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Abstract

In most established constitutive models describing glassy polymers, strain hardening is modeled as
a rubber-elastic response of the entanglement network. This approach works well when describing
the mechanical response in experiments where the deformation increases monotonically, but it fails
when the loading direction is reversed. This implies that the response of oriented glassy polymers
cannot be captured in this manner. Recently it was proposed that this issue can be resolved by
modeling strain hardening with a combined viscous and elastic contribution. Other indications that
a rubber-elastic strain hardening model is inadequate, is that it fails to describe the experimentally
observed effects of strain rate and temperature. This study aims to characterize the proposed
viscous contribution of strain hardening by evaluating the intrinsic behavior of polycarbonate (PC)
over a large range of strain rates and temperatures. From this, it is concluded that the deformation
dependence manifests itself in the rate constant and the activation energy, both parameters in the
Eyring flow stress. With simulations using the Eindhoven Glassy Polymer (EGP) model it is
demonstrated that this approach quantitatively captures the large strain mechanical response of
PC over a vast range of strain rates and temperatures. Moreover, the adapted model provides
quantitative predictions of the yield kinetics of oriented polymers.



Chapter 1

Introduction

The post-yield response of glassy polymers displays two characteristic phenomena: (i) strain soft-
ening, the initial decrease of true stress with increasing strain, which is related to a structural
evolution that reduces the material’s resistance to plastic deformation, and (ii) strain harden-
ing, characterized by the increase in stress at high strain, which originates from the network of
entangled polymer chains that orients with deformation. The macroscopic behavior of a glassy
polymer is strongly determined by the interplay between these two effects. On the one hand,
strain softening tends to destabilize the deformation, which may lead to the formation of localized
plastic deformation zones, especially in the vicinity of stress concentrations. The evolution of
these plastic zones, on the other hand, strongly depends on the stabilizing effect of strain hard-
ening. A relatively strong strain hardening effect stabilizes the deformation zones, which enables
them to expand in a controlled fashion, leading to macroscopically ductile behavior such as shear
band formation and necking. With insufficient strain hardening, in contrast, the material tends
to form crazes. These are extremely localized zones of plastic deformation, which may lead to
the formation of cracks, resulting in macroscopically brittle behavior [3, 20]. Therefore, it is clear
that a better understanding of the origin of strain hardening is an essential aspect in the design
of polymer systems [18].

An important observation in this field was that, when heated above the glass transition tempera-
ture Ty, the plastic deformation of a glassy polymer is almost fully recovered [14]. This suggests
that the entanglement network remains largely intact during plastic deformation, inspiring Haward
and Thackray [15] to propose a 1-D constitutive relation in which the postyield stress response
is decomposed in two components. A viscous component, which is referred to as the flow stress,
describes the intermolecular interactions on a segmental scale. In parallel, an elastic component
is used to model the entropic-elastic response of the entangled molecular network. This concept
is employed in several 3-D constitutive models, such as the Oxford Glass-Rubber (OGR) model
(6], the Boyce-Parks-Argon (BPA) model [4] and the Eindhoven Glassy Polymer (EGP) model
(13, 16]. In all of these models, the experimentally observed strain hardening is modeled using a
nonlinear rubber-elastic contribution originating from hyperelasticity theory. Generally, these can
be expressed as:

o = NkT- f(N), (1.1)

where N describes the network density, i.e. the number of chains per unit volume in the network,
k is Boltzmann’s constant, T the temperature and f(A) a measure of the strain. These models
prove useful from a phenomenological point of view, by describing the constitutive behavior below
T, for constant temperature and strain rate, but all exhibit important inconsistencies with the
underlying polymer physics and experimental observations. Firstly, the apparent network density
required for fitting the experimental results is orders of magnitudes larger than the entanglement
density evaluated from the melt [11]. Secondly, strain hardening is sensitive to the applied strain



rate [28], which is inconsistent with the rubber-elastic modeling of the phenomenon. And thirdly,
strain hardening decreases with increasing temperature [12], which is inconsistent with entropic
elasticity. Clearly these are major flaws and it is therefore eminent that improvements are needed
to solve these problems.

Considering the inconsistencies in these kind of models, there is a growing recognition that they are
inadequate in describing large deformations in polymer glasses over a wide range of strain rates and
temperatures. One possible route to improve this is the introduction of a viscous contribution to
strain hardening, as was explored by Wendlandt et al. [28], who presented experimental evidence
of a rate dependence in the strain hardening for a number of polymers. Their method of introduc-
ing a deformation dependence in the Eyring flow stress via the activation volume proved successful
in describing uniaxial compression experiments at various strain rates. Another indication of a
viscous contribution to train hardening was provided by Senden et al. [24], who investigated the
Bauschinger effect in oriented polymers. This Bauschinger effect was observed when comparing
tensile tests with compressive tests on samples with the same level of orientation: in tension the
yield stress increased with preorientation, while in compressionit remained the same. With consti-
tutive models like the ones mentioned before (OGR, BPA, EGP), this Bauschinger effect can not
be described. By means of a gedankenexperiment it was rationalized that this could be solved by
modeling strain hardening with both a viscous contribution and an elastic contribution. Further-
more, it was shown that for the resulting deformation dependence in the flow stress, basically two
modeling choices are at hand. The flow stress is described with an Eyring type relation [10], which
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Figure 1.1: Schematic illustration of the effect of deformation on the yield kinetics in case of a
deformation dependent (a) activation volume, and (b) rate constant.

is characterized by two parameters. How the material is affected by strain rate is captured by the
activation volume V* (i.e. yield kinetics), while a rate constant £y determines the initial state of
the material. This implies that a deformation dependence in the activation volume (Figure 1.1a)
can be interpreted as a gradual change of the yield kinetics, i.e. the slope when plotting yield
stress as a function of the logarithm of the strain rate, with increasing deformation; modeling it
in the rate constant (Figure 1.1b) leaves the yield kinetics (i.e. the slope) unaffected, but instead
shifts the process to lower strain rates.

Over the past years, the Eindhoven Glassy Polymer (EGP) model has become well-established for
accurately describing and predicting the mechanical response of amorphous polymers in transient
loading. However, it also exhibits the aforementioned major flaws that are associated with model-
ing strain hardening as a purely rubber-elastic phenomenon. The goal of this study is to improve
its performance by investigating the possibilities of a viscous contribution to strain hardening,



making use of the relevant experimental observations that have been reported in literature, while
preserving its qualities. Polycarbonate is used as a model material. After a brief introduction of
the mechanical behavior of polymers and its relation with temperature and strain rate (Chapter
2), the phenomenology of deformation dependence of flow stress is investigated (Chapter 3). The
EGP model in its present form and the implications of a viscous contribution are discussed in
Chapter 4. Finally, in Chapter 5 the modifications are quantified and compared to experimental
data using numerical simulations.



Chapter 2

Background

Intrinsic behavior

The intrinsic deformation behavior, defined as the true stress-strain response during homogeneous
deformation, for polycarbonate is shown in Figure 2.1, measured in uniaxial compression at dif-
ferent strain rates and temperatures. At small strains a viscoelastic region is observed, which is
initially linear elastic but becomes progressively nonlinear with increased loading. At the yield
point, which is the first maximum in the curve, the stress is high enough to overcome intermolec-
ular forces, allowing large scale segmental motion of the polymer chains. The subsequent stress
decrease with increasing strain is called strain softening. This decrease in stress tends to destabilize
the deformation, which, in other loading geometries such as tension, may lead to strain localiza-
tion. After a minimum in the stress (lower yield point) the mechanical response is dominated
by strain hardening, causing an upswing in stress that stabilizes the deformation. As mentioned
in the introduction, strain hardening originates from the stretching of the entanglement network.
Polycarbonate exhibits limited strain softening, which can easily be stabilized by the strong strain
hardening, resulting in a generally tough response.
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Figure 2.1: The intrinsic deformation behavior of polycarbonate, measured in uniaxial compression
(a) at different true strain rates and (b) at different temperatures (data taken from [9]).

Effect of strain rate and temperature

Where the intrinsic behavior gives insight in the general stress-strain response, the strain rate and
temperature dependence can be studied in more detail by considering the yield kinetics. This is



demonstrated in Figure 2.2, where the upper and lower yield points of the curves in Figure 2.1
are plotted as both a function of strain rate and of temperature. From Figure 2.2a it is clear that
both the (upper) yield stress and the lower yield stress linearly depend on the logarithm of the
applied strain rate. Moreover, the slopes are equal, as is demonstrated by the yield drop, i.e. the
difference between upper and lower yield, which is constant. This indicates that both are governed
by the same kinetics. In Figure 2.2b it is demonstrated that the upper and lower yield stress are
also linearly dependent of temperature, and again, with a constant yield drop. Such behavior
implies that the yield kinetics are governed by only one molecular relaxation process in this range
of conditions. This type of kinetics are well described by the Eyring flow theory [10]. This theory
describes the jump of segments of macromolecules over a potential barrier, causing plastic flow.
Here, the Eyring relation is written in terms of strain rate and temperature:

; kT ., [¢ AU
o€, T) = Wbmh [é_UOXp <ﬁ>} ’

where V* is the activation volume which determines the stress dependence, AU is the activation
energy which determines the temperature dependence, &y is a rate constant, R the universal
gas constant, k is Boltzmann’s constant and T the absolute temperature. The fact that this
relation reflects linear behavior, on the one hand as a function of the logarithm of the strain
rate, on the other as a function of temperature, becomes clear when realizing that for large x,
sinh™'(z) ~ In(2z). For the strain rate dependence, the slope is determined by the activation

(2.1)
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Figure 2.2: Yield stress, lower yield stress, and yield drop for the data from Figure 2.1, as a
function of (a) true strain rate and of (b) temperature.

volume V*, while the activation energy AU describes the dependence of temperature. For the
dependence of temperature, this distinction is somewhat less clear, as here the slope is determined
by both the activation volume, the strain rate, and the rate constant £y, while the ratio of activation
energy and activation volume gives the stress at absolute zero.

Thermorheological complex behavior

It has long been known that for many polymers multiple molecular relaxation mechanisms are
actively contributing to the deformation behavior. This is also the case for polycarbonate. At
room temperature and moderate strain rates, only one process contributes to the yield kinetics, see
Figure 2.2a. This is commonly referred to as the o process, which is associated with the primary
glass transition. For high strain rates and/or for temperatures well below room temperature a
transition is observed. A second process comes into play, marked by a distinct change in slope,
see Figure 2.3, which will be referred to as the -process. This phenomenon was already reported
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by Roetling [22] and Bauwens-Crowet et al. [2|. They used the Ree-Eyring modification [21] of
Eyring’s theory to describe this occurrence of multiple processes, which assumes that at the same
average rate, the stresses are additive:

0=0q+03. (2.2)

The expressions for the stress contributions of the v and 3 processes are similar to that in Equa-
tion (2.1), but now with parameters describing the time-temperature behavior of the individual
processes:

kT | € AU,
0r = — sinh™ exp | —— with =z = «a, . 2.3
‘ L LO,:F ; < RT ’ ( )
It is emphasized that the a-process is always present in the deformation kinetics. So depending

on the conditions the yield kinetics are either in the a or in the (o + ) regime. As an example,
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Figure 2.3: Thermorheologically complex behavior of polycarbonate: (a) tensile yield stress as
a function of strain rate for various temperatures [17], and (b) tensile yield stress as a function
of temperature at ¢ = 4.16 - 1072 s~ [2]. Symbols represent experimental data and solid lines
fits using Equation (2.2) with the parameters from Table 2.1. Dashed lines represent the a-
contribution to the total stress. Schematic illustration of the yield stress as a function of (c¢) strain
rate and (d) of temperature, for the Ree-Eyring relation.

Figure 2.3a shows the tensile yield stress of PC as a function of strain rate for a number of different



Table 2.1: Eyring parameters for PC, as used in Figure 2.3.

Figure « vy AU, B0,z
[nm?]  [kJ/mol-K] [s71]
03, @ 321 289.9 5.76 - 10?8
' B 3.05 64.7 6.42 - 1011
a 3.21 312 3.2-1030
2 8 3.05 79 5.8+ 107

temperatures, adopted from [17]. At 40°C only one slope is seen over the whole range of strain
rates, while at room temperature, with increasing strain rate, a change in slope can be identified.
The former is governed by the a-process for the whole experimental range, while the latter shifts
from the a to the (a + ) regime at € ~ 10° s=!. The transition is shifting to lower rates with
decreasing temperature. This shift in the transition to lower temperatures can also be visualized
by plotting the yield stress as function of temperature, see Figure 2.3b (adopted from Bauwens-
Crowet et al. [2]), which is actually equivalent to evaluating the data in Figure 2.3a at a constant
strain rate. Again, a transition is observed, which suggests that for this particular time scale
(i.e. strain rate) the transition occurs at a temperature in the range of -100°C and -50°C. The
Eyring parameters used in Equation (2.3) to describe the data in Figure 2.3 are listed in Table 2.1.
For Figure 2.3a these where adopted from [17]; for describing the data in Figure 2.3b, the same
activation volume was used, while determining the other parameters for best fit results. To clarify
the effect of both processes, in Figure 2.3a the fit for room temperature is split up in its o and
(a+ B) contributions. This split is also made in Figure 2.3b, where the dashed line represents the
stress contribution from the a-process and the dashed-dotted line that of the 3-process. Figures
2.3c and 2.3d give schematic illustrations of the effect of the parameters and variables in the Ree-
Eyring relation. Typical expressions for the slopes of the strain rate and temperature dependence,
and the asymptotic/theoretical values, are also indicated.



Chapter 3

Phenomenology

In the introduction it was pointed out that the stress response of PC at large strains cannot be
properly described by a purely elastic strain hardening contribution; an issue which can be re-
solved by introducing a deformation dependence in the flow stress. This effect can be quantified
by studying the evolution of the deformation kinetics as a function of the (pre)strain. There are
basically two ways to do this. The first option is to predeform a sample and subsequently deter-
mine its yield kinetics at this level of prestrain. Possible ways to impose this preorientation is by
deforming a tensile bar to a specified draw ratio, or cold rolling of sheets to get a specified planar
deformation. This method was used by Senden et al. [24] on PC tensile bars, that were mechani-
cally rejuvenated so that different levels of prestrain could be homogeneously applied in uniaxial
tension. Another option to asses the influence of strain on the deformation kinetics is to take the
whole stress-strain response into account. In this method, the rate and temperature dependence
is not only evaluated at yield, but its evolution with increasing strain is monitored. Therefore, a
distinction is made between between, on the one hand, ‘yield kinetics’ (i.e. evaluated at yield) and
on the other hand deformation kinetics, meaning the exact same kinetics, but now evaluated at
an arbitrary level of strain. The method of evaluating the intrinsic behavior itself was previously
employed by Wendlandt et al. [28], who in this manner investigated the non-linear rate-dependent
strain hardening behavior of a number of polymer glasses. However, one disadvantage is that only
the large strain regime can be evaluated, because results are otherwise obscured by strain softening.

Despite its disadvantage, in this study the last method will be employed. Main reason for this
choice is the availability of the two sets of data depicted in Figure 2.1. Both series of compression
testing were done on the same grade of PC with the same history. When comparing these two
sets, it is clear that this range of temperatures shows a much wider range of (yield) stresses than
the applied range of strain rates, compare Figures 2.1a and 2.1b. Probing deformation kinetics
by performing tests at different strain rates has two major limitations. At low strain rates time
becomes a limiting factor, as a compression test at 107° s~! takes about a day to complete.
For high strain rates viscous heating of the sample becomes a limiting factor. At higher strains
the sample temperature increases, as the amount of heat generated due to energy dissipation
during plastic deformation is greater than the amount that is extracted through convection and/or
conduction to the environment. This increase in temperature causes the flow stress the decrease,
obscuring the results. For these reasons time-temperature superposition is often used: when the
experimental time-scale is limited, the characteristic timescale of the relaxation process is shifted
by testing at a different temperature. This can also be understood from Equation (2.1), since
the strain rate is scaled by the expression &y - exp(—AU/RT). Here, the activation energy AU
determines how the characteristic timescale of the relaxation process shifts with temperature.
Therefore, the added value of having a data set across a large range of temperatures is evident.
Both data sets will be discussed separately in the following paragraphs.
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Figure 3.1: (a) Compression tests on PC at different true strain rates, as depicted in Figure 2.1a.
(b) Compressive true stresses at specified strain levels, corresponding with the markers, but now
plotted as a function of strain rate. Dashed lines are a guide to the eye.

Strain rate dependent data

In Figure 3.1a the stress-strain response of PC at different strain rates is given. These are actu-
ally the same curves as in Figure 2.1a, but now markers are added at evenly spaced intervals for
0.4 < e < 0.9. In Figure 3.1b,these data points are plotted as a function of the applied strain
rate. This clearly gives a similar result as the yield kinetics, compare with Figure 2.2a, as the
stress appears to be linearly dependent of the logarithm of strain rate for each level of strain.
Furthermore, the slope appears to increase with increasing strain, as suggested by the guides to
the eye in Figure 3.1b.

To aid the interpretation of these observations, the Ree-Eyring relation as given in Equation (2.3)
will be rewritten in a more convenient form. As for 2 > 1, sinh~'(z) =~ In(2z), the Ree-Eyring
relation can be rewritten as a linear function of In(¢):

T T —&1, ,
Oy & /‘;; In(¢) — % In {%éo,.u - exp ( RT. )} with = =a«,f. (3.1)
—~—
(D (Im)

Herein, the part marked (I) represents the slope, and the part marked (II) the constant in the
linear relation between stress and logarithm of strain rate; see Figure 2.3c¢ for an illustration of the
effect of these parts. Therefore, a strain induced change of slope in the deformation kinetics of a
process (at constant temperature) manifests itself as a deformation dependent activation volume
V*(e). As it is observed that the slope indeed increases with the strain, this seems to be the
case. In fact, Wendlandt et al. [28] came to exactly this conclusion. The performance of the
Eyring model with a deformation dependent activation volume is visualized in Figure 3.2a. where
the experimental data is fitted using a different activation volume for each strain level. Herein,
the activation energy of the a-process (Table 2.1,parameters associated with Figure 2.3a) was
used, €y was fitted on € = 0.4. Note that in this case a single molecular relaxation mechanism
is assumed, which changes with deformation. At the lower strain levels this method obviously
works well, but at higher strains the experimental data points are less accurately described. This
is caused by the fact that, as the other parameters remain constant, all the lines coincide in a
single point at ¢ = 0, see Figure 1.1a. Another interpretation of the phenomenon was given by
Senden et al., who suggested that, in the case of PC, not the slope of the deformation kinetics itself
changes with deformation, but that the observed change in slope is actually caused by a shifting

9
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of the B-process. This implies that at the least the 3 rate constant € g, but in fact also €¢ 4, are
deformation dependent, rather than the activation volume. With deformation, see Figure 1.1b, the
moment that the S-process starts playing a role shifts to lower strain rates. This is demonstrated
in Figure 3.2b, where Ree-Eyring fits are shown using values of rate constants €( o and £ 3 that
are fitted separately for each strain level. Values for the activation volume and activation energy
for both processes were taken from Table 2.1 (parameters associated with Figure 2.3a). At the
lower strains, this method also works well, compared to the one previously discussed. At the higher
strains (0.7-0.8) it appears to perform somewhat better, but the difference is minimal again at
the highest strain depicted. Therefore, as hardly any difference in quality can be distinguished
between the predictions from both of these modeling choices, it remains inconclusive which one is
correct.
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Figure 3.3: (a) Compression tests on PC at different temperatures, as depicted in Figure 2.1b.
(b) Compressive true stresses at specified strain levels, corresponding with the markers, but now
plotted as a function of temperature. Dashed lines are a guide to the eye.

10



Temperature dependent data

With the data at different strain rates alone, see Figure 3.2, it is not possible to identify which
modeling choice is correct, as the range of strain rates is insufficient to make the distinction
between the kinetics of one process changing with deformation, or the kinetics of two processes
shifting with deformation. As mentioned before, compression tests at varying temperatures probe
a much wider range of deformation kinetics and provide a lot of additional information on the
strain dependence of these kinetics. Therefore, the same procedure as with the compression tests
at different strain rates is employed: the compressive stress-strain curves are evaluated at evenly
spaced levels of strain, after which these data-points are plotted as a function of temperature,
see Figures 3.3a and 3.3b. For the lower strains (¢ < 0.6) the stress is linearly dependent of the
temperature. At higher strains, however, a transition in the slope can be identified, similar to the
behavior found in the yield data of PC by Bauwens-Crowet et al., see Figure 2.3b. This indicates
that with deformation, the g-process shifts so that it already starts contributing to the response
at higher temperatures. More specifically, it is clear from Figure 3.3b, that the stress response
at 20°C starts in the a-regime but gradually shifts to the (« + )-regime with increasing strain.
As these tests were done at a strain rate of 1073 s~!, this conclusion is also true for the strain
rate dependent data: at ¢ = 1072 s~! it shifts from the a-regime to the (o + [3)-regime with
increasing deformation. This means that the activation volumes (i.e. the slopes) are independent
of deformation for both processes; the deformation induced changes are caused by a shift of the
two processes (i.e. a change in rate constant &g ), see Figure 3.2b.
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Figure 3.4: Compressive true stress at different strain levels as a function of temperature, see
Figure 3.3b. Symbols represent experimental data and solid lines are fits using Equation (3.1)
with (a) deformation dependent rate constants only and (b) deformation dependent rate constants
and activation energies.

Now, the temperature dependent data in Figure 3.3b can also be described using the Ree-Eyring
relation. The activation volume and activation energy for both processes are given in Table 2.1
(parameters associated with Figure 2.3a) and the values of €, and €y g at each strain level are
equal to those in the fits of Figure 3.2b. The results are shown in Figure 3.4a. While the data
points at 20°C and at the lowest evaluated strain (¢ = 0.4) are accurately described,the model does
not capture the experimental behavior at all. It even appears that while the data points for each
level of strain are converging towards higher temperatures, the predictions are doing the opposite.
The reason for this effect is best explained by rewriting the Ree-Eyring relation (Equation (2.3))
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again, but now as a linear function of the temperature:

k é k | AU, . .
o [V; In <%>} T+ 7 [ V;‘L} with = =a,f. (3.2)
—_—————
8 (11)

Herein the part marked (I) represents the slope of the temperature dependence of the stress, which
is determined by the strain rate £, the rate constant £p , and the activation volume V. The part
marked (II) is the constant offset in the temperature dependence, i.e. the theoretic value of the
stress at absolute zero (' = 0 K), which is characterized by the ratio of the activation energy
and activation volume of the individual processes, see Figure 2.3d. As both of these parameters
are considered constants in this case, the predictions all converge to a single stress level towards
absolute zero, regardless of the strain level. However, the experimental data suggests that the
value of the stress at 0 K increases with deformation, implying that either the activation energy or
the activation volume should change with deformation. Because it was previously concluded that
the latter does not change with deformation, the conclusion must be drawn that the activation
energy is deformation dependent. This means that deformation seems to have a combined time-
temperature effect:

(3.3)

f—faz()\) - éo,x(/\) - exp (M) ,

RT

implying that the fits in Figure 3.2b provide information on £; ,(A), rather than &g ,(A). The
data obtained at varying temperatures shows us how the total effect should be distributed over
the rate constant £y .(\) and the activation energy AU, (X). The result is shown in Figure 3.4b,
which is clear evidence that, with a deformation dependent rate constant and activation energy,
the Ree-Eyring relation describes the experimentally observed influence of deformation on the
deformation kinetics across a wide range of temperatures and strain rates.
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Chapter 4

Constitutive modeling

It is now established that deformation affects the flow stress, i.e. that strain hardening of glassy
polymers is a partly viscous process, and that this can be captured by introducing a deformation
dependence in the activation energy and the rate constant. The next step is to integrate these
findings in a full, three-dimensional constitutive model that also features an elastic strain hardening
contribution, since it was pointed out in the introduction that both contributions are necessary
for capturing the strain hardening behavior. Here, the Eindhoven Glassy Polymer (EGP) model
is used, as it has proven its capability of describing, but also predicting the mechanical behavior
of amorphous polymers [16, 27]. First the basic kinematic relations that are used in the course of
this thesis are presented. Then, the multi-process version of the EGP model, as described by Van
Breemen [26], are discussed. Finally, the modeling of both the elastic and the viscous contribution
to strain hardening are addressed.

4.1 Kinematics

In the EGP model all kinematic representations are based on the concept of a virtual, stress-
free intermediate configuration, which implies a multiplicative decomposition of the deformation
gradient tensor F' into an elastic and a plastic contribution:

F=F,F, (4.1)

It is assumed that plastic deformation is incompressible, which implies that the volume change is
governed solely by the elastic part of the deformation:

J = det(F) = det(Fe). (4.2)

Non-volumetric deformation is described using the isochoric left Cauchy-Green deformation tensor

B=F.FT, (4.3)
where F, the isochoric part of the deformation gradient tensor, is defined as F = J~/ 3~F4 In an
analogous manner the elastic part of the elastic left Cauchy-Green deformation tensor B, can be
calculated. The velocity gradient tensor L can be written as the sum of the symmetric deformation
rate tensor I and the skew-symmetric spin tensor £2. Using the decomposition of F' (Equation

(4.1)) the velocity gradient tensor L can also be split into an elastic and a plastic velocity gradient
tensor.

L=F-F'=F. -F,'+F.-F,-F, ' - F, ' (4.4)
=L+ L, :
=D, + Q.+ D, +9,. (4.6)
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A last issue that need to be resolved is that the decomposition of Equation (4.1) is not unique,
as it remains undetermined how the total amount of rotation is split in an elastic and a plastic
part. It was shown by Boyce et al. [5] that this could be solved by taking the plastic spin tensor
equal to the null tensor (£2, = 0), which implies that the plastic velocity gradient tensor equals
the plastic deformation rate tensor: L, = D,,.

4.2 Stress calculation

In the EGP model, the total stress is split into the driving (or flow) stress os and the hardening
stress o,.. The first is attributed to intermolecular interactions that determine the viscoelastic
properties at small deformations, and plastic flow; the latter can be interpreted as a rubber
elastic contribution of the entanglement network. Here, the multi-process representation of the

s,
| Giﬂr Mg :

Figure 4.1: Mechanical analogue (1-D) of the multi-process EGP model.

EGP model is discussed, its mechanical analogue depicted in Figure 4.1, as the model material
(PC) shows a secondary relaxation mechanism. This implies that the driving stress contains a
contribution from the o- and the (-process:

o= o';lya + U;‘ﬂ +a Lot (4.7)
|
(2%

The elastic contribution from the entangled network is modeled with a neo-Hookean relation:

ol =G.B°, (4.8)

governed by the strain hardening modulus G,. Due to the fact that plastic deformations are
assumed to be incompressible, it is assumed that the hydrostatic part of the driving stress depends
on the total volume change:

ol = k(J - I, (4.9)

S

which implies a single bulk modulus . The deviatoric part of the driving stress for each process
is defined as:

ogw = GIBS’A,‘. with 2 = «,f3, (4.10)

where G, denotes the shear modulus and B?, the deviatoric part of the isochoric elastic left
Cauchy-Green strain tensor. For each process, the deviatoric driving stress is coupled to the



plastic deformation rate through a non-Newtonian flow rule:

-
Dyy=— % with = =a,g. 4.11
i 2779:(T7 Tos Py Sz) ( )
As indicated in Equation (4.11), the viscosity of each relaxation process depends on its equivalent
stress T, pressure p, temperature T, and the thermomechanical state of the material S,, which
includes the effect of intrinsic strain softening.

AU, Tz /70,2 Mz -
= z : s Se .
— exp( — ) e /To,,)e"p(m,z oxp (Sul5,) (4.12)

¢9) IT) (1) (Iv)

The temperature dependence (part I) is governed by the activation energy AU,; part II represents
the stress dependence with characteristic stress 7y ,; the pressure dependence part III is governed
by the parameter p,; in part IV the state parameter S, is a function of the equivalent plastic
strain 4,. Part I and II are based on Eyring’s flow relation (compare with Equation (2.3)), part
IIT and IV result from an extension of the model by Govaert et al. [13]. The initial viscosity is
denoted by 7y,. The characteristic stress 7y ., pressure p,, and equivalent stress 7, are defined
as:

kT

= 4.13
e = g (4.13)
p = —itr(o), (4.15)

where the activation volume V;} governs the temperature dependence of the characteristic stress.
It is stressed that this is not the same activation volume as the one presented in the Eyring model.
The reason for this confusion is that the characteristic stress in the Eyring relation (defined as
kT/V* in Equation (2.3)) is a uniaxial stress measure, whereas the characteristic in the EGP
model (7y as defined in Equation (4.13)) is a pressure modified, shear-equivalent stress measure.

As mentioned before, the state parameter S, only depends on the equivalent plastic strain, and
its evolution is described as follows:

ro x—1

1+ (TO,I . eXP(ﬁp,a))n’m e (4 16)
1+ gy ’ '

Sm = SO‘ac

where the parameters 7, ; (i = 0,1,2) govern the kinetics of intrinsic strain softening, which can
be different for each process involved. The initial (thermodynamic) state is defined by Sy, and
depends on the thermo-mechanical history. As can be seen in Equation (4.12), the state parameter
is given as a function of the equivalent plastic strain, which is assumed to be coupled to the process
with the highest initial viscosity, in this case the « process. The evolution of the equivalent plastic
strain is defined as follows:

Y9 =/2Dp o Dpa (4.17)

Up to now, a single relaxation mechanism (single-mode) for each process is assumed. However, for
PC both the pre-yield behavior and the transition at yield from elastic to (visco)plastic behavior is
described poorly with such a single mode implementation. Therefore, the model can be extended
to account for multiple relaxation times (multi-process). This extension is straightforward, see
Van Breemen et al. [27]; similar to the multi-process approach (Figure 4.1), the deviatoric part
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of the driving stress of each process is modeled as a set of parallel Maxwell elements. The multi-
mode approach should, however, not be confused with the concept of multiple processes, as for
the former the relaxation kinetics are the same for all modes, whereas for the latter, these kinetics
are essentially different for each process.

4.3 Strain hardening: elastic contribution

It is clear that the large-strain response of glassy polymers is governed by an interplay between
elastic and viscous strain hardening. Before introducing a viscous contribution to strain harden-
ing in the EGP model, a closer look is taken at the elastic contribution. As mentioned before
this elastic part is modeled with a neo-Hookean relation, see Equation (4.8), which in the case of
uniaxial loading is represented by a linear relation between stress and |[A%2 — A\~!|, where A denotes
the draw ratio. In Figure 4.2, the stress response of a mechanically preconditioned tensile bar of
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Figure 4.2: Comparison of neo-Hookean and Edwards-Vilgis model for strain hardening in the EGP
framework. Symbols represent experimental results in tensile from a mechanically preconditioned
sample of PC, data taken from [24]. Predictions using the neo-Hookean model with low initial
viscosity (dashed line) and high initial viscosity (dashed-dotted line), parameters taken from [16].
Solid line is prediction using Edwards-Vilgis theory for strain hardening. In all predictions total
rejuvenated state is assumed (Sy = 0).

PC is depicted [24]. This preconditioning consists of a large strain torsion of the axisymmetric
tensile bar, after which it is twisted back to its original position. The reason for this treatment is
to eliminate strain softening, ensuring homogeneous deformation of the sample in a tensile test.
In modeling terms, this can be regarded as a removal of the initial age Sy of the sample, see Equa-
tion (4.16), bringing it to a rejuvenated state (Sy = 0). Indeed, when plotting the mechanical
response as a function of (A2 — A7), see Figure 4.2, strain softening seems to be eliminated by
the preconditioning.

In the same figure the dashed line represents a simulation of the experiment with the EGP model,
using parameters representative for PC, as determined by Klompen et al. [16]. These include a
strain hardening modulus of G, = 26 MPa, equal to the one determined by Tervoort and Govaert
[25]. It is clear that the neo-Hookean model is not capable of describing the whole range of the
stress-strain response. The deviation at yield was actually attributed to incomplete rejuvenation
of the sample (Sp # 0). The origin of this ‘residual age’ is the fact that predeformation is not
homogeneously distributed as the central fiber of the sample does not deform at all. Recent simu-
lation results [23], however, show that this effect of the incompletely rejuvenated core on the total
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mechanical response is minimal, implying that the experimentally observed response as shown in
Figure 4.2 truly reflects the rejuvenated response of the material. Therefore, it is suggested that
a higher initial viscosity should be used to describe the stress at yield more accurately. This is
shown in Figure 4.2 by the dash-dotted line, where G,. = 20.5 MPa was used to capture the stress
response at large strains. Indeed the yield stress is captured more closely now, but it introduces
a new problem as well, since it performs even worse than the previous prediction at high strains.

To resolve these problems, the use of another hyperelastic model is proposed: the cross-link slip-
link model of Edwards and Vilgis [7], which is also used to describe elastic strain hardening in
the Oxford Glass-Rubber (OGR) model [6]. Edwards-Vilgis’ theory of rubber elasticity is, in its
original form, based on two categories of interaction between molecules: slip-links (entanglements)
and cross-links. In the case of glassy polymers the last contribution is omitted, because no cross-
links are present. This leads to the following expression for the conformational free energy [19):

1 . 2 3 12 3
W = INkT ( + 7)1 a*)z Y +3 (L + 722) + In 1~QZZA2 . (4.18)
a2 Zz l)\lz i=1 L4 ,]*)\2 i=1 =1

where N represents the number density of slip-links, «, and 7, represent the degree of inextensibil-
ity of the chains and the freedom of movement of the slip-links, respectively, and & is Boltzrnann’s
constant. The free energy is written in terms of the principal stretch ratios X (i =1,2,3), which
are the eigenvalues of the isochoric left stretch tensor V', as it is defined by the left polar decom-
position of the deformation gradient tensor: F =V - R. As shown in Appendix C, equation (4.18)

can also be written in tensor notation, as a function of B:

(1+n7){1 — o)

V = 3G, =
1 — a?tr(B)

tr (B (I + n*l::s‘)’l) + tr (ln(I + n*E)) + In (1 — aftr(B))} ,
(4.19)
which is more convenient as it eliminates the necessity of calculating the eigenvalues and eigen-
vectors of this tensor. Note that the term NykT is replaced with a constant strain hardening
modulus G, as this elastic strain hardening contribution is assumed to be independent of tem-
perature. This assumption is consistent with the original EGP model, where the entropic nature
of the neo-Hookean relation was also ignored, see Equation (4.8). The Cauchy stress response of
the Edwards-Vilgis model can be derived from hyperelasticity theory:
2 ow .

For the exact derivation of the stress from the free energy function the reader is referred to
Appendix C. Finally, it is noteworthy that for the special case of o, = 1, = 0, the response this
model coincides with a neo-Hookean response.

Table 4.1: Edwards-Vilgis parameters used in Figure 4.2

G, [MPa] . [-] 1 [
14.6 0.255 0

In Figure 4.2, the solid line depicts the response of the EGP model, using the theory of Edwards-
Vilgis to describe the elastic strain hardening behavior. The Edwards-Vilgis parameters are listed
in Table 4.1. As discussed in the Introduction, the entanglement network remains intact for
glassy polymers that are plastically deformed below the glass transition temperature T;, implying
that there is no freedom of movement of the slip-links: 7, = 0. Now only the .- parameter
determines how the response of the model deviates from neo-Hookean behavior, this being a more
pronounced upswing in stress that ultimately leads to infinite stress, i.e. finite extensibility. It
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is clear from Figure 4.2 that this model is excellently capable of describing the experimentally
observed behavior, both at large strains and around yield. As the neo-Hookean model fails at
describing these simultaneously, this is a significant improvement.

4.4 Strain hardening: viscous contribution

In Chapter 3 it was established that (at least) part of the strain hardening effect originates from a
deformation dependence the flow stress. Therefore, an extension of the EGP model is required in
the form of a deformation dependence in the viscosity. Because deformation in the EGP model is
expressed in terms of the isochoric left Cauchy-Green deformation tensor B, it seems the obvious
choice for modeling this deformation dependence. Of course, a scaled invariant function f(B)
should be used, as the viscosity is a scalar property. This results in the following flow rule:

a.(l

. 8% e (421)
20e(T, 72, p, Sa, f(B))

where the viscosity is extended with this deformation dependence, compared to Equation (4.11).

Before actually characterizing this deformation dependence in the viscosity, it is first established

what form the invariant function f(B) should have. Therefore, viscosity, see Equation (4.12), is

expressed in a more simplified form:

D,

* .
7 T

SN P S— (4.22)
7o sinh(7 /7o)

where 7 contains the temperature, pressure, and state dependent contributions to the viscosity:

1G5 = Mo exp —IA?% + %) + S(7s)| - (4.23)
When introducing a deformation dependence in the viscosity, basically two options are at hand:
it can be introduced in the prefactor of Equation (4.22), or in the argument of the hyperbolic
sine. In both cases, however, it is merely a scaling of the equivalent stress 7. As concluded in the
previous section, strain hardening can be accurately described with an Edwards-Vilgis relation.
Nevertheless, for reasons of simplicity the neo-Hookean model, see Equation (4.8), will be used as
a starting point here. This choice is motivated by the fact that in the limit of «a, = 1, = 0, the
repsonse of the Edwards-Vilgis model equals that of the neo-Hookean model.

Now, by substituting the (deviatoric) neo-Hookean stress in the definition for the equivalent stress
(Equation (4.14)), a deformation dependence of the equivalent stress can be deduced that exhibits

neo-Hookean type behavior:
F= 3/ g0 s 08 o = G,.B? (4.24)

T G,v\/%B":B’l

= G JiB). (4.25)

After rearrangement, this results in the following expression:

f(B) = \/';173~ Ifs. (4.26)

Since the viscosity is characterized by scaling of the equivalent stress, and this equivalent stress
in turn is proportional to f(B), the same proportionality exists between this function and the
viscosity. In Chapter 3 it was concluded that both the rate constant and the activation volume

change with deformation. A deformation-induced change in the rate constant is equivalent to
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a change in initial viscosity, since n9 = 79/%0, where 79 is deformation independent and g is
the shear equivalent of the rate constant &y. This leads to the conclusion that the deformation
dependence manifests itself in the prefactor of Equation (4.22), or more specifically:

no o< f(B) and exp(AU) x f(B). (4.27)

It is of course possible to do the same procedure with the Edwards-Vilgis theory, but this would
needlessly complicate both the model equations and the characterization of the moel with ex-
perimental data. This quantitative characterization and its application in the EGP model is the
subject of the next chapter.
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Chapter 5

Simulation results

In the previous chapter the general framework of the EGP model and the modeling of strain
hardening as a combination of an elastic and a viscous contribution were discussed. Here, these
findings are further investigated via numerical simulations. First, the elastic and viscous contribu-
tions to strain hardening are characterized. After that, the performance of the model is assessed
by comparing numerical simulations with experimental data.

5.1 Model characterization

Ratio of strain hardening contributions

The first step is to determine what part of the total strain hardening originates from the elas-
tic contribution. An answer to this question was presented by Senden et al. [Senden2010], who
investigated the relation between the Bauschinger effect in oriented polymers and strain hard-
ening. Their leading observation is reproduced in Figure 5.1, where the mechanical response of
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Figure 5.1: An impression of the mechanical response of PC in cyclic, i.e. tension up to a certain
strain and then compression back to its original length, uniaxial deformation. Data taken from
(24].

mechanically preconditioned samples of PC is depicted. As previously discussed in Section 4.3, the
main reason for applying this preconditioning is to ensure homogeneous deformation in tension.
First, the specimen was loaded in tension with a constant true strain rate up to a predefined true
strain level, after which the load was removed. This was done for several different strain levels.
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Next, cylindrical specimens were machined from these preoriented tensile bars to perform uniaxial
compression tests at the same absolute true strain rate. The results were combined with those
of the tensile tests to give an impression of the actual behavior of PC when subjected to a cyclic
loading path. This is illustrated in Figure 5.1, where the solid lines represent the tensile stage
and the dashed lines the compression tests. It is clear that, especially at high preorientation, a
strong Bauschinger effect occurs: at a prestrain of 0.6 the momentary yield stress in tension is
approximately 100 MPa, whereas the corresponding yield stress in compression is only -25 MPa.
After yield, the compressive stress response remains nearly constant at approximately 40 MPa, a
value that is similar to the initial yield stress in tension.
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Figure 5.2: Schematic representation of the stress contributions during a tension/compression
cycle: (a) deformation dependent viscous contribution, (b) elastic contribution to strain hardening,
and (c) the total stress. Stress are as a function of A2 —A\~!, implying neo-Hookean stress response.

Senden et al. investigated the implications of modeling strain hardening as a partly elastic, partly
viscous process with a simple gedankenexperiment. The concept is based on a simplified model,
focussing only on the post-yield response, as schematically illustrated in Figure 5.2. Due to the
introduction of viscous strain hardening, the viscous contribution to the stress, see Figure 5.2a,
continues to increase with deformation after yield. When the deformation direction is reversed,
the compressive yield stress is of equal magnitude, but opposite in sign compared to the level
of stress just before load reversal; its magnitude decreases with further deformation. The elastic
component, see Figure 5.2b, naturally follows the same curve during tensile loading as during
compressive loading. Finally, in Figure 5.2c the total stress response is depicted, being the sum of
the two contributions. In the tensile stage of the loading path, these two contributions together
determine the total stress increase after yield. After reversal of the loading direction, however,
only the flow stress changes sign. In the case of an equal distribution of elastic and viscous strain
hardening, the two strain hardening contributions cancel each other out, resulting in a constant
stress level for the remainder of the compression stage in the cycle. This is exactly the type of
behavior that is observed in experiments (Figure 5.1), indicating that the elastic and viscous strain
hardening should indeed be of equal magnitude.

Quantifying the viscous strain hardening contribution

Quantifying the viscous contribution to strain hardening boils down to a characterization of the
deformation dependence of the flow stress. As it is now known what portion of the strain hardening
effect originates from the elastic contribution, this part can be subtracted from the experimental
data, isolating the flow stress. This is actually the same procedure as performed in Chapter 3,
but now on the flow stress only, instead of the total stress. Assuming incompressibility, and the
same pressure dependence for both processes, the 1-D stress response of the EGP model can be
derived, see Appendix B.

0 = O flow T Telast. (51)
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V3
a, ) ey
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Herein, the function h(a., ) signifies the 1-D strain dependence of the Edwards-Vilgis model
(Equation (B.4)), where in the absence of mobility in the slip-links, the parameter 7, is omitted.
Using Equation (5.3), the elastic strain hardening contribution can be subtracted from the total
stress-strain response of a compression test. This procedure is done for the experimental data

Gy - h(\ o). (5.3)

Table 5.1: Edwards-Vilgis parameters.

Gy [MPa]  au [-]  n. []
7.0 025 0

depicted in the Figures 3.1 and 3.3, using parameters from Table 5.1. The parameters given here
do not constitute an exact 50% elastic strain hardening contribution, compared to those given in
Table 4.1, for reasons that become clear later on. The results from these elastic strain hardening
corrections are shown in Figure 5.3. Note that for each level of strain a fixed amount of stress is
subtracted.
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Figure 5.3: Compressive flow stress at different strain levels, stresses are corrected for elastic
contribution in strain hardening (symbols), as a function of (a) compressive true strain rate and
(b) temperature. Solid lines are fits using Equation (5.2), fit parameters are listed in Table 5.2.

For the tests at varying strain rates, see Figure 5.3a, the overall picture is similar to that in
Figure 3.1b, although the stresses have decreased in such a way that the lines corresponding to
different levels of strain are closer to one another. The changes look more striking for the tests
at, different temperatures (Figure 5.3b), as the data suggests that at a temperature of 100°C the
viscous contribution to the strain hardening is negligible, compare with Figure 3.3b. Next, the
evolution of the initial viscosity 79, and that of the activation energy AU, can be determined,
using Equation (5.2). The combined effect of these parameters is expressed by:

AUI(A)> _

“RT (5.4)

06.(AT) = 10,2 (A) exp (
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From Figure 5.3a values of 75, at each strain level can be deduced, as this data is obtained
at constant temperature. Subsequently, the data obtained at varying temperatures, see Figure
5.3b, provide how the deformation dependence of ng . is distributed over the two parameters 7o ;
and AU,. In Table 5.2 the parameters are listed which were used during this procedure. The

Table 5.2: Parameters describing flow stress in Figure 5.3.

Ve Vﬁ* Ha,p N0,z AU,
mm?®]  [om®] [ [MPa-s] [kJ/mol-K]
5.32 5.06 0.08 Figure 5.4a Figure 5.4b
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Figure 5.4: Evolution in the deformation dependence of (a) the initial viscosity 7y, and (b) the
activation energy AU,, both for the a-process (o) and S-process ([J), as a function of viscous
hardening function f(B). Dashed lines are fits using Equations (5.5) and (5.6).

resulting values of the initial viscosity as well as the activation energy are shown in Figure 5.4, for
both the a- and the -process. For the latter, only large strain levels could be evaluated, since
the contribution of the g-process could not be clearly recognized at smaller strains. Values are
plotted as a function of f(B), which was derived in the previous chapter as the characteristic
strain function for the viscous strain hardening contribution. Note that in Figure 5.4a the initial
viscosity actually decreases with deformation, whereas the total viscosity increases. This is due
to the increasing activation energy, which contributes exponentially to the viscosity, see Equation
(5.4). To a good approximation, the values of initial viscosity and activation energy are described
with a quadratic function f?(B):

N0,z (f(B)) = noe - exp (C1,o.f*(B)) , (5.5)
AU(f(B)) = AUyp + C2o f*(B). (5.6)

Herein, C} , is introduced, controlling the evolution of the initial viscosity, and Cs ., which governs
the evolution of the activation energy as a function of strain. The parameters that result from
fitting the data in Figure 5.4 using Equations (5.5) and (5.6) are listed in Table 5.3. The values of
the initial activation energies found here are somewhat smaller compared to the ones determined
using yield data (Table 2.1). This might be caused by the function that was used to fit the evolution
of Ay, (Equation (5.6)). It remains difficult to determine the exact cause as the observations are
obscured by strain softening around yield.
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Table 5.3: Fit parameters from Equations (5.5) and (5.6)

X 10,z Cl,x AUI,O C‘Z‘.zr
[MPa-s] ] [kJ/molK] [kJ/mol-K]

a 2.1-1008 220 245 78.7

B 4.0-107% -11.0 50 36.3

5.2 Simulation results

With the characterization of the deformation induced evolution for both the initial viscosity and
the activation energy, all ingredients are available to test the performance of the proposed modifi-
cations of the EGP model. For this purpose, numerical simulations are performed using the finite
element package MSC.Marc; the user subroutine HYPELAZ2 is used to implement the constitutive
model. Uniaxial testing is simulated using a single linear quadrilateral axisymmetric element.
Here, the a-process is modeled with multiple relaxation times (Section 4.2) as described by Van
Breemen et al. [27]; the 3-process is described by a single-mode.

Most parameters for PC, including the relaxation spectrum for the a-process, are adopted from
Van Breemen et al. [27], with the exception of those originating from this work. The initial viscosi-
ties in the relaxation spectrum 7 . (7) had to be converted to the temperature independent one
(n0,e = n6(T) - exp(~AUy/RT)), as these were originally determined for a single temperature.
Furthermore, the spectrum is adopted to account for the larger (total) initial viscosity needed due
to the switch to the elastic strain hardening from Edwards-Vilgis’ theory, see Section 4.3. Input
parameters, including the adapted relaxation spectrum for the a-process, are listed in Appendix
A. Note that only a single mode is used for the 3-process.
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Figure 5.5: Compression testing of PC. Symbols represent experimental data as depicted in Figure
2.1. Solid lines are from numerical simulations using the EGP model, parameters are listed in
Appendix A.

As a starting point, the experimental data that was actually used to characterize the influence
of deformation in the viscosity is evaluated, since these should naturally be captured well by the
modifications. In Figure 5.5a, the response of simulations at different strain rates clearly shows
the experimental data is well captured. Only at low strain rate, there is some overestimation of
the stress at large deformation. This effect can be attributed to an excessive increase of the flow
stress associated with the 3 process. however, this deviation could have been expected; when
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inspecting Figure 5.3a more closely, it shows that at the maximum strain level the slope of the
(o + B)-process does not exactly match that of the experimental data. The compression tests at
different temperatures (Figure 5.5b), are also well captured over the whole range of these tempera-
tures. Thus, the model is capable of capturing both the experimentally observed rate dependence,
as well as the experimentally observed temperature dependence in the strain hardening. Up to
now, the EGP model was only capable of describing the large strain mechanical behavior at a
single temperature. Therefore, this is indeed a considerable improvement of the model.
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Figure 5.6: An impression of the mechanical response of PC in cyclic uniaxial deformation (sym-
bols), as seen in Figure 5.1, compared to numerical simulations using the EGP model (solid lines),
parameters are listed in Appendix A.

A more critical evaluation of the model performance is to check whether it is also capable of provid-
ing quantitative predictions of the orientation induced Bauschinger effect, as depicted in Figure
5.1. To check whether the observed behavior is indeed captured by the model, uniaxial ten-
sion/compression cycles are simulated using the same parameter set as in the previous paragraph,
see Appendix A. As the specimens are mechanically rejuvenated, the effect of aging is canceled
(So = 0). The results in Figure 5.6 clearly show that the main features of the the experimental
observations are qualitatively captured: after the loading direction is reversed at large strains, the
subsequent compressive yield stress is considerably smaller than the momentary stress just before
reversing the direction of deformation. However, a quantitative comparison shows that both in
the tensile and the compressive stage of the deformation, the absolute stress is underestimated
by the model. The first question that arises is whether the experimental data sets from Figure
5.5 and the one from Figure 5.6 are mutually consistent. Fortunately, there is an opportunity to
check whether this is the case, since uniaxial compression data from the unoriented preconditioned
tensile bars is available. The response from these compression tests can be directly compared to
the response from compression tests at the same strain rate on non-preconditioned samples, i.e.
Figure 5.5a. Figure 5.7a shows that at yield the difference in stress is extensive, which is of course
obvious, as one sample is rejuvenated. In the strain hardening regime, however, the response
should be the same. This is obviously not the case, as at large strains a stress difference remains
of approximately 5 MPa. The cause for this deviation can only be the preconditioning, since this
is the only difference between the two samples. As mentioned before, the preconditioning consists
of applying large strain torsion to an axisymmetric tensile bar and subsequently twisting it back to
its original position. During torsion, the axial direction should be stress free, but this is difficult
to accomplish in practice due to the fact that this preconditioning was done on a lathe in the
absence of testing equipment capable of reaching the desired torsion-angle. It is therefore not
unlikely that during the twisting of the bar, a residual plastic strain was induced by (unintended)
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Figure 5.7: (a) Comparison of stress-strain response from an isotropic untreated specimen (solid
line) and an unoriented mechanically preconditioned specimen (dashed line) of PC at a compressive
strain rate of 1074 s71. (b) Corrected for residual plastic strain in preconditioned specimen.

axial loading. Indeed, it is demonstrated in Figure 5.7b that assuming a small residual strain
for the preconditioned specimen causes the large strain behavior of both tests to coincide. The
effect observed is actually the reason for the aforementioned inconsistency of the elastic strain
hardening parameters, compare Tables 4.1 and 5.1. Figure 5.8 demonstrates that when this offset
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Figure 5.8: Experimental data (symbols) from Figure 5.6, adjusted by using Figure 5.7b, compared
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to numerical simulations(solid lines).

is accounted for in the experimental results, the cyclic deformation tests are accurately predicted
by the model. This proves that the suggested modifications of the EGP model are a substantial
improvement, since the original version of the EGP model is not able to capture the Bauschinger
effect (see Figure 5.8, dashed line). Note that the modifications and characterizations of the model
were done solely on the basis of the sets of compression data in Figure 5.5.
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Chapter 6

Discussion

In the previous chapter, it was shown that the introduction of a viscous strain hardening contri-
bution in the EGP model signifies a substantial improvement of its capability to quantitatively
describe the mechanical response of PC under various conditions. However, there is a puzzling
issue that remains to be addressed, namely the shift in the 3-process that was observed by Senden
et al. [24]. As discussed in Section 4.3, they used mechanically preconditioned specimens of PC
for tensile testing at a constant strain rate up to a predefined strain level; after unloading, ten-
sile tests were performed at varying strain rates. With this method, which will be referred to as
method A, they characterized the change in yield kinetics with the deformation by plotting the
tensile yield stresses from specimens with various levels of prestrain, as a function of strain rate,
see Figure 6.1a. It was observed that, in the isotropic case (€7 = 0), the yield kinetics were well
described with the a-process that is known to be present in PC. However, this changed already
with remarkably small amounts of prestrain, as all the subsequent prestrain levels (¢ > 0.15) con-
tain a contribution from the gB-process. This is shown by the solid lines, which are fits using the
Ree-Eyring relation and the activation volumes that relate to the a- and 3-process (Table 2.1).
Therefore, it was concluded that the deformation induced change in slope was caused by a shift
of the B-process towards lower strain rates. This is, of course, the exact same conclusion as was
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Figure 6.1: (a) Tensile yield stress as a function of strain rate for oriented PC (square markers);
various levels of true prestrain are indicated. Solid lines are fits using Equation (2.3). (b) Stress at
various strain levels (as indicated) from uniaxial tensile tests on isotropic PC (triangular markers)
and predictions from numerical simulations of the EGP model (solid lines). As a comparison, the
data from (a) is added in grey; filled markers indicate that the data is obscured by viscous heating.
Data taken from [24].
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drawn in Chapter 3, the difference being the procedure applied to characterize the phenomenon
(method B). What is striking, however, is the difference in the level of strain at which the -
process starts contributing to the stress: with method A it is already observed at a tensile strain
of 0.15, while with method B it does not appear before a compressive strain of 0.5 (see Figure 3.2b).

In Figure 6.1b, the results are shown using method B, but now applied to the data used in method
A. Or more precisely, as the isotropic preconditioned tensile bars from method A where tested well
beyond yield for the different true strain rates, the stress response could be evaluated at various
strain levels (triangular markers), i.e. method B. This figure clearly shows that there is indeed
a discrepancy between the results from the two methods, as a completely different deformation-
induced behavior is observed, compared to that in Figure 6.1a. Up to € = 0.45, the slopes remain
the same as the one observed at yield, while it even decreases at (¢ = 0.6). The decrease in slope
at this strain level, though, is caused by viscous heating of the sample; at high strain rates the heat
generated in the sample exceeds the amount that can be transported to the surrounding, causing
the sample temperature to increase with increasing deformation. The measured stress is therefore
too low (filled markers) and it is omitted from the analysis. Results of numerical simulations,
using the EGP model (solid lines) with the parameters from Appendix A, support the observation
that the yield kinetics remain initially the same and shift to lower strain rates with deformation.
As mentioned, the shift of the 3-process is such that the contribution of this process only becomes
visible at the highest strain depicted. Finally, it should be noted that the stresses using method
B are determined at the measured levels of strain. The residual plastic strain (see Figure 5.7) is
accounted for in the simulation results.

The question remains what causes the different observations that result from methods A and B. To
this end, it should be recognized that the two methods only differ in one aspect: in the method A,
used by Senden et al., the sample is subjected to a intermittent loading path, as the load is removed
between predeformation and the subsequent tensile test; whereas in method B, the load is never
removed, as an ongoing tensile test is evaluated. That these different approaches lead to a different
response, is illustrated in Figure 6.2a, where for a single strain rate the mechanical response of
specimens with various levels of preorientation is plotted as a function of the total strain, i.e.
including the prestrain of the sample It is clear that all collapse onto a single curve at large strains,
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Figure 6.2: (a) Mechanical response of preoriented PC in uniaxial tension, at a single strain rate,
as a function of the total strain. Data taken from [24]. (b) Tensile yield stress of PC as a function
of strain rate for different thermo-mechanical histories. Data taken from [8].

but more intriguing is the behavior of the prestrained samples at yield: a small amount of strain
softening can be distinguished, especially in the samples with smaller preorientation. The yield
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kinetics here are governed by the («+ (3)-process, which can be seen in Figure 6.1a, while the yield
kinetics found by method B indicate a contribution from the a-process, as seen in Figure 6.1b. It
is clear that the S-process becomes visible in method A due to the unloading and reloading prior to
the tensile test, as this is the only difference with method B. It is known that at room temperature
the B-process of PC is completely relaxed and in equilibrium, which leads to a constant contribution
to stress, regardless of the thermo-mechanical history [1]. This is demonstrated in Figure 6.2b,
where the deformation kinetics of PC are shown with four different levels of aging. It is clear that
this affects the stress response in the a-process, whereas the 3-contribution remains constant: the
(-process shows at the exact same location when the sample is rejuvenated, compared to the ones
that are annealed. Due to the high mobility of this process, the rejuvenation procedure has no
effect on the experimental observations, as it (almost) instantaneously aged.

It appears that, due to the high mobility of the [(-process, both physical aging and orientation
have an important influence on the deformation-induced changes in the deformation kinetics. This
can be understood when realizing that, from a modeling point of view, aging affects the initial
viscosity (see Equation (4.12)) in a similar way as deformation does (see Equation (5.4)). The
interplay between these mechanisms can be interpreted as follows. At the start of an uniaxial
tensile test (A), as depicted in Figure 6.3b, the 3-process lies outside the experimental time-scale,
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Figure 6.3: Schematic representations of the shift in the 8-process: (a) loading from (A) to (B),
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see Figure 6.3a. Since it ages instantaneously, it is in its isotropic thermodynamic equilibrium
state (i.e. fully aged) and thus possesses its maximum amount of aging, which is reflected by its
distance from the reference state (ref). This reference state is the isotropic, rejuvenated state of
the B-process.

When the material starts deforming towards (B), rejuvenation causes the 3-process to shift towards
higher strain rates, while the simultaneous orientation shows a opposite effect, as a result of the
deformation dependence of the flow stress. At some point, the rejuvenation stops and only the
second effect remains. Depending on its amount of deformation, (B) will lie at some position
between (A) and the reference state (ref). Here B is chosen such that it is fully rejuvenated.

From Figure 6.3b it is clear that there are two ways to reach (D): directly from (B) by continuing the
deformation, or after first unloading and the reloading via (C). The unloading and reloading process
is illustrated in Figure 6.3c. Since the total strain at (B) and (C) is equal, the level of orientation at
these points is also the same, implying that (B) and (C) share the same rejuvenated reference state.
In fact, (B) is the rejuvenated reference state of (C), provided that the 3 contribution has fully
rejuvenated in the deformation process from (A) to (B). The main difference between (B) and (C)
is the thermodynamic state of the material. As mentioned, the B-process ages instantaneous in the
unloading/reloading process, shifting it to the range of strain rates where it can be experimentally
observed. For the sake of simplicity, in the schematic pictures of Figures 6.3a and 6.3c¢ it is assumed
that the ‘maximum age’ of the isotropic material is equal to that of the oriented material.

With ongoing deformation, the material always ends up in (D). The process of going to (D) from
either (B) or (C) is illustrated in Figure 6.3d. Coming from (B) the mechanism is straightforward:
as the [-process in (B) is already fully rejuvenated, the only change when going to (D) is due to
orientation. Of course, the path from (C) to (D) is characterized by exactly the same effect of
orientation. However, this path is also influenced by mechanical rejuvenation. When deformed
even further, the rejuvenated reference state of the f-process eventually shifts into the experi-
mentally accessible range of strain rates. When this happens, approximately at € > 0.5, the two
methods A and B that are used to characterize the deformation dependence of the deformation
kinetics give the same result: the kinetics are in the (« + 3) regime, see Figure 6.1b. The same
can also be observed in Figure 6.2a, as the tensile curve of the sample with a prestrain of 0.6
shows no longer any softening; the effect is overwhelmed by the influence of the orientation. The
conclusion that must be drawn from these results is that the stress-accelerated aging that occurs
during unloading/reloading makes it much more difficult to isolate the influence of orientation on
the deformation kinetics, since the effect is obscured by aging of the g-process.

This has a notable implication on the results that were presented in this work regarding the
tension/compression cycle simulations that were discussed in Section 5.2. As mentioned, the
specimens for the compression test were machined from a tensile bar that had been preoriented
to a specific level of strain. This suggests that in the subsequent compression tests the (-process
is actually contributing to the total stress, because it acquired its equilibrium state during the
time between the preorientation and the compression test. When reviewing the results from
the numerical simulations with the modified EGP model, see Figure 5.8, it is noticed that the
stresses in compression are somewhat underestimated, apart from the compressive yield stress of
the specimen preoriented to € = 0.6. This observation may be explained by the fact that the
accelerated aging effect in the [-process is not taken into account in the simulation, i.e. the /-
process is assumed to be rejuvenated in these compression simulations and does not contribute
to the stress for the low prestrains. As previously concluded, this is not an issue for the tests
at a prestrain of 0.6, which explains the correct prediction of the compressive yield stress at this
prestrain.
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Chapter 7

Conclusion

The central goal of this study is to improve the performance of the EGP model by adding a viscous
contribution to the strain hardening; of course, without losing its qualities. For this purpose, the
evolution of the flow stress with deformation is investigated for polycarbonate, the model material
in this study. It is found that the deformation dependence in the viscosity should be incorporated
in two parameters for each process: the initial viscosity and the activation energy. The former
follows from the observation that, in polycarbonate, although the stress increases with deforma-
tion, the slope when plotted as a function of strain rate remains constant for both processes as
they shift towards lower strain rates; the latter results from the observation that, when plotting
the stress as a function of temperature, the slope increases with increasing deformation.

The change with deformation of these parameters is characterized, and this deformation depen-
dence is incorporated into the EGP model. Numerical simulations show that this still allows to
describe the mechanical response of polycarbonate over a vast range of strain rates, but more
significantly, it also enables to describe the mechanical response for various temperatures with
a single set of parameters. Furthermore, it is shown that reversed loading is also captured by
the model. These last two features form a significant improvement of the model, as neither were
captured before.
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Appendix A

Parameters EGP model

In Section 5.2 the intrinsic mechanical behavior of PC was characterized using a multi process
version of the EGP model. The a-process was described with a relaxation spectrum consisting
of 17 modes, as determined by Van Breemen et al. [27]. As this spectrum was determined for
a single temperature, it has to be converted to the temperature-independent one. Furthermore,
it is adapted to account for the higher initial viscosity needed, due to a different elastic strain
hardening contribution, see Section 4.3. This results in the following:

—~AU,
10,0,i = N0,ayi,ref (T) - €xp <W—O) - exp(10.074). (A1)

Due to these changes, the shear moduli also needs correction: G, ; = 0.9 Gy ;i reyp. In Table ALl
the relaxation spectrum of the a-process is listed. The [-process is described by a single mode.
Other parameters used are listed in Table A.2.

Table A.1: Relaxation spectrum for the a-process.

i Gai [MPal 1o, [MPas]
1 3.17-10% 2.06- 1028
2 5.00-10! 3.42.10730
3 4.03-10! 2.90 - 103!
4
5

3.71- 10! 2.79 - 1032
5 3.15-10! 2.49.10733
6 2.88.10! 2.40 - 10~34
7 2.48.10! 2.16 - 10~
8 2.19-10! 2.00- 1036
9 1.86-10! 1.80- 1037
10 1.63- 10! 1.65- 1038
11 1.39-10' 1.48-10~39
12 1.22.10% 1.38 . 1010
13 1.07- 10" 1.25.10~4¢
14 8.82- 10 1.08 - 1012
15 9.36- 10" 191« 1048
16 1.90-10° 2.57+10~45
17 1.48-10'  2.10-107%
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Parameters describing PC, used in Section 5.2

Table A.2:
X G.E No,x Cl,m AUm,O C’Z,I V; SO,I 0,z Tlx T2z Mo
[MPal [MPass] ~ []  [kJ/molK] [kJ/molK] [nm?®] [] S S S
a Table A.1 Table A.1 -22.0 245 73.7 5.32 175 0.965 50 -5 0.08
3 315 4.0-1072 -11.0 50 36.3 5.06 0 0.965 50 -5 0.08




Appendix B

1-D stress from EGP model

Under the assumption that the material behaves incompressible, it is possible to derive a simple
linear relationship between the stress and the logarithm of the constant strain rate.

For incompressible behavior the total stress o can be described by:

g — —[)I + Qlll(tDp,(y + 27//3Dp,/3 + Ore, (Bl)

where the unknown hydrostatic pressure p follows from the boundary conditions, the second term
represents the flow contribution from the viscosity n (Equation (4.12)) and the last term represents
the elastic contribution to strain hardening, which is described by the Edwards-Vilgis rubber-
elastic model, see Section 4.3 and Appendix C. Because the entanglement network remains intact,
the parameter representing the freedom of movement of the slip-links is zero. Now Equation (C.38)
can be written as:

a?(1 —a?) . -

1o a
Z =—2 * _tr(B)I- —* — == I. B.2
(1 - a2tr (B))? r(B) I+ 1 — o?tr (B) 1 —a2tr(B) e

Combined with Equation (C.37),this leaves for the stress:

(B.3)

1 {a‘f(l - a)tr(B) 1 — 20?2 } i

; 5 T ;
(1 — a2tr(B))? 1 — a2tr(B)
For uniaxial deformation tr (B) = (A2 +2A 1), where A denotes the draw ratio, so the (1-D) stress
response can be written as:

: 2(1 —a?)(N? + 2271 1-—2a2 ;
Ore = G |GLZCIAN TIAT) o | (=3
(1 —a2(A\2 4 2X-1))" 1 —a2(A2+2271)
= G- h() ). (B.4)

For uniaxial deformation under a constant strain rate, the resulting total stress o and hydrostatic
pressure p are (using 4 = V3é and 7 = (r/\ﬁ)

0 = 3Map,a + INgEps + Gr - h(A, o) and ) = ~%0, (B.5)
where £, , is the plastic strain rate of the process. It is assumed that:
e both processes have the same pressure dependence (i = po = pg),
e the material is fully rejuvenated (S, = 0),
e the argument of the hyperbolic sine is large, and may therefore be approximated by an

exponential function (sinh(x) ~ %(?Xl)(.’l?)),
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e the plastic strain rate of each process equals the applied compressive strain rate (¢ = —€, o =
—£p.3)-

For the viscosity (Equation (4.12)), these considerations leads to:

~ Tox [ln <2\/§'70,J&_> + Hp AU,

— . B.
Nz \/gé o 5 ( 6)

70,z RT
Combining this with Equation (B.5) results in:

2310 AU,
Z To,x [ln <——\/_770"'6'> + RT

T0 -
=, 0

+ e G, -h(M\a,) with z=qo,8 (B.7)

V3 — p

a =

-8
V3 -
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Appendix C

Edwards-Vilgis theory

The part describing slip-links in the Edwards-Vilgis model [7] is given by:

W = INkT

=1 , (C.1)

oy 3 < 3 3
(1 +n)(1 — a?) 2 12 2 32
—— E o +E In(1 + 7. A7) + In l*(Y*E A
1-a2y? 2 1+ A2 ( 1+ X) '

=1 =1 =1

where \; (i = 1,2,3) are the principal stretch ratios, i.e. the eigenvalues of the isochoric left stretch
tensor V. The absolute temperature is denoted by T, Boltzmann’s constant by k; the model
parameters Ny, 7, and a, represent the number density of slip links, the mobility of the slip links
and the degree of inextensibility of the chains, respectively. The limit of 7, = a4, = 0 corresponds
to a neo-Hookean response. This expression can be rewritten in tensor notation as:

, 2 _
W = NokT | (14 m.)( _fy*) tr <1~3 : (I + M B) l) + tr (ln (I—%—n* B)) +In (1 —o?tr (B)) ,
2 1 —a2tr (B)

(C.2)
where B is the isochoric Finger tensor. The equivalence of these two expressions for the free
energy can be easily recognized when one realizes that the isochoric Finger tensor is symmetric
and can therefore be written as:

B = Miiyiiy + Njiiaiia + A3iiaii, (C.3)

where the eigenvectors 11y, 11 and 7i3 of B (or V') form an orthogonal vector basis. In that case,
the identity tensor is given by: I = 17y + na1is + 1ig7i3. Naturally, Equation C.2 holds regardless
of the vector basis that is used. A big advantage of this description, however, is that there is no
need to calculate the eigenvalues and eigenvectors of the Finger tensor.

For the derivations that follow, it is more convenient to write Equation C.2 in a slightly different
way:

2 _
W = o T | 4 mell _f\(*) tr (B . (I + M B) 1) + In ((let (I + N B)) + In (1 — <l§>)
E 1 —a?tr <B>
(C.4)
where use has been made of the tensor rule: tr(A) = In(det(exp(A))). Also, it is easily verified
that the free energy function is invariant to rigid-body rotations. Here, this is proven solely for
the only non-trivial term:



a = tr

= Q'B'QT'QT'(I+U*B)41'Q_l>

= tr (B- (I + B)fl>
— (C.5)

Because of its invariance to rotations, the expression for W can also be written in terms of the
isochoric right Cauchy Green deformation tensor, which is easier for the derivations that follow:

W = NS;T (11+7(]:f)(ti (~C~(’Y)f) tr <C’ 2 (I + 74 é) —1> + In ((let (I + 1. C')) +In (1 —a?tr (é))

(C.6)

Intermezzo 1: tensor algebra
First, the applied definition of the derivative of a second-order tensor to another second-order
tensor is given:
0A 0Aii o
P = 3 Y €i€;€n€m. (C?)
0B 0B,
Then, in case of a second-order tensor the chain rule can be applied as:

0A OB 0A;; 5558 0By 5.88.8 04 0By ., - 5 & 0Aii . ., . 0A

— ] —= €1 Bt ——E o = ——— €6y = T=—CiCiCnCy = T =

OB oC 0B, "’"™ 0C,, - O0Bpmn 0Cop it 0C,, R
(C.8)

Using this tensor derivative definition, the derivative of a second-order tensor with respect to itself
can be written as:
0A 0A;j _

- e 6. =4 it -
€i€j€nCy — Oirn()jn(zeje'n(qn ="I (CQ)

OA  0Apn
And the derivative of the trace of a second-order tensor to the tensor itself as:
otr(A) 0A;; . . . v 5 =3
IA — 8147::71 En€m — O'l',nz(s'irl(’/n(frrL = ovz,menem =1I (ClO)

The derivative of the inverse A~! of a second-order tensor A with respect to the tensor itself can
be determined by:

a1 (A A7)
oA 0A
0A OA-!
4 — ——— ﬁl B —
D = A Ay (C.11)
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which leads to:

0A~! L, 0A |
B - A a4
= —A71.4r. A% (C.12)

Intermezzo 2: hyperelasticity

From the conformational free energy (i.e. stored-energy function or strain energy density function),
the (rubber-elastic) Cauchy stress response is derived as follows:

2 1%
a:jF-g—C~FT. (C.13)

Because the Edwards Vilgis conformational free energy only depends on the deformation through
C', the derivative can be written as:

(C.14)

ow _ow (o€ o€ oL
oC  pC T\ oC  oI;0C |’

where I3 = det(C) = J2. The isochoric right Cauchy Green deformation tensor can be written as:
i - —2/3 e
¢ =Jc=\da(©C) "c=1"c. (C.15)
Now, the following partial derivatives can be calculated:

oC

_usag 16
ac '3 ’ (C.16)

oC 1 a3
o¢ 1 -apg C.17
8[3 3 3 ’ ( )

01 :
3-5 = HF — L0 4 OF = 107, (C.18)

The last partial derivative was obtained using the Cayley-Hamilton theorem:

C}*—NLC? L LO-LI = 0 (C.19)
C’-ILLC+LI-BC' = 0 (C.20)
C:-ILC+LI = LC. (C.21)

Substitution of these partial derivatives in Equation C.14 leads to:

ow ow —1/3 4 | R -1
= — L I--1;"3cI
oC oC ( 3 3l OO
B oW1 OW
o (W LW bt (C.22)
‘ oC 3 oC

Finally, this relation can be substituted into Equation C.13, yielding:
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o = 2 13—1/3<8l10w~/ C’C'*l)-F7
J oC 3 aC
_ 1%
= 3131/3(1F oW pr 3F-<3Wf C)C‘ FT>
J aC 3 EYs;
_ EJ—ws(F W pr_low )
J oC 3 0C
(5 1Y )
J PYe; 3 0C
_ 2<F-@Z-FT—}mrfﬂZ-é>I)
J aC 37 \aC
2 /- W -\
- Z(F.—= .FT) . C.23
J( oC ) ( )

The validity of the last two steps in this derivation may not be evident and will be discussed next.

Let the spectral decompositions of the isochoric right and left Cauchy Green deformation tensors
be given by:

3 3
C=) M, 5 B=) N, (C.24)
i=1 ]

where the eigenvalues of both tensors, i.e. the isochoric principal stretches \;, are of course the
same. The eigenvectors of both tensors differ by a rotation; the principal stretch directions 7,
correspond to the reference state of the material, while 7i; correspond to the deformed (current)
state. Now, the deformation gradient tensor can also be written in terms of these quantities:

3
i=1

In addition to this, the derivative 2%

5& can also be written in this way:

3
oW
T = Y a,Tio, o, (C.26)
oCc =

The trace of the second order tensor F - % - FT can now be elaborated:

-~ OW e
tr(F~L-F7> = tr
oC

3
= Tr (Z A, ;\f’l_)‘ﬂ_il>

1=1
3 _
= tr Zac,/\?ﬁolﬁol>
i=1
ow -
- tr<‘ o -c), (C.27)
oC

thus proving that the above derived Cauchy stress tensor is indeed deviatoric.



Derivative of the conformational free energy

As stated in Equation C.6, the conformational free energy can be expressed as:

W NSQIcT

1+ n.)(1 — a2 ~ =\ ! ~ ; ~
( 7:)( N*)tr<C~(I+n*C) >+ln(det (I—I—'r]*C))+ln(1—aftr<C>) .
1 —a2tr <C’)
} (C.28)
The derivative of this expression with respect to C' is now determined step by step. As shown in
the first intermezzo, the derivative of the trace of a tensor to the tensor itself can be written as:

am: <C) =TI (C.29)
oC
The next part of the derivative that is treated, is:
dtr <C’ . (I + s C’)_1>
= _
oC
; = - ‘ -1 ¥
i dtr<c, (I+71*C’)4 ) | ?—(?.(1+7,*c~)_1+é- d(I+n*C? :8(I+'~n*c)
9 <é- (1+n.C) ) wE o(1+n.C) ac
= [Tz {4[- (I + 7% C~'>71 —~ <<(I + 7). C’)_l AT (I—i—'r}* C’)_l> Tk 4[>1|
= I:'r. <I+'I]*é)_l —ne I (C’ (I+'I]*C~'>¥l AT <I+7}*C‘>1>
= I- <I+’I]*(:'>7l — M (IC’) : <([+7]*C~’);l AL (I+'r]*é)]>
= (I + 7 C~'>“l —a 0 ((I+r)* (:‘)71 2. (I+n* C’>“1>
= (I+7]*(:‘> ! — M« <é <I+'r]*(:‘>l> A7 (I+n*é>7l
= (I + 1) C')il — g < (I + 7 (:’)¥l . (I + 1) C’)_l . (C.30)
The next part of the derivative to be considered is:
N 0 In (det <I~+ 1 C’)l
oC
J In (det (I + 14 C)) 0 det (I + s C’) . 0 (I + 1 C’)
h O det (I + 1) C) 19} (I + 14 C’) . oC
1 . AT oC
= mj det ([ + N C’) (I + N C) D T
=1
= (I + N C) to T
= n (1+0.0) ! (C.31)
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where use has been made of the fact that the derivative of the determinant det(A) of a second-
order tensor A with respect to that tensor is equal to det(A)A~T. The last part of the derivative
to be considered is:

*

aé(
(

0 In (lf(y‘ztr

- (C) I. (C.32)

Putting all elements together, the desired expression for the derivative is obtained:

s - e )
+%Ji*2)%—(é(—l){f) ((I + N C’)vl — N« . (I + 7 C’)_l . (I + N é:|_1>
—a2tr
1. (I + 1 C‘) e ol I. (C.33)

1—a2tr (é)

Calculating the Cauchy stress response

Using the relations introduced in previous sections, the Cauchy stress can simply be obtained by

substituting Equation C.33 into Equation C.23, leading to a number of tensor multiplications that

are first elaborated, before considering the entire expression for the stress. Using Equation C.24,
one of the terms that appear in Equation C.33 can be written in terms of its principal values:

(rrne) =y CEn

I+ n C) = —‘ﬁfi()_' ’fi()i E C.34

Now, one of the terms that will appear in the Cauchy stress expression can be rewritten (making
use of Equations C.24 and C.25):

and a second one:



= F. <C’- (I+n*é)._| . (I+71*(~3')41> . FT

- B-(I—l—n*B)_l-(I+n*B)7l~B. (C.36)

Finally, the expression for the Cauchy stress tensor can be completed by substituting Equation
C.33 into Equation C.23 and rewriting using the expressions that were just derived:

o= N"‘;"T (B-z)d, (C.37)

where the tensor Z is introduced:

gy )
+Qlﬁ*2)ilT_Bn)f) ((I + N B)Al — M (I + 1y 3)71 : (1 + 74 B>_l : B>
— af tr

(}2

+1). (I + 7. B)—l -~ 1—7" I. (C.38)

—a?tr ( .~>
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