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Abstract

The rapid growth of the e-commerce market causes increasing demands on automated pick and
place technology. A possible solution to meet these demands is through the introduction of ro-
botic tossing of packages onto conveyor belts. Besides the increase in handling speed, the tossing
of packages gives the additional benefit that packages can be tossed outside the reach of the robot
arm.

A widely used gripper, for the robotic picking and placing of packages, is the bellows suction cup.
Due to its compliance, the bellows suction cup enables the robot arm to pick up a large variety of
packages. When making a tossing motion with the robot arm, the bellows suction cup will deform
due to this compliance. To predict the deformation of the bellows suction cup, the currently un-
known bellows suction cup dynamics need to be identified and modeled. Being able to predict the
bellows suction cup dynamics, when holding a package, is the first step to predicting the release
pose of the package and thus also the first step to predicting the final rest-pose of the package on
the conveyor.

In this report, the compressed bellows suction cup (when holding a package, the bellows suction
cup is compressed) is considered as a massless elastic element. Hereto, the stiffness is modeled
as a 6-dimensional spring. Based on literature, a spring potential energy function is built, from
which a spring wrench is derived. To capture the damping of the bellows suction cup, also a 6-
dimensional damper is modeled. Using OptiTrack motion capture measurement data, the stiffness
and damping parameters are identified experimentally. For this parameter identification, i.e., the
estimation of the stiffness and damping matrices, we used inverse dynamics in combination with a
weighted linear least-squares approach. Using the estimated stiffness and damping matrices, the
forward dynamics are simulated for a known tool-arm trajectory. To validate the outcome, the
simulation results are compared to the actual measured pose data.
To identify the stiffness and damping by using inverse dynamics, there is a clear need to estimate
the linear and angular velocity and acceleration from the measured pose data. Since that the
usage of finite different methods leads to inaccurate estimates of the linear and angular velocity
and acceleration, due to the measurement noise, a new method is proposed to estimate the linear
and angular velocity and acceleration in 3-dimensional space. This new method is the usage of a
Savitzky-Golay filter, which is a moving averaging window, on SO(3)× R3 data.

The validation shows some first promising results. However, the mismatch between simulation
outcome and measurement data is still too large and shows that there is still a lot of space
for improvement. For the continuation of research, several recommendations are presented on
the improvement of the modeling as well as the identification aspects of the current research.
Herein, the most important recommendation would be changing the identification procedure to
an approach in which a prediction-error method is used.
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Nomenclature

Acronyms

PA Package
RA Robot arm
SC Suction Cup
TA Tooling arm

Groups, algebras, and sets

e Identity element of a Lie group
g1 Element of Lie group G
g Point on tangent space of a Lie group
G General Lie group
h1 Element of Lie group H
H General Lie group
R Set of real numbers
se(3) The Lie algebra of SE(3)
SE(3) The Special Euclidean group in 3 dimensions
so(3) The Lie algebra of SO(3)
SO(3) The Special Orthogonal group in 3 dimensions
Tg1G Tangent space of a Lie group G considered at g1 ∈ G
◦ Lie group operator on G
• Lie group operator on H

Greek symbols

β Set of estimated forces and torques
AδHB The infinitesimal perturbation of the pose
B∆A,B The trivialized infinitesimal perturbation, a twist
η Column of parameters to describe polynomial ξ
θ Angle of rotation in rad
µ The average estimated force and torque in every direction
ξ A polynomial

BτSC )Pa The torque in Nm from the suction cup to the parcel at frame B
ω Angular velocity in rad/s

Roman symbols

A World coordinate frame
A Matrix containing coefficients of linear system
[A] Orientation frame associated to A
A [B] Frame with origin oA and orientation of A
b Column vector with forces and torques
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B Body-fixed frame located at center of mass of the package
D 6× 6 damping matrix
e Error
E Frame associated to the tip of the tooling arm as defined in this report
EM Frame associated to the tip of the tooling arm as defined in Motive
Eg Gravitational energy of the package
Ekin Kinetic energy of the package

BfSC )Pa The wrench acting from the suction cup on the parcel at frame B

BfSC )Pa The force acting from the suction cup on the parcel at frame B in N
fg Gravity acting on the package in N
F Frame fixed to center of mas ob object (plastic plate or cylindrical weight)
g Gravitational acceleration of 9.81 m/s
AHB Homogeneous transformation from B to A
I3 3× 3 identity matrix

BIB 3× 3 inertia tensor w.r.t. frame B
K 6× 6 stiffness matrix
l0 Nominal length of bellows suction cup during holding phase in m
l1 Link length between frames S1 and S in m
l2 Link length between frames S2 and E in m
L1 Part of the bellows suction cup between S1 and S
L2 Part of the bellows suction cup between E and S2

m Mass of the package in kg
M Motive calibration frame

BMB Inertia tensor with respect to frame B
n Order of polynomial used for Savitzky-Golay filtering
nw Number of data points on each side of the center point of the window
N Number of discrete time data points
oB Origin of frame B
AoB Position of frame B w.r.t. A in m
p An arbitrary point
P Parametrization of the damping matrix
P0 Potential energy of the spring
Pg Gravitational potential energy
Q Covariance matrix
ARB Rotation matrix from B to A
S Frame fixed to the center of the suction cup lip as defined in this report
SM Frame fixed to the center of the suction cup lip as defined in Motive
S1 Lower frame placed at the center of stiffness
S2 Upper frame placed at the center of stiffness
t Time in s
tk Time in s at index k
v Linear velocity
AvA,B Right trivialized velocity of B w.r.t. A written in A
BvA,B Left trivialized velocity of B w.r.t. A written in B
w Window defined for the Savitzky-Golay filtering
W Weighting matrix for weighted least-squares method
x Column vector of unknown stiffness and damping matrix entries

BXA Coordinate transformation from A to B
AXB Linear transformation from B to A
Z 6N × 6N matrix with weighting matrix W blocks on the diagonal
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Subscripts, superscripts, and operations

(·)∨ ‘Vee’ operator: matrix to vector representation of algebra element
(·)∧ ‘Hat’ operator: vector to matrix representation of algebra element
‖(·)‖ The Euclidean norm of a vector
(·)−1 The inverse of a square matrix
(·)T The transpose of a matrix

(̂·) Estimated by using a Savitsky-Golay filter
(̄·) Estimated via finite difference
˙(·) First time derivative

(̈·) Second time derivative
(·)SC )PA Working from SC on PA
(·)× Cross product on R3

(·)×̄∗ 6× 6 matrix representation of the dual cross product
(·)z Indicating the z component
d exp The right trivialized tangent of the exponential mapping
d2(+) exp The right trivialized geometric Hessian of the exponential mapping with re-

spect to the (+) Cartan-Schouten connection
exp The matrix exponential
log The matrix logarithm
tr The trace of a square matrix, sum of its diagonal elements
var The variance
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Chapter 1

Introduction

1.1 Context and motivation

Over the years, e-commerce and global parcel traffic have shown significant growth [1, 2]. With
the expectations that these will keep increasing, the demand for logistic labor continues growing
[3]. However, a shortage in the working population prevents uniform expansion [4]. To keep up
with the increasing logistic demand, there is a clear need to increase the workforce productivity,
i.e., the number of processed items per labor hour needs to increase. A solution to the shortage of
labor would be the usage of automation systems. Examples of automation systems that already
have been implemented in logistic warehouses to increase the workforce productivity are transport
systems, picking systems, and sorting systems. However, the problem is that these automation
systems often cannot handle a wide variety of packages or are either too slow, have a too large
footprint, and/or are too expensive.

The overall goal of the current research, as a part of the I.AM. project [5], is increasing the work-
ing speed of picking systems. These picking systems are robot arms that pick up packages and
place them on running conveyor belts, see Figure 1.1. Up to the present, this placing is carried
out by moving the robot arm along the running conveyor to reach a similar speed before placing
the package on the belt. To increase the working speed, a solution could be to start tossing the
packages instead of placing them. According to Saccon [6], the expectation for this more dynam-

Parcel

Bellows suction cup

Conveyor

Tooling arm

UR10

Figure 1.1: A picture showing the UR10 robot arm, the tooling arm, the conveyor, a parcel, and
the bellows suction cup, which is also called the gripper.
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Chapter 1. Introduction

ical way of handling packages is a 10% increase in working speed of the robot arm. This increase
in working speed leads to higher workforce productivity, i.e., more processed packages per labor
hour, and thus a higher capacity. This higher capacity could result in lower costs per package.
Besides these benefits, the tossing of packages gives the option to toss the packages outside the
robot arm its reachable area. For example, this could be an advantage when sorting packages and
putting them in different bins. More bins could be reached and with that fewer robots would be
needed. One of the goals of the I.AM. project is to predict the end-state, position and orientation
(in the remainder of this report called the pose), of tossed parcels, with a maximum mass of 4kg.
When being able to predict the end-state of a tossed parcels, the control input of the robot arm
can be designed such that the desired parcel end-state can be obtained. For this reason, there is
a clear need to develop a numerical model which can describe the dynamics of the tossing of parcels.

The robotic tossing of packages can be divided roughly into three main phases, see Figure 1.2.
The first phase would be when the package is in contact with the suction cup. When the package
loses contact with the suction cup, the second phase starts, which is the free flight of the pack-
age. The third and last main phase of robotic tossing starts at the moment the package touches
the conveyor belt until it reaches its final end-state and does not move anymore with respect to
the running conveyor belt. As part of the I.AM. project, a study on this last main phase, the
impact of boxes on a running conveyor belt, is performed by Poort [7]. When zooming in on
the first main phase of the robotic tossing of packages, the time that the package is in contact
with the suction cup, this phase can be divided into two sub-phases, namely the holding phase
and the release phase. The holding phase is the time that the ejector creates an underpressure
within the bellows suction cup, such that the parcel sticks to the bellows suction cup. During
the holding phase, the bellows suction cup is compressed due to the partial vacuum created by
the ejector, see Figures 1.3a and 1.3b. The second sub-phase, the release phase, starts when the
signal is given to release the parcel until the contact between the package and suction cup is broken.

This report focuses on the first sub-phase of the contact phase, the holding phase. When a package
is held by a bellows suction cup and the robot does move, the bellows suction cup will deform.
This deformation of the compressed bellows suction cup depends on several aspects, such as: the
package (mass, inertia, and shape), the gripping position of the suction cup on the package, the
pressure within the suction cup, the movements of the gripper by the robot arm, and of course
the type of suction cup used to hold the packages. To predict the deformation of the compressed
bellows suction cup, and with that the state of a package, there is a clear need to identify and
model the currently unknown bellows suction cup dynamics. This includes the identifying and
modeling of the stiffness and damping of the compressed bellows suction cup.

t1 t2

t3 tf

Figure 1.2: Schematic representation of the three phases during the tossing of packages: t1, the
first phase where the package is in contact with the gripper; t2, the second phase when the package
is in free flight; t3, the third phase where the package hits the conveyor and comes to its final
end-state at tf .
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1.1. Context and motivation

1.

1

2

3

4

5

(a) (b)

Figure 1.3: Two pictures of the gripper holding a plastic plate. In Figure (a) the following parts
are indicated: the input airflow tubes for the ejector (1); the tool-arm (2); the compressed bellows
suction cup (3); the plastic plate (4); and the weights, which are rigidly attached to the plastic
plate (5). Figure (b) shows a close-up picture of the bellows suction cup being compressed by
holding a package.

The bellows suction cup, evaluated in this project, is of type piGRIP S1-7 made by Piab [8],
see Figure 1.4. The bellows in combination with the soft foam on the lip make sure that the
suction cup can handle the compliance and large dimensional tolerances, which makes it suitable
for handling the large versatility in packages [9]. However, due to its bellows, the suction cup is
not stiff in all directions and does bend quite easily. Note that the bellows suction cup is axially
symmetric, which will be used for modeling the stiffness and damping of the bellows suction cup.
Furthermore, a bellows-type suction cup has a lower holding force as well as a bigger chance
of residual flow (leakage) compared to a bellowless design. The leakage typically occurs under
considerable accelerations of the robot arm, which could lead to unwanted release of the package.
This leakage is not considered in this project, since this project focuses on the identification of
the bellow suction cup during the holding phase. However, this needs to be a point of attention
in further research, especially for the release phase and the robot motion planning for the actual
tossing of parcels.

1

2

3

4

Figure 1.4: A schematic representation of the used bellows suction cup of type piGRIP S1-7 made
by Piab [8]. The different parts are: a Male G-thread fitting of size 3/8” (1), three bellows (2),
lip of 70 mm in outer diameter (3), and soft foam (4).
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Chapter 1. Introduction

1.2 Literature review

In this section, a literature review is presented. First, in Section 1.2.1, some literature about
automation and robotic tossing is presented. Thereafter, in Section 1.2.2, the found literature
about the modeling of stiffness of elastic elements in 3D space is presented.

1.2.1 Automation and robotic tossing

There has already been done a lot of research in the automation of logistic work [11, 12]. Some of
these face the challenge to speed up the package handling of pick-and-place system. An example of
this is [13]. This paper presents an approach for optimal smooth trajectory planning of high-speed
pick-and-place parallel robots. The goal of the current research, as a part of the I.AM. project, is
to speed up the package handling of a picking robot by tossing the packages on a conveyor belt.
The robotic tossing of items is a quite new field of research. However, an example of an already
existing tossing robot arm is the TossingBot [10], shown in Figure 1.5a. The TossingBot can
throw 600 items of several different shapes per hour, but with only a success rate of 85% that the
items end up in the correct bin. Note that the bins are placed outside the robot arm its reachable
area. To achieve this, physics-based models are used to plan the release position and velocity, and
to calculate the aerial trajectory along the ballistic path, in combination with deep learning for
the control of the TossingBot. When comparing the results of the TossingBot with the current
research, one should note that the tossing of items in a bin is a simplified problem compared to
the tossing of items on a conveyor belt, see Figure 1.1. This is because the impact dynamics are
less relevant; namely, for tossing parcels on the conveyor the constraints on the rest-pose are more
strict. Once an item is tossed in a bin, it cannot bounce further to the next bin. However, when
an item is tossed on a conveyor belt, it can bounce further which results in a different rest place
of the tossed item on the conveyor belt.
In this MSc. project, the experiments will be performed using an already existing robot arm
system, namely, the Smart Item Robotics system (SIR), shown in Figure 1.5b, which is designed
by Smart Robotics [14] in collaboration with Vanderlande [15]. This robot has 6 Degrees Of
Freedom (DOF) which provides considerable flexibility allowing the robot to handle a wide variety
of items of variable shape and size. Furthermore, the UR10 has a 1300 mm work radius and can
carry a payload up to 10kg [16]. Up till now, the SIR system is used for bin-to-bin applications
[17] (picking from and placing in stationary bins) and bin-to-belt applications [18] (placing on
a running conveyor belt). For both applications applies that the dimensions of the package are
taken into account before placing the package in a bin or on a belt. Additionally, intelligent
stacking enables the efficient positioning of goods in a bin, while products are handled smoothly

(a) (b)

Figure 1.5: In here: (a) shows the TossingBot tossing objects in bins [10] and (b) shows the SIR
system executing a bin-to-bin task.
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1.2. Literature review

and securely [19]. This intelligent way of stacking items in a bin can be used for picking, with a
capacity of up to 600 items per hour [20]. To deal with the many different package types, the SIR
system is equipped with a vacuum suction gripper. An ejector generates the partial vacuum in
the suction cup using the Venturi effect [21]. The used ejector in the SIR system can make use of
blow-off, which shortens the release time.

1.2.2 Bellows suction cup dynamics

Suction cups are widely used in pick-and-place robot systems. An already given example is the
SIR system. Another example of the usage of a suction cup is the depalletizing robot of [22].
Furthermore, the usage of a suction cup can also be combined with other gripping tools, such as
in [23]. In here, a suction cup is combined with a three-fingered robotic grabbing system. Even
though the suction cups are widely used, there is not a lot of specific literature about the iden-
tification and modeling of the dynamic behavior of a bellows suction cup. However, the bellows
suction cup could be considered as an elastic element, connecting the tooling arm with the package
during the holding phase.

About the modeling of stiffness, the following relevant literature is found. Fasse and Breedveld
studied the spatial-geometric modeling of elastically coupled ridgid bodies. To model the elasti-
city, a potential energy function should be obtained. From such elastic potential energy function,
a spring wrench can be obtained. In [24], Fasse and Breedveld state some criteria which an elastic
potential energy function should satisfy. The criteria are: (1) The potential energy functions
should be sufficiently diverse. Given any local stiffness behavior, there must exist parameters that
exactly model this local behavior. (2) The potential energy functions should be parsimonious.
There should not be more parameters than necessary to model arbitrary local behavior. Together,
sufficient diversity and parsimony imply that the parameters of the energy function can be identi-
fied with the stiffness matrix [25]. (3) The potential energy functions should be frame-indifferent.
If both rigid bodies undergo the same rigid body transformation then the potential energy should
be unchanged. Frame-indifference implies that Newton’s third law of motion does hold, thus the
wrenches acting on the bodies are equal and opposite. (4) The potential energy function should
be port-indifferent. If a potential function is port-indifferent, then it does not matter which body
is named which. So, reversing the names of the frames does not influence the potential energy.
In [24] and the follow-up paper [26], Fasse en Breedveld modeled the elastic element as two rigid
bodies, connected via a 6-dimensional spring. Furthermore, Fasse and Breedveld provided mul-
tiple spring wrenches, however without providing the corresponding potential energy functions.
These wrenches differ in the parametrization of the pose. They provide a spring wrench based
on a set of twists se(3), which maps a set of rigid body transformation SE(3) via the exponential
mapping. This spring wrench based on twists is however not used, since it had no clear physical
interpretation. Furthermore, they provide a method based on generalized coordinates where they
parametrized the rotation by Euler angles, which is also not used in this report. When describing
the orientation by an Euler (like) angle parametrization, this would give a discontinuity in the
mapping. This discontinuity would appear for angles near 0 or 2π [27]. Therefore, in this report,
we come up with a new potential energy function using the criteria defined by Fasse and Breedveld.

The work of Zhang [25, 28] is a continuation of the work of Fasse and Breedveld. Furthermore,
Zhang gives a representation of rigid body displacement by using a combination of Cartesian co-
ordinates and quaternions. The work of Qui shows a screw theory based stiffness analysis [29].
Furthermore, in [30], Qui provides a 6-dimensional compliance analysis and validation of ortho-
planar springs. In [31], Zefran provides a geometric approach to the study of the Cartesian stiffness
matrix. Stramigioli and Duinham did research to variable spatial spring control for robot con-
trol applications [32]. In [33], Rangel provided a dynamic analysis of a single cylinder hermetic
reciprocating compressor. This paper could be interesting because he imposed some structure to
the stiffness matrix based on the geometry of the system. Furthermore, [34] presents a method
to identify nonlinear stiffness characteristics of elastic continuum mechanics. This identification
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approach is not followed in this report, which is elaborated upon in Section 4.3.2. However, this
paper could be useful for the improvement of the identification procedure of the stiffness and
damping matrices in further research.

Some studies investigate the performance of suction cups. In the theoretical and experimental
study [35], the performance of a flat suction cup is observed in the presence of lateral loads.
Furthermore, research on fast pick-and-place systems with suction cups [36] has been performed.
This research investigates the critically fast handling speed, which is the fastest possible movement
when holding an object such that it does not slip or fall from the suction cup. These last two
sources are interesting when studying the release of parcels, which is not a part of this report.

The challenge for this report is to come up with a model that describes the dynamics of the bellows
suction cup during the holding phase. Therefore, we want to come up with a potential energy
function that should describe the elastic energy of the bellows suction cup during the holding
phase. Hereby, the potential energy function should satisfy the criteria as stated by Fasse and
Breedveld. Furthermore, the damping of the bellows suction cup needs to be incorporated in the
model to predict the package state during the holding phase.

1.3 Problem definition and research goal

To increase the productivity of the logistic work, automation is needed. The problem is that the
current robotic manipulators are either too slow, too inflexible in usage, have a too large footprint,
and/or are too expensive. A possible (partial) solution for parcel picking systems being too slow
would be tossing the parcels instead of placing them by using a robot arm. However, there is still
a lot unknown about the dynamic handling of parcels, such as the dynamic behavior of the bellows
suction cup, which is used to hold the parcels. Therefore, numerical models should be created and
validated to predict the trajectory and final state of the tossed package. More precisely, this report
focuses on the identification and modeling of the bellows suction cup dynamics when holding a
package. So in the scope of this report, the problem definition is stated as:

Due to the currently unmodeled bellows suction cup dynamics, it is impossible to predict the pack-
age state accurately, given the tool-arm trajectory and velocity.

With “package state”, we indicate the pose and velocity of the package. The research goal is
defined directly from the problem definition, namely:

Construct and validate a model which describes the bellows suction cup dynamics, such that the
state of a package (with known properties) held by the gripper can be predicted accurately given the
tool-arm trajectory and velocity, and given underpressure in the bellows suction cup.

This research goal is divided into several sub-goals:

1. Collect relevant measurement data on the bellows suction cup dynamics and system paramet-
ers, and ensure that the data is reusable and publicly available to stimulate further research
on this topic.

2. Construct a model which describes the state (pose and velocity) of the fully known parcel
when held by the gripper.

3. Determine the limits of the constructed model, i.e., until what working speed (different accel-
erations and velocities of the robot arm and package) and for what package properties should
the model still predict the state of the package accurately.

The goal is to build a model which can predict the state of packages up to 4kg, as this is the
intended maximum weight of the parcels that will be tossed, for a given tool-arm trajectory and
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velocity. It is however hard to give an exact maximum allowed error of the predicted state, because
one of the goals of the I.AM. project is to predict the final parcel state when the parcel has landed
on the conveyor. This means that the maximum allowed error of the model describing the holding
phase depends on the accuracy of the models describing the release of the parcel and the model
describing the impact dynamics of the parcel on the conveyor. However, a first estimation for the
maximum allowed error could be a maximum of 5% error for making a shacking motion with the
tooling arm up to 3Hz.
The last sub-goal would be:

4. Compare the numerical and experimental data and determine the accuracy of the model.

Note that this project focuses on the identification and modeling of the dynamic behavior of the
bellows suction cup, solely during the holding phase. This means that only the deformation of
the bellows suction cup, as a result of the forces and moments working on the suction cup lip, is
considered. For predicting the actual state of the package at the moment of release, this report
would not be sufficient. First of all, the release phase is not considered in this report. Additional
research is needed to come up with a model which can describe the parcel-gripper dynamics during
the release. Such model should contain the dependency of the package state on the pressure within
the gripper. The use of blow-off will probably have a big influence on the package dynamics. The
second point of attention would be the deformation of the cardboard packages themselves. The
sides of the cardboard packages are quite flexible and the deformation of the package will have an
influence on the parcel-gripper dynamics. To isolate the bellows suction cup dynamics, the plastic
plate, as shown in Figure 1.3a, is used for performing the measurements instead of cardboard
parcels. The plastic plate is much stiffer compared to the sides of cardboard parcels and therefore
more suitable for performing experiments.

1.4 Structure of the report

The structure of this report will be as follows. Chapter 2 provides the mathematical preliminaries
for the work in the remainder of the report. First, in Section 2.1, the used Lie group theory
is elaborated, where after the used multibody notation for rigid body dynamics is presented, in
Section 2.2. In Chapter 3, the modeling of the bellows suction cup is presented. This starts in
Section 3.1 with the free body diagram of the bellows suction cup and package. Furthermore, the
model describing the dynamics of the package is presented. This is followed by an elaboration on
the modeling of the stiffness and damping of the bellows suction cup in Section 3.3 and Section
3.4, respectively. Finally, Section 3.5 provides information about the numerical implementation of
the model in MATLAB, together with some validation of this numerical implementation. Chapter
4 provides the information of the model parameter identification and the experimental data. In
Section 4.1, the measurement procedure and way of processing the data are presented. Hereafter,
in Section 4.2, measurements to identify the nominal length of the bellows suction cup during the
holding phase are presented. Next, in Section 4.3, the dynamic experiments to identify the stiffness
and damping of the bellows suction cup are elaborated upon. In this section, the Savitzky-Golay
filtering on SO(3)×R3, which is used to obtain approximations of the velocities and accelerations,
is elaborated upon. After that, the results of the parameter identification are presented in com-
bination with the validation of these results. In Chapter 5, the conclusions of this report and the
recommendations for further research on this topic are presented.
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Chapter 2

Mathematical Preliminaries

This chapter will provide the mathematical preliminaries for this report. First, in Section 2.1, the
used Lie group theory is elaborated upon. Thereafter, in Section 2.2, the used notation will be
introduced.

2.1 Lie groups theory

In this section, first the basic notation and operations on Lie groups are discussed. Next, two
well-known Lie groups are discussed. These are: the Special Orthogonal group, in Section 2.1.2,
which represents the orientation of a rigid body in 3D space; and the Special Euclidean group,
Section 2.1.3, used to describe the pose of rigid bodies in 3D space. The required theory is already
clearly presented by Jongeneel [37], and for reference purposes repeated in this section in a slightly
altered form.

2.1.1 Preliminaries on Lie groups

A Lie group is a group, which also is a smooth differentiable manifold, consisting of a set G and
an operator ◦, such that the following properties hold [38]:

• For any g1, g2 ∈ G it holds that if g1 ◦ g2 = g3, then g3 ∈ G.

• For any g1, g2, g3 ∈ G it holds that (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

• There exist an element e ∈ G, known as the identity, such that for any g1 ∈ G it holds that
g1 ◦ e = g1 and e ◦ g1 = g1.

• Every element g1 ∈ G has an inverse, denoted by g−11 such that g−11 ∈ G and for which holds
that g−11 ◦ g1 = e and g1 ◦ g−11 = e.

In a Lie group, the group operator and inversion are smooth functions. Furthermore, a Lie group
is known to be abelian if g1 ◦ g2 = g2 ◦ g1 for g1, g2 ∈ G. It is however well known that both
the Special Euclidean group SE(3) as well as the Special Orthogonal group SO(3) are nonabelian
groups, such that we can distinguish a left and a right translation, which will become clear in
Section 2.2. We will assume the operation is understood from the context, such that we will omit
its symbol for the sake of brevity.
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Figure 2.1: The exponential and logarithmic mappings on a Lie group transfer points between the
group and the tangent space. Here, g2 is mapped to g in the tangent space at g1 by the logarithmic
mapping. The inverse operation is accomplished by the exponential mapping.

The exponential and logarithmic map of a Lie group. Every Lie group comes with a
Lie algebra, which is the tangent space of the Lie group at the identity endowed with a binary
operation. The exponential and logarithmic map allow to transfer elements between the Lie group
and the Lie algebra. The exponential map locally maps an element of the tangent space to the
group, whereas the logarithmic map of a Lie group transfers elements from the Lie group to
its tangent space. In Lie group theory, the group product and inversion allow to transfer the
exponential and logarithmic mappings over the entire group. Consider Figure 2.1, where g1 and
g2 are both elements of the group G. A tangent space is considered at g1, indicated by Tg1G. A
point g ∈ Tg1G can now be mapped to the group, resulting in g2, according to

g2 = g1 exp(g). (2.1)

On the other hand, g2 can be mapped to the tangent space Tg1G resulting in g according to

g = log(g−11 g2). (2.2)

For more information on Lie groups and Lie algebras, the reader is referred to [39].

Direct product of groups. Another property of Lie groups allows us to combine groups. Given
the Lie group H with operation • and group G with operation ◦, it is given that the direct product
of these groups, denoted as H × G, is a Lie group as well. The formed Lie group consists of a
set, which is a Cartesian product of the sets of H and G, which results in the ordered pairs (h, g)
where h ∈ H and g ∈ G. The resulting group operation is defined component-wise such that

(h1, g1)(h2, g2) = (h1 • h2, g1 ◦ g2). (2.3)

2.1.2 The Special Orthogonal group SO(3)

The 3-dimensional Special Orthogonal group is formed by the set of R3×3 orthogonal matrices
with determinant equal to 1 given by

SO(3) := {R ∈ R3×3 | RTR = I3,det(R) = 1 }, (2.4)

which becomes a Lie group under the matrix product. The matrices R are referred to as rotation
matrices and describe the relative rotation of one frame to another. The Lie algebra of SO(3),
denoted as so(3), is identified by the 3× 3 skew-symmetric matrices of the form

ω∧ :=

 0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

 ∈ so(3), (2.5)
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where ω =
[
ωx ωy ωz

]T ∈ R3 and (·)∧ is known as the hat-operator as in [40, 41]. The
exponential mapping for SO(3) can efficiently be computed using Rodrigues’ formula as in [42, 43]
such that

R = I3 +
sin
(
‖ω‖

)
‖ω‖

ω∧ +

(
1− cos

(
‖ω‖

))
‖ω‖2

(
ω∧
)2
, (2.6)

where ‖ω‖ =
√
ω2
x + ω2

y + ω2
z . It is convenient to know that ωx, ωy, and ωz form the direction

of rotation and θ = ‖ω‖ gives the corresponding angle of rotation. The logarithmic map is then
effectively computed by inverting (2.6), which yields

θ =

cos−1
(

tr(R)−1
2

)
if R 6= I3,

2πk if R = I3,
(2.7)

ω∧ =

{
θ

2 sin(θ)

(
R−RT

)
if R 6= I3,

0 if R = I3,
(2.8)

where k is an arbitrarily chosen integer. Note that the exponential map is a many-to-one map
such that representations of R that rely on ω are not uniquely covering SO(3) [44]. Furthermore,
the inverse is given by the matrix inverse and the identity element is given by the 3 × 3 identity
matrix I3.

2.1.3 The Special Euclidean group SE (3)

The 3-dimensional Special Euclidean group is formed by the set given by

SE(3) :=

{
H =

[
R p

01×3 1

]
∈ R4×4 | R ∈ SO(3),p ∈ R3

}
, (2.9)

which becomes a Lie group under the matrix product. It is often referred to as the group of rigid
body transformations, and H is often referred to as a homogeneous transformation matrix. The
Lie algebra of SE(3), denoted by se(3), is identified by the 4× 4 matrices of the form[

ω∧ v
01×3 0

]
∈ se(3), (2.10)

with ω∧ ∈ so(3) and v ∈ R3. Given a vector v =
[
v ω

]T ∈ R6 with v ∈ R3 and ω ∈ R3, we
apply the hat-operator to write v as an element of se(3) according to

v∧ =

[
v
ω

]∧
=

[
ω∧ v

01×3 0

]
∈ se(3). (2.11)

Since ω∧ is equal to an element in R3 with the cross product, we will in the remainder refer to this
as ω ∈ R3

×, where the subscript (·)× refers to the cross product on R3. Physically, if v and ω are
expressed in a body-fixed frame, v corresponds to the linear velocity of the origin of that frame,
while ω corresponds to the angular velocity of the rigid body. In kinematics, elements of se(3) are
referred to as twists. The exponential mapping, which maps an element of se(3) to SE(3), is given
by the matrix exponential and, as shown in [41], every rigid transformation can be written as the
exponential of some twist. Furthermore, the inverse of an element H ∈ SE(3) is given by

H−1 =

[
RT −RTp
01×3 1

]
, (2.12)

and the identity element is given by the 4× 4 identity matrix I4.
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2.2 Multibody notation for rigid body dynamics

In this section, we present the notation of [40], as will be used throughout this report to describe
rigid body dynamics. First, in Section 2.2.1 it is shown how we formally write the position and
orientation of a rigid body. Next, in Sections 2.2.2 and 2.2.3, it is shown how the velocity of a rigid
body is expressed. There after, Section 2.2.4 shows how external forces and torques applied to
the rigid body are expressed. The content of these sections is an altered version of the work form
Jongeneel [37], such that the frames correspond to the frame definitions as used in this project. At
last, in Section 2.2.5, the used notation for differentiation in SE(3), SO(3), and R3 is presented.

2.2.1 Notation of coordinate frames and points

A coordinate frame is defined as the combination of a point, called the origin, and an orientation
frame in the 3D space. A capital letter is used to denote each frame. As example, for a frame
A, we will write its origin as oA and its orientation frame as [A] such that, formally, we write
A = (oA, [A]). Coordinate frames can move through space in time with respect to other coordinate
frames. They are typically assigned to rigid bodies to describe their position and orientation in
space.
For a point p, its coordinates with respect to A are written as the coordinate vector Ap. This co-
ordinate vector represents the 3D geometric vector ~roA,p connecting the point p with oA, pointing
towards p and is expressed in terms of A. Formally, we can write this as

Ap :=

~roA,p · ~xA~roA,p · ~yA
~roA,p · ~zA

 ∈ R3, (2.13)

where · denotes the scalar product and ~xA, ~yA, and ~zA are the unit vectors defining the orientation
frame [A]. Given the frames A and B, we describe the coordinate transformation from B to A
by use of the rotation matrix ARB ∈ SO(3). Note that this coordinate transformation is only
depending on the orientation and is independent of the positions of oA and oB . To describe both
the position and orientation of frame B relative to frame A, hereafter referred to as the pose, we
use the 4× 4 homogeneous transformation matrix AHB ∈ SE(3) given by

AHB :=

[
ARB

AoB
01×3 1

]
. (2.14)

2.2.2 Notation of rotational velocity

Any point p attached to a rigid body with coordinate frame B follows a path in spacial coordinates
given by

Ap(t) = ARB(t)Bp. (2.15)

The velocity of Ap(t) is then given by the time derivative of (2.15), resulting in

Aṗ =
d

dt
(Ap(t)) = AṘB(t)Bp. (2.16)

It follows that we can rewrite equation (2.16) as

Aṗ = AṘB
AR−1B

ARB
Bp, (2.17)

where we omitted the time dependencies for the sake of brevity. We can now conveniently define
the instantaneous spatial angular velocity as AωA,B ∈ R3, given by

Aω∧A,B := AṘB
AR−1B , (2.18)
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where we used (·)∧ as the hat-operator to write and element of R3 as a skew-symmetric matrix
according to (2.5). Similar to (2.18) we define the instantaneous body angular velocity as BωA,B ∈
R3, which is given by

Bω∧A,B := AR−1B
AṘB . (2.19)

2.2.3 Notation of rigid body velocity

We now consider both angular and linear velocities of a frame. Consider the homogeneous matrix
mapping a point expressed in terms of frame B to a point expressed in terms of frame A, as given
by (2.14). Similar to the property that multiplying AṘB by AR−1B results in a skew-symmetric

matrix, we can apply a similar operation to the homogeneous matrix. Multiplying AḢB from the
right by the inverse of AHB leads to

AḢB
AH−1B =

[
AṘB

AȯB
01×3 0

][
ART

B −ART
B
AoB

01×3 1

]

=

[
AṘB

ART
B

AȯB − AṘB
ART

B
AoB

01×3 0

]

=

[
Aω∧A,B

AvA,B
01×3 0

]
,

(2.20)

which takes the same form of (2.11), and is an element of se(3). The right trivialized velocity of
frame B with respect to frame A is then defined as

AvA,B :=

[
AvA,B
AωA,B

]
∈ R6. (2.21)

Similarly, by multiplying on the left, one obtains

AH−1B
AḢB =

[
ART

B −ART
B
AoB

01×3 1

][
AṘB

AȯB
01×3 0

]

=

[
ART

B
AṘB

ART
B
AȯB

01×3 0

]

=

[
Bω∧A,B

BvA,B
01×3 0

]
,

(2.22)

which results in the left trivialized velocity of frame B with respect to frame A, given by

BvA,B :=

[
BvA,B
BωA,B

]
∈ R6. (2.23)

The relation between the right and left trivialized velocity is given by the so called adjoint map
[45]. We will denote this by AXB and define it as

AXB :=

[
ARB

Ao∧B
ARB

03×3
ARB

]
∈ R6×6, (2.24)

such that the right and left trivialized velocities are related through

AvA,B = AXB
BvA,B . (2.25)
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2.2.4 Wrench notation

We can write the coordinates of a given wrench with respect to a frame B as

Bf :=

[
Bf

Bτ

]
∈ R6, (2.26)

where Bf is the translational component of the wrench and Bτ the angular component. This
wrench can be expressed in terms of another frame A by the use of the wrench coordinate trans-
formation AXB such that

Af = AXB
Bf . (2.27)

This coordinate transformation is closely related to the adjoint map AXB , given by (2.24), and is
defined as

AXB := BXT
A =

[
ARB 03×3

−ARB
Bo∧A

ARB

]
=

[
ARB 03×3

Ao∧B
ARB

ARB

]
. (2.28)

In some cases, one needs to express the wrench with respect to a frame B with the orientation in
terms of frame A. This is for example the case with gravity, where the direction of the gravity
force is independent of time with respect to the inertial frame A. This is possible by introducing
a new frame by combining the frames A and B. This frame is given as B[A] := (oB , [A]), hence,
the frame whose origin coincides with the origin of B and whose orientation coincides with the
orientation of A. In such a case, we can express the wrench as B[A]f . The relation between B[A]f
and Bf is then given by

Bf = BXB[A]
B[A]f , (2.29)

where, from (2.28), we obtain

BXB[A] =

[
ART

B 03×3
03×3

ART
B

]
. (2.30)

Finally, the time derivative of a wrench coordinate transformation AXB is given by

AẊB = AXB BvA,B×̄∗, (2.31)

where ×̄∗ represents the dual cross-product between a twist and a wrench as in [40] and whose
matrix representation is given by

BvA,B×̄∗ =

[
Bω∧A,B 03×3
Bv∧A,B

Bω∧A,B

]
. (2.32)

2.2.5 Notation of derivatives

Last, we consider the notation used for taking derivative on SE(3). Let AδHB denote the infinites-
imal perturbation of the pose of frame B with respect to frame A, such that AδHB ∈ TAHB

SE(3).
This can be expanded into the rotational an translation components as

AδHB =

[
AδRB

AδoB
01×3 0

]
, (2.33)

where AδRB ∈ TARB
SO(3). Now, let

B∆∧A,B := AH−1B
AδHB , (2.34)

where B∆A,B ∈ R6 denotes the trivialized infinitesimal perturbation. Note that B∆A,B is a twist
and that B∆∧A,B ∈ se(3). Again, expanding into rotational and translation components we have

B∆∧A,B =

[
B∆o

A,B
B∆R

A,B

]∧
=

[
B∆R∧

A,B
B∆o

A,B

01×3 0

]
, (2.35)
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in which B∆o
A,B denotes the linear part of the twist and B∆R

A,B the angular part of the twist,

such that B∆R∧
A,B ∈ so(3). We can write (2.34) as

AδHB :=AHB
B∆∧A,B , (2.36)

which can be expanded in

AδRB =ARB
B∆R∧

A,B , (2.37)

AδoB =ARB
B∆o

A,B . (2.38)

Equations (2.37) and (2.38) are expressions for the infinitesimal perturbation of the orientation
and position, which can be used for taking the partial derivative of a function which depends on
AHB .
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Chapter 3

Modeling the Bellows Suction
Cup Dynamics

In this chapter, the model used to describe the dynamics of the bellows suction cup during the
holding phase is introduced. First, in Section 3.1, the used coordinate frames and the equations
of motion are introduced. In Section 3.2, the nominal configuration of the bellows suction cup
during the holding phase is discussed. Hereafter, the stiffness and damping are elaborated upon
in Sections 3.3 and 3.4. The developed model will be used to simulate the forward dynamics, of
which the numerical implementation is discussed in Section 3.5.

3.1 Frame definitions and equations of motion

In this work, we will use frame A as an inertial frame, fixed with respect to the world surface, and
we express all motions with respect to this frame. We assign frame B to the center of mass of the
parcel or to the center of mass of plastic plate with rigidly attached weights, as shown in Figure
1.3a. Furthermore, we assign the frame S to the center of the contact area of the suction cup lip
with the package. These coordinate frames are schematically depicted in Figure 3.1.

From manual inspection can be concluded that it takes quite some force to make the suction
cup lip slip over the surface of the package/object held by the gripper. Therefore, the following
assumption is made.

Assumption 1 There is no slip between the suction cup lip and the package/object held by the
gripper during the holding phase.

Furthermore, in this project we assume.

Assumption 2 The package/object held by the gripper is rigid and does not deform.

Because of this assumption, the experiments are performed using a plastic plate with the rigidly
attached weights, as shown in Figure 1.3a, because the plastic plate is much stiffer compared to
the cardboard parcels. Because the weights are rigidly attached to the plastic plate, we also have
the following assumption.

Assumption 3 There is no moving mass in the parcel, the center of mass is always at the same
position in the parcel, so frame B will not move with respect to the parcel itself.

Because of these assumptions, we can say that the pose of the package with respect to the suction
cup lip is fixed, thus SHB is a constant. In other words, the bellows suction cup lip and the
parcel/object held by the gripper form one rigid body, with two assigned frames: frame S at the
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Figure 3.1: Frames E is the coordinate frame fixed to the tip of the tooling arm, the point where
the end-effector (bellows suction cup) is attached. Frame S is the coordinate frame fixed to the
center of the contact area of the suction cup lip with the package. Frame B is the frame fixed to
the center of mass of the package. Frame A is the absolute reference frame, which does not move
with respect to the earth.

center of the contact surface of the suction cup lip and package, and frame B at the center of
mass. By choice, we define that [S] := [B] for the holding phase, which means that SRB := I3.
In order to make a model of the holding phase, insights into the forces and moments between the
bellows suction cup and package are needed. Figure 3.2 shows a Free Body Diagram (FBD) which
contains these forces and moments. According to the third law of Newton, we state that

EfTA )SC = −EfSC )TA (3.1)

and

SfPA )SC = −SfSC )PA, (3.2)

where EfTA )SC is the wrench acting from the tool-arm on the suction cup at frame E, EfSC )TA
is the wrench acting from the suction cup on the tool-arm at frame E, SfPA )SC is the wrench
acting from the package on the suction cup at frame S, and SfSC )PA is the wrench acting from
the suction cup on the package at frame E.

Assumption 4 We assume that the bellows suction cup itself is massless as the deformation of
the bellows suction cup is mainly the result of the gravity and inertial forces of the held package.

Therefore, we can write the wrench equality

EfTA )SC = −EfPA )SC , or SfTA )SC = −SfPA )SC , (3.3)

where EfTA )SC is the wrench acting from the tool-arm on the suction cup at frame E; EfPA )SC is
the wrench acting from the package on the suction cup, written in frame E; SfTA )SC is the wrench
acting from the tool-arm on the suction cup, written in frame S; and SfPA )SC is the wrench acting
from the package on the suction cup at frame S.
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Although it is not of importance in this report, the tool-arm is not assumed to be massless.
Because of the mass of the tool-arm, we have that

EfRO )TA 6= −EfSC )TA, (3.4)

where EfRO )TA is the wrench acting from the robot arm on the tool-arm, written in frame E; and

EfSC )TA is the wrench acting from the suction cup on the tool-arm at frame E.
In order to model the dynamics of the package interconnected to the bellows suction cup during
the holding phase, we make use of Newton-Euler equations [27], given as

BMB
Bv̇A,B + BvA,B×̄

∗
BMB

BvA,B = BXS
SfSC )PA + Bfg, (3.5)

where is BMB the generalized inertia tensor of the package expressed in frame B, as elaborated
upon in Appendix A, SfSC )PA is the wrench acting from the suction cup on the package at point

oA
yA

zA

yE

zE

oB

oS

yB

zB

yS

fg

oE

zS

z

fSC ✮PA

τSC ✮PA

fPA✮SC

fSC ✮TA

τSC ✮TA

fTA✮SC

τTA

τRO ✮TA

fRO ✮TA

Figure 3.2: Free Body Diagram of the bellows suction cup and package in a planar perspective
during the holding phase. In the picture are: fg the gravitational force acting on the center of
mass of the package, fSC )PA and τSC )PA are the forces and moments acting on the package
coming from the suction cup, fPA )SC and τPA )SC are the forces and moments acting on the
suction cup coming from the package, fTA )SC and τTA )SC are the forces and moments acting on
the suction cup coming from the tooling arm, fSC )TA and τSC )TA are the forces and moments
acting on the tooling arm coming from the suction cup, and fRO )TA and τRO )TA are the forces
and moments acting on the tooling arm coming from the robot.
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S, and Bfg is the wrench describing the gravity acting at frame B, which is positioned at the
center of mass of the package. The gravity acting on the package is written as

Bfg =

[
−mg AR−1B

AzA
03×1

]
, (3.6)

where g is the gravitational acceleration. Note that the gravity acts per definition in the −zA
direction.

To model the dynamic behavior of the bellows suction cup and package during the holding phase,
the bellows suction cup and the interconnected package will be modeled as a mass-spring-damper
system. The wrench acting from the suction cup on the package, SfSC )PA, is the result of the
stiffness and damping of the bellows suction cup. Therefore, we have

SfSC )PA = SfSC )PA,spring

(
K,EHS

)
+ SfSC )PA,damper

(
D, SvE,S

)
, (3.7)

where SfSC )PA,spring
(
K,EHS

)
is the wrench resulting from the stiffness of the bellows suction

cup, which depends on the pose of frame S with respect to frame E and stiffness matrix K, and

SfSC )PA,damper

(
D, SvE,S

)
is the wrench resulting from the damping of the bellows suction cup,

which depends on the velocity of frame S with respect to frame E and damping matrix D. The
derivation of the spring and damper wrenches are presented in Sections 3.3 and 3.4, respectively.
Note that during the holding phase a (partial) vacuum is created by the ejector to hold the package.
Regarding this vacuum, we adopt the following assumption.

Assumption 5 The underpressure within the gripper maintains constant during the holding phase.

Because of this assumption, it is not necessary to model the force acting on the package as the
result of the underpressure within the bellows suction cup. This will be elaborated upon in the
next section. Furthermore, note that by writing the wrench that acts between the suction cup lip
and the package as (3.7), we make use of Assumption 1. Since we assume no slip between the
suction cup lip and package, there is no need to model the friction between the suction cup lip
and the package.

3.2 Nominal configuration bellows suction cup

When modeling the bellows suction cup and package as a mass-spring-damper system, we need
to consider the nominal configuration of the bellows suction cup. A choice could be the unloaded
suction cup, i.e., a suction cup that does not hold an object, as shown in Figure 3.3a. Herein, l0
indicates the nominal length of the bellows suction cup. Choosing this as the nominal configuration
results in the following static force equilibrium when holding a package, as shown in Figure 3.3b,(

SfSC )Pa,spring

(
K,EHS

)
+ SXB

Bfg

)
+ SfSC )Pa,pres = 0, (3.8)

where SfSC )Pa,pres is the wrench resulting from the underpressure within the suction cup. From
this, it can be concluded that by choosing the nominal configuration of the bellows suction cup as
the configuration during rest, we need to model both the spring force and the force resulting from
the underpressure.
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l0

oS

(a)

yE

zE

l0

fg

oB
yB

zB

fSC→PA,spring

oE

(

EoS
)

z

(b)

Figure 3.3: Two schematic representations of the bellows suction cup are presented. Figure (a)
shows the first option for the nominal configuration of the bellows suction cup, namely a suction
cup which is not loaded with any package. Figure (b) shows the forces which need to be modeled
when using the nominal configuration as depicted in Figure (a).

Another option for the nominal configuration is shown in Figure 3.4a, where l0 again indicates the
nominal length of the bellows suction cup. Herein is schematically shown how the bellows suction
cup is being compressed by holding an ideal massless plate. By choosing this as the nominal
configuration and because of Assumption 5, we obtain the static equilibrium as in Figure 3.4b,
when holding a package of a certain mass. This static equilibrium can be written as

SfSC )Pa,spring

(
K,EHS

)
+ SXB

Bfg (m) = 0. (3.9)

From (3.9), it can be concluded, that by choosing the nominal configuration as in Figure 3.4a, only
the stiffness needs to be modeled and thus not the pressure effect. This simplifies the model which
will be built to describe the bellows suction cup dynamics during the holding phase. Therefore,

yE

zE

Massless
plate

l0

fSC→PA,spring

oE

(a)

yE

zE

l0

fg

oB
yB

zB

o

S

(

EoS
)

z

(b)

Figure 3.4: Two schematic representations of the compressed bellows suction cup are presented.
Figure (a) shows the chosen nominal configuration of the bellows suction cup, namely the com-
pressed bellows suction cup when holding an ideal massless plate. Figure (b) shows the forces
which need to be modeled when using the nominal configuration as depicted in Figure (a).
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in the scope of this report, we choose the nominal length of the bellows suction as indicated in
Figure 3.4a.
By choosing the nominal bellows suction cup length during the holding phase as in Figure 3.4a,
we assumed that the pressure in the bellows suction cup stays constant. By changing the ejector
setting, this pressure level within the suction cup can be changed. Be aware that changing this
pressure level in the bellows suction cup would lead to a different nominal length of the bellows
suction cup, l0, and a different stiffness of the bellows suction cup. The identification of the
nominal length of the bellows suction cup during the holding phase is presented in Section 4.2.

3.3 Modeling of stiffness

In this section, the derivation of the spring wrench is presented. First, the frames for the relative
displacement and the center of stiffness are introduced in Section 3.3.1. Next, the derivation of the
spring wrench from a potential energy function is presented in Section 3.3.2. Finally, in Section
3.3.3, a small displacements approximation is given for the obtained spring wrench.

3.3.1 Frames for relative displacement

To obtain the spring wrench, SfSC )Pa,spring, we need to define the relative displacements of frame
S with respect to frame E. Therefore, we introduce the frames S1 and S2, which define the centers
of stiffness [24, 25, 28, 29], as shown in Figure 3.5a. These frames are attached to each other via a
coupled linear torsional spring. Furthermore, by definition it holds that [S1] = [S] and [S2] = [E].
When the suction cup is in nominal pose, as shown in Figure 3.5b, we have that frames S1 and
S2 coincide, which means that no spring force is working on the centers of stiffness.
The pose of frame S1 with respect to S2 in terms of frames E and S, can be obtained by

S2HS1

(
AHE ,

AHS

)
= S2HE

AH−1E
AHS

SHS1
. (3.10)

The pose of the tooling arm and the suction cup lip, AHE and AHS respectively, are known
from the measurement or simulation data. The remaining right-hand side terms of (3.10) can be

yE

Coupled linear
torsional spring

(a)

S1 = S2

l1

l2

Massless
plate

(b)

Figure 3.5: Two figures showing frames S1 and S2. Figure (a) shows a schematic picture indicating
frames S1 and S2 which are connected via a coupled linear torsional spring. Figure (b) shows the
nominal pose of the bellows suction cup for the holding phase. The massless plate indicates that
the bellows suction cup is compressed due to the underpressure within the gripper, but the bellows
suction cup is not elongated due to the mass of a package.
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explicitly written by

S2HE =

[
I3 l2

EzE
01×3 1

]
, (3.11)

SHS1
=

[
I3 l1

SzS
01×3 1

]
, (3.12)

where l1 and l2 are the constant link lengths as indicated in Figure 3.5b, and EzE = SzS =[
0 0 1

]T
. Note that

(
S2oE

)
x

=
(
S2oE

)
y

=
(
SoS1

)
x

=
(
SoS1

)
y

= 0, because of the symmetry

of the bellows suction cup. Substitution of (3.11) and (3.12) in (3.10) gives

S2HS1

(
EHS

)
=

[
ERS l2

EzE + l1
ERS

SzS + EoS
01×3 1

]
. (3.13)

The values for l1 and l2 are presented in Section 4.2.

3.3.2 Derivation spring wrench

To derive the spring wrench, we first need to come up with a spring potential energy function. From
this spring potential energy function we can then derive a spring wrench which has a geometric
meaning [24, 25, 28, 32]. At first thought, the following potential energy function would be a
candidate to describe the elastic energy of a 6-degree-of-freedom spring:

P0 (H) =
1

2

[
o

log (R)
∨

]T
K

[
o

log (R)
∨

]
, (3.14)

where we used the short-hand notation H = S2HS1
, R = S2RS1

, and o = S2oS1
. Furthermore,

the stiffness matrix can be written as

K =

[
Koo KoR

KRo KRR

]
∈ R6×6, (3.15)

where the translation (Koo) and orientation (KRR) terms are symmetric, and for the coupling
terms hold that KoR = KT

Ro. Hence, the stiffness matrix K is symmetric. Note that, in (3.14),
the orientation of frame S1 with respect to frame S2 is written as the logarithmic mapping of
the rotation matrix, which enables us to describe the orientation in three distinct rotations, in
contrary to Euler angles [27, 41, 46, 47].

When verifying the criteria for an elastic potential energy function, as established by Fasse and
Breedveld [24], we see that (3.14) is not port-indifferent, since that P0 (H) 6= P0

(
H−1

)
. For this

reason, the following potential energy function is suggested in this report:

P0 (H) =
1

2

[
1/2(I + RT )o

log (R)
∨

]T
K

[
1/2(I + RT )o

log (R)
∨

]
, (3.16)

where K still has the same structure as in (3.15). This new potential energy function, (3.16),
is port-indifferent and also satisfies the three other criteria of Fasse and Breedveld, as described
in Section 1.2. Note that this chosen potential energy function is not the only possible potential
energy function. There are possibly many more candidate potential energy functions, which could
satisfy the requirements as stated by Fasse and Breedveld [24]. Just like (3.16), these potential
energy functions should describe the local stiffness for small deformations, R ≈ I3 and o ≈ 03×1.
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The difference in these potential energy functions would be how they evolve for large deformation,
R 6≈ I3 and o 6≈ 03×1.
Implementation-wise, it would be computationally expensive to have a potential energy function
like (3.16) because of the matrix logarithm of the rotation matrix. For this reason, we approximate
the matrix logarithm in (3.16) by using (B.7), as presented in Appendix B. In this way, we obtain
the following spring potential energy function:

P0 (H) =
1

8

[
(I + RT )o
(R−RT )∨

]T
K

[
(I + RT )o
(R−RT )∨

]
, (3.17)

which will be used in this project.

Similar to one-degree-of-freedom spring systems, the wrench describing the spring forces and
moments can be obtained by partially differentiating the elastic potential energy function with
respect to the degrees of freedom. To write down the partial derivative of (3.17), we need to know
the partial derivative Dh(H) ·H∆∧, where ∆ = S1∆S2,S1

and

h(H) :=

[
(I + RT )o
(R−RT )∨

]
. (3.18)

By using the notation as presented in Section 2.2.5, we obtain

Dh(H) ·H∆∧ =

(I + RT )R∆o +
(
∆R∧)T RTo(

R∆R∧ −
(
∆R∧)T RT

)∨
 . (3.19)

By using
(
∆R∧)T RTo = (RTo)∧∆R, we can write (3.19) as

Dh(H) ·H∆∧ =

 (R + I) ∆o + (RTo)∧∆R(
R∆R∧ −

(
∆R∧)T RT

)∨ . (3.20)

By using (3.20), we can write the partial derivative of the used potential energy function, as

DP0 (H) H∆∧ =
1

4

[
(I + RT )o
(R−RT )∨

]T
K

 (R + I) ∆o + (RTo)∧∆R(
R∆R∧ −

(
∆R∧)T RT

)∨ . (3.21)

Then, by using (
R∆R∧ −

(
∆R∧

)T
RT

)∨
=
(

tr (R) I3 −RT
)

∆R, (3.22)

[48] and performing some algebraic manipulation, we can write (3.21) in the form

DP0 (H) H∆∧ =
1

4

[
(I + RT )o
(R−RT )∨

]T
K

[
R + I

(
RTo

)∧
03×3

(
tr (R) I3 −RT

)]︸ ︷︷ ︸
S1

fT
L1 )L2,spring

∆, (3.23)

in which we expressed the partial derivative of the potential energy function as the product of a
wrench with a twist. The spring wrench can be written explicitly, as

S1
fL1 )L2,spring =

1

4

[
RT + I3 03×3

−
(
RTo

)∧ (
tr (R) I3 −R

)]K

[(
I3 + RT

)
o(

R−RT
)∨] , (3.24)
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where L1 and L2 indicate the bodies fixed to frames S1 and S2, respectively. So, L1 is the part
of the bellows suction cup between frame S1 and S, and L2 is the part of the bellows suction cup
between frame S2 and E, as shown in Figure 3.5a. Note that (3.24) is the spring wrench working
on the center of stiffness S1. By using the wrench transformation SXS1 , which is explicitly written
as

SXS1 =

[
I3 03×3

l1
Sz∧S I3

]
, (3.25)

we can write S1
fL1 )L2,spring as the wrench acting on frame S by

SfPa )SC,spring = SXS1
S1

fL1 )L2
. (3.26)

Writing (3.26) and reversing the direction of the wrench, such that we have the wrench acting
from the suction cup on the package, we obtain

SfSC )Pa,spring = −1

4

[
I3 03×3

l1
Sz∧S I3

][
RT + I3 03×3

−
(
RTo

)∧ (
tr (R) I3 −R

)]K

[(
I3 + RT

)
o(

R−RT
)∨] , (3.27)

which represents the spring wrench we need for our model, Equations (3.5) and (3.7). In Appendix
C, a derivation is provided on how we go from (3.23) to (3.27) by deriving the mapping

S1XS : S∆E,S 7→ S1∆S2,S1
. (3.28)

3.3.3 Wrenches resulting from small displacements

For very small displacements and rotations we have that H ≈ I4 + ∆∧, where H = S2HS1 and
∆ = S1∆S2,S1 is a small twist displacement [24, 28]. This can be divided in a rotation and
translation part, such that we have o ≈ ∆o and R ≈ I3 + ∆R∧. Substitution of these in (3.24),
and by using that ∆R∧ ∈ so (3) and ∆R∧∆o ≈ 03×1, results in

S1
fL1 )L2,spring =

1

4

[
−∆R∧ + 2I3 03×3
−∆o∧ 2I3 −∆R∧

]
K

[
2∆o

2∆R

]
. (3.29)

Now, again by using ∆R∧∆o ≈ 03×1, ∆o∧∆o ≈ 03×1, and ∆R∧∆R ≈ 03×1, (3.29) can be
written as

S1
fL1 )L2,spring =

1

4

[
2I3 03×3

03×3 2I3

]
K

[
2∆o

2∆R

]
, (3.30)

= K

[
∆o

∆R

]
. (3.31)

This confirms that K determines the stiffness for AHS1 = AHS2 . In other words, K can be chosen
as a conventional stiffness matrix, for example as in classic beam theory [25].

3.4 Modeling of damping

To model the damping of the bellows suction cup, a coupled translational-angular linear damper
will be modeled. This damper will be positioned at the same place as the coupled linear-torsional
spring, between frames S1 and S2, as in Figure 3.5a. The damping wrench, working on frame S1,
can be written as

S1
fL2 )L1,damper = −S1

DS1

S1vS2,S1
, (3.32)
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where

S1
DS1

:=
1

2

(
P + S1

XS2 P S2XS1

)
. (3.33)

In here, matrix P is a positive (semi-)definite matrix that contains the damping coefficient times
1
2 . A more detailed explanation on writing damping matrix S1

DS1
as a parameterization of

the positive (semi-)definite matrix P is presented in Appendix D. For simulation and parameter
identification purposes, we need to write the wrench such that it acts from the suction cup on the
package at frame S. Therefore, we rewrite (3.32) by using the wrench transformation SXS1 and

S1vS2,S1
= S1XS

SvE,S , (3.34)

of which the derivation can be found in Appendix E, into

SfSC )Pa,damper = −SDS
SvE,S , (3.35)

where

SDS :=
1

2
SXS1

(
P + S1

XS2 P S2XS1

)
S1XS (3.36)

=
1

2

(
SXS1PS1XS + SXS2 P S2XS

)
. (3.37)

The passivity of the damping wrench is elaborated upon in Appendix D.1. In short, the power
injected by the damper can be written as〈

S1
fL2 )L1,damper,

S1vS2,S1

〉
= −

(
S1

DS1

S1vS2,S1

)T
S1vS2,S1

, (3.38)

which will be negative when S1
DS1

≥ 0, trivially when P ≥ 0.

3.5 Numerical implementation and validation

In this section, the implementation of the forward dynamics in MATLAB is discussed. This
implementation enables us to simulate the package pose and the deformation of the bellows suction
cup as a function of time. The model we want to simulate is

Mv̇ + v×̄∗Mv = fSC )Pa

(
K,E HS ,D,

S vE,S

)
+ fg (H) , (3.39)

where we used the short-hand notation M = BMB , v =

[
v
ω

]
= BvA,B =

[
BvA,B
BωA,B

]
, fg (H) =

Bfg
(
AHB

)
, and

fSC )Pa

(
K,EHS ,D,

SvE,S

)
= BXS

(
SfSC )Pa,spring

(
K,EHS

)
+ SfSC )Pa,damper

(
D, SvE,S

))
.

To simulate this system using MATLAB, we write (3.39) as a set of first-order differential equations.
Doing so, we take o, R, and v as the states we want to simulate, which gives the following set of
first-order differential equations:

d

dt
o = ȯ = R v, (3.40)

d

dt
R = Ṙ = Rω∧, (3.41)

d

dt
v = v̇ = M−1

(
−v×̄∗Mv + fSC )Pa

(
K,E HS ,D,

S vE,S

)
+ fg (H)

)
. (3.42)
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The input for the simulation is the pose and velocity data of the tool-arm frame, AHE and
AvE,A, respectively. The variable-step ODE-solvers of MATLAB are more accurate compared
to the fixed-step solvers. Therefore, a variable-step ODE-solver solver is used to simulate the
system. Because of the usage of a variable-step ODE solver, it is necessary to interpolate the
inputted pose and velocity data of the tooling arm online, as the time integration step of the
ODE-solver will probably be smaller than the sampling time of the input data. All though higher-
order interpolation gives the most accurate interpolation result, the interpolation is performed in
a linear fashion. This is because linear interpolation needs much less computational effort. Hence,
linear interpolation will be much faster. The usage of linear interpolation is possible, because of
the high sampling frequency of the input data, 360 Hz. The short sample time makes it possible
to interpolate linearly without having large errors in the approximated pose and velocity of the
tooling arm. Another option would be using spline interpolation. For spline interpolation, a
low-degree polynomial is fitted for each data interval such that the polynomials pieces fit to each
other. This spline interpolation is faster compared to higher-order interpolation, but still slower
compared to linear interpolation.
The linear interpolation of the tool arm velocity, AvE,A, can directly be performed without any
problems, which is also the case for the position data, AoE . This is however not the case for
the orientation data. The interpolation of the orientation data is performed on the logarithmic
mapping of ARE , which is in so(3). The result of this interpolation on so(3) data is written
back into a rotation matrix by using the exponential mapping, such that we have an interpolated
rotation matrix as an element of SO(3).

Validation

To examine whether the simulation code provides the correct forward dynamics results, several
validating simulations can be performed. Two of these are presented below. Both validations are
quantitative checks on the energy in the system. Hereby we consider the elastic potential energy
of the bellows suction cup, P0, as in (3.17). The kinetic energy of the package is given by

Ekin =
1

2
BvTA,B BMB

BvA,B , (3.43)

and the gravitational energy is given by

Eg = mg
(
AoB

)
z
. (3.44)

The two validating checks on the simulation are performed by keeping the tool-arm in a fixed
pose, where AoE 6= 03×1 and ARE 6= I3. Doing so, we use an initial pose of the package, which
is not the static equilibrium pose. In this way the package will start to oscillate in all directions,
depending on the chosen initial conditions.

The system parameters and initial conditions used for the validating simulations are as follows.
The used system stiffness and damping matrices are:
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K =


200 10 30 3.2 2 1.3
10 180 20 0.7 4.3 2.5
30 20 1.55 · 103 1 0.9 3.5
3.2 0.7 1 2 0.8 1
2 4.3 0.9 0.8 3 0.5

1.3 2.5 3.5 1 0.5 4

 , (3.45)

P =


2.5 0.5 1.5 0.34 0.025 0.004
0.5 2 1.5 0.2 0.07 0.15
1.5 1.5 4 0.2 0.08 0.1
0.34 0.2 0.2 0.25 0.1 0.08
0.025 0.07 0.08 0.1 0.3 0.05
0.004 0.15 0.1 0.08 0.05 0.4

 . (3.46)

The stiffness and damping matrices are chosen manually, such that the simulated deformation does
not become too large. Choosing a too low stiffness could cause the suction cup lip to rotate more
than π radians, which would cause numerical problems. Note that both matrices are symmetric
and positive definite. Furthermore, the nominal length of the bellows suction cup is chosen as
0.0482m, such that l1 = l2 = 0.0241m. The simulations are performed for a box with a mass of 2
kg and a size 0.2× 0.2× 0.2 m, which corresponds to the inertia matrix

BMB =


2 0 0 0 0 0
0 2 0 0 0 0
0 0 2 0 00
0 0 0 0.0133 0 0
0 0 0 0 0.0133 0
0 0 0 0 0 0.0133

 . (3.47)

The initial pose of the package with respect to the absolute frame is

AHB =


0.5956 −0.1185 0.7945 −0.2004
−0.1408 0.9584 0.2485 0.2661
−0.7909 −0.2598 0.5541 0.0301

0 0 0 1

 . (3.48)

The initial velocity of the package is BvA,B = 06×1. Furthermore, the fixed pose of the tooling
arm is

AHE =


0.9865 −0.1459 0.0743 −0.2000
0.1307 0.9751 0.1789 0.3000
−0.0986 −0.1668 0.9811 0.1800

0 0 0 1

 . (3.49)

First, the simulation is performed without the damping model, so there is no energy dissipating
and thus it should be that

Ekin + P0 + Eg = constant. (3.50)

Figure 3.6a shows the resulting energies of such simulation. Herein can be seen that (3.50) is
indeed true.
The second validating simulation is the same as the first validating simulation, but this time the
damping is included. The result, in terms of energy, can be seen in Figure 3.6b. Here can be
seen that the total amount of energy is always decreasing and approaches P0 + Eg for the static
equilibrium pose. That the total amount of energy is decreasing at all times does agree with the
expected outcome. The presence of damping in the system means that there is dissipating energy
continuously when the bellows suction cup deforms.
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Figure 3.6: Both figures represent the kinetic energy, the elastic potential energy, the gravitational
energy, and the sum of those energies. Figure (a) shows the resulting energies when the damping
is excluded. Figure (b) shows the resulting energies when the damping is included.
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Chapter 4

Experimental data collection and
parameter identification

This chapter is dedicated to the model parameter identification experiments and the way of pro-
cessing the obtained data. First, in Section 4.1, the measurement procedure and the processing of
the raw motion capture data are discussed. Hereafter, the results of the static measurements are
presented. These static measurements are performed to identify the nominal length of the bellows
suction cup during the holding phase, as elaborated upon in Section 3.2 and shown in Figure 3.4a.
Last, the identification procedure and the obtained values for the stiffness and damping matrices
are presented in Section 4.3. The obtained stiffness matrix corresponds to K as in spring poten-
tial energy function (3.17) and its derived spring wrench (3.27). The obtained damping matrix
corresponds to P as in (3.33). Also presented in this section are the validating simulation results,
which are compared to the measurement data.

4.1 Measurement procedure and data pre-processing

This section provides an overview of the measurement procedure and data pre-processing, to cla-
rify which data has been used for the parameter identification. Furthermore, this elaboration can
be used when carrying out more experiments for further research.

First, a brief elaboration upon the used measurement setup is presented. Figure 4.1 shows the
measurement setup and its components. The OptiTrack cameras are used to track the markers

Figure 4.1: The measurement setup with all its components indicated [7].
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Figure 4.2: The flow regulator that is used to regulate the primary flow to the ejector in that is
placed in the gripper. The flow regulator is tuned to 4 bar.

which are placed on the gripper, suction cup lip, package, or other objects of which the pose
needs to be tracked. The data from the OptiTrack cameras is processed in Motive. Motive is the
software that processes the camera data into position data of the markers in the 3D space. In
Motive, it is possible to assign several markers to a rigid body, for example the box, the suction
cup lip, or the tool-arm. This makes it possible to obtain the pose data of these rigid bodies from
Motive. Furthermore, the measurement setup consists a RealSense camera. This camera is used
to film the experiments such that it is possible to watch what happened during the measurements
afterward. Although it is also possible to program the movements of the UR10 robot via Python
on a Linux interface, the movements of the robot arm are programmed using the UR10 its teach
pendant. Herein, the position of individual motors of the UR10 can be set, as well as the pose of
the end-effector of the UR10. Figure 4.1 shows the measurement setup as it was at the start of this
project. During the project, the measurement setup has been changed a bit, however, the different
components are still the same. The important difference is the new positioning of the OptiTrack
cameras and the addition of one PrimeX 22 OptiTrack camera. Changing the camera positioning
and adding one more camera did lead to better object tracking. Not indicated in Figure 4.1 is
the flow regulator used to regulate the primary airflow, also called the motive flow (not related
to the Motive software), to the ejector that creates the (partial) vacuum within the gripper. This
airflow regulator is shown in Figure 4.2. For all experiments performed for this report holds that
they are carried out for a primary flow with a pressure of 4 bar (measured at the flow regulator).
The measurement data that will be saved and stored in a data base contains: the OptiTrack data,
the Intel RealSense camera data, the UR10 data (including the data of the pressure sensor in
the gripper), and a YAML-file which contains the measurements specifications. More information
about the measurement setup can be found in [7].

4.1.1 Measurement procedure

When executing the measurements using the OptiTrack system, the frame associated with the
tip of the tooling arm and the frame at the suction cup lip, EM and SM , respectively, are both
tracked with respect to the Motive calibration frame M . Frame SM is tracked by using a plastic
plate with markers, as shown in Figure 5.2. This is because the markers on the side of the plastic
plate are much better visible for the OptiTrack cameras compared to the markers placed on the
suction cup lip itself. This results in fewer frame drops in the measurement data.
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(a) (b)

Figure 4.3: In this figure, the Ground Plane Calibration Square is shown, where Figure (a) shows
the used Ground Plane Calibration Square with the corresponding axes assigned by Motive [49]
and Figure (b) illustrates the line drawn along the zM axes.

Next, the measurement procedure is presented. It might not directly be evident why some steps
in the measurement procedure are taken, but this will become clear in post-processing of the data
in Section 4.1.2. In the post-processing, the orientation data of the suction cup lip and the tooling
arm are manipulated to make sure that ERS = I3 for the tooling arm being held in a vertical
orientation. With a vertical orientation of the tooling arm, it is meant that the tooling arm points
perpendicular to the earth surface such that zA and zE point in the exact same direction. The
property ERS = I3 when the gripper is held in a vertical orientation is desired, because it would
mean that there is no moment working from the suction cup on the package in static equilibrium
(SτSC )Pa = 03×1).

For all measurements the following procedure is followed:

1. The procedure starts with the calibration of the OptiTrack system. First, the ground plane
is leveled by using the spirit levels incorporated in the Ground Plane Calibration Square
provided with the OptiTrack system, as shown in Figure 4.3a. Before setting the ground
plane in Motive (frame M), the zM -axis is drawn on the surface on which the Ground Plane
Calibration Square rests, as shown in Figure 4.3b. This surface is a sheet of wood, which
lies on the conveyor to protect the conveyor from being damaged by the unwanted impact of
the plastic plate with the attached weights when the plastic plate is released unintentionally.
Because of the drawn line on the sheet of wood, the sheet of wood may not move between
the calibration and measurements or during the measurements. If the sheet of wood would
be moved, then the drawn zM axes would not align anymore to the calibration frame M in
Motive. This would mean that a new ground plane M should be set in Motive by redoing
the calibration.

2. Next, the plastic plate is placed on the drawn zM -axis line, such that the frame fixed to the
plastic plate is aligned with the zM -axis, as shown in Figure 4.4. This step is not necessarily
essential, since that the orientation of the plastic plate is also known from Motive, but makes
the post-processing of the data easier.

3. The following step is to pick up the plastic plate with the gripper. Doing so, the tooling arm
is placed vertically, so zE and zA point in the same direction. This is done by using the robot
command window of the UR10 teach pedant, as indicated in Figure 4.1, in which the desired
pose of the tool center point (TCP) can be given as an input. By placing the tool-arm in
a vertical orientation, the assumption is made that the robot bench is exactly leveled. The
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positioning of the gripper in vertical orientation is used in the post-processing and for the
static measurement, which is elaborated upon in Sections 4.1.2 and 4.2, respectively.

4. Once the gripper has picked up the plastic plate, the robot arm can move to the first pose
point of the measurement routine. By making this movement, only the position of the TCP
is changed, so the orientation is kept vertically, as in the previous step. When the robot is
moved to the starting position of the trajectory, which is always a vertical orientation for
the tooling arm, the weights can be attached to the plastic plate. The weights are placed
symmetrically with respect to the bellows suction cup to prevent it from bending when the
tooling arm is held in starting pose, and thus to make sure that ERS = I3 at the start of
the measurement recording. Here is elaborated upon in Section 4.1.2.

5. The last step is the measurement recording itself. Every recording starts with a short period,
1 or 2 seconds, where the tooling arm stands still in a vertical orientation, followed by the
programmed robot path. The data of the short period before the movements will be used
to process the measurement data such that there is no lateral and rotational offset between
frame S and frame E during the starting pose (gripper standing still in a vertical orientation
while holding the plate). This data processing is elaborated upon in the next section.

4.1.2 Rotational and lateral offset compensation

From Motive, we have the tooling arm and the suction cup lip pose data, MHSM
and MHEM

,
respectively. Figure 4.5 shows the pose of the suction cup lip with respect to the tip of the tooling
arm, written in the frames as assigned in Motive. Even without knowing the exact frame definition
of frames EM and SM , the following should be considered when processing the data from EM and
SM to E and S. Note that the frames EM and SM are the frames associated with the tip of
the tooling arm and the suction cup lip, as defined in Motive. Frames E and S are the frames
associated with the tip of the tooling arm and the suction cup lip, as defined in this report (see
Figure 3.1).
Because of the axial symmetry of the bellows suction cup, it is assumed that

(
EoS

)
x

=
(
EoS

)
y

= 0

when the gripper is held vertically. This means that, when the gripper is held in the starting pose
(tooling arm pointing perpendicular to the earth), there should be no lateral spring force working
on the package, (SfSC )PA)x = (SfSC )PA)y = 0. From the upper plot of Figure 4.5, where the
blue and orange lines show the lateral displacement of frame SM with respect to frame EM , it
can be seen that there is a small (around 1mm) lateral displacement offset. The lateral displace-
ment offset is the result of the misalignment during the placing of the suction cup on the plastic
plate. This means that we picked up the plastic plate with a lateral offset and have therefore(
EoS

)
x
6= 0 and

(
EoS

)
y
6= 0. According to our spring model, this means that lateral spring forces

Figure 4.4: The placement of the plastic plate on the drawn zM -axis.
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Figure 4.5: The pose data of the suction cup lip with respect to the tip of the tooling arm, written
in the frames as defined in Motive.

are acting on the package when the gripper is held in starting pose,
(
SfSC )Pa,spring

)
x
6= 0 and(

SfSC )Pa,spring
)
y
6= 0. These lateral forces do not make sense when considering the axial sym-

metry of the bellows suction cup and could be problematic for the stiffness identification. There-
fore, it is necessary to manipulate the data, to ensure that

(
EoS

)
x

=
(
EoS

)
y

= 0. In summary,

when picking up the plastic plate with the gripper, we have that
(
EoS

)
x
6= 0 and

(
EoS

)
y
6= 0 due

to the misalignment of the suction cup lip on the plastic plate. Because the misalignment is small
(around 1mm), we manipulate the data such that we have

(
EoS

)
x

=
(
EoS

)
y

= 0 for the starting

pose. Doing this manipulation, we also assume that
(
SfSC )PA,spring

)
x

=
(
SfSC )PA,spring

)
y

= 0

for the starting pose.

The second point of attention is that for the orientation of the suction cup lip with respect to the
tip of the tooling arm we desire that ERS = I3 for the starting pose. This gives rise to a similar
issue as for the lateral offset. If it would be that ERS 6= I3, then there would be acting mo-
ments on the package coming from the suction cup as a result of the modeled rotational stiffness,

SτSC )PA,spring 6= 03×1. Again, because of the axial symmetry of the bellows suction cup, this
would not make sense. So, when going from frames as defined in Motive to the frame definition
as used in this report, we need to keep in mind that we want ERS = I3 for the starting pose.
Again, the purpose of this manipulation of the data is to ensure that the data can be used for the
parameter identification.

In this section, we use t(t0) to indicate ‘at the starting pose’, which means a vertical orientation
of the gripper which holds the plastic plate and the rigidly attached weights. As explained above,
we want to pre-process the data such that we have ERS = I3 and

(
EoS

)
x

=
(
EoS

)
y

= 0 at the

starting pose, so that E(t0)RS(t0) = I3 and
(
E(t0)oS(t0)

)
x

=
(
E(t0)oS(t0)

)
y

= 0. Therefore, we

perform the following steps:

1. First, frame A, which is the absolute world frame as used in this report (see Figure 3.1), is
defined from frame M . This is done for the MHSM

and MHEM
data. For the pose data of
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the tip of the tooling arm, this can be done by

AHEM (tk) = AHM
MHEM (tk) =


−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

MHEM (tk), (4.1)

where k ∈ {1, ..., N} and N is the number of data points. This can be done in a similar way
for the suction cup lip pose data.

2. Next, we want to calculate the offset between frames EM and SM in the lateral displacement
directions and the orientation. The calculation of these offsets is done in the following steps:

(a) We define AHEM (t0)[E(t0)] and AHSM (t0)[S(t0)], where EM (t0)[E(t0)] =
(
oEM (t0), [E(t0)]

)
.

Note that frame EM (t0) is the frame at the tip of the tooling arm as defined in Motive,
and frame E(t0) is the frame at the tip of the tooling arm as used in this report, both
for the starting pose of the tool-arm. For the orientation of the tooling arm and the
suction cup lip in starting pose, we define ARE(t0) = ARS(t0) = I3. The reason for this

is that by choosing ARE(t0) = ARS(t0), we also have that E(t0)RS(t0) = I3, which is,
as explained before, desirable for the parameter identification. Furthermore, choosing
ARS(t0) = I3 is more of a practical choice to simplify things. The way that the plastic
plate is aligned with the Motive ground plane M (and equivalently aligned with the
absolute world frame A), as described in Step 2 of Section 4.1.1, enables us to have
ARB(t0) = I3. This also means that SRB = I3, which simplifies things a bit. So,
writing AHEM (t0)[E(t0)] and AHSM (t0)[S(t0)] gives us

AHEM (t0)[E(t0)] =

[
I3

AoEM (t0)

01×3 1

]
, (4.2)

AHSM(t0)[S(t0)] =

[
I3

AoSM (t0)

01×3 1

]
. (4.3)

(b) Next, the offset in the position and orientation of the suction cup with respect to the
tip of the tooling arm is calculated. The rotation from the frames as defined in Motive
to the frame definition as used in this report can be written as

EM (t0)HEM (t0)[E(t0)] = AH−1EM (t0)
AHEM (t0)[E(t0)] =

[
EM (t0)RE(t0) 03×1

01×3 1

]
, (4.4)

SM (t0)HSM (t0)[S(t0)] = AH−1SM (t0)
AHSM (t0)[S(t0)] =

[
SM (t0)RS(t0) 03×1

01×3 1

]
. (4.5)

The above obtained homogeneous transformation matrices can be used to rotate the
pose data from Motive, EM and SM , to the frame definition as used in this report, E
and S. Note that EM (t0)REM (t0)[E(t0)] 6= SM (t0)RSM (t0)[S(t0)]. Next, the offset in lateral
position is calculated by

EM (t0)[E(t0)]HSM (t0)[S(t0)] = AH−1EM (t0)[E(t0)]
AHSM (t0)[S(t0)] =

[
I3

EM (t0)oSM (t0)

01×3 1

]
.

(4.6)

Ideally, it would be that
(
EM (t0)oSM (t0)

)
x

=
(
EM (t0)oSM (t0)

)
y

= 0 However, this is

not the case, as shown in Figure 4.5. Therefore, there is a clear need to compensate for

this such that
(
E(t0)oS(t0)

)
x

=
(
E(t0)oS(t0)

)
y

= 0 .
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3. The next step is to calculate the pose of the suction cup lip with respect to the tooling arm
for every time step using the Motive data

EMHSM (tk) = AHEM (tk)−1 AHSM (tk) (4.7)

for k ∈ {1, ..., N}.

4. Now we have (4.7), we can adjust this data. First, the rotational offset between EM and
SM is eliminated by using (4.4) and (4.5) such that

EM [E]HSM [S](tk) = EM (t0)H−1EM (t0)[E(t0)]
EMHSM (tk) SM (t0)HSM (t0)[S(t0)], (4.8)

=

[
ERS(tk) EMoSM (tk)

01×3 1

]
, (4.9)

for k ∈ {1, ..., N}. Note that (4.8) is a slight abuse of notation, but remember that
EM (t0)HEM (t0)[E(t0)] and SM (t0)HSM (t0)[S(t0)] are just the rotational transformations from
the frame definitions as in Motive to the frame definitions as used in this report.

5. Next, the lateral displacement offset in EM [E]HSM [S](tk) will be compensated. This is done
is done by

EoS(tk) = EMoSM (tk)−


(
EM (t0)oSM (t0)

)
x(

EM (t0)oSM (t0)

)
y

0

 , (4.10)

such that we have

EHS(tk) =

[
ERS(tk) EoS(tk)

01×3 1

]
. (4.11)

for k ∈ {1, ..., N}.

6. The last step is to obtain the pose data of the suction cup lip and the tooling arm (written
in the frame definition as used in this report), both with respect to the absolute frame. For
the tooling arm data we adjust the orientation by

AHE(tk) =A HEM (tk)EM (t0)HEM (t0)[E(t0)]. (4.12)

Note that frames E ans EM have the same origin, but different orientations, as can be
seen in (4.4). So the homogeneous transformation matrix EM (t0)HEM (t0)[E(t0)] is effectively
EM (t0)HE(t0). For the suction cup lip pose data we compute

AHS(tk) = AHE(tk)EHS(tk). (4.13)

For (4.12) and (4.13) hold that they are both done for every time step, so k ∈ {1, ..., N}.
Important to note is that by using (4.13), as well the rotational correction as the correction
for the lateral position is taken into consideration.

The result of the data adjustment is shown in Figure 4.6, where the processed pose data, EHS(tk),
is visualized. Looking at the starting pose, the first two seconds, it can be concluded that the
lateral displacement offset is eliminated,

(
EoS

)
x

=
(
EoS

)
y

= 0. This means that there will be no

spring force acting on the package in the lateral direction when the gripper is held in the starting
pose. Furthermore, it can be concluded that ERS = I3 for the first two seconds. This means that
there is also no moment acting on the package for the gripper being in the starting pose. This
makes the pose data suitable for the parameter identification.
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Figure 4.6: The resulting pose data of the suction cup lip with respect to the tip of the tooling
arm, written in the frames as used in this report.

4.2 Nominal bellows suction cup length identification

One of the parameters which needs to be identified is the nominal length of the bellows suction
cup during the holding phase, l0, as shown in Figure 4.7, and explained in Section 3.2. The iden-
tification of this parameter is done by performing static experiments. A schematic representation
and a picture of these experiments are shown in Figures 4.8a and 4.8b, respectively. In Figure
4.8a can be seen that the length of the bellows suction cup,

(
EoS

)
z
, is measured for a given mass

attached to the plastic plate. This is done while keeping the tooling arm in a vertical orientation,
as explained in step 3 of Section 4.1.1. An important note is that the weights are placed (with
hand-eye precision) symmetrically around the center of the bellows suction cup. This way, the
frame fixed to the center of mass of the package, frame B (not drawn in Figure 4.8a), would align

Massless plate

l0

oA
yA

zA

oE
yE

zE

Figure 4.7: Nominal length bellows suction cup during holding phase.
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Figure 4.8: Figure (a) shows a schematic representation of the static measurements, used to
identify the nominal length of the bellows suction cup. Here indicate m1 and m2 the masses of
the weights and mP indicates the mass of the plastic plate. Figure (b) is a picture of such static
experiment.

with the zS-axis. This would mean that [S] = [E] and thus also that axes zB and zS do align with
zE . As a result of this, the deformation of the bellows suction cup is only in the −zE direction
when adding weights to the plastic plate. So, the bellows suction cup will only elongate and will
not bend.

Figure 4.9: Results of the static measurements to identify the nominal length of the bellows suction
cup during holding phase. On the x-axis is shown the gravity that acts on the plastic plate and
weights.
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The results of the static experiments are shown in Figure 4.9. Herein, the separate measurement
points and a third-order polynomial fitted to these data points are visualized. The polynomial
is fitted using the least-squares method. The third-order polynomial fit shows a linear relation
between displacement and force for small deformations. This linear behavior means that the stiff-
ness is constant in this region. For gravity larger than −20N, the non-linearity becomes visible.
From this can be concluded that the bellows suction cup has a degressive spring characteristic.
Furthermore, from the third-order polynomial fit in Figure 4.9 can be concluded that the nominal
length of the bellows suction cup is −0.0481m. This is the length of the bellows suction cup when
holding a massless package, which corresponds to 0N gravity in Figure 4.9.

As elaborated upon in Section 3.3.1, the bellows suction cup is modeled as two links connected via
a coupled linear-torsional spring. The length of these links, l1 and l2, are chosen evenly, such that
l1 = l2 = 0.02405m. This means that the center of stiffness of the bellows suction cup is modeled
at the middle of the suction cup. This choice is only valid when performing experiments for which
the deformation stays in the linear region of the stiffness. So, this would be for experiments where
the longitudinal load is between 0N and about -25N.

4.3 Stiffness and damping identification

To identify the stiffness and damping matrices, dynamic measurements are carried out. For these
dynamic measurements, the gripper holds the plastic plate with rigidly attached weights. The
total mass held by the gripper is 2.17kg, which corresponds to the linear region in Figure 4.9. The
inertia tensor of the loaded plastic plate is

BMB =


2.17 0 0 0 0 0

0 2.17 0 0 0 0
0 0 2.17 0 0 0
0 0 0 0.0087 0 0
0 0 0 0 0.0087 0
0 0 0 0 0 0.0173

 . (4.14)

The UR10 is programmed to make movements defined by arbitrarily chosen waypoints (positions
and orientations defined for the UR10 end-effector). These waypoints are chosen such that the
bellows suction cup deforms in many directions, which should give us a rich data set for the
parameter identification. A better way would be making a trajectory for which we are sure that it
would give a rich enough data set for the parameter identification. This was however not possible
due to time limitations. To identify the stiffness and the damping of the bellows suction cup, the
inverse dynamics of (3.5) will be used [50]. Usually, inverse dynamics is used to compute applied
forces and torques that induce a measured or desired motion [51, 52]. In this project, the (internal)
forces and torques are resulting from the stiffness and the damping of the bellows suction cup.
The kinematic data we are using is the motion capture pose data and its estimated velocity and
acceleration data. The known external force is the gravity acting on the package. When the
stiffness and damping wrenches are reconstructed, by using inverse dynamics, the stiffness and
damping matrices can be computed by using the measured pose data and the estimated velocity
data of the suction cup lip with respect to the tool-arm.
The smoothing of the measured pose data and the estimation of the velocities and accelerations
from the measured pose data is done by using a Savitzky-Golay filter, as presented in Section
4.3.1. Herein, it can be seen that the Savitzky-Golay filter will be used to smoothen the measured
pose data with relatively small measurement errors. Furthermore, the motion capture data does
contain some outliers with a large error. These outliers are the result of bad tracking of the
markers stuck to the robot tooling arm or the plastic plate. In Appendix H, an elaboration upon
the identification and exclusion of these outliers in/from the data set is presented. From this, we
obtain smoothed pose data and the estimated velocity and acceleration data (which is achieved
by using the Savitzky-Golay filter), which is free from outliers. This data will be used for the
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identification of the stiffness and damping matrices. For this identification procedure, we use
inverse dynamics and a weighted least-squares approach, as presented in Section 4.3.2. Also in
this section, a validation of the obtained results is presented.

4.3.1 Estimation of linear and angular velocity and acceleration from
SO (3)× R3 data

To perform the parameter identification by using inverse dynamics, it is necessary to have approx-
imations of the velocity and acceleration, see (4.65). One way of approximating these is by using
the finite difference method. The result of the usage of the central difference method on measure-
ment data can be found further in this section. The details about the central difference method
on SO(3)×R3 data are presented in Appendix F. In the figures presented later on, it can be seen
that using the finite difference method results in very noisy approximations of the velocity and
especially the acceleration. Because having accurate velocity and acceleration approximations is
crucial for the parameter identification, the following method is proposed; a Savitzky-Golay filter
on the pose data. A Savitzky-Golay filter uses a moving window average [53]. This averaging
a done by fitting a polynomial to the data in the window. The window size and the order of
the polynomial need to be tuned for a given data set. Choosing a larger window results in more
averaging points and thus more noise reduction, however, one needs to keep in mind that choosing
a too large window causes less accurate approximations. Choosing a higher-order polynomial to
fit on the data within the window results in a better fit to the raw data, including the noise [54].
An alternative to the Savitzky-Golay filter would be using a low-pass filter in combination with
the finite difference method. The similarity between a low-pass filter and a Savitzky-Golay filter
is that both filters reduce high-frequency noise, but do not filter out the low-frequency noise.
However, the advantage of using a Savitzky-Golay filter, and therefore the reason why this filter
is used in this project, is that the time derivatives of the smoothed signal can directly be obtained
from the fitted polynomial at each time step.

Applying a Savitzky-Golay filter to the position data, in R3, is relatively straightforward. This is
elaborated upon in the next part. However, for the orientation data, SO(3) data, the Savitzky-
Golay filtering is not that straightforward. In [55], a method for applying Savitzky-Golay filtering
on SO(3) motion capture data is presented. Herein, the first step is to obtain the Euler angles
from the rotation matrix describing the orientation. Next, a Savitzky-Golay filter is applied to the
three individual time-dependent Euler angles, where the last step is to convert these smoothed
Euler angles back to a rotation matrix. Doing so, one ensures that R ∈ SO (3). However, this
approach has the drawback that the smoothing of the first rotation has a larger influence on
the smoothed orientation than the last rotation, because the orientation is described by three
consecutive rotations [56]. Therefore, a method where a Savitzky-Golay filter is applied on the
Lie algebra so(3) is proposed, to smoothen the orientation data and estimate the angular velocity
and acceleration. This method is developed within the Dynamics and Control section of TU/e
Mechanical Engineering. This is elaborated upon after the part of the Savitzky-Golay filter on the
position data. Finally, the results of the Savitzky-Golay filtering on the real measurement data
are presented and compared to the central difference results.

Savitzky-Golay filtering on R3

As mentioned before, using Savitzky-Golay filtering is the fitting of polynomials to the data within
a window for every time step. So, if we want to apply Savitzky-Golay filtering on the position
data, we are effectively fitting polynomials on the position data for every time step. In this way,
we have a n-order polynomial in R3:

R3 3 ξ(t;η) := η0 + η1t+
1

2
η2t

2 + . . .+
1

n!
ηnt

n, (4.15)
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where η = [η0;η1;η2; . . . ;ηn] is a vector of parameters and n the order of the fitted polynomial.
We can take the time derivatives of this polynomial and consider these functions at the discrete
time indices tk = kT , with k ∈ {1, . . . , N}, where N is the total number of discrete time indices
and T = 1/fs is the time step. This gives us

d

dt
ξ(tk,η) = η1 + η2tk + . . .+

1

(n− 1)!
ηnt

n−1
k , (4.16)

dn

dtn
ξ(tk,η) = ηn. (4.17)

On the measured position data o(tk), obtained from the measurements, we consider a moving time
window centered at tk with the sampled points tw = tk+wT , where w ∈ {−nw, . . . ,−1, 0, 1, . . . , nw}.
Herein is nw the number of data points on each side of the center of the window such that the
size of the window is 2nw + 1. The least-squares problem is then defined by

ξ∗ = arg min
ξ

w=nw∑
w=−nw

‖o(tw)− ξ(tw − tk;η)‖2. (4.18)

The solution to this least-squares problem can be found by computing

η̂ =
(
AT
SG ASG

)−1
AT
SG bSG,o ∈ R3n, (4.19)

where η̂ = [η̂0; η̂1; η̂2; . . . ; η̂n], in which (̂·) indicates ‘estimated’, and where

ASG =



I3 (tk−nw − tk)I3
1
2 (tk−nw − tk)2I3 . . . 1

n! (tk−nw − tk)nI3
. . . . . . . . . . . . . . .
I3 (tk−1 − tk)I3

1
2 (tk−1 − tk)2I3 . . . 1

n! (tk−1 − tk)nI3
I3 (tk − tk)I3

1
2 (tk − tk)2I3 . . . 1

n! (tk − tk)nI3
I3 (tk+1 − tk)I3

1
2 (tk+1 − tk)2I3 . . . 1

n! (tk+1 − tk)nI3
. . . . . . . . . . . . . . .
I3 (tk+nw − tk)I3

1
2 (tk+nw − tk)2I3 . . . 1

n! (tk+nw − tk)nI3


(4.20)

and

bSG,o =



o(tk−nw)
. . .

o(tk−1)
o(tk)

o(tk+1)
. . .

o(tk+nw)


, (4.21)

such that ASG ∈ R3(2nw+1)×3n and bSG,o ∈ R3(2nw+1). The fitted η̂ describes the estimated
polynomial and its derivatives, centered around the point tk, which are given by

ξ̂(tk+w, η̂) = η̂0 + η̂1(tk+w − tk) +
1

2
η̂2(tk+w − tk)2 + . . .+

1

n!
η̂n(tk+w − tk)n, (4.22)

d

dt
ξ̂(tk+w, η̂) = η̂1 + η̂2(tk+w − tk) + . . .+

1

(n− 1)!
ηn(tk+w − tk)n−1, (4.23)

dn

dtn
ξ̂(tk+w, η̂) = η̂n, (4.24)

(4.25)

where w ∈ {−nw, . . . ,−1, 0, 1, . . . , nw} as before. Note that this means that at the time index of

interest, tk, ξ̂ and its derivatives are given by
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ô(tk) = η̂0, (4.26)̂̇o(tk) = η̂1, (4.27)̂̈o(tk) = η̂2, (4.28)

dn

dtn
ô(tk) = η̂n. (4.29)

Now, the left-trivialized linear velocity and acceleration can be obtained by

Bv̂A,B(tk) = R̂T (tk) ̂̇o(tk), (4.30)

B ̂̇vA,B(tk) = ̂̇RT

(tk) ̂̇o(tk) + R̂T (tk) ̂̈o(tk), (4.31)

where ̂̇R is as in (G.60). The right-trivialized linear velocity and acceleration can be computed by

Av̂A,B(tk) =
[
AR̂B

Aô∧B
AR̂B

]
Bv̂A,B(tk), (4.32)

Â̇vA,B(tk) =
[
AR̂B

Aô∧B
AR̂B

]
B ̂̇vA,B(tk). (4.33)

As a side note on the Savitzky-Golay filtering of the position and orientation data, the fitting of a
polynomial on the data with the moving window is done for every time instant, except for a time
interval at the beginning and at the end of the measurement as it is not possible to fit an entire
window on those time instances. More explicitly, the Savitzky-Golay filter is only used at tk for
which k ∈ {nw+1, . . . , N−nw−1}. There are ways to apply the Savitzky-Golay filter on the data
of time instants tk where k ∈ {1, . . . , nw}∨{N−nw, . . . , N} [57], however, this is not incorporated
in this project as it is not a problem to exclude a few data points from the parameter identification.

Next, the Savitzky-Golay filtering on the position data is validated by applying the Savitzky-Golay
filtering on synthetic position data. The synthetic position data is created as following. First, we
express

o(tk) = a0 + a1 sin (2πfc tk) , (4.34)

ȯ(tk) = a12πfc cos (2πfc tk) , (4.35)

ö(tk) = −a1 (2πfc)
2

sin (2πfc tk) , (4.36)

where fc = 1, a0 =

 0.2
0.1
−0.2

, and a1 =

 0.6
−0.4
0.5

. The synthetic position data is created for a

sampling frequency of 360Hz, which is also the sampling frequency used for the measurements.
Using (4.34)-(4.36), the right trivialized linear velocities and accelerations are computed analytic-
ally by

v(tk) = ȯ(tk)− Ṙ(tk) RT (tk) o(tk), (4.37)

v̇(tk) = ö(tk)− Ṙ(tk) RT (tk) ȯ(tk)− R̈(tk) RT (tk) o(tk), (4.38)

where Ṙ(tk) and R̈(tk) are computed by (G.60) and (G.63). The noise corrupted synthetic position
data is obtained by

o(tk) = a0 + a1 sin (2πfc tk) + u(tk), (4.39)

where u(tk) is the noise which is a random number from a normally distributed set of numbers
with mean 0 and standard deviation equal to 1

1000 .
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(a)

(b) (c)

Figure 4.10: The result of the Savitzky-Golay filtering and finite difference approach on noise
corrupted synthetic data, compared to the ground truth data synthetic data. Figure (a) shows
the position data (AoB). Figures (b) and (c) show the right trivialized linear velocity (AvA,B)
and acceleration (Av̇A,B), respectively.

Figure 4.10a shows the estimated position data, and Figures 4.10b and 4.10c show the estimated
linear velocity and acceleration, respectively. Note that Figures 4.10a, 4.10b, and 4.10c show only
the result for 1 DOF, namely the position, velocity and acceleration in the x-direction. For the
Savitzky-Golay filtering, a window size of 47, so nw = 23, and a 2nd-order polynomial is used.
From Figures 4.10b and 4.10c can be concluded that the Savitzky-Golay estimated linear velocity
and acceleration are much more accurate compared to the finite difference estimated linear velocity
and acceleration.

Savitzky-Golay filtering on SO(3) data

To apply Savitzky-Golay filtering on the orientation data, we are effectively fitting polynomials on
the orientation data for every time step. To write the orientation in a polynomial form, we will
use the Lie algebra of the orientation data. In this way we have a n-order polynomial in so(3)

so(3) 3 ξ(t;η) := η0 + η1t+
1

2
η2t

2 + . . .+
1

n!
ηnt

n, (4.40)
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where η = [η0;η1;η2; . . . ;ηn] is again a vector of parameters and n is the order of the polynomial
fitted to the data within each window. Similar to the Savitzky-Golay filtering on the position data,
we can take the time derivatives of this polynomial and consider these functions at the discrete
time indices tk. This gives us

d

dt
ξ(tk,η) = η1 + η2tk + . . .+

1

(n− 1)!
ηnt

n−1
k , (4.41)

dn

dtn
ξ(tk,η) = ηn. (4.42)

On the orientation data R(tk), obtained from the measurements, we again consider a moving
time window centered at tk with the sampled points tw = tk + wT . This results in the following
least-squares problem:

ξ∗ = arg min
ξ

w=nw∑
w=−nw

‖ log(R(tw)R(tk)−1)− ξ(tw − tk;η)‖2. (4.43)

The solution to this least-squares problem can be found by computing

η̂ =
(
AT
SG ASG

)−1
AT
SG bSG,R ∈ R3n, (4.44)

where ASG ∈ R3(2nw+1)×3n is the same as (4.20) and bSG,R ∈ R3(2nw+1) is given by

bSG,R =



log
(
R(tk−nw)R(tk)T

)∨
. . .

log
(
R(tk−1)R(tk)T

)∨
log
(
R(tk)R(tk)T

)∨
log
(
R(tk+1)R(tk)T

)∨
. . .

log
(
R(tk+nw)R(tk)T

)∨


. (4.45)

In (4.44), η̂ describes the estimated polynomial and its derivatives, centered around the point tk,
which are given by

ξ̂(tk+w, η̂) = η̂0 + η̂1(tk+w − tk) +
1

2
η̂2(tk+w − tk)2 + . . .+

1

n!
η̂n(tk+w − tk)n, (4.46)

d

dt
ξ̂(tk+w, η̂) = η̂1 + η̂2(tk+w − tk) + . . .+

1

(n− 1)!
ηn(tk+w − tk)n−1, (4.47)

dn

dtn
ξ̂(tk+w, η̂) = η̂n, (4.48)

(4.49)

where w ∈ {−nw, . . . ,−1, 0, 1, . . . , nw} as before. Note that this means that at the time index of

interest, tk, ξ̂ and its derivatives are given by

ξ̂(tk, η̂) = η̂0, (4.50)

d

dt
ξ̂(tk, η̂) = η̂1, (4.51)

dn

dtn
ξ̂(tk, η̂) = η̂n. (4.52)

Next we can compute

R̂(tk) = exp(η̂∧0 )R(tk), (4.53)

ω̂(tk) = d exp(η̂0) · η̂1, (4.54)̂̇ω(tk) = d2(+) exp(η̂0) · (η̂1, η̂1) + d exp(η̂0) · η̂2, (4.55)
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where R̂(tk) is the approximated rotation matrix, and ω̂(tk) and ̂̇ω(tk) are the approximation
right trivialized angular velocity and acceleration, respectively. Furthermore, d exp is the right
trivialized tangent of the exponential mapping and d2(+) exp is the right trivialized geometric
Hessian of the exponential mapping with respect to the (+) Cartan-Schouten connection. The
derivation of these relations can be found in Appendix G.
Next, the Savitzky-Golay filter on the orientation data is validated by using synthetic synthetic
data, which is similar to the validation of the Savitzky-Golay filter on position data. The synthetic
data is created as follows. First, we express

ξ(tk) = a0 + a1 sin (2πfc tk) , (4.56)

ξ̇(tk) = a12πfc cos (2πfc tk) , (4.57)

ξ̈(tk) = −a1 (2πfc)
2

sin (2πfc tk) , (4.58)

where fc = 1 is the moving frequency of the signal, a0 =

 0.05
−0.15

0.2

, and a1 =

 0.4
0.7
−0.7

. The

synthetic data is again created for a sampling frequency of 360Hz. Using (4.56)-(4.58), the rotation
matrices, angular velocities, and angular accelerations can be computed analytically by

R(tk) = exp(ξ∧), (4.59)

ω(tk) = d exp(ξ) · ξ̇, (4.60)

ω̇(tk) = d2(+) exp(ξ) · (ξ̇, ξ̇) + d exp(ξ) · ξ̈, (4.61)

for k ∈ {1, . . . , N}. The noise corrupted synthetic orientation data is obtained by

ξ(tk) = a0 + a1 sin (2πfc tk) + u(tk), (4.62)

(4.63)

where u(tk) is again the noise which is a random number from a normally distributed set of num-
bers with mean 0 and standard deviation equal to 1

1000 .

The result of the Savitzky-Golay filter on synthetic SO(3) data is shown in Figures 4.11a, 4.11b,
and 4.11c. Herein, only 1 DOF is shown, namely the rotation around the x-axis of the absolute
frame, A. This result is obtained by choosing a window size of 47, so nw = 23, and by fitting an
order 2 polynomial. Just like as the Savitzky-Golay filtering on position data, one can see that the
Savitzky-Golay estimated angular velocity and acceleration are much more accurate compared to
the finite difference method estimated angular velocity and acceleration.
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(a)

(b) (c)

Figure 4.11: The result of the Savitzky-Golay filtering and finite difference on noise corrupted
synthetic data, compared to the ground truth data synthetic data. Figures (a) shows the rota-
tion around the x-axis ((AξB)x) Figures (b) and (c) show the right-trivialized angular velocity
((AωA,B)x) and angular acceleration ((Aω̇A,B)x), respectively.

Velocity and acceleration estimations from measurement data

The Savitzky-Golay filtering is performed on the pose data of the package (AHB) and the tool-arm
(AHE). This because we need to have the package body-fixed velocity BvA,B and Bv̇A,B to use
inverse dynamics. However, from the measurements we have the pose data of the suction cup lip
(AHS) instead of the pose data of the package (AHB). To this end, first, the pose data of the
package is calculated by

AHB(tk) = AHS(tk) SHB , (4.64)

for k ∈ {1 . . . N}. The homogeneous transformation matrix SHB is a constant since we assumed
no slip and no deformation of the held package (the plastic plate with attached weights).

The result of the Savitzky-Golay filtering of the SO(3)×R3 data of frame B with respect to frame
A is shown in Figures 4.12 and 4.13. The blue lines indicate the estimation by using the finite
difference method and the orange lines indicate the estimation from using Savitzky-Golay filtering.
A window size of 31 is used and a 3rd-order polynomial is fitted.
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Figure 4.12: A visualization of the smoothed position data (AoB) and the estimated right trivi-
alized linear velocity and acceleration of frame B with respect to frame A, AvA,B and Av̇A,B ,
respectively.

Figure 4.13: A visualization of the smoothed orientation data and the estimated right trivial-
ized angular velocity and acceleration of frame B with respect to frame A, AωA,B and Aω̇A,B ,
respectively.
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Figure 4.14: A visualization of the smoothed position data (AoE) and the estimated right trivi-
alized linear velocity and acceleration of frame E with respect to frame A, AvA,E and Av̇A,E ,
respectively.

The result of the Savitzky-Golay filtering of the SO(3)×R3 data of frame E with respect to frame

Figure 4.15: A visualization of the smoothed orientation data and the estimated right trivial-
ized angular velocity and acceleration of frame E with respect to frame A, AωA,E and Aω̇A,E ,
respectively.
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A is shown in Figures 4.14 and 4.15. For this data, a window size of 51 is used and a 4th-order
polynomial is fitted. A larger window and a polynomial of a higher order is used for the data
describing the pose of the tip of the tooling arm, because this data contains more noise compared
to the data of the package.

A remark on the use of Savitzky-Golay filtering on real measurement data is that it is rather
difficult to choose the optimal Savitzky-Golay settings to obtain a reliable estimation of the velocity
and the acceleration. For the synthetic data, the results of the filtering can be compared to the
ground truth data as shown in Figures 4.11 and 4.10. This is however not possible for the actual
measured data. Therefore, the Savitzky-Golay settings are tuned by comparing the Savitzky-
Golay estimated velocity to the finite difference estimated velocity. When looking at the Savitzky-
Golay estimated acceleration we aim to filter out the high frequency oscillations. Because of the
large noise amplitude in the finite difference estimated acceleration, it is almost not possible to
compare the Savitzky-Golay estimated acceleration to this finite difference estimated acceleration,
see Figures 4.12-4.15. This makes it hard to choose the Savitzky-Golay settings such that we
obtain an accurate Savitzky-Golay estimation of the acceleration.

4.3.2 Estimating of stiffness and damping matrices

First, the weighted linear least-squares procedure is explained in this section. This weighted least-
squares approach is used to estimate the stiffness matrix (K) and damping matrix (P). Thereafter,
the resulting estimations for the stiffness and damping matrices are presented. Using these estim-
ated stiffness and damping matrices, the system is simulated for a (from a measurement) known
tool-arm trajectory. To validate the model, the simulation data is compared to the measurement
data.

Weighted least-squares approach

To determine the stiffness and damping matrices, inverse dynamics will be used. Recall from (3.5)
and (3.7) that we have the following model

Mv̇ (tk) + v×̄∗ (tk)Mv (tk) = fSC )Pa

(
K,EHS(tk),D, SvE,S(tk)

)
+ fg

(
H(tk)

)
, (4.65)

where M = BMB , v (tk) = BvA,B (tk), fg
(
H(tk)

)
= Bfg

(
AHB(tk)

)
, and

fSC )PA

(
K,EHS(tk),D, SvE,S(tk)

)
=

BXS

(
SfSC )PA,spring

(
K,EHS(tk)

)
+ SfSC )PA,damper

(
D, SvE,S(tk)

))
.

Remember that, as elaborated upon in Section 3.4, the damping matrix D is parametrized by
matrix P. Because fSC )PA depends linearly on matrices K and P, it is possible to use linear
least-square fitting to identify these matrices. Therefore, we use a weighted linear least-squares
approach, where the optimization problem is defined as

x∗ = arg min
x

N∑
k=1

(
c(tk)− L(tk)x

)T
W
(
c(tk)− L(tk)x

)
, (4.66)

where N is the number of data points used for the least-squares fitting and W is the weighting
matrix. Furthermore, we have

L(tk)x = fSC )PA

(
K,EHS(tk),P, SvE,S(tk), l1, l2

)
∈ R6, (4.67)

c(tk) = SXB
(
Mv̇ (tk) + v×̄∗ (tk)Mv (tk)− fg (tk)

)
∈ R6, (4.68)
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such that L(EHS(tk), SvE,S(tk), l1, l2) ∈ R6×np contains the kinematic terms of the spring and
damping wrenches, and x ∈ Rnp are the entries of the symmetric (semi-)positive definite stiffness
and damping matrices K and P. Herein is np the number of parameter we aim to fit, so for full
and symmetric K and P matrices, we have np = 2× 21 = 42. Furthermore, note that c(tk) is the
estimated wrench from the suction cup to the package (using inverse dynamics).

Weighting matrix W is such that W = Q−1 ∈ R6×6, where Q is the covariance matrix of the
estimated wrench working from the suction cup to the package. Each element of this covariance
matrix is calculated by

Qi,j =
1

N − 1

N∑
k=1

(
ci(tk)− µi

)(
cj(tk)− µj

)
∈ R, for i, j ∈ {1, . . . , 6}, (4.69)

where

µ =
1

N

N∑
k=1

c(tk) ∈ R6. (4.70)

We use this weighted least-squares method because the used cost function minimizes the error in
the estimated forces and torques resulting from the modeled stiffness and damping. One should
realize that the forces and torques are not necessarily of the same magnitude. If this is the case,
and we would use an unweighted least-squares approach, it could be that the errors in the estim-
ated forces is penalized really hard, meanwhile the errors in the estimated torques would be barely
penalized. So, the usage of the weighting matrix assures that the errors of the estimated forces
and torques are penalized evenly [51, 52, 58].

Another approach of identifying the stiffness and damping matrix is by using prediction-error
methods [59, 60]. This way we would minimize a cost on the basis of the difference of kinematic
measured data and those produced by a model for known external forces (gravity acting on the
package) and initial conditions (pose and velocity of the robot tool-arm and the package). This
approach is not pursued in this report; however, in the recommendations, Section 5.2, we will come
back to this approach and mention why we should have pursued this approach. The reason why
we pursued the approach as presented in this section(, i.e., using inverse dynamics to estimate the
forces and torques and with that the stiffness and damping matrix), is that this approach seemed
to be the simplest way to estimate the stiffness and damping matrix. Furthermore, the usage
of inverse dynamics was possible because we estimated the accelerations of the package from the
Savitzky-Golay filtering of the pose data.

Since we can define (4.67) and (4.68) for every time instant, we can write

A = [L(t1); L(t2); . . . ; L(tN )] ∈ R6N×np , (4.71)

b = [c(t1); c(t2); . . . ; c(tN )] ∈ R6N , (4.72)

such that we have

Ax = b + e, (4.73)

where e is the error. For matrix A holds that if rank(A) = np, then the data is rich enough to
solve (4.73) least-squares sense by

x∗ = (ATZA)−1ATZb, (4.74)
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where

Z =


W 06×6 . . . 06×6

06×6 W . . . 06×6
...

...
. . .

...
06×6 06×6 . . . W

 ∈ R6N×6N . (4.75)

By solving (4.74) we obtain the best fit for the stiffness and damping parameters according to
(4.66).

Results

In this part, the following applies for all figures:
- The blue lines indicate the x component.
- The orange lines indicate the y component.
- The green lines indicate the z component.
- The solid lines show the measured data.
- The dashed lines represent the simulated data.

Furthermore, the weighting matrices used to obtain these results are presented in Appendix I.
Also, note that there is made use of two different data set, namely an identification set and a
validation set [34].

The results of the parameter identification, when fitting a full and symmetric stiffness and damping
matrix on the identification measurement data set, are given by (4.76) and (4.77).

Kfull,id =


5857 −591.9 37.53 7.38 −15.91 −48.28
−591.9 5132 222.3 13.41 −7.951 −40.44
37.53 222.3 1.121 · 104 17.02 −4.266 −18.9
7.38 13.41 17.02 2.932 −0.06731 0.4012
−15.91 −7.951 −4.266 −0.06731 3.365 −0.3149
−48.28 −40.44 −18.9 0.4012 −0.3149 1.5400

 , (4.76)

Pfull,id =


61.14 1.157 −3.215 0.001236 −0.9543 −0.2983
1.157 59.43 −2.205 0.9632 −0.04314 −0.1333
−3.215 −2.205 21.57 −0.489 0.01763 0.3685

0.001236 0.9632 −0.489 0.05569 0.001043 0.001421
−0.9543 −0.04314 0.01763 0.001043 0.05633 0.007516
−0.2983 −0.1333 0.3685 0.001421 0.007516 0.09839

 . (4.77)

The corresponding weighting matrix, i.e., the weighting matrix which is used to obtain (4.76) and
(4.77) from the identification measurement data set, is given by (I.82). In (4.76) and (4.77), it can
be seen that the stiffness and damping matrix are positive definite and have positive entries on
the diagonal, as one should expect. Furthermore, the axial symmetry of the bellows suction cups
can be seen in these matrices. For both matrices, the indices (1, 1) and (2, 2) are quite similar,
12.4% difference in stiffness and 2.8% difference in damping, which indicates that the stiffness and
damping is equal in both lateral directions. Also, indices (4, 4) and (5, 5) are quite similar, 12.8%
difference in stiffness and 1.1% difference in damping, which indicates that the rotational stiffness
and damping around the xE and yE should be equal. These axis-symmetrical properties of the
bellows suction cup are also expected to see, because of the axial symmetry of the bellows suction
cup. As the last example, it can be seen that K(1, 5) ≈ −K(2, 4) and P(1, 5) ≈ −P(2, 4), 15.7%
difference in stiffness and 0.9% difference in damping. This would mean that the coupling for the
rotation around the x-axis and the translation along the y-axis would be equal to the coupling
for the rotation around the y-axis and the translation along the x-axis. The minus sign is the
result of the choice of the coordinate frame. The exception concerning the axial symmetry of

52 On Modeling and Identification of Bellows Suction Cup Dynamics for Robotic Tossing



4.3. Stiffness and damping identification

the bellows suction cup are indices (1, 3) and (2, 3). One should expect that these are also very
similar, however that is not the case. This could be the result of not using the right identification
approach or using a data set that is not rich enough.

If we now use these stiffness and damping matrices for a simulation, (4.76) and (4.77), with as
input the pose and estimated velocity data of the tool-arm (of the validation data set), gives the
result as shown in Figure 4.16. Herein, it can be seen that there is some drift in the rotation.
Furthermore, it can be seen that the rotation around the zE-axis is way off.
The drift is caused by incorrect estimated coupling terms in the estimated stiffness matrix. For
example, it does not make sense that the translation in the zE-direction, elongation of the bellows
suction cup, is coupled to the rotation around any axis. This would mean that, when the tooling
arm is in a vertical orientation(, i.e., the tool-arm is pointing perpendicular to the earth surface)
and holding a package of a certain mass such that axes zP and zE coincide, the suction cup would
also bend. This is of course not the case. To solve this, a diagonal stiffness and damping matrix
could be imposed. This means that no coupling terms are included. Furthermore, the observation
of axial symmetry can be incorporated into the structure of the stiffness and damping matrix.
This results in the following diagonal stiffness and damping matrices:

Kdiag,id =


6417 0 0 0 0 0

0 6417 0 0 0 0
0 0 1.153 · 104 0 0 0
0 0 0 3.868 0 0
0 0 0 0 3.868 0
0 0 0 0 0 1.123

 , (4.78)

Pdiag,id =


66.06 0 0 0 0 0

0 66.06 0 0 0 0
0 0 22.35 0 0 0
0 0 0 0.05458 0 0
0 0 0 0 0.05458 0
0 0 0 0 0 0.09736

 . (4.79)

Figure 4.16: Simulation results for using stiffness matrix (4.76) and damping matrix (4.77).
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To obtain this stiffness matrix and damping matrix, also a diagonal weighting matrix is used
because we now consider the estimated forces and torques (by using inverse dynamics) as linearly
independent. The weighting matrix W is again obtained by taking the inverse of matrix Q.
However, this time Q is not the covariance matrix, but a diagonal matrix with the variances of
the forces or torques on the diagonal:

Q =


var([β1,β2]) 0 0 0 0 0

0 var([β1,β2]) 0 0 0 0
0 0 var(β3) 0 0 0
0 0 0 var([β4,β5]) 0 0
0 0 0 0 var([β4,β5]) 0
0 0 0 0 0 var(β6)

 , (4.80)

where ‘var’ indicates the variance and

β = [c(t1), c(t2), . . . , c(tN )] ∈ R6×N . (4.81)

Note that the data of both lateral directions are used together to calculate the variance. This is
done because the estimated forces in both lateral directions are used to estimate just one lateral
stiffness. In a similar way. this also holds for the rotations around the axes of the lateral directions.
The resulting weighting matrix is given by (I.83). Note that by choosing the option to fit such
diagonal matrices with imposed axial symmetry, we also choose that the output of the validating
simulation (for which the fitted stiffness and damping matrices are used) is more important than
the larger residual error of (4.66).

When analyzing (4.78) and (4.79), one can see that most of the diagonal elements of (4.78) and
(4.79) are a bit higher than the diagonal elements of the full matrices (4.76) and (4.77), but are
still in the same order of magnitude. This is a logic result since there are no coupling terms
contributing to the stiffness and damping.

The result of a simulation, where (4.78) and (4.79) are used to describe the stiffness and damping,
is shown in Figure 4.17. Herein, it can be seen that the problem of the drift in orientation is solved.
Furthermore, it can be seen that the simulation results show some similarity to the measured pose
data, except for the rotation around the zE-axis. This is because of an inaccurate fit of the stiffness
in the torsional direction(, i.e., the rotation around the zE-axis). A possible reason for this could be
that the parameter identification procedure is not optimal for identifying the torsional stiffness.
Choosing a different weighting matrix for the weighted least-squares procedure could open up
some possibilities. A better option is to change the parameter identification to the prediction-
error method, which will be elaborated upon in the recommendations. Another problem could
be that the excitation of the bellows suction cup in the torsional direction is too minimal in the
currently used identification measurement data set. This could be the case since that the bellows
suction cup is really stiff in the torsional direction and that the torsional excitation of the bellows
suction cup during the measurements is limited by the UR10. The UR10 can only achieve rather
low angular velocities and angular accelerations of the tooling arm around its center axis. A last
possible explanation for the rather low fitted torsional stiffness would be the black foam at the
lip of the suction cup (see Figure 1.4). It might be that the plastic plate is not (always) pressed
against the dark green lip during the dynamic measurements. Since that the data describing the
pose of the suction cup lip is obtained from the markers fixed to the plastic plate, we track the
pose of the end of the black foam, instead of the pose of the suction cup lip. Since that the black
foam is really soft, it deforms easily. As a result of this, the fitted torsional stiffness might be
inaccurate.

54 On Modeling and Identification of Bellows Suction Cup Dynamics for Robotic Tossing



4.3. Stiffness and damping identification

Figure 4.17: Simulation results for using stiffness matrix (4.78) and damping matrix (4.79).

For comparison, the stiffness and damping identification is also carried out on the validation meas-
urement data set. The resulting stiffness and damping matrices are (4.82) and (4.83), respectively.
Leaving out the torsional direction, the maximum difference in fitted stiffness is 5.1%. The max-
imum difference in the damping is 12.7%. The difference could be the result of the data sets
being not rich enough. Another option would be that the weighted least-squares procedure is not
accurate enough for the identification of the stiffness and damping.

Kdiag,val =


6164 0 0 0 0 0

0 6164 0 0 0 0
0 0 1.216 · 104 0 0 0
0 0 0 3.921 0 0
0 0 0 0 3.921 0
0 0 0 0 0 0.6

 (4.82)

and

Pdiag,val =


62.77 0 0 0 0 0

0 62.77 0 0 0 0
0 0 25.21 0 0 0
0 0 0 0.04975 0 0
0 0 0 0 0.04975 0
0 0 0 0 0 0.2036

 . (4.83)

In the next chapter, some recommendations are presented. These could be used for further research
to improve the estimation of the stiffness and damping of the bellows suction cup during the holding
phase.
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Chapter 5

Conclusion and Recommendations

In Section 5.1, the conclusions of the report are presented. Thereafter, in Section 5.2, several
recommendations for further research are suggested.

5.1 Conclusion

In this report, first approaches for the modeling and identification of the bellows suction cup
dynamics during the holding phase are presented. By having a model which describes the bellows
suction cup dynamics during the holding phase, we should be able to predict the state (pose and
velocity) of a package for a given tool-arm trajectory and given package properties. To this end,
there is a clear need to identify and model the stiffness and damping of the bellows suction cup.
As elaborated upon in Chapter 3, the stiffness of the bellows suction cup (during the holding
phase) is modeled, based on the previous work of Fasse and Breedveld. Furthermore, we came up
with a velocity depending damping model. To identify the nominal length, the stiffness, and the
damping of the bellows suction cup during holding phase, several measurements are performed, as
presented in Chapter 4. The measurement data (the OptiTrack data, the Intel RealSense camera
data, the UR10 data, and a YAML-file containing the measurements specifications) is saved such
that it is reusable and publicly available for further research, something which is not discussed
further in this report. From static measurements, we identified the nominal length of the bellows
during the holding phase as 0.0481m. The stiffness and damping matrices are identified from
dynamic measurements by using inverse dynamics in combination with a weighted least-squares
approach. Hereby, the stiffness and damping matrices are obtained by minimizing a cost based on
the difference between the inertial forces plus the external forces (gravity) and the internal forces
(forces as the result of the stiffness and damping). From the validation can be seen that this gives
promising results, however, there is still a large error between simulated and measured dynamic
behavior. Because of the too large error between the simulated and measured dynamic behavior,
it is no use to quantify the error. In the next section, some recommendations are presented for
the continuation of the research on this topic.

5.2 Recommendations

For continuation of the research on the modeling and identification of bellows suction cup dynamics
during the holding phase, the following recommendations are made:

• The first recommendation is to change the parameter identification procedure. In this pro-
ject, the stiffness and damping matrices are identified by using inverse dynamics in combin-
ation with a weighted linear least-squares approach. As mentioned in Section 4.3.2, another
way would be prediction-error-based parameter identification [59–61]. This method uses
forward dynamics to simulate the model for initial guesses of the stiffness and damping
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matrices. By comparing the simulation data to the measured data, the best estimations
for the stiffness and damping matrices are obtained by using a maximum likelihood estim-
ation or least-squares fitting. Next, the initial guess for the stiffness and damping can be
updated. This way the procedure can be repeated until the estimated stiffness and damping
converged to a certain value. This approach of identifying the stiffness and damping has
multiple advantages compared to the approach as taken in this report:

1. The usage of prediction-error-based parameter identification enables the use of different
cost criteria that are used to fit the stiffness and damping matrices. The used cost
function for the parameter identification (in this report) is based on wrenches, (4.66)-
(4.68). This means that the error we are minimizing is also expressed in forces and
torques, or equivalently, linear and angular accelerations. However, since we aim to
build a model which can predict the pose and velocity of a package, this is possibly
not the best cost criteria to use. By using a prediction-error method, the cost criteria
can be expressed such that we minimize the error in position and/or velocity between
simulated and measured data. This could result in more accurate identification results.

2. Only the velocity needs to be estimated from the measured pose data when using a
prediction-error method. This is because the forward dynamics simulated pose and
velocity data will be compared to the measured pose data and its estimated velocity.
This would make the task of finding the optimal Savitzky-Golay settings much easier
because it is hard to determine whether the estimated acceleration is a good estimation.
Furthermore, a source of error would be eliminated from the stiffness and damping
identification. Since that the acceleration is possibly not accurately estimated, the
parameter identification as performed in this report (by using inverse dynamics and
thus using the estimated acceleration) is possible not very accurate. So, changing the
parameter identification to a prediction-error approach could result in more accurately
estimated stiffness and damping matrices.

3. Prediction-error methods are iterating procedures. This makes it more accessible to
check the convergence of the estimated parameters. The convergence of the estimated
parameters could indicate if the identification measurement set is rich enough.

• Check if the performed experiments contain enough information for reliable parameter iden-
tification results. As explained in Section 4.1.1, the measurements are performed by pro-
gramming the UR10 to move along a set of arbitrarily chosen waypoints (i.e., poses defined
for the robot arm end-effector). This is not the best way of performing identification meas-
urements. An improvement would be to create a trajectory, which ensures that the measured
identification data set is rich enough.

• The validation of the model could be expanded by evaluating some static measurements for
which the tool-arm is kept in a fixed pose. When keeping the tool-arm in a fixed pose, there
will be no damping of the bellows suction cup. So, by evaluating the pose of the package
with respect to the tool-arm, the spring model can be validated separately from the damping
model. This can be done for several static measurements where the package mass can be
varied and the tool-arm is kept in different orientations.

• To improve the results from the stiffness and damping identification, as performed in this
report, static measurement data could be added to the identification data set. Furthermore,
the identification data set can be extended with measurement data of dynamic measurements
with different weights.

• Perform dynamic measurements with different masses attached to the plastic plate and carry
out the stiffness and damping identification for the different dynamic measurements. If this
would result in big differences in the estimated stiffness and damping matrices, it should be
considered to change the stiffness and damping model.

58 On Modeling and Identification of Bellows Suction Cup Dynamics for Robotic Tossing



5.2. Recommendations

• In this report, we applied the Savitzky-Golay filtering on the measured tool-arm and package
pose data, AHE and AHB , respectively. From this, we obtained the velocity and acceleration
of the tool-arm (EvA,E and Ev̇A,E) and the package (BvA,B and Bv̇A,B). These velocity
terms (EvA,E and BvA,B) can be rewritten to the velocity of the suction cup lip with
respect to the tool-arm, SvE,S , which is necessary to calculate the damping wrench, (3.35),
during the parameter identification. However, it is possible to rewrite the package body
fixed velocity and acceleration in terms of SvE,S , Sv̇E,S , EvA,E , and Ev̇A,E , as presented
in Appendix J. Doing so, it would be possible to apply the Savitzky-Golay filtering on AHE

and EHS data, instead of AHE and AHB . Because the goal is to identify the bellows suction
cup dynamics (i.e., the dynamic behavior of frame S with respect to frame E,) it could be
that directly obtaining the velocity and acceleration of the suction cup lip with respect to
the tool-arm gives a more accurate result for the parameter identification.

The identification and modeling of the bellows suction cup dynamics are performed to predict the
release state (pose and velocity) of a package. To make these predictions, not only the holding
phase needs to be modeled, but also the release phase. Therefore, the model should be expended
with a release phase to be useful for the robotic tossing of packages.
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Appendices

A Generalized inertia tensor

The generalized inertia tensor, as used in (3.5), is explicitly given by

BMB =

[
m I3 03×3
03×3 BIB

]
, (A.1)

where I3 ∈ R3×3 is the identity matrix, m is the mass of the package, and BIB ∈ R3×3 is the
inertia tensor expressed in frame B. The inertia tensor for a box shaped package with homogeneous
distributed mass can be computed by

BIB =

 1
12m

(
h2 + w2

)
0 0

0 1
12m

(
h2 + d2

)
0

0 0 1
12m

(
d2 + w2

)
 , (A.2)

where h, w, and d are the dimensions as shown in Figure 5.1a.
When holding the plastic plate in combination with some cylindrical weights, as pictured in Figure
5.2, the total generalized inertia tensor can be obtained by

BM(total)
B =

No∑
i=1

BXFi
FiM

(part i)
Fi

FiXB , (A.3)

where BM(total)
B is the generalized inertia tensor with respect to the center of mass of the combined

plastic plate and attached weights, and No is the number of parts/objects (plastic plate and

oB

yB

zB

xB

w

h

d

(a)

oF
yF

zF

xF

r

h

(b)

Figure 5.1: Figure (a) shows the height h, width w, and depth d of a box shaped package. Frame
B is fixed to the center of mass of the box. Figure (b) indicates the height h and the radius r of
the cylindrical weight. Frame F1 is fixed to the center of mass of the cylindrical weight.
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Figure 5.2: Plastic plate in combination with the rigidly attached cylindrical shaped weights.

weights). Furthermore, F indicates the frame fixed to the center of mass of a certain part (plastic
plate or one of the attached weights). In the case of the plastic plate, the inertia tensor can
be approximated by using (A.2). The inertia tensors of the cylindrical shaped weights can be
obtained by

FiIF1
=

 1
12mi

(
3r2 + h2

)
0 0

0 1
12mi

(
3r2 + h2

)
0

0 0 1
2mir

2

 , (A.4)

where mi is the mass of the cylindrical shaped weight and r and h are as indicated in Figure 5.1b.

B Approximations

The matrix logarithm of a rotation matrix can be written to the following form

log (R) =
θ

2 sin (θ)

(
R−RT

)
. (B.5)

This formula is the inverse of the Rodrigues′ rotation formula [41] [46]. Note that θ is the rotation
angle around the axis unit vector of the axis-angle representation (thus not an Euler angle). For
θ approaching zero, we can write

lim
θ→0

θ

sin (θ)
= 1. (B.6)

Figures 5.3a and 5.3b show the value of θ
sin(θ) and the relative error of the approximation, respect-

ively. The relative error is calculated by
1− θ

sin(θ)
θ

sin(θ)

· 100%.

66 On Modeling and Identification of Bellows Suction Cup Dynamics for Robotic Tossing



Appendix C. Derivation of the spring wrench acting on frame S

(a) (b)

Figure 5.3: Figure (a) shows the the true value of θ
sin(θ) as a function of θ. Figure (b) shows the

relative error of the approximation as a function of axis-angle θ.

By using (B.6), log (R) can be approximated by

log (R) ≈ R−RT

2
. (B.7)

Using (B.7), we can also obtain an approximation for the derivative of the logarithmic mapping
of the rotation matrix

D log (R) δR ≈ D

(
R−RT

2

)
δR =

δR− δRT

2
=

R∆R∧ −
(
∆R∧)T RT

2
. (B.8)

C Derivation of the spring wrench acting on frame S

This appendix provides the derivation of how we go from (3.23) to an expression in which we have
a spring wrench acting on the package at frame S. Therefore, we want to derive an expression for
S1∆S2,S1 , such that we have a mapping

F : S∆E,S 7→ S1∆S2,S1 . (C.9)

Therefore, we have

S2HS1

S1∆∧S2,S1
= DS2HS1

(
EHS

)
EHS

S∆∧E,S , (C.10)

where S2HS1

(
EHS

)
is as in (3.13). To compute (C.10), we have

S2δHS1

(
EHS

)
=

[
EδRS

EδRS

(
l1
SzS

)
+ EδoS

01×3 0

]
, (C.11)

which we can write as

S2δHS1

(
EHS

)
=

[
ERS

S∆R∧
E,S

ERS
S∆R∧

E,S

(
l1
SzS

)
+ ERS

S∆o
E,S

01×3 0

]
, (C.12)

by using the notation as in Section 2.2.5. Furthermore, we have
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S2δHS1
=

[
S2δRS1

S2δoS1

01×3 0

]
, (C.13)

which we can write as

S2δHS1
=

[
S2RS1

S1∆R∧
S2,S1

S2RS1
S1∆o

S2,S1

01×3 0

]
. (C.14)

Now we use that the perturbation of S2HS1 , (C.12), and the perturbation of S2HS1

(
EHS

)
, (C.14),

should be equal such that we have

[
ERS

S∆R∧
E,S

ERS
S∆R∧

E,S

(
l1
SzS

)
+ ERS

S∆o
E,S

01×3 0

]
=

[
S2RS1

S1∆R∧
S2,S1

S2RS1
S1∆o

S2,S1

01×3 0

]
. (C.15)

First, we consider the rotational parts of (C.15). Because we defined S1 such that [S1] = [S] and
S2 such that [S2] = [E], it holds that S2RS1

= ERS . Therefore, it must be that

S1∆R∧
S2,S1

= S∆R∧
E,S . (C.16)

Next, we rewrite the translation term on the left hand side of (C.15) by using S2RS1
= ERS and

using the properties of a cross product [62], such that we obtain

ERS
S∆R∧

E,S

(
l1
SzS

)
+ ERS

S∆o
E,S = S2RS1

(
−l1Sz∧S

S∆R
E,S + S∆o

E,S

)
. (C.17)

Substitution of (C.17) in (C.15) gives

 ERS
S∆R∧

E,S
S2RS1

(
−l1Sz∧S

S∆R
E,S + S∆o

E,S

)
01×3 0

 =

[
S2RS1

S1∆R∧
S2,S1

S2RS1
S1∆o

S2,S1

01×3 0

]
. (C.18)

Considering that the translation parts of (C.18) should be equal, we get

S1∆o
S2,S1

= −l1Sz∧S
S∆R

E,S + S∆o
E,S . (C.19)

Combining (C.16) and (C.19) gives us

S1∆S2,S1
=

[
I3 −l1Sz∧S

03×3 I3

]
S∆E,S (C.20)

which corresponds to the desired mapping as in (C.9), such that F = S1XS . Substitution of (C.20)
into (3.23) results in

DP0 (H) H∆∧ = SfTPa )SC,spring
S∆E,S

=
1

4

[
(I + RT )o
(R−RT )∨

]T
K

[
R + I

(
RTo

)∧
03×3

(
tr (R) I3 −RT

)] [ I3 −l1Sz∧S
03×3 I3

]
S∆E,S . (C.21)

Having this expression, we can write the spring wrench working on the package as

SfSC )Pa,spring = −1

4

[
I3 03×3

l1
Sz∧S I3

][
RT + I3 03×3

−
(
RTo

)∧ (
tr (R) I3 −R

)]K

[(
I3 + RT

)
o(

R−RT
)∨] , (C.22)

which is the same expression as (3.27).
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D Coupled translational-angular damping on SE (3)

For the modeling of the damping, we take the Newton-Euler equations of two rigid bodies coupled
via velocity-dependent wrenches that exhibit a linear relationship with respect to the velocity as

1M1
1v̇0,1 + 1v0,1×̄∗1M1

1v0,1 = −1D1
1v0,1 + 1D2

2v0,2 (D.23)

2M2
2v̇0,2 + 2v0,2×̄∗2M2

2v0,2 = 2D1
1v0,1 − 2D2

2v0,2. (D.24)

In order for the wrenches to provide dissipation at every instant of time, we need to assume that
the matrix [

1D1 −1D2

−2D1 2D2.

]
(D.25)

is symmetric and positive (semi)definite. Assuming (D.25) to be symmetric implies, in particular,
that 2D

T
1 = 1D2. The model (D.23)-(D.24) does not describe yet a damper whose wrench depends

solely on the relative velocity of one body with respect to the other and that satisfy the action-
and-reaction principle of Newtonian mechanics. To this end, we need to impose further conditions
on the matrix (D.25).
To find these additional conditions, we rewrite the interaction wrenches (i.e., the right-hand-side
of (D.23)-(D.24)) in terms of the relative velocity v1,2 = −v2,1. The additional conditions emerge
as necessary conditions to remove any term in the expressions that cannot be written in terms of
the relative velocity. Namely, from the known identities

1v1,2 = 1v1,0 + 1v0,2, (D.26)
2v1,2 = 2v1,0 + 2v0,2, (D.27)

and the right-hand-side of (D.23)-(D.24), we get

−1D1(1v2,1 + 1v0,2) + 1D2
2v0,2 = −1D1

1v2,1 − 1D1
1v0,2 + 1D2

2v0,2, (D.28)

2D1
1v0,1 − 2D2(2v1,2 + 2v0,1) = −2D2

2v1,2 + 2D1
1v0,1 − 2D2

2v0,1. (D.29)

In order for the expressions above to depend only on the relative velocity, we then need to impose
the conditions

1D1 = 1D2
2X1, (D.30)

2D1
1X2 = 2D2. (D.31)

Recalling that we also have 2D
T
1 = 1D2, we obtain also

2D2
2X1 = 2X

1
1D1, (D.32)

2D1
1X2 = 2X

1
1D2. (D.33)

None of the matrices 1D1, 1D2, 2D1, and 2D2 can be taken as constant. It is however possible to
write the equations of motion with the additional conditions in the symmetric form

1M1
1v̇0,1 + 1v0,1×̄∗1M1

1v0,1 = −1D1
1v2,1 = −1D2

2v2,1 (D.34)

2M2
2v̇0,2 + 2v0,2×̄∗2M2

2v0,2 = −2D2
2v1,2 = −2D1

1v1,2. (D.35)

Note that the wrenches applied to the rigid bodies satisfy action-reaction principle (when expressed
with respect to the same frame), i.e., the external wrenches are one the opposite of the other.
We can now take

1D1 :=
1

2
(P + 1X

2 P 2X1), (D.36)
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or equivalently

2D2 :=
1

2
(P + 2X

1 P 1X2), (D.37)

with P = PT ≥ 0, obtaining also the mixed damping coefficient

(D.38)

1D2 =
1

2
(P 1X2 + 1X

2 P), (D.39)

2D1 =
1

2
(P 2X1 + 2X

1 P), (D.40)

which shows how the damping model can be parametrized by a constant positive definite matrix
P. The way of writing each damping matrix part of D as a small alteration of a matrix P is
basically the same trick as done by Fasse and Breedveld in [26], where they used this trick to make
their compliance function port-indifferent.

D.1 Passivity of the damping wrench

The power injected by the relative-velocity-dependent damping model is

−
〈
1D2

2v2,1,
1v0,1

〉
−
〈
2D1

1v1,2,
2v0,2

〉
. (D.41)

Such an expression can be equivalently rewritten in frame 2 coordinates as

−
〈
2X

1
1D2

2v2,1,
2v0,1

〉
−
〈
2D1

1X2
2v1,2,

2v0,2

〉
, (D.42)

and then, by virtue of (D.33), as

−
〈
2D2

2v1,2,
2v1,2

〉
. (D.43)

Such an expression, which in frame 1 coordinates equivalently reads

−
〈
1D1

1v1,2,
1v1,2

〉
, (D.44)

is always negative as long as (D.37) (equivalently, (D.36)) is positive (semi-)definite, which is
trivially true for P ≥ 0.

E Velocity transformation

To express S1vS2,S1
in terms of SvE,S one needs to remember that

EHS = EHS2

S2HS1

S1HS , (E.45)

and know its time derivative

EḢS = EHS2

S2ḢS1

S1HS . (E.46)

Using (E.45) and (E.46), the left trivialized velocity can be obtained by
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Sv∧E,S = EH−1S
EḢS

= SHS1

S1HS2

S2HE
EHS2

S2ḢS1

S1HS

= SHS1

S1v∧S2,S1

S1HS

=
(
SXS1

S1vS2,S1

)∧
. (E.47)

From this last expression, (E.47), it can be seen that

S1vS2,S1 = SX−1S1

SvE,S = S1XS
SvE,S . (E.48)

F Central difference method

One way of calculating body velocities and accelerations from SO(3)×R3 data is by using a finite
difference method. The three basic types are: backward, forward, and central finite difference
[63]. In this project has been made use of the central-difference method as this one is of higher
accuracy (second-order) compared to forward and backward finite difference (first-order). The
central-difference method on SO(3) × R3 data is illustrated for the package pose with respect to
the absolute frame. Of course, the same procedure can be executed for pose data of different
frames.

The right trivialized angular velocity is computed by applying the central-difference method on
the Lie algebra of the orientation data, so(3), such that

Aω̄A,B(tk) =
1

tk+1 − tk−1

(
log
(
R(tk+1)RT (tk)

)
− log

(
R(tk−1)RT (tk)

))∨
, (F.49)

where R = ARB , tk is the time instant, tk+1 is the next instant of time, and tk−1 is the previous
instant of time. The bar in Aω̄A,B indicates ‘estimated via the central-difference method’. Now
we can calculate the left trivialized angular velocity by

Bω̄A,B(tk) = RTAω̄A,B(tk). (F.50)

Having this, we can use the central-difference method to calculate the left trivialized angular
acceleration

B ¯̇ωA,B(tk) =
1

tk+1 − tk−1

(
Bω̄A,B(tk+1)− Bω̄A,B(tk−1)

)
. (F.51)

For the position data, we can simply do

¯̇o =
1

tk+1 − tk−1
(
o(k + 1)− o(k − 1)

)
, (F.52)

where o = AoB and ¯̇o = A ¯̇oB . Subsequently, the left trivialized linear velocity can be obtained by

Bv̄A,B(tk) = RT ¯̇o(tk) (F.53)

Similar to the angular acceleration, F.51, the left trivialized linear acceleration is obtained by

B ¯̇vA,B(tk) =
1

tk+1 − tk−1

(
Bv̄A,B(tk+1)− Bv̄A,B(tk−1)

)
. (F.54)
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The last step, to have a complete description of the body velocity and acceleration is obtaining
the right trivialized velocity and acceleration. These are obtained by

Av̄A,B(tk) = AXB
Bv̄A,B(tk) = AXB

[
Bv̄A,B(tk)
Bω̄A,B(tk)

]
, (F.55)

A ¯̇vA,B(tk) = AXB
B ¯̇vA,B(tk) = AXB

[
B ¯̇vA,B(tk)
B ¯̇ωA,B(tk)

]
. (F.56)

G Definition exponential mapping on SO(3) and its deriv-
atives

The estimated rotation matrix and its time derivatives can be obtained by

R̂(tk) = exp(η0)R(tk) , (G.57)̂̇R(tk) = (D exp(η0) · η1)R(tk) (G.58)

= (d exp(η0) · η1) exp(η0)R(tk) (G.59)

= ω̂(tk)R̂(tk) , (G.60)

D̂Ṙ

dt
(tk) =

(
D2(+) exp(η0) · (η1,η1) +D exp(η0) · η2

)
R(tk) (G.61)

=
(

d2(+) exp(η0) · (η1,η1) + d exp(η0) · η2

)
exp(η0)R(tk) (G.62)

= ̂̇ω(tk)R̂(tk) . (G.63)

The step from (G.58) to (G.59) is given by the fact that we can write

D exp(η0) · η1 = (d exp(η0) · η1) exp(η0), (G.64)

where d exp is the right trivialized tangent of the exponential mapping which is explicitly given as

d exp(η) = I3 +
1

2
β(η)η∧ +

1

‖η‖
(1− α(η))(η∧)2, (G.65)

as in [64]. Furthermore, d2(+) exp is the right trivialized geometric Hessian of the exponential
mapping with respect to the (+) Cartan-Schouten connection. The step from (G.61) to (G.62) is
given by the fact that we can write

D2(+) exp(ξ) · (η1,η2) =

lim
ε→0

(
D exp

(
ξ + εη2

)
· η1

)
exp−1

(
ξ + εη2

)
exp(ξ)−D exp(ξ) · η1

ε

(G.66)

where
D exp(ξ + εη2) · η1 =

(
d exp(ξ + εη2)η1

)∧
exp(ξ + εη2) (G.67)

such that

D2(+) exp(ξ) · (η1,η2) (G.68)

= lim
ε→0

1

ε

[(
d exp(ξ + εη2)η1

)∧
exp(ξ)−

(
d exp(ξ)η1

)∧
exp(ξ)

]
(G.69)

=
[{

lim
ε→0

1

ε

(
d exp(ξ + εη2)− d exp(ξ)

)}
η1

]∧
exp(ξ) (G.70)

=
[(
Dd exp(ξ)η2

)
η1

]∧
exp(ξ) (G.71)

=
[
d2(+) exp(ξ) · (η1,η2)

]∧
exp(ξ), (G.72)
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where the expressions for d2(+) exp(ξ) · (η1,η2) and exp(ξ) are explicitly given as

d2(+) exp(ξ) · (η1,η2)

=

(
1

2
β(ξ)η∧2 +

1− α(ξ)

‖ξ‖
(η∧2 ξ

∧ + ξ∧η∧2 ) +
α(ξ)− β(ξ)

‖ξ‖
(ξTη2)ξ∧+

1

‖ξ‖

(
1

2
β(ξ)− 3

‖ξ‖
(1− α(ξ))

)
(ξTη2)(ξ∧)2

)
· η1

(G.73)

and

exp(ξ) = I3 + α(ξ)ξ∧ +
1

2
β(ξ)(ξ∧)2 ∈ SO(3). (G.74)

As obtained from [64], where, for ξ,η1,η2 ∈ R3, we used

α(η) =
sin(‖η‖)
‖η‖

, (G.75)

β(η) =
sin2(‖η‖/2)

(‖η‖/2)2
. (G.76)

Regarding (G.75) and (G.76), we have

lim
‖η‖→03×1

α(η) = 1, (G.77)

lim
‖η‖→03×1

β(η) = 1, (G.78)

and therefore have that

lim
‖η‖→03×1

exp(η) = I3, (G.79)

lim
‖η‖→03×1

d exp(η) = I3, (G.80)

lim
‖η‖→03×1

d2(+) exp(η) · (η1,η2) =
1

2
η∧2 . (G.81)

H Exclusion of outliers in motion capture data

To obtain accurate results from the parameter identification, a data set without outliers is needed.
The outliers in the motion capture data are the result of tracking problems when using the Opti-
Track system. One of the problems could be that not enough markers are visible for the OptiTrack
cameras. For clarity, the outliers in the OptiTrack data are something different than the meas-
urement noise. The measurement noise is dealt with by using the Savitzky-Golay filter, however,
these outliers are that large that these could influence the stiffness and damping identification.
Examples of such outliers are shown in Figure 5.4. In here, the unfiltered data of the suction cup
with respect to the tooling arm is shown, EHS . This data includes outliers that are the result
of tracking problems of as well the tooling arm as the suction cup (which is tracked by using the
plastic plate). The red boxes indicate certain peaks in the data that are outliers.
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Figure 5.4: Unfiltered pose data of the suction cup lip with respect to the tip of the tooling arm.
The red boxes indicate the outliers.

To remove the data which is influenced by these outliers, the raw data from the Comma Separated
Value files, as exported by Motive, is inspected. First, it is checked if the number of tracked
markers is more or equal to the minimum marker count. The minimal marker count is a setting
in Motive which defines the number of markers that need to be visible, for two or more OptiTrack
cameras, to reconstruct the pose of a (in Motive define) rigid body. The checking of the minimum

Figure 5.5: Visualization of the pose data EHS . The black lines indicate the removed data.
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marker count is done as well for the tooling arm data as for the plastic plate data. If the minimum
marker count for one of the bodies, as defined in Motive, is not achieved at a certain time instant,
then this time instant will be labeled as an outlier. A marker is considered as not visible if the
marker quality (in the Comma Separated Value file: MQ RGB) is less than 0.99. A value of 1
means that the marker is tracked properly.
As a second check, to make sure that every outlier is detected, the position and orientation data;
PX, PY, PZ and RX, RY, and RZ from the Comma Separated Value file, are also checked. If
there is a relatively large jump in this data, the corresponding time instant will also be labeled
as an outlier. This is also done for both bodies: the tooling arm and the plastic plate. Note that
this identification of the outliers is done when importing the data in MATLAB. The removal of
the outliers is carried out after the Savitzky-Golay filtering and before the least-squares fitting
of the stiffness and damping matrices. Because the Savitzky-Golay filter fits polynomials to the
data within a window, also the filtered data at the time instants near the marked outliers will
be influenced by the outliers themself. Therefore, for every labeled outlier at time instant tk, the
Savitzky-Golay smoothed data (Ĥ, v̂, and ̂̇v) within the time range [tk−nw tk+nw ] will be removed

from the data set. This results in Savitzky-Golay smoothed data which is free from outliers. Ñ
will be used to indicate the number of data points left for the parameter identification after the
removal of the outliers. Figure 5.5 shows the filtered pose data of the suction cup lip with respect
to the tip of the tooling arm, for which the outliers are removed. The black lines indicate the
removed data.

I Weighting matrices for least-squares parameter identific-
ation

In this appendix, the weighting matrices that are used for the weighted least-squares procedure
(performed to identify the stiffness and damping) are presented. The used weighting matrices are:

Wid,full =


0.1702 0.01765 0.009356 −0.3622 2.685 0.6043
0.01765 0.1525 0.003543 −2.201 0.3737 0.1634
0.009356 0.003543 0.1262 0.01556 0.003813 −0.5061
−0.3622 −2.201 0.01556 45.76 −8.539 −2.986

2.685 0.3737 0.003813 −8.539 58.09 1.630
0.6043 0.1634 −0.5061 −2.986 1.63 157.7

 , (I.82)

Wid,diag =


0.04475 0 0 0 0 0

0 0.04475 0 0 0 0
0 0 0.1216 0 0 0
0 0 0 14.15 0 0
0 0 0 0 14.15 0
0 0 0 0 0 148.4

 , (I.83)

Wval,diag =


0.04849 0 0 0 0 0

0 0.04849 0 0 0 0
0 0 0.1199 0 0 0
0 0 0 16.23 0 0
0 0 0 0 16.23 0
0 0 0 0 0 84.23

 . (I.84)

Weighting matrix (I.82) is used to fit a full stiffness matrix and a full damping matrix from the
identification measurement set. Weighting matrix (I.83) is used to fit a diagonal stiffness matrix
and a diagonal damping matrix from the identification measurement set. The last weighting
matrix, (I.84), is used to fit a diagonal stiffness matrix and a diagonal damping matrix from the
validation measurement set.
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J Rewriting package body-fixed velocity and acceleration

By using the relations

BvE,B =BXS
SvE,S , (J.85)

Bv̇E,B =BXS
Sv̇E,S , (J.86)

we can rewrite the package body-fixed velocity and acceleration as:

BvA,B =BXE

(
EvA,E + EvE,B

)
=BXE

(
EvA,E + EXB

BvE,B

)
=BXE

(
EvA,E + EXB

BXS
SvE,S

)
=BXS

SXE
EvA,E + BXS

SvE,S , (J.87)

and

Bv̇A,B =BXE
Ev̇A,B − BvE,B × BvA,B

=BXE

(
Ev̇A,E + Ev̇E,B

)
− BXS

SvE,S × BvA,B

=BXE

(
Ev̇A,E +E XB

Bv̇E,B

)
− BXS

SvE,S × BvA,B

=BXE
Ev̇A,E +B XS

Sv̇E,S − BXS
SvE,S × BvA,B . (J.88)

Substitution of (J.87) and (J.88) into our model, (3.5), would mean that we need to estimate
SvE,S , Sv̇E,S , EvA,E , and Ev̇A,E for the parameter identification. This can be done by applying
the Savitzky-Golay filtering on AHE and EHS measurement data, instead of AHE and AHB meas-
urement data. This could possibly give more accurate estimations of the velocity and acceleration
of the bellows suction cup lip with respect to the tool-arm.
The derivation of (J.85) and (J.86) is as follows. To express BvE,B in terms of SvE,S one needs
to remember that

EHB = EHS
SHB , (J.89)

and the time derivative

EḢB = EḢS
SHB . (J.90)

Using these, the left trivialized velocity can be obtained by

Bv∧E,B = EH−1B
EḢB

= BHS
SHE

EḢS
SHB

= BHS
Sv∧E,S

SHB

=
(
BXS

SvE,S

)∧
. (J.91)

Rewriting (J.91) gives us

BvE,B = BXS
SvE,S . (J.92)

Taking the time derivative of (J.86) gives the relation

Bv̇E,B = BXS
Sv̇E,S . (J.93)
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