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Abstract

This thesis project presents an approach to apply data mining and machine learning for building
energy consumption data. Specifically, it analyses the influence that di↵erent temporal resolutions
of time series have in both pattern identification and energy consumption forecast in the domains
of built environments. Various techniques were chosen due to their profound performance and
suitability including, Spearman rank-order correlation, breakout detection, k-means clustering,
and Long Short-Term Memory (LSTM) neural networks. The architecture of LSTM is also a↵ected
because changes in temporal resolution provoke an increment or decrement in the quantity of
data resulting in necessary adaption for architecture. Previous researches in energy consumption
prediction and load pattern analysis have mainly focused on model performance improvement
rather than defining the number of data samples during a specific range of time. These studies
attempt to investigate the relations of di↵erent machine learning algorithms, such as Support
Vector Machines and Convolutional Neural Networks, and the impact of temporal resolutions.
However, the influence of temporal resolution has not yet been analyzed using comprehensive
and high-resolution (low frequency) data sets. This study aims to improve the consistency of the
modeling techniques and define a best-unified resolution of data for di↵erent applications in the
built environment to improve the energy e�ciency of the power system. The results show that the
temporal resolution of the data significantly a↵ects data mining and machine learning outcomes
in the built environment, and this e↵ect is positive when the time series captures the pattern of
the predicted frequencies. Data that are lower than the hourly resolution display more significant
load patterns. In contrast, the 15-minute resolution data performs the best results that present
typical commercial building energy load curves and make energy consumption predictions in the
balance with accuracy and processing time.
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Chapter 1

Introduction

1.1 Background

Buildings represent a large portion of energy consumption and environmental emissions in
urban areas. According to the International Energy Agency (IEA), buildings account for approx-
imately 30% of total final energy consumption [1]. More than 70% of electricity generation comes
from non-renewable resources [2]. Many countries experience energy shortages due to the increas-
ing energy generation cost and rapid depletion of non-renewable resources. The need for energy
e�ciency in all sectors has raised concern from government authorities worldwide [3]. Energy e�-
ciency is one of the crucial issues that the world is facing, and government authorities are gaining
awareness of this need.

The advent of smart meters enables energy consumption to be measured and collected at all
levels from the grid to the building’s main circuit. Smart meters are a component of an advanced
metering infrastructure, which consists of a communication network, a data management system,
and an optional gateway [4]. Meter reading data is collected in the distribution network at di↵erent
collection frequencies, which means that a large amount of data at di↵erent levels is influx into the
system. In particular, advances in SCADA systems allow energy consumption data to be sampled
at high frequency (1Hz), enabling meters to measure, store and transmit high-quality data at the
high temporal resolution, where the amount of data can grow exponentially [4]. One of the key
issues for energy e�ciency is handling large amounts of data when balancing processing time and
analysis quality.

As electricity cannot be stored and conserved e�ciently and easily, forecasting and charac-
terization of energy consumption are e↵ective approaches to improve energy e�ciency. Energy
consumption forecasting is to explores the connection between the demand patterns and the sup-
ply availability of electricity. Forecasting and characterizing the electricity demand of a building
or a neighborhood level is important for implementing urban energy management and e�cient
power-system planning [5]. Demand load patterns and supply control can be identified by accur-
ate predictions of electricity consumption, which can be achieved with load profile data analysis.
In this case, the 6-minute resolution data is usually used for building performance decisions on
the demand side. At the same time, the grid operator makes decisions after every 15 minutes,
indicating the conflicting interests of the demand and supply sides. However, in demand-side
management, the resolution of data and signals should be aligned from both sides in terms of bet-
ter implementation e�ciency. Therefore, further study needs to investigate the optimal temporal
resolution data for both the supply and demand sides.

In general, the impact of temporal resolutions on machine learning or data mining of energy
forecasting has not been explored in detail in the existing literature. The operational energy
behavior of buildings is highly dependent on various non-linear variables, including building phys-
ics [6], functional characteristics, household information, and meteorological, as well as temporal
properties [7] [8]. The past researches show that energy consumption load metering in the built
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CHAPTER 1. INTRODUCTION

environment has been shown at a low temporal resolution. Energy consumption load profiles
are generally gathered for di↵erent dwelling types at di↵erent sampling frequencies from 1 to 30
minutes [9]. It is still an open question to forecast electricity demand at high-resolution monitor-
ing’s relative utility.

The Recent studies [7, 10, 11, 12, 13, 14] have extensively compared the performances of
di↵erent techniques. Still, a minor focus has been put on studying the e↵ects of temporal resolution
resampling on data mining and machine learning applications. Ushakova and Mikhaylov [15]
emphasize the importance of considering both broad time scales and temporal resolutions to
describe load profile features and household consumption forecasting accurately. The impact of
temporal resolution can be significant as the consumption profile fluctuates at a high temporal
resolution [16]. The information of the electricity load profile is lost at low temporal resolution.
Hence, the load profile dynamics become increasingly biased when a lower temporal resolution is
envisaged. Thus, the load profile should be sampled at a more fine-grained level to present its
behavior more accurately.

The primary focus of this thesis project is to analyze the e↵ects of temporal resolution on
data mining and machine learning in the built environment. The research aims to understand
the influence that each resolution has on the actions or assessments of machine learning and
data mining models by varying the aggregation granularity of the dataset across several temporal
resolution scales. This study aims to improve the consistency of the modeling techniques and define
a best-unified resolution of data for di↵erent applications in the built environment to improve the
energy e�ciency of the power system.

1.1.1 Data-driven model in building energy performance forecasting

Building demand estimation has been performed using traditional engineering software pack-
ages (e.g., EnergyPlus) embedded with structural, geometric, and material building properties
[17]. Nowadays, advancements in smart metering technology lead to the increasing number of
smart meters (SM) installations in houses. The increment of smart meters has enabled researchers
to develop a data-based approach to forecasting building energy consumption with near real-time
data streams from each building [18]. Recent studies by Zhou et al. [19] focus on describing
the challenges and opportunities related to SMs data for more intelligent energy management.
Traditional engineering-based energy forecasting relied on data simulation, whereas sensor-based
approaches leverage real-world data from the built environment.

Compared to traditional engineering-based methods, sensor-based data-driven approaches re-
quire fewer input data and low complexity, which shows that the new approach is superior to the
conventional physics-based methods [7]. Data-driven modeling techniques can provide fast and
highly accurate forecasting [5]. Data-driven modeling can give accurate energy forecasting as long
as model selection and parameter setting are suitable for the applications and assessments.

Data-driven modeling works on data acquired from smart energy meters, building manage-
ment systems, and weather stations. The acquired data is used in a machine-learning algorithm to
extrapolate the relations between energy load consumption and variables impacts such as temper-
ature, occupancy, and time e↵ects [13]. Standard techniques used by researchers include statistical
methods and machine learning models [20]. Autoregressive Integrated Moving Average (ARIMA)
models are one of the statistical methodologies that are considered the basic and the most general
form of time series forecasting technique [21]. Wang and Meng [13] used the ARIMA model to
forecast energy consumption for the entire Hebei province in China. The ARIMA models are suit-
able and preferable for short-term forecast of time series forecasting due to the simplicity of their
structure [20]. However, the main disadvantage of ARIMA models is that ARIMA models fail to
capture the time series’ nonlinear patterns while performing long-term predictions [22]. Recently,
machine learning methods such as Support Vector Machines (SVM), Artificial Neural Networks
(ANN), and Long Short Term Memories (LSTM) have gained popularity in energy demand fore-
casting. The significant advantage of machine learning models is their flexible nonlinear modeling
capability [7]. The models can adapt based on the data features and detect nonlinear patterns of
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Temporal resolution References
1-sec [17], [23]
2-sec [23]
5-sec [23]
10-sec [23]
15-sec [23]
30-sec [23]
1-min [22], [24], [25], [23]
2-min [23]
5-min [23]
10-min [5], [23], [26], [27], [28]
15-min [18], [23], [29], [30], [31], [32]
30-min [23], [26], [29], [31], [33], [34], [35], [36]
1-hour [5], [24], [25], [26], [29], [30], [31], [33], [37],

[38], [39], [40], [41]
2-hour [26], [31], [33]
6-hour [31], [42]
12-hour [31]
Daily [5], [24], [29], [42], [37], [41], [43], [44]
Weekly [24], [42], [37], [43]
Monthly [3], [42], [41], [45]

Table 1.1: Literature published related to di↵erent temporal resolution

the data [23]. This advantage leads to a better time series forecasting performance for building
energy consumption using machine learning and deep learning models.

1.1.2 The impact of temporal resolution on machine learning and data
mining

The performance of machine learning and data mining varies according to diverse settings.
The characteristics of building datasets selected for di↵erent applications in the built environment
have demonstrated important implications on the adopted model performance. The parameter
selection, the temporal resolution of the data, and inherited errors during the data collection phase
are likely to influence the mining and learning outcome. The temporal resolution of data a↵ects
uncertainty in all kinds of machine learning models. Dynamical resampling is frequently used to
investigate the relation between input and output variables. Various forecasting resolutions have
been studied with di↵erent temporal resolutions by multiple researchers, as shown in Table 1.1.

Machine learning has recently been broadly used in energy demand forecasting on account of
energy e�ciency improvement in the built environment [3, 5, 24, 42, 41, 43]. Studies have been
conducted at varying temporal resolution scales. Energy consumption forecasting is conducted
in [31] from using monthly data, weekly data to daily data. As more energy consumption data
is accessible at a finer temporal resolution, researchers could perform modelling on resolution of
12-hourly [31], 6-hourly [31, 42], 2-hourly [26, 31, 33], and up to hourly scale [5, 24, 25, 26, 29, 30,
31, 33, 37, 38, 39, 40, 41]. Furthermore, former studies have conducted and compared data on a
scale of 30 minutes [23, 26, 29, 31, 33, 34, 35, 36] , 15 minutes [18, 23, 29, 30, 31, 32], and even
in intervals of 10 minutes [5, 23, 26, 27, 28]. Heghedus et al. (2018) [17] demonstrated short-term
forecasting for in-home energy consumption at a resolution of only 1 second. While the trend has
been moving towards utilizing finer resolution and more temporally granular data in forecasting,
the impact of temporal resolution has yet to be analyzed using a comprehensive and systematic
resolution energy consumption dataset.

Some studies attempt to investigate the relations of di↵erent modeling performances and the
impact of temporal resolutions. Various machine learning and data mining methods are presented
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in previous studies. Jain et al. (2014) [5] perform a Support Vector Regression (SVR) model to
investigate the impact of temporal resolution on performance accuracy for residential buildings.
They study the di↵erent temporal resolutions from 10-minutely, hourly, to daily. The results
indicate that the most e↵ective models are built with hourly consumption for SVR models, with
a coe�cient of variation (CV) of 2.16% [39]. Amarasinghe et al. (2017) [39] also used hourly
electricity load data to compare machine learning models’ performances. The results are obtained
from the diverse methodology, including Convolutional Neural Networks (CNN), LSTM sequence-
to-sequence (LSTM S2S), Factored Restricted Boltzmann Machines (FCRBM), ANN, and SVM.
Experimental results show that CNN outperformed SVR while producing comparable results to the
ANN and other deep learning methodologies at hourly data resolution. Marino et al. (2016) [25]
compare the standard LSTM modeling performance using hourly and 1-minutely data resolution.
The LSTM algorithm produces accurate results with hourly data but fails to perform well with
1-minutely resolution data. Kim and Cho (2019) [46] also compare the performance of LSTM
and proposed CNN-LSTM modeling at hourly and 1-minutely resolution data. The lower the
resolution, the lower the modeling error rate obtained. Luesis et al. (2017) [33] prove that
the forecasting error is reduced with coarsening temporal resolution since the load fluctuation
is smoothed at high resolution. For example, a power-intensive electric oven may be used for
30 minutes in total each morning between 7 AM and 9 AM in a household. At a 30-minutely
resolution, the time and magnitude of the peak will be di↵erent for each 30-minutely interval. If the
120-minutely resolution is used instead, the model will capture and learn to predict the observed
peak load. With a 30-minutely resolution, the peak load may occur in any of the adjacent half-
hour intervals from day to day, hindering the predictability of the peak load. Forecast techniques
will act conservatively to minimize the forecast error at a 30-minutely resolution. Hence, the
forecast models will issue a forecast value close to the average during the forecast period. Peak
load information is lost at coarse temporal resolution. On the other hand, Cao et al. (2020) [43]
conclude that electrical load prediction is more likely to achieve higher accuracy at finer temporal
resolution. Zhou et al. (2017) [26] carry out model forecasting with resolutions of 10-minutely,
30-minutely, 1-hourly, and 2-hourly, and the results show that a low temporal resolution has low
prediction accuracy most time in a day

Data analysis of load profile features o↵ers information regarding the impact of temporal res-
olution on the change in the magnitude of the peak and trough load. Hernandez et al. (2020)
[23] find the sample mean of the consumption load decreased by 17.67% at the coarser temporal
resolution, ranging from 1 second to 30 minutes. A higher peak reduction of 59.09% happens at
coarser resolutions. Kristensen et al. (2017) [42] discover that information about important ther-
modynamic processes seems to be leveled out or even lost with decreasing the temporal resolution
of the training data. Bassamzadeh and Chanem (2017) [30] use the Bayesian network (BN) based
method to discover dependency relations between contributing variables of electricity demand at
various temporal resolutions. The results show that the learned BN structures for demand model-
ing at hourly and 15-minutely data resolution are di↵erent. Variables (e.g., temperature) present
a lower dependency on electricity demand in BN structure at 15-minutely data resolution. This
result can be explained that aggregating data from 15-minutely to 1-hourly may cause loss of
fine-scale variations and thus discover new dependency structures in the dataset. Previous studies
have implemented data analysis and model forecasting at di↵erent temporal resolutions. However,
it is still needed to conduct a thorough investigation on the impact of temporal resolution on data
mining and machine learning due to the lack of comprehensive study at various temporal scales
of data sets.

Although the current trend is to use more temporally granular data sets in the built envir-
onment, the influence of temporal resolution has not yet been analyzed using comprehensive and
high-resolution (low frequency) data sets. Most of the studies mentioned in Table 1.1 use a daily
or even an hourly or 30-minutely time resolution, but they do not contain su�cient informa-
tion to specific actions or assessments for further applications accurately. Quite a few papers
[29, 30, 37, 39, 40, 41] evaluate the error due to the use of coarse-grained data but never invest-
igated temporal resolutions lower than 5-minutely. Moreover, a shortcoming is that most studies
cover a short-term time horizon which involves a reduced period chosen to characterize critical
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features of calendar e↵ects. Examples are covering weekdays and weekends, di↵erent times of
the day, and di↵erent seasons. The time horizon envisaged in Table 1.1 is typically restricted to
minutes, a few hours, or a few days, which gives inaccurate results since it does not take seasonality
into account. The systematic review of discussion regarding the comparison of various modeling
techniques and relations among the use of input data and energy performance forecasting in the
built environment can be found in [7, 11, 47, 12, 13, 14, 16]. However, further study is still needed
due to the discrete temporal resolution of input data sets and the lack of investigation regarding
the impact of temporal resolution on data mining and machine learning in the built environment.

1.2 Aim and Objectives

This thesis aims to study the e↵ects of multiple time resolution frequencies on machine learning
models in the built environment. The data is kindly provided by Kropman Installatietechniek, a
building construction consultant company in the Netherlands. The case study building, Kropman
O�ce in Breda, is situated in the west of the city Breda, a town in the southern part of the Neth-
erlands. Building energy consumption data is collected with di↵erent time resolutions (1-minutely,
15-minutely, 1-hourly, etc.) for information extraction pattern identification and forecasting. The
results will be compared among the performance indicators to evaluate the outcome di↵erences.
The best setting among all the demonstrated models will be proposed to the Kropman company.
The specific objectives of this research are to:

1. Identify the e↵ects of various time resolution frequencies on data mining and machine learn-
ing in the built environment.

2. Specify use cases on di↵erent time resolutions for Kropman building data.

3. Analyze the e↵ects of resampling (Interpolation) due to data-imbalanced conditions on mod-
eling.

4. Formulate and verify a general estimate of uncertainty due to resampling.

1.3 Problem Statement

This thesis will discuss how the influence of di↵erent temporal resolutions in the domains
of the built environment impacts the results of both data mining outcomes and machine learning
performance. Also, it will be studied the relation with univariate and multivariate features between
building energy consumption and related building data such as weather conditions.

Therefore, based on the previous statements and having identified a knowledge gap, the study
will follow the research question following:

Main question:

How the choice of temporal resolution frequency influences data mining and ma-

chine learning modeling in the built environment?

To answer the main research question, the question is divided into the following sub-questions.

Sub-question:

1. What time resolution is important for building performance control and should be used for
analysis?

2. Which data mining techniques are suitable for extracting knowledge of pattern information?

3. Which machine learning algorithms are the best way to build good predictions of building
performance?

E↵ects of Temporal Resolution on Data Mining and Machine Learning Algorithms in the Built
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4. What is a good approach to compare results at di↵erent temporal resolutions?

1.4 Thesis Outline

The remainder of this thesis is structured as follows:

• Chapter 2 - Theoretical Background: This chapter gives a brief introduction to the techniques
that will be used in this study.

• Chapter 3 - Methodology: This chapter provides an overview of the designed experiment.

• Chapter 4 - Results and Analysis: This chapter presents the investigation among data min-
ing, machine learning, and temporal resolution.

• Chapter 5 - Discussion: This chapter discusses and evaluates the limitation of the study and
highlights opportunities for future work.

• Chapter 6 - Conclusion: This chapter summarises the research.
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Chapter 2

Theoretical Background

2.1 Data Mining

Data mining (DM) is the process of extracting and discovering hidden knowledge in large data
sets and involves approaches at connecting machine learning, statistics, and database systems.
To explore the data set, the temporal features extraction is based on the most simplified statist-
ics calculation, including the normalization model and Spearman rank-order correlation (ROC)
coe�cient. The normalization e↵ect allows a more appropriate comparison of the electricity con-
sumption magnitude of buildings at di↵erent temporal resolutions [48]. Normalizing the energy
consumption time series makes the data fit the interval [0-1]. This process makes it possible to
identify the time series with equivalent consumption patterns instead of identical consumption
volumes. Normalization metric is intended to provide a basis for comparison between temporal
resolutions and is used as a key indicator in numerous benchmarking and performance analysis
techniques. As the focus of this paper is data mining and machine learning on energy consumption
data, we normalize by:

Normalization =
x � xmin

xmax � xmin
(2.1)

The other set of feature extraction is calculation related to how much influence outside weather
has on the consumption of a building. As recommended in the work of Miller and Meggers, a pro-
cess of utilizing the Spearman Rank Order Correlation (ROC) coe�cient is applied to approximate
the correlation between outside weather conditions and the energy consumption of a building [48].
The ROC essentially ranks the items in two di↵erent lists (X and Y), and the ratio quantifies
whether these lists are positively or negatively correlated. In this study, the two variables are
weather data, i.e., outdoor temperature, solar radiation, air pressure, and relative humidity, and
energy consumption. The coe�cient ranges is -1 (highly negative correlation) and +1 (highly
positive correlation). For example, when the correlation is positive (when ROC is positive and
close to +1), where energy consumption is cooling sensitive and consumption increases with in-
creasing temperature, and when the correlation is negative (when ROC is negative and close to
-1), where energy consumption in the time range is sensitive to heating, as consumption increases
with decreasing temperature.

Spearman Rank Order Correlation (ROC) coe�cient

rs = ⇢rgX ,rgY =
cov(rgX , rgY )

�rgX�rgY

(2.2)

where: ⇢ = the usual Pearson correlation coe�cient, but applied to the rank variables
cov(rgX , rgY ) = covariance of the rank variables
�rgX = standard deviation of the rank variable X
�rgY = standard deviation of the rank variable Y
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The Pearson correlation coe�cient is implemented and compared to Spearman’s rank-order
correlation coe�cient as a control group.

Pearson correlation coe�cient

⇢X, Y =
cov(X,Y )

�X�Y
(2.3)

where: cov(X, Y ) = covariance of X and Y
�X = standard deviation of X
�Y = standard devistion of Y

2.2 Signal Decomposition

A valuable technique for exploring energy consumption data is seasonality and trend decom-
position. In forecasting and temporal data mining, temporal data from di↵erent periods that are
influenced by seasonal factors such as the month of the year or the day of the week tend to exhibit
similar types of behavior, i.e., seasonal patterns. Building energy data belongs to this category
can be applied to the same feature extraction techniques commonly used in financial or social
science analysis.

These techniques typically attempt to decompose time series data into several components
that represent the underlying nature of the data [49]. For example, energy consumption data
for commercial buildings tend to be cyclical in their weekly schedules, where the occupants are
typically white-collar professionals who go to work at specific times during the week and return
home at particular times. Weekends are usually free time with little or no activity. These user
behavior characteristics develop relatively predictable patterns, called seasonality in time series
analysis. Seasonality is a fixed and known consistent cycle and is a feature that is often extracted
before creating a predictive model. In addition, trends are another common feature of temporal
data. A trend is an increase or decrease in data over time, usually without following a specific
pattern. Trends are generally caused by less systematic factors than seasonality and are often due
to external influences. For building energy consumption, trends are expressed as gradual variations
in consumption over long periods of time, such as weeks or months [48].

The classical decomposition method of time series originated in the 1920s with the work of
Frederick R. Macaulay of the National Bureau of Economic Research on the ratio to moving aver-
age approach [50]. The details of the internal algorithm of the classical decomposition procedure
are described by [51]. There are two methods of classical decomposition: an additive decompos-
ition and a multiplicative decomposition. In this study, the additive decomposition is used to
avoid any complications with very low load values at various temporal resolution. The additive
decomposition is written as :

Time Series Decomposition

Yt = f(St, Tt, Et) = St + Tt + Et (2.4)

where: Yt = data at period t
St = seasonal component at period t
Tt = trend-cycle component at period t
Et = remainder (or irregular or error) component at period t
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Figure 2.1: Example of decomposition in the energy load time series data.

2.3 Breakout Detection

A class of feature extraction is associated with capturing typical and atypical usage patterns
from building energy consumption data. These features aim to quantify whether buildings have
daily or weekly consistency, such as whether certain building types have specific types of usage pat-
terns. The concept of pattern consistency is related to the level of fluctuations in building energy
consumption over a long period of time (e.g., a year). In general, the magnitude of fluctuations is
related to seasonal variations in the building’s operating schedule. For example, the overall energy
consumption of commercial buildings is typically more consistent over a year than that of schools
or universities, resulting in less fluctuation in building energy consumption patterns.

In this case study, pattern consistency was determined by forking a library of breakout de-
tections from the R programming package [52]. The package was developed by the social media
company Twitter to detect breaks in time series data. The breakout function decomposes a time
series into segments of three types, namely Steady state, Mean shift, and Ramp up/down.

• Steady state: The time series follows a fixed mean;

• Mean shift: The time series jumps directly from one steady state to another;

• Ramp up/down: A gradual increase or decrease in the value of the time series from one
steady state to another over a fixed period.

A break, also known as a mean shift or ramp up/down in time series data, indicates a significant
change in the mean value of the time series data over a sustained period, as shown in Figure 2.2.

E↵ects of Temporal Resolution on Data Mining and Machine Learning Algorithms in the Built
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The goal of breakout detection is to identify the point of change when the probability distribution
of the time series changes. Breakout detection is a univariate statistical analysis technique that
can identify unexpected changes in building performance by using a single time series that does not
require parameter tuning. Some of the benefits of breakout detection are that it does not require
the same amount of data as machine learning algorithms to run e↵ectively, nor does it require a
combination of techniques to detect building performance problems accurately. This capability
can be used to prevent non-critical alarms in building management systems and improve building
performance.

Breakout detection is based on the E-Divisive with Medians (EDM) [52] calculation. EDM
uses an enhanced variant of energy statistics that is more flexible to anomalies by using robust
statistics (i.e., median). The idea of energy statistics is to compare the distance between the mean
values of two random variables contained in a continuous larger time series. However, the presence
of anomalies can limit the validity of using the mean in this process since a single anomaly can
have a significant e↵ect on the mean of the time series. For this reason, the EDM technique is
based on a more robust median. Based on the robust median, the EDM technique exists as a way
to create a computationally tractable process for determining whether a new block of time series
data is significantly di↵erent from the previous one by using advanced distance statistics that are
exceptionally robust. Details of the mathematical background used in the package can be found
in the study by James et al. [53].

Figure 2.2: Examples of breakout detection by evaluating changepoint in the time series data.

2.4 K-means Clustering

As mentioned in [54] and [55], the K-means clustering algorithm is the most prevalent technique
for generating building energy consumption patterns. K-means is a simple and robust algorithm
for partitioning n observations into k clusters. It is done by evaluating the similarity between n
observations and cluster centroids using the squared Euclidean distance as the clustering criterion.
K-means is initialized with a random cluster centroids. Each observation is assigned to the nearest
cluster centroid, which is updated to the value obtained by averaging all objects assigned to that
cluster. This process is repeated until the algorithm converges. The convergence of the algorithm
to the optimal global solutions depends on the initial partitioning. Therefore, the algorithm must
be run several times with di↵erent initialization [56]. A flow chart of the K-means clustering
algorithm is shown in Figure 2.3, and the figure is adapted from [57].

In unsupervised learning, there is no natural quantification of the discrepancy between model
and truth because the true clusters are unknown. Robust cross-clustering validation is then carried
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Figure 2.3: Flow chart of the K-means algorithm.

out, where the selection of optimal cluster number is first realized from the computation of cluster
evaluation indices [55]. Based on the findings of Chicco [58], Tureczek and Nielsen [55], the
study selected three indices to assess the di↵erent attributes of clusters, namely the Mean Index
Adequacy (MIA), the Cluster Dispersion Index (CDI), and the Davies-Bouldin Index (DBI). The
three selected evaluation indexes are also most commonly used for building energy clustering [54].
Although none of the indices identify the true underlying structure, their values for di↵erent cluster
counts provide an indication of how many clusters are retained in the final clusters.

By plotting the progression of the indices as a function of visual inspection for cluster number,
it is possible to identify abrupt changes or fluctuating patterns that can help select the number of
clusters within the data set. We evaluate several indices jointly, as the combination can be applied
to strengthen the argument for the selection of a specific number of clusters.

Mean Index Adequacy (MIA)

The MIA index calculates the square of the average distance from each member of a cluster to the
cluster centroid and scales it by the number of classes K:

MIA =

vuut 1

K

KX

k=1

d2(Ck) (2.5)

where: Ck = calculated center of cluster k
d2(Ck) = squared average Euclidean distance within cluster k
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The MIA index measures the within-cluster dispersion. A high MIA value corresponds to large
distances within the clusters, indicating a poor fit.

Clustering dispersion indicator (CDI)

The CDI index consists of MIA scaled by the average distance between any two clusters d(C).
The CDI prefers large inter-cluster distances and small intra-cluster distances. Smaller values of
CDI indicate better clustering [59].

CDI =
1

d(C)

vuut 1

K

KX

k=1

d2(Ck) (2.6)

Daviese-Bouldin Index (DBI)

The DBI index evaluates the overlap between clusters. It is quantified by evaluating the
average intra-cluster distance, given by diam(Ci), of all cluster i and subsequently comparing all
pairs of clusters divided by their centroid distance d(Ci, Cj) and before selecting the maximum
distance for each class. Smaller values of DBI indicated that the K-means clustering algorithm
classifies the data set properly [60].

DBI =
1

K

KX

i=1

max
j 6=1

diam(Ci) + diam(Cj)

d(Ci, Cj)
(2.7)

2.5 t-SNE

A dimensionality reduction method can be used and then visualized in the two-dimensional
plane for verification to strengthen the arguments of clustering results. A popular algorithm used
for this purpose is called t-distributed stochastic neighbor embedding (t-SNE), introduced by
Maaten and Hinton in 2008[61]. The t-SNE model is an unsupervised dimensionality reduction.
The model first converts Euclidean distances into conditional probabilities to express the simil-
arity between points and then maps the data points onto probability distributions by an a�ne
transformation consisting of two main steps.

1. The t-SNE model constructs a probability distribution among high-dimensional objects.
Similar objects have a higher probability of being chosen, and di↵erent objects have a lower prob-
ability of being selected.

2. The t-SNE model constructs the probability distribution of these points in the low-dimensional
space so that the two probability distributions are as similar as possible to each other.

In addition, t-SNE is a nonlinear dimensionality reduction algorithm that is very suitable
for downscaling high-dimensional data to 2 or 3 dimensions [61], i.e., visualizing large real-world
datasets with hundreds or even thousands of dimensions. In this study, the visualization results of
the t-SNE technique are compared with those of the K-means clustering algorithm for validation.
Figure 2.4 shows the process of t-SNE, and the figure is adapted from [62].
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Figure 2.4: Example of t-SNE process

2.6 LSTM

2.6.1 Deep Learning - Neural Networks

The predecessors of modern deep learning were simple linear models; however, linear models
have many limitations. Since neuroscience is considered an important source of inspiration for
deep learning research, neuroscientists have found that most mammalian brains can use a single
algorithm to solve most of the di↵erent tasks that their brains can solve. Neuroscience gives us
a reason to rely on a single deep learning algorithm to solve many various tasks [63]. With the
investment in research, deep learning has developed multiple uses, and the following describes the
categories and applications of deep learning.

Deep learning is a branch of machine learning based on artificial neural networks that enable
computational models to learn representations of data. These methods aim to discover complex
structures in large datasets by using backpropagation algorithms to indicate how the machine
should change its internal parameters. The structures are used to calculate the representation in
each layer based on the representation of the previous layer. With enough of this combination of
automatic learning and feature representation transformations, complex functions can be learned.
In other words, by mapping the original input directly from the data to the output, the mechanism
allows the system to learn complex functions. Crucially, these feature layers are learned from the
data using a general-purpose learning process that does not rely on the design of human engin-
eers [64]. Deep learning has become widely employed for various domains of science, business,
and government because of its capability to discover intricate structures in high-dimensional data.
It is considered as opposed to the conventional machine-learning techniques, which has beaten
other machine-learning techniques in speech recognition, natural language processing, brain cir-
cuits reconstruction, social network filtering, machine translation, prediction of drug molecules,
bioinformatics, and other fields. The ability of deep learning to solve supervised or unsupervised
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problems is a critical feature that increases the applicability of the method. In addition, another
fact that has contributed to the popularity of deep learning is the ability to process large amounts
of data [65].

Based on the properties of the neural network, it may be categorized into three di↵erent
deep learning architectures, such as Feed-Forward Neural Network (FFNN), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN). Di↵erent domains require di↵erent depth
architectures that suit their specific types of inputs, outputs, and questions. In this study, the
dataset contains temporal information, which means that each value will be predicted based on
the history of previous values. RNNs can handle time-series data because the activation of the
hidden cyclic state of each step depends on the hidden state of the previous time step. At the
same time, traditional neural networks transfer knowledge to the next layer exclusive of reference
to the previous step. Therefore, RNNs are theoretically suitable for predicting time-based feature
sequences. However, due to the inherent limitations of RNNs, i.e., gradient explosion and van-
ishing, training sequences with long time steps is challenging [3]. The Long Short-Term Memory
neural network solves this time series problem. LSTM is an evolutionary model of RNN, which is
more e�cient than traditional RNN. This aspect will be further elaborated on in the next section.

2.6.2 LSTM Networks

Recurrent Neural Networks (RNNs) are neural networks that employ recurrence, which basic-
ally uses a feedforward pass information over the neural networks. RNNs have been successful
applied to prediction problems where the input data are in the form of a sequence.

The decision in a recurrent layer takes at time step t will be a↵ected by the decision made
at time step t-1. The recurrent networks have two inputs, the current time step input Xt and
the hidden state of past ht�1. The weighted input and hidden state are combinedly compressed
by a logistic sigmoid function or hyperbolic tangent (tanh) to make gradients workable for back-
propagation. The backpropagation algorithm propagates the final layer errors backward from the
output layer to the inputs of each hidden layer. The weights will be updated based on those
weights assigned earlier by calculation of their partial derivatives. The recurrent networks need to
backpropagate the error through all the previous time steps, which is not feasible and may cause
the vanishing and exploding gradient problem, i.e., the gradient of the weights becomes too small
or too large [22]. By using logic functions, it is possible to remove obstacles by squashing too large
gradients in the case of gradient explosion. However, the main di�culty is gradient vanishing,
as the gradient becomes too small to propagate and reflect any changes in the parameters to be
learned. A variant of the existing RNN with long short-term memory units (LSTM) introduced
by Stepp Hochreiter and Jürgen Schmidhuber in 1997 solves the gradient-related problem [66].
The main feature of Long Short Term Memory networks (LSTMs) is their ability to preserve the
error that can be backpropagated through layers. The responsible element that provides memory
is called a memory block, and the information is contained in the gated cell. In the following lines,
the internal mechanism of LSTMs is explained.

The internal mechanism is shown as Figure 2.5, each line transmits a whole vector from the
output of a node to the inputs of other nodes. The red circles perform as element-wise operations,
e.g., vector multiplication and addition, while the yellow boxes represent neural network layers.
(The figure is adapted from [67]) The top horizontal line is running through the diagram controls
the cell state. Each LSTM unit receives three sources of information, two from the information of
the previous unit and the other from the current input. LSTMs contain information in the gated
cell. The cell makes choices about what to store, discard, and when to read via the gates that
open and close. The step-by-step explanations are following.

The first step in LSTMs is to decide what information to store or throw away from the cell
state using a sigmoid layer. It is also called the forget gate layer. It looks at outputs of the
previous block and the new input vector, ht�1 and Xt, then outputs a number between zero and
one for each number in the cell state that contains information from the previous memory unit,
Ct�1. A one represents keeping the information completely while a zero represents discarding the
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Figure 2.5: Example of LSTM structure

information completely. The mathematical function is:

ft = �(Wt · [ht�1, Xt] + bf ) (2.8)

The second step will decide which new information is going to be stored in the cell state. This
operation is performed in two parts, a sigmoid layer which decides the new values and a tanh layer
which creates a vector of new candidate values C̃t.

it = �(Wi · [ht�1, Xt] + bi)h = 6 (2.9)

C̃ = tanh(WC · [ht � 1, Xt] + bC) (2.10)

In the next step, the previous cell state C̃t�1 will be updated into the new cell state C̃t with
two operations. It will multiply the previous state by ft to forget the useless information which
was decided earlier. Then a combination is made to add it ⇤ C̃t. These values become the new
candidate values, scaled by how much we decided to update each state value.

Ct = ft ⇤ Ct�1 + it ⇤ C̃t (2.11)

Finally, it will determine the output. This output will be based on one cell state but will be a
filtered version. First, a sigmoid layer is run to select what parts of the cell state are going to be
the output. Then, the cell state is put through tanh and multiply it by the output of the sigmoid
gate, so that only the output parts are decided.

ot = �(Wo ⇤ [ht�1 � 1, Xt] + bo) (2.12)

ht = ot ⇤ tanh(Ct) (2.13)

To this point, it has summarized and explained the advantages of the methods used for data
mining and learning algorithms. The next scenario will investigate how temporal frequency a↵ects
the output in multi-step data analysis models.
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Chapter 3

Methodology

The main aim of this project is not to compare the performance of the algorithms but to
compare data mining and machine learning results when data resolution is varied. Thus, we have
used one algorithm with a di↵erent input setting. The structure of the study is presented in
Figure 3.1, and the intermediate steps are illustrated in each of the phases. The first phase is to
define the problem and form supporting research questions; this is done by looking into relevant
literature (chapter 1). The second phase is to develop a robust approach to answer the research
questions.

In the methodology of the second phase, a two-step process is proposed as a means to extract
knowledge from the entire building meter. The first step is the creation and exploration of a
description of the phenomena occurring in the original data at various temporal resolutions. This
operation aims to transform the data into a human interpretable format and visualize the patterns
in the data. The data is extracted and preprocessed using a library of data mining techniques to
distinguish between types at various temporal resolutions. These features are visualized using a
heat map format to evaluate the correlation between di↵erent temporal resolutions and weather
features. The load patterns at the selected temporal resolution are compared with the designed
metrics accordingly.

The second step of the methodology focuses on the learning mechanism, extracting inter-
pretable insights for the load pattern clustering and predictive learning application. Only one of
each supervised and unsupervised learning mechanism is implemented due to time limitations.
This process allows the analyst to understand the impact of each temporal feature on each per-
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formance separately. Three benchmarks are implemented accordingly in this study: accuracy,
error metrics, and cross-validation. One of the main results of the learning process is a discussion
of what input time resolution is most important in data mining and machine learning for building
energy consumption. This approach provides exploratory insight into the e↵ect of temporal fre-
quency on various features of commercial buildings. Detailed information on each step is presented
in the following subsections.

3.1 Literature Review

The first phase in this research was to define the problem and relevance of the topic; hence
a literature review was conducted. The literature review starts with an extensive overview of
data-driven models on energy consumption forecasting for buildings. It proceeds to review dis-
tinct aspects of mining and machine learning time series data. In this review, the usage of data
frequencies and their application in modeling techniques was investigated.

To obtain all the relevant literature, the search terms were based on the four elements, i.e.,
one focused problem and three extended interventions, see Table 3.1. The hits per search category
can be found in the Appendix A.

Table 3.1: Search terms used to find relevant literature on temporal resolution

Problem Intervention Intervention Intervention

Temporal Building Energy consumption Forecasting

Resampling Household Energy demand Accuracy

Sampling frequency Buildings/household Energy Prediction

3.2 Data Preparation

The second phase in this research starts with data preprocessing. Data preprocessing is vital
for any data-driven approach. Real-world data is often imperfect and containing inconsistencies
and redundancies, which is not directly applicable for starting a data mining process and resulting
in unsatisfactory results. [68] Preprocessing realizes two main tasks, data cleaning and data
transformation, both targeting enhancing data quality. The procedure involves data consistency
(coherent matching of datasets), data completeness (no missing values), and accuracy (outlier
removal). Preprocessing is an essential step in the data mining process to obtain optimal results
out of the envisioned analytics and preparing the data into an appropriate format for mining. The
data and method to be applied for preprocessing are introduced in the following sections.

3.2.1 Data and Case Study Building

This section introduces the smart meter electricity consumption data that will be analyzed in
this paper. The data is kindly provided by Kropman Installatietechniek, a building construction
consultant company in the Netherlands.

The case study building, Kropman O�ce in Breda, is situated in the west of the city Breda
which is a town in the southern part of the Netherlands. The building is a three-story high
traditional o�ce building. Like most o�ce buildings in the Netherlands, the case study building is
connected to a dedicated mid-voltage transformer station. A schematic overview of the installed
electrical meters is indicated with I and II in Figure 3.2 where the arrows show the possible energy
flows interaction between the systems and power grid. Figure 3.2 illustrates the installed electrical
power capacities for all connections of both major electricity load groups at the Kropman Breda
Building. The installed electrical power capacity for lighting is about 11% of the total. At the
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same time, the other power connection covers about 89% of the installed capacity, including air
handling unit, humidifier, chiller, BESS, and PV power generation system.

The entire building’s electrical consumption was monitored for seven years from 2014 to 2020
in daily, hourly, and 1-minutely resolution, resulting in 2556 available daily energy profiles. Asso-
ciated climate data were extracted with identical hourly resolutions from the Royal Netherlands
Meteorological Institute (KNMI) weather station Gilze-Rijen located 10 kilometers away.

HumidifierChiller

Lighting

AHU

PV BESS

Power Grid

� ��

Figure 3.2: Schematic overview of the Kropman Breda o�ce installed load system and power grid
connection

The precise number and types of smart meter data employed in this paper are described in
Table 3.2.

Table 3.2: Initial data description

Data Description Value
Country Netherlands
Region North Brabant postal code: 4813 AC (City of Breda)
Supplier Kropman Installatietechniek
Recording Temporal Resolution Daily, Hourly, 1-minutely
Start 1 January 2014 00:00:00
End 31 December 2020 23:59:00
Length 2556 observations (daily readings), 61359 observa-

tions (hourly readings), 3681561 observations (1-
minutely readings)

Type Commercial building

3.2.2 Data Cleaning

Data collected through electrical sensors are usually noisy and often incomplete. Before ana-
lysis, the data were preprocessed to remove missing values and unreliable data. Data cleaning
involves two parts of process, i.e., detecting the inaccurate and noisy parts of the data and cor-
recting (completing, replacing, and modifying) the incomplete or irrelevant data. Even though
most reviewed analytics from the literature perform missing values filling before outlier detection,
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this study first considers outlier detection to avoid filling missing values from the interfered data
set. This process could prevent identifying a more significant and more di�cult portion of outliers
in the next step. We consider outliers to be the data above the 99.999th percentile. As recommen-
ded in the work of Cho et al. [69], missing value filling is later performed with a linear interpolation
since the missing gap is smaller than eight observations. Consecutive missing values of more than
eight observations were treated separately such as replaced with identical time intervals that are
resampled from other temporal resolution data.

3.2.3 Data Transformation

Data transformation involves partitioning the time series data into a format suitable for later
data mining steps and normalizing the data to ensure fair similarity comparisons between load
profiles during machine learning. In the clustering analysis, the data is divided into daily load
profiles to identify typical load patterns in situations where individual demand is highly volatile
due to user behavior. The daily profiles are then normalized using a Min-Max deflator to show the
minimum misclassification errors. In the LSTM network, the datasets are divided into training
and test sets and normalized using the Min-Max scaler to remove the correlation between all
sampled energy data with the same distribution and to remove data features.

3.3 Temporal Resolution

The time resolution or granularity is the data sampling rate, which may be equal to or smaller
than the acquisition rate of the meter. The maximum acquisition rate is determined by the
technical parameters of the meter, such as its capacity for storing average information. In practice,
the high resolution is a data measurement every few seconds to 30 minutes. Current SCADA
systems can sample energy data at high frequency (1HZ), but the standard practice is to store
the average value for 1 minute, or longer [23]. Low-resolution profiles present data over a longer
period of time, e.g., several hours. The key is to choose a solution that weighs the level of detail
that represents the basic consumption behavior of the user against the need to store and process
the data.

3.3.1 Resampling

The temporal resolution is the sampling frequency of the data, in other words, the number
of identical repetitive events per unit time. A change in temporal resolution is a change in the
granularity of the time series, i.e., resampling. There are two types of resampling:

• Upsampling: the time series is modified, and the number of observations per time increases

• Downsampling: the frequency of the time series is decreased

In the case study, the raw energy consumption dataset was measured at a 1-minute frequency
and recorded in the database as 1-minute, hourly, and daily resolution data. In a building envir-
onment, the control frequency is typically used for building performance control using 6-minute
data, while the grid makes control decisions every 15 minutes. Therefore, 30-minute, 15-minute,
and 6-minute data were downsampled from the 1-minute data for a more comprehensive study of
the di↵erent time scales.

In Figure 3.3, the left time series plot is displayed in the original resolution of 1 minute. The
right plot represents the aggregated downsampling time series with a resolution of 15 minutes. By
comparing these two figures, the downsampled time series dataset has fewer outliers and stronger
regular patterns. Downsampling reduces the number of observations per unit time, so it requires
less memory size, and the model can run faster. This technique normalizes the data, thus reducing
the number of outliers, but the model will predict worse irregularities due to unrepresented outliers.
In short, there is a trade-o↵ in obtaining better results. Therefore, the purpose of this study is
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Figure 3.3: Representation of the time series of the Kropman building energy consumption data
and resampled data

to find a balance between temporal resolution and model performance. The other original energy
consumption load profiles are presented in Figure 3.4. The following section describes in detail the
common techniques that have been applied to building performance analysis. In addition, each
variable used in the machine learning model will be set according to previous studies, leaving only
frequency as a variable to investigate its impact in the field of data mining and machine learning
in the built environment.

Figure 3.4: Representation of the time series data of the Kropman building energy consumption

3.4 Data Mining

Data mining (DM) is the procedure of extracting and discovering hidden knowledge in large
data sets and contains methods at the intersection of machine learning, statistics, and database

20E↵ects of Temporal Resolution on Data Mining and Machine Learning Algorithms in the Built
Environment



CHAPTER 3. METHODOLOGY

systems. In the domain of built environment, DM is a powerful emerging technique to extract both
building features and temporal features, i.e., physical characteristics, use of the building, pattern
consistency, and weather dependency [48]. Temporal features are an aggregation of the behaviors
exhibited in time-series data. They are features that aggregate sensor information, inform analysts
through visualization, or are used as training data in predictive models. The process is designed
to quantify qualitative behavior.

3.4.1 Exploratory Data Analysis

Statistically based temporal feature extraction is the most simplified data mining technique.
Among them, ratio-based normalization is the most common method to compare energy consump-
tion magnitudes at di↵erent temporal resolution data properly. As described in Section 2.1, all
datasets are normalized by the MinMax deflator in the interval [0,1] and visualized in heatmap
format. To obtain a clearer and more significant visualization, each dataset is grouped by week
and compared to di↵erent temporal resolution scales year by year. The normalized data become
more regular and easier to adapt to machine learning models for prediction. In addition, the cor-
relation between energy consumption and weather scenarios is calculated in the interval [-1,1] by
Spearman Rank Order Coe�cient (ROC) and explored visually by heat maps in the same format.
The ROC is implemented in statistical functions of Scipy version 1.6.2 and Python version 3.9.1.
The statistical correlation results are then applied to a multivariate LSTM network prediction
model to explore the relationship between energy and weather further.

3.4.2 Pattern Identification

Breakout detection is a high-performing technique that has recently been applied to building
energy consumption time series to capture usage patterns and quantify consistency over time.
Breakout detection runs using a single time series without excessive hyperparameter tuning and
can e↵ectively and accurately identify the change points of user behavior. The breakout detection
methodology consists of two phases:

1. Evaluation of the seasonal presence in the data.

2. Implementation of EDM Breakout algorithm on the data.

breakthrough The classical additive decomposition is applied to evaluate the presence of seasonality
in the data. In this study, the decomposition is implemented in Statsmodels version 0.12.2 and
python 3.8.0. The frequencies of decomposition are set according to di↵erent temporal resolutions.
Once a clear seasonal component is found, the seasonal characteristics of the data set are removed
for further detection of breaks and thus prevent potential false positives.

BreakoutDection was cloned from a package on GitHub forked by Roland Hochmuth. The
original breakout detection is an open-source R package developed by Twitter [52]. The model
was built in Python version 3.9.1. There are only two parameters that need to be adjusted in
breakout detection, namely the minimum threshold and the penalty constraint. The minimum
threshold is periodic, so once a breakout is detected within the bounding period, it is impossible
to test another mean shift within the minimum unit time. The penalty constraint is to control
the amount of penalization. In this study, 30 days was chosen as the minimum threshold. The
penalty constraint (beta) was set to 0.0001 to 0.000001 through multiple tests.

3.5 Machine Learning

Machine learning (ML) is research related to programming computers to automate the process
of transforming observed data into outputs learned from the input data [70]. The input data of
an algorithm is called the training data and consists of a set of features that are used as output
prediction variables. If the features in the training data are labeled as output variables, they can

E↵ects of Temporal Resolution on Data Mining and Machine Learning Algorithms in the Built
Environment

21



CHAPTER 3. METHODOLOGY

be used to guide the learning process, i.e., supervised learning. In contrast, if the training data
contains only unlabeled feature variables, the learning process is called unsupervised learning. Due
to the emergence of smart meters, ML has been widely used in building energy load prediction
[71].

3.5.1 Cluster Analysis

In cluster analysis, time series datasets are transformed into the form of daily load curves to
eliminate autocorrelation features and reduce computational costs. The results are averaged over
three hundred iterations of the default maximum set of iterations with the same configuration (k
number). Random initialization is applied to the center of mass of the cluster. The Euclidean
distance is used to calculate the distance between the contour data and the centroid points. The
k-means algorithm uses clusters ranging from 2 to 10. The k-means construct used in this study
is implemented in Scikit-learn version 0.24.2 and Python version 3.9.1. To study the seasonal
variation of energy load patterns in a typical commercial building environment based on user
behavior, the dataset was then divided into four seasons to implement seasonal clustering.

To validate the clustering results, the manifold class in Sklearn version 0.24.2 implements
the dimensionality reduction technique t-SNE to convert the time series into a two-dimensional
distribution. The perplexity is set to the maximum value of 50 in the range (5-50) suggested
by van der Maaten and Hinton to balance the attention between local and global aspects of the
data and iterates 1000 times to achieve a stable configuration [61]. Random state initialization is
applied to obtain a more globally stable state.

3.5.2 LSTM Neural Network

In LSTM models, a simple model selection method is to randomly divide the data set into
three parts, i.e., the training set, the validation set, and the test set, if the given samples are
su�cient. The training set is a set of observations used for model training, and the model learns
from these samples to fit the parameters of the prediction model. The validation set is the set of
parameters used to control the complexity of the model during training. The testing set is a set
of observations used to evaluate the actual performance of the selected model, i.e., to evaluate the
generalization ability of the model. In this study, all the data sets in the LSTM model are split
into 60% training set, 20% validation set, and 20% testing set, as shown in Figure 3.5.

60% 20% 20%

Training set Testing set

Training Validation

Figure 3.5: Train test split

Constructing neural networks is one of the most challenging and time-consuming tasks for
machine learning researchers. Several variations need to be tuned, and there are thousands of
di↵erent combinations. Once the network architecture is determined, the next step is to find
the optimal hyperparameter settings. There are defined methods for these variables that can
help achieve the best performance of neural networks. Hyperparameter optimization is performed
using SKlearn’s gridsearchCV tool, and the model is wrapped in a Keras Regressor to perform
grid search. Table 3.3 shows the common search values selected in this study. In addition to
the parameters, the number of time steps, i.e., the lag, is another critical decision in the LSTM
architecture. LSTM models have limited ability to remember from memory blocks and transfer
knowledge between networks. In this study, the number of time steps is defined by going back
and forth trying to use the parameters between the minimum value of the cycle and the maximum

22E↵ects of Temporal Resolution on Data Mining and Machine Learning Algorithms in the Built
Environment



CHAPTER 3. METHODOLOGY

Table 3.3: Hyperparameter seach

Hyperparameter Search value

Batch size 1, 8, 16, 32, 64
Learning rate 0.001, 0.01, 0.1
Dropout rate 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
Number of neurons 1, 5, 10, 16, 32, 64, 128

value determined by the feedforward method. The time step for time series with di↵erent temporal
resolutions is calculated as the equivalent fraction of the frequency, calculating its inverse and
multiplying it by the proposed lag of the method. For example, the time step for day-resolution
data is 7, and the time step for hour-resolution is 168. The LSTM network model was constructed
using Keras version 2.4.3 and Tensorflow version 2.4.1 and implemented in Python version 3.8.0.

3.5.3 Neural Network Architecture

One of the critical decisions in the field of neural networks is to build the network structure.
In addition to the di�culty of creating neural networks, the project had to deal with additional
complexity. Although the data were, in fact, modeling the same problem, i.e., the prediction of
energy consumption in commercial buildings, the project used datasets with di↵erent temporal
resolutions and di↵erent frequencies, requiring di↵erent neural network model architectures and
combinations of hyperparameters. To address these di�culties, we use downscaled data to reduce
the amount of data and the structure required to capture the data patterns. Thus, architecture
is defined, and the architecture is extrapolated to other temporal resolutions. The best results
are usually obtained using lower resolution data, so the architecture defines the daily resolution
method of the model that should be extrapolated. This approach utilizes a model with fewer data
and requires less processing time.

The process of reaching the optimal neural network architecture configuration is essentially an
incremental approach. In order to keep the study simple and to focus on the e↵ect of temporal
resolution, each layer of the LSTM added is a memory block. The first step is to create a neural
network with only one memory block and then test several regularization techniques to check which
technique can better avoid overfitting and obtain better performance. Overfitting is a common
problem in deep learning; when the model trained from the training data is too close to the training
data itself (with minimal error), but instead deviates from the generalized objective and fails to
successfully represent the data other than the training data, this phenomenon is called overfitting.
To avoid this, neural networks have some methods, such as L1/ L2 regularization, and dropout.
Dropout regularization directly remove parts of neurons during training, including their inputs
and outputs, and this removal can be done simply based on a probability p. The unnecessary
information or error will be prevented to carry to the next layer of further computation, and the
processing time will e↵ectively reduced.

Once the experiment has determined which regularization technique is the best, the next step
is to increase the size of the architecture by adding more layers internally. Thus, the starting point
is to have a structure of memory blocks and their corresponding regularization methods, and from
that point on the increase, the number of memory blocks until the structure achieves the best
performance. The metrics will be defined in the following subsection.

3.5.4 Metrics

Choosing the appropriate metric is a task that should be considered while building a machine
learning model. In the study, the values of two metrics were used to evaluate the prediction
results, including the mean absolute percentage error (MAPE) and the normalized root mean
square error (NRMSE). The use of these performance measures represents a variety of approaches
to evaluating the model. MAPE and NRMSE are size-independent relative performance measures
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that represent the relative standard of prediction error between actual and predicted values. Unlike
the mean absolute error (MAE) and root mean square error (RMSE), these two metrics are absolute
performance metrics commonly found in regression problems and allow us to compare the actual
level of error between the observed and predicted values. In this study, the performance metrics
used are calculated as follows.

MAE =
1

n

nX

i=1

|yi � xi| (3.1)

MAPE =
1

n

nX

i=1

|yi � xi

yi
| ⇤ 100 (3.2)

RMSE =

vuut 1

n

nX

i=1

(yi � xi)2 (3.3)

NRMSE =
RMSE

y(max) � y(min)
(3.4)

where n is the number of validation points and refers to the forecasted values, yi refers to the
actual values.

3.6 Experiment Environment

The primary purpose of this study is not to compare the performance of the algorithms but to
compare the results when the data resolution varies. Therefore, the experiments follow the general
setup commonly seen in most research cases in architectural environments. Based on the general
settings, the results would be more applicable to similar research and developed into more specific
purposes, such as applying building performance management at the best temporal resolution and
improving the energy e�ciency in the system. The selected data mining and machine learning
methods were applied using Python 3.9.1 and 3.8.0 on an i5-1038NG7 core CPU computer with
2.3 GHz and 8 GB of RAM.
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Results and Analysis

4.1 Correlation Heatmap

To study the e↵ect of temporal resolution on data mining and machine learning in the built
environment, it is necessary to create experiments with the same or similar settings. Configuring
experiments with the same characteristics will allow us to observe the e↵ects of di↵erent frequencies
individually. Firstly, it is critical to select the appropriate temporal resolution sequence for the
comparative study. The smart meters installed in this project were measured using a 1-minutely
resolution and recorded in a database with 1-minutely, hourly, and daily resolution data sets.
Therefore, the three original datasets were directly selected for the experiment while maintaining
the integrity of the database. On the other hand, one of the project’s goals is to make a week-long
prediction, so the most common approach is to use the same or higher frequency of input data.
According to the findings of [42], commercial utility meter data with high temporal resolution
(less than 1 hour) will support more accurate model calibration and parameter inference, thus
achieving more optimized predictive performance. In order to thoroughly investigate the e↵ect of
temporal frequency, 1-minutely data was sampled as 15-minutely data and 30-minutely data to
provide continuity of time resolution. Many previous studies have also chosen 15-minutely and
30-minutely temporal resolutions, as shown in Table 1.1. In addition, the 6-minutely resolution
is an important frequency for building performance control; thus, the 6-minutely data resampled
from the 1-minutely data are included in this study. For the above reasons, the final temporal
resolution of the data was chosen as follows:

1. Daily 2. Hourly 3. 30 minutely
4. 15 minutely 5. 6 minutely 6. 1 minutely

The first step in data mining leads to simply start with the exploration of statistical features.
The major category of statistical features is ratio-based features. These features often have a
normalizing e↵ect in which datasets can be more appropriately compared to each other. The
first extracted metric of this type is the consumption magnitude of energy normalized by the
time period, which is one of the most commonly calculated for building performance analysis.
To better compare the di↵erences between various temporal resolution datasets, the raw data are
normalized by MinMax scaler and visualized in heat map format as shown in the Figure 4.1. From
the daily-resolution data to the hourly-resolution data, the fluctuations significantly level out and
then become smoother as the frequency of the data increases. In the daily resolution data, each
square represents a weekly average energy consumption. The heat map shows much higher energy
consumption in the first few weeks of the year and much lower energy consumption in the middle
of the year. The same finding is not seen in the other resolution data, i.e., hourly, 30-minutely,
15-minutely, 6-minutely, and 1-minutely, where the energy consumption has leveled o↵ over the
same period at the high resolution. The metric is intended to provide a basis for comparison
between various temporal resolution datasets.
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Another useful statistical indicator is related to how much weather a↵ects energy consumption
in buildings since changes in energy consumption are mainly influenced by changes in weather. As
introduced in subsection 3.4.1, the Spearman rank-order correlation (ROC) coe�cient is suitable
for approximating the correlation between weather conditions and building energy consumption.
The correlation coe�cient is visualized in Figure 4.2. The correlation values are calculated indi-
vidually each week. This process results in fifty-two to fifty-three calculations each year using 7,
168, 336, 672, 1680, or 10080 samples. In this case study building, consumption in week 2 to week
21 is more heating sensitive, which can be observed clearly from the one-dimensional heat map.
Week 28 to week 40 is more cooling sensitive. Week 1 and week 53 should be excluded because the
sample size is smaller, resulting in less representative results. The lower resolution data shows a
clearer pattern of correlation between energy and weather scenarios. The reason for this is related
to the fact that user behavior does not change much in a continuous hour, and changes in user
behavior usually occur after a much longer period of time, such as an hour or half a day, on the
other hand, the weather usually does not change significantly within an hour.

The Spearman rank-order correlation coe�cient (ROC) is based on the usual Pearson cor-
relation coe�cient but applies to rank variables. To verify the utility of ROC, the results were
compared with Pearson’s correlation coe�cients calculated by the identical approach. Based on
the comparison between ROC and Pearson correlation, the visualization heat map presents similar
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Figure 4.1: MinMax scaled heat map
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Figure 4.2: Spearman rank-order correlation heat map energy v.s. temperature

results, but the ROC results show a more noticeable visualization e↵ect. The heat map of Pearson
correlation can be founded in Figure B.1. The ROC coe�cient is not a perfect indicator of en-
ergy consumption, as it only detects correlation. However, the ROC coe�cient can be calculated
quickly and makes it easy to calculate and observe weather dependence.

In addition to the outdoor temperature, other weather conditions, such as relative humidity,
solar radiation, and air pressure, were studied in relation to building energy consumption, as shown
in Figure 4.3. The results for air pressure can be seen in the Figure B.2, which shows a random
variation, which may be related to the randomness of the wind. The relative results for humidity
and solar radiation show an ordered variation. Interestingly, the results for humidity and radiation
show opposite correlation values, i.e., building energy consumption is almost positively correlated
with solar radiation and almost negatively correlated with air humidity. As the frequency of
the data decreases, the correlation between energy consumption and humidity becomes more
pronounced. This may be related to the fact that solar radiation and air humidity vary more
significantly over a longer period of time, e.g., longer than an hour. In addition, the Kropman
o�ce installed a photovoltaic system in 2015, and significant changes can be observed from the
hourly resolution data.
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4.2 Breakout Detection

The second step of data mining developed in this study is related to capturing typical and
atypical usage patterns from building energy consumption data. As described in subsection 3.4.1,
the goal of these functions is to quantify whether buildings have daily or weekly consistency, such as
whether certain building types have specific types of usage patterns. To improve the completeness
of the study, a process of energy consumption time series decomposition was used to extract trend,
seasonality, and residual information from the dataset, followed by breakout detection to quantify
variations in the steady-state of building energy consumption over the time horizon.

The classical additive decomposition method introduced in subsection 3.4.2 is applied to time
series data with a frequency of 1 week. The additive decomposition simplifies the calculation
and extracts the trend components from the original time series data using moving averages (see
Figure 4.4, Figure 4.5, Figure 4.6). The visualization results of one month clearly show a similar
trend calculated for the six temporal resolution data. Only the trend component of the daily data
is like a low-pixel picture compared to the trend component of the hourly data and others. On the
other hand, the extracted seasonal components are plotted for the same periodic period within
the same time frame. In this respect, only the daily time-resolution data indicate strong seasonal
features. The observed variation of the daily load profile is significantly lower than that of the
hourly load profile, suggesting that the former estimate is more accurate and preferable to the
hourly load profile.

However, periodicity still can be seen in the seasonal component of the hourly data and others,
indicating a higher frequency of the hourly and others load curve. Other periodicity frequencies
are also tested, such as 24-hour, 12-hour, 6-hour, 3-hour, 1-hour, and 15-minute listed in Table 4.1.
When the frequency of periodicity is higher, the data with higher resolution show stronger seasonal
characteristics (see Appendix C). After several attempts, the periodic frequency of 24 hours
already shows a significant seasonal component for time series decomposition at di↵erent temporal
resolutions as shown in Figure C.1, Figure C.2, and Figure C.3. The seasonal components are
removed accordingly for further breakout detection analysis in the following section.

Table 4.1: Periodic frequency settings for time series decomposition at di↵erent temporal resolution

Resolution Periodic Frequency

Daily 1 week
Hourly 24 hours
30-Minutely 12 hours
15-Minutely 6 hours
6-Minutely 1 hours
1-Minutely 15 minutes

In this case study, pattern consistency was determined by splitting a library of breakout detec-
tion from the R programming package. This package was developed by the social media company
Twitter to process their time-series data. As described in subsection 3.4.2, this function is used to
identify mean shifts in the dataset associated with abrupt jumps in time series data. The identi-
fied seasonal components are extracted out to eliminate the e↵ect of autocorrelation. (Figure 4.7,
Figure 4.8, Figure 4.9) illustrate the breakout detection process for a full year of data from the
case study building. The dataset includes six di↵erent temporal resolutions, and in this study,
30 days was chosen as the minimum threshold. The minimum threshold is periodically bounded.
Once a breakout is detected within the boundary period, it is not possible to test another mean
shift within the minimum unit time.
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Figure 4.4: Decomposition of daily and hourly data
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Figure 4.5: Decomposition of 30-minutely and 15-minutely data

E
↵
ects

of
T
em

p
oral

R
esolu

tion
on

D
ata

M
in

in
g

an
d

M
ach

in
e

L
earn

in
g

A
lgorith

m
s

in
th

e
B

u
ilt

E
nviron

m
ent

31



C
H
A
P
T
E
R

4.
R
E
S
U
L
T
S
A
N
D

A
N
A
L
Y
S
IS

Figure 4.6: Decomposition of 6-minutely and 1-minutely data
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CHAPTER 4. RESULTS AND ANALYSIS

The number of detected breaks gradually decreases to near zero based on daily data to 1-minute
data observations. This is a fact related to the smoothing e↵ect of the high-resolution data. In the
daily resolution data, nine breaks can be detected from a whole year of data, almost one break per
month. When the threshold size decreases, the number of detected breakouts gradually increases
due to the large fluctuations in the daily resolution data.
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Figure 4.7: Breakout detection to test for long-term volatility at daily (left) and hourly (right)
temporal resolution

In addition, a total of five breakouts are detected from hourly to 15-minute resolution data,
but the detected breakouts show di↵erent time points in between. A break is detected for July at
the hourly resolution, but the same breakpoint is not visible in the 30-minute and 15-minute data.
The point of the breakout was shifted to August. This di↵erence can be attributed to another
control parameter: the threshold penalty, which reduces the size of the mean shift of July in the
hourly data and enlarges the mean shift or jump of August in the 30-minute and 15-minute data.
The detected breaks of September and October for hourly data are then shifted to October and
November at 30-minutely and 15-minutely resolutions due to the minimum threshold of 30 days.
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Figure 4.8: Breakout detection to test for long-term volatility at 30-minutely (left) and 15-minutely
(right) temporal resolution

The penalty constraint parameters are all 0.00001 for hourly, 30-minutely, and 15-minutely,
while only 0.0001 for daily resolution. In 6-minute data, the penalty constraint shrinks to 0.000001
since more e↵ort is needed to detect the breakout. The processing time gets significantly longer
when temporal resolution gets higher. A total of 3 breaks are identified in the 6-minute data,
showing disruption in March, July, and September, but missing the interruption in the wintertime.
In the 1-minute data, only one breakout during July to August is identified, even with the penalty
constraint of 0.000001. Overall, the breakout point is most pronounced in the summer months,
indicating that most people who work in the Kroppman Building spend their vacations in the
summer.
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Figure 4.9: Breakout detection to test for long-term volatility at 6-minutely (left) and 1-minutely
(right) temporal resolution
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Figure 4.10: Breakout detection variation
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CHAPTER 4. RESULTS AND ANALYSIS

4.3 Clustering

The obtained knowledge from feature extraction and pattern identification are e↵ectively con-
ducted on unsupervised learning, i.e., cluster analysis, as discussed in subsection 3.5.1. Due to
the autocorrelation feature in the time series data, the data set is transformed into a load curve
with a time step of 24 hours. After that, the data are processed using min-max normalization to
identify the time series with equivalent energy consumption patterns.

As described in subsection 3.5.1, we look for elbow breaks in the index development, which
suggests that more clusters do not improve the clustering results. We calculate three selected
validation indices for each number of clusters from 2 to 10; Figure 4.11 shows the index develop-
ment. The MIA index shows almost no variation at low-resolution data, indicating stability and
almost immediate flattening, giving no indication of cluster selection. In contrast, the DBI index
exhibits more significant variability, and elbow points can be observed at the number of 4 clusters
in addition to hourly resolution data. The CDI index shows considerable variation and jagged
horizontal development, indicating no specific number of clusters. The above results indicate that
cluster analysis shows a more significant variation on higher resolution data, which yielded better
scores, with the worst results when resolutions lower than 30 minutes.
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Figure 4.11: Clustering index values

Better clustering results are visible at resolutions higher than 30 minutes, while the DBI index
values for 15-minute and 30-minute data are much lower than those for 6-minute and 1-minute data.
Figure 4.12 and Figure 4.13 show the corresponding plots of the mean values of the di↵erent clusters
in the case of four clusters at 15-minutely and 30-minutely resolutions. The typical commercial
energy consumption load curve can be clearly observed, where the energy consumption increases
from 8 am and decreases from 5 pm on weekdays. A clear pattern of energy consumption during
the weekend is also shown, indicating almost zero user activity. Besides, the nighttime energy
consumption may be related to the HVAC system running at midnight in the summertime among
weekday load profiles. Thus, a seasonal analysis is implemented to further study the relation of
clustering and seasonal patterns described in the following subsection.

E↵ects of Temporal Resolution on Data Mining and Machine Learning Algorithms in the Built
Environment

35



CHAPTER 4. RESULTS AND ANALYSIS

0 5 10 15 20
Hours [h]

0

2

4

6

8

10

12

E
n
er

gy
[k

W
h
]

Cluster 1

0 5 10 15 20
Hours [h]

0

2

4

6

8

10

12

E
n
er

gy
[k

W
h
]

Cluster 2

0 5 10 15 20
Hours [h]

0

2

4

6

8

10

12

E
n
er

gy
[k

W
h
]

Cluster 3

0 5 10 15 20
Hours [h]

0

2

4

6

8

10

12

E
n
er

gy
[k

W
h
]

Cluster 4

Clustered daily energy load profiles - 15Minute resolution

Figure 4.12: K-means clustering of 15 minutely data

Since the di↵erences between models and facts cannot be quantified naturally, we validate
the clustering results by the t-distributed stochastic neighbor embedding (t-SNE) technique. The
dimensionality reduction capability of t-SNE is particularly suitable for the visualization of high-
dimensional data sets. Figure 4.14 shows the visualization results of the reduced building energy
consumption data on a two-dimensional plane. A total of four clusters can be seen, and the
15-minute resolution dataset shows more robust clustering than the 30-minute data, indicating a
clearer clustering commercial building energy pattern at 15-minutely resolution.

In addition, we combine seasonal features with cluster analysis and apply the same clustering
approach to the four seasonal datasets at 15-minutely resolution, as shown in Figure 4.15. Due
to the high weather variability in both summer and winter, three clusters were found, while two
clusters were found in the spring and fall. The year’s highest temperature occurs in summer,
and the lowest temperature occurs in winter, which results in higher energy demand for cooling
and heating systems, respectively. From the summer dataset, the significant energy consumption
of the midnight load appears, which is related to the fact that the HAVC system runs longer in
summer. On the other hand, a significant increase in the heating system’s energy consumption
can be seen in load profiles of the winter season. In conclusion, the number of clusters verifies the
best clustering results for the 15-minute resolution data, showing the typical commercial energy
consumption load curve for di↵erent seasons.
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Figure 4.13: K-means clustering of 30 minutely data
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Figure 4.14: t-SNE validation of clustering
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Figure 4.15: Seasonal clustering
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CHAPTER 4. RESULTS AND ANALYSIS

4.4 Forecasting

To investigate the e↵ect of temporal resolution on forecasting, a variant of RNN, namely
LSTM networks, is applied to compare the predictive performance of data with di↵erent temporal
resolutions. As discussed in the previous chapter, the best approach is configuring the daily
resolution as the standard dataset for creating neural networks. The goal of creating architecture
is not to achieve the best prediction but to create a network that is easily adaptable to other
frequencies. Therefore, prediction performance is important but not a critical factor in defining
a neural network architecture. After testing several di↵erent architectures, the most e�cient and
least complex model is illustrated in Figure 4.16, which is the simplest architecture model that
was found more adaptable to other temporal resolutions.

Input 
layer

Memory 
block Dropout Memory 

block Dropout Output 
layer

Figure 4.16: Standard architecture of the LSTM models defined

Since the focus is on testing the relationship between temporal resolution and predictive per-
formance, the model structure simply consists of two memory blocks as the representative layer
of the LSTM model in this study. In addition, a dropout block is constructed after each memory
block as a regularization layer to remove incorrect information and avoid overfitting. Other types
of structures can improve the performance of the network, but they may generate some noise in the
analysis that interferes with the results. On the other hand, the memory block can be optionally
hyperparameterized to obtain better results. The defined neural network is tested using all the
hyperparameters, and the optimal configuration for di↵erent architectures is shown in Table 4.2.

Table 4.2: Hyperparameter seach

Resolution Units Batch size Learning

rate

Dropout

rate

Daily (16,10) 32 0.1 0.2
Hourly (16,10) 32 0.01 0.2
30-Minutely (16,10) 32 0.001 0.1
15-Minutely (32,10) 16 0.001 0.1
6-Minutely (32,10) 16 0.001 0.0
1-Minutely (32,10) 16 0.001 0.0

First, it is observed that the higher temporal resolution (1-30 minutely) needs more time for
understanding the structure of the data since their learning rate needs to be smaller. On the
other hand, the higher temporal resolution also uses more units where a larger dimension of the
output matrix is required, indicating the finer classification during the computation. Also, it can
be appreciated that higher temporal resolution requires a smaller batch size for each epoch because
of the more units. These results can be explained based on the fact that the same forecasting
period is one week in terms of the balance between dimensionality and information size. Otherwise,
the lower resolution requires much fewer units and batch size to improve computational e�ciency.
Finally, it can be connected that the higher resolution needs less value in the dropout. This can
be defended based on the fact that having more data makes the prediction understand the better
structure and then not learning from a specific structure avoiding the overfitting.

We have conducted experiments by aggregating the total energy consumption by 1 minute, 6
minutes, 15 minutes, 30 minutes, hourly, and daily. The resolution decreases as changing from
minutely to daily. We used LSTM models to compare the results of the experiments for the next
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one week of prediction. For the performance evaluation, the mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean square error (RMSE), and normalized root mean
square error (NRMSE) were used.
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Figure 4.17: Energy load forecasting by univariate LSTM

Figure 4.17 illustrates the prediction results of each LSTM model according to the temporal
resolution. It clearly shows better accuracy and reduced false predictions at finer resolutions,
but the processing time increases rapidly (see Table 4.3). It is fair that the data sample size
increases simultaneously with the time frequency. For the same reason, due to the computational
limitations of the computers used in the experiments, the 1-minute data set was trained using only
a 2-month sample, which is much less than the 6.9-year training sample used in the rest of data
sets. However, this also demonstrates that the 1-minute dataset can be used to predict building
energy consumption with a relatively small number of samples.

The predictive performance of the LSTM is compared between univariate and multivariate at-
tributes using an appropriate configuration framework to investigate the relationship between tem-
poral resolution and weather data. LSTM neural networks are able to solve forecasting problems
with multiple input variables simply. In general, multivariate attributes provide more information
for model training in recurrent neural networks to obtain better predictions.

Figure 4.18 shows that the prediction performance of the multivariate LSTM model is not much
improved compared to the univariate LSTM model. From Table 4.4, we can see that the accurate
evaluation of the multivariate LSTM model is actually slightly lower than that of the single-variable
LSTM model. Figure 4.19 shows a comparison of univariate LSTM and multivariate LSTM. The
processing time increases rapidly while accuracy only improves slightly from the univariate LSTM
model to the multivariate LSTM model. Therefore, we have shown that it can achieve a robust
commercial building energy forecast with only univariate inputs.
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Table 4.3: Performance metrics of univariate LSTM network

Resolution MAPE

(%)

MAE

(kWh)

NRMSE

(%)

RMSE

(kWh)

Process Time (second)

Daily 2.367 16.568 0.125 19.610 12.89

Hourly 0.012 1.973 0.118 2.955 486.93

30-Minutely 0.002 0.692 0.068 1.156 1782.66

15-Minutely 4.29 e-04 0.288 0.056 0.480 7220.89

6-Minutely 5.9 e-05 0.099 0.039 0.146 11751.21

1-Minutely 9.72 e-07 0.010 0.028 0.019
1620.22

(estimated: 67077.11)

Table 4.4: Performance metrics of multivariate LSTM network

Resolution MAPE

(%)

MAE

(kWh)

NRMSE

(%)

RMSE

(kWh)

Process Time (second)

Daily 3.272 22.901 0.166 26.051 11.82

Hourly 0.010 1.722 0.115 2.863 251.05

30-Minutely 0.003 0.786 0.065 1.103 3103.60

15-Minutely 3.84 e-04 0.258 0.050 0.423 12653.64

6-Minutely 6.1 e-05 0.102 0.044 0.166 23795.55

1-Minutely 9 e-06. 0.014 0.045 0.025
667.62

(estimated: 110557.87)
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Figure 4.18: Energy load forecasting by multivariate LSTM
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Figure 4.19: Comparison of univariate LSTM and multivariate LSTM
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4.5 Summary

This work analyzes the impact of temporal resolution in the mining and learning of building
electrical load profiles. Several algorithms have been systematically tested by changing the res-
olution of the input data (actual building energy consumption). The results are evaluated with
benchmark metrics and compared through visualization tools.

Data mining of load curve data is achieved by several techniques. The time-series data are
normalized using a min-max scaler to observe the variation within the load curve of building energy
consumption using a heat map format. In addition, the correlation between energy and weather
scenarios is investigated on the Spearman rank-order coe�cient for extracting time features. In
addition to temporal features, another important knowledge of pattern feature identification is
analyzed based on breakout detection, which evaluates the presence of seasonality in the data.
Data resolutions lower than the hourly resolution show more significant load patterns.

The quality of the learning algorithms is measured using various internal evaluators. The
reliability of k-means cluster members is based on MIA, CDI, and DBI evaluators. The 15-minute
resolution data show better performance and are able to show typical commercial building energy
load curves. On the other hand, the 15-minute resolution data performs best results through the
LSTM network and balances accuracy and processing time.
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Chapter 5

Discussion

5.1 Key Findings

In this thesis dissertation, data mining performs better with low-resolution datasets (e.g.,
hourly and daily resolution). The results of the energy and weather correlation analysis can provide
implications for the selection of model input features, and the breakout detection is suitable for
checking the abnormal activity of the building performance system. Low temporal datasets bring
the benefit of smaller datasets and result in shorter runtime, thus allowing analysts to extract
data knowledge faster. Fast processing time also reduces computational costs, resulting in less
complex hardware systems and the use of cheaper computers. In addition, fast extraction of data
knowledge allows analysts to apply the extracted information to machine learning later, leading
to the appropriate selection of relevant features and the appropriate setting of hyperparameters.
The rapid creation of data mining results allows the analyst or controller to react to any abnormal
activity at an early stage.

In machine learning, 15-minute resolution data is used to create a clear cluster of commercial
load patterns through k-means clustering algorithms, providing a useful basis for distribution
network operators and building performance system controllers. The 15-minute resolution data
also shows the best results through the LSTM network, balancing accuracy and processing time,
and the 15-minute data is also commonly used for decisions from grid control. Consistency in
the temporal resolution of the grid-side and building-side data sets can provide a more e�cient
communication system for demand-side management and building energy management systems.
Energy consumption data is extracted from a single commercial building, and the quality of the
dataset has a significant impact on model performance, especially for missing data. From the
energy consumption prediction results of the LSTM neural network, the neural network model is
able to predict future energy consumption based on short-term datasets with the high temporal
resolution, thus reducing the impact of missing data.

5.2 Implication of the Study

The primary implication of this study is the development and selection of temporal data
resolution for commercial energy consumers and the application with optimal configuration to
investigate data mining and construct machine learning models. Where most existing research
has been conducted in the built environment over low temporal resolution data sets and limited
resolution scale, this work tests the performance of Spearman rank-rank order correlation, breakout
detection, clustering techniques, and LSTM neural networks used in the commercial energy sector
at various temporal resolutions over a seven-year period. Best-practice approaches are validated
by providing a robust comparison of commonly used temporal resolution from the grid side and
building side and high-frequency data set.

The temporal resolution of data sets can cause a significant di↵erence when processing big data
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in terms of accuracy and runtime. Significantly, the errors generated at one moment are likely
inherited to following learning that emphasizes the demand for usable structure and fast compu-
tation. Based on the proper data resolution selection, the earlier reaction from the breakout can
be done in online learning with a shorter runtime, resulting in a favorable systematic environment
for both controller and consumers. A helpful basis will also be created for distribution network
operators in energy load clustering.

Unlike most previous studies that select one or two temporal resolution data for machine learn-
ing in the built environment, this study develops a qualitative evaluation framework that compares
six resolutions. By pointing out the appropriate data resolution for forecasting with qualitative
evaluation measures, an LSTM structure is selected that is more adaptable, representative, and
simple than what would have otherwise been the case. This has the advantage of reducing the
uncertainty on electrical system control when selecting the best temporal resolution.

This work will be of particular interest to energy generation and utility companies that are
seeking to develop and maintain their management system.

5.3 Limitation of the Case Study

This thesis project is a limited scenario with a distinct scope, and not all possible experiments
can be completed due to several variables such as time, data type, and even computational cap-
ability. The case study was selected from the load curve of the Kropman o�ce building, which
contains only one commercial building and represents a small percentage of the whole building
type. Other dwelling types such as residential buildings, schools, and universities were excluded
from this study. In addition, spatial factors were excluded because of potentially unreliable in-
strumentation between each o�ce.

The data available for this case study was 85 percent, and all data from June to July 2013
were missing and could not be interpolated due to the large time interval. Therefore, only seven
years of data from 2014 to 2020 were used in this study.

On the other hand, the limited CPU and RAM size of the experimental computer and the
lack of GPU prevented the use of larger neural network architecture to process large data sets.
The computers themselves are di↵erent from those used in industry, which may lead to di↵erent
results, such as processing time.

5.4 Limitation of the Used Methods

In this project, the dataset used is based on a specific time series phenomenon: the energy
consumption of a single commercial building in the Netherlands. Due to the domain of the study,
it was di�cult to find other datasets to test the findings and results of the paper. Therefore,
the exact mathematical relations and modifications of the neural network architecture cannot
be directly applied to other problems and cannot be used to change the temporal resolution of
the data. However, the general idea of reducing the learning rate by adding layers on higher
temporal resolution data should be successfully applied. The problem will be more related to
tuning the model parameters rather than studying the relationship between the results and the
various temporal resolutions, as this work is done in this thesis project.

The breakout detection inspects for abrupt changes in the time series data under the constraint
level given from an initial time threshold. The break is determined based on the variation in the
time series data, so it is challenging to apply it to very high-resolution data. Breakout detection
results for 1-minute resolution data have been very di�cult to detect any break within a year.

The applied unsupervised machine learning clustering algorithm is K-means clustering. The
starting prime is determined randomly, and the number of clusters is chosen based on their MIA,
DBI, and CDI scores and the generated profiles. However, these choices in determining the optimal
number of clusters are not fixed. The optimal value depends on the results and knowledge of the
data, so it is di�cult to reproduce it on di↵erent data samples.
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5.5 Comparison with Other Research

The results of this study are compared with other recent studies that have examined the
e↵ects of temporal resolution. The research areas have all investigated the performance of machine
learning algorithms in the built environments. Granell et al. showed that the k-means algorithm
is robust to data resolution e↵ects in the 4-60 minute time resolution range [72]. The k-means
algorithm is faster and is suitable for this type of research area. Better results are obtained at a
frequency of at least 30 minutes; ideally, 15 minutes or more, which helps electricity retailers to
identify di↵erences between consumers’ time-series electricity usage [72]. On the other hand, data
collected over 30 minutes will provide a valuable basis for distribution network operators, which
is consistent with the results of this thesis project.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This work analyzes the impact of temporal resolution on data mining and machine learning in
the built environment. Several algorithms are systematically tested by varying the resolution of
the input data (actual building consumption). The results are evaluated by visualization format
and performance benchmarking metrics.

Di↵erent temporal resolutions a↵ect the results of the Spearman Rank Order Coe�cient cor-
relation analysis. Lower than hourly resolutions provide a better indication of significant changes
in correlations between energy consumption load and weather scenarios, especially between energy
and temperature, humidity, and solar radiation. Breakout detection performs the optimal results
at a similar temporal resolution, where daily data are detected with the highest number of breaks
throughout the year. The greater the fluctuations in low-resolution data, the more significant the
changes in user behavior, ensuring that building managers are more likely to be aware of potential
abnormal activity. In contrast, higher resolution data such as 15 minutes achieves a good bal-
ance between accuracy and runtime when clustering and predicting through the simple k-means
algorithm and LSTM neural network, respectively.

The proposed work implies that a frequency of at least 15 minutes is required to help the
building managers and grid controllers to identify the di↵erences between time-series energy usage
data. The consistency of the grid-side and building-side temporal resolution allows the analyst to
implement the control or analysis model more e�ciently. We conclude that it is the best strategy
for extracting data mining knowledge from low-resolution data (e.g., daily) and for load pattern
clustering and energy consumption prediction using higher resolution data (e.g., 15 minutes).

6.2 Review of the Goals

At the beginning of this project, several goals were pronounced and define the scope of the
thesis project. These objectives will be analyzed along with the final statement of these previous
considerations.

1. Identify the e↵ects of various time resolution frequencies on data mining and machine learn-
ing in the built environment.
The project finds a way to examine the impact of various temporal resolution frequencies on data
mining and machine learning, including the process of exporting multi-step LSTM models from
specific temporal resolutions to di↵erent temporal resolutions based on the increase of layers and
in the decreasing of learning rates. In addition, defined clustering index values are established to
perform robust k-means clustering analysis for di↵erent temporal resolutions. Temporal features
and pattern recognition tools are also developed as well as appropriate visualization tools and
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parameter settings.

2. Specify use cases on di↵erent time resolutions for Kropman building data.
The results show that temporal resolution is an essential factor in mining and learning Kropman
building data. Lower resolution data (e.g., daily and hourly data) show more significant energy
consumption patterns than other time-frequency data. The higher resolution data allows the
model to capture the hidden structure and patterns of the time series sequences, which leads to
better results.

3. Analyze the e↵ects of resampling (Interpolation) due to data-imbalanced conditions on
modeling.
Detection of data-imbalanced conditions is incomplete in this study due to the modeling results
reach nearly 100% accuracy. The false-positive and false-negative may exist in the clustering
evaluation where a small number of unique load patterns are visible at both 15-minutely and
6-minutely resolution. The other evaluator should be applied, such as F-score. Besides that, the
best approach for changing the resolution of a time series data in this case study is to apply down
sampling. Down sampling is grouping the time series that dataset becomes more normalized and
avoiding the outliers. At the same time, the down sampled data still conserve the features and
properties of the original data.

4. Formulate and verify a general estimate of uncertainty due to resampling.
The metrics found are CDI, MIA, and DBI for cluster analysis; MAPE and NRMSE for LSTM
network models. these metrics show the error in relative performance measurements independent of
size and allow us to compare the actual level of error between actual and predicted values since the
error can be compared to other time-series data with various time frequencies and measurements.

6.3 Future Work

During the development of the master’s thesis project, several ideas have been on my mind,
some of which could not be implemented because they were not related to the thesis objectives or
there was not enough time to implement them. All these ideas will be presented below to indicate
future areas of research.

1. Studying deeper of the machine learning for creating a structure that improves the current
results. More rigorous analysis of techniques, including the k-means with di↵erent numbers
of clusters and LSTM neural networks with di↵erent architecture, is warranted.

2. Create a method to find the best hyperparameter settings based on some steps automatically.
Epochs will be a↵ected by the batch size, depending on the time steps and resolution. Online
learning shows an advantage with updating weights after each training instead of modifying
the batch size, which can learn faster and simplifying the process.

3. Embedding spatial analysis in research to enhance spatio-temporal features and break the
limits of building type. The current study is limited to commercial buildings in the southern
Netherlands. However, the combination of spatial analysis would be a useful adaption in
a subsequent study, such as di↵erent dwelling types and locations. Multiple applications
would be extended to fit in more circumstances.
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Appendix A

Literature review search result

Figure A.1 and Figure A.2 show the search results based on using the key words as defined
search term in Table 3.1.

No. Group Problem Intervention Intervention Intervention Hits New Hits
Fixed Focus 1 Focus 2 Outcome

1 A temporal building energy consumption forecasting 15 15
2 B temporal building energy consumption accuracy 19 13
3 C temporal building energy demand forecasting 3 1
4 D temporal building energy demand accuracy 9 6
5 E temporal household energy consumption forecasting 4 2
6 F temporal household energy consumption accuracy 3 3
7 G temporal household energy demand forecasting 3 1
8 H temporal household energy demand accuracy 4 0
9 I temporal residential energy consumption forecasting 6 0
10 J temporal residential energy consumption accuracy 6 0
11 K temporal residential energy demand forecasting 4 1
12 L temporal residential energy demand accuracy 6 1
13 M temporal resolution building energy consumption forecasting 2 0
14 N temporal resolution building energy consumption accuracy 2 0
15 O temporal resolution building energy demand forecasting 0 0
16 P temporal resolution building energy demand accuracy 0 0
17 Q temporal resolution household energy consumption forecasting 1 0
18 R temporal resolution household energy consumption accuracy 0 0
19 S temporal resolution household energy demand forecasting 0 0
20 T temporal resolution household energy demand accuracy 0 0
21 U temporal resolution residential energy consumption forecasting 0 0
22 V temporal resolution residential energy consumption accuracy 0 0
23 W temporal resolution residential energy demand forecasting 1 0
24 X temporal resolution residential energy demand accuracy 1 0
25 Y temporal granularity building energy consumption forecasting 0 0
26 Z temporal granularity building energy consumption accuracy 1 0
27 AA temporal granularity building energy demand forecasting 0 0
28 AB temporal granularity building energy demand accuracy 1 0
29 AC temporal granularity household energy consumption forecasting 0 0

Research terms for literature review on effect of temporal resolution

Figure A.1: Literature review search results based on the defined search terms-1
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30 AD temporal granularity household energy consumption accuracy 0 0
31 AE temporal granularity household energy demand forecasting 0 0
32 AF temporal granularity household energy demand accuracy 1 0
33 AG temporal granularity residential energy consumption forecasting 0 0
34 AH temporal granularity residential energy consumption accuracy 0 0
35 AI temporal granularity residential energy demand forecasting 0 0
36 AJ temporal granularity residential energy demand accuracy 1 0
37 AK resampling building energy consumption forecasting 0 0
38 AL resampling building energy consumption accuracy 1 1
39 AM resampling building energy demand forecasting 0 0
40 AN resampling building energy demand accuracy 0 0
41 AO resampling household energy consumption forecasting 0 0
42 AP resampling household energy consumption accuracy 0 0
43 AQ resampling household energy demand forecasting 0 0
44 AR resampling household energy demand accuracy 0 0
45 AS resampling residential energy consumption forecasting 0 0
46 AT resampling residential energy consumption accuracy 0 0
47 AU resampling residential energy demand forecasting 0 0
48 AV resampling residential energy demand accuracy 0 0
49 AW sampling frequency building energy consumption forecasting 0 0
50 AX sampling frequency building energy consumption accuracy 1 1
51 AY sampling frequency building energy demand forecasting 0 0
52 AZ sampling frequency building energy demand accuracy 0 0
53 BA sampling frequency household energy consumption forecasting 0 0
54 BB sampling frequency household energy consumption accuracy 0 0
55 BC sampling frequency household energy demand forecasting 0 0
56 BD sampling frequency household energy demand accuracy 0 0
57 BE sampling frequency residential energy consumption forecasting 0 0
58 BF sampling frequency residential energy consumption accuracy 0 0
59 BG sampling frequency residential energy demand forecasting 0 0
60 BH sampling frequency residential energy demand accuracy 0 0

Figure A.2: Literature review search results based on the defined search terms-2

56E↵ects of Temporal Resolution on Data Mining and Machine Learning Algorithms in the Built
Environment



Appendix B

Correlation heat map
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Figure B.1: Pearson correlation heat map energy v.s. temperature
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Figure B.2: Spearman rank order correlation heat map energy v.s. pressure
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Appendix C

Pattern identification

Figure C.1: Decomposition of 1-hourly data with 24 hours frequency
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Figure C.2: Decomposition of 30-minutely data and 15-minutely data with 24 hours frequency
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Figure C.3: Decomposition of 6-minutely and 1-minutely data with 24 hours frequency
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Figure C.4: Decomposition of 30-minutely data and 15-minutely data with various frequencies
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Figure C.5: Decomposition of 6-minutely and 1-minutely data with various frequencies
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