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Abstract 

This thesis investigates how cycle time in the photolithography area of a semiconductor 
manufacturing plant can be improved . The research is focussed on two effect s: The effect 
of unscheduled machine downs on the cycle times, and the effect of matching machines on 
cycle time. To conclude a tool set is developed to analyze any photolithography machine for 
inefficiencies and predict how much cycle t ime wil! be reduced if they are solved. 

An aggregate simulation model is developed to investigate the effect s of unscheduled machine 
downs and the effect of matching machines . The biggest improvement for unscheduled down 
is expected by focusing on reducing the longest repair times. Removing the top 10% repair 
times lowers the mean cycle time by 12%. 

An even bigger improvement can be gained by matching two machines. If they are fully 
matched cycle t imes in the photolithography area can be reduced by up to 50%. 

The aggregate simulation model tha t is created to find the effect of these improvements is 
extended to include more details from the photolithography area. Furthermore a GUI is 
added to automatically extract the inputs from log files . These can be used to analyse any 
photolithography machine and predict how much cycle t ime can be decreased if inefficiencies 
are removed. 
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Chapter 1 

Introduction 

The goal of this thesis is investigating how cycle time in the photolithography area of a 
semiconductor manufacturing plant can be improved. Cycle t ime is an important performance 
measure in semiconductor manufacturing [1 4]. It is the time it takes for a product to be 
processed , plus the time spent waiting to be processed. In a busy manufacturing plant the 
waiting time often great ly exceeds the processing t ime, products have to wait in a queue 
before t he photolithography machine is available to process them. 

These queues are t here fora reason. There is always some variation in the time it takes for the 
photolithography machine to process a product. This means that t he machine will sometimes 
take more time t han the average to proces a product, and sometimes less t ime. It is also 
possible that a number of short processing time follow each other . Ha ving a queue of products 
in front of the photolithography machine means that there are a lways products available for 
the machine to process. Even if a sequence of short processing t imes occurs. This means that 
the machine will never have to idle, which is important because a photolithography machine 
is an extremely expensive piece of equipment. Price for the newest generation of machines 
star t at 30 million Euro. Having such an expensive machine sit idle would be a waste of 
capita!. 

The photolithography machine is often the most expensive piece of equipment in a semicon
ductor plant. This is why most semiconductor plants are designed to keep it processing as 
much of the time as possible: The photolithography area is designed to be the bottleneck. As 
such it always has a queue of products waiting to be processed. The bigger the variability in 
t he processing time, the bigger the chance that a sequence of short processing times occurs, 
and the bigger the queue in front of the machine has to be to keep it from going idle. 

Having queues also has a downside. The bigger the queues , the longer the waiting t ime for 
the products, and long waiting times mean long cycle t imes. Long cycle t imes, combined with 
variability, make it difficult to predict when products wil! be finished. Furthermore they lead 
to long times to market. long times before errors in the product are detected , and it causes 
a lot of money to be t ied up in half finished products. Industrial studies [11] have shown 
that , on average, reducing the cycle time by one percent will decrease the cost per produced 
wafer by 0. 7 percent. The photolithography cycle time is about 10% [1] of the total cycle 
time in a typical semiconductor manufacturing plant . This means reducing the cycle time 
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in the photolithography cluster by one percent can reduce the overall cost per wafer by 0.07 
percent . 

The research presented in this thesis is clone in corporation with ASML. ASML is a company 
that designs and builds photolithography machines and sells them to semiconductor manu
facturing companies . It has been the leading supplier for photolithography equipment since 
2002. Besides the current focus to design a new machine that can create smaller details , 
ASML is also interested in reducing cycle time for their customers. This thesis has three 
focus points to achieve t his: 

1. Investigate the effect of unscheduled machine downs on the cycle time for one pho
tolithography machine. 

2. Investigate how making machines work in parallel can improve cycle time in the pho
tolithography area. 

3. Develop tooling to analyze any photolithography machine for inefficiencies and to in-
vestigate how big their impact is on cycle time. 

The first goal is to quantify the effect of unscheduled machine downs on cycle time. An 
unscheduled machine down occurs when a machine should be able to produce, but is not . 
This is typically caused by a part of the machine that breaks. The first part of the thesis 
investigates how changing the repair time for these unscheduled downs, as well as changing 
the frequency at which they occur, impacts cycle time. 

The second part of the thesis focusses on a phenomena called machine matching. This is 
a complex procedure that makes it possible for products to be processed on two machines, 
instead of just one. It makes it possible for two machine to work in parallel, so if one machine 
can not process products for some time there is another machine that can take over part of 
the workload. Quantifying the impact of matching machines on photolithography cycle times 
is the second goal of this thesis. 

The third and final goal of this thesis is to design and create a tool set that can automatically 
analyze a photolithography machine for inefficiencies and predict the impact of removing 
them, on cycle time. 

1.1 Previous research 

Previous research on similar topics can be found in a lot of sources. The most famous one is 
probably Factory physics [6], which gives a broad analysis of the behavior of manufacturing 
systems. Chapter eight [6] uses queueing theory to estimate the effect of different types 
of machine outages including unscheduled downs, however the analysis is limited to single 
machines subject to operation dependent failures. Adan and Resing [3] also use queueing 
theory to analyse manufacturing lines. Their work includes the analysis of a single machine 
subject to time dependent failure. The approaches in both of these works only apply to 
machines that process one product at a time. A photolithography machine consists of a 
series of processing steps, which means that multiple wafers can be processed at the same 
time. Because of this the results derived with queueing theory cannot be directly applied to 
a photolithography machine. 
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Creating an accurate simulation model that includes all the processing steps in a photolithog
raphy machine requires a lot of information and time. This can be overcome by using an ag
gregate simulation model. An aggregate simulation model combines everything tha t happens 
in a machine together into one effective process time (EPT). This approach uses the arrival 
and departure times for a machine to model it , instead of analyzing the internal workings like 
the queueing theory approach. Koek [9] and Veeger [21] used it to model photolithography 
machines . This resulted in very simple models that do not need a lot of dat a to generate 
accurate predictions for the mean cycle time. Including the overtaking behavior even makes 
it possible to predict the entire cycle time distribution [21] . 

At ASML, there have been previous studies by Van der Eerden [19], who used both a simu
lation model and queueing theory to investigate a theoretica! photolithography machine and 
study the effect of rejects, rework, machine outages and tool dedication on both cycle time and 
throughput. During the same period Aarts [2] used a similar approach to study the effect of 
setup time, preventive maintenance and unscheduled downs on the cycle times for a theoret
ica! photolithography machine. Both these studies used a det ailed model that was not based 
on measured data, which makes it hard to translate their results to a real machine. 

Babbs and Gaskins [4] analysed the effect of reduced equipment downtime variability on cycle 
time for semiconductor manufacturing by simulating an entire factory, based on universa! 
SEMATECH data. They find a maximum reduction of 4.1 % of cycle time if all variability is 
removed , which seems much lower than we would expect . They also investigate the effect of 
adding more machines to bottleneck stations. but in their case this was not the lithography 
area. 

More genera! research on variability reduction was performed by Schoemig [15]. He investi
gated the effect on cycle time of reducing the variance of the time to repair. A theoretica! 
production line, not specifically for semiconductor manufacturing, was simulated in order 
to do this. Unfortunately the results are not explicitly quantified as the focus is more on 
graphical inspection of the resulting cycle time - throughput curves. Taylor and Heragu [18] 
performed a similar study by simulating a number of different cases in a flow shop environ
ment to find if reducing the mean or the variance of down time yields the biggest improvement 
on cycle time. They found that reducing the mean is usually more effective, but in specific 
cases reducing the variance can yield equal improvements. 

Practical work was done by Van der Eerden et al [20], who performed a cycle time improvement 
study in an actual semiconductor manufacturing plant . They used a hybrid approach where 
EPTs are calculated from actual dat a from a factory operated by TL Outliers in these EPT 
observation are analyzed and the effect on cycle times of removing them is calculated by 
using an extended Kingman equation . This leads to a list of possible improvements and their 
impact to the system. Their approach proved successful , after implementing the suggested 
improvement s the photolithography cycle time was reduced by almost 50%. However , it is 
unclear how accurate their predictions were, but the results show that there can be a lot of 
potential for cycle time reduction in actual semiconductor factories. 

In this thesis the EPT method will be used to create an aggregate model of a photolithography 
machine based on real data from a semiconductor manufacturing plant. The EPT method 
is enhanced to make it possible to explicitly model the effect of unscheduled downs on cycle 
times. This same aggregate model is extended and used to measure the effect of machine 
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matching. For t he final goal of this t hesis a more detailed model is created that aggregates 
parts of the photolithography machine, to divide it into three parts. 

1.2 Thesis outline 

This thesis wil! start with a short introduction to semiconductor manufacturing. After this 
the approach to investigate the effect of unscheduled machine downs is explained , the data 
is analyzed and a sensit ivity analysis is performed to find how unscheduled downs affect 
t he cycle time for one photolithography machine. The same model is then extended to find 
the effect of matching on cycle time. Thirdly, a more detailed model for the lithography 
area is created . This model can be used to investigate the effect of changes to the inner 
workings of a photolithography machine. A graphical user interface is added to this model, 
together with scripts to automatically derive the required inputs to create a tool, to analyse 
the performance of any photolithography machine in a customer factory. The final chapter 
presents the conclusions from this thesis and recommendations for future work. 
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Chapter 2 

Introduction to semiconductor 
manufacturing 

Before the analysis of the photolithography area starts it is first important to know a little bit 
about the process of semiconductor manufacturing. This chapter will first give a short intro
duction of the entire process, followed by a more detailed explanation of the photolithography 
area in the second section. 

2 .1 Semiconductor manufacturing pro cess 

Semiconductor manufacturing is the processes of creating integrated circuits. These integrated 
circuits (IC) can have different functions, for instance a CPU or RAM to use in your mobile 
phone or PC. Every IC consists of a number of layers. The different processing steps required 
to build an IC are shown in Figure 2.1 . Steps are repeated several times to form all the layers 
that will eventually form the integrated circuit . 
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Figure 2.1: Processing steps in semiconductor manufacturing [16]. 
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Each of the steps illustrate a specific step in the production process, and is explained be
low [16]: 

1. Almost all of today's computer chips are built on silicon wafers. The first production 
step is to create these wafers by melting silicon. From this melted silicon single cryst als 
are grown and sliced into flat cylinders, called wafers. 

2. The second production step is polishing one side of each wafer to a mirror-like surface 
to remove all scrat ches and impurities. Chips are built on this surface. 

3. In the third step a layer of silicon dioxide glass is deposited on the wafer. Because it 
will not conduct electricity this layer is called dielectric. A pat tern to form the first 
layer is exposed on the wafer and etched to mask the silicon. 

4. Step four is photolithography, or lithography for short. This is a process used to create 
patterns in the chip. First the wafer is coated with a light-sensitive chemical called 
photoresist . Then light is shone through a patterned pla te called a mask or reticle to 
expose the pattern onto the resist , much in the same way film is exposed to light to 
form a photographic image. 

5. Following the lithography process t he wafer goes to step five, the etch area, where 
materials are removed using various manufacturing tools. Exposure to light in the 
lithography step caused the part of t he resist that was exposed to " harden" (or become 
resistant to certain chemicals) . The " non-hardened" resist is washed away in the devel
opment process. Then t he material below it, for example Si0(2) , is etched away by a 
biting fluid. The material that is covered by the resist is protected from this biting fluid. 
Finally the "hardened" resist is stripped off so that the remaining material underneath 
forms a three-dimensional pattern on the wafer . 

6. The process of creating a three-dimensional surface on the wafer can be repeated to 
create complex structures. 

7. The surface that was created in the previous steps is filled wit h chemicals that change 
its conductivity. Atoms from the chemicals called doping materials are diffused into 
the wafer through chemical exposure and heating. Dopant a toms displace some of the 
wafer 's original silicon a toms to make the wafer either more or less conductive. This can 
also be done using ion implantation, which bombards sections of silicon with charged 
atoms called ions to displace silicon a toms. 

8. Step eight shows the electro plating of the layer to form the chip 's interconnections. 
A conducting metal (usually copper) is electro-plated on the entire wafer surface. Un
wanted metal is then chemically and mechanically polished off to leave microscopically 
thin lines of metal interconnects in the three-dimensional structure. All the millions of 
individual conductive pathways in a chip must be connected using these metal layers, 
in order for the chip to function. This includes vertical interconnections between the 
layers as well as horizontal interconnections across each layer of the chip. Steps three 
to eight are repeated to form a number of layers that eventually for t he chip. 

9. Finally, after all the layers are finished each chip is tested for electrical performance. 
Any failing chips are marked so they can be discarded after all the chips have been 
sawn out of the wafer with special wafer saws. The chips are then put into individual 
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packages which will protect the chips and provide connections from t he chips to the 
product s for which they are designed. For example chips destined for computers are 
placed in packaging that can be plugged into computer circuit boards. The chips can 
be shipped to distributors. A finished wafer , before all t he separate chips are sawn out 
of it , is shown in Figure 2.2. 

Figure 2.2: Finished wafer , ready for testing [12]. 

2.2 The lithography area 

The lit hography area, often further shortened to lit ho area, is the focus of this thesis. It 
consists of two machines: A resist track that applies t he light sensitive layer to the wafers, 
and the scanner that exposes the pattern on the wafers. After the wafer has been exposed it 
will return to the track where it receives post exposure t reatment . The t rack and scanner are 
physically linked together and effectively form one machine. This combination is sometimes 
called a litho cell . An actual litho area in a real facto ry is shown in Figure 2.3. The front of 
a number of litho cells can be seen on the left and right side. 

The transportation of wafers to and from a typical litho cell is done in special containers, 
called Front Opening Unified Pods, FOUP for short. One FOUP can carry up to 25 wafers 
that are processed exactly t he same. These FOUPs arrive to a buffer upstream of the lit ho 
cell. This buffer is called the stocker and it stores all the lots that are waiting to be processed , 
either on a litho cell or any other workst ation . The transportation of FOUPs is automated 
in most fabs. A FOUP mounted on a lit ho cell is shown in Figure 2.4. In the rear a FOUP 
is being transported by the automatic transporta tion system . 
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Figure 2.3: Lit ho area in an actual fab [12] . Figure 2.4: FOUP on machine [12] . 

Ar~]] 

Departure 

.------------------------------,---------
' ' ' 

-- ---- ----- ------ --- --- ---- ---· -- ---- ---· 
Track Scanner 

Figure 2.5: Schematic view of a li t ho cell . 

A schematic view of one lit ho cell is shown in Figure 2.5. This shows a buffer and several 
processing steps in the track and scanner. FOUPs arrive to the buffer where they wait until 
a port on t he litho cell is ava ilable . After this the wafers are loaded into the track to get 
the light sensitive coating, as explained in the previous section. The wafers then enter the 
scanner where they are measured and the image from the reticle is exposed. After exposure, 
the wafers receive a post exposure t reatment in the t rack, are loaded into t he FOUP again 
and leave the litho cell. 

Explicitly modeling all the process steps in the t rack and scanner would require dat a for each 
of these steps. Most of this data is not available to us, making it impossible to create a model 
t hat describes all the processing steps in det ail. Luckily for us, there are several methods to 
cope wi th this problem , and still create an accurate model. One of them , called the effective 
process time approach, is explained in the next chapter. 
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Chapter 3 

Modeling approach 

There are many ways to model systems like a lit ho cell. Data based models such as neural 
networks, analytical models based on queueing theory or discrete event simulation models 
are the most common approaches. The amount of data tha t is available for this thesis is 
not enough to build a data based model. We did not succeed in finding a queueing theory 
approximation in literature to describe a litho cell including machine downs, and deriving 
it ourself would result in an model that is probably to complex for ASML to maintain and 
use. 

Discrete event simulat ion models, on the other hand , can be created even with very litt le 
dat a available and still produce accurate results. Especially aggregate models, t hat group a 
lot of events together to obtain effective process times of a litho cell , are a good example of 
this. Once a discrete event simulation model has been created, the process of extracting the 
inputs for t his model from the data can be automated. This makes this approach well suited 
to reach t he goals of t his t hesis. 

In this chapter the modeling approach that is used to investigate t he effect of unscheduled 
downs on on the litho cell cycle t imes is explained , and resulting model is presented. 

3.1 Aggregate modeling using effective process times 

Aggregate modeling using effective process times, EPTs in short, is a method to create aggre
gate models of a system. This method combines everything that happens during production 
into one process t ime. The result is that the actual production t ime is combined with a ll 
other effects that might occur while a product is being processed , like machine outages or 
an operator inspecting the product. It measures how long each products claims capacity 
from the machine. The advantage of this method is t hat a complex system like a litho cell 
can be modeled as a single machine, with the processing t imes equal to the effective process 
times [9 , 21]. 

All that is needed to calculate the effective process t imes for a system are the arrival and 
departure times for products on the system. The algorithm to calculate EPTs is illustrated 
in Figure 3.1. 
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Figure 3.1: WIP dependency of EPTs. 

A Gantt chart for five products is shown. The beginning of each bar indicates the arrival time, 
a bar ends as soon as the product leaves the system. The corresponding EPT observations 
are shown below the Gantt chart. An EPT observation is started if no other EPT observation 
is in progress and a product is present in the system. An EPT observation is ended as soon 
as a product leaves the system . The bars in Figure 3.1 can be divided into smaller bars to 
show all the processing steps in great details , but the EPT observations would be the same as 
everything is aggregated into one effective processing time. The algorithm to calculate EPT 
observations is summarized in (3.1). 

(3.1) 

Here di is the i th departure event and ai is the i th arrival event. Note that the i th arrival and 
the i th departure do not have to belang to the same product. In Figure 3.1 they do, but it 
is also possible that there are products that overtake one or more other products. If this is 
happens the ith arrival and the i th departure may belang to different products. If the machine 
is utilized 100%, (3.1) simplifies to the inter-departure times of the litho cell. 

Overtaking is something that happens quite frequently in the lithography area. Modeling 
this behavior explicitly makes it possible to accurately simulate the cycle time distribution, 
instead of just the mean cycle t ime [21]. This behavior can also be calcula ted from the arrival 
and departure data. The order in which lots arrive can be compared to the order in which they 
leave, any overtaking can be seen if these two sequences are compared. The full algorithm to 
calculate the overtaking behavior can be found in Appendix D. 

The EPT approach results in a model that works with a countdown timer and a queue. This 
countdown timer is used to simulate the effective process time. New products that arrive 
to the system a re stored in the queue, and every time the countdown timer ends the first 
product in the queue leaves the system. The timer is started if a new product arrives and the 
queue is empty, or as soon as a product has left the system and there are still products in 
the queue. This is comparable to the way the EPT observations are calculated in (3.1). The 
EPT model and a schematic view of a litho cell are shown in Figure 3.2. 

The EPT model also incorporates the overtaking behavior. Upon arrival a product is placed 
in the queue, but this does not necessarily have to be at the end of the queue. A product can 
overtake a number of products depending on the measured overtaking behavior in the actual 
system. 
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Figure 3.2: Litho cell and aggregate model. 

One goal of this thesis is to quantify the effect of unscheduled downs on cycle times. The 
biggest advantage of using effective process times is that everything that happens between 
arrival and departure is combined into one processing time. Unfortunately this also means 
that unscheduled downs are combined with all other effects, which makes it impossible to 
analyze its effect on cycle time. To solve this problem a new method to filt er unscheduled 
downs from the EPT observations is presented in the next section. 

3.2 Modeling unscheduled downs 

As ment ioned before. the EPT approach aggregates everything that happens during process
ing into one effective process time. This is unfortunate, because we are interested in investi
gating the influence of unscheduled downs on cycle time. Before the EPT approach can be 
used for this, the effect of unscheduled downs has to be removed from the EPT distribution 
and modeled separately. 

Two information sets are combined to do this: the EPT observat ions and the machine status . 
The EPT observations contain the beginning and ending time of each EPT observation. The 
machine st atus gives the state of the scanner for each moment in time. More information on 
these data can be found in Chapter 4. By combining these two data sets, it is possible to 
identify during which EPT observations an unscheduled machine down occurred. These EPT 
observations are then removed from the population. 

After this, the " regular" behavior , without unscheduled downs, will remain. The effect of 
unscheduled machine downs is then reintroduced by modeling the failure behavior of the 
wafer scanner explicitly. This makes it possible to change the failure behavior and perform 
a sensitivity analysis. Unscheduled downs are modeled as preemptive resume interruptions , 
after the repair time has been simulated , the machine will continue production where it left 
of. This means that no products are scrapped . In reality there is some scrapping if there was 
an unscheduled down , but this is not a lways the case. Furthermore the effect of reworking 
the scrapped products on cycle times is assumed to be small , because failures do not occur 
very aften and thus the number of extra products due to scrappage is small. 

The approach of filtering EPTs based on the machine status is visualized in Figure 3.3. This 
figure shows Gantt charts of lots in a system , with the corresponding EPT observations below 
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them. The machine status is shown above the Ga ntt chart as a colored bar. Green means 
the machine is up, red means the machine is down. It can be seen that the machine is down 
during the second EPT observation , which means that this observation will be removed from 
the popula tion . The t ime it takes to repair the machine, and the t ime it takes for the machine 
to fail again after it has been repaired can be measured directly from the status data. 

at 

1 1 .. .. .. ..... .... ... 

1 .. ... 
down 

Figure 3.3: Combining EPT observations with status data. 

The resulting model is shown in Figure 3.4. This model is similar to the model from Figure 
3.2, except that there is an additional timer. This timer interrupts the EPT countdown timer 
to simulate the effect of unscheduled machine downs. This model is implemented in a discrete 
event simulation program, the details of this implementation are discussed in Appendix A. 
The inputs for this model are the EPT distribution, the arrival rate of new lots, the overtaking 
behavior , the times to repair and the times to failure. The output is a list of cycle times per 
lot. 
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Figure 3.4: Aggregate model with explicitly modeled machine failures. 
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The EPT approach has two aspects that are important for this thesis, they are discussed in 
the following sections. 

3.3 WIP Dependency 

A litho cell is an integrated processing machine. There are several processing steps that 
happen inside a lit ho cell , which means that multiple products can be in process at the same 
time. For the system that is investigated in t his t hesis there can be up to five FOUPs in 
process simultaneously. 

Previous studies [21 , 9] have shown t ha t this causes the EPT observations to be dependent 
on how heavily the litho cell is utilized. This effect is illustrated in Figure 3.5, which shows a 
Gantt chart for a fictional integrated processing machine that consists of two processing steps. 
Three scenarios are shown , one where t he machine utilization is low, one where it is medium 
and one where it is high. Each scenario shows the corresponding EPT observations below the 
Gantt chart. It can be seen that as the machine utilization increases, more processing is in 
parallel. This causes in the EPT observations to be shorter as the utilization increases. 

A common solut ion for modeling this utilization dependency is to use the number of lots 
that are present a t the st art of an EPT observation to divide the observations into buckets. 
This approach leads to a work in process (WIP) dependent EPT distribution. Every time a 
new EPT is started in the model, the WIP level is checked and a new EPT is sampled from 
the appropriate WIP bucket. Others have done research on different methods to model this 
utilization dependency [7] , but this thesis will use the conventional WIP buckets as it has been 
proven to work sufficiently accurate for semiconductor manufacturing environments. 

3.4 Traceability 

Outliers in the EPT distribution tend to be caused by inefficiencies or other hiccups in the 
litho cell. This means that finding the root causes for these outliers and solving them can 
improve the system. The identification of t hese root causes is not as straightforward as one 
might think. EPT observations can contain processing time for more than one lot if there 
is overtaking in the system. This makes it difficult to match specific lot properties, like the 
number of wafers or the recipe, to an EPT observation. This effect is illustrated in Figure 
3.6, which shows the Gantt charts of four lots that are processed according to a preemptive 
last in, first out policy. The corresponding EPT observations are shown under the Gantt 
chart. 

It can be seen that the first EPT observation includes processing time for the first , second, 
third and fourth lot. The second EPT observation contains only process time for the third 
lot , but not all of it since part of the processing already happened during the first EPT 
observation. The same holds for the third and fourth EPT observations. In this case it is 
difficult to match the EPT observations to specific lots, which can make it a bit difficult to 
find root causes for outliers. 
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Figure 3.5: Utilization dependency of EPTs. 
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A possible solution could be to match the attributes of all lots that are in the system during an 
EPT observation, to this observation. However, this might result in an overload of attributes 
for EPT observations during high utilization. In this thesis we combine the machine state to 
identify outliers that occur during unscheduled downs , and we investigate the Gantt chart of 
the actual lots to investigate the root causes for other outliers . 
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Figure 3.6: Overtaking makes it d ifficult to match EPT observations to specific lots. 
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Chapter 4 

The data 

The EPT model that is used in this thesis requires a number of inputs to generate an accurate 
cycle time for each lot . The required inputs are the inter-arrival t ime distribut ion , the EPT 
distribu t ions for each WIP level, t he overtaking distributions for each WIP level, t he time 
to repair distribution and the time to failure distribution. These inputs are calculated from 
data of an actual semiconductor manufac turing plant . The following three data sources are 
used: 

• Manufacturing Execution System dat a for one litho cell. 

• Scanner st atus dat a for the same litho cell. 

• Unscheduled down dat a for all scanners of the same type worldwide. 

The Manufacturing Execution System (MES) data contains information about each lot that 
was processed on the litho cell that is studied in this thesis . This information includes genera) 
information about the lot , like the number of wafers or the recipe that was used , as well as 
t he times the lot entered and left the different processing steps in the litho cell. The arrival 
and depart ure times to and from the litho cell are used to calculate the EPT observations 
and overtaking behavior, as well as the inter-arrival times. 

The machine status data stores the st ate that the scanner was in. This file is combined 
with the EPT observat ions to identify and remove the EPT observations that contain an 
unscheduled down (USD) of the scanner , as shown in Figure 3.3. The MES file and the sta tus 
file both span the same time period of approximately six weeks. 

The status data can also be used to calculate the time to repair (TTR) and the time to failure 
(TTF) for our scanner. Unfortunately the six weeks of data does not contain enough machine 
failures to properly model the time to repair and time to failure. This is where the third data 
source comes in . This file contains information about the unscheduled down (USD) behavior 
of every scanner of the same type that our data is based on, that was in use during the last 
year . This data does provides us with enough data to properly model the time to failure and 
time to re pair. 

The dat a and how it is used is shown schematically in Figure 4.1. The following sections 
explain the three data sources in more details. 
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Figure 4.1: Flow of data from input files to simulation model. 

4.1 MES file 

The MES file contains information about approximately 3000 lots that have all been processed 
on the same track and scanner combination, and spans a time of approximately six weeks. All 
available information for each lot is stored in one row , and every column contains a different 
piece of information. The most useful information is shown in Table 4.1. For now , only the 
time stamps for Left previous processing step and Depart from port are used as the arrival 
and departure times to calculate the EPT observations. A more detailed model is introduced 
in Chapter 10, which needs some additional attributes to calculate the required EPTs. This 
section continues to explain the attributes that are mentioned in Table 4.1. 

Attribute 
Lot ID + counter 

Port 
N umber of wafers 

Recipe 
Left previous processing step 

Arrived on port 
Start loading 

Finished loading 
Depart from port 

Data type 
Number 
Number 
Number 
String 

Time stamp 
Time stamp 
Time stamp 
Time stamp 
Time stamp 

Table 4.1: Most important content in MES file 
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The Lot ID is the name of the FOUP with its wafers. It is used to distinguish between 
different FOUPs. A FOUP can visit the machine multiple times for different layers. The 
counter shows how many times the lot has visited the litho cell within the time span of the 
data. By adding this to the lot ID a unique entry is guaranteed. 

The port shows which of the five ports was occupied by the FOUP. 

The number of wafers shows how many wafers were in the FOUP. This number can range 
from 1 to 25. Production FOUPs usually carry between 20 and 25 wafers. Besides production 
FOUPs there are also monitor FOUPs, these are used to monitor the machine and check if 
it is still producing according to specification. Monitor FOUPs usually contain a smaller 
number of wafers. 

The recipe shows which recipe was used to process the wafers. Each recipe has specific settings 
for each of the steps in the track, like pre-bake time and temperature, and specific exposure 
specifications like exposure time and which image has to be exposed . 

The left previous processing step time stamp is the t ime the FOUP departed from the upstream 
machine. This is the best available estimate for the time the lot arrived in the stocker. It 
includes a small amount of extra time to be transported from the previous machine to the 
centra! stocker. 

The arrived on port time stamp is the time the FOUP was physically mounted on the machine 
and is ready to st art being loaded into the track. 

The start loading time stamp is the time the wafers in the FOUP started to be loaded into the 
track. This time is equal to the time at which the wafer handler system begins to transport 
the first wafer from the FOUP. 

The finished loading time stamp is the time the last wafer was loaded into the track. 

The depart from port time st amp is the time the FOUP was transported from the litho cell 
to be processed on the next machine. This time is used as the time the lot finished processing 
on the track-scanner combination. This also includes some additional waiting time for the 
transportation system. 

It is assumed that all the time stamps in the MES file a re logged using the same doek, so 
there are no synchronization errors in the data. It is unclear if this is actually the case in 
reality. If there are any deviations however , their effects are likely to be small on the scale of 
cycle times. 

4.2 Status file 

The status file contains the status of the scanner during the same six weeks as the MES file. 
Note that this file does not include the status of the track that is attached to the scanner. 
Any errors in the track can therefore not be identified with this data. The status file gives 
the state of the scanner at any time, this can be any of the following four states: 

• Productive 

• Idle 
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• Scheduled down 

• Unscheduled down 

The Productive st ate means that the scanner is processing a lot. Idle means t he scanner is 
idle but ready to st art processing a new lot . Scheduled do wn means the scanner is undergoing 
planned maintenance, and can not process a new lot until this is finished. The fourth state, 
Unscheduled down, means that the scanner is not processing any new lots because it is down 
due to an unexpected error. It can not process any new lots until this error is resolved. Any 
EPT observation that contains an Unscheduled down is removed from the population . the 
other three st ates are left in. 

The status file is assumed to be synchronised to the MES file . Any deviation here could 
cause EPT observations to be labeled incorrectly which might lead to the incorrect removal 
of them. 

4.3 USD file 

The third dat a source is a collection of unscheduled down st arting times and durations, during 
one entire year , for all the machines of t he same type as the machine that was used in the 
previous two dat a sources. This file only includes information about unscheduled downs. 
Machine failures happen at a relatively low frequency. This means tha t the six weeks of data 
that is available in t he status file is not enough to correctly model the failure behavior. Using 
an ent ire year for multiple machines does make this possible. 

Unfortunately there is a problem with the method that unscheduled downs are entered into 
this file. This problem is presented and solved in the following section. Besides this, it is 
important to know if the failure behavior is time dependent , or operation dependent. This is 
investigated in Section 4.3.2. 

4.3.1 Time to failure reconstruction 

The unscheduled down logs that comprise the USD file are created as the local ASML team 
repairs the scanner in a customer factory. Sometimes a machine is assumed to be repaired , 
but after testing it turns out there is still an error. In such a case multiple a ttempts are needed 
to fix a machine, which means that one unscheduled down is logged as multiple smaller ones. 
This is seen in the data as multiple unscheduled downs that occur very short ly after each 
other. 

This effect is corrected by comparing the time to failure to the average processing time that 
was found in the MES data, and combining machine downs if the time to failure is smaller 
than the average production time. This method is based on the fact that the local ASML 
team will stay with the machine until it is successfully producing again. If the time to failure 
is smaller than the average production time for one FOUP, it is very likely to be caused by 
the same error tha t was not resolved in the previous attempt. 

This method is illustrated in Figure 4.2 . The top of this figure shows a situation with three 
unscheduled downs . The first two are separated by a time that is smaller than the average 
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Figure 4.2: Flow of data from input files to simulation model. 

production time, tmin· After the proposed correction these two unscheduled downs are con
catenated into one down , including the uptime in between. The algorithm to perform this 
correction is shown in Appendix F . 

The original time to failure and time to repair distributions are shown in Figure 4.3. A large 
number of small times to failure and small times to repair can be seen here. The time to 
failure and time to repair after the correction are shown in Figure 4.4. It can be seen that 
the number of short time to failure observations is decreased significantly, as expected. The 
number of short time to repa ir observations is also decreased significantly which can also be 
expected as multiple short times to repair and times to failure are concatenated into one big 
time to repair. The resulting distribution shapes look more like exponential distributions 
after the correction. This seems like a nice result , but note that this was not the goal the 
corrections. 

1::l 
Q) 0.2 
~ 

ow=~- --- - ---- -----' 
Times to repair 

i::L 
Q) 0.2 
~ 

o~=~--- ---- - - - ---' 
Times to repair 

Times to failure Times to failure 

Figure 4.3: Original TTR and TTF. Figure 4.4: Corrected TTR and TTF. 
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4.3.2 Time dependent failure or Operation dependent failure 

In the literature there are mainly two ways to model machine outages: operation dependent 
or time dependent. Before a simulation model can be created , it is important to know which 
of these approaches best describes the actual situation. 

Operation dependent failures assume that a machine can only break if it is processing a 
product. The failures are then typically caused by wear in the machine. 

Time dependent failure. on the other hand, assumes that a machine can break down at any 
time, even if it is idle. A machine that fails while it is not processing might seem like a strange 
phenomena but in reality such a situation can be caused by a number of sub systems that are 
always on , like the electronics. 

ASML has information about average utilization and t he mean time to repair (MTTR) for a 
number of machine, similar to the one that is investigated in this thesis. Figure 4.5 shows a 
plot of this mean time to failure against the ut ilization for each of t hese machines. 
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Figure 4.5: Mean time to failure as a function of machine utilization. 

If the failure behavior was operation dependent this would mean that as the machine is utilized 
more, the time difference between failures get s smaller. In other words, if the machine is used 
heavily this will lead to more failures in the same time period than if the machine was only 
used lightly. No such t rend is visible in Figure 4.5. which suggests that the failure behavior 
is time dependent . 

4.4 Missing entries 

The MES file that is used to calculate the inter-arrival times, EPT observations and overtaking 
behavior is not fl awless, some entries are missing. The effect of these missing entries is 
explained in this section . 

Most of the missing entries are near the beginning and ending of the MES file. Lots at the 
beginning of the file are missing their arrival times, because they arrived before the st arting 
time of the file . The same holds for the end of the file, where lots are missing departure 
times because they leave the system after the ending time of the file. The calculations of the 
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inter-arrival times, EPTs observations and overtaking behavior are only based on lots that 
have both an arrival and a departure time stamp. 

A benefit of this choice is that the number of inter-arrival times, EPT observations and 
overtaking observations is the same as the number of measured cycle times from the data. 
This makes it easier to check our input parameters for correlations. 

The lots that only have a departure time at the beginning of the file could still be used to 
calculate EPT observations, although it would not be possible to determine the corresponding 
WIP levels because the arrival times are unknown. The lots near the end of the file that only 
have an arrival time could be used to calculate additional inter-arrival times. These extra 
inter-arrival times are not needed in our case, because the number of inter-arrival times from 
complete lots is already large enough to properly identify the arrival behavior. 

Not taking the incomplete entries into account means that the WIP level is not always est i
mated correctly, especially for the first couple of EPT and overtaking observations. The lots 
near the beginning of the file that only have a departure time stamp can be used to estimate 
the WIP level for this first part. Their arrival time could be manually set to earliest time that 
is present in the file. However, this would result in a number of incorrect EPT observations 
that would have to be identified and filtered out again. The effect of underestimating the WIP 
level is assumed to be small because the total number of EPT observations is large. 

Only using complete entries reduces the time frame of the MES file from six to approximately 
four weeks, which is assumed to be long enough to properly model the inputs. 

ot 

Figure 4.6: Calculating EPTs with missing data. 

Missing entries at t he beginning and end of the MES file is something that can be expected. 
However , some entries in the middle of the file are also missing time stamps. These time 
stamps are replaced by a question mark and usually occur when there is a failure in either 
the scanner or the track. 

Missing entries in the middle of the data leads to an overestimation of the EPT observations. 
This effect is illustrated in Figure 4.6. 

The left Gantt chart shows three lots that arrive to a system and depart again some time 
later. The right Gantt chart is the same as the left one, except that the second lot is missing. 
The corresponding EPT observations are shown below the Gantt charts and it can be clearly 
seen that they are different because the second and third EPT are now combined. This effect 
is assumed to be small as the number of missing entries in the middle of the file is small. 
Furthermore, part of these overestimated EPT observations is already removed because they 

28 



contain unscheduled machine downtime. 
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Chapter 5 

Input analysis 

Analysis of the inputs is an important step to create an accurate simulation model. If there 
are any trends or dependencies in the input data, it is important to include these in the 
simulation model. In this chapter t he inter-arrival times. EPT observations and overtaking 
behavior is derived from the data sources that were explained in Chapter 4. Each of them is 
then analyzed as follows: 

1. Exploration: The data is visually inspected for any outliers or other deviations. 

2. Trends: The data is checked for any first order trends to see if it is increasing or 
decreasing with time. 

3. Autocorrelation: The data is checked for any other patterns or dependencies with itself. 

Based on these analyses a discrete event simulation model has been created. This simulation 
model is validated in the last section of this chapter. Some of the figure axis in this chapter 
are left blank due to confidentiality. 

5.1 Inter-arrival times 

The inter-arrival times are the first input parameter that is calculated. They are calculated 
as the difference between subsequent arriva ls to t he system . The formal definition is shown 
in (5.1). 

(5 .1) 

where tai is the i th inter-arrival time, Ti is the i t h time a lot arrives to t he system. The 
result ing inter-arrival times are analysed in the following subsections. 

5.1.1 Exploration 

The first step to analyse the inter-arrival t imes is exploring the data. A scatter plot of all the 
inter-arrival times is shown in Figure 5.1. There area four values that are significantly bigger 
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than the rest around days 18 and 25. Around these two days two long unscheduled downs 
occurred , and the arrivals to our machine were halted. This also causes the gap around day 
18. More details on this are explained in Section 5.4. The resulting scatter plot is shown in 
Figure 5.2. There are no further deviations in this scatter plot. 
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Figure 5.1: Inter-arrival times. 

5.1.2 Trends 
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Figure 5.2: Inter-arrival t imes. no outliers. 

After removing the outliers from the data it is important to check if there is any trend in the 
inter-arrival times. A least squares line is fitted on the data without the outliers. to check if 
the data might be increasing or decreasing over time. The result is shown in Figure 5.3 . 
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Figure 5.3: Inter-arrival t imes with trend line. 
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Figure 5.4: WIP level over time. 

A significant upwards trend can be seen in the least squares fit. This indicates that the inter
arrival times are increasing over time. This same trend can also be seen in the WIP level, 
which decreases over time as shown in Figure 5.4. It is possible to include this trend in the 
simulation model, for instance by making the arrival process time dependent. 

However, we plan to predict the effect of machine outages. This effect will be bigger if the 
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utilization is high , and smaller if the utilization is lower. For the analysis a fixed utilization 
level is used , which means that incorporating the trend in the inter-arrival t imes in the 
simulation model, is not needed. The only reason to need this t rend in the simulation model 
is to validate if it can predict cycle times accurately at the training point. This is done by 
using the actual stream of inter-arrival times, as measured in the data. 

5.1.3 Autocorrelation 

The third thing to check is whether the inter-arrival observations are independent of each 
other. There might be other dependencies in the inter-arrival times besides the trend that 
was found in the previous section. The sample autocorrelation factor is used to check this. 
This factor is defined as rk = ~' where s 2 is the sample variance and c1i is the covariance 
between inter-arrival observation at different times. This time difference is called the lag. 
The sample covariance function for a discrete series is shown in (5.2). 

N - h 

Ch = N ~ h L (Xi - X)(Xi+h - X), (5.2) 
i= l 

where h is the lag, N is the total amount of observations and X is the set of all observations. 
Dividing the covariance by the sample variance results in a value between -1 and 1, where 
a value of 1 means high posit ive correlat ion. -1 means high negative correlat ion and a value 
of O can be an indication that t here is no correlation. The sample autocorrelation factor is 
plotted for up to 40 lags. The results are shown in Figure 5.5. 
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Figure 5.5: Autocorrelation factor for inter-arrival times. 

It can be seen that the autocorrelation is slightly positive for all amounts of lag shown in the 
plot . This is expected because of the positive trend that was found in the inter-arrival data 
in the previous section. There do not seem to be any other dependencies or patterns in the 
data. Experiments were performed with more lags and the results were the same. 

Based on these analyses the inter-arrival times can be modeled by a stationary process with 
independent sampling from t he inter-arrival observations, to measure the effect of unsched
uled downs. To validate the simulat ion model the original stream of inter-arrival t imes is 
used . 
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5.2 EPT observations 

The EPT observations are calculated using the algorithm in Appendix D. In the following 
subsection these observations are analyzed to find any outliers and other irregularities, linear 
trends and other dependencies or patterns. Based on these analyses the proper way to model 
the processing times in the simulation model is determined. 

5.2.1 Exploration 

The EPT observations and their ending t imes are shown in Figure 5.6. Any red EPTs in this 
figure have overlap with an unscheduled down. The rest is plotted in black. 
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Figure 5.6: EPTs vs. time. 
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Figure 5. 7: Third unidentified outlier. 

There are four values tha t are far bigger than the rest of the population, and only one of them 
is identified by combining the machine state and EPT observations. These EPT observations 
most likely do not belong to one specific lot, as explained in Section 3.4. To find out what 
happened with the other three outliers the actual arrival and departure times for the lots, 
the machine state and the EPT observations are inspected. They are all plotted together for 
each of the unidentified outliers. Figures 5.7, 5.8 and 5.9 show the largest, the second largest 
and the smallest unidentified outliers respectively. The status is shown as the background 
color, where green means that the scanner is idle, white means the scanner is processing and 
blue means the scanner is scheduled down. The EPT observations are shown below the Gantt 
charts. 

The figures show that all unidentified outlier are observed during a long scanner idle. After 
inspecting the MES file for the lots that are in the system around the time of the outliers we 
find that there is a big time difference between the Left previous processing step time stamp 
and the Arrived on port t ime stamp. This indicates that there are long periods of time during 
which no lots get dispatched around the time that the outliers occur. 

This dispatching delay lasted 11 hours for the biggest outlier. Looking at the Gantt chart in 
Figure 5. 7 shows that there are no lots arriving to the system anymore, and there is just one 
lot in the system. The fact that the scanner is idle during this time can indicate a number of 
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Figure 5.8: Second unidentified outlier. 
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Figure 5.9: First unidentified outlier. 

causes: The track or transportation system can be down (remember that we only have status 
data for the scanner) so arrivals to the system are halted and the lot that is on the litho cell 
cannot leave. Another cause can be that WIP in the factory was low and this last lot was on 
hold , waiting for an operator to inspect it. 

The dispatching delay for the second biggest unident ified outlier was six hours. The Gantt 
chart in Figure 5.8 shows that lots keep arriving to the system this time, but the scanner 
status is still idle. This suggests that the production might have been put on hold temporarily. 
This is sometimes done to prevent \VIP from piling up on the downstream machine [5. 10]. 
Another reason can be that there was a failure in the track which causes the scanner to 
become idle. 

The smallest of the three unidentified outliers is shown m Figure 5.9 . Again , a big delay 
is found in the MES file before lots are being dispatched. This delay lasts five hours for 
this outlier. The corresponding Gantt chart looks similar to the second biggest out lier : Lots 
keep arriving but no lots are leaving the system. The scanner is idle again for quite a long 
time. 

Based on this information we decide that all three of these unident ified outliers are not 
part of the " regular" processing behavior and they are removed EPT population. The EPT 
observations during an unscheduled machine down are also removed from the populat ion, 
because they will be modeled separately. The remaining EPT population is called the " regular 
effective process times" . This populat ion is shown in Figure 5.10 against the observation 
t ime. The EPT observations for integrated processing machines tend to be dependent on the 
machine utilization level, as explained in Section 3.3. Figure 5. 11 shows the EPT observations 
plotted against the WIP level when the observations started . A clear dependency on the WIP 
level can already be seen here. 

The resulting observations are still quite noisy. To make the WIP dependency more clear 
the mean , coefficient of variation and the number of EPT observations per WIP level are 
shown in Figure 5. 12. This figure shows that the mean and squared coefficient of variation 
do not change much for WIP levels eight or higher. A saturation level is expected because at 
some point there are no more processing steps t hat can be performed in parallel. However, 
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Figure 5.10: EPTs vs. t ime. Figure 5.11: EPTs vs. WIP level. 

we would expect t his to happen a t a WIP level of fi ve. because the physical system can only 
process a maximum of five FOUPs simultaneously. These extra three FOUPs might give 
more opt ions to the computer that selects which FOUP s to dispatch to the machine. so it 
might be able to select more similar lots , which can lead to more efficient cascading. This will 
result in smaller setup t imes, and thus smaller processing times . Based on Figure 5.12 the 
EPT observations are divided into eight WIP buckets: levels one to seven , and eight or more. 
These eight WIP buckets are explicit ly coded in the simulation model to correctly determine 
the processing times . 

5.2.2 Trends 

The fact that the EPT observations are negatively correlated to the WIP level in the system 
means that they will increase over time in our dat a . This is because the WIP level in the 
system decreases over t ime, as shown in Figure 5.4. This trend is already taken into account 
in the simulation model. However, we are still interested in analyzing the EPTs in each of 
the eight WIP buckets for trend separat ely. 

Figure 5.13 shows the scatter plot for the EPTs in each of the WIP buckets. Similar to the 
inter-arrival times , a linear least squares line is fitted in each plot. 

It can be seen that the t rend line for the first WIP bucket decreases over time. This t rend 
is caused by a single observation a t day zero, after which there are no observations for quite 
some time. The WIP level for observations around day zero is possibly inaccurate because 
any rows with missing entries are discarded , as explained in Section 4.4. The EPTs in the 
other WIP buckets do no show any clear trend , as their trend lines are nearly horizontal. 
This suggests that the EPT observations for each of the WIP buckets can be modeled as a 
st ationary process . 
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Figure 5. 12: Mean, coefficient of variation and count of EPT observation per WIP level. 

5.2 .3 Autocorrelation 

The final check for the EPT observations is to see if there are any other patterns in the 
regular EPT observations. The autocorrelation coefficient is used again to investigate this. 
This coefficient is calculated for different lags. for each of the WIP buckets separately. 

The results for up to 40 lags are shown in Figure 5.14. It can be seen that for the first seven 
WIP buckets there is a large amount of spread in t he autocorrelation factor. However, the 
values are all spread around zero which leads us to believe that there is no autocorrelation in 
t he data. The spread is most likely due to the relatively small sample sizes for the first seven 
WIP buckets. 

The highest WIP bucket of eight or more contains significantly more observations and it 
can be seen that there is less spread, and also that the overall values are very small for up 
to 40 lags. Tests were done with more than 40 lags and the results were the same. These 
results suggest that the EPT observations are independent of each other , which means that 
the processing times in the simulation model can be described by identically independent 
sampling from the appropriate WIP bucket. 
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Figure 5.13: Regular EPTs divided into WIP buckets. with trend lines. 

5.3 Overtaking behavior 

The overtaking behavior is calculated together with the EPT observations, using the algorithm 
shown in Appendix D. The overtaking behavior will be inspected in a similar fashion as the 
inter-arrival t imes and the EPT observations. 

5.3.1 Exploration 

A scatter plot of the number of overtaken lots is shown in Figure 5.15. T he number of 
overtaken lots is also plotted against the W IP level, as shown in F igure 5.16. The number of 
observations per WIP level are shown in Figure 5.17. There do not seem to be any outliers or 
other irregularit ies in the data besides the WIP dependency. This WIP dependency can be 
explained by the fact that as there are more lots in the system, more lots can be overtaken. 
The decrease in WIP level over t ime can also be found in the overtaking behavior, due to 
the WIP dependency and because of this furt her analysis of the overtaking behavior is done 
for the separate WIP levels . The number of observations is low for most WIP levels, except 
t hose between two and ten . Because of this, further analysis of will only be done using the 
observations for these WIP levels, where there are enough observat ions. 
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Figure 5. 14: Autocorrelation factor for EPT observations. 

5.3.2 'frends 

The WIP dependency of the overtaking behavior is shown quite clearly in Figure 5.16. This 
WIP dependency, combined with the fact tha t t he WIP level in t he system was not stable 
during t he time our data sources were created , causes a decreasing trend in the overtaking 
behavior. This dependency will be taken into account in the simulation model and the 
overtaking behavior will be analyzed per WIP level to see if there are any other trends. 

Only WIP levels two up to ten are used for this , due to t he low number of observations in 
the other buckets. The observations and a linear least squares fit are shown in Figure 5. 18. 
There are no trends visible in t he data. This suggests that the overtaking behavior should be 
modeled as a stationa ry process. 

5.3.3 Autocorrelation 

The last thing to check for the overtaking behavior is if there are any other dependencies within 
the data. The autocorrelation coefficient is again used to check this. This coefficient is shown 
for WIP levels two up to ten in Figure 5. 19. Because of t he limited number of observations 
the autocorrelation coefficient shows a big spread again , but it seems centered around zero. 
This suggests that the overtaking observations are independent of each other. 
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F igure 5.17: Number of observations per WIP 
level for the number of overtaken lots. 

time. 

Based on the results in this section the overtaking behavior is modeled by independently 
sampling from a WIP dependent distribution. 

5.4 Correlations between EPTs and inter-arrival times 

A number of outliers were removed from the inter-arrival population in Section 5.1. The 
reasoning behind this is explained in this section. 

A scatter plot of the inter-arrival t imes and EPT observations together is shown in Figure 
5.20. These are all the observations , including all the outliers that were removed in earlier 
sections. 

There is a clear correlation between the EPTs and inter-arrival t imes around days 18 and 25. 
From the status file it is known that the machine is unscheduled down around day 18 and the 
MES file shows that no new lots are arriving to the system around this time. Nonnal arrival 
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F igure 5. 18: Amount of overtaken lots per WIP level, with trend lines. 

resumes again after the system bas been repaired . This causes the EPTs and the inter-arrival 
t imes to be high around day 18. 

It is unclear what happens around day 25 but there is a short time again during which 
no new lots are arriving to the system. For the EPTs these outliers were identified and 
removed from the population. For the inter-arrival times we assume that arrivals were halted 
because something was wrong with the system, and choose to remove these out liers from t he 
population. 

For the rest of this thesis it is assumed that t here are no further correlations between the 
EPTs, the overtaking behavior and t he inter-arrival times . Except for the WIP dependency 
mentioned before. 

5.5 Correlation between times to repair and time to failure 

The t imes to failure (TTF) and times to repair (TTR) are not tested for any autocorrelation , 
because they are not generated by one machine. In fact they are collected from mult iple 
machines during an entire year. Checking the autocorrelation for each machine would not 
give any usable results because of the small sample size. However , t he number of TTF and 
TTR observations are the same and each TTF has a corresponding TTR observation. This 
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Figure 5.19: Autocorrelation factor for overtaking observations. 

means that it is possible to do a quick check for any correlation between them. 

Figure 5.21 shows the times to fai lure plotted against the corresponding times to repair. A 
zoom on the marked a rea is shown in Figure 5.22. There is no correlation visible in these 
plots. The correlat ion coefficient for the TTR and TTF is 0.035. This suggests that the t imes 
to repair and t imes to failure are indeed independent of each other. 

5.6 Validation 

After the inputs have been derived and analyzed it is possible to create a simulation model that 
corresponds to the actual situation. This model can be found in Appendix A. The simulation 
model is validated in this section. To do t his , the simulated cycle times are compared with 
the measured cycle times. 

There was one trend in the inputs that is not implemented in the simulation model: the 
increasing inter-arrival times. To be able to validate the simulation model the inter-arrival 
times are kept in the exact sequence as the measured ones. This means that the simulation 
run time is limited to about four weeks, the same as the original data. The times to repair and 
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t imes to failure are also kept in the exact same sequence as the measured ones because ran
domizing them has to much impact on the cycle time for such a short run time. The EPT and 
overtaking observations for each WIP level are implemented as empirical distributions. 

We are interested in t he entire cycle time distribution. However , this would require plotting 
the distributions for all the cases that we want to run. To keep things clear and easier to illus
trate we choose to focus on the mean and goth percentile of the cycle time distribution. 

The central limit theorem states that the mean of a large number of random variables indepen
dently drawn from the same distribution is distributed approximately normally, irrespect ive 
of the form of the original d istribution. This means that the simulated mean cycle t ime 
and the simulated go th percentile of the cycle time should follow a normal distribution if the 
simulation is repeated often enough . This fact is used to create confidence intervals for the 
simula tion output . 

One hundred independent simulations are performed and a gg% confidence interval is created 
for the mean and go th percentile values of cycle t ime. The mean and goth percentile value 
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that are measured in the MES file are not included in these 99% confidence intervals. This 
means that the chance that we would encounter the measured mean or 90th percent ile value 
of cycle time in our simulat ion results , or something more extreme, is smaller than 1 %. 

However, this simulation model is the only one t hat we have and expecting that it will produce 
the actual cycle t imes is not realistic, especially because the measured cycle time is based 
on one measurement of four weeks which also shows some variation. Instead, we focus on 
how much the simulated cycle time deviates from the measured one. Table 5.1 shows this 
deviation which is defined as: ó = simulat_ed- meansured. The 99% confidence intervals for 

' smrnlated 
the simulation output are very small , the minimum and maximum values differ by less than 
one percent. 

Mean 
90th percentile 

0.007389779 
0.063362727 

Table 5.1: Deviation between simulat ion and measured CT. 

Although the prediction is not perfect , the mean cycle time is still very accurate with a 
deviation of approximately one percent . Literature suggests that anything under ten percent 
would indicate a good simulation model. The deviation for the 90th percentile value is also 
within this acceptable range. This makes us confident that the approach works and that we 
have a simulation model that can be used to perform a sensitivity analysis on the effect of 
unscheduled downs on cycle t imes. 
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Chapter 6 

Distribution fitting 

In the previous chapter the simulation model was validated by using empirica! distribu t ions for 
each of the inputs. Fitting common distribut ions to describe these inputs can make it easier 
t o work wit h the simulat ion model. Furt hermore, if the proper distributions are found they 
might describe t he inputs more accurately than the empirica! ones that a lways samples from 
the same, limited , set . This chapter investigat es if it is possible to accurately fit distributions 
to our inputs. The effect of these fit ted distributions on the predict ed cycle times is verified 
at the end of this chapter. 

Some of the figure axis are left blank in this chapter , due to confidentiali ty. 

6.1 Inter-arrival times 

The first input to fit a distribut ion on is the inter-arrival t ime. In the previous chapter a clear 
t rend in the inter-arrival times was found. This means t hat trying to fit one distribution to 
t he ent ire population will not work. However , the first 15 days of the inter-arrival data do 
not show this trend. The distribut ion fitting will be done using only these first 15 days. 

Figure 6.1 shows the cumulative distribution function (CDF) for an exponential distribution 
with the same mean as the inter-arrival times, and the empirica! CDF for the actual inter
arrival times . The corresponding probability density functions (PDFs) are shown in Figure 
6.1. 

The exponential distribution seems to fi t the empirica! ones pretty good. There are some 
deviations, the biggest one around the 90th percent ile . Formal testing of this generalization 
is done with the Kolmogorov-Smirnov test [13] . This test compares the maximum difference 
between the empirica! CDF and the fitted one: max( IFi (x) - F2(x )I). The test returns a p 
value of 0.24 , indicating that the probability of finding our inter-arrival times, or something 
more ext reme, under the assumption that they are indeed from this exponential distribution, 
is 24%. 

We chose to use t his fitted distribution, despite this small chance. Mainly because this is the 
type of distribut ion that is often used in literature to model inter-arrival times. 
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Figure 6.2: PDF for inter-arrival times. 

The effective process times are the next input that we try to fit a distribution on. Remember 
that the EPT observations were divided into eight WIP buckets in the previous chapter. The 
empirical CDFs for each of these eight WIP levels are shown in Figure 6.3, together with a 
two moment fit gamma distribution. These two moment fit gamma distributions are obtained 
by matching the two input parameters for the gamma distributions. k and 0, to the mean 
and variance of the actual EPT distributions. The advantage of this method is that the fitted 
distribution will always have the correct mean and variance. which are the two parameters 
that influence the mean cycle time [8]. Other methods like maximum likelihood estimation 
might result in a fit that performs better in the Kolmogorov-Smirnov test , but having the 
correct mean and variance. and thus the correct mean cycle time, has a higher priority for 
US. 

The corresponding PDF are shown in Figure 6.4 . There seem to be a number of small 
observations that cause a mismatch for the mode of the empirical distributions and the peak 
of the gamma distributions, the peak seems to be a bit to the left of the actual mode. Overall , 
the fitted gamma distribution seems to a fair choice. It seems to describe the empirical 
CDF fairly well for the lower WIP levels. The higher WIP levels show quite some deviation 
though. 

Again, formal testing of these fits is done with the Kolmogorov-Smirnov test. The resulting p 

values for each WIP level are shown in Table 6.1. As expected , the probability that random 
sampling from the proposed gamma distributions would result in our actual EPT observations 
is very small for the higher WIP levels . WIP level one actually seems like a good fit. 

Other general distributions like a log normal distribution or log logistic fit have also been 
fitted , but their results after being implemented in the simulation model were worse. The 
same goes for fitting the EPT distributions with an offset. 

We could try a different distribution for each WIP level, but this seems undesirable as previous 
research in semiconductor EPT modeling have used gamma distributions with great success. 
So even though the formal test rejects the hypothesis that the two moment fit gamma distri-
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Figure 6.3: CDF for EPTS and two moment gamma fits. 

butions are good generalizations, it will still be tested in t he simulation model and compared 
to using the empirica! EPT distributions in Section 6.6. 

6.3 Overtaking behavior 

Literature <lid not provide us with any distribution to fit the number of overtaken lots. An 
attempt was made at parameterizing the overtaking behavior in Chapter 7. Unfortunately 
t his attempt was not successful. The overtaking behavior will thus be described by empirica! 
distributions. 

6.4 Times to repair 

Several distributions are suggested in literature to model times to repair. The most common 
one that applies to our system is the gamma distribution. The empirica! CDF and the CDF 
for the two moment fit gamma distribution are shown in Figure 6.5. The corresponding 
PDFs are shown in Figure 6.6. Graphical inspection already reveals that there is quite some 
deviation from the 80th percentile upwards. The Kolmogorov-Smirnov test indicates that the 
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Figure 6.4: PDF for EPTS and two moment gamma fit s. 

maximum deviation between the two CDF functions is too big with a result ing p value of 
l.2407e-15. 

The time to repair is influenced by several policies, like the amount of training of the local 
staff and the policy for stocking spare parts. This is apparently not described accurately by 
a gamma distribution. However , it will still be tested with the simulation model and the 
accuracy will be compared to using the empirical distribution to see how much it affects the 
prediction accuracy. 

6.5 Times to failure 

The final input to fit a distribution to is the time to failure. Figure 6. 7 shows the empirica! 
CDF for the times to fai lure, and the CDF for the two moment fit gamma distribution. The 
corresponding PDFs are shown in Figure 6.8. The two CDFs seem pretty similar , except 
that the empirical one shows more noise. The Kolmogorov-Smirnov test gives a p value 
of 0.00036711 , making it easy to reject the gamma distribution as an accurate fit. The 
gamma distribution is still tested with our simulation model to see how much it influences the 
accuracy. From literature we would expect the time to failure to be exponentially distributed. 
An exponential fit with the same mean was also tested but had significantly worse results , 
both before and after reconstruction in Section 4.3 .1. This can indicate that the t ime to 
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WIP level P value 
1 0.5804 
2 0.02759 
3 0.013001 
4 0.0017463 
5 5.0408e-08 
6 l.1874e-09 
7 6.3742e-08 

8 or more 5.9149e-34 

Table 6.1: KS goodness of fit test for two moment fit gamma distributions. 
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Figure 6.6: PDF for times to repair. 

failure is actually not memoryless and failures can be predicted to some extend . However , 
this is beyond the scope of this thesis. 

6.6 Verification of the fitted distributions 

The simulation model takes five inputs: The inter-arrival t imes, the effective processing times, 
the overtaking behavior , the times to repair and the times to failure. The only input that 
was described fairly successful with a fitted distribution are the inter-arrival times. It was not 
possible to fit the overtaking behavior at all. For all other inputs some fitted distributions 
were proposed that describe them to some extend and we are interested to see how they 
infl.uence the simulation output . 

This test is a little different from the validation in Section 5.6. For this test the exponential 
fit on the inter-arrival times will be used , instead of the actual, time dependent inter-arrival 
stream in the validation. Furthermore, the failure behavior is now based on the behavior 
of many machines during one year, instead of the actual stream from the Status file. This 
means that it is no longer possible to compare the values that the simulation produces to the 
measured ones, because it is simulating at another utilization level. However , this is not a 
problem , since the simulation model has already been validated in Section 5.6. 
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Figure 6.7: CDF for times to failure. 
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Figure 6.8: PDF for times to failure . 

Before the different fitted distributions are compared , the time for the system to get in a 
steady st ate is investigated. Case O from Table 6.2 is simulated three times , simulating nine 
years every time. The resulting cumula tive moving averages of the cycle time is shown in 
Figure 6.9. 

It can be seen that for all three runs the cumulative moving average of t he cycle time seems 
to st abilize after approximately five simulated years. This is much longer than the slowest 
process, the time to failure , so any more jumps in the cumulative moving average if the 
simulation t ime is increased are not expected . We assume that after five simulated years the 
90t h. percentile value has also st abilized. Furthermore we assume that the fitted distributions 
will not affect this much. Based on this, a run length of five years is used for the following 
simula tions. 

Comparing the fitted distributions with the empirica! ones , for the EPTs, times to repair 
and times to failure results in 23 different possible combinations of inputs for the simula tion 
model. These combinations are shown in Table 6.2. Case O is the first case that is simula ted . 
This will provide a baseline value to compare the effect of the different distributions. Every 
case in Table 6.2 is simulated a total of ten times. The resulting outputs all have a confidence 
interval of which the maximum and minimum deviate less than 0.5% from the mean. This 
interval is so small that only the mean values are used in the comparison. The devia tions, 
compared to the baseline, of the simulated mean cycle time and 90 th. percentile are shown in 
the last two columns for each run. This deviation is defined as ó = simul~ted - baseline . 

s1mulated 

It can be seen that using the gamma fits for the effective process times causes quite a big 
devia tion of the simulated cycle times. Any run where the empirica! EPT distributions are 
replaced with the fitted gamma distributions show a big deviation from the baseline. Using 
the fitted distributions for the times to repair and times to failure seems to have little effect 
on the cycle times and 90 th. percent ile values. 

Based on this , the gamma fit s for the times to repair and times to failure will be used in 
the rest of the thesis. The empirica! distributions will be used for the effective process times. 
Using the empirica! EPT distributions is not a problem because, opposed to the time to repair 
and time to failure, we do not plan to study any changes to them . 
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Figure 6.9: Cumulative moving average cycle time, over t ime. 

Case Arrivals EPT Overtaking TTR TTF J mean ó 90thp 

0 Exponent ial Empirical Empirical Empirical Empirical - -

1 Exponential Gamma Empirical Empirical Empirical 0.180 0.220 
2 Exponent ia l Empirical Empirical Gamma Empirical 0.003 0.003 
3 Exponential Empirical Empirical Empirical Gamma 0.008 0.012 
4 Exponential Gamma Empirical Gamma Empirical 0.187 0.231 
5 Exponential Gamma Empirical Empirical Gamma 0.199 0.249 
6 Exponential Empirical Empirical Gamma Gamma 0.011 0.019 
7 Exponential Gamma Empirical Gamma Gamma 0.195 0.246 

Table 6.2: Validation runs with results. 
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Chapter 7 

Reconstructing lot priorities 

lt is common practice in manufacturing to use a FIFO policy for their buffers. but to give some 
lots high priority. Lots with high priority will overtake lots with low priority. In this chapter 
we attempt to reconstruct the priorities that were assigned to different lots. based on the 
arrival and departure times to the buffer. Benefits of this approach are that the overtaking 
behavior might no Jonger be WIP dependent and further studies can be conducted to the 
effect of changing lot priorities. 

7.1 Concept 

The approach that we propose uses the arrival and departure times to the buffer for each lot. 
With this data it should be possible to set up a set of constraints to describe the relative 
priorities of the lots. This approach is explained in the following example. Assume the 
following arrival and departure sequence for a given set of five lots, and the corresponding 
queue composition: 

Time Event LotID Queue 
1304.525 Arrival 0 [O] 
1740.244 Arrival 1 [0,1] 
2290.986 Arrival 2 [0 ,1,2] 
2525.514 Arrival 3 [0,1,2,3] 
3433.041 Departure 1 [0 ,2,3] 
3181.931 Arrival 4 [0,2,3,4] 
4486.872 Departure 0 [2 ,3,4] 
5158.733 Departure 4 [2 ,3] 
5427.477 Departure 2 [3] 
6099.338 Departure 3 [] 

Table 7.1 : Arrival and departure data from the buffer. 

It can be seen that lot one has a higher priority than lot zero, because it arrives in the queue 
later but it leaves earlier. The same goes for lot four which arrives in the queue after lots two 
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and three, but leaves before them. Furthermore it can be seen that priorities for lots two and 
three have to be lower or equal than the priority of lot one, because they are in the queue at 
the t ime that lot one leaves and do not overtake it. 

The example from table 7.1 can be rewritten into a set of equations by using this logic. In 
order to do this some assumptions are made: 

1. All priorities are integers, described by Pi· 

2. The higher the priority, the higher the value of Pi · 

This leads to the following set of equations that constraint the lot priorities: 

pO :S: pl - 1 

p2 :S: p4 - 1 

p3 :S: p4 - 1 

p2 :S: pl 

p3 :S: pl 

p2 ::::: pO 

p3 ::::: pO 

p4 ::::: pO 

p3 :S: p2 

This can be rewritten into matrix form: 

1 -1 0 0 0 
0 0 1 0 -1 
0 0 0 1 -1 
0 -1 1 0 0 
0 -1 0 1 0 

-1 0 1 0 0 
-1 0 0 1 0 
- 1 0 0 0 1 
0 0 -1 1 0 

-1 
-1 

pO -1 
pl 0 
p2 < 0 
p3 0 

4 0 
0 
0 

The objective is then to find the lowest possible priorities for each lot , that satisfies these 
constraints. This can be solved using integer programming. The objective function is to 

4 
minimize L Pi· This objective function is linear for all parameters and adding a constraint 

i= l 
that all priorities have to be greater of equal to zero will results a minimum. 

For this simple case it can be seen that the best solution is: 
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7. 2 Test case 

pO = l 
pl = 2 

p2 = 0 

p3 = 0 

p4 = l 

This approach is tested using simulation in x [22]. A single machine with an infinite buffer 
is simulated. A generator produces lots , each lot has a certain priority which is drawn from 
a uniform distribution with possibilities zero , one and two. A higher number means a higher 
priority. After they are generated , lots are inserted into the queue based on their priority 
number. They are inserted before any lots with a lower priority, and after any lots that have 
the same or a higher priority. The machine takes the first lot in the queue as soon as it can 
process a new lot. This means that besides the priority system, it works according to a FIFO 
policy. 

The method described in the previous section is implemented in Matlab and the results 
are shown in Figure 7.1. The real priority from the x simulation is saved and is called 
p. The reconstructed priority is called p. It can be seen that the reconstructed priority 
tends to underestimate the real priority. The reconstructed priority is only correct if lots 
with all possible priorities are present in the calculation for each lot. In all other cases the 
reconstructed priority is too low. 

In our test case for example there could be another set of lots that start arriving after lot 
t hree has left the system. Imagine that all t he lots in t his second set have priority three. 
Calculat ing the priorities for t his set would result in all these lots having a reconstructed 
priority of one. 

Between lot 1500 and 1600 the reconstructed priorities are correct . Using only this part of 
the data to recreate the priority distribution would yield an accurate result. Unfortunately, in 
the real data, there is no way of knowing which part of the reconstructed priorities is correct 
and which is not. 

Figures 7.2 and 7.3 show the distributions for t he real and the reconstructed priorities. The 
reconstructed priorities show a different distribution than the actual one. The number of lots 
with priority zero is estimated almost correctly, while the number of lots with priority one 
is overestimated and the number of lots with priority two is underestimated. We have to 
conclude that this approach does not work for reconstructing lot priorities. The empirica! 
overtaking behavior distributions, calculated using the algorithm in Appendix D , will be used 
in the simulation model. 
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Chapter 8 

The effect of unsched uled downs 

After the simulation model has been created and validated in the previous chapters, it is time 
to perform the sensitivity analysis to find the effect of unscheduled downs on cycle times . 
This chapter will study changes to five parameters of the unscheduled down behavior: the 
mean time to repair , the coefficient of variation of the time to repair. the mean time to failure. 
the coefficient of variation of the time to fai lure and removing the top five percentile of the 
times to repair. The effect of these five parameters is shown in the following sections. 

The simulations a re ran at an utilization level of approximately 90%. This is a common 
utilization level based on Figure 4.5. Lowering the utilization level means that the effects on 
cycle time that are found in this chapter will also decrease [1 5]. All of the cycle time plots in 
this chapter are normalized due to confidentiality. 

8.1 Queueing theory 

Queueing theory will be used to validate the trends tha t are found in the following sections. 
The closest analytica! estimation that is available is derived for a M/ G/ 1 system with time 
dependent failures [3] . where the time to fai lure is exponentia lly distributed and the time to 
repair is generally distributed : 

With: 

E(S) = pc E(Rc ) + E(D)ri E(RD) + E(B) + E(B)ryE(D) 
l-pc l+E(D)ry 

Pg= 

E(Rc ) = 

E(RD) = 

>.(E(B) + E(B)ryE(D)) 
E( B 2 )+(1+r,E(D )) 2 +E(B)r,E( D2 ) 

2(E(B)+E( B)r,E( D )) 

E( D2 ) 

2E(D ) 

55 



Here E(S) is the mean cycle time, E(B) is the mean processing time and E(B2
) is the variance 

of the processing times. Similarly E(D) and E(D2 ) are the first and second moment of the 
t imes to repair. ~ is the average time to fai lure. 

Four of the five cases that are investigated in the following sections can also be investigated 
using this equation. However, there are some important deviations between our model , and 
an M/G/1 system: 

1. While the simulation model does have general processing times, they are dependent on 
the WIP level in the system. 

2. The time to failure in the simu lat ion model is gamma distributed, instead of exponen-
tially. 

The fact that the processing times for the simulation model decrease when the WIP level 
increases, creates a sort of self correcting mechanism. For example: If a machine experiences 
longer repair t imes, the WIP level will increase. This will in turn reduce the processing time. 
This dampens the effect of the longer repair times in the simulation model, compared to the 
analytica! M/G/1 model. This means that the queueing model can not be used to quantify 
the cycle times for these cases, but it can still be used to find whether a change should increase 
of decrease cycle times. 

8.2 Mean time to repair 

The first case studies the effect of changing the mean time to repair. This is done by reducing 
the scale parameter of the gamma distribut ion that was fitted to the time to repair. This will 
change the mean of the distribution , while keeping the coefficient of variation the same. 

Some suggestions to reduce the time to repair on an actual machine are to store spare parts 
closer to the actual machine or train the local teams to solve problems faster. The mean 
time to repair is varied from 90% to 110% of the original value. The 95% confidence intervals 
on the mean and goth percentile of the simulated cycle t imes are shown in Figures 8.1 and 
8.2. 
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Figure 8. 1: Mean CT vs. MTTR. 
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It can be seen t hat reducing t he mean t ime to repair by 10% yields a red uct ion of the mean 
and 90th percentile of t he cycle t imes of approximately 2.5% . Queueing t heory also indicates 
t hat reducing t he mean t ime to repair should result in smaller cycle t imes . T his is because 
shorter repair t imes lead to smaller outliers in t he effect ive processing t imes , which means 
means a smaller mean and variance of the effect ive processing t imes. 

8.3 COV time to repair 

The second case studies the effect of changing t he variance of t he t ime to repair , while keeping 
t he mean the sarne . This result s in changing t he coefficient of varia tion for t he t ime to repair 
( c,. ). It is done by changing t he shape parameter of the gamma d istribution, and adjust ing 
t he scale parameter to keep the mean the same. Practical ways to red uce t he variance could 
be reduced stocking of spare parts t ha t cause short machine downs, in favor of spare parts 
t ha t cause very long down t imes. The coeffic ient of varia tion is varied from 90% to 110% of 
t he original value. The resulting 95% confidence intervals for the mean and 90th percentile of 
t he cycle t ime a re shown in Figures 8.3 and 8.4. 
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It can be seen t h a t reducing t he coefficient of variat ion of t he times to repair decreases 
t he mean and 90th percentile of the cycle t imes. A ten percent decrease in Cr leads to an 
approximately 1 % lower mean and 90th percentile of cycle t ime. Queueing t heory indicates 
the same trend: decreasing cycle t imes for decreased variance of t imes to repair. T he reason 
bebind this is that less outliers in t he t imes to repair means t hat there a re less big outliers in 
t he effect ive processing t imes. 

8.4 Mean time to failure 

T he third case st ud ies the effect of cha nging t he mean t imes to failure, while keeping the 
coefficient of varia t ion t he same. T he approach is the same as t he first case where t he mean 
time to repair was changed. Increasing the t ime to failure can be achieved in rea lity by making 
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the machine parts more durable. A litho scanner consists of millions of parts, all of which can 
break and stop the machine from producing. Making all of them more durable is a very big 
challenge. Nevertheless, we still investigate the effect on cycle time. The results are shown in 
Figures 8.5 and 8.6. 
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Figure 8.5: Mean CT vs. MTTF. 
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Figure 8.6: 90th percentile CT vs. MTTF. 

lt can be seen that increasing the mean t ime to failure by 10% will decrease t he mean cycle 
t ime by approximately 2%. while decreasing the 90th percentile cycle time by about 3%. 
Queueing theory also predicts this same t rend. lncreasing the mean t ime to failure means 
there are less fai lures which reduces both the mean and vari ance of the effective process 
t imes. 

8.5 COV time to failure 

The fourth case studies the effect of changing the coefficient of variation of the time to 
fai lure (c1 ), while keeping the mean the same. Reducing the COV of the time to failure can 
be achieved by focussing the design on durability for parts that tend to break often, while 
focussing on weight reduction or other improvements for parts that do not break often. 

lt can be seen that reducing t he coefficient of variation of the times to failure bas a very small 
effect on the cycle times. A 10% decrease in the COV leads to a decrease of approximately 
0.3% for the mean and 90th percentile of the cycle time. This parameter is not present in the 
queueing theory approximation, but the trend in these results still seems right . Decreasing 
the coefficient of variation of the times to failure means the fai lures will be spread more evenly 
over t ime. This results in less failures shortly after each other, which ccould cause WIP to 
pile up. 

8.6 Removing long downs 

The fifth case studies the effect of removing all observations that are in the (100 - x lh 
percentile of the original times to repair , and use the resulting population as an empirica! 
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d istribution. This could be achieved by storing more spare parts on-site , training the local 
team to be able to solve more complex problems, or making pa rts that cause problems be
cause they are difficult to reach , more accessible . The results are shown in Figures 8.9 and 
8.10. 
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Figure 8. 10: 90th percentile CT vs . TTR. 

It can be seen that removing long downs has a very big effect on the cycle time. Removing 
the biggest 10% of the repair t imes yields a decrease of approximately 12% for the mean and 
14% for the 90th percentile of the cycle times. This is because the outliers of the times to 
repair are removed , combining the effects of Sections 8.2 and 8.3. The results here are more 
prominent because removing the top tenth percentile values will reduce the mea n and COV 
of the time to repa ir by 50 and 40%, respectively. 
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Chapter 9 

The effect of matching machines 

This chapter investigates the effect on cycle time of matching two machines . Each scanner has 
it 's own specific imperfections which lead to specific offsets in the exposed layers. These offsets 
are called the machine signature or machine fingerprint . Matching machines is a method to 
make two machines mimic each others so called fingerprints. 

In semiconductor manufacturing the relative positioning of two consecut ive layers sometimes 
requires a precision t hat is on the very edge of t he scanners capabili t ies. These layers are 
called critica! layers. Common practice is to create these critica! layers on the same machine, 
to avoid extra inaccuracy that another machine fingerprint will add . This practise is called 
machine dedication. 

Machine dedication has one big disadvantage: In case of a machine failure, all dedicated WIP 
will have to wait until the machine is fixed before it can be processed again . This can lead to 
long and unpredictable cycle times . Sometimes cycle times get so out of control that dedicated 
lots are processed on another machine, and the resulting loss of quality is accepted. 

There is an alternative way to solve this problem . It is possible to reprogram a number of 
machines, so they copy each others fingerprint on top of t heir own. This method requires a 
lot of time to recalibrate the machines, which has to be repeated every time an important 
part of one of the machines breaks and gets replaced. This makes it impractical to match 
more than two machines together. The full process of matching is complex [17] and we are 
not going into more deta ils here. 

The process of matching is of course not perfect , but it can reduce the number of layers 
that require machine dedication. The benefit is that as the number of dedicated layers is 
reduces , the system will start to act more and more like two parallel machines, instead of 
single machines. This means that if one machine breaks down , the other can take over part of 
t he workload . This reduces the effect of the machine downt ime, and other hiccups, on cycle 
time. 

The possible benefit of matching two machines is investigated by simulating two parallel 
machines . A percentage of the products that arrive to these machines are dedicated to one 
of the two machines, while the rest can be processed by either machine. The amount of 
dedicated lots is ranged from 0 to 100%, where 100 means every arriving lot is dedicated , and 
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0% means t hat every arriving lot can be processed on either machine. 

9 .1 Model extensions 

The model t hat was introduced in Chapter 3 is used as a basis to create a model to analyse 
the effect of matching two machines . The extended model is shown in Figure 9.1. 

Figure 9. 1: Extended model for machine matching. 

T he first change to the previous model is the number of machines. In the extended model 
there are two machine, instead of one. U pstream of these two machines is one infinite buffer 
to which all lots arrive. A machine will take the first lot that it can process from this buffer , 
as soon as it is ready to process a new one. The percentage of dedicated lots that arrive to 
the buffer is varied. Half of all dedicated lots are assigned to t he first machine, and t he other 
half to the second machine. In reali ty lots might be dedicated to the machine that their first 
critical layer was processed on. This means that after one machine was down , there might be 
an increase in the number of dedicated lots fo r the other machine. This effect is not taken 
into account in our modeling approach. 

Both of these machines are subject to t ime dependent failures . A machine is preemptively 
interrupted once an unscheduled down occurs. After the repair t ime has passed , t he machine 
will continue to work on the lot at the point where it was interrupted. There is no scrappage 
of lots, similar to t he original model. The failures of these two machines are independent of 
each other , but follow the same distributions. Furthermore, each machine has WIP dependent 
effective processing t imes. These processing t imes are sampled independently of each other. 
The WIP for one machine is determined by counting the number of lots that are dedicated 
to that machine, and adding half of the lots that can be processed on either machine to 
this number. This assumes that each machine will process about half of the lots that are 
not dedicated . During a long downtime for one machine this might cause an inaccurate 
estimation of the WIP level for the other machine, because all WIP will be processed on 
the second machine until the first one is repaired. However, a long machine down for one 
machine means that the WIP level will be high, and a high WIP level means that the EPTs 
are already at t heir minimum. 

The fitted distribu t ions for t he t imes to repair and t imes to failure are used in the model. The 
fitted distribution for t he inter-arrival t imes is also used, but t he average inter-arrival t ime is 
halved to compensate for t he fact that there are two machines now. The EPT observations 
are sampled from an empirical distribution again . The overtaking behavior is not taken into 
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account in this chapter. The only overtaking distribution that is available was measured 
for one machine. It is unclear how this behavior is affected if two machines with different 
qualifications are used in parallel. Furthermore the observations from our data are measured 
for a range of WIP levels t hat occur for one machine. If two machines operate in parallel, 
the total WIP level will be up to two times as high. This makes the range of WIP levels 
in our original observations too small to use them. Not taking the overtaking behavior into 
account means that the model can only predict the mean cycle time, instead of the cycle time 
distribution. 

The EPT observations are also WIP dependent. However , there was a clear lower limit that 
was reached for a WIP level of 8 or higher. This means that it is still possible to use the 
empirical, WIP dependent, EPT distribution. Even if the WIP level would double. 

This model is implemented as a discrete event simulation model. The details of this model 
can be found in Appendix B. 

9. 2 Effect of matching 

The model from the previous section is used to measure the effect of matching two machines to 
each other. Matching machines means that fewer lots have to be dedicated to one machine, 
and can instead be processed on either machine. The percentage of arriving lots that are 
dedicated is varied from 0 to 100%. The simulated 95% Cl for the corresponding mean cycle 
times are shown in Figure 9.2. Note that the cycle times are normalized due to confidentiality. 
These results are simulated at a machine utilization level of approximately 90%, which is a 
common ut ilization level according to Figure 4.5. It can be seen that the cycle time in the 
system is lowered as the number of dedicated lots is decreased. A system without dedicated 
lots has almost half the cycle time time of a system where all lots are dedicated. Furthermore, 
it can be seen that decreasing the number of dedicated lots from 100% to 75% will already 
reduce cycle times by 25% . 
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Figure 9.2: Cycle time for dedication levels. Figure 9.3: CT-TP curves for dedication levels. 

The same simulations are also performed for different utilization levels. This provides us 
with the Cycle t ime - Throughput (CT-TH) curves for different levels of lot dedication. The 
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resulting 95% CI are shown in Figure 9.3. It can be seen that the gain in cycle t imes decreases 
as the utilization level is lowered. The utilization level in these plots is defined as the actual 
throughput , ó, divided by the maximum achievable throughput for t his system, Ómax · 
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Chapter 10 

Detailed model 

The thesis so far has focussed on using a full aggregate model to find the effect of unscheduled 
machine downs and machine matching, on cycle times. While these two effect have a big 
impact , they also require big effort to change. For a system running at a customer site there 
might a lso be other possibilities to improve cycle times. that cost less to implement. 

This chapter introduces a more det ailed model, that divides t he litho cell into three parts: 

1. Dispatching delay and t ransportation 

2. Loading 

3. Processing 

The first part is called Dispatching delay and transportation. This is the time it takes before a 
lot a rrives on the litho cell from the stocker , after a port has become free. This time includes 
everything that happens in between such as transportation of the wafer from the stocker to 
the lit ho cell or waiting for the lot to be inspected by an operator. The second part , Loading, 
is the time for all the wafers to be loaded from the FOUP into the litho cell. This includes 
opening the FOUP and loading all the wafers from the FOUP into the track. The third part 
is called Processing. This contains everything that happens after the wafers are loaded into 
the litho cell , until they leave the system. 

Dividing the litho cell into three parts makes it possible to study more what-if scenarios. For 
instance: What happens if the loading times are reduced? With the full aggregate model this 
would require an estimation of how this impacts the EPT observations ( and changing them 
accordingly), or adjusting the MES file to change all the departure times and recalculating 
the EPT observations. With this new model such changes are easier to predict as the EPTs, 
for instance for the loading part , can be changed directly. Another benefit is that as there 
are three sets of EPT observations now, it is immediately clear which part of the litho cell 
has the most outliers, or other irregularities. 
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10.1 Model 

Dividing the litho cell into three parts requires a new model to analyse the system. This new 
model is obtained by linking the three parts of the system together. This is clone based on 
two known capacity restrictions in the litho cell: The number of ports, which is the maximum 
number of lots that can be on the litho cell simultaneously, and the restriction that only one 
lot can be loaded into the litho cell at a t ime. For the system in our data the number of 
ports is equal to five. The resulting new system is called the detailed model and it is shown 
in Figure 10.1. 

-] 

....... Maxirrunu. WlP .... Ii ...... . 

0 
/0 

0-]0-0 
\0 

0 
·---------------------------------------

-

Figure 10.1: Schematic overview of the detailed model. 

There is an infinite buffer to which lots arrive. From this buffer lots first go into the Dispatch
ing delay and transportation part of the model. From this they travel to the Loading part 
after which they will go to the Processing part. The number of lots in the system is counted 
and a new lot can only enter the Dispatching delay and transportation process if there are 
less than five lots in the system. 

The fact that the physical Loading process can only handle one lot at a time means that the 
EPTs in this section are not WIP dependent. The WIP dependency in EPT observations is 
caused by processing steps that are performed in parallel, as explained in Section 3.3. There 
are no processes that happen in parallel if there is just one lot in the system. 

The EPT observations for the Processing part of the model are a lso independent of the WIP 
level. There can physically only be five lots on the litho cell simultaneously, and the Processing 
part is modeled as five parallel workstations. Having WIP independent EPT observations 
makes the distributions easier to analyse and interpret , because there is only one distribution 
instead of one for each WIP bucket . 

The way the Process part is modeled also means that it is possible for lots to overtake each 
other in this part of the model. The odds of this happening are small because the EPT 
observations here have a very low variability. For our machine the coefficient of variation was 
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approximately 0.25. Furthermore lots are only entering this section of the system after they 
have been through the loading part, which creates a time spacing between lots. This makes 
it even less likely, but not impossible, that there will be any overtaking. In the actual data 
there is some overtaking during this last part of the process, about half a percent of all lots 
overtake one or more lots here. If overtaking in the processing part of the model would be 
a real problem it is also possible to use a single workstation to describe it. The processing 
times for this workstation would then be WIP dependent , which makes it harder to analyse 
and change the behavior. 

Unfortunately it was not possible to model the Dispatching delay and transportation in a way 
to eliminate the WIP dependency. The EPT observations for this part of the system are 
dependent on the WIP level in the first buffer and processing step. The circumstances that 
cause this can not be extracted from the data that is available. Furthermore the behavior 
here is very dependent on the specific customer and how their factory is managed. 

The unscheduled down behavior of the system is modeled explicitly again. When an un
scheduled down occurs, the entire litho cell (including Dispatching delay and transportation, 
Loading and Processing) will halt and wait until the time to repair has passed. This is similar 
to the earlier model, where an unscheduled down also interrupted the entire litho cell. After 
the repair time bas passed, all parts of the litho cell will continue processing at the point 
where they were interrupted. This assumes that there is no scrapping of lots. 

For all three parts the effective process times can be obtained by using the data in t he MES 
file. Remember the extra information that was shown in Table 4.1. In the full aggregate 
model only the arrival and departure times to and from the system were used. For the new, 
more detailed, model this extra information is used to calculate the effective process times 
for each of the three parts. The EPT for Dispatching delay and transportation and Loading 
are calculated using the EPT algorithm for a single sever. The EPTs for the Processing part 
are calculated using the EPT algorithm fora G/G/m system [21]. The details of the EPT 
calculations are shown in Appendix E. 

The implementation of the detailed model in SimPy can be found in Appendix C. The im
plementation in SimPy uses another approach than the previous two models. To keep the 
code more clear the SimPy internal queue manager is used. This means that it is no longer 
possible to model the overtaking behavior of lots. As a result only the mean cycle time can 
be simulated. The benefits of having a clearer and easier to maintain code outweighed the 
benefits of being able to simulate the entire cycle time distributions. For the simulat ion model 
it is again assumed that all the input variables are stationary and independent of each other 
and themselves . This model is not directly used to calculate any effects in this thesis, instead 
it is part of a tool set that can be used to analyze individual litho cells and predict how much 
improvement can be gained for certain changes to the system. 

10.2 Validation 

Before the new simulation model can be used it has to be validated. This validation is similar 
to the validation of the full aggregate model. This means that the arrivals are kept in the 
same order as the one found in the MES file , because there was a clear decreasing trend. 
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Because of this the simulation length is limited to the length of the original data again. The 
failure behavior is also kept in the same sequence as in the original data because randomizing 
them would have too much impact on the cycle times for such a short simulation time. The 
EPT observations for Dispatching delay and transportation, Loading and Processing are used 
as empirica! distributions. One hundred independent simula tions are performed and a 99% 
confidence interval is constructed for the mean cycle time. This confidence interval does 
not include the actual measured mean cycle time. Contrary to Section 5.6, the confidence 
interval is now quite big. The maximum is almost 10% bigger than the minimum value. The 
simulated mean cycle time is compared to the measured one and the deviation is defined as 
<5 = simula~ed- measured. The deviation is shown in table 10.1. 

s1mulated 

Mean 0.073752375 

Table 10.1: Deviation between simulation and measured CT. 

The accuracy of the detailed model is still acceptable with a deviation of 7.3% between the 
simulated and measured mean cycle time, although it is not as good as the full aggregate 
model. This can indicate that , although we <lid not find any. some correlations between the 
EPT observations for the different parts of the system are not taken into account in the 
detailed model. Furthermore, the spread of the 99% CI on the simulated mean cycle time 
is quite big. This indicates that more simula tion runs are needed in order to get a reliable 
mean from the det ailed model. However , the extra insight this model can give on changing 
different parts of a litho cell is worth the extra inaccuracy. 
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Chapter 11 

Cycle Time Prediction Tool 

The detailed model from Chapter 10 is the basis fora tool set to analyse litho cells at customer 
sites, the Cycle Time Prediction Tool (CTPT). This tooling includes automated processes to 
convert log files into all the required input files for the simulation model. This conversion 
is done in a number of steps. These steps are explained in the following sections. However, 
not everything is automated. The user still has to check that the inputs are stationary and 
independent of each other and themselves. If this is not the case the simulation model should 
be adjusted accordingly. 

11.1 Workflow 

The work flow for the CTPT is shown in Figure 11.1. There are two scripts available to 
process the data and convert it into inputs for the simulation model. These scripts, and the 
simulation model itself, come with a graphical user interfaces to con trol them. The first . one 
is CLT2EPT. This is where the MES file and Status file are converted into a number of files . 
These files can be divided into two groups. 

The first group consists of the inter-arrival times, the times to repair and the times to failure. 
These output files can be used in the simulation model directly. The seconds group a re the 
EPT observations for Dispatching delay and transportation, Loading and Processing. These 
are processed by the EPT2INP script before they can be used in the simulation model. 
This script removes all the observations that contain an unscheduled down and sorts the 
observations for Dispatching delay and transportation into the correct WIP buckets. These 
EPT observations can be plotted in a similar manner to Figures 5.7, 5.8 and 5.9, to identify 
any outliers and their root causes. 

After all the input files have been checked for trends and dependencies they can be used to 
run the simulation model. 
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Figure 11.1: Flow of data for the CTPT. 

11.2 GUi 

All three scripts in the workflow come with a GUi to control them. These GUls are explained 
in the following subsection. 

11.2.1 CLT2EPT 

The first script in the workflow is CLT2EPT. This script requires two input files, the MES 
file and the Status file. The GUi is shown in Figure 11.2. The location of the two input files 
can be selected after clicking the buttons. Pushing the start button will calculate the EPT 
observations (as described in Appendix E) , the inter-arrival t imes, the times to repair and 
the times to failure and write them to csv files. Note that these times to repair and times 
to failure are based on the Status file. They can be used in the simulation later on if the 
user want to simulate the exact fai lure behavior that occurred during the dat a collection. 
This can be useful if the measured cycle times and the simulated ones are being compared. 
Alternatively, the times to failure and times to repair from the USD dat a (Figure 4.1) can be 
used to simulate with the global failure behavior to find the long term effects . 

7'1 CtT2EPT c::J @) 7'1 EPT2INP 

Select Cl T file Select Dispatching delay EPT file 

Select Statu.s file Select Loading times EPT file 

Start Select Processing times EPT file 

Start 

Figure 11.2: CLT2EPT GUi. Figure 11.3: EPT21NP GUi. 
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The GUi will display a warning if the script is about to overwrite any csv files. The names 
of the files t ha t will be overwritten are shown and the user can chose to abort or continue. 
Furthermore, there are two types of error messages tha t can occur: " Can not open input 
files!" and " Error converting CLT and Status files to EPTs!" . The first message indicates 
that there is a problem opening the input files. The user should check if the files still exist 
and if another program might already be using them. The second error is a more general 
error , it indicates that something went wrong during the actual calculations. The user should 
check if the MES and Status dat a files are error free and in the correct format. 

11.2.2 EPT2INP 

The second script in the work flow is EPT2INP. lt requires three input files , the csv files 
containing all the EPT observations for the three parts in the detailed model. The GUi 
is shown in Figure 11.3. The location of the these files is input using the corresponding 
buttons . After the start button is pressed the EPT files will be converted into input files 
for the simulation model. All EPTs t hat are observed while the machine was Unscheduled 
down are automatically removed , any other outliers should be removed prior to running this 
script. 

The script will give a warning if files are about to be overwritten , and two types of errors. 
These a re similar to the ones for CLT2EPT. 

11.2.3 Simulation model 

The final step of the work flow is performed by the simulation model. The GUi is shown in 
Figure 11.4. There are a number of simulation set t ings that are managed through this GUi. 
The first ones are the input files. Their locations are input using the buttons on the right 
hand side. Bebind each of the input files is a check mark that indicates if the simulation model 
has to use the actual stream or if it should use the input file as an empirical distribution. 
This last option is called randomized. Simula ting an actual stream can be used for inputs 
that contain correlations, that are not included in the model, with themselves or other inputs. 
Furthermore it can be used to simulate the system with the same failure behavior as during 
the measurements. Randomizing the failure behavior can have a big impact on cycle times 
and cause the predictions to deviate from the measured data. 

The CTCP does not support fitted distributions, only empirical ones. Dispatching delay and 
transportation is shortened to just dispatching delay. lt requires two input files, one that is 
sorted by WIP level and one that is ordered in chronological order. The simulation model 
will select the correct file from these two automatically, depending on which simulation mode 
(randomized or not randomized) is chosen . 

The simula tion length can be chosen in the bottom left spin box. The actual simulation will 
end as soon as this simulation length is reached , or if one of input files was ran as the actual 
stream and there is no more da ta. The arrival times can be varied to generate a Cycle time -
Throughput curve. The range in which they are varied is chosen using the top left spin boxes. 
All the observations for the arrival times are scaled by these values, which changes the mean 
but leaves the coefficient of variation the same. 
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The number of runs at each of these inter-arrival levels is chosen using the middle spin box 
on the left . The simulation model wil! only perform one run at each level if none of the inputs 
are randomized, becau e in this case the output is deterministic. 

Finally, the output directory can be chosen on the bottom right. The default location is the 
directory that the script is ran from. Pressing the start button will start all the simulations 
and a simple counter will show the progress. 

7' Cycle Time Prediction Tooi I= @) ~ 

Input fil es: Randomized: 

Min: Max: Step: lnter-arrival times: Select file p 

Arrival ra nge [%): 190 1]l110 1]15 3 Dispatching delays: Select file 
p 

WIP dependent dispatching delays: Select file 

Number of runs: rio ~ Loading times: Select file p 

Simulation time [months]: !35 11 Processing times: Select file p 

Times to repair. Select file 

Start simulation! 1 
p 

Times to failure: Select file 

Output directory: 

D:\GUI_final 1 

Figure 11.4: GUi to run the simulation model. 

Three types of error messages can occur: " Not all input files are defined!", " Not able to open 
output file!" . "Error during simulation!" . If the first error occurs the user should check if the 
locations for all input files have been defined correctly. The second warning indicates that 
the output file, called output . csv is in use by another program and should be closed. The 
final error is a more general error that means something went wrong in the actual simulation 
model. 

If no errors were encountered a window stating " Simulation finished!" will pop up, and the 
output file containing the mean inter-arrival times and corresponding mean cycle times can 
be opened for post processing. 

11.3 Test case 

This test case shows the result of the Cycle Time Prediction Tool by simulating cycle times for 
the original distributions, and when all observations in Processing have been reduced by 10%. 
The raw output is plotted using Matlab and is shown in Figure 11.5. The 95% confidence 
intervals based on the same dat a are shown in Figure 11.6. 

Many more scenarios can be thought of and simulated using this tool. A list of possible 
improvements and their effect can be created , which can be used to judge if an improvement 
is worth the t ime and money required to implement it. 
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Figure 11.5: CTPT out put . Figure 11 .6: 95% CI of CTPT output . 
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Chapter 12 

Conclusions & Recommendations 

The goal of this thesis is to investigate methods to improve the cycle times for the lithography 
area in a semiconductor manufacturing plant. This thesis has three object ives: 

1. Investigate the effect of unscheduled machine downs on the cycle times for one pho
tolithography machine. 

2. Investigate how making machines work in parallel can improve cycle times in the pho
tolithography area. 

3. Develop tooling to analyze any photolit hography machine for inefficiencies and invest i
gate how big their impact is on cycle t imes. 

Three different models have been created so reach t hese objectives, one model per object ive. 
The results for each of them are discussed in the following sections. 

12.1 U nsched uled downs 

To find the effect of unscheduled downs on the cycle t imes an aggregate simulation model of a 
photolithography machine is created . This model aggregates everything that happens on the 
photolithography machine into one processing t ime. A filtering method is designed to exclude 
the effect of unscheduled downs from these aggregated process t imes. The unscheduled downs 
that are removed this way are reintroduced by modeling the failure behavior explicitly, which 
makes it possible to perform a sensit ivity analysis to find the effect of different breakdown 
behavior on the cycle t ime. There are five cases that are investigated , the result for each 
of these cases on the mean cycle t ime is shown in Table 12. 1. These results are measured 
for a utilizat ion level of approximately 90%. If the utilization of a machine is lower , the 
improvements on cycle t ime will also be lower. 

These results can be used by ASML to decide if investing effort into one of these improvements 
is worth the reduction in cycle t ime. 
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12.2 

Case 
Reducing the mean time to repair with 10% 
Reducing the COV of time to repair with 10% 
Reducing the mean time to fai lure with 10% 
Reducing the COV of time to repair with 10% 
Removing the highest 10% of times to repair 

Result on mean cycle time 
2.5% reduction 
1 % reduction 
3% reduction 
0.3% reduction 
12% reduction 

Table 12.1: Sensit ivity of cycle times to unscheduled downs. 

Matching of machines 

The second goal of this thesis if to investigate the effect of machine matching on cycle time. 
Each scanner has it 's own specific imperfections which lead to specific offsets in the exposed 
layers. These offsets are called the machine signature or machine fingerprint. Matching 
machines is a method to make two machines mimic each others so called fingerprints. 

In semiconductor manufacturing the relative positioning of two consecut ive layers sometimes 
requires a precision that is on the very edge of the scanners capabili t ies. These layers are 
called critica! layers . Common practice is to create these cri tica! layers on the same machine, 
to avoid extra inaccuracy that another machine fingerprint will add. This pract ise is called 
machine dedication. 

Machine dedication has one big disadvantage: In case of a machine failure, all dedicated WIP 
will have to wait until the machine is fixed before it can be processed again . This can lead to 
long and unpredictable cycle times. Sometimes cycle times get so out of control that dedicated 
lots are processed on another machine, and the resulting loss of quality is accepted. 

There is an a lternative way to solve this problem. It is possible to reprogram a number of 
machines, so they copy each others fingerprint on top of their own. This method requires a 
lot of time to recalibrate the machines, which has to be repeated every t ime an important 
part of one of the machines breaks and gets replaced . This makes it impractical to match 
more than two machines together. Of course this method is not perfect , but it can decrease 
the number of layers that require machine dedica tion. 

The effect of machine matching is quantified by t aking the aggregate model that was designed 
for the previous section, and simulate two machines in parallel instead of just one. As products 
arrive to these machines they are dedicated to one machine, or they can be processed on either 
one. The amount of products that is dedicated to one machine is varied from O to 100%. 

Simulations with this model show that a system without any dedication has about half the 
cycle time of a system where all lots are dedicated. Furthermore, decreasing the amount of 
dedicated lots from 100 to 75% will already decrease the mean cycle time with 25%. 

12.3 Cycle time prediction tooling 

The last goal of this thesis is to develop a tool set that can analyse any photolithography 
machine, identify inefficiencies, and predict the effect on the mean cycle time when they are 
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solved. This is done by dividing the photolithography machine into three parts, which results 
in a more detailed model. This makes it easier , compared to the full aggregate model, to find 
which part of the machine is causing inefficiencies. 

The detailed model is implemented in a discrete event simulation program and a custom GUI 
is designed to control it. Furthermore, generating the input for the model from log files is 
automated and required only a few mouse clicks. This tool set makes it possible to quickly 
find improvements for any photolithography machine, and predict how much they can lower 
the mean cycle time. 

12.4 Recommendations for future work 

There are a number of things that can be of interest for ASML, to use the results of this 
thesis. These are summed up below: 

• Apply the Cycle Time Prediction Tool in a real fac tory, find t he best improvements and 
validate how well the predictions of the model are. 

• Incorporate the Cycle Time Prediction Tool with the throughput prediction models that 
are already being used by ASML. Combining the impact on cycle time and throughput 
gives a better sense of the result of possible improvements . 

• Study the effect of different unscheduled down behavior for two matched machines. 
instead of just one. 

Furthermore, the research in this thesis has identified a number of future research topics for 
the EPT approach that are wort h investigating: 

• Investigate how EPT observations can be linked to actual lots. This makes it easier to 
identify outliers and t heir root causes . 

• Investigate how the overtaking behavior can be described in a general way. This can 
be done by fitting a distribution, but it might also be possible to find a method to 
reconstruct what actually happens in a factory from arrival and depart ure data . This 
behavior can then be incorporated into the simulation model. 

• In this thesis a method was designed to extract the effect of unscheduled machine downs 
from the EPT observations, and model it explicitly. It might be interesting to see if 
other effects , for instance the effect of planned maintenance, can be investigated in a 
similar way. 
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Appendix A 

Aggregate simulation model 
SimPy to find the effect of 
unscheduled downs 

• 
lll 

As per request of ASML the simulation is done in a python based discrete event simula tion 
language called SimPy. SimPy is a process-based discrete-event simula tion language based 
on st andard P ython and released under the GNU LGPL. It provides the modeler with com
ponents of a simulation model. These include processes for active components like customers, 
messages, vehicles or in our case machines , as well as resources for passive components that 
form limited capacity congestion points (like servers or checkout counters). 

EPT '°', Down 

G)-0 
positinn( ) 

Lot i 3 2 1 o 

-□ □□□~ ' . 
~ : ............... l ____________ : 
' ' '· -.............. ---------

Overtaking 

Figure A.1: EPT model and corresponding simulation model. 

Figure A.l shows the EPT model from Chapter 3, and the processes that a re used for the 
implementation in SimPy. The SimPy implementation consists of the following processes: An 
arrival process G , an infinite buffer B, a machine M and a machine failure process F. The 
input and output for the simulation model is shown in Table A. l. 

The arrival process simulates lots arriving to the system from a previous processing step. 
These lots arrive in buffer B where they can overtake a number of lots, depending on the 
overtaking behavior. The machine services products and t akes the out of the buffer when 
it 's done. The processing time of this machine is the " regular", without machine downs, 
WIP dependent , effective process time. The breakdown process can preemptively interrupt 
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Input Output 
Inter-arrival time distribution Cycle times per lot 

EPT distributions 
Overtaking distributions 

Time to repair distribution 
Time to failure distribution 

Table A.l: Input and output for the simulation model. 

machine M to simulate an unscheduled down. The coding for all these processes and some 
genera! programming will be explained in det ail in t he following sections. 

A.1 JobClass 

class J o b C lass: 
def __ in i t __ ( se 1 f) : 

se lf. Arriv a !Tim e = now () 

The JobClass is a class that represents a lot. Upon creation of each lot the creation time is 
stored as an attribute. These lots will be placed in the buffer upon creation . Machine M will 
try to take a lot from t his buffer as soon as it needs it. 

A.2 Lists 

Another class is created to store all the lists that the program needs. 

class Li s t s : 
]di e = Il 
Buffe r = Il 
Ta = Il 
OVER'.!' = [l 
EPTS = 1 l 
'lTRS = [l 
'lTFS = [l 

The first one is a list of idle machines, which contains pointers to the machines that are idle. 
The model is programmed is such a way that a machine will only go idle if it is not processing 
any lot and there are no lots in the buffer to start working on , the machine is starved. Every 
t ime a new lot is generated the generator process checks if a machine is idle. If t his is the 
case then the idle machine will be reactivated to st art processing the newly arrived lot. 

The second list is the Buffer. This is actually the buffer process as shown in Figure A. l. It 
works as a list that all the newly generated lots are inserted into. This inserting will happen 
according to the overtaking behavior. 

The other lists are used to store the different input parameters. The inter-arrival times are 
stored in Lists.Ta. the overtaking distributions are stored as a list of lists in Lists.OVERT. 
The EPTs are stored in a similar fashion in Lists.EPTS. Finally the times to repair and times 
to failure are stored in List s.TTRS and Lists.TTFS, respectively. 
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These lists with input parameters are used when t he simulation is running the actual streams 
of the input parameters, or when it is using empirica! distributions. 

A.3 Generator 

The generator is the arrival process that generates new lots. the JobClass that was discussed 
earlier. This process is a Simpy process . unlike the previous two classes. This means that it 
can internet with the build in discrete event simulation engine, adding and removing events 
to and from the future event list , and reactivating other SimPy processes. 

class Ar ri va l (P rocess): 
def Run ( se I f ) : 

while 1 : 
ta = ex p ova ri ate ( 1 .0 / mu ) 
y i e l d ho ld , se lf , ta 

The process will halt for a certain amount of time to simulate the inter-arrival t ime. These 
inter-arrival times are sampled from an exponential distribut ion. Once the inter arrival time 
has passed , a new lot is created in the form of a JobClass. 

J = J obC lass () 
0 = c h o i c e ( L i s t s . OVER'.l' [ m i n ( 1 e n ( L i s t s . B u ff e r ) , 3 5 ) ] ) 

The amount of lots that wi ll be overtaken are sampled from an empirica! overtaking distri
bution. This empirica! overtaking distribut ion is WIP dependent . it is stored as a list of 
lists. Each of these lists holds all the values for one WIP level. The amount of overtaken 
lots is sampled from the corresponding WIP level. If the current WIP level is higher than 
t he biggest WIP number t hat was encountered in t he actual data, it will take the maximum 
encountered WIP level. 

Li s t s .Que ue. in se rt ( le n ( Li s t s. B uffe r )- 0, J) 
if Li sts. I d l e != []: 

r eact i vate( Li sts . ]di e [ü]) 

The new lot is then inserted in the right place in the the Buffer list and a check is performed 
to see if there are any idle machines. The simulation is setup in such a way that any machine 
t hat is idle, is starved . A new arrival into the buffer will un-starve a machine so it can start 
processing again . If the list of idle machines was indeed not empty, the first machine in the 
list is reactivated . 

A.4 Breakdown 

The breakdown process is a SimPy process that simulates machine failures and will ha lt the 
Machine process. This means that the interrupted routine of the Machine process is called. 
This routine is explained in Section A.5. 

class B reakDown ( Process): 
T IR= None 
Fa ilur e = 0 
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There are two global variables stored in the Breakdown process . The first one is the t ime to 
repair, TTR. This is done because t his variable has to be shared wit h the machine process 
because it needs to know how long it should be down . The Breakdown process also needs 
this value to wait until the repair t ime has passed before starting another t ime to failure 
delay. 

The second global variable here is BreakDown.Failure. This variable is used as a flag to signa! 
t he Machine process. There are two states the machine can be in while it fails. It can be 
productive in which case the production delay will be interrupted to simulate the downtime. 
The other case is that the machine is idle. In t his case the machine is reactivated and this flag 
is used to let the machine know that it was reactivated to simulat e a machine down. 

def Run( se lf , m ac hine): 
while l : 

ttof = gamm a va. ri ate( k ,t) 
y ie ld ho ld , se lf , tto f 

The Run routine is the main loop of the Breakdown process. The machine that it should 
target is given as an input argument in the rout ine. It will start by sampling the time to 
failure from a gamma distribution and continue to wait until this t ime has passed. 

B rea.kDow n . F a i I ur e = 1 
Brea.kDow n .Tl R = ga. mm ava. ri a.te( k , t) 

Once this t ime has passed global variable BreakDown.Failure is set to one and the t ime to 
repair is sampled from a gamma distribution. 

if Li s t s. I d le.co un t(ma.chine) > 0: 
r e a. c t i v a. t e ( m a.c h i n e ) 

e lse : 
se I f . i n te r r u p t ( mac hin e ) 

y ie ld ho ld , se lf , B rea.kDown. TlR 
Brea.kDown . F a i I ur e = 0 

The program then checks if the target machine is idle. If this is t he case the machine is 
reactivated and the Breakdown.Failure flag tells the machine that it should simulate a machine 
down. If t he machine is not idle it must be processing and it is interrupted . 

The Breakdown process then delays for the time to repair , sets the global variable Break
down.Failure to zero and starts the cycle again. 

A.5 Machine 

The Machine process is also a Simpy process. It simulates the aggregate machine t hat can 
sample the processing t imes either from a set of gamma distribution , one for each WIP level, 
or from the actual input as an empirica! distribution. 

class Ma.ch ine(P ro cess): 
def __ i n i t __ ( se I f , name) : 

Process. __ init_ _(se lf , na.me) 
Li st s . Id Ie . a.ppend ( se I f) 

def Run ( se I f ) : 
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while 1 : 
Li sts . !di e . remove( se l f) 
if B reakDown . Fa ilur e 1: 

y i e ld ho ld , se l f , BreakDown.TfR 

The main routine is again called Run , which contains an infinite loop . Once it starts the 
machine removes itself from the list of idle machines. It will then check if it is reactivated 
because it has to simulate a machine down. It does this by checking the global variable 
BreakDown.Failure. If this is t he case the machine will simulate the required downtime. 

while Li sts.B uffe r != []: 
te= c h o ice( Li sts .EPTS[min ( le n (L ists.Queue) - 1 ,7)]) 

If there was no machine failure to simulate, or the corresponding repair t ime has passed , the 
machine will check if there a re any lots in t he buffer to process. During nonnal operation 
at least one of these two checks should pass, because it is t he only reason why the machine 
can be reactivated. The only exception to this is the first time the routine is called in which 
case neither check will pass and the machine will passivate itself, waiting for another SimPy 
process to reactivate it . 

As long as the buffer is not empty the machine will stay in the processing loop. It will 
determine the processing time from a WIP dependent empirica! distribution . 

while te > 0: 
y ie l d ho ld , se l f , te 
if se l f . in terrupted(): 

t e = se lf . in te rrup tLeft 
y ie l d ho ld , se lf , BreakDown .Tl 'R 
se lf . in te rrup tReset() 

e l se : 
break 

While t he processing t ime is bigger t han O it will stay in the processing loop. The machine will 
delay unt il eit her the processing t ime has passed , or until the Breakdown process interrupts 
this delay. If it was interrupted te is updated to the remaining processing time and the 
machine failure is simulated. After this is done the interrupt routine is ended and the while 
loop for t he processing time will repeat itself. Multiple failures can occur this way while 
processing the same lot. 

This way of modeling assumes that no lots are scrapped during a machine failure. This makes 
it a bit easier to model instead of having another decision weather or not to scrap the lot . 
This approach seems justified because the impact of the rework on cycle t ime is expected to 
be low compared to the impact of the actual machine failure. 

J = Li sts . B uffe r . po p(O) 
print ( "%f " % ( now() - J . A rri va l'l'ime)) 

Li sts. Idl e .append ( se lf ) 
y i e ld p ass ivate, se lf 

Finally, after the machine has simulated the processing t ime the first lot is taken from the 
buffer and the difference between the current t ime and the a rrival t ime of the lot is printed. 
If the stocker is empty it will break from the while loop and place itself on the idle machine 
list and passivate itself, waiting for another process to re-activate it. 

80 



A.6 Initialization and main loop 

First the SimPy simula tion engine is initialized using the initialize() command. After this all 
the inter-arrival times, times to failure and times to repair are imported from their respective 
comma separated value ( csv) files. 

def main(): 
initi a li ze () 
ta = csv. r e a d e r (o pe n ( ' ta _e x c l _f a ilur e s .cs v ', ' rb ' ) , d e limit e r = ',' ) 
for lin e in t a: 

Li s t s .Ta . a ppe nd ( int(lin e [0 ]) ) 
ttf = cs v.r ea d e r( o pe n ( ' t tf .cs v ', ' rb ' ) , d e limi t e r = ' , ') 
for lin e in ttf: 

List s . Tl'FS . a ppe nd ( int ( 1 in e [ 0 ] ) ) 
ttr = cs v . r ead e r( o pe n ( ' t t r .cs v ' , ' rb ' ) , d e limit e r = ',' ) 
for lin e in ttr : 

Li s t s .1TRS . a ppe nd ( in t ( 1 in e [ 0] ) ) 

Next the EPTs are imported from the EPT csv file. In this file all EPTs t ha t correspond to 
one WIP level are on the same row. The same is done for t he overtaking dat a . Note that 
each row has a different number of values . In the csv format all rows must have the same 
length however , because of this every row that has less en tri es than the longest row is filled 
with empty strings until all rows have the same length. This means that for every entry in 
these csv files it has to be checked if it is an empty string or an actual value. 

te = cs v . r ead e r (o pe n ( ' e pts.cs v ' , ' rb ' ) , d e limit e r =' , ' ) 
n = 0 
for lin e in t e : 

Li s t s . EPTS. a ppe nd ( []) 
for i in ran ge ( le n ( lin e ) ) : 

if l e n ( lin e [ i ] .st rip {)) > 0: 
Li st s . EP'l'S [ n ] . a ppe nd ( int ( 1 in e [ i ] ) ) 

n += 1 

o ve rt s = cs v . r e a d e r (o pe n ( ' o ve rt. cs v ' , ' rb ' ) , d e limit e r = ', ' ) 
n = 0 
for lin e in ov e r ts : 

Li s t s .OVERT . a ppe nd ( []) 
for i in r a n ge( le n ( lin e ) ): 

if le n(lin e [ i ].st rip {)) > 0: 
Li s t s .OVER'.f [ n ] . a ppe nd (in t ( 1 in e [ i ] ) ) 

n += 1 

Finally all different SimPy processes that were discussed above are initialized and started , 
and the simulation is started . The maximum simulation time is passed to the program from 
the command line . 

M = Mac hin e( na me=" Ml" ) 
ac ti v a t e (M,M. Run ()) 
A = Arriv a l () 
act iv a t e (A ,A . Run () ) 
B = Break Down ( ) 
ac tiv a t e (B ,B . Run ( m ac hin e = M, a rri va l s = A)) 
Ma xSimtime = fl oa t ( sys . a rg v [ l ] ) 
s im ulat e ( u n t i l= Ma xSim t ime ) 
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Appendix B 

lmplementation of the matching 
model in SimPy 

The model to simulate the matching of two machines is also implemented in SimPy. This 
model is an extended version of the model that is shown in Appendix A. The differences are 
presented in this appendix. 

B .1 Two machines 

The first difference is t hat instead of one machine, there are two. These machines have 
the same processing and failure behavior , but sample independent of each other. This is 
schematically shown in figure B. l. 

0 
l 

1 0 < -0 
t 

0 
Figure B.l: Aggregate simulation model for matching. 

B.2 Arrival process 

The arrival process is the same as the one in Chapter A, except that t here is now a new 
choice and an extra list . After the amount of overtaken lots is determined , there is a choice 
whether or not this lot is dedicated to one machine. random () returns a uniform distributed 
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value on the interval [0.0, 1.0). This value is compared to the percentage of dedication that is 
being simulated , pdedicated. If the random value is smaller , another distribution is sampled 
to determine which machine the lot is dedicated too. D. If it is bigger the lot is dedicated to 
machine 0, which in this case means it can be processed on both machines. The job is then 
added to the queue. D is added to another queue. This queue has the same length as the 
original queue and D is in erted in the same position as the job. 

class A rri va l ( Process): 
def Run (se lf ): 

while l : 
t a = ex p o va ri a t e ( l . 0 / mu ) 
y ie ld h o ld , se lf , t a 
J = J o b C las · () 
i f ra nd o m () < pd e di ca t e d : 

D = int ( round ( uniform ( l ,2 ))) 
else: 

B.3 

D = 0 
Li s ts . Que ue . a ppe nd ( J ) 
Li s t s . QueueM .appe nd ( D) 
form in Li st . !di e: 

r eac tiv ate (m) 

Machine process 

In Appendix A the machine process only checked if there was a lot available in the buffer. 
If t his was the case the machine started producing. This procedure is now extended. The 
machine will check t he queue for lots t hat can be processed on either machine and for lots 
t hat can only be processed by t he specific machine itself. It will count the number of each of 
these lots and store it respectively to LQ0 and LQD. 

class Mac hin e( Process): 
pr odu ce d = 0 
def __ ini t_ _ (se lf , na me , number ): 

Pr ocess. __ ini t_ _ ( e lf , na me) 
se lf . numbe r = number 
Li sts . Id Ie. a p pe nd ( se l f ) 

def Run (se lf ): 
while l : 

Li s t s. ldl e .re move(. e lf ) 
if BreakDown . F a ilur e = 1 : 

y i e ld h o ld , se lf , BreakDo wn.Tl'R 
LQO = Li s t s .QueueM. count(O) 
LQD = Li s t s . QueueM . co unt ( se I f . number) 

The machine will keep processing as long as there are lots in the queue that can be processed 
on the current machine. It will find the first lot in the queue that it can process. This lot 
is then removed from the queue to make sure it is not process by two machines at the same 
t ime. The process time is t aken from the empirica! WIP dependent EPT distribution . The 
amount of WIP is decided by counting the number of products in the queue that is dedicated 
to the machine, plus half the number of lots in the queue that can be processed by either 
machine. 
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while LQ0 + LQD > 0: 
i f LQ0 > 0 and LQD > 0 : 

typ e 0 = L ists . QueueM . in d e x(0) 
typeD = Li s t s. QueueM.ind e x(s e lf .n um be r ) 
J = Li s t s . Q ueue. pop(min(type 0 , typeD)) 
D = Li s t s .QueueM.pop(min(ty pe 0 , t y peD)) 

elif LQ0 > 0: 
t y pe 0 = Li s t s. QueueM . ind e x( 0 ) 
J = Li s t s .Q ue ue .pop(type0) 
D = Li s t s .QueueM. pop( t y pe0) 

elif LQD > 0: 
typeD = Lists.QueueM.ind e x(s e l f.n umber) 
J = Li s t s .Queue. pop(type D) 
D = L ists . Q ueueM.pop(ty peD) 

t e = c h o i c e ( L i s t s . EPTS [ min ( c e il ( LQ0 / 2) +LQD- 1 , 7) ] ) 
while t e > 0: 

y i e ld ho ld , se lf , t e 
if s e lf.int e rrup t e d(): 

t e = se lf. in t e rruptL e ft 
y i e l d h o ld , s e lf , B rea kDown .TlR 
se lf . in t e rrup tRese t () 

else : 
break 

Ma c hin e. produced += 1 
Li s ts. ldl e . a ppe nd( s e l f) 
y i e ld p a ss i v a t e, se lf 
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Appendix C 

lmplementation of the detailed 
model in SimPy 

The detailed model in Figure 10.1 is implemented in the SimPy language to create a discrete 
event simulation model. For the detailed model we are only interested in the average cycle 
t ime. This means t hat the overtaking behavior is not taken into account anymore and it is no 
longer required to manage the queue explicitly. Instead , the built in SimPy queueing engine 
can be used. This means that the modeling concept is different . lnstead of t he machine and 
queue, the lots and their path through t he li tho cell are now modeled. The components of 
this model are explained in this Appendix. 

C.1 makePorts 

The makePorts process creates five ports for the litho cell . These ports can be claimed by 
lots. The SimPy queueing engine will create and mainta in a FIFO queue for lots that try to 
claim a port while there are none available. 

class ma ke P o rts ( P rocess) : 
def run (s e lf , p o r t) : 

for i in r a n ge ( np o rt s ): 
y ie ld put , se lf , po rt , [ " P o rt %02d "%(i , ) ] 

C.2 Generator 

The generator is very similar to the generator from Appendix A. The only difference is that 
this time a different process is activated . A Lot process is activated this time, which simulated 
the entire production process. This is contrary to the earlier model where a JobClass was 
activated and added to t he queue. This queue was then clear by the Machine process. 

class S o ur ce( Proc ess) : 
def ge n e r a t e ( s e I f , po r t , dd , load) : 

while 1: 
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C.3 

ta = c hoi ce( Li s t s.ta) 
y i e ld hold ,se lf , ta 
1 = Lot(na me = " Lot %02d "%( i ,) ) 
act iv ate( l , 1 . pro cess( port= port , dd= dd , load = load)) 
i += 1 

BreakDown 

The BreakDown process simulates t he unscheduled down behavior of a machine. In the earlier 
model there was one machine that would be interrupted . In this modeling approach all the 
lots that are being processed on the litho cell have to be identified and interrupted. 

class BreakDown ( P rocess) : 
def g e n e r a t e ( se l f , load , ddr , po rt) : 

while 1: 
ttf = c hoi ce( Li sts. ttf) 
BreakDown .Tl'R = c h o ice ( Li sts . ttr) 
yi e ld h o ld , se lf , ttf 
fr ee_ ports = nports- le n ( Li s t s . o n Track) 

The t ime to failure and time to repair is sampled from an empirica! distribution . As soon as 
the t ime to fai lure has passed t he amount of free ports is det ermined. Lists. on Track is used 
to keep track of which lots are being processed on the litho cell . The amount of free ports is 
equal to the total number of ports. minus t he amount of lots that are being processed. 

for j in li s t( se t(Li sts.onTrac k ) - set( load.waitQ)-s e t(dd r .waitQ)) : 
se lf. in ter rup t(j) 

if fr ee_ port s > 0: 
y i e ld ge t , se lf , po rt , fr ee_ port s 
c l a imdp o rt s = se I f . got 

The lots that are being processed on the machine are interrupted , unless they are not in a 
delay state . This is the case if they are waiting for the dispatching delay process , or the 
loading process. The free ports on the machine are then claimed so no new lot can arrive and 
be processed , while a machine outage is simulated. 

y ie ld hold , se l f , BreakDown .TIR. 
if fr ee _port s > 0 : 

y ie ld put , se l f , po rt , c la imdport s 

The downtime is then simulated , and afterwards the ports that were claimed are released 
again. 

C.4 Litho cell 

The main process of a lot going through all production steps is coded from the lot 's perspec
tive. A lot will try to claim a port on the track as soon as it is created by the generator 
process . If no port is available it will queue until it gets one. The queueing handled by the 
internal queueing engine. As soon as a port is available for the lot it will add itself to the list 
of lots t hat are being processed. 
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class Lo t ( P ro cess) : 
def __ ini L _ (se lf , na me): 

Process. __ ini t_ _ (se lf , na me) 
se lf . Arriv a l'l'im e = now () 

def p rocess ( se I f , p o r t , dd , load): 
y i e ld get , se lf , po r t , l 
whi c hP o rt=se lf .got [O] 
L i s t s . o n Trac k . a p pe n d ( se I f ) 

The lot then waits to claim capacity on the dispa tching delay process, simulates the dispatch
ing delay, and releases t he dispatching delay process. 

y ie ld r e qu est, se lf , dd 
L d e l ay = c h o ice( Li s t s .ddwd [min ( le n ( p o r t.ge tQ )+ le n ( Li sts.o nTrac k )- 1, 

1 e n ( Li st s . dd wd ) - 1) ] ) 
y i e ld ho ld , se lf , Ld e l ay 
while L d e lay > 0 : 

y i e ld h o ld , se lf , L d e lay 
if se lf . int e rrupt e d (): 

L d e lay = se lf . int e rrup t Le f t 
y ie ld ho ld , se lf , B reakDown .TlR. 
se l f. in te rruptR ese t () 

else: 
break 

y ie ld r e l ease, se lf , dd 

The same is clone to simulate the loading process. 

y i e ld r e qu est , se lf , lo a d 
L I o a d = c h o ice ( Li st s . 1 o a d ) 
y i e ld ho ld , se lf , L load 
while L load > 0: 

y i e ld ho ld , se lf , L load 
if se lf.in te rrup te d (): 

t_ lo a d = se lf . int e rruptL e ft 
y ie ld ho ld , se lf , B reakDown .TlR. 
se lf . in te rrup t R eset () 

else : 
break 

y i e ld r e lease, se lf , load 

Processing is always accessible so there is never any queueing necessary. 

L pr ocess in g = c h o ice ( Li sts. pr ocess in g) 
while L lo a d > 0: 

y ie ld h o ld , se lf , L pr ocess in g 
if se lf . in te rrup te d () : 

L pr ocess in g = se l f. int e rrup t L e ft 
y i e ld ho ld , se lf , BreakDown. T lR. 
se lf . in te rrup t Reset () 

else: 
break 

y i e ld pu t,se lf , p o r t ,[ whi c hP o r t] 
Li s t s . o nTrac k . r e move ( se I f ) 

print now () - se l f . Arriv a l'l'im e 
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C.5 Initialization 

The initialization is similar to the one explained in Appendix A. The only difference is that 
in this model a number of resources are initialized, instead of just the processes. There are 
three types of resources: The number of ports, the d ispatching delay process and the loading 
process. 

p o rt = Store(name= ' FOUP ports', unitN a me= ' port s ', ca p ac i ty =5, 
initi a l Buffe r e d =None , putQType=FIFO , ge tQTy pe=FIFO , m o n i tored = F a lse , 
monitorTy pe=Mo nitor) 

dd R eso u rce( name=" Di s p atc hi n g d e lay", ca pa c it y= l ) 
load = R eso urce( name=" Load d e lay " , ca p ac i ty=l) 

p = m a kePorts () 
act i va t e ( p , p . run ( port=po rt)) 
s = Source(name= ' Source') 
act i v ate (s, s. generate ( port= po rt , dd=dd, load = load)) 
i f Ie n ( L is t s . t t r ) > 0 and Ie n ( L i s t s . t t f ) > 0 : 

f = M ac h in e Fai lur e( na me=' Mac hin e Fai lur e ' ) 
act i v a t e ( f , f . genera t e ( lo a d = load , dd=dd , port= port)) 

s im u Ia t e ( u n t i 1 =s imt i m e) 
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Appendix D 

Algorithm to calculate EPTs and 
overtaking behavior 

The algorithm to calculate the EPT and overtaking observations is based on the algorithm 
proposed by Veeger [21] . The original algorithm is shown here. 

for row in MESData: 
2 i = row[2 ] 
3 e v = row[l ] 
4 t = row [0] 
5 if e v = " A" : 
6 if le n (xs) 0: 
7 s = t 
8 sw = 1 
9 xs. a ppe nd ( [ i , le n ( xs) ] ) 

10 el i f ev = "D": 
11 EPT. wr i terow ( [ t -s, sw]) 
12 ys = [ l 
13 while le n(x s) > 0: 
14 j =xs[ 0 ][ 0 ] 
15 aw = xs [ 0 ] [ 1 ] 
16 xs. re move ( xs [ 0 ]) 
17 ifj < i: 
18 ys . a ppend ( [ j , aw]) 
19 e l ifj - i: 
20 xs = ys + xs 
21 k = le n(y s) 
22 break 
23 Ov e rt .w rit e row( [ k , aw ] ) 
24 if le n (xs) > 0: 
25 s = t 
26 sw = 1 e n ( xs) 

The following variables are used in this algorithm: variable t denotes the event time, variable 
ev the event type (either an arrival a or a departure d) , and i the lot arrival number (so lot i 
is the i t h arriving lot). Furthermore, variable x s is a list that stores for each lot in the system 
its arrival number , i, and the number of lots in the system just before its arrival aw. Variable 
s is used to store the EPT start time. Variable sw stores the number of lots in the system 
just after the EPT start. Variable k denotes the number of lots that a lot has overtaken. The 
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overtaking behavior is calculated using a list ys that stores part of list x s. Variable j stores 
a lot arrival number. 

The EPT algorithm t akes the aggregate model viewpoint. Upon an arrival event , a new EPT 
is started if the lot arrives in an empty system (len(xs) = 0) . The st art time s becomes 
t and the corresponding WIP level is stored in variable sw. For every arriving lot , the lot 
arrival number i and the number of lots in the system just before arrival (len(xs)) are added 
to the end of list xs . When a departure event occurs, an EPT ends, the EPT being current 
time t minus EPT st art time s. The EPT is written to output along with number of lots in 
the system just after the EPT st art sw. 

Next, the algorithm reconstructs how many lots k were overtaken by the departing lot by 
iteratively removing each lot from xs and assigning its arrival number and the number of lots 
just before its arrival to variables j and aw respectively. If the arrival number of the observed 
lot is lower than the arrival number i of the departed lot , then this lot was overtaken and the 
information of the overtaken lot is added to ys. The departing lot is found in list xs if the 
arrival number j of the observed lot is equal to i. The list of lots still in the syst em is created 
by merging lists ys and x s. The length of ys is equal to the number of lots that arrived earlier 
than lot i, but that are still in the syst em upon the departure of lot i . In other words, the 
length of ys is equal to the number of lots overtaken by lot i. This is written to the output , 
along with the number of lots aw in the system just before arrival of the lot. 

If there are still lots in the system after the depart ure (len(xs)>O) , a new EPT st art 
time is stored in s , as well as the corresponding number of lots currently in the system 
(len(xs) ). 

This original algorithm is slightly adjusted to combine the EPT observations with the machine 
status information . To do this an extra check is included into the code before the EPT 
is writ ten to the output. This check compares the starting and ending times of the EPT 
observation with the starting and ending times of the machine st ates from the Status file. 
The beginning en ending times of the unscheduled downs are stored in list Dtim es . The 
beginning and ending t imes of all scheduled downs are stored in list SDtim es . 

If an EPT observation has any overlap with an unscheduled down , it is marked as "EPT 
during unscheduled down" . If an EPT observation bas any overlap with a scheduled down, 
but not with an unscheduled down, it is marked as an "EPT during scheduled down" . Overlap 
occurs when an EPT start takes place during a machine down, an EPT end takes place during 
a machine down , or a machine down t akes place between an EPT st art and end. In short: 
An EPT observation is marked as EPT during a down if the following is true: 

(Outageslart::::; EPTslarl::::; Outageend) or (Outageslart::::; EPTend::::; Outageend) (D.l) 

or (EPTstart < Outage8tart and EPTend > Outageend) 

Line 11 in the algorithm is replaced with the following code to implement this functional
ity: 

for usd in Dtimes: 
if ( s > usd[O ] and s < usd[l]) or (t > usd[O ] and t < usd [ l ] ) or (s < usd[O] 

and t > usd [ 1 ] ) : 
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e ls e: 

EPT. wr i t e r ow ( [ t -s , s w , "USO"] ) 
bre ak 

for sd in SDt im es : 
if (s > sd [O] and s < s d [ l ]) or ( t > sd [O] and t < s d [ l ] ) or (s < sd [O] 

and t > s d [ l ] ) : 

e lse : 

EPT . wr i te row( [t - s, sw , " SD"] ) 
break 

EPl'. w ri t e r o w ( [ t - ·, sw , "U"]) 
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Appendix E 

Calculating effective process times 
for the detailed model 

The effect ive process times for all three production steps are calculated from the data in the 
MES file. These EPTs are not calculated as straightforwardly as in chapter 5, because of the 
additional restrict ions in the model. Addit ional data is needed to calculate the EPTs for all 
product ion steps. Instead of just the arrival and departure t imes to the li tho cell we now need 
the arrival times, the times the lot arrive on the port of the litho cell , the times the wafers of 
a lot are loaded into the track and the departure times from the litho cell . These t imes are 
abbreviated to A, T , Land D. 

E.1 Dispatching delay and transportation 

The t ime between a port becoming free on and a lot actually arriving on the track is called 
the dispatching delay. This time includes anything that happens in between these two events , 
for inst ance transportation from the stocker to the track, inspection of the lot by an operator , 
waiting for W IP constraints to resolve , and so on. This process is modeled as a single server 
and the algorithm used to calculate the EPT observations is shown here. 

fo r row in Ov e ra ll D a t a : 
t = row [0 ] 
e v = row [ l] 
i = row[2] 
if ev = " A" : 

inq += l 
if inq = 1 a nd on tr ac k < np o r ts: 

s = t 
sw = 1 

The first part of t he algorithm is the same as the one described in chapter 5: OverallData 
is a chronological list with the t imes different events happened , and which lot was involved. 
F irst the t ime, type of event and lot id are stored. If the event is an arrival to the stocker 
inq is increased by one. This variable is used to keep track of the amount of lots that are 
wait ing in the stocker , to be transferred onto the track. 

93 



An EPT observation is started if this is the first lot to arrive in the stocker , and the amount 
of lots on the track is smaller than the number of ports. 

elif e v = "T" : 
i nq -= 1 
o ntr ac k += 

for usd in Dtimes: 
if (s _d > usd[O ] and s _d < usd [ l] ) or (t > usd [O] and t < usd [ l ]) or ( 

s _d < usd[O] and t > usd [l ]): 
ddf . writerow([t - s , sw , " U n sc hed ul ed Down" ]) 
break 

else: 
for usd in SDt imes: 

if (s _d > usd[ O] and s _d < usd [ l ]) or (t > usd[ O) and t < usd[l )) 
or (s_d < usd [O] and t > usd [ l ] ): 
ddf.writerow([t - s, sw , " Scheduled Down"]) 
break 

else: 
ddf.writ e row([t - s, sw, "Up"]) 

if inq > 0 and o ntr ac k < np o rt s: 
s = t 
sw = inq 

If the event is a lot arnvmg on t he track the amount of lots in the queue is reduced by 
one. Then the EPT is written to the dispatching delay csv file along with the corresponding 
machine state and starting WIP level. A new EPT observations is started if there is at least 
one lot 111 the queue, and the number of lots on the track is smaller than the number of 
ports. 

el i f e v = " 0 " : 
o n trac k - = 1 
i f in q > 0 and o n track 

s = t 
sw = in q 

np o rt s - 1 : 

The final part of the EPT calculation algorithm is including the departure event , when a lot 
leaves the track after it has been processed. As soon as this happens one of the ports on the 
track is free again , so a new lot can be mounted on it. If this is the case and there is at least 
one lot waiting in the stocker , a new EPT observation is started . 

E.2 Loading 

The loading EPTs describe everything that happens between the time a lot has arrived to the 
track, and the time all the wafers in this lot have been loaded into the track. This consists 
for the most part of the opening the FOUP and the loading the wafers into the track, by the 
wafer handler robot. 

elif ev = " 'l'": 
o nlo a d += 1 
i f o nl oad 1 : 

s = t 

94 



inq is used to keep track of the number on the loading part of the system. If there are not 
lots in this system, a new EPT observation is started as soon as a new lot arrives. Note that 
we do not keep track of the starting WIP here. This is because in the loading process there 
are no significant processing steps that can happen in parallel, making this EPT distribution 
independent of the WIP. 

elif ev = " L" : 
for us d in Dtimes : 

i f ( s > usd [ 0 ] and s < usd [ 1 ]) or ( t > usd [ 0] and t < usd [ l] ) or ( s < 
us d [O] and t > usd [l]): 

loadf. writ e row ( [ t -s, "U nsc h edul ed Down"]) 
break 

else: 
for usd in SDtimes: 

i f ( s > usd [ 0] and s < usd [ l]) or ( t > usd [ 0 ] and t < usd [ l]) or ( s 
< usd [O] and t > usd[l ]) : 

lo a df .w rit e row([t -s , " Sch e dul e d Down"] ) 
break 

else: 
loadf.w rit e row([t -s, "Up"]) 

on load -= 1 
if on load > 0: 

s = t 

The EPT observation is ended as soon as all wafers for a lot have been loaded into the track. 
It is then written to the loading csv file , along with the corresponding machine state. If there 
is at least one lot in the in t he sytem a new EPT observation is started. 

E.3 Processing 

The processing times describe the rest of the processing on the litho cell. This includes for 
instance applying the photosensitive layer , exposing, post processing, loading the wafers back 
into the FOUP and waiting to be transportation from the port to the next processing step. 
The processing of lots is modeled as five parallel machines. The EPTs are calculated based 
on the EPT algorithm for the m-server aggregate model [21] . 

elif ev = " L": 
i n p r o ces s i n g += 1 
r s. a ppe nd ( [ i , t]) 

As soon as a lot has been loaded into the track it has arrived in the processing section of the 
model. An EPT observation is started if the number of lots in processing is smaller than the 
number of ports. 

The original algorithm includes a section in case there are more lots in the system than the 
number of servers. In our case this is not possible. There can never be more lots in the litho 
cell than the number of ports, so this part of the algorithm is removed. If there are errors in 
the log file that is used this might not hold. The variable inprocessing is used to keep track 
of the number of lots in the processing section. This variable can be check if is any suspicion 
of a faulty log file. 
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elif ev = "D" : 
i n p r o ces s i n g -= 1 
d r s . pop ( [ x [ 0 ] fo r x in r s ] . ind ex ( i ) ) 
s = d 11 l 

for us d in Dtimes: 
if (s > usd[O ] and s < usd[ l ] ) or (t > usd[O ] and t < usd [ l ]) or (s < 

us d [ 0] and t > usd [ 1]) : 
tai lf .w rit e row([t -s, "U nsc hedul ed Down"]) 
break 

e lse : 
for usd in SDt irn es : 

i f ( s > usd [ 0] and s < usd [ l] ) or ( t > usd [ 0] and t < usd [ l ] ) or ( s 
< usd[ O] and t > usd [ l]): 

ta ilf .w ri t e row([t -s, "Sc h edul ed Down"]) 
break 

else: 
tai lf .wr iterow([ t -s , "Up"]) 

As soon as a lot leaves the litho cell the ETP observation for the processing section is written 
to the corresponding csv file. Because t he processing steps 
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Appendix F 

U nscheduled down correction 
algorithm 

i = 0 
while i < le n(failur e s) - 1 : 

Lsta rt = fai lur es[ i )[ O) 
Lend = failur es[ i) [l] 
LstarLn e xt = f a i l ur e s[ i + l ][ ü ] 
ttf = t _s tart _n e xt - t _e nd 
b = 0 
while ttf < ttf_min : 

b = b + 1 
Le nd = f a i I u r es [ i+ b] [ l ) 
LstarLnext = f a ilur e s [ i+l+b)[ ü ] 
ttf = t _start _n e xt - t _e nd 

= 1 +b + l 
print Lstart , Lend 

In this algorithm failures is a list of lists. Every list in here contains the starting time 
and the ending time for each unscheduled down. Each machine has its own list of lists, and 
each of these lists is sorted on the starting times. We start to calculate the time to failure 
between the first and the second fai lure. If this time is smaller than the average production 
time. ttf_min, the time to failure between the second and third failure is calculated and 
compared to ttf _min and so on. Once a time to fai lure bigger or equal to ttf _min is found 
all previous failures are concatenated into one failure . This process is repeated until all entries 
in failures are checked. 

Note that this script will produce an out of index error if the last and second to last failure 
in failures are not separated by ttf_min. This is not a problem because if this is the case 
we can not be certain that this last machine down has indeed finished. If we concatenate the 
last two fai lures in this case it might only be part of the actual machine down time. 
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