
 Eindhoven University of Technology

MASTER

Intergrating power grid topology in graph neural networks for power flow

Mukhlish Ghany Al Fatah, Mukhlish

Award date:
2021

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/27638d21-d3b3-4495-9acf-9cfd4c0528ef


 

 

 

Thesis Report  

 

 

 

 

Integrating Power Grid Topology in Graph Neural 

Networks for Power Flow 
 

 

 

 

Master’s program: Sustainable Energy Technology 

Department: Mechanical Engineering 

Section:  Electrical Engineering System 

 

Student:   M.G.A. Fatah 

Identity number: 1297546 

Thesis supervisor:  Bert J. Claessens 

Date:   23 August 2021 

 

 

 

 





Integrating Power Grid Topology in Graph Neural Networks for Power Flow

M.G.A. Fatah*
Sustainable Energy Technology

Technische Universiteit Eindhoven

Bert J. Claessens†

Electrical Engineering
Technische Universiteit Eindhoven

Maarten Schoukens‡

Electrical Engineering
Technische Universiteit Eindhoven

ABSTRACT

Recent advances in Neural Network offer an interesting opportunity
to integrate graph topology in a Neural Network system. This
framework is called Graph Neural Network (GNN). In power
systems, an electrical power grid can be represented as a graph with
high dimensional features and interdependency among buses. This
perspective may offer a better state of the art machine learning
for power systems analysis. This study seeks the opportunity to
integrate power grid topology in the GNN framework for power
flow application. A comparison between several GNN architectures
with equivalent model complexities are discussed. The comparison
is also done for various dataset sizes. The performance of GNN
compared to fully connected Neural Network over different sizes of
dataset is concluded.

Index Terms–Neural Network, Graph, Graph Neural Net-
work, Power Flow

1 INTRODUCTION

Our energy system is exposed to a range of trends that present both
risks and opportunities in terms of managing our power system. On
one hand, there is an increase in consumption due to electrification of
heating and transportation. On the other hand, there is a rise of data
and flexibility due to devices becoming connected and controllable.
Harvesting this flexibility to benefit our society needs to happen in a
grid secure way. It requires having visibility on the grid status and
connectivity which can be done by utilizing the data from residential
assets such as power and voltage [10].

Power flow or load flow is a calculation of buses’ variables in an
electrical power grid to identify the state of the grid at a particular
load case [7]. One objective of power flow is to find out how much
power needs to be produced by the generators within the power grid
to satisfy a given demand. Although this problem is the core of
electrical grid operation, the non-linear nature of electrical signals
makes it difficult to solve [5].

Power flow calculation implements an iterative method. Calcu-
lating the power flow fully in AC signals is known as AC Power
Flow (ACPF). Since AC values involve non-linear (sinusoidal) data,
it relatively takes a longer time for the iterative method to finish the
calculation, while electrical providers need to finish the calculation
quickly for field related problems. A faster method to solve power
flow calculation is using DC power flow (DCPF). DCPF uses small
angle approximations that simplify ACPF non-linear complexity [9].
As a simplifying method, DCPF is not as accurate as ACPF but runs
faster. However, the small angle approach fails for heavily-loaded
networks, as the voltage angle differences become large [8]. Electri-
cal providers are able to use DCPF as a warm start up for ACPF [11].
A more advanced power flow is AC Optimal Power Flow (ACOPF)
which finds the optimal power that the generators have to produce to

*e-mail: m.mukhlish.ghany.al.fatah@student.tue.nl
†e-mail: b.claessens@tue.nl
‡e-mail: m.schoukens@tue.nl

satisfy the demand [7]. The optimality is evaluated with regard to
the cost that each generator incurs to generate the required power.

Involving sinusoidal AC signal dynamics results in a non-convex
problem in the ACOPF [19] [23]. There have been attempts to
utilize various methods to solve the problem. Recently, driven by
the potential of accurately producing large amounts of data, machine
learning has been considered as a new solution to solve this problem.
For instance, a Neural Network model can be employed to predict the
unknown variables of power flow by harnessing the known variables
to emulate power flow calculation. The work in [13] uses a Fully
Connected Neural Network (FCNN) to imitate the output of ACPF.
However, because it makes use of information from nodes that are
not adjacent in the network, the solution is not local. Moreover,
FCNNs tend to overfit.

Latest developments in Neural Network offer a way to integrate
graph topology in a Neural Network architecture [21] [32]. A new
solution to solve ACPF is using Graph Neural Network (GNN).
GNN exploits the structure of the graph data that is necessary for
a local and scalable solution. The work in [25] implements GNN
to solve the ACOPF problem. The author compares the result of
several NN-based models on ACOPF and concludes that the result
of the GNN model outperforms the FCNN model. However, the
experiment setup in [25] does not explicitly state that the compared
models adhere to equivalent complexities. Moreover, the comparison
is done for a fixed size of dataset.

In this work, the use of GNN for power flow is investigated by
comparing several model architectures with equivalent complexities
i.e. same number of model parameters. This setup is arranged to
see the performance of GNN compared to FCNN at an equal level.
Moreover, the comparisons are done repeatedly for several different
dataset sizes. This is done to check whether there are changes of the
model performance with respect to the dataset size.

This report is organized as follows. Section 2 explains about graph
data structure. Section 3 describes a short concept of Neural Network
and its several classes namely Fully Connected Neural Network,
Convolutional Neural Network, and Graph Neural Network. This
section also elaborates the latter framework. Section 4 presents the
concept of power flow in an electrical grid. Section 5 explains how
the experiment is conducted. Section 6 discusses the result and
analysis. Section 7 summarizes the conclusions. Section 8 gives
recommendations for further works.

2 GRAPH

Graph is a structure consisting of objects and their connectivity.
A graph G can be written as G = (V, E), where V is a set of
nodes/vertices and E is a set of edges (nodes’ connectivity). In
the graph, vi is the ith node and eij is the edge from the ith node to
the jth node. A nodal feature matrix is denoted by X of n×f size. An
adjacency matrix A is a matrix of n×n size where aij is 1 if eij ∈ E
and aij is 0 if eij /∈ E. A degree matrix D shows the number of neigh-
bors had by each node which is assigned diagonally. Take a look at
figure 1 showing a simple graph with 3 nodes and 2 edges, with each
node having 3 nodal features. The nodal feature matrix X, adjacency
matrix A, and degree matrix D are shown in the equations.

Graph is basically how the world represents itself. Many naturally
generated data are in the form of graphs. Proteins, social networks,
and electrical power grids are all graph-shaped as shown in figure 2.



Figure 1: A Graph with 3 nodes and 2 edges

X =

Feature – 1a Feature – 1b Feature – 1c
Feature – 2a Feature – 2b Feature – 2c
Feature – 3a Feature – 3b Feature – 3c

 (1)

A =

0 1 1
1 0 0
1 0 0

 (2)

D =

2 0 0
0 1 0
0 0 1

 (3)

Euclidean data is data residing in Euclidean space. In mathe-
matics, the Euclidean distance of two points is the length of a line
segment between those points. It can be calculated by operating
the Pythagorean formula to the two points in a Cartesian coordinate.
Text (1D flat shape) and images (2D grid shape) are instances of
Euclidean data.

On the other hand, non-Euclidean data are other data types that
do not adhere to the axioms and postulates of Euclidean geometry.
In non-Euclidean data, it can be illustrated that the shortest path
between two points is not necessarily a straight line. In other words,
things that are similar to each other are not necessarily close if using
Euclidean distance as the metric. Graph data is a non-Euclidean
data [6] since the distance between nodes cannot be physically
measured by simply using Pythagorean theorem.

Figure 2: Proteins [30], social networks [1], and electrical power
grids [15] are all graphs

Many traditional machine learning frameworks are well proven
on Euclidean data. However, the majority of problems being faced
by humans are mostly in non-Euclidean space. In fact, many natu-
rally generated data are in graph shape and the problem space is not

Euclidean. Therefore, it is of utmost importance to find a general-
ization of the classical machine learning framework from Euclidean
domain to non-Euclidean domain, especially in graphs.

3 NEURAL NETWORK

3.1 Supervised Machine Learning

Based on the available data, machine learning can be generally
boiled down into two types, namely unsupervised machine learning
and supervised machine learning. Unsupervised machine learning is
a branch of machine learning that only utilizes a set of known inputs
data [3]. One of the most well known applications of unsupervised
machine learning is data clustering.

Different from the previous type, supervised machine learning
makes a predictive model out of a set of known inputs and outputs
data [27]. Based on the output type, supervised machine learning can
be divided into regression tasks and classification tasks. Regressions
are when the outputs are numbers, while classifications are for class-
type outputs. For example, a regression task tries to predict the
price of houses in the future based on previous trend on calendar
time, while a classification task attempts to classify which number a
handwritten number image refers to.

3.2 Fully Connected Neural Network

Neural network (NN) is a supervised machine learning framework.
Inspired by biological neural networks that shape human brains, NN
is a framework that builds an intelligence system learning to perform
tasks by observing examples.

NN is constituted by neurons composed in a series of layers
connected to one another. One layer is called the input layer which
is assigned to store the input data. Another layer is the output layer
residing on the opposite end of the network awaiting the result of the
process. In between the input and output are the hidden layers which
determine how to process the information flowing to the output. The
connections between the units are called weights.

A Fully Connected Neural Network (FCNN) is the simplest form
of NN [22]. FCNNs are formed by a set of fully connected layers
that link each unit in the previous layer to every unit in the next layer.
This architecture is depicted in figure 3.

Figure 3: A simple FCNN architecture with one input layer, one
hidden layer, and one output layer

The following is a brief process of FCNN training. Each unit
obtains inputs from the units to its left, and afterward the values
are multiplied by the weights of the connections they follow. These
weights are also known as trainable parameters, since these values
are the ones that will be tuned in the process. The units are then
applied to non-linear functions (e.g. sigmoid or tanh) to extract the
hidden features.



The parameter values are firstly guessed to make an initial output.
This current output will be compared with the already known output
(ground truth). The difference (error/loss) between the predicted
output and the ground truth is calculated to check whether the pa-
rameters have satisfied the prediction model. If it is yet accurate,
the parameters are modified with respect to the derivative of the
error to the parameters. This tuning process is repeated for a number
of iterations until the model performs well enough. This optimiza-
tion process can be performed using well-known algorithms such as
stochastic gradient descent [26] or ADAM optimizer [17].

Based on the objective, FCNN can either be implemented for
classification or regression tasks. Different cases need modification
in the model framework. A classification task can use logistic re-
gression error as the loss function, and a regression task may utilize
Mean Square Error [24].

FCNN framework is commonly used for flat-shaped data. Differ-
ent data types such as grid-shaped data in digital image need to be
flattened first if it is to be applied in this framework. The major ad-
vantage of FCNN is that they are structure agnostic i.e. there are no
special assumptions that have to be made for the input. While being
structure agnostic makes FCNN widely applicable, such network
tends to have worse performance than a special-purpose network
designed for a specific structure.

3.3 Convolutional Neural Network
Convolutional Neural Network (CNN) is a more advanced NN frame-
work for a more diverse data type [2]. Convolution is a mathematical
function to extract locality features of a data. It can be implemented
to multiform data dimensions (flat/one dimensional data, two di-
mensional data, or higher). A popular convolution application is
in digital image processing. A digital Image is a two-dimensional
grid-shaped data with fixed size of row and column as well as fixed
node ordering. A two-dimensional convolution filter can be applied
for instance to detect border features in an image. Figure 4 shows a
CNN architecture.

Figure 4: A simple Convolutional Neural Network

A simple CNN architecture in general consists of a sequence
of three main layers: convolutional layer, pooling layer (optional),
and fully-connected layer [2]. To put it simply, a CNN applies
convolutional filters first to a grid-type data to extract the locality
features, flatten the convolution output, and afterwards passes it on
as an input to a FCNN.

3.4 Graph Neural Network
Modern deep learning techniques are mostly designed for simple
sequences (FCNN) and grids (CNN). CNNs can only be run on
Euclidean data such as text (1D flat shape) and images (2D grid
shape). On the other hand, these data can also be viewed as instances
of graphs. For example, every point in a grid data can be regarded
as a node in graph data, whereas the surrounding points can be
considered as its neighboring nodes. However, it is difficult to
define a localized convolutional filter for graphs, which obstructs the
transformation of CNN from Euclidean domain to non-Euclidean

domain. A way to enable operating convolutional filters to graphs
needs to be defined.

Recent advances in Neural Network offer an opportunity to lever-
age the topology of a graph data. This framework is known as Graph
Neural Network (GNN). Protein link prediction in biomedicine and
network classification in social networks are two popular GNN ap-
plications.

Figure 5: A graph data with 9 nodes
GNN tries to imitate CNN’s locality feature extraction to graph

data. Take a look at figure 5 showing a graph data with 9 nodes
with its edges as connectivity. Applying a straightforward CNN
framework to this data will fail since the graph has no fixed node
ordering or reference point. Moreover, the graph has arbitrary size
with complex topological structure with no spatial locality like grids.
GNN solves this problem by using a different mechanism.

3.4.1 Message Passing
The core of GNN is its message passing. Message passing is a
mechanism where a target node collects information from its neigh-
bors [20]. This technique ensures that every node senses information
from its surroundings. This way, the locality features in every sub
location of a graph can be extracted and absorbed by each node.
Figure 6 illustrates a message passing happens at node 4, where it
obtains information from node 1, 5, 6, and node 4 itself from the
previous state/layer L.

X4,L+1 = σ((X1,L + X4,L + X5,L + X6,L)WL) (4)

Figure 6: One node’s message passing
This message passing at node 4 happens at every node in a graph

data for one GNN layer. The formula shown above is the simplest
form of message passing with summation operation i.e. only sum-
ming the neighboring data. The message passing calculation later on
is multiplied by a trainable parameter matrix W that will be trained
in the training process.

Message passing mechanism is a way from GNN to mimic CNN’s
convolutional filter for graph-shaped data. With a similar objective
(locality feature extraction), it can be seen as an equivalent convolu-
tional filter for non-Euclidean graph data.

3.4.2 The Simplest GNN: Summation Message Passing
One way to mathematically implement a GNN message passing is
using an adjacency matrix. An adjacency matrix is a matrix that
represents the topology of a graph data. For example, the matrix at
the left side of figure 7 is the adjacency matrix (added by an identity



matrix with the same size for diagonal location) for graph in figure
6. The ith row of this matrix represents the neighbors position of
the ith node. For instance, the 4th row in the left red box shows the
neighbors of node 4, which are node 1, 4, 5, and 6. By doing a
matrix multiplication on the adjacency matrix A + I to data matrix X,
a simple summation message passing can be made.

Afterwards, the result is multiplied by a trainable parameter ma-
trix W. The row size of W is the same with the column size of matrix
X, and the column size of matrix W can be chosen to determine
how many features will be generated in the next GNN layer. Finally,
the parameterized value is transformed by a non-linearity activation
function. In short, that is how one GNN layer is formed.

XL+1 = σ((A + I)XLWL) (5)

Figure 7: One layer of the simplest GNN formula in matrix notation

3.4.3 Graph Convolutional Network
Graph Convolutional Network (GCN) defines the convolutional
operation on the graph domains by operating on spatially close
neighbors [18]. The only difference of GCN with a simple sum-
mation GNN is that GCN uses an averaging message passing [20].
It can be formed by pre-processing the adjacency matrix with the
inverse of the degree matrix. A degree matrix D denotes the num-
ber of neighbors of each node. If the inverse of the degree matrix
D–1 is multiplied to the adjacency matrix A + I, the result forms an
averaging message passing as shown in figure 8.

XL+1 = σ(D–1(A + I)XLWL) (6)

Figure 8: One layer of GCN formula in matrix notation

3.4.4 Multi Layers GNN and Hidden Features Extraction
As mentioned before, hidden features extraction can be done by
adjusting the size of the parameter matrix W. The number of rows
in W is the same with the column size of matrix X i.e. the number
of data features, and the column size of matrix W can be set to
determine how many features are generated in the next GNN layer.

Figure 9 illustrates two GNN layers (or two hops away GNN) on
graph data. Initially, each node has 2 features. After applying the
first GNN layer, the data is transformed to have 8 hidden features.
The second GNN layer then transforms it back to 2 hidden features.
At the last state, all nodes now have two node away message passing,
or two hops away information acquiring.

Figure 9: Features extraction in multi layers GNN

3.4.5 GNN as Another Layer in a Deep Neural Network
Similar to CNN, a GNN layer can also be used as a preprocessing
layer in a Deep Neural Network architecture. Output of the GNN
layer from a graph data can be flattened and passed on to a FCNN
layer. In this structure, the GNN layer can be seen as just another
layer in the Deep Neural Network as shown in figure 10.

Figure 10: GNN as just another layer in a Deep Neural Network

4 POWER FLOW

Figure 11: Electrical power grid

Figure 11 illustrates an example of an electrical power grid. Every
bus in a power grid can be of type slack bus, PV bus, or PQ bus.
At each bus, 4 variables are calculated: active power (P), reactive
power (Q), voltage (V), and voltage angle (δ). This calculation is



known as power flow or load flow. These variables calculation is
important in power system analysis. For instance, a generator needs
to know this data to determine how much power it needs to generate
to satisfy the demand in the grid [9] [28].

Slack bus is also known as the reference bus. It is used to bal-
ance the active power and reactive power in a grid by emitting or
absorbing them. There is only one slack bus in a grid. Power flow
calculates V and δ of slack bus.

PV bus is also known as generator bus. The P and V are specified
for this type of buses. PV buses have constant power generation
and voltage that are controlled through a prime mover. Power flow
calculates Q and δ of PV bus.

PQ bus is also known as load bus. In PQ buses, the P and Q are
specified. Power flow will be used to find the V and δ.

Table 1: Buses type in a power grid

Bus type Known variables Unknown variables
Slack bus V, δ P, Q
PV bus P, V Q, δ
PQ bus P, Q V, δ

Power flow calculation tries to find the unknown variables in a
bus based on its known variables using electrical formulas. The cal-
culation applies an iterative technique such as the Newton-Raphson
method [12]. A more advanced power flow calculation is Optimal
Power Flow (OPF) which attempts to find the optimal power that the
generators have to produce to satisfy a given demand [7]. The opti-
mality is evaluated with regard to the cost that each generator incurs
to generate the required power. Several constraints such as power
grid technical limit and cost function are subject in OPF calculation.
The case that is investigated in this work is the regular power flow,
not the optimal one.

Calculating the power flow using electrical data fully in AC form
is known as AC Power Flow (ACPF). Since AC values involve
non-linear (sinusoidal) data, it relatively takes a longer time for the
iterative method to finish the calculation, while electrical providers
in the field need to finish the calculation quickly (around every 5
minutes [28]) for field related problems.

A faster method to solve power flow calculation is using DC
power flow (DCPF). DCPF uses several assumptions that simplify
AC power flow’s non-linear complexity [9]: it assumes that the lines
voltages are flat 1 p.u. at all buses and voltage angle differences
between neighboring buses are small so that cos(δ1 - δ2) = 1 and
sin(δ1 - δ2) = δ1 - δ2. As a simplifying method, DCPF is not as
accurate as ACPF but runs faster. However, the small angle approach
fails for heavily-loaded networks, as the voltage angle differences
become large [8]. Electrical providers are able to use DCPF as a
warm start up method to start the iterative ACPF for a complementary
solution [11].

A hypothetically faster method is using a machine learning model
for power flow data prediction. NN based models can be utilized
to predict the unknown variables of power flow by harnessing the
known variables to make a predictive model. Even better, GNN
models can improve the model performance by also making use of
the power grid topology information.

5 EXPERIMENT: GNN FOR POWER FLOW

5.1 Introduction

In this study, the opportunity to implement GNN on a graph-shaped
electrical power grid is the main thing to seek, specifically in power
flow application. This study investigates how GNN models can make
a more powerful prediction by not only utilizing the unknown vari-
ables of power flow, but also leveraging the power grid connectivity
information. Based on this case, the task would be a regression.

There are several assumptions to consider in this study. Firstly,
the experiment only focuses on PQ buses in the grid to simplify
the case. Mixing PQ buses alongside slack and PV buses would
complicate the pattern recognition process in the training phase. This
study primarily wants to find the pattern of the model performance
albeit it is not in the most ideal case. The investigated power grid
consists of 14 buses as shown in figure 12.

Figure 12: The investigated 14 bus power grid
Secondly, the type of GNN framework used in this study is GCN.

GCN is considered as the basis of GNN and has been well proven on
various GNN applications. The GNN model in this study will only
utilize the features of the buses/nodes in the graph data i.e. the P and
the Q variables. Features of the lines/edges such as electrical current
will be disregarded to simplify the case. In the dataset generation,
the type and length of the lines between the buses in the simulated
power grid are designed to be exactly the same.

Thirdly, this study tries to compare the result of FCNN versus
GNN model on graph data. Furthermore, the performance of one
hops away and two hops away GNN model will be compared. The
elaboration will be discussed in the next section.

Lastly, this study also compares several cases where there are
loops in the graph data. The cases are represented in figure 13. The
grid shapes were made so that there are small, medium, and large
sized loops in the graph data. This setup will test how the GNN
model would react to such looped graph cases.

Figure 13: The 14 bus power grid with various sized loops

5.2 Model Architecture
There are 3 model architectures that will be compared in this study.
Model 1 is a two layers FCNN, model 2 is a combination of one layer
GNN and FCNN, and model 3 is a two hops away GNN combined
with one layer FCNN. The model architectures can be seen in figure
14. These architectures has a certain number of layers and nodes
that were selected based on several reasonings.

First of all, the three models were made so that the total number
of trainable parameters are roughly the same. The aim of this com-
parison is to evaluate which model has the best performance. To do
so, the models have to be designed with the same level of complexity.
The number of layers and the total number of parameters are made
as close as possible so all models can be compared equivalently. The
calculation of the model parameter is shown in table 2.



Figure 14: The three models to be compared in the experiment

Table 2: The three models’ parameters calculation

Model 1 Model 2 Model 3
param row col total param row col total param row col total

w1 30 28 840 w1 2 4 8 w1 2 8 16
b1 30 1 30 b1 4 1 4 b1 8 1 8
w2 30 30 900 w2 30 56 1680 w2 8 4 32
b2 30 1 30 b2 30 1 30 b2 4 1 4
w3 28 30 840 w3 28 30 840 w3 30 56 1680
b3 28 1 28 b3 28 1 28 b3 30 1 30
Total parameter 2668 Total parameter 2590 w4 28 30 840

b4 28 1 28
Total parameter 2638

For the number of hidden layers and nodes, these numbers were
selected based on a simple-picky grid search for hyperparameter
tuning. The reason was because the cost of a complete grid search
method on the GNN framework was too expensive in time consumed.
Although perhaps they were not the best, the selected model frame-
works were enough to generate a visible pattern in the result to draw
a conclusion.

The complete hyperparameter list can be seen in figure 14. Every
hidden node in the models uses tanh activation function, except the
nodes in the last layer. The models employ the ADAM optimizer. In
the training phase, all data is normalized using mean and standard
deviation normalization to ease the gradient descent process [16].

5.3 Dataset Generation

The power flow dataset is generated using Power Factory 2020 power
system simulation [4]. For this dataset generation, the program
iteratively runs power flow calculation. For each iteration, the value
of loads at PQ buses are varied unique-randomly by up to 50% to
make a unique and random data characteristic. Main variables (P, Q,
V, and δ) at each bus are collected and saved to a spreadsheet file.

The data structure for 1 dataset can be seen in table 3. One
dataset consists of 2000 data points. Each datapoint contains data of

1 power flow calculation from the simulation. Therefore, there are
2000 unique power flow data calculations in 1 dataset. The program
was simulated to generate 102 datasets: 1 dataset for train dataset,
1 dataset for validation dataset, and 100 datasets for test dataset. If
this dataset is intended to be implemented on a FCNN model, it has
to be flattened first.

Table 3: One power flow dataset

Data point Node Input Output

Data point 1

1 P1 Q1 V1 δ1
2 P2 Q2 V2 δ2
3 P3 Q3 V3 δ3
... ... ... ... ...
14 P14 Q14 V14 δ14

... ...

Data point 2000

1 P1 Q1 V1 δ1
2 P2 Q2 V2 δ2
3 P3 Q3 V3 δ3
... ... ... ... ...
14 P14 Q14 V14 δ14



5.4 Experiment Steps

Figure 15: The experiment steps
The steps of the experiment are as follows. First, train the model

on train and validation dataset. Record the train and validation error
for every iteration. The training process is stopped based upon the
stopping criterion i.e. maximum number of epoch/train iteration and
patience. Save the best model parameter i.e. parameter yielding the
lowest validation error. Apply the saved best model parameter to
100 test datasets. Plot the histogram of the 100 test errors.

There are 2 types of error calculation used in this experiment,
namely Mean Square Error (MSE) and Normalized Root Mean
Squared Error (NRMSE). MSE is a loss function normally used for
regression tasks. MSE calculates real error between the predicted
output and the ground truth. MSE punishes a higher error more
severely because the loss will be squared, making the system detect
the loss better [24]. NRMSE is RMSE that is divided by the variance
of the model prediction. NRMSE is used to ensure that the predicted
values are indeed bonafide and not just merely data averaging.

Next, calculate either mean or median of the test error histogram.
Median is more commonly preferred over the mean when the fre-
quency distribution of the data is not balanced [31]. If the data is
in normal distribution, the mean, median, and mode are identical.
However, if the data is skewed, the mean will fail to provide the best
central location for the data, since the skewed data drags the mean
away from the typical value. The median is more likely to retain
this position as it is not as strongly influenced by the skewed trend.
The median of the test error histogram can be taken as a reliable
indicator for the model performance since it has been tested over
large test datasets.

Lastly, repeat all the steps over again for several different train
dataset sizes: 1% (20 data points), 25% (500 data points), 50%
(1000 data points), and 100% (2000 data points, default size). The
complete steps are illustrated in figure 15.

6 RESULT AND ANALYSIS

6.1 14 Bus Power Grid
The result of the experiment for the 14 bus power grid can be seen
in the following section. Figure 16, 17, and 18 show the training
process of model 1, 2, and 3 for the case of 25% train dataset size.
The train loss and validation loss for every training iteration are
recorded in the blue and orange lines. The best model saved on each
training case is the one yielding the lowest validation loss. Take
a look that the lowest validation loss is not always located at the
highest training iteration or the lowest train loss.

Figure 16: The model 1 training process for 25% train dataset size

Figure 17: The model 2 training process for 25% train dataset size

Figure 18: The model 3 training process for 25% train dataset size

After the best models are acquired, they are tested over 100 test
datasets. The histogram of those 100 test errors are plotted to see
the distribution of the error values. However, the Probability Den-
sity Function (PDF) is used to simplify the visualization instead of
histogram, while they still have the same objectives. PDF illustrates
the probability of the value in x axis presented in the graph, with the
total area inside the PDF is one.

The distribution of MSE and NRMSE for the 100 test errors are



Figure 19: The histograms of the three models on 1%, 25%, 50%,
and 100% train dataset. Different rows have different x axis scales.

plotted in figure 19. It can be seen that both error types are identical
in pattern. Moreover, the NRMSE plots are all below the value of
one in x axis, meaning that the model prediction is indeed credible.
Notice that different rows in figure 19 have a different scale of x
axis. A higher train dataset size makes the gap between GNN and
FCNN histogram smaller, and the body of the histogram gradually
moves to the left side. It indicates that increasing the number of train
dataset generates a lower test error and a more accurate model.

Afterwards, the median of every histogram is plotted in one graph
so that the test error trend line can be seen and directly compared in
one axis, as illustrated in figure 20 and 21. Notice that the y axis is
served in logarithmic scale, while the x axis in a linear scale.

Figure 20: The medians of MSE histograms of 14 bus grid

The result shows that for a same model complexity i.e. same num-
ber of trainable parameters, GNN-based models outperform FCNN

Figure 21: The medians of NRMSE histograms of 14 bus grid

especially in lesser train dataset. This can be said in other words
that a GNN model needs less parameters to match the performance
of a FCNN model. This trait exists because a GNN layer utilizes
parameter sharing.

Take a look at figure 22. A FCNN layer uses more parameters
because 1 parameter only connects 1 node in a layer to another node
in the next layer. For 18 flat input and 36 flat output, a FCNN layer
requires 18x36 = 648 parameters.

This is not the case in a GNN layer. In GNN, a single column
parameter in matrix W is jointly used by all nodes (rows) in graph
data matrix X, as shown in figure 23. For an input with size of 18
data (9 node x 2 features in graph representation) and output of 36
data (flat), a GNN layer only needs 2x4 = 8 parameters.

This parameter sharing can be established because aside from
utilizing the data, a GNN model also leverages the data topology
information in the form of adjacency matrix. This data connectivity
knowledge makes the GNN model to be kind of ’aware’ of the model
and data structure, unlike the FCNN model that is structure-agnostic.
Therefore, when a new unknown data comes to a GNN model,
the model is already conscious of the data inter-dependency and
trains the model from a more advanced starting point than FCNN.
This trait makes GNN become better in generalizing the inter-nodes
relationship in graph data and thus reducing overfitting problems. It
also makes the GNN training process not needing many iterations
compared to FCNN.

Figure 22: A FCNN layer needs many parameters

One situation where this property makes GNN more superior than



Figure 23: A GNN layer needs less parameters

a traditional FCNN is in a case when the data is slightly available, for
instance when the cost of acquiring new data is expensive. Having
the same small available data, GNN is able to make the prediction
model more accurate by utilizing the connectivity information of the
data. This case is illustrated in figure 20 for small-sized train dataset,
where GNN-based models generate considerably lower test errors
than FCNN models.

As for the comparison between one hop away and two hops away
GNN, there is hardly any visible pattern on the result in figure 20
and 21. Although the median of the test errors of the model 3 (grey
line) at figure 20 seems to be a little bit lower than that of model 2
(orange line) in smaller train dataset size, perhaps it is too early to
make any conclusion from this result alone.

Theoretically, applying more GNN layers will extract a deeper
hidden features that leads to a more powerful model. However,
utilizing a too deep GNN architecture or too many GNN layers
hypothetically would not be beneficial and instead will harm the
uniqueness of the specific-local feature of a graph data [20]. An
additional experiment is performed to determine the results of ap-
plying such case. The yellow line at figure 24 indicates the result of
four hops away GNN.

Figure 24: The medians of MSE histograms of 14 bus grid with four
hops away GNN depth

Using GNN message passing repeatedly over a graph data will
make the features of the nodes become more and more identical
with the far neighbors. This setup leads to an overgeneralized model.
There have to be a certain number of maximum GNN layers that
can be optimally applied to a graph data. This number will depend
heavily on the size and the depth of the graph.

6.2 14 Bus Power Grid with Loop
6.2.1 The Problem with GNN on Looped Graphs
The experiment for the 14 bus power grid with loop entangles similar
steps with the previous section. First of all, the investigated looped-
power grids were made so that the loops represent various sizes.
The grid with connection at bus 3-4, at bus 5-6, and at bus 8-9
respectively has small, medium, and big sized loops. It was logical
to expect that there will be a pattern drawn in the test error histogram.
The result is shown in figure 25, 26, and 27.

Figure 25: The medians of MSE histograms of grid with loop at 3-4

Figure 26: The medians of MSE histograms of grid with loop at 5-6

Figure 27: The medians of MSE histograms of grid with loop at 8-9
Looking at this result, it can be seen that there is a problem with

the 2 hops away GNN model on the power grid with connection at
bus 5-6 (medium sized loop). The gradient descent seems to be not
working well. The model error is not improved starting at a certain
point even though the train dataset is increased. The cause can be
several things. One of them is that the model was stuck at a local
minima in the gradient descent process during the training. There
are several ways to check this issue.

6.2.2 Making the Second GNN Layer Transparent
One way to check whether the model 3 (GNN-GNN-FCNN) is
stuck at a local minima is by making the second GNN layer to be
transparent. A transparent layer makes sure that the data is not
modified by that layer, only bypassed from the previous layer to
the next layer. With this setup, the model 3 architecture becomes



GNN-transparent GNN layer-FCNN. Theoretically, this architecture
delivers the exact same result with model 2 (GNN-FCNN). When
this condition happens, the second GNN layer can be trained alone
(by freezing the other layers’ parameters) from that point and see
whether the model improves and escapes the local minima. However,
there is a problem when trying to make a transparent GNN layer.

Take a look at how a FCNN layer is made transparent. The
formula of forward propagation in one FCNN layer is shown below.

XL+1 = σ(XLWL) (7)

To make a transparent layer, the trainable parameter matrix WL
has to be made so that the data matrix at the next layer XL+1 is
the same with the data matrix at the current layer XL. The σ is
an element-wise non-linear matrix operator that is applied to every
element in the matrix, so it can be disregarded in the equation.

XLWL = XL (8)

X–1
L XLWL = X–1

L XL (9)
WL = I (10)

It can be concluded that making a transparent layer in FCNN
can be done by simply assigning the trainable parameter matrix W
with an identity matrix I. The case is different for a GNN layer. The
formula of one GNN forward propagation is shown in the following.

XL+1 = σ(D–1(A + I)XLWL) (11)

Same with before, find the value of matrix WL that makes XL+1
equal to XL to make a transparent GNN layer.

D–1(A + I)XLWL = XL (12)

DD–1(A + I)XLWL = DXL (13)

(A + I)–1(A + I)XLWL = (A + I)–1DXL (14)

X–1
L XLWL = X–1

L (A + I)–1DXL (15)

WL = X–1
L (A + I)–1DXL (16)

There are several problems with the WL formula above. First, the
equation involves the data matrix X that makes the formula become
data dependent. Second, finding the inverse matrix of X is difficult
if the matrix X is not square-sized (and in most cases it is not), since
a non-square matrix does not have an inverse. Therefore, making a
transparent layer out of GNN is not possible.

6.2.3 Applying ResNet to the Second GNN Layer
Another method to get the objective is by applying Residual Network
(ResNet) framework on the two hops away GNN model. ResNet
is developed to solve the problem of vanishing gradients in a deep
learning framework [14]. The architecture of the GNN-GNN-FCNN
model with ResNet at the second GNN layer is indicated in figure
28. The resulting test error histograms from this model architecture
are depicted in figure 29, 30, and 31.

Figure 28: The model 3 architecture with a residual network
The two hops away GNN model is indeed improved when the

models employ the ResNet layer. The model 3 error eventually gets
lower than the error of model 2. However, there is still barely any

Figure 29: 14 bus grid with loop at 3-4 with ResNet

Figure 30: 14 bus grid with loop at 5-6 with ResNet

Figure 31: 14 bus grid with loop at 8-9 with ResNet

pattern visible in the test error histograms with respect to the loop
size of the graph. From this result alone, it is still hard to find any
conclusion regarding how the presence of loops in a graph affects
the performance of GNN.

7 CONCLUSION

This study provides a comprehensive review of GNN for power flow
application. Several conclusions can be observed from the result.

GNN models can leverage a graph’s connectivity information by
involving adjacency matrix in its operation. With this trait, GNNs
utilize parameter sharing that improves model accuracy especially
for lower train dataset size. GNN outperforms traditional FCNN in
a case when the data is slightly available, for instance when the cost
of acquiring new data is expensive.

However, there are several problems with GNN that need to be
studied. There is a certain graph topology where GNN faces a prob-
lem, namely when the graph contains loops. A further study needs
to examine in which condition this issue presents. Furthermore, it is
still difficult to make a transparent layer out of GNN, which perhaps
will be beneficial for future development.

Lastly, the experiment with looped graphs is yet to make any
reliable conclusion. There were no visible patterns from the result
of this case. A good starting point can be tried by implementing
a two or three hops away GNN model on a graph data containing
many nodes and deep connectivity. This case may reveal the benefit
of implementing a deep GNN framework in a deep graph data.



8 RECOMMENDATION

Several recommendations for further works are presented in the
following.

First, a further study shall try other types of GNN frameworks
such as Graph Attention Network (GAT) [29] which is claimed to
be more powerful than GCN.

Second, the option to utilize the lines/edges features such as
electrical current in the graph data can be a helpful addition.

Third, a study needs to check whether GNN is indeed not possible
to make a transparent layer. This case will perhaps be needed for
future development.

Fourth, an implementation of GNN on a big and deep graph i.e.
graph with many nodes and long data connectivity can be a good
starting point to check the effect of multi hops away GNN layer on
such structure. This case may reveal the benefit of implementing a
deep GNN framework on a deep graph data.

ACKNOWLEDGMENTS

This work was supported in part by a grant from Lembaga Pengelola
Dana Pendidikan (LPDP) Indonesia.

REFERENCES

[1] I. Ahmad, M. Akhtar, S. Noor, and A. Shahnaz. Missing link prediction
using common neighbor and centrality based parameterized algorithm.
Scientific Reports, 10:364, 01 2020. doi: 10.1038/s41598-019-57304-y

[2] S. Albawi, T. A. Mohammed, and S. Al-Zawi. Understanding of a
convolutional neural network. In 2017 International Conference on
Engineering and Technology (ICET), pp. 1–6, 2017.

[3] M. Alloghani, D. Al-Jumeily Obe, J. Mustafina, A. Hussain, and A. Al-
jaaf. A Systematic Review on Supervised and Unsupervised Machine
Learning Algorithms for Data Science, pp. 3–21. 01 2020. doi: 10.
1007/978-3-030-22475-2 1

[4] V. Astapov, I. Palu, and T. Vaimann. The use of digsilent power factory
simulator for “introduction into power systems” lectures. Electrical,
Control and Communication Engineering, 14:95–99, 12 2018.

[5] D. Bienstock and A. Verma. Strong np-hardness of ac power flows
feasibility. Operations Research Letters, 47(6):494–501, Nov. 2019.

[6] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst.
Geometric deep learning: going beyond euclidean data. CoRR,
abs/1611.08097, 2016.

[7] M. B. Cain, R. P. O’Neill, , and A. Castillo. History of optimal
power flow and formulations. Federal Energy Regulatory Commission,
Increasing Efficiency through Improved Software, p. 1–31, Dec. 2012.

[8] S. Chatzivasileiadis. Lecture notes on optimal power flow opf.
arXiv:1811.00943v1 [cs.SY], Nov. 2018.

[9] K. V. den Bergh, E. Delarue, and W. D’haeseleer. Dc power ow in unit
commitment models. KU Leuven, May 2014.

[10] F. Diehl. Applying graph neural networks on heterogeneous nodes
and edge features. 33rd Conference on Neural Information Processing
Systems, 2019.

[11] F. Diehl. Warm-starting ac optimal power flow with graph neural
networks. 2019.

[12] A. Eltamaly, A. A. Elghaffar, Y. Mohamed, and A.-H. Ahmed. Opti-
mum power flow analysis by newton raphson method, a case study. 12
2018.

[13] N. Guha, Z. Wang, and A. Majumdar. Machine learning for ac optimal
power flow. 36th Int. Conf. Mach. Learning, June 2019.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[15] S. Hosein, P. Hosein, W. Kattick, and V. Ratan. Web application for
power grid fault management. pp. 1–5, 08 2016. doi: 10.1109/ICIAS.
2016.7824052

[16] L. Huang, J. Qin, Y. Zhou, F. Zhu, L. Liu, and L. Shao. Normalization
techniques in training dnns: Methodology, analysis and application.
CoRR, abs/2009.12836, 2020.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization,
2017.

[18] T. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. Fifth International Conference on Learning
Representations, July 2018.

[19] B. C. Lesieutre and I. A. Hiskens. Convexity of the set of feasible
injections and revenue adequacy in ftr markets. IEEE Trans. Power
Syst., 20(4):494–501, Nov. 2005.

[20] J. Leskovic. Cs224w machine learning with graphs, 2019. [Online;
accessed on February 27, 2020].

[21] W. Liao, B. Bak-Jensen, J. R. Pillai, Y. Wang, and Y. Wang. A review
of graph neural networks and their applications in power systems. Jan.
2021.

[22] P. Marius, V. Balas, L. Perescu-Popescu, and N. Mastorakis. Multilayer
perceptron and neural networks. WSEAS Transactions on Circuits and
Systems, 8, 07 2009.

[23] D. K. Molzahn and I. A. Hiskens. Convex relaxations of optimal power
flow problems: An illustrative example. IEEE Trans. Power Syst.,
63(5):650–660, May 2016.

[24] A. Ng. Machine learning by stanford university, 2016. [Online; ac-
cessed on August 11, 2020].

[25] D. Owerko, F. Gama, and A. Ribeiro. Optimal power flow using
graph neural networks. In ICASSP 2020 - 2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
5930–5934, 2020.

[26] S. Ruder. An overview of gradient descent optimization algorithms.
ArXiv, abs/1609.04747, 2016.

[27] A. Singh, N. Thakur, and A. Sharma. A review of supervised machine
learning algorithms. In 2016 3rd International Conference on Comput-
ing for Sustainable Global Development (INDIACom), pp. 1310–1315,
2016.

[28] J. Tong and H. Ni. Look-ahead multi-time frame generator control and
dispatch method in pjm real time operations. pp. 1–1, 07 2011.

[29] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio. Graph attention networks. Sixth International Conference
on Learning Representations, July 2018.

[30] M. S. Vijayabaskar, V. Niranjan, and S. Vishveshwara. Graprostr -
graphs of protein structures: A tool for constructing the graphs and gen-
erating graph parameters for protein structures. Open Bioinformatics
Journal, 5:53–58, Feb. 2011.

[31] P. von Hippel. Mean, median, and skew: Correcting a textbook rule.
Journal of Statistics Education, 13:965–971, 07 2005. doi: 10.1080/
10691898.2005.11910556

[32] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun.
Graph neural networks: A review of methods and applications. IEEE
Transactions on Visualization and Computer Graphics, July 2019.


