o n . d i s t ance ( waypo in t l oca t i on )
next waypoint = waypoint

re turn next waypoint

C.1.2 Implementation of Pure pursuit controller

# con t r o l l e r . py
import g lob
import os
import sys

t ry :
sys . path . append ( glob . g lob ( ’ . . / c a r l a / d i s t / car la−∗%d.%d−%s . egg ’ % (

sys . v e r s i o n i n f o . major ,
sys . v e r s i o n i n f o . minor ,
’ win−amd64 ’ i f os . name == ’ nt ’ e l s e ’ l inux−x86 64 ’ ) ) [ 0 ] )

except IndexError :
pass

import c a r l a
import numpy . matl ib
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import numpy as np
import math

#−−−−de f i n e a c o n t r o l l e r f o r d r i v i ng the v eh i c l e on the de f ined path−−−#
def c on t r o l pu r e pu r s u i t ( v e h i c l e t r , waypoint tr , max steer , wheelbase ) :

# TODO: convert v e h i c l e trans form to r ea r ax l e trans form
wp l o c r e l = r e l a t i v e l o c a t i o n ( v e h i c l e t r , waypoint tr . l o c a t i o n ) + ca r l a .

Vector3D ( wheelbase , 0 , 0)
wp ar = [ wp l o c r e l . x , wp l o c r e l . y ]
d2 = wp ar [ 0 ]∗∗2 + wp ar [ 1 ]∗∗2
#s t e e r r a d = math . atan (2 ∗ wheelbase ∗ wp l o c r e l . y / d2 )
s t e e r r a d = math . atan2 (2 ∗ wheelbase ∗ wp l o c r e l . y , d2 )
s t e e r d e g = math . degree s ( s t e e r r a d )
s t e e r d e g = np . c l i p ( s t e e r deg , −max steer , max steer )
re turn s t e e r d e g / max steer

de f r e l a t i v e l o c a t i o n ( frame , l o c a t i o n ) :
o r i g i n = frame . l o c a t i o n
forward = frame . g e t f o rwa rd ve c t o r ( )
r i g h t = frame . g e t r i g h t v e c t o r ( )
up = frame . g e t up vec to r ( )
d i sp = l o c a t i o n − o r i g i n
x = np . dot ( [ d i sp . x , d i sp . y , d i sp . z ] , [ forward . x , forward . y , forward . z ] )
y = np . dot ( [ d i sp . x , d i sp . y , d i sp . z ] , [ r i g h t . x , r i g h t . y , r i g h t . z ] )
z = np . dot ( [ d i sp . x , d i sp . y , d i sp . z ] , [ up . x , up . y , up . z ] )
r e turn c a r l a . Vector3D (x , y , z )

C.2 Noise injection in waypoints

import g lob
import os
import sys

t ry :
sys . path . append ( glob . g lob ( ’ . . / c a r l a / d i s t / car la−∗%d.%d−%s . egg ’ % (

sys . v e r s i o n i n f o . major ,
sys . v e r s i o n i n f o . minor ,
’ win−amd64 ’ i f os . name == ’ nt ’ e l s e ’ l inux−x86 64 ’ ) ) [ 0 ] )

except IndexError :
pass

import c a r l a
import numpy . matl ib
import numpy as np
import math

de f no i s e add ( no i s e x , no i s e y , no i s e z , waypt ) :
r o t a t i on = ca r l a . Rotation (0 , 0 , 0 )
l o c a t i o n = ca r l a . Vector3D (0 , 0 , 0 )
wp = ca r l a . Transform ( l o ca t i on , r o t a t i on )

wp . l o c a t i o n . x = waypt . trans form . l o c a t i o n . x + no i s e x
wp . l o c a t i o n . y = waypt . trans form . l o c a t i o n . y + no i s e y
wp . l o c a t i o n . z = waypt . trans form . l o c a t i o n . z + no i s e z
re turn wp
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