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Abstract 

In most established const it ut ive rnoclels descri bing glassy polymers, strain ha rdening is mocleled as 
a rubber-elastic response of t he entanglement network. T his approach works well when describing 
t he mechanica! response i11 experirnents where t he deformation increases monotonically, but it fails 
when the loading clirection is reversed . This implies t hat t he response of orientecl glassy polymers 
cannot be capt ured in t his manner. Recent ly it was proposed that this issue can be resolved by 
modeling strain hardening with a combined visco 11s and elast ic contribution . Other in cl icat ions t hat 
a rubber-elastic st rain ha rclening model is inadequ ate, is tha t it fails to describe the experirnentally 
observed effects of strain rate and temperature. This stucly aims to characterize the proposed 
viscous contribution of st ra i11 ha rdening by evaluat ing t he int rinsic behavior of polycarbonate (PC) 
over a la rge range of straiu rates and temperat ures. Frorn t his, it is conclucled t hat t he deforrnation 
clepenclence mani fests itself in t he rate constant aud t he activation energy, both parameters in t he 
Eyring flow st ress. W it h simulat ions using t he Eindhoven G lassy Polymer (EGP) model it is 
demonstratecl t hat t his approach quant itatively capt urcs t he large strain mechanical response of 
PC over a vast range of strain rates and tem peratures. Moreover , t he acl aptecl model prov icles 
q 1ia11t itat ive preclict ions of t he yielcl kinetics of oricntccl polymers. 



Chapter 1 

Introduction 

The post-yield response of glassy polymers displays two characteristic phenomena: (i) strain soft­
ening, the initial decrease of true stress with increasing strain, which is related to a structural 
evolution that reduces the material's resistance to plastic deformation, and (ii) strain harden­
ing, characterized by the increase in stress at high strain, which originates from the network of 
entangled polymer chains that orients with deformation. The macroscopie behavior of a glassy 
polymer is strongly determined by the interplay between these two effects. On the one hand, 
strain softening tends to destabilize the deformation, which may lead to the formation of localized 
plastic deformation zones, especially in the vicinity of stress concentrations. The evolution of 
these plastic zones, on the other hand, strongly depends on the stabilizing effect of strain hard­
ening. A relatively strong strain hardening effect stabilizes the deformation zones, which enables 
them to expand in a controlled fashion, leading to macroscopically ductile behavior such as shear 
band formation and necking. With insufficient strain hardening, in contrast, the material tends 
to form crazes. These are extremely localized zones of plastic deformation, which may lead to 
the formation of cracks, resulting in macroscopically brittle behavior [3, 20]. Therefore, it is clear 
that a better understanding of the origin of strain hardening is an essential aspect in the design 
of polymer systems [18]. 

An important observation in this field was that, when heated above the glass transition tempera­
ture T9 , the plastic deformation of a glassy polymer is almost fully recovered [14] . This irnggests 
that the entanglement network remains largely intact during plastic deformation, inspiring Haward 
and Thackray [15] to propose a 1-D constitutive relation in which the postyield stress response 
is decomposed in two components. A viscous component, which is referred to as the flow stress, 
describes the intermolecular interactions on a segmental scale. In parallel, an elastic component 
is used to model the entropic-elastic response of the entangled molecular network. This concept 
is employed in several 3-D constitutive models, such as the Oxford Glass-Rubber (OGR) model 
[6], the Boyce-Parks-Argon (BPA) model [4] and the Eindhoven Glassy Polymer (EGP) model 
[13, 16]. In all of these models, the experimentally observed strain hardening is modeled using a 
nonlinear rubber-elastic contribution originating from hyperelasticity theory. Generally, these can 
be expressed as: 

CY = NkT · f(>.), (1.1) 

where N describes the network density, i.e. the number of chains per unit volume in the etwork, 
k is Boltzmann's constant, T the temperature and f (>.) a measure of the strain. These models 
prove useful from a phenomenological point of view, by describing the constitutive behavior below 
T9 for constant temperature and strain rate, but all exhibit important inconsistencies with the 
underlying polymer physics and experimental observations. Firstly, the apparent network density 
required for fitting the experimental results is orders of magnitudes larger than the entanglement 
density evaluated from the melt [11]. Secondly, strain hardening is sensitive to the applied strain 
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rate [28], which is inconsistent with the rubber-elastic modeling of the phenomenon. And thirdly, 
strain hardening decreases with increasing temperature [1 2], which is inconsistent with entropie 
elasticity. Clearly these are major flaws and it is therefore eminent that improvements are needed 
to solve these problems. 

Considering the inconsistencies in these kind of models, there is a growing recognition that they are 
inadequate in describing large deformations in polymer glasses over a wide range of strain rates and 
temperatures. One possible route to improve this is the introduction of a viscous contribution to 
strain hardening, as was explored by Wendlandt et al. [28], who presented experimental evidence 
of a rate dependence in the strain hardening for a number of polymers. Their method of introduc­
ing a deformation dependence in the Eyring flow stress via the activation volume proved successful 
in describing uniaxial compression experiments at various strain rates. Another indication of a 
viscous contribution to train hardening was provided by Senden et al. [24], who investigated the 
Bauschinger effect in oriented polymers. This Bauschinger effect was observed when comparing 
tensile tests with compressive tests on samples with the same level of orientation: in tension the 
yield stress increased with preorientation, white in compressionit remained the same. With consti­
tutive models like the ones mentioned before (OGR, BPA, EGP) , this Bauschinger effect can not 
be described. By means of a gedankenexperiment it was rationalized that t his could be solved by 
modeling strain hardening with both a viscous contribution and an elastic contribution. Further­
more, it was shown that for the resulting deformation dependence in the flow st ress, basically two 
modeling choices are at hand. The flow stress is described with an Eyring type relation [10], which 

(/) 
(/) 

~ 
t5 
"O 
<i5 
5= 

V*(t..) 

log( strain rate) 

(a) 

(/) 
(/) 
Q.) ,._ 
t5 
"O 
<i5 
5= 

log(strain rate) 

(b) 

Figure 1.1: Schematic illustrat ion of t he effect of deformation on the yield kinetics in case of a 
deformation dependent ( a) activation volume, and ( b) rate constant. 

is characterized by two parameters. How the material is affected by strain rate is captured by the 
activation volume V * (i.e. yield kinetics), white a rate constant i 0 determines the initia! state of 
the material. This implies that a deformation dependence in the activation volume (Figure 1. la) 
can be interpreted as a gradual change of the yield kinetics, i.e. the slope when plotting yield 
stress as a function of the logarithm of the strain rate, with increasing deformation; modeling it 
in the rate constant (Figure l.lb) leaves the yield kinetics (i.e. the slope) unaffected, but instead 
shifts the process to lower strain rates . 

Over t he past years, t he Eindhoven Glassy Polymer (EGP) model has become well-established for 
accurately describing and predicting the mechanica! response of amorphous polymers in transient 
loading. However, it a lso exhibits the aforement ionecl major fl aws that a re assoc iated with model­
ing strain hardening as a purely rubber-elastic phenomenon. The goal of this st ucly is to improve 
its performance by investigating the possibilities of a viscous contribution to st rain harclening, 
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making use of the relevant experimental observations that have been reported in literature, while 
preserving its qualities. Polycarbonate is used as a model material. After a brief introduction of 
the mechanica! behavior of polymers and its relation with temperature and strain rate (Chapter 
2) , the phenomenology of deformation dependence of flow stress is invest igated (Chapter :i). The 
EGP model in its present form and the implications of a viscous contribution are discussed in 
Chapter 4. Finally, in Chapter 5 the modifications are quantified and compared to experimental 
data using numerical simulat ions. 
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Chapter 2 

Background 

Intrinsic behavior 

The int rinsic deform at ion behavior , defined as the true stress-strain response during homogeneous 
deformation, for polycarbonate is shown in Figure 2.1, measured in uniaxial compression at dif­
ferent strain rates and temperatures. At small strains a viscoelastic region is observed, which is 
init ially linear elastic but becomes progressively nonlinear with increased loading. At the yield 
point, which is the first maximum in the curve , the stress is high enough to overcome intermolec­
ular forces, allowing large scale segmental motion of the polymer chains. The subsequent stress 
decrease with increasing strain is called strain softening . This decrease in stress tends to destabilize 
the deformation , wh ich, in other loading geometries such as tension, may lead to strain localiza­
tion . After a minimum in the st ress (lmver yield point) the mechanica! response is dominated 
by strain hardening, causing an upswing in stress that stabilizes the deformation . As ment ioned 
in the introduction , strain hardening originates from the stretching of the entanglement network. 
Polycarbonate exhibits limited strain softening, which can easily be stabilized by the strong strain 
ha rdening, resulting in a generally tough response. 
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Figure 2.1: The intrinsic deformat ion behavior of polycarbonate, measured in uniax ia l cornpression 
(a) at different true strain rates and (b) at different temperatures (data taken from [9]) . 

Effect of strain rate and temperature 

Whcre the intrinsic bchav ior gives insight in the genera! stress-strain response, the strain rate and 
te rnperature clepenclence can be st udiecl in more detail by considering the yielcl kinetics . T his is 
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demonstrated in F igure 2.2, where the upper and lower yield points of the curves in F igure 2.1 
are plotted as both a function of strain rate and of temperature. From F igure 2.2a it is clear t hat 
both the ( upper) yield stress and the lower yield stress linearly depend on the logarithrn of the 
applied strain rate. Moreover , the slopes a re equal, as is demonstrated by the yield drop, i.e. the 
difference between upper and lower yield , which is constant. This indicates that both are governed 
by t he same kinetics. In Figure 2.2b it is demonstrated that the upper and lower yield stress are 
also linearly dependent of temperature, and again, with a constant yield drop. Such behavior 
implies that the yield kinetics are governed by only one molecular relaxation process in t his range 
of conditions. This type of kinetics are well described by the Eyring flow theory [10]. T his t heory 
describes t he jump of segments of macromolecules over a potentia l barrier, causing plast ic flow. 
Here, the Eyring relation is written in terms of strain rate and temperature: 

(2.1) 

where V* is the activation volume which determines the stress dependence, 6.U is the activation 
energy which determines the temperature dependence, Èo is a rate constant, R the universa! 
gas constant , k is Boltzmann's constant and T the absolu te temperature. The fact that this 
relation reflects linear behavior, on the one hand as a function of the logarithm of the strain 
rate, on the other as a function of temperature, becomes clear when realizing that for large x, 
sinh- 1 (x) ~ ln (2x). For the strain rate dependence, the slope is determined by the activation 
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Figure 2.2: Yield stress, lower yield stress, and yield drop for the data from Figure 2.1, as a 
function of (a) true strain rate and of (b) temperature. 

volume V *, white the activation energy 6.U describcs the dependence of temperature. For the 
dependence of temperature, this dist inct ion is somewhat less clear, as here the slope is determined 
by both the activation volume, the strain rate, and the rate constant Èo, while the ratio of act ivation 
energy and act ivat ion volume gives the st ress at a bsolute zero. 

Thermorheological complex behavior 

It has long been known that for many polymers multiple rnolecular relaxation mechanisms are 
act ively contributing to the deformation behavior. This is a lso the case for polycarbonate. At 
room temperature and moderate strain rates, only one process contributes to the yield kinetics , see 
Figure 2.2a. This is commonly referred to as the a process, which is associated with the primary 
glass transition. For high strain rates and /o r for temperatures well below room temperature a 
transit ion is observecl. A second process comes into play, markecl by a clistinct change i slope, 
see F igure 2.3, which will be referred to as t he /3-process. This phenomenon was a lready reportecl 
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by Roetling [22] and Bauwens-Crowet et al. [2]. T hey used the Ree-Eyring modification [2 1] of 
Eyring's theory to describe t his occ urrence of multiple processes, which assumes t hat at the same 
average rate, t he stresses are additive: 

(2.2) 

T he expressions for t he stress contributions of t he a and (3 processes are simila r to t hat in Equa­
tion (2.1) , but now with parameters descri bing t he t ime-temperature behav ior of t he individual 
processes: 

kT 1 [ i (6.Ux)] 
(Jx = v,,,· sinh- Êo ,x exp RT with x = a, (3 . (2.3) 

It is emphasized that t he a- process is a lways present in the deformation kinetics. So depending 
on t he condit ions the yield kinetics are eit her in the a or in the (a + (J ) regime. As an example, 
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F igure 2.3: Thermorheologically complex behavior of polycarbonate: (a) tensile y ield stress as 
a funct ion of strain rate for var ious ternperatures [17], a nd (b) tensile yield stress as a function 
of ternperat ure at i = 4.16 • 10- 3 s - 1 [2]. Sy mbols repre!:>ent experirnental data and solid li nes 
fits using Eq uation (2.2) wit h the parameters from Table 2. 1. Dashed lines represent t he a­
contribution to the total tress. Schernatic ill11st ration of t he yield st ress as a function of ( c) strain 
rate and (d) of ternperature, fo r the Ree-Eyring relation. 

F igure 2.3a shows the tensile y ield stress of PC as a fum:tio11 of st ra in rate fora nurnber of different 
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Table 2.1: Eyring parameters for PC, as used in Figure 2.3. 

Figure X V* 
X D..Ux Ëo,x 

[nm3 ] [kJ/mol-KJ [s- 1] 

2.3a 
0: 3.21 289.9 5.76 · 1028 

/3 3.05 64.7 6.42 · 1011 

2.3b 
0: 3.21 312 3.2 · 1030 

/3 3.05 79 5.8.1017 

temperatures, adopted from [17] . At 40°C only one slope is seen over the whole range of strain 
rates, while at room temperature, with increasing strain rate, a change in slope can be identified. 
The former is governed by the 0:-process for the whole experimental range, while the latter shifts 
from the 0: to the ( 0: + /3) regime at i ~ 10° s- 1. The transition is shifting to lower rates with 
decreasing temperature. This shift in the transition to lower temperatures can also be visualized 
by plotting the yield stress as function of temperature, see Figure 2.3b (adopted from Bauwens­
Crowet et al. [2]), which is actually equivalent to evaluating the data in Figure 2.3a at a constant 
strain rate. Again, a transition is observed, which suggests that for this particular time scale 
(i.e. strain rate) the transition occurs at a temperature in the range of -100°C and -50°C. The 
Eyring parameters used in Equation (2 .3) to describe the data in Figure 2.3 are listed in Table 2.1. 
For Figure 2.3a these where adopted from [17]; for describing the data in Figure 2.3b, the same 
activation volume was used, while determining the other parameters for best fit results. To clarify 
the effect of both processes, in Figure 2.3a the fit for room temperature is split up in its 0: and 
(0: + /3) contributions. This split is also made in Figure 2.3b, where the dashed line represents the 
stress contribution from the 0:-process and the dashed-dotted line that of the /J-process. Figures 
2.3c and 2.3d give schematic illustrations of the effect of the parameters and variables in the Ree­
Eyring relation. Typical expressions for the slopes of the strain rate and temperature dependence, 
and the asymptotic/theoretical values, are also indicated. 
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Chapter 3 

Phenomenology 

In the introduction it was pointed out that the stress response of PC at large strains cannot be 
properly described by a purely elastic strain hardening contribution; an issue which can be re­
solved by introducing a deformation dependence in the flow stress. This effect can be quantified 
by studying the evolution of the deformation kinetics as a function of the (pre)strain. T here are 
basically two ways to do this. The first option is to predeform a sample and subsequent ly deter­
mine its yield kinet ics at this level of prestrain. Possible ways to impose this preorientation is by 
deforming a tensile bar to a specified draw ratio, or cold rolling of sheets to get a specified planar 
deformation. This method was used by Senden et al. [24] on PC tensile bars, that were mechani­
cally rejuvenated so that different levels of prestrain could be homogeneously applied in uniaxial 
tension. Another option to asses the influence of strain on the deformation kinetics is to take the 
whole stress-strain response into account. In t his method, the rate and temperature dependence 
is not only evaluated at yield, but its evolut ion with increasing strain is monitored. T herefore, a 
distinction is made between between, on t he one hand, 'yield kinetics' (i.e . evaluated at yield) and 
on the other hand deformation kinetics, meaning the exact same kinetics, but now evaluated at 
an arbitrary level of strain. The method of evaluating the intrinsic behavior itself was previously 
employed by Wendlandt et al. [28], who in this manner investigated the 11011-linear rate-dependent 
strain hardening behavior of a number of polymer glasses . However, one d isadvantage is that only 
the large strain regime can be evaluated, because results are otherwise obscured by strain softening. 

Despite its disadvantage, in this study the last method will be employed. Main reason for this 
choice is the availability of the two sets of data depicted in Figure 2.1. Both series of compression 
testing were done on t he same grade of PC with the same history. When comparing these two 
sets, it is clear that t his range of temperatures shows a much wider range of (yield) stresses than 
t he applied range of strain rates, compare Figures 2. l a and 2. 1 b. Probing deformation kinetics 
by performing tests at different strain rates has two major limitations. At low strain rates t ime 
becomes a limiting factor, as a compression test at 10- 5 s- 1 takes about a day to complete. 
For high strain rates viscous heating of the sample becomes a limit ing factor. At higher strains 
t he sample temperature increases, as the amount of heat generated due to energy dissipation 
during plast ic deformation is greater than the amount that is extracted through convection and/or 
conduction to the environment . T his increase in temperature causes the flow stress the decrease, 
obscuring the resu lts. For these reasons time-temperature superposition is often used: when the 
experimental time-scale is limited, the characteristic timescale of the relaxation process is shifted 
by testing at a different temperature. This can a lso be understood from Equation (2.1), since 
the strain rate is scaled by the expression Êo • exp( - 6.U / RT). Here, the activation energy 6.U 
determines how the characteristic timescale of the relaxat ion process shifts with temperature. 
Therefore, the added value of hav ing a data set across a large range of temperatures is evident. 
Both data sets will be discussed separately in t he following paragraphs. 
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Figure 3.1: (a) Compression tests on PC at different true strain rates, as depicted in Figure 2.la. 
(b) Compressive true stresses at specified strain levels, corresponding with the markers, but now 
plotted as a function of strain rate. Dashed lines are a guide to the eye. 

Strain rate dependent data 

In F igure 3.la the stress-strain response of PC at different strain rates is given. These are actu­
ally the same curves as in Figure 2.la, but now markers are added at evenly spaced intervals for 
0.4 S:: E. S:: 0.9. In Figure 3.lb,these data points are plotted as a function of the applied strain 
rate. This clearly gives a similar result as the yield kinet ics, compare with Figure 2.2a, as the 
stress appears to be linearly dependent of the logarithm of strain rate for each level of strain. 
Furthermore, the slope appears to increase with increasing strain, as suggested by the guides to 
the eye in F igure 3.1 b. 

To aid the interpretation of these observations, the Ree-Eyring relation as given in Equation (2 .3) 
will be rewritten in a more convenient form. As for .T » 1, sinh- 1(.T) ~ ln(2x), the Ree-Eyring 
relat ion can be rewritten as a linear function of ln(i ): 

ü-~ - ln(c) -- ln -E.0 . -exp --kT . kT [ 1 . (-t::,.Ux)] 
x Vx* Vx* z ,x RT 

with .T = a, f] . (3 .1) 
........,,..., 

(I) (II) 

Herein , the part marked (I) represents the slope, and the part marked (11) the constant in the 
linear relation between stress and logarithm of strain rate; see F igure 2.3c for an ill ustrat ion of the 
effect of these parts. Therefore, a strain induced change of slope in the deformation kinetics of a 
process (at constant temperature) manifests itself as a deformation dependent activat ion volume 
V*(c). As it is observed that the slope indeed increases with the strain, this seems to be the 
case. In fact, Wendlandt et al. [28] carne to exact ly this conclusion. The performance of the 
Eyring model with a deformat ion dependent activation vo lume is visualized in Figure 3.2a .. where 
the experimental data is fitted using a different activation volume for each strain level. Herein, 
the activation energy of the a-process (Ta ble 2.1,parameters associated with F igure 2.3a) was 
used, i 0 was fitted on E. = 0.4. Note that in this case a single molecular relaxat ion mechanism 
is ass umed , which changes with deformation. At the lower strain levels t his method obviously 
works well , but at higher strains the experimental data points are less accurately descr ibed . This 
is caused by the fact that , as the other parameters remain constant , all the lines coincide in a 
single point at ü = 0, see Figure l.la. Another interpretation of the phenomenon was given by 
Senden et al., who suggested that, in the case of PC, not the slope of the deformat ion kinetics itself 
changes with deformation, but that the obscrved change iu slope is actua lly caused by a ~:hifting 
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F igure 3.2: Compressive t rue stress at different strain levels as a function of strain rate, see F igure 
3.lb. Symbols represent experimenta l data and solid li nes a re fi ts using Equation (3. 1) with (a) 
a deformation dependent activation volume (single process) and (b) deformation dependent rate 
constants for both t he a:- and ;3-process. 

of t he ;3-process. This implies that at t he least t he /J rate constant i o,{3 , but in fact a lso i o,a, are 
deformation dependent, rather t han t he activation vo lume. With deformation, see F igure l.lb , t he 
moment t hat t he ;3-process starts play ing a role shi fts to lower stra in rates. T his is demonstrated 
in F igure 3.2b, where Ree-Eyring fits a re shown using values of rate constants i o,a and io ,/3 t hat 
are fitted separately fo r each strain level. Values fo r t he activation volume and activation energy 
for both processes were taken from Table 2.1 (parameters associated wit h F igure 2.3a). At t he 
lower strains, t his method a lso works well , compared to t he one previously discussed. At the higher 
stra ins (0.7- 0.8) it ap pears to perform somewhat better , but t he difference is minimal again at 
t he highest strain depicted. T herefore, as ha rdly any difference in qua li ty can be distinguished 
between the predictions from both of t hese rnodeling choices, it remains inconclusive which one is 
correct. 
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Temperature dependent data 

Wit h t he data at different strain rates alone, see Figure 3.2, it is not possible to identify which 
modeling choice is correct, as the range of strain rates is insufficient to make the distinction 
between t he kinetics of one process changing with deform ation , or the kinetics of two processes 
shifting with deformation. As mentioned before, compression tests at varying temperatures probe 
a much wider range of deformation kinetics and provide a lot of additional information on the 
st rain dependence of these kinetics . Therefore, the same procedure as with the compression tests 
at different st rain rates is employed: the compressive stress-st rain curves are evaluated at evenly 
spaced levels of st rain, after which these dat a-points are plotted as a function of temperature, 
see Figures 3.3a and 3.3b. For the lower strains (é < 0.6) the stress is linearly dependent of the 
temperature. At higher strains, however, a transition in the slope can be identified , similar to the 
behavior found in the yield data of PC by Bauwens-Crowet et al. , see Figure 2.3b. This indicates 
that with deformation, the ;3-process shifts so that it already starts contributing to the response 
at higher temperatures. More specifically, it is clear from F igure 3.3b, that t he stress response 
at 20°C starts in the o:-regime but gradually shifts to the (o: + ;3 )-regime with increasing strain. 
As t hese tests were dorre at a st rain rate of 10- 3 ç 1 , this conclusion is also true for the strain 
rate dependent data: at Ë = 10- 3 ç 1 it shifts from the o:- regime to the (o: + ;3)-regime with 
increasing deformation. This means that the activation volumes (i .e. the slopes) are independent 
of deformation for both processes; the deformation induced changes a re caused by a shift of the 
two processes (i.e. a change in rate constant Ëo,x ) , see F igure 3.2b. 
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Figure 3.4: Compressive true st ress at different strain levels as a function of temperature, see 
F igure 3.3b. Symbols represent experimental data and solid lines are fi ts using Equation (3.1 ) 
with (a) deformation dependent rate constants only and (b) defo rmat ion dependent rate constants 
and activation energies. 

Now, the temperat ure dependent dat a in F igure 3.3b can also be described using the Ree--Eyring 
relation. T he act ivation volume and activation energy for both processes are given in Table 2.1 
(parameters associated with Figure 2.3a) and the values of Ëo,a and Ëo,{3 at each st rain level are 
equal to those in the fits of Figure 3.2b. The results are shown in F igure 3.4a. While the data 
points at 20°C a nd at the lowest evaluated strain (é = 0.4) are accurately described,the model does 
not capture the experimental behavior at all. It even a ppears t hat while the data points for each 
level of st rain a re converging towards higher temperatures, the pred ictions a re doing the opposite. 
T he reason fo r t his effect is best explained by rewrit ing the Ree-Eyring relat ion (Equation (2.3)) 
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again , but now as a linear function of t he temperature: 

CJ ~ [ ~ In (-Ê )] T + 15_ [D>..Ux ] 
X v; ½io,x R v; 

'----v----' 
(1) ( Il ) 

with x = a, (3. (3.2) 

Herein the part marked (I) represents the slope of the temperature dependence of the stress, which 
is determined by the strain rate i, the rate constant i o,x and the activation volume v; . The part 
marked (II) is the constant offset in the temperature dependence, i. e. the theoretic value of the 
stress at absolute zero (T = 0 K) , which is characterized by the ratio of the activation energy 
and activa tion volume of the individual processes, see F igure 2.3d. As both of these parameters 
a re considered const ants in this case, the predictions a ll converge to a single stress level towards 
absolute zero , regardless of the strain level. However, the experimental dat a suggests that the 
value of the stress at O K increases with deformation, implying that either the activation energy or 
the activation volume should change with deform ation. Because it was previously concluded that 
the Jatter does not change with deformation, the conclusion must be drawn that the activation 
energy is deformation dependent. This means t hat deformation seems to have a combined time­
temperature effect : 

(3.3) 

implying t hat t he fits in Figure 3.2b provide information on i 0,x(,>-) , rather than Ëo,x( À) . T he 
data obtained at varying temperatures shows us how the total effect should be distributed over 
t he rate constant i o,x( À) and the activation energy D>. Ux( À). T he result is shown in Figure 3.4b, 
which is clear evidence that, with a deformat ion dependent rate constant and activation energy, 
t he Ree-Eyring relation describes the experimentally observed influence of deformation on the 
cleformat ion kinetics across a wide range of temperatures and st rain rates. 
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Chapter 4 

Constitutive modeling 

lt is now established that deformation affects the flow stress, i.e. that strain hardening of glassy 
polymers is a partly viscous process, and that this can be captured by introducing a deformation 
dependence in the activation energy and the rate constant. The next step is to integrate these 
findings in a full, three-dimensional constitutive model that also features an elastic strain hardening 
contribution, since it was pointed out in the introduction that both contributions are necessary 
for capturing the strain hardening behavior. Here, the Eindhoven Glassy Polymer (EGP) model 
is used, as it has proven its capability of describing, but also predicting the mechanica! behavior 
of amorphous polymers [16, 27]. First the basic kinematic relations that are used in the course of 
this thesis are presented. Then, the multi-process version of the EGP model, as described by Van 
Breemen [26], are discussed. Finally, the modeling of both the elastic and the viscous contribution 
to strain hardening are addressed. 

4.1 Kinematics 

In the EGP model all kinematic representations are based on the concept of a virtual, stress­
free intermediate configuration, which implies a multiplicative decomposition of the deformation 
gradient tensor F into an elastic and a plastic contribution: 

( 4.1) 

lt is assumed that plastic deformation is incompressible, which implies that the volume change is 
governed solely by the elastic part of the deformation: 

J = det(F) = det(Fe)- (4.2) 

Non-volumetrie deformation is described using the isochoric left Cauchy-Green deformation tensor 

(4.3) 

where F, the isochoric part of the deformation gradient tensor, is defined as F = J - 1/ 3 F. In an 
analogous manner the elastic part of the elastic left Cauchy-Green deformation tensor Êe can be 
calculated. The velocity gradient tensor L can be written as the sum of the symmetrie deformation 
rate tensor D and the skew-symmetric spin tensor n. Using the decomposition of F (Equation 
(4.1)) the velocity gradient tensor L can also be split into an elastic and a plastic velocity gradient 
tensor. 

L = F'·F - 1 = F -F- 1 +F .p -F- 1 .p- 1 
e e e p p e 

= Le+ LP 

= De + O e + Dp + Op. 
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( 4.4) 

( 4.5) 

( 4.6) 



A last issue that need to be resolved is that the decomposition of Equation (4.1) is not unique, 
as it remains undetermined how the total amount of rotation is split in an elastic and a plastic 
part. It was shown by Boyce et al. [5] that this could be solved by t aking the plastic spin tensor 
equal to the null tensor (Op = 0), which implies that the plastic velocity gradient tensor equals 
the plastic deformation rate t ensor: Lp = Dp . 

4.2 Stress calculation 

In the EGP model, the total stress is split into the driving (or flow) stress a-8 and the hardening 
stress a-r . The first is attributed to intermolecular interactions that determine the viscoelastic 
properties at small deformations, and plastic flow; the latter can be interpreted as a rubber 
elastic contribution of the entanglement network. Here, the multi-process representation of the 
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Figure 4.1: Mechanica! ana logue (1-D) of the multi-process EGP model. 

EGP model is discussed , its mechanica! analogue depicted in Figure 4.1, as the model material 
(PC) shows a seconclary relaxation mechanism. This implies that the driving st ress contains a 
contribution from the a- and the ,8-process: 

( 4.7) 

The elastic contribution from the entangled network is modeled with a neo-Hookean relation: 

( 4.8) 

governecl by the strain harclening modulus Gr. Due to the fact that plastic cleformations are 
assumecl to be incompressible, it is assumecl t hat the hydrostatic part of the clriving stress clepencls 
on the total vo lume change: 

a-~' = i'i,(] - 1)1, ( 4.9) 

which implies a single bulk modulus /'i,. The cleviatoric part of the clriving stress for each process 
is defined as: 

with :i; = a, ,8, (4.10) 

- l where Gx clenotes the shear modulus and B ~,x the cleviatoric part of the isochoric elastic left 
Cauchy-Green strain tensor. For each process, the cleviatoric clriving stress is couplecl to the 
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plastic deformation rate through a non-Newtonian flow rule: 

(Td D _ s,x 
p,x - 2ryx(T, fx,P, Sx) 

with x = ex, /3. ( 4.11) 

As indicated in Equation (4.11), the viscosity of each relaxation process depends on its equivalent 
stress fx, pressure p, temperature T, and the thermomechanical state of the material Sx, which 
includes the effect of intrinsic strain softening. 

(
6-Ux ) fx/To,x (µ xp ) _ 

'r/x = 'r/o,xexp RT . h( - / ) exp - exp (Sxhv)) 
sm Tx To x To x 

'---v---"~~'-v-' 

( 4.12) 

(!) (II) (III) (IV) 

The temperature dependence (part I) is governed by the activation energy 6-Ux; part II represents 
the stress dependence with characteristic stress To,x; the pressure dependence part III is governed 
by the parameter µx; in part IV the state parameter Sx is a function of the equivalent plastic 
strain 'Yr· Part I and II are based on Eyring's flow relation ( compare with Equation (2.3)), part 
III and IV result from an extension of the model by Govaert et al. [13] . The initia! viscosity is 
denoted by 'r/O,x· The characteristic stress To, x, pressure Px, and equivalent stress fx are defined 
as: 

kT 
To,x = V*' 

X 

p = - ½tr((T), 

( 4.13) 

(4.14) 

(4.15) 

where the activation volume v; governs the temperature dependence of the characteristic stress. 
It is stressed that this is not the same activation volume as the one presented in the Eyring model. 
The reason for this confusion is that the characteristic stress in the Eyring relation ( defined as 
kT /V* in Equation (2.3)) is a uniaxial stress measure, whereas the characteristic in the EGP 
model ( To as defined in Equation ( 4.13)) is a pressure modified, shear-equivalent stress measure. 

As mentioned before, the state parameter Sx only depends on the equivalent plastic strain, and 
its evolution is described as follows: 

Sx = So,x (4.16) 

where the parameters rx,i (i = 0, 1, 2) govern the kinetics of intrinsic strain softening, which can 
be different for each process involved. The initia! (thermodynamic) state is defined by So,x and 
depends on the thermo-mechanica! history. As can be seen in Equation (4.12), the state parameter 
is given as a function of the equivalent plastic strain, which is assumed to be coupled to the process 
with the highest initial viscosity, in this case the ex process. The evolution of the equivalent plastic 
strain is defined as follows: 

( 4.17) 

Up to now, a single relaxation mechanism (single-mode) for each process is assumecl. However, for 
PC both the pre-yield behavior and the transition at yield from elastic to (visco)plastic behavior is 
described poorly with such a single mode implementation. Therefore, the model can be extended 
to account for multiple relaxation times (multi-process). This extension is straightforward, see 
Van Breemen et al. [27]; similar to the multi-process approach (Figure 4.1), the cleviatoric part 
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of the driving stress of each process is modeled as a set of parallel Maxwell elements. The multi­
mode approach should, however, not be confused with the concept of mult iple processes, as for 
the former the relaxation kinetics are the same for all modes, whereas for the Jatter, these kinetics 
are essentially different for each process. 

4.3 Strain hardening: elastic contribution 

It is clear that the large-st rain response of glassy polymers is governed by an interplay between 
elastic and viscous st rain hardening. Before int roducing a viscous contribut ion to st rain harden­
ing in the EGP model, a closer look is taken at the elastic contribution. As mentioned before 
this elastic part is modeled with a neo-Hookean rela tion, see Equation (4.8), which in the case of 
uniaxial loading is represented by a linear relation between stress and l>- 2 - >- - 1 1, where À denotes 
the draw ratio . In Figure 4.2, the stress response of a mechanically preconditioned tensile bar of 
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Figure 4.2 : Comparison of neo-Hookean and Edwards-Vilgis model for st rain hardening in the EGP 
framework. Symbols represent experimental results in tensile from a mechan ically preconditioned 
sample of PC, data taken from [24]. Predictions using the neo-Hookean model with low initia! 
viscosity ( dashed line) and high initial viscosity ( dashed-dotted line), parameters taken from [16]. 
Solid line is predict ion using Edwards-Vilgis theory for strain hardening. In all predictions total 
rejuvenated state is assumed (S0 = 0). 

P C is depicted [24]. T his preconditioning consists of a large strain torsion of t he axisymmetric 
tensile bar , after which it is twisted back to its original position. T he reason for t his treatment is 
to eliminate st rain softening, ensuring homogeneous deformation of the sample in a tensile test. 
In modeling terms, t his can be regarded as a removal of the initia! age S0 of the sample, see Equa­
tion (4. 16) , bringing it to a rejuvenated st ate (S0 = 0). Indeed, when plotting the mechanica! 
response as a function of (>-2 - >- - 1), see F igure 4.2, strain softening seems to be eliminated by 
the preconditioning. 

In the same figure the dashed line represents a simulation of t he experiment wit h t he EGP model, 
using parameters representative for P C, as determined by Klompen et al. [16]. T hese include a 
st rain hardening modulus of Gr = 26 MPa, equal to the one determined by Tervoort and Govaert 
[25]. lt is clear t hat the neo-Hookean model is not capable of describing the whole range of the 
stress-strain response. T he deviation at yield was actually attribu ted to incomplete rejuvenation 
of the sample (So I 0). T he origin of this ' resid ual age' is the fact t hat predeformation is not 
homogeneously distribu ted as the central fiber of the sample does not deform at all. Recent simu­
lation results [23], howevcr, show that this effect of t he incompletely rejuvenated core on the total 
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mechanica! response is minimal, implying that t he experimentally observed response as shown in 
Figure 4.2 tru ly reflects the rejuvenated response of the material. Therefore, it is suggested that 
a higher init ia! viscosity should be used to describe the stress at yield more accurately. This is 
shown in Figure 4. 2 by the dash-dotted line, where Gr = 20.5 MPa was used to capture the stress 
response at large strains. Indeed the yield stress is captured more closely now, but it introduces 
a new problem as well, since it performs even worse than the previous prediction at high strains. 

To resolve these problems, the use of another hyperelast ic model is proposed: the cross-link slip­
link model of Edwards and Vilgis [7], which is also used to describe elastic strain hardening in 
the Oxford Glass-Rubber (OGR) model [6] . Edwards-Vilgis' theory of rubber elasticity is , in its 
original form, based on two categories of interaction between molecules: slip-links ( entanglements) 
and cross-links. In the case of glassy polymers the last contribution is omitted, because no cross­
links are present. T his leads to the following expression for the conformational free energy [19]: 

( 4. 18) 

where N 8 represents the number density of slip-links, a* and 77* represent the degree of inextensibil­
ity of the chains and the freedom of movement of the slip-links, respectively, and k is Boltzmann 's 
constant. The free energy is written in terms of the principal stretch ratios >.i (i = 1, 2, 3), which 
are t he eigenvalues of the isochoric left stretch tensor V , as it is defined by the left polar clecom­
position of the deformation gradient tensor: F = V • R . As shown in Appendix C, equation (4.18) 
can also be written in tensor notation, as a funct ion of B: 

W = ½G,. [ (l + 77*)(l - _a; ) tr (iJ . (I + 77*B) - 1
) + tr (tn(I + 77*B)) + In ( 1 - a;tr(B) .)] , 

1 - a;tr(B) 
(4.19) 

which is more convenient as it eliminates the necessity of calculating t he eigenvalues and eigen­
vectors of t his tensor. Note t hat t he term N 8 kT is replaced wit h a constant strain hardening 
modulus Gr, as this elastic strain hardening contribution is assumed to be independent of tem­
perature. T his assumption is consistent with the original EGP model, where the entropie nature 
of t he neo-Hookean relation was also ignored , see Equation ( 4.8). The Cauchy st ress response of 
the Edwards-Vilgis model can be derived from hyperelasticity theory: 

2 äW r 
a = 1F· äC -F . (4.20) 

For the exact derivation of the stress from the free energy function the reader is referred to 
Append ix C. Finally, it is noteworthy that for the specia l case of a* = 77. = 0, t he response t his 
model coincides with a neo-Hookean response. 

Table 4.1: Edwards-Vi lgis parameters used in F igure 4.2 

G,. [MPa] a. [-] 77* [-] 

14.6 0.255 0 

In F igure 4.2, the solid line depicts the response of the EGP model, using the theory of Edwards­
Vilgis to desc ribe the elastic strain hardening behavior. T he Edwards-Vilgis parameters are listed 
in Table 4.1. As discussed in the Introduction, the entanglement network remains intact for 
glassy polymers that are plastically deformed below the glass transition temperature T9 , implying 
that there is no freedom of movement of t he slip-links: 77. = 0. Now only the a*-parnmeter 
determines how t he response of the model deviates from neo-Hookean behavior , th is being a more 
pronounced upswing in stress that ultimately leads to infinite st ress, i. e. fini te extensibility. It 

17 



is clear from Figure 4.2 t hat t his model is excellent ly capable of describing t he experimentally 
observed behavior , both at la rge st rains a nd around yield . As t he neo-Hookean model fails at 
describing these simultaneously, this is a significant improvement . 

4.4 Strain hardening: viscous contribution 

In Chapter 3 it was established that (at least ) part of t he strain ha rdening effect originates from a 
deformation dependence the flow stress. T herefore, an extension of t he EGP model is required in 
t he form of a deformation dependence in t he v iscosity. Because deformation in t he EGP model is 
expressed in terms of t he isochoric left Cauchy-Green deformation tensor .B, it seems t he obvious 
choice for modeling this deformation dependence. Of course, a scaled invariant function J(.B) 
should be used , as t he viscosity is a scalar property. This results in the following flow rule: 

a ~x 
D p,x = ,. - ' 

2rJx(T, 1\ , p, Sx, J(B )) 
(4.21) 

where t he viscosity is extended with t his deformation dependence, compared to Equation ( 4.11 ). 
Before actually characterizing this deformation dependence in the viscosity, it is first established 
what form the invariant function J(.B) sho uld have. Therefore, viscosity, see Equation (4. 12) , is 
expressed in a more simplified form: 

17* f rJ = _Q_ _ _ _ _ 
To sinh(f/To) ' 

( 4.22) 

where rJo contains the temperature, pressure, and state dependent contribut ions to t he viscosity: 

* [6.U µp - ] 
rJo = rJo exp RT + To + S(,p) . ( 4.23) 

When introd ucing a deformation dependence in t he viscosity, basically two opt ions are at hand: 
it can be int roduced in t he prefactor of Equation (4.22) , or in t he a rgument of t he hyperbolic 
sine. In both cases, however, it is merely a sealing of t he equivalent st ress f. As concl uded in t he 
previous section, strain ha rdening can be acc urately described wit h an Edwards-Vilgis relation. 
Nevert heless, for reasons of simplicity t he nco-Hookean model, see Equat ion ( 4.8), will be used as 
a sta rt ing point here. T his choice is mot ivated by the fact that in the limit of o, = r1, = 0, the 
repsonse of t he Edwards-Vilgis model equals t hat of t he neo-Hookean model. 

Now, by substit ut ing t he (deviatoric) nco-Hookean stress in the definition for t he equivalent stress 
(Equation ( 4.1 4) ), a deformat ion dependence of t he equivalent stress can be dcduced that exhibits 
neo-Hookean type behav ior: 

f G,. ✓ ½ iJd : iJcl 

Gr f (B ). 

After rearrangement, t his resul ts in t he fo llowing express ion : 

(4.24) 

( 4.25 ) 

( 4.26) 

Since the viscosity is characterized by sealing of t he equivalent stress, and t his equivalent stress 
in turn is proport ional to J(.B) , the same pro port ionality exists between t his funct ion a nd the 
viscosity. In C hapter 3 it was concludcd t hat both the rate constant and t he act ivation volume 
cha 11ge wit h deformation. A deformat ion-inducecl change in the rate constant is equivalent to 
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a change in initia! viscosity, since rJo = To/"ro, where To is deformation independent and i'o is 
the shear equivalent of the rate constant é'0 . This leads to the conclusion that the defonnation 
dependence manifests itself in the prefactor of Equation (4.22) , or more specifically: 

rJo ex f(B) and exp(~U) ex f(B). ( 4.27) 

It is of course possible to do the same procedure with the Edwards-Vilgis theory, but this would 
needlessly complicate both the model equations and the characterization of the moel with ex­
perimental data . This quantitative characterization and its application in the EGP model is the 
subject of the next chapter. 
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Chapter 5 

Simulation results 

In the previous chapter the genera! fr amework of t he EGP model and the modeling of strain 
hardening as a combinat ion of an elastic and a viscous contribution were discussed. Here, these 
findings a re fur t her investigated via numerical simulations. First, the elast ic and viscous cont ribu­
tions to strain hardening a re characterized . After t hat, the performance of the model is assessed 
by comparing numerical simulations with experimental data. 

5.1 Model characterization 

Ratio of strain hardening contributions 

The first step is to determine what part of t he total strain hardening or iginates from t he elas­
tic contribution. An answer to this quest ion was presented by Senden et al. [Senden2010], who 
investigated the relation between the Bauschinger effect in oriented polymers and strain hard­
ening. Thei r leading observation is reproduced in Figure 5.1, where the mechanica! response of 
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F igure 5.1 : An impress ion of t he mechanica[ response of PC in cycl ic, i.e. tension up toa certain 
strain and t hen compression back to its origina l length, uniaxial deformation. Data taken from 
[24]. 

mechanically preconditionecl samples of PC is cl epicted. As previously discussed in Sect ion 4.3, t he 
main reason for applying t his precondit ioning i:, to ensure homogeneous cleformat ion in tension. 
F irst, the specimen was loaded in tension with a constant true strain rate up to a predefined true 
strain level, afte r which the load was removed. T his was clone fo r several different strain levels. 
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Next, cylindrical specimens were machined from these preoriented tensile bars to perform uniaxial 
compression tests at the same absolute true strain rate. The results were combined with those 
of the tensile tests to give an impression of the actual behavior of PC when subjected to a cyclic 
loading path. This is illustrated in Figure 5.1, where the solid lines represent the tensile stage 
and the dashed lines the compression tests. It is clear that, especially at high preorientation, a 
strong Bauschinger effect occurs: at a prestrain of 0.6 the momentary yield stress in tension is 
approximately 100 MPa, whereas the corresponding yield stress in compression is only -25 MPa. 
After yield, the compressive stress response remains nearly constant at approximately 40 MPa, a 
value that is similar to the initial yield stress in tension. 
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Figure 5.2: Schematic representation of the stress contributions during a tension/compression 
cycle: (a) deformation dependent viscous contribution, (b) elastic contribution to strain hardening, 
and ( c) the total stress. Stress are as a function of>. 2 - >. - l, implying neo-Hookean stress response. 

Senden et al. investigated the implications of modeling strain hardening as a partly elastic, partly 
viscous process with a simpte gedankenexperiment. The concept is based on a simplified model, 
focussing only on the post-yield response, as schematically illustrated in Figure 5.2. Due to the 
introduction of viscous strain hardening, the viscous contribution to the stress, see Figure 5.2a, 
continues to increase with deformation after yield. When the deformation direction is reversed, 
the compressive yield stress is of equal magnitude, but opposite in sign compared to the level 
of stress just before load reversal; its magnitude decreases with further deformation. The elastic 
component, see Figure 5.2b, naturally follows the same curve during tensile loading as during 
compressive loading. Finally, in Figure 5.2c the total stress response is depicted, being the sum of 
the two contributions. In the tensile stage of the loading path, these two contributions together 
determine the total stress increase after yield. After reversal of the loading direction, however, 
only the flow stress changes sign. In the case of an equal distribution of elastic and viscous strain 
hardening, the two strain hardening contributions cancel each other out, resulting in a constant 
stress level for the remainder of the compression stage in the cycle. This is exactly the type of 
behavior that is observed in experiments (Figure 5.1), indicating that the elastic and viscous strain 
hardening should indeed be of equal magnitude. 

Quantifying the viscous strain hardening contribution 

Quantifying the viscous contribution to strain hardening boils down to a characterization of the 
deformation dependence of the flow stress. As it is now known what portion of the strain hardening 
effect originates from the elastic contribution, this part can be subtracted from the experimental 
data, isolating the flow stress. This is actually the same procedure as performed in Chapter 3, 
but now on the flow stress only, instead of the total stress. Assuming incompressibility, and the 
same pressure dependence for both processes, the 1-D stress response of the EGP model can be 
derived, see Appendix B. 

O' = O' fl ow + O' elast., (5.1) 
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-3 ~ kT [ r;;. v; (6.Ux )] 
CT flow = v3 _ µ x-f:-:,/3 v; In 2v 3é kT 1Jo,x exp RT with x = a, (3, (5.2) 

v'3 
CTe[ast. = r;; Gr · h(À, a*) . 

y.:, - µ 
(5 .3) 

Herein, the function h(a*, >-.) signifies the 1-D strain dependence of the Edwards-Vilgis model 
(Equation (B.4)), where in the absence of mobility in the slip-links, the parameter 1]* is omitted. 
Using Equation (5.3), the elastic strain hardening contribution can be subtracted from the total 
stress-strain response of a compression test. This procedure is clone for the experimental data 

Table 5.1: Edwards-Vilgis parameters. 

Gr [MPa] a* [-] 7]* [-] 

7.0 0.25 0 

depicted in the Figures 3.1 and 3.3, using parameters from Table 5.1. The parameters given here 
do not constitute an exact 50% elastic strain hardening contribution, compared to those given in 
Table 4.1, for reasons that become clear later on. The results from these elastic strain hardening 
corrections are shown in Figure 5.3. Note that for each level of strain a fixed amount of stress is 
s u btracted. 
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Figure 5.3: Compressive flow stress at different strain levels, stresses are corrected for elastic 
contribution in strain hardening (symbols), as a function of (a) compressive true strain rate and 
(b) temperature. Solid lines are fits using Equation (5.2), fit parameters are listed in Table 5.2. 

For the tests at varying strain rates, see Figure 5.3a, the overall picture is similar to that in 
Figure 3.lb, although the stresses have decreased in such a way that the lines corresponding to 
different levels of strain are closer to one another. The changes look more striking for the tests 
at different temperatures (Figure 5.3b ), as the data suggests that at a temperature of 100°C the 
viscous contribution to the strain hardening is negligible, compare with Figure 3.3b. Next, the 
evolution of the initia! viscosity 'T/o ,x and that of the activation energy 6.Ux can be determined, 
using Equation (5.2) . The combined effect of these parameters is expressed by: 

(5.4) 
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From Figure 5.3a values of TJÓ ,x at each strain level can be deduced , as this data is obtained 
at constant temperature. Subsequently, the data obtained at varying temperat ures, see Figure 
5.3b, provide how the deformation dependence of TJÓ ,x is distributed over the two parameters T/O ,x 
and t :l.Ux . In Table 5.2 the parameters are listed which were used during t his procedure. The 

Table 5.2: Parameters describing flow stress in Figure 5.3. 
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F igure 5.4: Evolution in t he deformation dependence of (a) the initia! viscosity T/o ,x and (b) the 
activation energy 6.Ux, both for the a -process (o) and ,8-process (□ ) , as a funct ion of viscous 
hardening function f(B). Dashed lines are fits using Equations (5.5) and (5.6) . 

resulting values of the initia! viscosity as well as the activation energy are shown in F igure 5.4, for 
both the a- and the ,8- process. For the Jatter , only la rge strain levels could be evaluated, since 
the contribution of the ,8-process could not be clearly recognized at smaller strains. Values are 
plot ted as a function of f (B), which was derived in the previous chapter as t he characterist ic 
strain function for the viscous strain hardening contribution. Note that in Figure 5.4a the initia! 
viscosity actually decreases with deformation, whereas the total viscosity increases. This is due 
to the increasing activation energy, which contributes exponentially to the viscosity, see Equation 
(5.4). To a good approx imation , the va lues of initia! viscosity and activation energy are described 
with a quadratic funct ion J2 (B): 

T/o ,xU(B)) = T/O ,x · exp (Ci ,x f 2 (B)) , (5.5) 

(5 .6) 

Herein , C1,x is introduced, controlling the evolut ion of the initia! viscosity, and C2 ,x, which governs 
t he evolut ion of t he activation energy as a function of strain. The parameters t hat result from 
fitting t he data in Figure 5.4 using Equations (5.5) and (5.6) are listed in Table 5.3. T he values of 
the init ia! act ivation energies found here are somewhat smaller compared to t he ones cletcrminecl 
using yield data (Ta ble 2.1). T his might be caused by the function t hat was used to fi t the evolution 
of 6. u,x (Equation (5.6)). It remains difficult to determine t he exac t cause as the observat ions are 
obscurecl by strain softening arouncl yield. 
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Table 5.3: Fit parameters frorn Equations (5.5) and (5.6) 

X 7/0 ,x C1 ,x 6.Ux,O C2, x 
[MPa-sJ [-J [kJ / mol-KJ [kJ / mol-KJ 

a 2.1 · 10- 23 -22.0 245 73.7 
(3 4.0 • 10- s -11.0 50 36.3 

5.2 Simulation results 

With the characterization of the deformation induced evolution for both the initia ! viscosity and 
the activation energy, all ingredients are availa ble to test the performance of the proposed modifi­
cations of the EGP model. For this purpose, numerical simulations are perforrned using the finite 
element package MSC. Marc; the user subroutine HYPELA2 is used to implement the constitutive 
model. Uniaxial testing is simulated using a single linear quadrilateral axisymmetric element. 
Here, the a -process is modeled with multiple relaxation t imes (Section 4.2) as described by Van 
Breemen et al. [27J; t he (3-process is described by a single-mode. 

Most parameters for PC, including the relaxation spectrum for the a-process, a re adopted from 
Van Breemen et al. [27], with the exception of those originating from this work. The initia! viscosi­
ties in the relaxat ion spectrum 770 x(T) had to be converted to the temperature independent one 
(110 ,x = 7/o ,x (T) · exp( - 6.Uo / RT))

0

, as these were originally determined for a single temperature. 
Furthermore, the spectrum is adopted to account for t he larger (tota l) initia! viscosity needed due 
to the switch to t he elastic strain hardening from Edwards-Vilgis' theory, see Sect ion 4.3 . Input 
parameters, including t he adapted relaxation spectrum for t he a -process, are listed in Appendix 
A. Note t hat only a single mode is used for t he (3-process. 
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Figure 5.5: Compression testing of PC. Symbols represent experimental data as depicted in Figure 
2.1. Solid lines are from numerical simulat ions using t he EGP model, parameters are listed in 
Appendix A. 

As a start ing poin t , t he experimental data t hat was actua lly used to characterize t he influence 
of deformation in t he viscosity is evaluated , since t hese should natura lly be captured well by the 
modifications. In F igure 5.5a, t he response of simu lat ions at different st ra in rates clearly shows 
t he experimental data is well captured. Only at low strain rate, there is some overest irnat ion of 
t he st ress at large deformation. This effect can be attributed to an excess ive increase of the flow 
st ress associated wit h t he (3 process . however , t his dev iat ion could have been expec ted; when 
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inspecting Figure 5.3a more closely, it shows that at the maximum strain level the slope of the 
(a + /3)-process does not exact ly match that of the experimental data. The compression tests at 
different temperatures (F igure 5.5b), are also well captured over the whole range of these tempera­
tures. Thus, the model is capable of capturing both the experimentally observed rate dependence, 
as well as the experimentally observed temperature dependence in the strain hardening. Up to 
now, the EGP model was only capa ble of describing the large strain mechanica! behavior at a 
single temperature. Therefore, this is indeed a considerable improvement of the model. 
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Figure 5.6: An impression of the mechanica! response of PC in cyclic uniaxial deformation (sym­
bols), as seen in Figure 5.1, compared to numerical simulations using the EGP model (solid lines), 
parameters are listed in Appendix A. 

A more critica! evaluation of the model performance is to check whether it is also capable of provid­
ing quantitative predictions of the orientation inclucecl Bauschinger effect, as depicted in F igure 
5.1. To check whether the observecl behavior is indeed captured by the model, uniaxial ten­
sion/compression cycles are simulatecl using the same parameter set as in the previous paragraph, 
see Appendix A. As the specimens a re mechanically rejuvena ted , the effect of aging is canceled 
(So = 0). The results in Figure 5.6 clearly show that the main features of the the experimental 
observations a re qualit atively captured: after the loading clirect ion is reversed at large strains, t he 
subsequent compressive yielcl stress is considerably smaller than the momentary stress j ust before 
reversing the d irection of deform ation. However, a quantitative comparison shows that both in 
the tensile and the compressive stage of the deformation, the absolute stress is underest imated 
by the model. The first question that arises is whether the experimental data sets from Figure 
5.5 and the one from Figure 5.6 a re mutually consistent. Fortunately, there is an opportunity to 
check whether this is the case, since uniaxial compress ion data from the unoriented preconcl itioned 
tensile bars is available. The response from these compression tests can be direct ly compared to 
the response from compression tests at the same strain rate on non-precondit ioned samples, i.e. 
Figure 5.5a. Figure 5.7a shows that at yield the difference in stress is extensive, which is of course 
obvious, as one sample is rejuvenatecl. In the strain hardening regime, however , the response 
shoulcl be the same. This is obviously not t he case, as at large strains a stress difference remains 
of approximately 5 MPa. The cause for this deviation can only be the preconditioning, since this 
is the only difference between the two samples. As mentioned before, the preconclitioning consists 
of applying large strain torsion to an axisymmetric tensile bar and subsequently twisting it back to 
its orig ina l pos it ion. During torsion, the axia l clirection should be stress free, but this is difficu lt 
to accomplish in practice due to t he fact that this precondit ioning was clone on a lathe in the 
a bsence of testing equipment capable of reaching the clesi recl torsion-angle. It is therefore not 
u nlikely that cl u ring t he twisting of the bar, a res icl ua l plast ic strain was incl ucecl by ( unintencled) 
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Figure 5.7: (a) Comparison of stress-strain response from an isotropic untreated specimen (solid 
line) and an unoriented mechanically preconditioned specimen (dashed line) of PC at a compressive 
strain rate of 10- 4 s- 1. (b) Corrected for residual plastic strain in preconditioned specimen. 

axial loading. Indeed, it is demonstrated in Figure 5. 7b that assuming a small residual strain 
for the precondit ioned specimen causes the large strain behavior of both tests to coincide. The 
effect observed is actua lly the reason for the aforementioned inconsistency of the elastic strain 
hardening parameters, compare Tables 4.1 and 5.1. Figure 5.8 demonstrates that when this offset 
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Figure 5.8: Experimenta l data (symbols) from Figurc 5.6, adjusted by using Figure 5.7b, compared 
to numerical simu lat ions(so licl lines) . 

is accounted for in the experimental results, the cycl ic deformation tests are accurately predicted 
by the model. This proves t hat t he suggested modifications of the EGP model are a substantia l 
improvement, since the origina l version of t he EGP model is not able to capt ure the Bauschinger 
effect (see Figure 5.8, dashed line). Note t hat t he modificat ions and characterizations of the model 
were clone solely on t he basis of t he sets of cornpression data in Figure 5.5. 
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Chapter 6 

Discussion 

In the previous chapter, it was shown that the int roduction of a viscous strain hardening contri­
but ion in the EGP model signifies a subst antia l improvement of its capa bility to quantitatively 
describe the mechanica! response of PC under various conditions. However , there is a puzzling 
issue that remains to be addressed , namely the shift in the i'.J-process that was observed by Senden 
et al. [24]. As discussed in Section 4.3 , they used mechanically preconditioned specimens of PC 
for tensile testing at a constant strain rate up to a predefined strain level; after unloading, t en­
sile tests were performed at varying strain rates. With this method, which will be referred to as 
method A, they characterized the change in yield kinetics with the deformation by plotting the 
tensile yield stresses from specimens with various levels of prestrain, as a function of strain rate, 
see Figure 6.l a . It was observed that , in the isotropic case ( Epre = 0) , the yield kinetics were well 
described with the a-process that is known to be present in PC. However, this changed already 
wit h remarkably small amounts of prestrain , as a ll the subsequent prest rain levels (E ~ 0.15) con­
ta in a cont ribut ion from t he i'.J-process. T his is shown by t he solid lines, which a re fi ts using the 
Ree-Eyring relation and t he activation volumes t hat relate to the a - and i'.J-process (Table 2.1). 
Therefore, it was concluded t hat the deformation induced change in slope was caused by a shift 
of the i'.J-process towards lower st rain rates . T his is, of course, the exact same conclusion as was 
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Figure 6.1: (a) Tensile yield stress as a function of st rain rate for oriented P C (square markers); 
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drawn in Chapter 3, t he difference being t he proced ure applied to characterize the phenomenon 
( method B). What is striking, however, is the clifference in the level of strain at which the {3-
process starts contr ibu t ing to the stress: with method A it is already observed at a tensile strain 
of 0.15, white with method B it does not appear befo re a compressive strain of 0.5 (see F igure 3.2b ). 

In Figure 6.1 b, the resul ts are shown using method B, but now applied to t he data used in method 
A. Or more precisely, as the isotropic preconditioned tensile bars from method A where t ested well 
beyond yield for t he different true strain rates, the stress response cou ld be evaluated at var ious 
strain levels (triangular markers) , i. e. met hod B. This figure clearly shows that t here is indeed 
a discrepancy between t he results from t he two methods, as a completely different deformation­
induced behavior is observed, compared to that in F igure 6.la. Up to ê = 0.45, t he slopes remain 
the same as the one observed at yield , while it even dec reases at (c = 0.6). T he decrease in slope 
at this strain level, though, is caused by viscous heating of the sample; at high strain rates the heat 
generated in t he sample exceeds the amount that can be transported to t he surrounding, causing 
t he sample temperature to increase with increasing deformation. The measured stress is t herefore 
too low (filled markers) and it is omitted from t he analysis. Results of numerical simulations, 
using the EGP model (so lid lines) wit h the parameters from Appendix A, support the observation 
t hat the yield kinet ics remain initially the same and shift to lower strain rates with deformat ion. 
As mentioned , the shift of t he {3-process is such that the contribut ion of t his process on ly becomes 
visible at t he highest strain depicted. Finally, it should be noted t hat the stresses using method 
B are determined at the measured levels of strain . The residual plastic strain (see Figure 5.7) is 
accounted for in t he simu lation results. 

The question remains what causes the different observa t ions that result from methods A and B. To 
this end , it shou ld be recognized that the two methods only differ in one aspec t : in t he method A, 
used by Senden et al., the sample is subjected to a intermittent loading path , as the load is removed 
between predeformat ion and the subsequent t ensile test; whereas in method B , the load is never 
removed , as an ongoing tensile test is eva lua ted. T hat these different approaches lead to a different 
response, is illustrated in Figure 6.2a, where for a single strain rate the mechanica! response of 
specimens with various levels of preorientation is plotted as a funct ion of the total strain , i.e . 
including t he prestrain of t he sample It is clea r t hat a ll collapse onto a single curve a t large strains, 
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Figure 6.2: (a ) Mechanica! response of preoriented P C in uniaxial tension , at a :;ingle strain rate, 
as a function of the tota l strain. Dat a taken from [24]. (b ) Tensile yield stress of PC as a function 
of strain rate for different thermo-mechan ica! histories. Data taken from [8] . 

but more int rigu ing is the behavior of the prestrained samples at yield: a small amount of strain 
softening can he dist inguished, especia lly in t he :;ample:; with smaller preorientation. The yicld 
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kinetics here are governed by the (a + ,8)-process, which can be seen in Figure 6.la, while the yield 
kinetics found by method B indicate a contribution from the a -process, as seen in Figure 6.1 b. It 
is clear that the ,8-process becomes visible in method A due to the unloading and reload ing prior to 
the tensile test, as this is the only difference with method B. It is known that at room temperature 
the ,8-process of PC is completely relaxed and in equilibrium, which leads toa constant contr ibution 
to stress, regardless of the thermo-mechanica! history [1]. This is demonstrated in F igure 6.2b, 
where the cleformation kinet ics of PC are shown with four different levels of aging. It is clear that 
this affects the stress response in the a -process, whereas the ,8-contribution remains constant: t he 
,8-process shows at the exact same location when the sample is rejuvenated, compared to t he ones 
that are annealed. Due to the high mobility of this process, the rejuvenation procedure has no 
effect on the experimental observations, as it (almost) instantaneously agecl . 

It appears that, clue to the high mobility of the ,8-process, both physical aging and orientation 
have an important influence on the deformation-induced changes in the deformation kinetics. This 
can be understood when realizing that, from a modeling point of view, aging affects the init ia! 
viscosity (see Equation (4.12)) in a similar way as deformation does (see Equation (5.4)) . The 
interplay between these mechanisms can be interpreted as follows. At the start of an uniaxial 
tensile test (A), as depicted in Figure 6.3b, the ,8-process lies outside the experimental time-scale, 
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see Figure 6.3a. Since it ages instantaneously, it is in its isotropic t hermodynamic equilib rium 
state (i.e. fully aged) and t hus possesses its ma.,-x imum amount of aging, which is refl ected by its 
distance from the reference state (re!). T his reference state is t he isotropic , rejuvenated state of 
t he ,8-process. 

When the material starts deforming towards (B) , rejuvenation causes t he ,8-process to shift towards 
higher strain rates, white the simultaneous orientation shows a opposite effect , as a resul t of t he 
deformation dependence of the flow stress. At some point, t he rejuvenation stops and only t he 
second effect remains. Depending on its amount of deformat ion, (B) will lie at some position 
between ( A) and the reference state (re!). Here B is chosen s uch that i t is fully rej u venated. 

From F igure 6.3b it is clear that t here are two ways to reach (D) : directly from (B) by cont inuing the 
deformation, or after first unloading and the reload ing via (C). T he unloading and reloading process 
is illust rated in Figure 6.3c . Since the total strain at (B) and (C) is equal, the level of orientation at 
t hese points is also the same, implying that (B) and (C) share t he same rejuvenated reference state. 
In fact , (B) is t he rejuvenated reference state of (C) , provided that t he ,8 contribution has fully 
rejuvenated in the deformat ion process from (A) to (B). The main difference between (B) and (C) 
is t he t hermodynamic state of the materia l. As mentioned , t he ,8-process ages instantaneous in t he 
unloading/ reloacling process, shifting it to the range of strain rates where it can be experimentally 
observed. For t he sake of simplicity, in t he schematic pictures of F igures 6.3a and 6.3c it is assumed 
that the 'maximum age' of the isotropic materia l is equal to t hat of the oriented material. 

With ongoing deformat ion, t he material always ends up in (D) . The process of going to (D) from 
either (B) or (C) is illustrated in F igure 6.3d. Coming from (B) t he mechanism is straightforward : 
as t he ,8-process in (B) is already fully rejuvenated , t he only change when going to (D) is due to 
orientation. Of course, t he path from (C) to (D) is characterized by exactly t he same effect of 
orientat ion. However , t his path is a lso influe11ced by mecha nica) rejuvenat ion. When deformed 
even further , t he rejuvenated reference state of the ,8-process eventually shifts into t he experi­
mentally access ible range of strain rates. Whe11 t his happens, approximately at t: 2'. 0. 5, the two 
methods A and B that a re used to characte rize t he deformation dependence of t he deformation 
kinetics give the same result: t he kinet ics a re i11 the ( o: + ,8 ) regime, see Figure 6.1 b. The same 
can also be observed in F igure 6.2a, as the tensile curve of the sample with a prestrain of 0. 6 
shows no longer any soften ing; t he effect is overwhelmed by the influence of the orientat ion. T he 
conclusion that must be drawn from these res ults is that t he stress-accelerated aging that occurs 
during unload ing/reloading makes it much more difficul t to isolate t he i11fluence of orientation on 
the defo rmat ion kinet ics, since the effect is obscured by aging of t he ,8- process. 

T his has a notab le irnplication on t he resul ts t hat were presented in t his work regarding t he 
tension / compression cycle simulations t hat were discussed in Sect ion 5.2. As mentioned , t he 
specimens for t he compression test were machined from a tensile bar t hat had been preoriented 
to a spec ific level of strain. This suggests that in the subsequent compression tests t he ,8-proccss 
is act ually contribu t ing to t he total stress, because it acquired its eq11ili brium state during t he 
t ime between the preorieutation and the colllpression test. When reviewing the results frorn 
t he numerical simulations with t he modifiecl EGP model, see Figure 5.8, it is noticed that t he 
stresses in compress ion are somewhat underest irnated , apart from the compressive yield stress of 
the specimen preorientecl to t: = 0.6. Th is observation may be explained by t he fact that t he 
accelerated aging effect in t he ,8-process is not taken into account in t he simulat ion, i. e. t he /3-
process is assumed to be rejuvenated in these compression simulations and does not contribute 
to the stress for t he low prestrains. As previously concluded , th is is not an issue for the tests 
at a prestrain of 0. 6, which explains the correct prediction of t he compressive yield stress at t his 
prestrain . 



Chapter 7 

Conclusion 

The centra! goal of this study is to improve the performance of the EGP model by adding a viscous 
contr ibution to the strain hardening; of course, without losing its qualities. For this purpose, the 
evolution of the flow stress with deformation is investigated for polycarbonate, the model material 
in this study. lt is found that the deformation dependence in the viscosity should be incorporated 
in two parameters for each process: the initia! viscosity and the activation energy. The former 
follows from the observation that , in polycarbonate, although the stress increases with deforma­
tion, t he slope when plotted as a function of strain rate remains constant for both processes as 
they shift towards lower strain rates; the latter results from the observation that, when plotting 
the stress as a function of temperature, the slope increases with increasing deformat ion. 

The change with deformation of these parameters is characterized, and this deformation depen­
dence is incorporated into the EGP model. Numerical simu lat ions show that this still allows to 
describe the mechanica! response of polycarbonate over a vast range of strain rates, but more 
significantly, it also enables to descr ibe the mechanica! response for various temperatures with 
a single set of parameters. Furthermore, it is shown that reversed loading is also captured by 
the model. These last two features form a significant improvement of the model, as neither were 
captured before. 
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Appendix A 

Parameters EG P model 

In Section 5.2 the intrinsic mechanica! behavior of P C was characterized using a mult i process 
version of t he EGP model. The a-process was described with a relaxation spectrum consisting 
of 17 modes, as determined by Van Breemen et al. [27]. As this spectrum was determined for 
a single temperature, it has to be converted to t he temperature-independent one. Furt hermore, 
it is adapted to account for the higher init ia! viscosity needed , due to a different elast ic strain 
hardening contribution, see Section 4.3. This results in t he following: 

(
- D.Ux,o) 

'l]0 ,c,,i = T/O ,cr,i,re J(T) · exp R T · exp(lü.074). (A.l) 

Due to t hese changes, t he shear moduli a lso needs correction: G cr ,-i = 0.9 · G cr,i ,r e/· In Table A.l 
t he relaxation spect rum of the a-process is listed . T he ,8- process is described by a single mode. 
Ot her parameters used are listed in Table A.2. 

Table A.1: Relaxation spectrum for t he a-process. 

G cr,i [MPa] 'l]0 ,cr,i [MPa-s] 

1 3.17 -102 2.06 . 10- 28 

2 5.00 · 10 1 3.42 · 10- 30 

3 4.03 · 10 1 2.90 · 10- 3 1 

4 3.71 · 10 1 2.79 · 10- 32 

5 3.15 · 10 1 2.49 · 10- 33 

6 2.88 · 10 1 2.40 . 10- 34 

7 2.48- 10 1 2.1 6 · 10- 35 

8 2.19 · 10 1 2.00 · 10- 36 

9 1.86-10 1 1.80. 10- 37 

10 1.63. 10 1 1.65 · 10- 33 

11 1.39- 10 1 1.48 · 10- 39 

12 1.22-10 1 1.38 · 10- 40 

13 1.07 - 10 1 1.25. 10- 41 

14 8.82 · 10° 1.08. 10- 42 

15 9.36 · 10° 1.21 . 10- 43 

16 1.90 · 10° 2.57 . 10- 45 

17 1.48 . 10 1 2.10. 10- 45 

;34 



Ta ble A.2: P arameters describing PC, used in Section 5.2 

X G x T/O, x C1,x D.Ux,O C2,x V* 
X So ,x 1 0,x T"l,x 1 2,x µ x 

[MPa] [MPa-s] [-] [kJ/mol-KJ [kJ/mol-KJ [nm3 ] [-] [-] H [-] [-] 
a Table A.1 Table A.l -22.0 245 73.7 5.32 17.5 0.965 50 -5 0.08 
(3 315 4.0 · 10- 2 -11.0 50 36.3 5.06 0 0.965 50 -5 0.08 
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Appendix B 

1-D stress from EGP model 

Under t he assumption t hat t he material behaves incompressible, it is possible to derive a simple 
linear rela tionship between the stress and t he logarit hm of t he constant strain rate. 

For incompressible behavior t he total stress a can be described by: 

(B.l) 

where the unknown hydrostatic pressure p fo llows from the boundary conditions, the second term 
represents the flow contribution from the viscosity rJ (Equation (4.12)) and the last term represents 
t he elastic contribution to strain hardening, which is described by t he Edwards-Vilgis rubber­
elastic model, see Section 4.3 and Append ix C. Because the entanglement network remains intact, 
t he parameter representing t he freedom of movement of t he slip-links is zero. Now Equat ion (C.38) 
can be written as: 

2( 1 2) 1 2 2 
Z = a* - a* tr (B) I + - a* I - a* I 

(1 - a; t r (B)) 2 1 - a;tr (B ) 1 - a;t r (B) · 
(B.2) 

Combined wit h Eqt1 at ion (C.37),this leaves for t he st ress: 

G a * 1 - a* t1 B 1 - 2a, B d 
[ 

2 ( 2) ·( ) 2 ] 

CT r ,e = r (1 - a;t r(B)) 2 + 1 - a;tr (B ) · (B.3) 

For uniaxia l deforrnat ion tr(B) = (>-2 + 2>- - 1
) , where À denotes the draw rat io, so t he (1-D) stress 

response can be written as: 

a,.,e G [ a;( l - a;)( >-
2 

+ 2>- -
1

) + 1 - 2a; ] (>- 2 _ >- - ' ) 
,. (1 - a;(>- 2 + 2>- - 1))

2 1 - a;( >- 2 + 2>- - 1) 

G,, · h(À , a.). (B.4) 

For uniax ia l cl eforrnat ion under a constant strain rate, t he resulting total stress CJ and hyclrostatic 
pressure pare (using "y = v3i and f = CJ/v3) : 

a = 3110:ip ,o: + 3'T]f3Èp,f3 + G,. · h (À, a.) and p = - ½CJ , (13 .5) 

where Èp,x is t he plastic strain rate of the process. It is assumed t hat: 

• both processes have t he sarne pressure dependence (µ = µ 0 = µf3), 

• t he material is fully rcjuvcnated (S,r = 0) , 

• the a rg11111c11 t of the hy perbolic sine is large, and may therefore be approxirna ted by an 
exponential f1111 ct ion (sinh( ::r ) ;::::::-½ exp( :.r:)) , 
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• the plastic strain rate of each process equals the applied compressive strain rate (é' = --Èp,o: = 
- Èp,{3 ) . 

For the viscosity (Equation (4.12)) , these considerations leads to: 

T/x = To ,x_ [ln ( 2v'3T/o,x É) + µp + /':::,.U x l · 
\,113E To ,x To ,x RT 

(B.6) 

Combining this with Equation (B.5) results in: 

- 3 '°' [ ( 2v'3T/o,x ·) -6.Ux ] /3 a = j3 L..., To ,x In --'-E + RT + v'3 Gr · h(>. , o:*) with x = o:, t l (B.7) 
3 - µ _ To ,x 3 - µ 

X-0:,{3 
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Appendix C 

Edwards-Vilgis theory 

The part desc ribing slip-links in t he Edwards-Vilgis model [7] is given by: 

(C.1) 

where >.i (i = 1,2,3) are t he principal stretch ratios, i. e . t he eigenvalues of the isochoric left stretch 
tensor V. The absolute temperature is denoted by T, Boltzmann's constant by k ; t he model 
parameters N 8 , T/• and a. represent the number density of slip links, the mobility of the slip links 
and t he degree of inextensib ili ty of t he chains, respectively. T he limit of T/• = a. = 0 corresponds 
to a neo-Hookean response. T his expression can be rewritten in tensor notation as: 

W = NS k T [(! + ry. )(l ( Qt t, (B. ( J + T/ · B r 1) + t r (tn (1 + T/· B)) + In ( 1 - a; tr ( B) )] , 
2 1 - a 2 t r B 

* 
(C.2) 

where B is t he isochoric F inger tensor. The equivalence of t hese two expressions fo r t he free 
energy can be easily recognized when one realizes t hat t he isochoric F inger tensor is symmetrie 
and can therefore be written as: 

(C .3) 

where t he eigenvectors ii1 , ii2 and ii3 of B (or V) form an ort hogonal vector basis. In t hat case, 
t he identity tensor is given by: I = ii 1 ii1 + ii21ï2 + 1ï3 ii3 . Nat urally, Equ at ion C.2 holds rcgardless 
of the vector basis that is used. A big advantage of this descript ion, however, is that there is no 
need to calculate t he eigenva lues and eigenvectors of the F inger tensor . 

For t he der ivat ions that follow , it is more convenient to wr ite Equation C.2 in a slightly different 
way: 

w = Ns k T [ (l + ry. )(l ( _ar t, (B . ( J + 11. B r 1 ) + In ( det ( J + T/• B)) + In ( l - a; t r ( Ë))] , 
2 l - a 2 tr B 

* 
(C.4) 

where use has been made of t he tensor ru le: tr( A) = ln(det (exp(A))). Also, it is eas ily verified 
that the free energy funct ion is invariant t o rigid-body rotat ions. Here, t his is proven solely for 
t he only non-t riv ia! term: 
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a tr ( B . ( 1 + 17* B r 1) 

a* tr ( Q. B. QT. ( Q · I. Q T + T}. Q. B. Qrr 1

) 

tr ( Q • B • QT . ( Q . ( J + T/* B) . QT)-l ) 

tr ( Q . B . Q T . Q - T . ( J + T/* B) - t . Q-1) 
tr ( Q · B · ( J + T} . B r l · Q - 1

) 

tr ( B . ( 1 + T/* B) - i) 
a. (C.5) 

Because of its invariance to rotations , the expression for W can also be written in terms of the 
isochoric right Cauchy Green deform ation tensor , which is easier for the derivations t hat follow: 

W = N 8 kT 
2 [

(! + " . )(! ( _at t, (ë · ( J + T/• ê r1

) + In ( det ( J + T/• ë)) + In ( 1 - a; tr ( ê) )] 
1 - a; tr C 

(C.6) 

Intermezzo 1: tensor algebra 

First, t he applied definition of t he derivative of a second-order tensor to another second-order 
tensor is given: 

àA äAij _ __ _ 
àB = àBmn ei ej enem. (C.7) 

T hen, in case of a second-order tensor the chain rule can be applied as: 

à A à B àAij - - - - àBkl - - - - àAij ÖBmn - - - - àAij - - - - ä A 
à B : àC = àBmn e,; ejen em : àCop ekelepeo = àBmn àCop eiej epeo = àCop e;e_iepeo = àC 

(C.8) 
Using this tensor derivative definition , t he derivative of a second-order tensor with respect to itself 
can be written as: 

àA àAij _ _ _ _ , , - - - - 4I 
àA = ÖAmn eiejenem = UimUjneiej enem = . 

And the derivat ive of the trace of a second-order tensor to the tensor itse lf as: 

(C.9) 

(C.10) 

T he derivative of t he inverse A - l of a second-order tensor A wit h respect to t he tensor itself can 
be determined by: 

àl 
à A 

ä(A·A - 1
) 

à A 

à A . A - 1 + A . ä A - t 

à A àA ' 
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which leads to: 

(C.12) 

Intermezzo 2: hyperelasticity 

From the conformational free energy (i.e. stored-energy function or strain energy density function) , 
the (rubber-elastic) Cauchy stress response is derived as follows: 

2 äW T 
a = - F· - ·F J äC . (C.13) 

Because the Edwards Vilgis conformational free energy only depends on t he deformation through 
C, t he derivative can be writ ten as: 

(C.14) 

where 13 = det( C) = J2. T he isochoric right Cauchy Green deformation tensor can be written as: 

Now, the following partial derivatives can be calculated: 

ac = - ~ r4 f3 c 
ah 3 3 

' 

é)J 3 2 - 1 
äC = f 2 I - IL C + C = I 3 C . 

The las t partial derivat ive was obtained using the Cayley-Hamilton t heorem: 

C 3 - J1C 2 + I2C - l 3I 

C 2 
- I,C + I2I - hC- 1 

C 2 - I,C + 12 1 

Subst itution of t hese part ia l derivat ives in Equation C. 14 leads to: 

äW 
äC 

Finally, this relat ion can be subst ituted into Equation C .13, yielding: 
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(C.15) 

(C.16) 

( C.17) 

(C.18) 

(C.19) 

(C .20) 

(C.21) 

(C.22) 



~F-r1;3 (a~ _ ! a~: cc-1) .pr 
J 3 äC 3 äC 

~ r 1/3 (F . ä~ . pT - ! F . ( 8~ : c) c -1 . pT) 
J 3 äC 3 äC 

~r2;3 (F- äv~ . pr _ ! a~: c1) 
J äC 3 äC 

2 ( ~ äW ~ r l äW ~ ) - F- -- · F - - - - : Cl 
J äC 3 äC 

2 ( ~ äW ~ T l ( äW ~ ) ) J F · äè · F - 3 tr äè -C I 

2 ( ~ äW ~r)d - F- -- - F 
J äC 

(C.23) 

The validity of the last two steps in this derivation may not be evident and will be discussed next. 
Let the spectra! decompositions of the isochoric right and left Cauchy Green deformation tensors 
be given by: 

(C.24) 

where the eigenvalues of both tensors, i.e . the isochoric principal stretches >.;, are of course the 
same. The eigenvectors of both tensors differ by a rotation; the principal stretch directions fi.0 , 

correspond to t he reference state of the material, white fi.; correspond to the deformed ( current) 
state. Now, the deformation grad ient tensor can also be written in terms of these quantities: 

3 

F = L >.inifio,. 
i = l 

In addit ion to this, the derivative ~~ can a lso be written in this way: 

3 äW ~ _ _ 
äè = L....., ac,no,no , . 

·t= l 

The trace of the second order tensor F · ~~ · fi'T can now be elaborated: 

( 
~ äW ~r) 

tr F · äè · F 

thus proving that the above derived Cauchy st ress tensor is indeecl cleviatoric. 
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Derivative of the conformational free energy 

As stated in Equation C.6, the conformational free energy can be expressed as: 

W = N s k T [ (! + S• )( l ( ~t te (è · ( l + 17* è r 1) + In ( det ( l + 17* è)) + In ( 1 - a; tr ( ë)) l · 
2 1 - a 2 tr C 

* 
(C.28) 

The derivat ive of this expression with respect to è is now determined step by step. As shown in 
the first intermezzo, the derivative of the t race of a tensor to the tensor itself can be written as: 

Ötr ( è) 
----=~ = 1 . 

öè 
(C.29) 

The next part of the derivative that is treated, is: 

⇒ 

é) tr ( è · ( l + 17* è) -t) 
öè 

é) tr ( è . ( l + 17* è) -1) : [ öè_ . l + r7* è -1 + è . ( é) ( l + 17* è ~ -1 : é) ( l + ~ * è) ) l 
a ( C ( J+ ry. 6 r') i!C ( ) i! ( I + ry. C) i!C 

l : [ 4 l · ( l + 1]* ë) - I - è · ( ( ( l + 1]. è) - l · 
4 l · ( l + 1)* è) -l) : 7]* 

4 l) ] 

l : 4 l · ( l + T/* è r l - 7]* l : ( è · ( l + T/* è r I · 4 l · ( l + 1]* è r L) 

l · ( l + 'T]. è r 1 - 77* ( l · è) : ( (1 + 17* è) - l · 
4 l · ( l + 11. è r 1

) 

( l + 1]* è) -1 
- T/* è : ( ( l + 1]* ë) -l · 4 l · ( l + 1]. è) -I) 

( l + 17* è r , - 77* ( è . ( l + 17* ë r,) : 4 l . ( l + 17* ë r, 

(1 + r1* èr
1 

- 17. ë -(1 + 17. ër ' · (1 +,,7-èr 1

. (C .30) 

The next part of the derivative to be considered is: 

⇒ 

é) In ( det ( l + 17. è)) 
öè 

é) In ( det ( l + 'IJ. è)) ö det ( l + 17. ë) Ö ( l + 17. ë) 
é) clet ( l + 17* ë) é) ( l + 17. è) öë 

l cl et (1 + T/ , è) ( l + 17• è) - T : 17. ööcC: 
clet ( l + 17. è) 
( l + r7. ë) -1 

: ''7• 4 l 

'//, ( l + 1]. è) - I 

42 

(C.31) 



where use has been made of the fact t hat t he derivative of the determinant det (A) of a second­
order tensor A with respect to t hat t ensor is equal to det( A)A - T . T he last part of the derivative 
to be considered is: 

⇒ 

ä In ( 1 - a; tr ( C)) 
ä6 

ä In ( 1 - a; tr ( C)) ä ( 1 - a; tr ( C)) ä tr ( C) 
8 ( 1 - a; t r ( C)) ä tr ( C) äC 

2 
- a. I. 

1 - a; tr ( c) 
Putting a ll elements together, the desired expression for the derivative is obtained : 

2 äW 

Calculating the Cauchy stress response 

(C.32) 

Us ing the relations introduced in previous sections, the Cauchy stress can simply be obtained by 
subst ituting Equation C.33 into Equation C.23, leading toa number of tensor multiplications that 
are fir st elaborated, before considering t he entire expression for the stress. Using Equat ion C.24, 
one of t he terms t hat appear in Equation C.33 can be written in terms of its principal values: 

~ - 1 3 1 
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(C.34) 

Now, one of the terms that wilt a ppear in the Cauchy stress expression can be rewritten (making 
use of Equations C .24 and C.25): 

(C.35) 

and a second one: 
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(C.36) 

Finally, the expression for the Cauchy stress tensor can be completed by substit ut ing Equation 
C.33 into Equation C .23 and rewriting using t he express ions that were just derived: 

(C.37) 

where the tensor Z is introduced: 
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