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Summary 

In this thesis the problem of efficient fluid mixing in the Stokes flow domain is tackled by means of op
tima! control from a switched systems perspective. In order to make the original infinite-dimensional 
problem tractable, tempora! and spatial discretizations are used enabling us to regard the problem 
as the construction of an optima! schedule of sequence of discrete mixing actions. We exploit the 
cell-mapping method, an efficient and accurate computational tool for modeling and analyzing the 
system's behavior fora finite number of mixing actions. Tuis modeling paradigm leads toa switched 
systems perspective that will be used to introduce a navel feedback law inspired by suboptimal rollout 
policies in dynamic programming contexts. By design this feedback law for mixing guarantees a per
formance improvement over any given periodic protocol. Tuis new design methodology is validated 
bath in simulation and experiments for the benchmark journal bearing flow. 
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Part I 

Introduction 

Background 

Mixing is a relevant topic since it is a widespread phenomena which occurs both in nature and in
dustry. The focus of this study will be mixing oflaminar flows. This is an important class within the 
field of mixing since turbulent flows, which often produce effective mixing, are not always achievable. 
Laminar flows are flows whose particle trajectories are characterized by parallel layers where there is 
no exchange between layers in contrast to turbulent flows whose particle trajectories in genera! show 
chaotic behavior [6]. Therefore, mixing in laminar flows is a challenging problem. The laminar flow 
type occurs in applications involving flows at small length scales, fluids with high viscosities and/or 
low speed flows. 

Some examples in which mixing under laminar flow conditions plays an important role are poly
mer and food processing, pharmaceutics, biotechnology and microfluidics. Polymer and food-processing 
often involve high viscosity (non-Newtonian) substances like peanut butter and chocolate [14, 18]. In 
case of biotechnology often involve shear sensitive materials (like mammalian cells, plant cells , or 
mycelium) and therefore mixing must be achieved at low speeds. Microfluidics is a relatively new 
application field which concerns flow in devices having dimensions ranging from millimeters to mi
crometers and capable ofhandling volumes offluid in the range ofnano- to microliters (10- 9-10- 6 [) 

[41] . In the last few years , the field of microfluidics is growing at a rapid pace due to the high number 
of areas which share interest in this new technology. An interesting example is, "lab-on-a-chip" devices 
which can be used for chemica! analysis, environmental monitoring, medica! diagnostics [32, 42, 59] 
and detecting bacteria in space [38]. The main advantages of the devices are portability, low fluid 
volumes, fast analysis and lower fabrication costs. In the near future, such devices will for example 
be deployed in order to improve global health due to the ability to diagnose infectious diseases. As 
explained by Yager et al. [42]: 

"The developing world does not have access to many of the best medica! diagnostic tech
nologies; they were designed for air-conditioned laboratories, refrigerated storage of chem
icals, a constant supply of calibrators and reagents, stable electrical power, highly trained 
personnel and rapid transportation of samples. Microfluidic systems allow miniaturiza
tion and integration of complex functions, which could move sophisticated diagnostic 
tools out of the developed-world laboratory. These systems must be inexpensive, but also 
accurate, reliable, rugged and well suited to the medica! and social contexts of the devel
oping world. " 

This quote indicates the high importance of the field. However, in spite of the increasing performance 
and robustness for mixing that these new applications require, most industrial mixing processes are 
mainly based on trial-and-error and empiricism which yield great financial losses due to inefficient 
mixing processes [1, 18]. 

In the literature, several definitions of mixing exist. Paul et al. [18] defines mixing as the process of 
reducing inhomogeneity in order to achieve a desired result in which the homogeneity can represent 
a concentration, phase or temperature. A more mathematically rigorous definition of mixing is given 
in [55]; Consider a domain n and let n0 , fl 13 c n denote any arbitrary regions in n and let S denote 
a transformation under which n is invariant, i.e. S (fl) = n. Furthermore let µ be the Lebesgue 
measure. Transformation S is a mixing transformation if and only if 

(0.1) 

The study to mixing started in the late 19th century. At this time, Reynolds already observed 
that repetition of stretching and folding, often referred as the bakers transformation, is an effective 
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mechanism for mixing in laminar flows [45]. However, foundations for mixing as a research topic 
were laid in the 1950s [51]. Only for the last few decades, research aims to find an unifying framework 
that describes the dynamics oflaminar mixing processes. The princi pies of this unifying framework 
were laid down by Aref[5] who pointed out the link between mixing and chaos and introduced the term 
chaotic advection. Chaotic advection refers to the phenomena that even though a velocity field can be 
simple from an Eulerian perspective, the motion of the fluid particles can be chaotic in the Lagrangian 
sense [2 , 49]. For more interesting work on this topic, see [9, 40, 55]. Traditional studies focus on 
time-periodic flows to induce chaos. However, periodic flows often yield unmixed regions which are 
called islands [34]. These island should be avoided in order to achieve effective mixing. Hence these 
studies aim to deduce conditions for which islands do not occur. Here by, familiar analysis tools from 
the chaos and dynamica] systems theory are used, for example the determination of periodic solutions 
[43, 19], Poincaré maps [50, 53] and the statistics of stretching which is related to the distribution of 
Lyapunov exponents [39, 44]. However, these conditions are flow specific in the sense that they have to 
be deduced on a case-by-case basis. Furthermore, most of these studies focus on asymptotic behavior 
of the system instead of short-time behavior which is relevant for rapid mixing. 

Liu et al. [34] proposed the use of aperiodic flows for mixing since these are devoid of these periodic 
points and therefore islands do not occur. They observed that in genera!, mixing in periodic flows 
is worse than in aperiodic flows and concluded that much would be gained by achieving a better 
understanding of aperiodic mixing. Tuis observation motivates the study of aperiodic mixing protocols 
and short-time behavior in particular. However several works has been devoted to designing such a 
protocol, see (1, 15, 13, 29, 34, 36, 27], no systematic methodology exists for designing feedback laws 
resulting in well-performing aperiodic mixing protocols. 

Objectives 

Tuis thesis has three main objectives: 

• To obtain a mathematically tractable optima! control problem formulation. 

• To propose a feedback control solution to this optima] control problem that outperforms any pro
posed periodic protocol over a finite horizon in particular satisfying computational constraints. 

• To validate the proposed control solution both in simulation and experiment by means of the 
benchmark journal hearing flow. 

Outline thesis 

The remainder of the report consists of three parts. Part II provides a paper which forms the main 
body of this thesis. Tuis paper is organized as follows, in Section 2 we address the problem formu
lation. In Section 3 we take several steps to approximate this problem formulation in order to form 
a mathematically tractable optima] control problem. The control algorithm and controller design are 
elaborated on in Section 4. The benchmark system is discussed in Section 5 and results are presented 
ofboth simulations and experiments. Finally, in Section 6 we provide some concluding remarks. The 
paper focuses in particular on formulating an optima] control and proposing a feedback control solu
tion for it. For this reason, Part III will provide some important additional concluding remarks based 
on work presented in the appendices. At last, the appendices are captured in Part IV which examines 
several aspects of the paper in more detail. 
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1 INTRODUCTION 

Part II 

Paper: A switching feedback approach to 
optimize mixing of fluids 
V.S. Dolk, M. Lauret, D.J . Antunes, P.D. Anderson and W.P.M.H. Heemels, in arbitrary order 

Abstract 

In this paper the problem of efficient fluid mixing in the Stokes flow domain is tackled by means 
of optima! contra! from a switched systems perspective. In order to make the original infinite
dimensional problem tractable, tempora! and spatial discretizations are used enabling us to regard 
the problem as the construction of an optima! schedule of sequence of discrete mixing actions. We 
exploit the cell-mapping method, an efficient and accurate computational tool for modeling and 
analyzing the system's behavior for a finite number of mixing actions. This modeling paradigm 
leads to a switched systems perspective that wil! be used to introduce a navel feedback law inspired 
by suboptimal rollout policies in dynamic programming contexts. By design this feedback law for 
mixing guarantees a performance improvement over any given periodic protocol. This new design 
methodology is validated both in simulation and experiments for the benchmark journal hearing 
flow. 

1 Introduction 

Fluid mixing is a widespread process which occurs both in nature and in industry. Examples are poly
mer, chemica! and food processing industries [14, 18]. In genera!, the goal of mixing is to homogenize 
a physical scalar entity which represents for example concentration or thermal energy, over a domain 
in order to increase homogeneity [51]. In many applications, flows are slow and/or very viscous (so
called Stokes flow) and therefore its velocity field structure is simple in comparison with turbulent 
flows. Due to the simplicity of the velocity field structure, mixing in Stokes flow regimes is highly 
non-trivia!. As such, the design of an effective mixing mechanism dealing with this flow type is not 
only challenging but also practically relevant. 

Achieving rapid mixing for Stokes flows is highly relevant for many applications including, large 
industrial mixing devices involving viscous fluids and compact and micro-scale mixing devices (a field 
of research known as microfluidics) where turbulence is absent. In particular, applications in mi
crofluidics grow at fast pace due to the confluence of technologies and a number of fields that share 
an interest in this area (41] . An important application is for example the "lab-on-a-chip" concept which 
is used for chemica! analysis, environmental monitoring, medica! diagnostics [32, 42, 59] or detecting 
bacteria in space [38]. The main advantages of the devices are portability, low fluid volumes, fast anal
ysis and lower fabrication costs. In the near future , such devices will for example be deployed in order 
to improve global health due to their ability to diagnose infectious diseases without the need of a state 
of the art laboratories. 

Rapid mixing in Stokes flow regimes can be achieved by imposing time-varying boundary motions, 
pressure gradients and/or external body forces which lead to a time-varying velocity field . Tuis idea 
arose from the fact that even though the velocity field is simple from an Eulerian perspective, the 
motion of the fluid particles can be chaotic in the Lagrangian sense (2, 49]. Tuis process is known as 
chaotic advection, introduced by Aref [5], see also (9, 40, 55]. The specific time-varying mechanism 
in order to enhance mixing is called the mixing protocol. Conventionally such a protocol is designed 
in a time-periodic fashion leading to a periodic flow. However, periodic flows often yield unmixed 
regions which are called islands [34]. These island should be avoided in order to achieve effective 
mixing. Several methods are available for determining the existence of islands, e.g. the determination 
of periodic solutions [43, 19), Poincaré maps [50, 53], the statistics of stretching which is related to the 
distribution of Lyapunov exponents [39, 44] and spectra! analysis via the mapping matrix formalism 
(49) . Traditional studies enhance mixing by realize certain conditions that guarantee the absence of 
islands. However, these conditions are flow specific in the sense that they have to be deduced on a 
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2 PROBLEM FORMULATION 

case-by-case basis. Furthermore, most of these studies focus on asymptotic behavior of the system 
instead of short-time behavior which is relevant for rapid mixing. 

Aperiodic flows do not contain periodic points and therefore islands do not occur in these flows 
[34). This observation motivates the study of aperiodic mixing protocols and short-time behavior in 
particular. As shown by example in [47, 29], a properly chosen aperiodic mixing protocol can indeed 
outperform time-periodic protocols. Such protocols are usually constructed apriori by means of em
piricism and trial-and-error methods [34) and are implemented in an open loop fashion. However, 
recently several studies have been devoted to rigorously develop systematic methods to generate and 
control velocity fields in order to enhance mixing. To the best of the authors' knowledge, Aamo et 
al. [1] were the first to induce mixing by means of feedback control to generate an unstable flow. 
D'Alessandro et al. [15] and Hoeijmakers et al. [27] use an entropy approach to control the mixing 
behavior of a flow. These works only consider asymptotic properties of the controlled velocity fields 
and do not take into account the influence of different initia! conditions. Mathew et al. [36], Cortelezzi 
et al. [12] and Couchman et al. [13] on the other hand aimed to optimize the velocity field based on 
the distribution of the physical scalar entity using a multiscale mixing measure [37). However, none of 
these works provide theoretica! performance guarantees and typically these works are not concerned 
with on-line implementability. See Section B of the Appendices for a more extensive literature review on 
mixing control. 

The purpose of the present paper is to propose a feedback control solution that outperforms any 
proposed periodic protocol over a finite horizon. Our proposed solution is based on discretization 
of the mixing domain in both space and time, capturing the mixing behavior at discrete time tk by a 
vector C(tk)- Each component ofC(tk) indicates the average of the scalar entity to be mixed in a given 
region of the domain of interest. The cell-mapping method [25, 31, 47] is an efficient computational 
tool for predicting the fluid dynamics. This approach allows us to represent the system as a discrete
time linear time-variant system whose dynamics are described by the so-called mapping matrix. As the 
mapping matrix depends on a given control action and multiple control (mixing) actions are available, 
the overall dynamics of the mixing system can be captured by a switched system [33]. We can then 
regard the mixing protocol as the selection of a schedule consisting of a sequence of control options 
to be optimized in terms of a relevant mixing measure. Here, we focus on the so-called intensity 
of segregation [16] as an adequate measure for mixing although other options can also be used [37, 
28] . Based on this modeling perspective on mixing, we propose a novel feedback control law for 
mixing inspired by suboptimal rollout policies in dynamic programming (DP) contexts [8]. lt will be 
shown that online computations are feasible due to the sparsity of the mapping matrices and due to 
proposed modifications to the rollout algorithm. The methodology presented in this paper is not only 
suitable for closed-loop applications but can also straightforwardly be used for constructing aperiodic 
protocols apriori. Moreover, this paper is the first to propose a switching feedback approach for mixing 
optimization which includes performance improvements over periodic protocols. 

In addition to providing a new modeling framework for mixing from a switched dynamica! sys
tems' perspective, and proposing a control solution for it, the proposed method is validated both in 
simulation as well as experiments. An experimental setup of the well-known journal hearing flow 
[10, 50, 54), i.e. the flow between two eccentric rotating cylinders, is used as a benchmark to show the 
effectiveness of the novel feedback methodology for optimized mixing. 

The remainder of this paper is organized as follows . In Section 2 we address the problem formu
lation. In Section 3 we take several steps to obtain a relevant but tractable optima! control problem. 
The control algorithm and controller design are elaborated on in Section 4. The benchmark system 
is discussed in Section 5 and results are presented of both simulations and experiments. Finally, in 
Section 6 we provide some concluding remarks. 

2 Problem formulation 

In this paper we are concerned with achieving effective mixing using feedback control for two-dimensional 
incompressible slow or viscous flows, so-called Stokes flows. The Stokes flow regime is characterized 
by a small Reynolds number, i.e. Re « 1. This dimensionless number represents the ratio between 
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3 MODELING AND PERFORMANCE ANALYSIS FRAMEWORK 

inertial and viscous forces and is given by 

R 
_ Vmean L 

e---- , 
V 

(2.1) 

where Vmean is the characteristic velocity scale, L the characteristic length scale and v the kinematic 
viscosity. Let c(x, t) E [O, l ] c lR be a normalized positive scalar quantity in a domain n c JR 2 

associated with a transported physical entity (for example thermal energy or concentration) which 
is preserved, i.e. the surface integral Inc(x,t )dA remains constant, where x = (x, y)T E nare 
Cartesian coordinates, t E JR+ denotes the time and dA an appropriate area measure. The scalar 
quantity c : n x JR+ -+ [O , l] evolves according to the diffusion advection equation [6]. Complete 
mixing in the domain n is achieved at time t when the scalar quantity is distributed homogeneously 
over the entire domain, i.e. c(x, t) = c = In c(x, t)dA/ An , for all x E n, where c is the average of 
c(x, t) over n and An = In dA the area of domain n . The rate ofhomogenization of c(x , t ) in Stokes 
flows can be enhanced by an actuator mechanism imposing time-varying boundary motions, pressure 
gradients and/or body forces , referred as mixing actions. For example, the actuator mechanism of 
the journal hearing setup described in Section 5-1, consists of imposing boundary motions, namely 
rotating the inner and/or outer cylinder. See Section A of the Appendices fora more detailed problem 
description from a fluid dynamics point of view. 

From a high level point of view, the problem tackled in the present paper is the question of how to 
systematically design a mixing protocol determining the mixing actions over time, either apriori or in 
closed loop by means of an on-line computed mixing policy whereby depending on the mixing context, 
one can have different objectives. An objective could be (i) to obtain the best mixing performance 
within a certain time frame according to a specific mixing measure; (ii) to improve transitory mixing 
behavior over a given time horizon; or (iii) to improve asymptotic mixing behavior. In the next sections, 
we will provide a genera! modeling, analysis and design framework for formalizing and addressing 
the mentioned optima! control problem that allows for different objectives and definitions of mixing 
efficiency and mixing quality. 

3 Modeling and performance analysis framework 

Obtaining a mathematica! formulation of the high-level control problem provided in the previous 
section might be tedious. In addition, even if such a formulation would be obtained, it would be 
intractable due to the infinite-dimensional character of the problem. Therefore, we discuss in this sec
tion a mathematica! control problem that forms an accurate approximation of the high-level problem 
formulation, whose solution will be close to practical implementation. To obtain this mathematica! 
formulation, three main steps are taken. First, the domain is partitioned into a finite number of cells. 
Secondly, the mixing process is sampled at discrete time instants tk = kt:J. t , k E N. At last, we restrict 
ourselves toa mixing protocol which is built up as a sequence consisting of control inputs, referred 
to as mixing actions, which are selected from a finite set M = {l , 2, ... , M} with M the number 
of available mixing actions. A mixing action m E M is a pre-defined actuator mechanism over the 
finite time window t:J.t. In the journal hearing setup for example, a mixing action is to rotate the inner 
and/or outer cylinder a specific angle 0 in the finite time window t:J.t . Hence, the mixing protocol ais 
a sequence oflength kF, where kF = T1 / t:J.t and T1 the duration of the mixing process, consisting of 
scheduling varia bles each corresponding to a certain mixing action, i.e. a : { 0, 1, ... , k F - l} -+ M . 
To achieve these three steps, we will exploit the cell-mapping method as explained in Section 3.1. In the 
first part of this section, we discuss the cell-mapping method. Tuis will lead to a discrete-time linear 
switched system model of the mixing process. Tuis novel perspective on mixing will be instrumental 
for our optima! mixing strategy. After that, Section 3.2 addresses the quantification of the mixing per
formance. At last in Section 3. 3, the provided modeling framework and performance measure are used 
to formulate an optima! control problem, whose (approximate) solution shall lead to the model-based 
feedback control solution presented in Section 4. 
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3 MODELING AND P ERFORMANCE ANALYSIS FRAMEWORK 

3.1 Discretization using the cell-mapping method 

The cell-mapping method, introduced in [31], is an efficient computational tool to investigate the in
fluence of different mixing protocols on overall mixing quality at a feasible computational cost. It 
provides a description of the transport of the scalar quantity c(x, t) after a discrete time step t:.t given 
a certain mixing action, in a domain n over a grid of N cells n i, where i E {l , 2, . .. , N}. The cells 
{l:11 , l:12, . .. , llN} forma partition of ll in the sense that u: 1 lli = ll and that all cells are disjoint, 
i.e. n i n nj = 0 when i =/- j. The method will lead to a mapping matrix q> of which the elements 
define the fraction of material being transported from one cell to another in time span t:.t, as we will 
discuss below. 

A computationally efficient method to compute the elements of a mapping matrix q>m, is by track
ing P individual discrete particles. The path of a single particle is determined by the solution of 

x 
x(O) 

v(x, m, t) 

Xo 

(3.1) 

(3.2) 

where v : IR2 x M x JR+ --+ IR2 is the system's velocity field, m E M the mixing action and x 0 

the initia! condition of the particle. Tuis velocity field can either be found analytically or numerically 
by means of the Navier-Stokes equations [6] and the imposed boundary conditions. The solution to 
these equations depends on boundary motions, pressure gradients and/or body forces, i.e. the mixing 
actions. Therefore, each mixing action m E M yields a different velocity field (3,I) and thus for each 
m E Ma mapping matrix has to be computed. Under the assumptions that transient dynamics and 
surface tensions are negligible, the dynamics of the system given by (3,I) only depends on the present 
state, i.e. no hysteresis phenomena occur. The entries of the mapping matrix <I>m are then determined 
by 

Pij 
q>m,ij = Pj (3.3) 

where Pj is the amount of particles in donor cell nj at t = t0 = 0 and Pij is the amount of particles 
traveled from donor cell n j to recipient cell n i at t 1 = to + t:.t (shown in Figure 3.1). The preservation 
property of c(x, t), implies that L~=l q>m,ij = 1 for each j E {l, 2, ... , N}. Note that the size of the 
mapping matrix is equal to N x N. Furthermore, since O :::; Pij :::; Pj , the values q>ij are restricted to 
the interval [O , 1] for all i, j E { 1, 2, ... , N}. 

The mapping matrix q>m can be used to determine the transport of the scalar quantity c(x, t) over 
the domain n over a grid of N cells after discrete time step t:.t via a linear matrix multiplication as 
presented next. Let Ci (t) be the averaged quantity in each cell n i at timet, i.e. 

In; c(x, t)dA 
Ci(t) = A , 

n, 
(3.4) 

where An, = In dA the area of domain n i. Hence, Ci (t) E [O, l] for i E {l , 2, ... , N} and let C(t) 
be the column ot averaged concentrations 

(3.5) 

The mapping matrix <I>m maps C(tk) to C(tk+i) according to 

(3.6) 

for all k E N, where tk = kt:.t and mis the chosen mixing action. 
When using mapping matrices, important issues are how to choose the length of the time steps t:.t 

and as well the number of cells N since both t:.t and Nare involved in the trade-offbetween accuracy 
and computational complexity. The discretization of mixing domain n requires sub-domain averaging 
as shown in (3 .4). For this reason, the method can not capture sub-domain features. Tuis results in 
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3 MODELING AND PERFORMANCE ANALYSIS FRAMEWORK 

•••• 
n,➔ •••• •••• •••• 

Aftcr 1!.1 

~ n, 

Figure 3.1: Computation of the mapping matrix from redistribution of material over a grid of 
finite mapping cells: discrete particle-based approach [49]. 

a numerical error known as numerical diffusion. Choosing a large number of cells N mitigates this 
numerical error but the growth of the mapping matrix might be impractical from a computational 
point of view. However, on the other hand in practice diffusion is always present and hence this 
numerical error does not necessarily degrade the accuracy of the mapping [23 , 24, 31]. Despite of this 
fact, the number of cells N is typically large for many applications. Hence, one has to exploit the 
sparsity property the mapping matrix since sparser mapping matrices are from a computational point 
of view easier to handle, both in terms of number of operations to e.g. multiply such matrices and 
in terms of memory needed to store them. This important sparsity property is obtained when the 
mapping matrix is computed over a relatively small time step 6.t. The reason for this sparsity is that 
the fluid from an arbitrary donor domain Dj will only be distributed over a small subset of the entire 
do main n in a short time span. Hence, mij = 0 for a majority of pairs ( i, j) E { 1, 2, . .. , N} 2 , which 
corresponds to zero elements in the mapping matrix. Clearly, smaller time steps will lead to sparser 
mapping matrices. One important drawback however, is that every time step introduces a numerical 
error. Hence, a good balance of N and 6.t is needed, see [31 , 23] fora more detailed discussion on 
these choices. See Section E of the Appendices for a discussion on how to choose the mapping grid with 
respect to diffusivity and control. 

Remark In this work, the mapping matrices are derived for pure advective flows. However, Gorode
trskyi et al. [23, 24] show that molecular diffusion can be included into the mapping matrix 
formalism as wel!. As a consequence, the approach presented in this paper also applies in that 
case. 

As already mentioned, the cell-mapping method leads to different mapping matrices for each mixing 
action. Since at each discrete time step tk = k6.t a new mixing action, Clk E M, will be chosen, the 
system can be described as a linear discrete-time switched system. To do so, we will use as the state 
vector of the system 

(3.7) 

representing the error between the current state and the homogeneous state c l at time tk = k6.t, k E 
N where c = fn c(x , t)dA/An. The system's model then becomes 

(3.8) 

where <I>ak is the system matrix which depends on the mixing action or control input CTk E M , k E N. 
Hence, by choosing this setup, the system dynamics are reduced to the switched system (3.8) and the 
mixing protocol has to determine the sequence CT = (CJo, ... , CTk,,-i). The only ingredient left to be 
defined is an appropriate measure for quantifying mixing performance. 

3.2 Quantifying mixing performance 

In the literature, several measures are used to quantify mixing performance depending on the focus 
of the study. Performance measures are, for instance, the striation thickness and the length of stretch 
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3 MODELING AND PERFORMANCE ANALYSIS FRAMEWORK 

which quantify the deformation of a material element, and the scale of segregation, intensity of segre• 
gation [28] and the Mix-Norm [37], which quantify the inhomogeneity of the scalar field to be mixed. 
For this research, the intensity of segregation is chosen for quantifying mixing performance. Yet it is 
important to mention that the con trol methods to be presented later on can be adapted to other mixing 
measures in a straightforward manner. 

As mentioned before, the objective of mixing is to reach the equilibrium in which the scalar quan• 
tity c(x, t) is homogeneous over the entire domain, i.e. c(x, t) = c, for all x E n. The intensity of 
segregation represents the variance of the quantity c( x , t) with respect to the equilibrium value c. The 
variance is equal to the squared deviation ac, which is the normalized .C2-norm of the error c(x, t) - c 
given by 

( ) 
ll c(x, t) - cllc2 

ac t = fin , (3.9) 

1 

where llf(x)l lc2 = (f0 lf(x)l2dA) 2 . The intensity of segregation [16, 31] is defined as 

l(t) = a c(t)2 . 
c(l - c) 

(3.10) 

The denominator is chosen such that 1 ( t) E [ü, 1] , for all t E JR+. The intensity of segregation defined 
in discrete form is given by 

I ( ) = _1 ~ (Ci(t) - c)
2 

A . 
d t An ~ c( 1 - c) o, ' 

i= l 

(3.11) 

where Ci(t) = f o; c(x, t)dA / Ao, as defined before in (3-4). In the worst case, Ci(t) is either one or 
zero for all -i E {1 , 2, .. . , N} which yields an intensity of segregation equal to one. The ideal case, 
C; (t) = c for all i E {l , 2, ... , N} corresponds to ld(t) = 0. 

An important observation is that the value of l d(t) depends on the choices for the subdomains 
11 1 , !12, . . . , nN. Therefore, the intensity of segregation is only a comparable measure if the same grid 
is used. The cell partitioning is often chosen equal to the partitioning used for the mapping method 
since it corresponds to the length scale of interest such that critica! striation sizes are visible. The 
intensity of segregation l d(t) attime t = tk = t0 + k!:it in terms of the state (3.7) is given by 

(3.12) 

where Q is a diagonal matrix where Q;; = An;(~-c) and Qij = 0 if j =p i , i,j E {1, ... , N}. With 
some abuse ofnotation, we write Jd(ek) for l d(tk )- Now, the switched system perspective (3.8) and 
the mixing measure (3-12) are provided, the high-level problem formulation given in Section 2 can be 
approximated by a mathematically tractable problem formulation presented next. 

3.3 Optimization problem 

Taking into account the system description (3.8) and the intensity of segregation (3.12), we define the 
cost g: [O, l] N x M --+ JR+ given by 

g(e) 

Depending on the mixing context, one can have different objectives, including for instance, 

(3.13) 

(3.14) 

Objective 1 : Achieve the best mixing performance, measured by intensity of segregation at a certain 
terminal time tkF. 

Objective 2 : Improve transitory mixing behavior in terms of a cumulative cost over a given time 
horizon {O, 1, ... , kF }. 
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3 MODELI NG AND P ERFORMANCE ANA LYSIS FRAMEWORK 

Objective 3 : Optimize the mixing behavior in terms of a cumulative discounted cost over an infinite 
horizon if one is interested in asyrnptotic behavior. 

A cost-function which can capture all these objectives is 

00 

l a(eo) = L ,81g(e1 ), (3.15) 
l=O 

where a denotes the mixing schedule and,81, l E N are tuning parameters which can be chosen in ac
cordance with the mixing context. Determining the cost function given by (3-15) from a computational 
point of view, will be addressed in the next section. In fact, the choice for ,81, l E N corresponding to 
the first three objectives, is as follows: 

{ 
1 if 1 = kF 

Ob1·ective 1 ,81 -
- 0 otherwise 

Objective 2 
if0 ::; l ::; kF, where w1are weighting factors 

otherwise 

Objective 3 ,81 = a.1, l E N, where 0 < a ::; 1 is a discount factor allowing to properly specify the 
importance of transitory and asymptotic behavior in a specific problem. 

Hence, the optimization problem now becomes: 

J *(e o) = min Ja(eo) 
aEM"" 

(3.16) 

subject to (3.8), and find an optima) sequence 1r*(eo), i.e. 

(3. 17) 

where 1r : [0, l ]N ➔ M 00 denotes a mixing policy which maps a state e toa mixing sequence a : N ➔ 
M. 

Remark The control effort can be taken into consideration by defining the cost g as, 

g(e ,m) = eTQe + R (m) 

where the first term penalizes the mixture variance and the second term the control effort. The 
con trol effort term R( m) maps the discrete set of mixing actions M to the energy involved 
in the corresponding mixing action. In addition, the optimal control problem (3-17) can be 
subjected to constraints regarding control effort. In this work, we focus on short-term mixing 
behavior where we disregard control effort issues. However, the machinery presented below can 
be applied mutatis mutandis to the other cases as well. 

The optima) control problem (3-16) and (3-17) subject to (3.8) can be solved apriori, where the opti
ma) protocol 1rk·*(e0 ) is implemented in open loop. However, a feedback implementation based on 
Bellman's optimality principle [7] yields a policy less sensitive to modeling and measurement uncer
tainties . In the Jatter case, the optima) sequence 1r*(e 0 ) is determined on-line according to 

00 

Jak(ek) L ,81g(e1) (3. 18) 
l=k 

1r*(ek) arg min Jak(ek) , (3. 19) 
ak E I Jul l , /..• 

subject to (3 .8) , for each time step tk where k E {0, 1, ... , kF - 1 }. The applied control input at discrete 
time tk is taken as the first entry of the sequence 1r*(ek), i.e. az where a* = 1r*(ek) - Thus in closed 
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loop, the optimization is repeated at each time step using the current measured state which makes the 
policy less sensitive to modeling and measurement uncertainties. 

Important to notice is that for the first two objectives, it is only necessary to consider a finite 
horizon which means a finite decision set M k,.·-k can be considered in (3-17) in order to obtain a 
policy which returns a finite mixing protocol, i.e. 7r* ( e0 ) E M k,.· . Furthermore, notice that these 
two objectives yield a time-varying policy contrary to the third objective in which the optima! policy 
is time-invariant (see [8]). Since the aim of this paper is to optimize mixing over a finite horizon in 
which asymptotic behavior is irrelevant, we disregard the third objective. 

Finding the optima! numerical solution to (3.16) and (3-17) is often computationally expensive due 
to combinational nature of the decision set Ifuu which is growing exponentially with the length of the 
horizon kp. Tuis is the well-known curse of dimensionality of DP [8]. Since we aim to construct a 
feedback control method using only restricted computation time, we propose a suboptimal strategy to 
approximate the solution given by (3-17) while still guaranteeing important closed-loop properties. 

4 Proposed feedback mixing method 

In this section, we use the optima! control framework presented in the previous section to propose a 
computationally tractable control method inspired by a suboptimal method for dynamic programming 
(OP) [8] . In addition, we discuss how to implement this control approach on-line within computational 
constraints. 

In genera!, optima! control problems for switched systems are difficult to solve. In the literature, 
stabilizing suboptimal feedback policies were derived from S-procedure stability conditions [46, Ch.2] 
and Lyapunov stability conditions [33, Ch.3.4] see, i.e. [26, 35], E-relaxation policies [57, 56, 58] and 
rollout policies [3 , 4, 8]. For more work about discrete switching control, see also [17, 21, 22]. Most 
of these approaches are LMI-based which are for this particular application, due to the relatively large 
size of the mapping matrices, computationally intractable in spite of recently developed numerical 
techniques [30, 52]. 

Several works in the field of mixing [12, 29, 34], proposed the following simple computational 
efficient policy which we shall call minimum error first (MEF) : Choose CTk at time tk that yields the 
best performance at the next time step t k+I (in our case in terms of the intensity of segregation) , i.e. 

( 4.1) 

Since this policy only requires one step ahead predictions, the computational effort is low. However, 
only asymptotic performance guarantees could be derived by means of the S-procedure, in a similar 
fashion to the arguments presented in (46, Ch.2]. Fora finite horizon, it is unclear what this policy has 
to offer since asymptotic properties do not yield direct quantitative information about mixing efficiency 
over a finite horizon (12] and thus does not always outperform periodic protocols as we will show in 
Section 5.2. 

For these two reasons, we focus on a method to approximately solve the optima! control problem 
(3-17) that is able to deal with large matrices and in addition that can provide guarantees of outper
forming available periodic mixing solutions. Due to the Jatter aspect, performance guarantees are 
immediately obtained. To do so, we will use so-called roll-out policies (see [3, 4, 8, Ch. 61). 

The proposed closed-loop rollout policy uses some known base policy in order to obtain an ap
proximate solution to (3 .19) by restricting the number of decisions beyond a certain horizon (without 
sacrificing the overall freedom in the schedules). To explain in more detail, instead of optimizing the 
entire sequence CTk for each time step tk, only the first H , 0 :S H < kp - l schedule variables 

( 4.2) 

known as the lookahead horizon, are chosen to be free and being optimized while 

(4.3) 
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4 PROPOSED FEEDBACK MIXING METHOD 

are fixed and chosen according to a base policy 7rbase · Thereby, the decision set has been reduced 
Iron-out ,k C Irun,k, in other words the amount of protocols to be examined is equal to mH instead of 
mkp in case of Irun ,k• Analogously to the optima! policy given in (3-19), the rollout policy is given by 

arg min lak(ek) , 
aA: E i roll-out. k· 

( 4.4) 

for all k E {O, 1, . .. , kF - l}. The rollout policy always outperforms the corresponding base policy as 
stated in the following theorem. 

Theorem 1 [8, Ch. 6.4]: LetJ1r'·'°'1c",(e) = minak Eiro,1c",.k la,(e), whereirouo"t,k isasetcontainingall 
protocols satiifying ( 4.2) and ( 4-3) , and let l 1r• ,bau( e) = Jau.,,, ( e) be the costs-to-go of the roll-out and 
base policy respectively, then 

( 4.5) 

for all k E {O, 1, ... , kF - 1} and every state e as long as ak ,hase E Ik. 

D 

By choosing the base policy as an available periodic mixing sequence, it will be guaranteed that the 
rollout strategy will never perform worse than this periodic solution over an arbitrary finite horizon. 
The periodic protocol aperiodic consists of a repeating set of K schedule variables denoted by 

where Vi E M, i E {O, 1, ... K - l}. Hence, for protocol aperiodic we have 

periodic periodic periodic 
ao =Vo, a1 =V1, ... , aK-l =VK - 1 

and 
periodic periodic fi Il k {O k K} ak+K = ak or a E , 1, ... , F - . 

The periodic protocol does not have to be optima! in order to obtain an effective rollout policy as we 
will show in Section 5. However, the choice of a well-performing base policy is in genera! beneficia! 
for the rollout algorithm due to the performance guarantee given by Theorem r. 

The rollout algorithm can be made computationally more efficient by means of pruning. Instead 
of determining the cost lak (x) for each ak E Ironout ,k, only a subset with promising options is being 
evaluated. Tuis manifests as follows the cost is computed for each ak E Ironout,k up until kmin instead 
of kF, where kmin < kF: 

kmin 

J:;li0 (e) = L /3min ,l9(e1) , (4.6) 
l=k 

where /3min,l , l E N are tuning parameters which can be chosen in accordance with the mixing context. 
Note that parameters /3min ,l , l E N can be chosen different from /31, l E N used in (3-15) and (3-18). 
Based on this cost, the best nmin options are chosen to be evaluated over the entire horizon kF, Tuis 
pruning approach reduces the maximum amount of required matrix multiplications per time step 
from mH (kF - 1) to mH kmin + nmin(kp - 1 - kmin), Important to note is that the base policy must 
be evaluated over the entire horizon as well in order to maintain the performance guarantee given 
by Theorem r. Moreover, notice that in genera! larger kmin and nmin will yield better performance, 
since a larger kmin will better reveal promising options and a larger nmin implies that more options 
will be evaluated. Consequently, if kmin and nmin are chosen sufficiently large, the performance will 
not degrade at all, with respect to the algorithm without pruning. 

So far, we considered the rollout algorithm in order to optimize the cost function (3.15) . However, 
how to compute such a cost function has not been addressed. For a E Mk ,,, let '=-a(k2 , k1 ) .

<I>a,.2 <I>ak r i .•. <I>ak 1+1 <I>a.1 where k2;::: k1 and k1 , k2 E {O, 1, .. . , kF - 1}, then (3.8) leads to 

(4.7) 
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5 SIMULATION AND EXPERIMENTS 

Algorithm 1 Determine J1(x , er) step-by-step 

Set Jak (x) = 0 
for each l E { k , k + l , ... , k p - l } 

Jak (x) = Ja , (x) + /31ld( x) 
X = Aa,X 

end for 
Return Ja , (x) 

Algorithm 2 Rollout policy using one step ahead prediction 
Execute pre-defined initia! action cr0 at time t = t0 

for each k E { 0, 1, . . . , k p - l } 
Measure X k (at time tk) 

Predict next state Xk+I = Aa,,X k . 

for each CT E Iroll -out,k+I 

Compute Ja k+ ' (xk+I) using Algorithm 1 
end for 
Determine crk+I ,rollout according to (4.4) 
Choose CTk+I as the first entry of crk+I ,roll out 

Wait until t = tk+ 1 

Execute mixing action CTk+ l 

end for 

Note that '=-a(k2 , ki) = I if k2 = k1 . Using (4.7) and (3 .12), the cost function (3-18) can be written as a 
quadratic cost function 

( 4.8) 

where Pa, is given by 
k,,- 1 

Pak= L /31'=-a•(l , k)TQ'=-a••(l , k). ( 4.9) 
l=k 

Typically, Pa, is a full matrix of size N x N. Additionally as mentioned, the mapping method is only 
accurate if N is sufficiently large. For these reasons , it is in most cases impractical to compute and 
process Pak due to memory limitations. Hence, the cost function Ja, (e) has to be computed via an on
line method. On-line computation can be realized via a step-by-step approach as shown in Algorithm 
I which does not require to store full matrices of size N x N. Given this fact, the closed-loop rollout 
policy given by (4.4) can only be realized via online computation of Ja' ( e). Fortunately, due to the 
sparsity of <I>a,, the computational requirements remain tractable. 

To overcome the required time for solving (4.4), which would yield delays in the mixing process, 
we determine the control input one step in advance. The control algorithm is applied to the predicted 
state ëk+I instead of the currently measured state ek, where ë k+I = <I>a. ek. This allows us to compute 
CTk+I in between tk and tk+I as shown in Algorithm 2 where we start with a pre-defined initia! action 
cro. Hence, as long as the time to solve (4-4) is less than !':!.t at each time-step, no additional delays 
occur in the mixing process. 

5 Simulation and experiments 

In the following section, the method is validated via both numerical simulations and real experiments 
on the well-known journal bearing flow. First, we discuss the journal bearing setup, after which we 
present the corresponding simulation and experimental results whereby we will aim to achieve the 
best mixing performance, measured by intensity of segregation at a certain terminal time tk ,, . 
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't 

#~ 
~ 

Figure 5.1: Journal hearing geometry determined by two dimensionless parameters r = ...?::iu... and 
r ,Ju l. 

E = _ e_ . The gray lines represents the journal hearing grid which discretizes the domain in radial 
rou/. 

and tangential direction. In t he simulations, a finer grid is used of 600xl00. 

5.1 Description journal hearing setup 

The journal bearing system exists of two long eccentric cylinders, which is a benchmark system in the 
area of mixing, since it is a well-known, realizable, prototype 2-D flow in which chaotic mixing can 
appear [50] . Furthermore, an analytic expression for the velocity field is available [54] which solely de
pends on the geometry of the setup, making accurate simulations possible. The geometry of the setup 
is set by two dimensionless parameters being the ratio of the radii of the two cylinders, r = r;n/r out 
and the eccentricity, E = e/rout where e is the distance between the centers of the two cylinders (shown 
in Figure 5-1). In this study, the parameter values are r = 1/ 3 and e = 3/10. 

Mixing is achieved by alternating rotational movements ofboth cylinders. For the sake of simplic
ity, we only consider mixing actions for which only one of the two cylinders turns at any particular 
instant of time. In that case, only the dis placement of the cylinders affect the results and not the 
chosen velocity profile. This is not true when both cylinders turn simultaneously. Moreover, mixing 
protocols whereby both cylinders can turn simultaneously lead to similar qualitative results [50]. In 
this study we restrict ourselves to four mixing actions (M = 4, m E M = {l , 2, 3, 4} ); rotation of 
the inner and outer cylinder over fixed angles, both in counter and clockwise direction. The chosen 
velocity profiles are constant and the rotational angles are such that all mixing actions induce the same 
amount ofkinetic energy per time instant into the fluid leading to angles ofrotation 0;n = (l /r)Bout 
and angular velocities Yin= (l /r )Vout , where the inner angle ofrotation is chosen as 0;n = 3n. In 
this way, a fair comparison among mixing actions can be made. A mapping matrix is calculated for 
each mixing action as explained in Section 3-1. The grid used is shown in Figure 5-1. 

The experimental realization of the journal bearing setup, shown in Figure 5.2, should meet two re
quirements. First, the setup should be able to rotate both cylinders independently where it is favorable 
to be able to adjust the velocity wave form which is realized via two separate servomotors. Secondly, it 
must be possible to be observe the entire mixing domain without any obstructions. For this reason, the 
bin which will be filled with polyrner, has a transparent bottom and the setup is constructed such that 
the bottom view is clear as shown in Figure 5.2. Furthermore, during the experiments, a plain white 
background is placed on top of the bin around the inner cylinder. In this way, no camera calibration 
is required since a homogeneous offset to the state does not influence the intensity of segregation. 
Using a PC running a Matlab/Simulink environment and a real-time data-acquisition device based on 
EtherCAT, the motors are driven and camera frames are captured simultaneously in real-time. 

As mentioned before, a flow is in Stokes regime if the dimensionless Reynolds number Re = 
VmeanL / v is small, i.e. Re < < l. In order to achieve such a flow, a Newtonian viscous fluid is 
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Figure 5.2: Experimental setup with A: encoder of the inner cylinder, B: (servo) motor of t he inner 
cylinder, C: gear of the inner cylinder, D: encoder of the outer cylinder, E: (servo)motor of the 
outer cylinder, F: gear of the outer cylinder, G: inner cylinder, H: outer cylinder , I: transmission 
belt , J : mirror , K : mechanism to adjust the eccentricity. 

used for the experiments, namely polydimethylsiloxane hydroxy terminated (PDMS) which has a statie 
viscosity in the range of v ~ 1.8 • 10- 3 - 2.2 . 10-3[m2 /s]) and a density of p = 0.94 . 103 [kg/m3]. 

Furthermore, a relatively low velocity is chosen, Vout = 1r / 20[rad/s]. Based on the velocity profile of the 
narrowest section of the journal bearing setup, this yields an average velocity ofVm ean = 0.0042(m/s]. 
The typical length is chosen to be the diameter of the journal bearing, i.e. L = 2r = 75 • 10-3[m]. Tuis 
results in a Reynolds number of Re ~ 0.0176. In order to exclude bottom effects such that the flow 
can be regarded as 2-D, the contrast fluid is dropped at the surface of a 2 · 10- 2m thick transparent 
layer of PDMS. The images of the mixture are captured with a regular USB camera underneath the 
setup. See Section F of the Appendices for an extensive description of hardware and software of the set-up and 
Section G for an explanation on the image processing. The velocity V out = 1r / 20[rad/s] implies that in our 
situation, a mixing action (as Bout = 1r) takes ,6.t = 20[s]. The control horizon has been set to kF = 30. 
See Section D of the Appendices for the motivation of this control horizon. Hence, one experiment takes 
ten minutes. For this time frame, the effect of gravity is negligible. 

5.2 Simulation results 

In order to examine the performance of the rollout algorithm, we compare the rollout policy (4.4) 
with a periodic protocol, which is used as base policy, and the minimum error first policy (4.r). As 
mentioned, the chosen periodic base policy does not necessarily have to be optima! as long as the 
overall performance is good. Moreover, an optima! periodic protocol is difficult to determine, because 
the performance is highly sensitive to the initia! condition which will become clear later. Therefore, 
the periodic base policy is determined by evaluating the overall performance by means of simulations 
of all possible periodic protocols oflength three and four based on several initia! conditions. Tuis leads 
to the base policy with 

a base _ V _ 3 abase _ V _ 3 abase _ V _ I abase _ V _ l 
0 - o- , 1 - 1 -, 2 - 2-, 3 - 3-, 
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Figure 5.3: Initia! concentration field used for t he simulations . 

which is repeated according to 

periodic - period ic fio Il k E {O 1 k K} and K -- 4, (Jk+K - (Jk ra , , ... , F- (5.2) 

i.e. a rotation of 21r[rad] of the outer cylinder followed by a rotation of 61r[rad] of the inner cylinder. 
Since simulations do not have time restrictions, pruning via (4.6) is omitted. Moreover, as already 
mentioned, if kmin and nmin are chosen sufficiently large the same results would be obtained. Since in 
this section we aim to achieve the best mixing performance, measured by intensity of segregation at a 
certain terminal time tk,,, the tuning parameter values for /31, l E N and f3min ,l , l E N are chosen as 

/31 {~ if l = kF 
(5.3) 

otherwise 

f3min ,l {~ if l = kmin 
(5.4) 

otherwise. 

The initia! concentration field represents a circular blob as shown in Figure 5.3. The simulation 
results are shown in Figure 5.4. As expected by Theorem 1, the proposed rollout policy indeed outper
forms the periodic base policy (or at least does not perform worse). The MEF policy on the other hand 
performs worse than the periodic protocol. Although several papers [12, 34, 29] showed satisfactory 
results using the MEF policy, the results indicate that for this specific mixing setup the minimum 
error policy is not suitable due to its short control horizon. 

To investigate the sensitivity to small spatial perturbations to the initia! condition, we consider 25 
different initia! conditions each consisting of the same circular blob as shown in Figure 5.3 but slightly 
shifted over a small part of the mixing domain. In order to examine the effect of feedback, an open
loop rollout policy will be evaluated as wel!. This policy is a mixing protocol determined apriori using 
the rollout algorithm on the basis of the unperturbed initia! concentration field, hence the open-loop 
rollout policy applies the same mixing sequence to each initia! condition. In contrast, the closed-loop 
rollout policy results in a different sequence for each initia! condition. Figure 5.5 presents the intensity 
of segregation after kF = 30 steps Id( ek,.•) as in (3.11) for these initia! conditions using the periodic 
protocol described by (5-1) , the open-loop rollout policy and the closed-loop rollout policy. Note that for 
the periodic protocol, a small change can have a relatively large influence on the mixing quality. The 
closed-loop rollout policy reduces this deviation and shows for all initia! conditions an improvement in 
performance. Initia! conditions number 21 to 25 in Figure 5.5 in particular show that the closed-loop 
rollout policy is able to react to the initia! condition due to the presence of feedback. It is important to 
notice that even though the only performance guarantee is that the closed loop rollout policy is never 
performing worse than the periodic protocol according to Theorem 1, even the open-loop rollout still 
performs significantly better compared to the periodic protocol in most cases. 
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Figure 5.4: Comparison among the periodic protocol, minimum error policy and the rollout policy. 
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Figure 5.5: Comparison among a periodic policy, a open-loop rollout policy and a closed-loop 
rollout policy in terms of intensity of segregation after 30 steps, i. e. Id(kF) , on the basis of 25 
different initial conditions whereby the chosen periodic base policy is given by (5.1) and (5.2) . Note 
that for each initial condition , t he rollout protocol indeed outperforms its base policy. Moreover , 
the closed-loop rollout policy red uces the variation of Id(kF) over all 25 initial conditions. 

As mentioned, the chosen periodic base policy does not necessarily have to be optima!. In fact, 
even a far from optima! base policy will still lead to satisfactory results. To validate this statement, we 
repeat the simulations presented in Figure 5.5 where we instead use the following base policy, whose 
performance is worse than the policy given by (5,I) and (5.2) the sequence 

,..base _ V _ 3 ,..base _ V _ 1 vo - 0 - ,v1 - ] - ' (5.5) 
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which is repeated according to 

a~: i~dic = a~eriodic for all k E {O, 1, . .. ' kp - K} and K = 2, (5.6) 

i.e. a rotation of 1r[rad] of the outer cylinder followed by a rotation of 31r[rad] of the inner cylinder. This 
base policy is used for both the open-loop rollout policy as the closed-loop rollout policy. The results of 
the periodic protocol described (5.5) and (5.6), the open-loop rollout policy and the closed-loop rollout 
policy are presented in Figure 5.6. By comparing Figure 5.5 and Figure 5.6, we can conclude that even 
though the performance of the periodic base policy, given by (5.5) and (5.6) , is significantly worse than 
the performance of the periodic base policy, given by (5-1) and (5.2), the rollout policy still leads to 
satisfying results. 
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Figure 5.6: Comparison between an periodic policy, an open-loop rollout policy and a closed-loop 
rollout policy in terms of intensity of segregation after 30 steps, i.e . Id(k p ) , on the basis of 25 
different initial conditions whereby the chosen periodic base policy is given by (5 .5) and (5.6). Not e 
that for each initial condition the rollout protocol outperforms its base policy and even performs 
relatively well with respect to the periodic policy used in Figure 5.5. 

5.3 Experimental results 

The results presented in Section 5.2 already show that more effective mixing can be achieved by the 
feedback policy proposed in this paper. In this section, the practical feasibility and effectiveness of the 
proposed method will be validated. Here, measurement noise, model errors and time constraints are 
present. Since the control method in presented in this paper is model-based, first the mapping method 
is validated by means of an experiment. Figure 5.7 compares the measured state and simulated state 
after executing 22 steps of the periodic protocol. Clearly, the shape of the dye and thereby the spatial 
structure of the state coincide well. This suggests that the mapping method is indeed an accurate 
method for modeling the system. However, the measured concentration is more diffuse than the 
simulated state, which hints that diffusion plays a role in the experiment. 

Next, we evaluate a closed-loop rollout policy whose base policy is described by (5.1) and (5.2) 
and whose tuning parameters are chosen as (5.3) and (5.4) . Figure 5.8 and Figure 5.9 present the 
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5 SIMULAT ION AND EXPERIM ENTS 

Experiment Simulation 

Figure 5.7: The left figure shows the measured st ates (in this case concentration field) after 
execut ing 22 steps of the periodic protocol. The right figure shows the simulated st ate after 22 
steps of the periodic protocol which coincides well wit h t he measured state. However, t he measured 
concent ration is more diffuse than the simulated state, which hints t hat diffusion plays a role in 
the experiment. 

experimental results of the periodic protocol and rollout policy, respectively. Observe that in spite of 
the fact that the mixing process in presence of diffusion is irreversible, the intensity of segregation 
is not always monotonically decreasing. Moreover, Figure 5.8 and Figure 5.9 show that, although 
experiments are executed under the same conditions, the difference among experiments in terms of 
intensity of segregation is significant. Despite that for the periodic experiments shown in Figure 5.8, 
spatial structures of the states coincide well to each other. These observations can explained due to 
errors in the measurement system, e.g. camera noise and differences in illumination and contrast. 
Because of this, relating concentration to a pixel value is a difficult practical problem. Furthermore, 
not only errors in the measurement system are responsible for the difference between experiments, 
but also the inevitable small variances in initia! condition. 
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5 SIMULATION AND EXPERIMENTS 

10° .------~------,----,---,---===== 
-Experiment 1 
- - - Experiment 2 
· - ·- · Experiment 3 

10 15 20 25 30 
Number of steps 

Figure 5.8: Experimental results of the periodic protocol showing the evolution of t he (measured) 
intensity of segregation Id over t ime. All three experiments were executed under the approxi
mately same conditions with the same periodic protocol. The chosen periodic protocol is given 
by (5.1) and (5.2), i.e . one whole rotation of the outer cylinder followed by three rotations of the 
inner cylinder . Important notice is the difference among the three experiments due to measure
ment uncerta inties and slight variance in initia! condition. Furthermore for the same reasons, the 
intensity of segregation is not monotonically decreasing. The average intensity of segregation over 
all experiments at terminal step kp is 0.0093. 

10° .--------,--------,-------,----..-------,===== 
-Experime nt 4 
- - - Experiment 5 
· - · - · Experiment 6 

... -... - -

10· '0~--~---1~0--~15---2~0---2~5 --~30 

Number of steps 

Figure 5.9: Experimental results of the closed-loop rollout policy in terms of the evolution of the 
(measured) intensity of segregation Id whereby the chosen periodic base policy is given by (5.1) 
and (5.2). All three experiments were executed under approximately the same conditions with 
the same periodic base policy. Important notice is the difference among the three experiments 
due to measurement uncertainties and slight variance in initia! condition. The average intensity 
of segregation over all experiments at terminal step kp is 0.0070. 

Figure 5.10 shows a comparison between the periodic protocol and rollout policy, on the basis of the 
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5 SIMULATION AND EXPERIMENTS 

- Periodk: 
-Rollout 

3 4 
Experiment Number 

Figure 5.10: Comparison among all six experiments (t hree which executed a periodic protocol and 
t hree which executed a closed-loop rollout policy under t he same conditions and approximately 
t he same init ia! condit ion) in terms of (measured) intensity of segregation after 30 steps, i.e. 
Id(kF) - The red dotted and t he blue dash-dotted line present t he average results of the periodic 
protocol and t he rollout policy respectively. Important to not ice is t hat t he rollout policy does not 
consistent ly out perform t he periodic protocol due to the differences among experiments caused 
by measurement uncertaint ies and slight variance in init ia! condit ion. However on average, t he 
rollout experiments yield a better intensity of segregation. 

simulation results from Figure 5.8 and Figure 5.9, with respect to the final intensity of segregation. 
Due to measurement errors as discussed before, the rollout policy does not always outperform the 
periodic protocol in terms of (measured) intensity of segregation. However on average, the rollout 
experiments yield a lower intensity of segregation. 

To overcome these measurement errors, the experimental mixing protocols are evaluated by means 
of post-experimental simulations based on the measured initia! states. The results are presented in 
Figure 5.11. In all cases, the rollout policy outperforms the periodic protocol. Tuis observation shows 
that in spite of the measurement uncertainties , the feedback controller is still able to construct a well
performing mixing protocol. Tuis can be explained by the fact that the entire state is used in the 
feedback controller. As shown by Figure 5.7, the global spatial structure of this state corresponds 
well to the corresponding model prediction. Note that a comparison between Figure 5.10 and Figure 
5-10 shows that even though the mapping method is an accurate method for modeling the system as 
suggested by Figure 5.7, the intensity of segregation of the post-experimental does not coincide with 
the intensity of segregation measured in the experiments. For this reason, we consider an experiment 
whereby the contrast of the camera images has been adjusted such that the measured intensity of 
segregation matches the predicted intensity of segregation. In addition, the periodic protocol given 
by (5 .5) and (5.6) is chosen as base policy whose performance is considerably worse than the periodic 
protocol used in previous experiments. In that case, we can expect a more obvious gain in performance 
in spite of measurement errors since, as discussed in Section 5.2, even a far from optima! base policy 
will still lead to satisfactory results . Figure 5.12 provides a comparison between the periodic protocol 
described by (5.5) and (5.6) and the closed-loop rollout policy using this same periodic protocol as 
base policy by means of a plot which shows the evolution of both the measured and post-experimental 
simulated intensity of segregation. Now, we can clearly see in both experiments and post-experimental 
simulations that the rollout policy outperforms its base policy. In fact, the closed-loop rollout policy 
has already reached the final intensity of segregation of the periodic protocol after 20 steps. 

The results presented in this section show that the proposed method is indeed feasible and effec-
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5 SIMULATION AND EXPERIMENTS 

0.03,-----~-----~-------==== 
- Periodk: 
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Experiment 4 Experiment 5 Experiment 6 

Figure 5.11: Post-experimental simulation results on the basis of the measured initia! states and 
mixing protocols constructed during the experiments. The blue bars correspond toa simulation of 
the periodic protocol applied on the measured initia! condition of the corresponding experiment and 
show the resulting intensity of segregation after 30 steps, i.e. l d(kF ). The red bars correspond toa 
simulation of the protocol constructed by the closed-loop rollout policy during the corresponding 
experiment and show resulting l d(kF)- In all three cases, t he rollout policy outperforms t he 
periodic protocol. 

10° ,------,------.-------;:============ 
~ Measured periodic 
-e- Measured rollout 
- Post-experimental simulation periodi 
- - - Post-experimental simulation rollout 

10 15 20 25 
Number of steps 

30 

Figure 5.12: Experimental results in terms of the evolution of the (measured) intensity of seg
regation Id of two experiments; one which executed a closed-loop rollout policy and one which 
executed the periodic base policy whereby the chosen periodic base policy is given by (5.5) and 
(5.6). Despite the base policy is far from optima!, the closed-loop rollout policy leads to improved 
mixing and clearly outperforms its periodic base policy. In fact, the closed-loop rollout policy only 
requires 20 steps to obtain the same level of intensity of segregation as the periodic protocol after 
30 steps. Note that the simulations and experiments are closer too each other than in previous 
experiments. However, still a difference is visible due to measurement errors. 
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6 CONCLUSIONS 

tive in practical context. In spite of the measurement uncertainties, post-experimental simulations 
revealed that the closed-loop rollout policy still managed to construct well-performing mixing proto
cols. Furthermore, the performance guarantee of the rollout policy described in Theorem I was clearly 
observed in Figure 5.12. These observations provide a clear proef-of-concept. 

An analysis of the experiment errors is given in Section H of the Appendices 

6 Conclusions 

In this paper we studied optima! fluid mixing from a switched system perspective. This perspective al
lowed us to obtain a systematic methodology for designing feedback laws resulting in well-performing 
aperiodic mixing protocols. In order to obtain a practically feasible problem setup, three main steps 
were taken. At first , the domain was discretized into a finite number of cells. Secondly, the mixing 
process was sampled at discrete time instants. Thirdly, we considered a finite set of control input
s/mixing actions. By exploiting the cell mapping method [31], the resulting system could be modeled 
as a switched system, and the mixing protocol is given by a sequence of scheduling variables, each one 
corresponding to a mixing action. These ingredients were used to formulate an optima! control prob
lem that allows different objectives and definitions of mixing efficiency. In this way, we could use 
rollout algorithms [8] which guarantee that the resulting feedback policy outperforms any available 
periodic mixing sequence, which is an important performance guarantee. 

Both simulation and experimental results provided clear evidence of the benefits of the proposed 
framework for the design of aperiodic (open-loop or feedback) policies for effective mixing of fluids. 
Simulations of the periodic protocols, minimum error first policies and our rollout policies revealed 
that minimum error first policies do not always lead to satisfactory results which motivates the use 
of rollout policies. Furthermore, our method appears to be useful not only for designing closed-loop 
solutions, but also for creating open-loop protocols as wel!. In addition, it was clear that feedback 
solutions make the system less sensitive to perturbations in initia! conditions and modeling errors. 
Finally, we observed that even a far from optima! base policy will still lead to satisfactory results and 
thus constructing a suitable base policy does not require extensive optimizations. All these obser
vations provide a clear proef-of-concept for the proposed ideas. Indeed, the results show significant 
improvement in mixing with respect to existing solutions and real-time feasibility of the setup. 

Obtaining consistent experimental results regarding to measured intensity of segregation however 
appeared to be a hard problem, since relating concentration to a pixel value is non-trivia!. Directions 
for future work could be to develop a more accurate measurement system, to verify the proposed 
methodology to other benchmark, e.g. time-periodic sine flow [n, 12, 25, 36], lid-driven cavity flow [31] 
and the blinking vortex flow [55] , to quantify the sensitivity to modeling errors, e.g. the mismatch in 
diffusivity, and the presence of measurement errors and to apply the proposed method to industrially 
relevant mixers. 
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Part 111 

Additional conclusions 
In Section 6, we carne to the conclusion the framework proposed in Part II is a suitable methodology 
for the design of aperiodic (open-loop or feedback) policies to achieve effective mixing. Important 
observations were that minimum error policies do not always lead to satisfactory results , that feedback 
makes the systems less sensitive to perturbations in initia! condition and modeling errors and that 
even a far from optima! base policy will still lead to satisfactory results. 

As mentioned, directions for future work could be to quantify the sensitivity to modeling errors 
and the presence of measurement errors. Based on the work presented in Appendix C and Appendix 
E we can already come to some conclusions in these directions. Appendix C.r evaluates the controller 
from a physical point of view via an eigenmode analysis of the mapping matrices. These eigenmodes 
represent typical spatial structures which occur in the mixing process. Hereby the slow decaying 
eigenmodes, in the sense that their characteristic time scale is large, correspond to the relatively large 
structures in the mixtures and the fast decaying eigenmodes to the more detailed structures. In gen
era!, measurement errors like camera noise manifest itself in relative small spatial structures corre
sponding to fast decaying modes. Therefore, if a measured state is evaluated over a sufficiently large 
horizon, the influence of camera noise becomes irrelevant. Given these facts , the closed-loop system 
is in genera! not sensitive to camera noise. For this reason, as observed in section 5.3, the closed-loop 
rollout policy still constructs well-performing mixing protocols in spite of the presence of measure
ment errors. Moreover, this implies that the controller particularly reacts to relatively large spatial 
structures in the flow domain and therefore prevents island to occur. Appendix C.2 provides a more 
intuitive and visual evaluation of the closed-loop mixing process. Hereby it was shown that the rollout 
policy causes repetitive stretching and folding , the genera! mechanism for effective mixing [45]. 

In Appendix E, the influence of a diffusivity mismatch was examined by means of simulations. In 
genera!, a diffusivity mismatch degrades the performance of the rollout algorithm. Furthermore, the 
results showed that feedback has no significant role with respect toa diffusivity mismatch. Therefore, 
it is recommended to incorporate the molecular diffusion if present into the controller model in stead 
of using a model which assumes pure advection. In case computational resources are limited, it is 
not always possible to use an accurate model. In that case, a model with a coarser grid has to be used. 
However, the system is less affected in case the diffusivity of the controller model is larger than the 
case the model's diffusivity is smaller than the diffusivity of the plant. Moreover, using a coarser grid 
emphasizes the most dominant modes since the eigenvalue spectrum contracts to the origin [23, 24] 
which makes the system less sensitive to input noise. Important to notice is that effect of the numerical 
diffusion is not the same as molecular diffusion. 
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A DETAILED PROBLEM DESCRIPTION 

Part IV 

Appendices 

A Detailed problem description 

The present study concerns mixing in two-dimensional incompressible Stokes flows. Note that three 
dimensional flows can be approached in a similar fashion. Let c(x, t) E [0 , l ] C IR be a normalized, 
positive, conserved scalar quantity in a domain n c IR2 associated with a physical transported entity 
(e.g. temperature, concentration) where x = (x, y) T are Cartesian coordinates. The evolution of 
c(x, t) is governed by the advection-diffusion equation derived from on the conservation property of 
c(x, t ): 

àc 1 
- = - v(x t) • v'c+ - ~ c at ' P e ' 

(A.l) 

where v(x, t) denotes the velocity field which is divergence-free because of incompressibility. Here 
P e = vri' is the Péclet number, with V the characteristic velocity scale, L the characteristic length 
scale and D the mass diffusion coefficient. Since c(x, t ) is conserved i.e. fri c(x, t)dA is constant, 

complete mixing in the domain nis achieved if c(x, t) = C = fu J~x~~dA for all x E n, where Cis the 

average of c(x, t) over n. See [55] fora mathematical rigorous definition of mixing related to chaos 
theory. In case diffusion is absent, which corresponds to the limit Pe ➔ oo, the entity corresponding 
to c(x , t) is only being transported over the domain. This implies fri lc(x , t ) - CldA is constant and 
strictly speaking, no mixing occurs. Hence, diffusion is responsible for the homogenization of c(x, t ), 
I.e. 

lim { lc(x, t) - CldA ➔ 0. 
t----,oo }çi 

(A.2) 

Hence, one aspect of enhancing mixing is to increase the effect of molecular diffusion which can 
be achieved by a reduction of the characteristic length scales. Therefore, the general mechanism 
for effective distributive mixing is repetitive stretching and folding of material elements [45] , which 
leads to an increase of the intermaterial contact area [40] and a decrease oflength scale and therefore 
enhances the effect of molecular diffusion. 

The mechanism of repetitive stretching and folding is in general achieved by inducing chaotic 
behavior. The particle trajectories are determined by a set of two first order nonlinear ordinary differ
ential equations 

d 
- x = v(x, t ). 
dt 

(A.3) 

Since the system expressed in (A.3) has three state variables, namely two spatial variables x, y and one 
temporal t , it can exhibit chaotic behavior [2]. In case of a non linear differential equation with only 
one or two dynamical variables, the system is an integrable Hamiltonian system where integrability 
implies regular trajectories. 

A velocity field v(x, t) corresponding to an incompressible Stokes flow should comply with 

ov 
àt 

v (x , t) 

- '\i'p + µ~v + f(x, t) in f! X (0, oo) 

g(x , t ) On af! X (0, oo) 

(A.4) 

(A.5) 

where g(x, t) corresponds to the imposed boundary motions. In case of stationary boundary motions 
i.e. g(x, t) = g(x) , stationary pressure gradient i.e. Ît v'p = 0 and stationary external body forces i.e. 

f(x, t) = f(x), the velocity field evolves toa stationary velocity field i.e. limt----; 00 äv(;;00l = 0. Hence, in 
the limit where t goes to infinity no chaotic behavior occurs. Therefore, in two-dimensional systems, 
chaotic advection is achieved by time-varying boundary motions g(x, t) , pressure gradients v'p(x , t) 
and/or body forces f(x , t) which are established in the mixing protocol whereby a mixing action at 
timet is defined as the tuple (g(x, t) , v'p(x , t ), f(x , t)). Important to notice is that chaotic advection 

24 



A DETAILED PROBLEM DESCRIPTION 

can occur in three dimensional flows even if they are stationary. The mixing behavior of such flows 
are determined by the geometry of the system. Mixing devices designed according to this principle 
are known as statie mixers. In this paper, we focus on two-dimensional flows . Hence, assuming a 
fixed amount of time is available for mixing, the ideal goal is to find an optima! policy which maps the 
current (measured) scalar field c(x, t) to an optima! mixing action (g (x , t) , "vp(x, t ), f(x, t) ). 

Remark Although one can find the term 'chaos' defined in textbooks, there is no universa! accep-
tance of a single definition. However, in this work we refer a map on an invariant set to be 
chaotic if it is ergodic and the orbits have some positive Lyapunov exponent (growth rate of 
infinitesimal perturbations) [55]. 

Obtaining a mathematica! formulation of this infinite-dimensional problem might be tedious. In 
addition, even if such a formulation would be obtained, it would be intractable due to the infinite
dimensional character of the problem. For this reason, the conventional methodology to solve this con
trol problem is analyzing mixing as a function of the period of a time-periodic flows. Hence, they focus 
on defining methodologies for constructing advection cycles of period T defined by (g (x , t ), "vp(x , t ), f(x, t)) 
where (g(x, t + T) , "vp(x , t + T) , f(x , t + T )) = (g(x, t), "vp(x , t ), f(x , t)) for all t E JR+. Typically, 
these type of flows contain periodic points. Consider the following first order non-linear differential 
equation: 

x = f (x , t ), (A.6) 

where fis sufficiently smooth. Let <I>r be a continuous transformation according to (A.6), correspond
ing to an advection cycle over a time frame T such that 

x (t + T) = <I>r(x(t )) , 

then a point p = ( ; ) is called periodic of period T if 

P = <I>r (p). 

(A.7) 

(A.8) 

In homogeneous incompressible flows (i. e. divergence free velocity field) , the stability type of peri
odic points are either elliptic or hyperbolic. The stability type can be determined by calculating the 
eigenvalues of the Jacobian. If the eigenvalues are equal to zero the periodic point is elliptic, else it is 
hyperbolic. Since the map is area preserving, the stability can also be determined from the trace of the 
Jacobian matrix. A trace less then two correspond means that the point is elliptic, a trace greater than 
two means the point is hyperbolic. In flows elliptic periodic points are typically centers of islands, i.e. 
regular regions. In these regions, fluid particles remain on closed invariant curves, known as KAM 
(Kolmogorov-Arnold-Moser) tori, under the advection cycle. Tuis implies that these trajectories are 
confined to a lower-dimensional subspace of the phase space and therefore form transport harriers to 
scalar redistribution. In other words, these KAM tori separate the islands from their surroundings. 
Hyperbolic points will stretch nearby fluid elements which enhances local mixing behavior. These 
regions are referred as chaotic seas. (40, 50] 

A Poincaré section shows behavior of the fluid for several different initia! conditions over discrete 
time steps T corresponding to the length of an advection cycle. After sufficient advection cycles, 
this section reveals the chaotic seas (mixing) and regular (non-mixing) regions. In some literature 
(49] , these structures are referred as Lagrangian coherent structures (LCSs). Regular regions appear 
as closed invariant curves, also known as (quasi)-periodic orbits or KAM tori, and chaotic seas as 
scattered points which means there is no apparent structure present in the flow trajectories. In some 
cases it is hard to distinguish these two types of behavior, a regular region is aften slightly scattered 
because of numerical errors and a thin chaotic sea may look as a regular or bit. 

In order to obtain an effective advection cycle, islands should be avoided. However, finding elliptic 
periodic points is not trivia! and flow specific. Moreover, it is not always possible to find conditions 
for all periodic point being hyperbolic. Hence most industrial mixers rely on heuristics [18]. Aperiodic 
flows are devoid of periodic points which motivates the use of aperiodic mixing protocols as suggested 
by Liu [34]. 
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B LIT ERATURE REVIEW MIXING CONTROL 

B Literature review mixing control 

Liu et al. [34) proposed the use of aperiodic mixing protocols since aperiodic flows are devoid of 
periodic points. To the authors ' knowledge, Aamo et al. [1] were the first to induce mixing by means of 
feedback contra!. The paper aims to enhance mixing in a 2D channel flow induced by perturbations 
at the boundary. At first, they deduce a decentralized contra! law in order to stabilize the parabolic 
velocity profile. Secondly, this controller is reversed (by changing the sign) in order to destabilize 
the flow leading to unsteadiness in the flow. Their conjecture is that a unstable flow will develop a 
complicated pattern in which mixing will occur. The approach was verified by means of simulations 
using dye surface length and probability of well mixedness as mixing measure. Note that this approach 
only uses feedback for destabilizing the flow and does not directly contra! the mixing behavior 

D'Alessandro et al. [15) approaches the mixing problem from a kinematica! point of view, namely 
by defining the maximum entropy as mixing measure. Entropy in the context of dynamica! systems 
theory was introduced as a measure of disorder created by a transformation. Pesin's formula et al. [44] 
shows that entropy is equal to the stretching rate (given by the Lyapunov exponents) averaged over the 
whole phase space. Hence, mixing can be enhanced by finding sequence of flows which maximizes 
the entropy of the system. In the paper, tools from ergodic theory are for the formulation and solution 
of this con trol pro bi em. 

Hoeijmakers et al. [27] bridges the gap between the purely statistica! and the purely kinematica! 
descriptions of mixing by adopting the hydrodynamic entropy. The paper focuses on optimizing the 
flow for an array of vortices by means of input-output linearization. Furthermore, they investigate the 
relation between mixing and stationary viscous dissipation. The main conclusion is that statistica! 
properties of the hydrodynamica! entropy may indeed contribute to a better understanding of mixing. 
The works mentioned above does not take the initia! orientation of the scalar field into account in 
contradiction to Mathew et al. [36), Cortelezzi et al. [12] and Couchman et al. [13] . 

Mathew et al. [36] introduced a new formalism for optima! contra! of advective mixing in aperiodic 
flows by combining a multiscale mixing measure [37) and concepts form finite-horizon optima! control 
theory. They consider the optimization of velocity fields constructed by superposition of practical 
realizable velocity fields: 

n 

v (x , t) = L a i(t)vi(x). (B .l) 
i =l 

The pa per' s focus is to find a i ( t) such that best mixedness is achieved at time instant t J. lt uses the 
conjugate gradient method in order to find a suboptimal solution to this problem. Note that such 
an approach can only guarantee convergence to local minima. Moreover, the paper does not concern 
feasibility and efficiency in practical contexts. 

Cortelezzi [12] investigates the feasibility, efficiency and transportability of short-time-horizon opti
ma! mixing protocols. They consider a blinking velocity field, the flow is governed by instantaneously 
switching velocity fields acting over a time T . In terms of (B.1) , a i(t) can either be 'o' or '1 '. Hence, the 
protocol to be optimized can be regarded as the string { o:1 , o:2 , . . . , aN }. Given a switching time hori
zon v, the optimization is based on a minimum error approach where several sub-protocols oflength 
v are being evaluated and the best one is selected. This approach yields a sub-optima! solution and 
can both be applied in open-loop or closed loop fashion. However, they only concern a sine-flow for 
which an analytica! solution for the position of a tracing particle exists. Furthermore, no performance 
guarantees are derived. 

Recently, Couchman [13] proposed a novel closed loop solution to mixing problem where the veloc
ity field consists of a steady base flow and a modulated flow, i.e. a flow given by (B.1) where o:1 (t) = 1, 
o:2 ( t) is the con trol input and ai ( t) = 0 for i E { 3, ... , n }. By using Fourier differentiation matrices 
and spatial discretization of the state, the problem can be formulated as a bilinear quadratic regula
tor problem (BQR). The problem is modified by adding a non-negative state-penalizing term (aBQR) 
such that the closed-form solution can be approached. This yields a simple control law. The main 
advantage is that the closed-loop system will inherently reject disturbances but there are no theoretica! 
performance guarantees. At last, one interesting conclusion was made; a well-performing controller 
can be designed around a model with significantly larger diffusivity than that of the plant. 
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C PHYSICAL INTERPRETATION CONTROLLER 

C Physical interpretation controller 

C.1 Modal analysis 

Based on (A.1), periodic scalar transport can be described by the Floquet operator F which maps the 
scalar distribution between discrete times levels t = nT, where n E N and T is the time of one period, 
via 

c(x , (n + l)T) 

c(x , nT) 

F(c(x , nT) ) 

P(c(x , 0)) 

The Floquet operator (equation C.1 and C.2) admits the eigenmode decomposition 

00 

c(x , nT) = L 'Yk 11t\x) , Hin) (x) = vkGk(x) 
k=O 

(C.l) 

(C.2) 

(C.3) 

with Hin) the eigenmodes and {0k , vk} the corresponding eigenfunction-eigenvalue pairs governed 
by the eigenvalue problem F(Gk) - vkGk = 0. The spectral structure of the Floquet operator corre
spond to LCSs. 

The mapping matrices <Pand S are discrete approximations of the Floquet operator F (C.1), (C.2) , 
therefore their eigenvector-eigenvalue pairs are discrete counterparts to the eigenfunction-eigenvalue 
pairs {Gk , vk} of F (C.3) . Hence, 

N N 

c(x , nT) = <Pnc(x , 0) = L ciht), h (n) , n 
k = "k Vk, c(x,0) = L ~ vk, (C.4) 

k=l k=l 

where vk and >..k satisfy the equation 
(C.5) 

The eigenmodes modes of the mapping matrices reveal the LCSs, i.e. islands and chaotic seas. The 
correlation between eigenmodes and LCSs is revealed by the study by Singh et al. [48] and Speetjens 
et al. [49]. The key findings have been condensed in the following properties: 

Property 1 Elliptic islands relate to eigenmodes with 1 >..k 1 = 1 

Property 2 Chaotic seas have eigenmodes with i>-kl < 1 

Property 3 Eigenmodes of elliptic islands and chaotic seas are spatially disconnected. To this end eigen
modes must not affect the spatiotemporal scalar evolution outside their associated spatial entities. 

Property 4 Period-p structures of equal kind correspond with clusters of eigenvalues { >. (O) , >. (l), ... , >. (m), ... , >.. (p-l) }, 

with >.(m) = i>..lwn and w = e21ri/p 

Property 5 The active zones of all eigenvectors v;m) combined demarcate the invariant region occupied 
by the entire period p group in the asymptotic advection pattern. 

Note that these properties pertain specially to conformal mapping grids which means that the con
jectures are only true if the grid is chosen such that there are strict separations between LCSs. For 
non-conformal grids, all eigenvalues except the one corresponding to the trivial eigenmode associated 
with global mass conservation, lie inside the unit disc. However, if the grid size is small enough, the 
conjectures are retained to a high degree of accuracy. 

The eigenmodes belonging to eigenvalues near the unit disk, hence the slow decaying modes in 
the sense that their characteristic time scale is large, are the dominant eigenmodes of the system. The 
behavior of the mixture is mainly determined by these modes. Therefore, the spatial structure of these 
dominant eigenmodes are visible in the state of the system when the same mapping is applied for 
several times, see also (C.4). The dominant eigenmodes correspond to the relatively large structures 
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C PHYSICAL INTERP RETATION CONTROLLER 

a) b) c) 

Figure C.1: Comparison between a) Poincaré section (source: [20]), b) dominant eigenmode and 
c) scalar field after 24 periods for a periodic flow (Bout = 271' followed by Bin= 611'). 

in the mixtures and the fast decaying eigenmodes to the more detailed structures. Measurement 
errors like camera noise often manifest itself in relative small spatial structures corresponding to fast 
decaying modes, i.e. their characteristic time scale is small. Therefore, these modes become irrelevant 
when a measured state evaluated over a sufficiently large control horizon. Given these facts , the closed
loop system is in genera! not sensitive to camera noise. For this reason, as observed in section 5.3 , the 
closed-loop rollout policy still constructs well-performing mixing protocols in spite of the presence of 
measurement errors. 

Figure C.r illustrates the statements above using the journal bearing benchmark. The periodic 
protocol is chosen as the following repetitive sequence: first, the outer cylinder turns 7r[rad] and the 
inner cylinder 37r[rad]. Figure C.r a) shows the Poincaré Section created by tracing several random 
placed particles over a numerous of periods. The section reveals regions which are separated from 
the major chaotic sea. Figure C.r a) shows the most dominant eigenmode (the mode corresponding 
to the second largest eigenvalue). Note this mode is not spatially disconnected from major chaotic sea 
due to numerical diffusion. However, the eigenvector elements corresponding to the major chaotic 
sea are considerably smaller. FigureC.r b) shows the scalar field distribution after 24 advection cycles 
for some initia! condition. The structure of the most dominant eigenmode is clearly visible. 

C.2 Velocity field versus scalar field 

To gain more insight into the performance of the controller and whether its decisions can be explained, 
this Section provides amore intuitive and visual evaluation of the closed-loop mixing process. As men
tioned in Section A, the genera! mechanism for effective mixing in Stokes flow domain is repetitive 
stretching and folding (40, 45). Hence, a well mixing flow shows aspects of this behavior. In case of the 
journal bearing flow, the stretching and folding mechanism can be realized via alternation between 
two imposed velocity fields shown in Figure C.2(a) and Figure C.2(b) . The streamlines correspond
ing to these fields are shown in Figure C.3. Note that both fields contain regions vortexes where the 
velocity components are relatively small. Hence, the stretching rate in these regions is small. 

In order to verify whether the controller incorporates these facts , the controlled flow is evaluated on 
basis of plots whereby the concentration field is overlayed by the instantaneous vector field imposed 
by the boundary motions of the journal bearing. Consider the case whereby the initia! condition is 
given by a blob. Intuitively, the stretching rate of the blob should be maximized in order to spread the 
blob as quick as possible over the domain. This rate is determined by the size of the velocity gradients. 
Figure C.2(a) and Figure C.2(b) show that by using the feedback policy introduced by Section 4, the 
control action is chosen such that the blob is overlapped with the largest velocity gradients. Notice that 
the position of the two blob coincide with the region of the vortexes (see Figure C.3). 

Now we consider a more complex scalar field . Figure C.4(a) and (b) show the same concentration 
field which was measured during an experiment where the dye already has under come several mix
ing actions. Notice that Figure C.4(a) is overlapped with the vector field corresponding toa clockwise 
rotation of the inner cylinder and that C.4(b) is overlapped with the vector field corresponding to a 
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Figure C.2: Blob of dye overlaid by the vector field represented by t he arrows corresponding to the 
flow created by first control input: ( a) rotating t he outer-cylinder; (b) rotating the inner-cylinder . 

Figure C.3: Stream function of journal hearing flow : a) rotation of the inner cylinder , b) rotation 
of the outer cylinder. (source: [20]) 
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Figure C.4: Evolution of the dye for two different control actions. Figure a) and b) show an original 
measured scalar field wit h the velocity field overlaid corresponding to a clock-wise rotation of the 
inner cylinder and outer-cylinder respectively. Figure ( c) and ( d) show the predicted concentration 
field after a clockwise rotation of t he inner and outer cylinder respectively. In the experiment , 
t urning t he inner-cylinder ( ( a) and ( c)) is t he chosen control input for this particular st ate. 

clockwise rotation of the outer cylinder. Figure C.4(c) and Figure C.4(d) show the predicted concen
tration field after a clockwise rotation of the inner and outer cylinder respectively. 

Before the measured state was captured, the last three actions were rotating the outer-cylinder for 
1r[rad] (so 31r in total). For this reason, the concentration field starts to align with the vector field cor
responding to the outer-cylinder movement as shown in Figure C.4(b) . In the middle of the domain, 
an unmixed area has been formed. Important to notice is in FigureC.4(a) this region is overlapped by 
larger velocity gradients than Figure C.4(b) . Consequently, during the experiment which executed the 
policy proposed in Section 4, the controller decided to turn the inner cylinder which resulted in the 
state given by Figure C.4(c). If the other control actions would have been chosen, the outer-cylinder 
would have stretched the dye further but would not have resolved the unmixed region as shown in 
Figure C.4(d). Hence ,the chosen action is in line with folding the stretched dye and is therefore 
an obvious choice. The controller reacts to relatively large spatial structures in the flow domain and 
therefore prevents island to occur. 
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D Control horizon 

In this section, more depth is given on how to choose the con trol horizon k F. For the sake of clarity, the 
genera! mixing process is discussed in this section in order to reveal which the role of feedback. In a 
Stokes flow, the genera! mixing process can roughly be divided into three stages (shown in figure D.1). 
For an open-loop protocol, the mixing quality in the first stage is determined by the initia! condition in 
particular. The system is sensitive to small perturbations, i.e. a small change in initia! condition can 
yield very different mixing qualities (as shown in Figure 5.5). Hence, an advantage of feedback control 
is that it anticipates which makes the system less sensitive to perturbations in initia! condition. The 
mixing performance in the second stage is mainly determined by the mixing protocol since at this 
point, the decrease in characteristic length scale is responsible for effective mixing. Hence, the role 
of feedback is important at this stage. At the last stage, the remaining features (such as islands) are 
being diminished by diffusion in particular. The slope of the intensity of segregation at this point is 
determined by the diffusion rate. Figure D.1 shows that this stage starts approximately after 30 steps. 
In case of the journal hearing flow, the control horizon is therefore chosen as kF = 30. 

Periodic protocol 
10° ,-,.,----,----------,----,-------r--.----,----------,----,-------r------, 

Determined by initial condition 

Determined by mixing protocol 

Diminishing of remaining 
features due to diffusion 

10-4~-~----~-~----~----~-~-~ 
0 10 20 30 40 50 60 70 80 90 100 

Number of steps 

Figure D.l: Genera! description of the mixing process 
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E Mapping grid and diffusivity 

The discretization of the domain, which is required for the mapping matrix method, introduces nu
merical errors due to the sub-domain averaging as shown in Section p. Although the mapping ma
trices are derived for pure advective flow (Pe -+ oo) in this work, the numerical error causes artificial 
diffusion. Hence the error is often referred as numerical diffusion. Due to this diffusion, the mapping 
method might even be a better representation of reality as long as the numerical diffusivity mimics 
the real molecular diffusivity. 

Gorodetskyi et al. [23, 24] studies the effects of numerical diffusion and shows that a quantitative 
correspondence between the spectral structure of the purely convective mapping matrix and that of the 
continuum advection-diffustion operator can be defined by means of an effective Péclet number. Tuis 
effective Péclet number is proportional to the square of the linear grid size. However, the numerical 
diffusion only approximates the real diffusion since the effect of numerical diffusion and physical 
diffusion is not completely the same. For this reason, they show that the effects of molecular diffusion 
can be included into the mapping matrix formalism as well. 

Interesting questions emerge from these statements with respect to controller design: (i) How fine 
to choose the mapping grid? (ii) Whether or not to include the molecular diffusion. In this Section, we 
analyze the influence of model diffusivity on control performance by means of simulations. Hereby, 
we investigate two cases: (i) the controller model diffusivity is smaller then the plant model diffusivity; 
(ii) the controller model diffusivity is larger than the plant model diffusivity. 

E.1 Simulations with diffusivity mismatch 

The performance of the rollout algorithm can be influenced by the fact that often the (numerical) 
diffusion of the mapping matrices does not correspond to the actual molecular diffusion. So far, we 
solely considered mapping matrices based on pure advection (no diffusion). However as mentioned, 
the use of the mapping method introduces numerical diffusion. In order to study the effect of diffusion 
without the need to compute new mapping matrices, we used coarser grid in order to introduce more 
(numerical) diffusion. 

The coarser mapping matrices can be derived from the mapping matrix <I> of na x nr by merging 
groups of grid cells. Let N be the number of cells being merged in tangential direction and M the 
number cells being merged in radial direction. Using this method, the number of grid cells has been 
reduced from na x nr to na/N x nr/lvl. Let v i C NNxM denote the vector corresponding to the ith 
grid cell of the reduced mapping matrix corresponding to N x M original grid cells being merged. 
The area of the ith reduced grid cell is denoted by nr and the area the ith original grid cell by n? such 
that 

N x M 

n ~ = L n~;(kJ· 
k=l 

Algorithm 3 shows how to compute the reduced mapping matrix. 

Algorithm 3 Algorithm for reducing mapping matrix 
for i = 1 : N x M 

c [ .,_, N x M <l> .,_,N X M <l> 
av, = L-k=l v ; (k)l L-k=l v ; (k)2 

(vectors of column sums) 
for j = 1: N x M 

no = [ no no 
Vj Vj (l) Vj (2) 

no 
v 1(N x M-I) 

çir = .,_,NxM no (k) 
J L-k=l Vj 

<I> ij = L [=xlM at, (vj(k))n~,(k)/n r 
end 

end 
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Figure E. l: Control diagram in case controller model diffusivity is smaller than the plant model 
diffusivity 

At first, we investigate the case whereby the model diffusivity is smaller than the plant model dif
fusivity. Three policies were simulated for several grid sizes: (i) the periodic policy which is used as 
base policy for the rollout algorithm; (ii) The rollout policy in case the model used for the control 
algorithm exactly coincides with the plant model, i.e. the controller model and plant model have the 
same diffusivity; (iii) The rollout policy where the model diffusivity is smaller than the plant diffusiv
ity. In the Jatter case, the controller uses mapping matrices based on the (full) grid of 6oox100 but 
the evolution of the plant is determined by mapping matrices based on a coarser grid (as illustrated 
in Figure E.1). The result is presented in Figure E.2. Notice that a larger diffusivity enhances the 
homogenization rate, therefore simulations with coarser grids yield smaller intensity of segregations. 
In all cases, the diffusivity mismatch degraded the mixing performance. For the cases N = 4; M = 4 
and N = 8; M = 4, the rollout policy performs even worse than the periodic protocol in des pi te of the 
closed-loop approach. 

In order to examine the role of feedback with respect to a diffusivity mismatch, the open-loop 
behavior is shown in Figure E.3. Hereby, a sequence of control actions is determined on forehand 
via the rollout algorithm with a controller model based on the full grid and then applied to a plant 
model based on a coarser grid. By comparing Figure E.2 and Figure E-3 , we can conclude that there is 
no significant difference is observable between the open-loop and closed-loop rollout thus in case the 
controller model diffusivity is smaller. Hence, feedback has no significant role with respect to such a 
diffusivity mismatch. 

Secondly, we investigate the case whereby the controller model diffusivity is larger than the plant 
model diffusivity. Three policies were simulated the full grid of 6oox100: (i) the periodic policy which 
is used as base policy for the rollout algorithm; (ii) The rollout policy whereby the controller model 
diffusivity exactly coincides with the plant model diffusivity; (iii) The rollout policy where the controller 
model diffusivity is larger than the plant model diffusivity. For the Jatter case, several controller model 
diffusivities were examined by using several coarser grids (as illustrated in Figure E.4). The results to 
these simulations are shown in Figure E.5. In all four cases, the performance of the first two policies 
should be the same since in all four case the same plant model is considered. The performance of 
the third policy is degraded due to the diffusivity mismatch as shown in Figure E.5. However, the 
rollout policy still outperforms the periodic protocol even for the case N = 8; M = 4. In order to 
examine the role of feedback with such a model mismatch, the results of the open-loop rollout policy 
are plotted in Figure E.6 . Even in open-loop, all four cases outperform the periodic protocol. For the 
cases N = 2; M = 2 and N = 4; M = 2 the open-loop performance is close to the closed-loop. For the 
cases N = 4; M = 4 and N = 8; M = 4 however, a clear difference is visible. In case N = 4; M = 4, 
the open-loop case is better which can be explained by the fact that sub-optima! solutions are found . 
Hence, it can occur that the open-loop rollout policy performs better than the closed-loop policy. For 
the case N = 8; M = 4 the closed-loop rollout policy is the best. Given these observations, it is not 
possible to draw conclusions about the role of feedback in case the controller model diffusivity is larger 
than the plant model diffusivity. 
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Figure E.2: Performance of the rollout policy (see Section 4) in terms of intensity of segregation 
after 30 steps in case the controller model diffusivity is smaller than the plant model diffusivity. 
In this figure, the periodic protocol (represented by the black bar) and the two rollout policies 
are evaluated by means of four different plant models based on the reduced grid of 600/NxlO0/M. 
The gray bar represents the rollout policy whereby the controller models exactly coincide with 
the plant models. Hence they are based on the reduced grid of 600/NxlO0/M. The white bars 
correspond to the rollout policy whereby there is a mismatch in diffusivity between the two models 
namely, the controller model is in all cases based on the full grid of 600x100. In case of such a 
diffusivity mismatch between the two models, t he rollout policy does not always outperform its 
base policy. 
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Figure E.3 : Performance of the open-loop rollout policy (see Section 4)in terms of intensity of 
segregation after 30 steps in case the model diffusivity is smaller than the real diffusivity. In 
this figure, the periodic protocol (represented by the black bar) and the open-loop rollout policy 
(represented by the white bar) are evaluated by means of four different plant models based on the 
reduced grid of 600/NxlO0/ M. The mixing protocol corresponding to the open-loop rollout policy 
is determined apriori by means of the model based on the full grid of 600xl00. 
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Figure E.4: Control diagram in case model diffusivity is larger than the plant diffusivity 
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Figure E.5: Performance of the closed-loop rollout policy (see Section 4) in terms of intensity 
of segregation after 30 steps in case the model diffusivity is larger than the real diffusivity. In 
this figure, the periodic protocol (represented by the black bar) and the two rollout policies are 
evaluated by means of one plant models based on the full grid of 600x100. The gray bar represents 
the rollout policy whereby the controller models exactly coincide with the plant models. Hence 
they are based on the full grid of 600x100. Since the plant model is the same in all four cases, the 
results of the periodic protocol and the rollout policy represented by the gray bar are exactly the 
same. The white bars correspond to the rollout policy whereby there is a mismatch in diffusivity 
between the two models namely, the controller model is based on the reduced grid of600/Nx100/M. 
In case of this diffusivity mismatch between the two models, the rollout policy still outperform its 
base policy. However, the diffusivity mismatch does degrade the performance. 

Periodi<:v1. open- looproll-outbaMdoncoarsergrids applledonh.lll grid 
0.012 

001 ~ 

0.002 

Figure E.6: Performance of the open-loop rollout policy (see Section 4) in t erms of intensity 
of segregation after 30 steps in case the model diffusivity is larger than the real diffusivity. In 
this figure, the periodic protocol (represented by the black ba r) and the open-loop rollout policy 
(represented by the white bar) are evaluated by means one plant model based on the full grid 
of 600x100. The mixing protocol corresponding to the open-loop rollout policy a re determined a 
priori by means of model based on reduced grids of 600/NxlO0/M. 
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E.2 Conclusions and discussion 

The results presented in Section E.r showed that in genera!, a diffusivity mismatch the open-loop and 
closed-loop degrades the performance of the rollout algorithm. Furthermore, feedback has not shown 
a significant role with respect toa diffusivity mismatch. Therefore, it is recommended to incorporate 
molecular diffusion if present into the controller model in stead of using a model which assumes pure 
advection. In case computational resources are limited, it is not always possible to use an accurate 
model. In that case, a model with a coarser grid has to be used. However, the system is less affected 
in case the diffusivity of the model is larger than the case the model's diffusivity is smaller than the 
diffusivity of the plant. Moreover, using a coarser grid emphasizes the most dominant modes since 
the eigenvalue spectrum contracts to the origin [23, 24] which makes the system less sensitive to 
measurement noise. 
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F Extensive description experiment 

F .1 Hardware 

F.1.1 Journal Hearing 

As mentioned, the journal bearing flow is a flow within two eccentric cylinders. The experimental 
realization of this setup should meet two requirements. The setup should be able to rotate both cylin
ders independently where it is favorable to be able to adjust the velocity wave form. Secondly, it must 
be possible to be observe the entire domain without any obstructions and with a plain background. 

A photo of the system is shown in Figure 5.2. The inner cylinder is solid rod of diameter 25 mm and 
length mm and the outer cylinder a transparent tube of inner diameter 75 mm and length mm which 
is sealed at the bottom edge with a transparent plate. The cylinders are driven by two identical Maxon 
servo motors (type A-max) connected to encoders (HEDL 5540, 500 counts per turn) for feedback 
control. The inner cylinder is directly connected to the gear. The outer cylinder is connected with 
the motor via a belt which is attached to a ring carrying the outer cylinder. In this way, the view 
from beneath is unobscured and the outer cylinder can easily be removed for cleaning. Note that it is 
not possible to avoid obstructions in the top-view because of frame which fixates inner cylinder. The 
mirror underneath the setup assures that there is sufficient space for the camera in front. 

F.1.2 E-box 

The two servo motors are controlled via data-acquisition device, called the E-box. This device has two 
analog in- and outputs with a range of +/-roV, two encoder inputs and one digital in- and output which 
can be read/controlled by an external computer in real-time. Hence, in closed applications, the real
time code is executed by the external computer, i.e. the computer is part of the real-time loop. In our 
case, each of the two analog outputs are connected with an amplifier with an input range of +/-2.5V 
required for the servo motors. 

F.1.3 Camera 

The most important requirements for the camera are that the resolution should be sufficient and the 
camera should be compatible with the OpenCV library discussed in Section F.2.2. The list of com
patible camera's can be found here: http://opencv.willowgarage.com/wiki/Welcome/OS. Be aware 
that not all compatible camera's are listed on this page. Most camera's which compatible with V 4L2 
(a video capture application programming interface for Linux) , are also compatible with OpenCV. 
Furthermore, a large focal length is desired which will be discussed in Section H+ In this work, a 
Logitech HD Webcam C525 http://www.logitech.com/nl-nl/product/hd-webcam-c525?crid=34 is used. 
The camera is connected via USB. 

The camera should be aligned with the setup. However, the distance is not important as long as it 
captures whole the domain since software is programmed such that the region of interest can easily 
be adjusted. 

F. 2 Software 

F.2.1 Ubuntu 

As mentioned in Section F.r.2, the external computer is part of the control loop. Therefore the 
computer should process data without buffering delays. This can be managed by using a real-time 
operating system (RTOS). For this research, such an operating system should also support Mat
lab/Simulink and OpenCV. Ubuntu is a free open source easy to use operating system which is 
compatible with these applications. The standard installation of Ubuntu is not a RTOS but the 
kemel, the component of an operating system which manages the system resources, can be cus
tomized such that it supports real-time applications. The easiest way to install this system is via 
the wubi-installer can be obtained from the TU/e network share: \ \ai-stosrvo2\EBox. This installer 
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copies an image where Matlab/Simulink is already installed including the required code for the E-box. 
More details like how to activate Matlab and configure the correct Ethernet port can be found here: 
http://cstwiki.wtb.tue.nl/index.php?title=E-box. 

F.2.2 OpenCV 

OpenCV (Open Source Computer Vision) is a library of programming functions for real time com
puter vision. Tuis library contains several image processing functions for among other C++. Using 
this library, we are able to program are own Simulink blocks which can incorporate and process the 
webcam data. The default image processing blocks of Matlab/Simulink are not supported by the 
real-time code generator of Matlab. Make sure to install OpenCV according to the following guide: 
http:/ /opencv.willowgarage.com/wiki/InstallGuide#. Be aware that it is necessary to install the follow
ing packages during step 2 for video capturing: ffmpeg, libgstreamer, libv4l, libxine, unicap, libdcr394 
2.x. The most important commando's for this application are: 

• cvCreateCameraCapture for initializing the camera. 

• cvSetCaptureProperty for defining the camera's resolution. 

• cvQueryFrame to obtain a frame/image. 

• cvtColor to convert RGB to other color spaces. 

F.2.3 Matlab/Simulink 

Matlab/Simulink is an easy environment to build up a control scheme. Via a S-function block, it is 
possible to write a function in C++ which is compatible with Simulink. Tuis is required in order to 
be able to take camera frames and controlling the maxon motors simultaneously. In our case, this 
function is defined as follows; The block can be triggered via an external signa!. After the block is 
triggered, it captures and processes an image from the webcam and computes the next desired mixing 
action according to the algorithm proposed in Part Il. If the computations are not finished yet, the 
trigger signa! is being ignored. The entire C-code of this S-function is rather tedious to present in this 
report, hence only essential commando's will be briefly elucidated. 

The sparse mapping matrices to predict the fluids behavior were provided as mat-file containing 
variables which can be read by matlab. The library to read these variables in C-code is not supported 
by the real-time code generation. Therefore, the mat-files first have to be converted to text files by the 
stand-alone C-code convertmatfiles.cpp. A sparse matrix is represented by three vectors; one vector ir 
which represents the rows with non-zero elements, one vector ic which represents the column with 
non-zero elements and one vector Pr with the values of the non-zero elements. Note that these three 
vectors are sufficient to reconstruct the corresponding full matrix. The following commando's are 
used for the conversion: 

• matüpen to load the mat-file. 

• matGetNextVariable to store the content toa C-variable of type mxArray. 

• matClose to close the mat-file. 

• mxGetlr to obtain vector ir . 

• mxGetJc to obtain vector ic. 

• mxGetPr to obtain vector Pr· 

• mxGetNzmax to obtain the number of non-zero elements. 

• ofstream to create a data stream in order to write a text file. 

The code to build and run convertmatfiles.cpp is include in the m-file buildcapture.m. 

38 



F EXTENSIVE DESCRIPT ION EXPERIMENT 

F.2.4 How to start an experiment 

At first, make sure that the setup is covered by the white cloth in order to prevent glares on the 
image. Furthermore, the camera should be placed in front of a <lark background in order to avoid 
undesired reflections in the mirror. After the setup is connected properly as explained in Section F.1, 
the experiment can be started by running run.m. At first, the code will ask to build all the files which 
is necessary to create stand-alone executables. Press yes if any changes are made in the code else press 
no in order to skip the building procedure. After this step, the code will request an experiment name. 
The code will create a folder with this name to store the experiment's output. Make sure that this 
name does not include a space. 

Now, the transparent bin can be filled with polymer. It is recommended to fill the bin with a 
polymer layer (without dye) of at least 2 cm thick in order to exclude bottom effects. Let the polymer 
rest fora while in order to release the air bubbles. One could place the bin into a vacuum vessel to 
accelerate this process. 

The camera calibration is required for selecting the region of interest. Although algorithms exist 
to recognize circular figures (like the hough transform), they are not as accurate as selecting them 
manually. Subsequently, the dye/contrast fluid should be dropped. The screen will show the live 
camera image including a small circle where the dye should be dropped. In this way, the dye can 
approximately be dropped at the same location each experiment. At last, real-time code of the Simulink 
scheme will be executed. The output screen shows the progress of the experiment. After approximately 
10 minutes, the experiment is finished . 
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G Vision 

G.1 Saturation threshold 

In order to filter out the plain background from the image, a threshold has to be defined. In despite 
of the fact the the dye is darker then the background, the gray scale is not a suitable measure. The 
gray-scale is sensitive to shades and gray values of the dye and background can be close to each other. 
Hence, it is better to use the fact that the dye is colored. The saturation refers to the perceived intensity 
of a color (see figure G.rb). Therefore, a clear difference in saturation is noticeable as shown in figure 
G.ra. This saturation can be obtained by transforming the RGB (red, green and blue intensities) value 
into HSL (hue, saturation and lightness) values. Note that the solved pigment used as dye shouldn't 
be to dark in order to obtain a visible measurable in saturation. 

The conversion of RGB to HSL is given by: 

(a) Measured saturat ion 

R' 
G' 
B' 

6,. 

H 

s 

R / 255 

G/255 

B /255 

max( R' , G' , B') 

min(R' , G' , B' ) 

Cmax - Cmin 

G.2 Averaging pixel values 

,Cmax = R' 

,Cmax = G' 

, Cmax = B' 

(b) HSL color scale 

In order to reduce the effect of measurements noise, the value of a grid cell is based on the average of 
all pixels within that grid cell. Furthermore, using averaging, less data will get lost due to a threshold. 
In this case the grid is chosen such that a the cell boundary consist of two straight lines and two circular 
line segments (shown in figure G.r). However, if the number of cells is chosen sufficient large, the 

40 



G VISION 

Figure G .l: The pixels wit h t he filled quadrature are used for averaging. 

a) b) 

Figure G.2: Result of averaging on a measured st ate: a) before averaging, b) after averaging. Note 
t hat these two figures are zoomed on a part of the flow domain. Note that t he image of the st ate 
after averaging looks more smooth. Hence the effect of measurement noise has been reduced. 

circular line segments are nearly straight. Therefore, to ease computations, we assume that each grid 
cell is approximately quadrangular where the vertices coincide with the actual grid cell shape. The grid 
cell can now be described by four linear functions which eases the search for pixels within the cell. In 
order to check which pixels lie within this quadrangle efficiently, only the pixels within a rectangular 
which encloses the grid cell are considered. The result is shown in figure G.2. 
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H Error Analysis Experiment 

Several experiments were executed. At first to verify the mapping method. Since the flow is dominated 
by viscous forces (Re << 1) and we are dealing with a Newtonian fluid, the analytica! velocity field 
given by [54] is a reliable representation of the fluids behavior, as confirmed in several papers [50, 
31]. Therefore, we can expect that the mapping method is an accurate representation of the fluid 
behavior. However, the predictions according to the model do not match the experiments. Since 
model is assumed to be correct, measurement errors are responsible for the mismatch. Tuis Section 
discusses potential causes for these measurement errors. 

H .1 Beer-Lambert law 

Before, we assumed the luminosity is proportional to the concentration. However, the actual relation 
between luminosity and concentration is given by the Beer-Lambert law: 

t cd = - log (l) (H.1) 

where Io is the original luminosity, I the measured luminosity, t the extinction coefficient and d the 
path length. If the measured luminosity of the mixture is the same as the original, all light has been 
passed through the fluid and therefore the concentration is zero. If I = 0, no light has been passed. 
In order to examine how this measurement error affects the performance of the rollout policy, several 
simulations have been executed where 

C - 1 lO°'c, . .,,,, Afo { l 1 2 3 4 5} m ea su r e - - .-------1[ , Q = -
2

, , , , , · 
11 r ea l 

(H.2) 

and where 1vt~'." is chosen such that the mass remains preserved. Note that H.2 is based on (H.r) 
where Cmea sure = 1 - f, . Tuis relation is plotted in Figure H.r. The results plotted in Figure H.2 
and H.3. The effect of the non-linear relation given by (H .2) appears to be not significant. This can be 
explained by the fact that relation (H.2) is approximately linear for small Crea.l· 
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Figure H.l : Evaluated non-linear functions between real concentration and measured concentra
t ion. 
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10-3
~-~--~--~--~--~--~ 
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a) b) 

Figure H.2: Result of simulations based on t he non linear relations shown in figure H.l. a) uses 
a periodic policy and b) a rollout policy which actions are based on t he measured intensity of 
segregation. 

H.2 Quantization 

The OpenCV library used for the experiments is limited to 8-bit images which means the color is 
distributed over 256 bins. The images captured in the experiments only use a subset of this spectrum 
though. The influence of quantization is determined by simulating the periodic policy whereby the 
measured state has been quantized and scaled such that the mass preserving property is still main
tained. The result is shown in figure H + The initia! are not significantly affected by the quantization. 
The quantization starts to play role as the mixture homogenizes which is visible for N = 10 in partic
ular. The quantization does influence the result but not significantly if a sufficient number of bins is 
chosen. 
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Figure H.4: Simulation wit h quantization. N is the number of bios used for quant ization. 
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10-3
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Figure H.3: Intensity of segregation based on real concentration. 

H.3 Diffusion 

As mentioned in Section E, in genera! a mismatch in diffusivity degrades the performance of the 
rollout policy. Hence, a better performance can be expected if the model diffusivity is a good represen
tation of the actual diffusivity. Figure H-5 shows a comparison between experiment and simulation 
whereby models with a grid of 6ooxroo and a grid of 3oox50 were used. Figure H.6 shows the inten
sity of segregation determined in both experiment and simulation. Although the full matrix appears to 
be the best representation in terms of intensity of segregation based on Figure H.6, Figure H.5 shows 
that the numerical diffusion corresponding to the grid of 3oox50 better match the actual diffusion 
since the striations are more blurred as in the experiment. 
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10' ,---------,-------.----.------r-----;,:======= 

10 15 20 
Number of steps 

- Experiment N=1 M=1 
--e- Simulation N=1 M=1 
- - - Experiment N=4 M=2 
........ Simulation N=4 M=2 
·- ·- · Experiment N=4 M=4 
-...... Simulation N=4 M=4 
· · · · · Experiment N=8 M=4 
--+- Simulation N=8 M=4 

25 30 35 

Figure H. 6: Intensity of segregation of experiment compared to simulation mapping matrices with 
different grid sizes. Note t hat with a coarser grid the intensity of segregation of the simulation 
decreases due to sub-domain averaging (3.4) . Based on this figure, the finest grid appears to be 
the best representation in terms of intensity of segregation. However, one cannot say whether 
other measurement errors play role as wel!. 

Figure H.5: Experiment (left) compared to simulation (right) using a 600x100 mapping matrix 
(upper row) and a 300x50 mapping matrix (lower row). Based on this figure, the mapping matrix 
of 300x50 shows a better correspondence with the measured state due to the presence of diffusion 
in the experiments. 

45 



H ERROR ANALYSIS EXPERIMENT 

H.4 Camera perspective 

Due to the finite focal length, the edge of the outer cylinder will always be visible as illustrated in figure 
H.7. To overcome this problem, one can increase the distance between the camera and the object and 
zoom into the object. However, if the zoom is digital, high resolution pictures are required. Another 
option is to place a (biconvex) lens in between the camera and the object or to use a tele photo camera 
lens. 

a) 

Figure H.7: Observation of camera: a) the ideal case, b) 
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