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Abstract

In this thesis we are concerned with the stability analysis and the design of stabilizing com-
pensators for networked control systems (NCSs) that exhibit packet dropouts. We propose
a new type of dropout compensator, depending on the local dropout history, for which we
provide LMI-based synthesis conditions. The analysis and design framework includes both
worst-case bound and stochastic models to describe the packet dropout behavior in both the
sensor-to-controller and controller-to-actuator channel. Numerical examples demonstrate the
significantly improved robustness with respect to packet dropouts using the proposed dropout
compensator, compared to using the zero strategy and the hold strategy.
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Compensation-Based Control for
Lossy Communication Networks

T.M.P. Gommans,W.P.M.H. Heemels, N.W. Bauer, N. van de Wouw

1 Introduction

Networked control systems (NCSs) are feedback control
systems, in which the communication between spatially
distributed components, such as sensors, actuators and
controllers, occurs through a shared communication net-
work. Over the last decade, the study of control systems
in which communication takes place via a shared net-
work is receiving more and more attention, see, e.g., the
overview papers [21,34,37,39] and the recent book [3].
The reason for this interest is that the use of networks of-
fers many advantages for control systems, such as low in-
stallation and maintenance costs, reduced system wiring
(in the case of wireless networks) and increased flexibil-
ity of the system. However, from a control theory point
of view, the presence of a communication network also
introduces several, possibly destabilizing, effects, such
as packet dropout [20,28-30,32,35], time-varying trans-
mission intervals and delays, see e.g., [15,25,27,31,36],
and [8,16,22], respectively. In this paper we focus on
packet dropouts, which can occur, for instance, if there
are transmission failures or message collisions. As packet
dropouts are a potential source of instability in NCSs,
it is of interest to investigate measures to mitigate the
influence of dropouts on the stability and also perfor-
mance of a NCS.

In the literature several different strategies have been
proposed to deal with packet dropouts. These strate-
gies can be categorized into three groups: strategies for
dropouts in the sensor-to-controller channel, strategies
for dropouts in the controller-to-actuator channel and
strategies for dropouts in both the sensor-to-controller
and controller-to-actuator channel. For dropouts in the
controller-to-actuator channel, typically model-based
observers are used to alleviate the effect of dropouts.
For dropouts in the controller-to-actuator channel, a
solution proposed in [29] was the zero strategy, in which
the actuator input is set to zero if a packet is dropped.
The hold strategy, in which the actuator holds the last
received control input instead of setting it to zero, was
used in [28]. Instead of holding the previous control
input or setting the control input to zero, dynamical
predictive outage compensators were presented in [20].
This approach is related to our approach, but considers
only dropouts in the controller-to-actuator channel. An

alternative scheme based on sending future predicted
control values to the actuator was proposed in [2,4,6].
For packet dropouts in both the controller-to-actuator
channel and sensor-to-controller channel, so-called gen-
eralized hold functions, which extend the basic hold
strategy were studied in [24], where the optimal hold
function is found by solving a LQG problem. The ap-
proach in [24] is based on a TCP protocol, and requires
acknowledgements of successful packet transmissions.

In this paper we provide systematic design methodolo-
gies for a novel dropout compensation strategy that min-
imizes the influence of dropouts on the stability of the
NCS. This new compensation strategy applies for NCSs
in which both the controller-to-actuator and the sensor-
to-controller channel are subject to dropouts, and does
not require any acknowledgement of successful transmis-
sions. In modeling the dropout behavior, we consider two
distinct approaches: a worst-case bound approach that
only requires an upper bound on the maximum num-
ber of subsequent dropouts, and a stochastic approach
that employs stochastic information on the occurrence of
dropouts, given in the form of the well known Bernoulli
or Gilbert-Elliott models [14,17]. For both these dropout
modeling approaches we design dropout compensators,
which act as model-based, closed-loop observers if in-
formation is received and as open-loop predictors if a
dropout occurs. These compensators, designed for each
lossy channel, depend only on a single channel’s dropout
history, and hence, we require no additional information
to be sent over the network. The conditions for the sta-
bility analysis and design of the compensators are given
in terms of linear matrix inequalities (LMIs) and can
therefore be solved efficiently. The effectiveness of the
proposed compensation strategy and the design tools
will be illustrated through a numerical example. In par-
ticular, we will show that the designed compensators
outperform the zero strategy and the hold strategy sig-
nificantly in terms of robustness of the stability with re-
spect to dropouts.

After introducing some notational conventions, the re-
mainder of this paper is organized as follows. In Section 2
we define the NCS setup as studied in this paper and in-
troduce our compensation-based strategy. For reasons of
comparison we also define the zero strategy and the hold



strategy. Additionally, we define the two dropout models
used throughout this paper. In Section 3 and Section 4
we analyse stability and provide synthesis conditions for
stabilizing compensator gains for the worst-case bound
and stochastic dropout models, respectively. In Section
5 we present numerical results to illustrate the effective-
ness of the compensation-based strategy and we present
concluding remarks in Section 6. 'I'he appendix contains
the proof of Theorem 11.

1.1  Nomenclature

The following notational conventions will be used. Let
R and N denote the field of real numbers and the set
of non-negative integers, respectively. We use the nota-
tion R>q to denote the set of non-negative real num-
bers. For a square matrix A € R™ " we write A >
0, A > 0, A <0and A < 0 when A is symmetric
and A is positive definite, positive semi-definite, neg-
ative definite and negative semi-definite, respectively.
For @ € R" we denote the Euclidean norm as ||z||s :=
VaTz. For a matrix A € R"™™ we denote its trans-
pose by AT For the sake of brevity, we sometimes write
symmetric matrices of the form [;} ’("] as [,43(*] We
use = = diag(A;, As,...) to indicate a block diagonal
matrix with matrices Ay, Ao, ... on its diagonal. With
some abuse of notation, we will use both (zg, z1,...) and
{z1}ien with z; € R™ [ € N, to denote a sequence of vec-
tors in R™. For a bounded sequence z := {z};en with
z1 € R*, 1 € N, let ||z]| := sup{||z]|2]l € N}. The set
of all sequences z with ||z|| < oo is denoted by 7. A
function v : R~y — Rsg is a K-function if it is con-
tinuous, strictly increasing and v(0) = 0. A function
B Rsp x R>g = R is a KL-function if, for each
fixed ¢t > 0, the function (-, t) is a K-function and for
each fixed s > 0, the function (s,-) is decreasing and
B(s,t) = 0 as t — oo. Let X and Y be random vari-
ables. We denote by P(X = ) the probability of the
event X = x occurring. 'I'he expected value of X is de-
noted by E(X). The probability of event X = x occur-
ring, given event Y = y is denoted by P(X = z|Y = y).
The conditional expectation of X given the event Y =y
is denoted E[X |Y = y].

2 Problem Formulation

This section has the following outline: in Section 2.1
we define the NCS and define what is meant by lossy
communication links, also we provide different strategies
that deal with communication losses. In Section 2.2 we
give different models for the lossy communication links.
Finally in Section 2.3 we define the problem considered
in this paper.

2.1 Description of the NCS

In this paper, we consider a NCS consisting of a plant
and a controller communicating over a network, see
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Fig. 1. Scheme of the NCS.

Fig. 1. The plant is given by a discrete-time linear
time-invariant system of the form

Il

Awxy + Buf,

Czxy,

Th41
P

Y

(h

where 2, € R™ is the state, uf € R™ is the input to
the actuator and yi € RP is the output measured by the
sensor, at discrete time k& € N. The controller is given by
a discrete-time static output feedback law

C: uf =K%, (2)
where i is information of the plant output available at
the controller and ug is the desired actuator command
computed by the controller, at time & € N. The reason
for introducing both y* and 3¢, and both u¢ and u?, is the
fact that due to a non-ideal communication network y*®
and y¢ (and u€ and u®) are typically not equal. Therelore,
we sometimes call ¥ the networked version of ¥® and
u® the networked version of u¢. In this paper, we are
interested in the situation where the differences between
y® and y°, and u© and u®, are caused by the fact that the
network links between the controller and the actuator,
and between the sensor and the controller, are lossy,
meaning that packet loss can occur. To model packet
loss, we introduce the binary variables 0, € {0, 1} and
Ay € {0,1}, k € N. In case of a successful transmission
in the sensor-to-controller channel at time A € N, Ay, =
1, and otherwise Ay = 0. Similarly in case of a successful
transmission in the controller-to-actuator channel, §; =
I, and otherwise d; = 0.

Using the binary variables 0, and Ay, & € N, we can
now relate y© to y* and u® to u€. If a transmission over a
channel is successful at time & € N, the networked ver-
sion of a signal will be equal to the original signal, i.e.,
Y = yi incase 6y = 1 and uff = uf, in case A = 1. If
however, the transmission fails at time k, there are mul-
tiple strategies for selecting the values yf and ug. In Sec-
tions 2.1.1 and 2.1.2 we describe two existing strategies,
namely the “zero” strategy and the “hold” strategy, see,
e.g., [28,29], while in Section 2.1.3, we will propose a
novel “compensation-based” strategy. T'he latter strat-
egy employs observer-like compensators on both sides of
the network to mitigate the effect of packet loss on the
stability of the NCS as much as possible.
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Fig. 3. Scheme of the NCS for “hold” strategy.
2.1.1 Zero Strategy

When a transmission fails one can simply set the net-
worked version of the transmitted signal to zero (see
Fig. 2). This will be referred to as the “zero” strategy
and can be formalized as

uf = Opug, 3)
vi = ArYRs
for k € N. This leads to the closed-loop system
T+l = Agk,Akxkv (4)
where
Aj A =A+06ABKC (5)

for §,A € {0,1}.

2.1.2 Hold Strategy

An alternative to the “zero” strategy is the “hold” strat-
egy, which holds the value of the last successfully trans-
mitted signal (see Fig. 3) in case the current transmis-
sion fails. This strategy can be formalized as

uz = 6kui + (1 - 5k) uz_l,

s . (6)
Aryp + (1= Ak)yi_1s

i

for k € N. By storing the values of the last suc-
cessful transmissions in an augmented state & :=

(2] (u¢_,)T (yg_,)T 1T, we obtain the closed-loop sys-
tem

El’cl+1 = Agk,AkfI’: (7)

C. k P Yk o
51.' ué yc.
—:\——; (64 k C(,

Fig. 4. Scheme of the NCS compensation-based strategy.

with
A+6ABKC (1-6)B 6(1-A)BK
Ay = SAKC  (1-0I, 61-AK
AC Opxm (1—A)IL,

(8)
for §, A € {0,1}, where I, and I,, are identity matrices
of dimensions p x p and m x m respectively, and Opxm
is a zero matrix of dimensions p X m.

2.1.83 Compensation-Based Strategy

In addition to the basic and existing strategies men-
tioned above, in this paper we also propose a new
compensation-based strategy consisting of two packet
loss compensators situated before the controller and
the actuator, denoted by C, and C,, respectively (see
Fig. 4). The main idea behind the functioning of the
compensator is that if a packet arrives, the compen-
sator just forwards the packet and, additionally, acts
as a model-based closed-loop observer, i.e., the received
signal information is also used to innovate the com-
pensator’s estimate of the state of the plant. In case of
a packet drop, the compensator acts as an open-loop
predictor and, additionally, forwards its best prediction
of y¢ or uf, based on its estimate of the plant state. To
formalize this idea, we propose to give the compensators
C. and C, the following structures:

x5, = Azf + Buf + AkL§k_1 (yp — Cx%)

Co: & = Cze(=1) if Ap=1 9)
. Cxg if Ap=0,
xg, = Az + Buf + 6k L§, | (uf — KCxf)
Cyi . Ky (=ug) if op=1
¢ KCzg if 0, =0.

(10)
In (10), we use the fact that the compensator C, is col-
located with the actuators and, hence, has access to the
true implemented control signal u§, which is beneficial
for the closed-loop observer design. This is not the case
for compensator C., which is collocated with the con-
troller C, and, consequently, can only employ the con-
troller output uf, at time k& € N. Note that uf is typi-



cally not equal to the true control signal u{ that is im-
plemented at the actuators at time k£ € N. This compli-
cates the closed-loop observer design considerably (see
also Remark 1 below). The gains L, and L{, | are de-
signed to improve the robustness of the stability of the
NCS in the presence of dropouts. Note that in (9) and
(10) these gains are only effective (i.e. innovation is ap-
plied) at time k& € N, if a packet is received, i.e., Ay = 1
or d; = 1. Moreover, these compensator gains depend on
the counters iy | and ji_, which are the number of suc-
cessive dropouts that occurred just before and including
time & — 1, in the controller-to-actuator and sensor-to-
controller channel, respectively. More specifically, these
cumulative dropout counters are defined as

Il

min{l* € N |p_po =1, k—1*> —1},
o= 1, k—1° o —1},

W

(11)
Je c=min{lc € N | Ay

for £ € N, where weset d_1 ;= land A_; :=1

To obtain a closed-loop model for the control system
including these compensators, we denote the estima-
tion errors at time & € N corresponding to the com-
pensators C. and C, as e}, := @y — zf, and eff = x; —

xf, respectively, and define the augmented state E,f;b =

[ ()™ (ep)"]"

compensation-based strategy can then be given by

The closed-loop dynamics for the

b i ‘
51\4—1: (C):.Ak,ik,,,jk fm (12)

with 6A, casin (13), for 6 € {0,1}, A€ {0,1},i €N
and j € N. For ease of notation, we define

Mkt (OlnA/\ ]k—lajkfl) and M= (()A,L,/) (15)

collecting the parameters on which A§ Ay in (13) de-
pends. This allows a compact le[)r(‘sontat,lon of (12),i.e.,

€l = A& (16)

Remark 1 1o give an indication of the complexity of

the design of the compensators in case of two, serially
connected, lossy network links, consider the state feedback
case uf, = Kaf, (i.e., C' = 1,) such that (9) becomes

Il

Thy = Axg 4+ Buf + AL, | (o — x)
cre i Ap=1 (17)
2§ il Ap=0.

«
>0
Il

I

Bven though the full state is transmitted Lo the compen-
satorCk, having a perfect estimate at some timek, k € N,
i.e, TL = Tis does not necessarily imply thal xf, = xy,
Jor all k> k (as is normally the case for observers). The
reason is that the input to the plant u§ is not available at

C> if the transmission in the controller-to-actuator chan-
nel fails. Indeed, typically u # uf if 65 = 0 for ke N,
Due to C; not knowing the conlml value uf at the actua-
tor, it can not perform exact updates of the states accord-
ing to xpy1 = Axy + Buf in this case. This can cause
T3 # xj 4 even though af, = xy. The same complexity
arises for the compensator

= Az + Buz il Ap=1
ey =
, i Axf + Buj, if Ap=0
= (18)
. xp if Ap =1
Ye = ¢
xg il AR =0,

which instead of innovation, exactly sets the estimate x5
to xg in case the full measurement is received at k € N,
i.e., A = 1. Note that C, suffers from a similar problem
as Ce (or CZ, C2*). Also here xf = xy for some k € N
does not imply x§, = xy, for allk > k. Indeed, even though
¥y = x, the innovation term op L (uf — KCx{) can
be non-zero when oy, = 1, asug # KCuxf due to xf # xf.
Consequently, the update of xg 41 in (10) is not equal to
the exact update according to vy = Ax{+Buf = Axg+
Buf. This shows that the compensator design problem
in case of two lossy network links (even in case of full
state measurements) is highly complex. Note that in case
of only one lossy link, the issues mentioned above do not
occur.

2.2 Dropout Models

To evaluate the three strategies mentioned above, we
need to introduce suitable models for the dropout be-
havior. In fact, packet dropouts in both network links
can be described through different model types. In the
first dropout model used here, and explained in Sec-
tion 2.2.1, one assumes that there exists a worst-case
bound on the number of successive dropouts, as was
also used for instance in [1,7,26,38]. A second class of
models employs more detailed stochastic information
on the occurrence of dropouts. The simplest stochastic
models assume that the dropouts are realizations of a
Bernoulli process in case of a memoryless channel [29], or
of the well known Gilbert-Elliott models [14,17], which
use finite-state Markov chains to include correlation be-
tween successive dropouts [32].

In the next two subsections we will discuss these models
in more detail, as both these situations will be studied
in this paper.

2.2.1 Worst-Case Bound Model

The worst-case bound model is based on an upper bound
on the number of successive dropouts in each of the chan-
nels given by § € N and A € N, for the controller-to-
actuator and sensor-to-controller channel, respectively.
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Fig. 5. Gilbert-Elliott model of a lossy network link.

This imposes the following constraint on #; and ji as
defined in (11): ¢, € {0,1,...,6} and jx € {0,1,...,A},
k € N. Hence, it holds for k£ € N, that

Je+1 € 9a (), (19)
Akt1 € ha(jx), (20)

ik+1 € 95(ik),
Ok+1 € hs(ix),

where the parameterized set-valued maps
gr : {0,...,7} = {0,...,r} and h, : {O,...
{0,1}, with r € N, are given by

T =

gr(s):z{{3+1,0},36{0,1,...,r—1} (21)
{0} y S=T,

and
he(s) :={{0,1},s€{0,1,...,r—1} 22)
{1} ,s=nr

We combine the maps in (19) and (20) to obtain the
updates for p as in (15), which leads to

Br+1 € G A(kk) (23)

for all k € N, where the set-valued map G5 3 : M = M
is defined as ’

G5 a(p) := g5(3) x ga(j) x hs(i) x ha(4),  (24)

{g}th :uAT (6,4,4,5) € M = {0,1}? x {0,...,0} x

2.2.2 Stochastic Models

The simplest model of random packet losses over each
of the network channels is to describe the packet loss
as a Bernoulli process. A packet sent over the network
from controller to actuator can be lost with probability

p* € [0,1] and can arrive with probability 1 — p?, i.e.,
P (6 =0) = p®and P (6 = 1) = 1—p?, k € N. Similarly
for the packets sent from sensor to controller, we have
P(Ax =0)=p% p° € [0,1]and P (A =1) = 1-p° k €
N. Hence, p® and p° denote the packet loss probabilities
in the channel between the controller and actuator and
sensor and controller, respectively. This setup models a
memoryless channel, since the probability of dropouts
at time k + 1 is independent of the channel’s dropout
history.

The situation in which packet losses occur in bursts can
not be captured with this memoryless model [17]. There-
fore, in this paper we also consider the packet losses in
each of the two channels being governed by different two-
state Markov chains. An often adopted Markov chain in
this case is depicted in Fig. 5. This model is known as
the Gilbert-Elliott model for fading channels and con-
sists of a good and a bad network state. The probability
of packet loss at time k + 1 now depends on the success
or failure of the transmission at time k, i.e.,

P(5k+1 = 5|6k = 6—) = pg—,&’
P(Ak+1 = AIAk = A_) = p”A_YA,

(25)

where pg_, 5 and pcA_’ A denote the transition probabili-
ties in the controller-to-actuator and sensor-to-controller
channel, respectively, for §,6=,A, A~ € {0,1}. Obvi-
ously, Pi-o+05-,=1 and pj- o +Pa-; = 1 for all
6—,A~ € {0,1}. As for each channel the packet loss is
modeled by a separate Gilbert-Elliott model, the transi-
tion probabilities in one channel are independent of the
other channel, so we can use that

P(6k+1 =4 and Ag41 = A|5k =0~ and Ay = A_) =
P(0k+1 = 0|0k = 07 )P(Ag41 = A|Ag = A7)

where 6,67, A, A~ € {0,1}.

Remark 2 Note that the Bernoulli model is a spe-
cial case of the Gilbert-Elliott model. Indeed by taking
P(6k+1 = 0[]0k = 67) =p§- o =0% for 6= € {0,1}, and
P(0k41 = 1|6 =07) =p§-,=1 —p%, for A= € {0,1},
the Gilbert-Elliott model reduces to the Bernoulli model.



2.3  Problem Formulation

'I'he main objectives of this paper are to study the stabil-
ity properties of the NCS with the compensation-based
strategy, as presented in Section 2.1.3, for both worst-
case bound and stochastic dropout models, as presented
in Section 2.2.1 and Section 2.2.2, respectively. In addi-
tion, we aim at deriving efficient design conditions for the
compensator gains L{ and L§ leading to the largest re-
gions of stability in terms of the largest maximum num-
ber of subsequent dropouts 4, A, or the largest dropout
probabilities that can be allowed while still guarantee-
ing stability. In particular, our aim is to obtain stabil-
ity for the designed compensation-based strategies with
a significantly larger robustness with respect to packet
dropouts compared to the zero strategy and the hold
strategy, as in presented in Section 2.1.1 and Section
2.1.2, respectively. Note that stability of the zero strat-
egy and the hold strategy is well studied in the literature
and various stability conditions are available, see, e.g.,
[28-30,35).

3 Stability Analysis for Worst-Case Bound
Model

In this section, we consider the stability analysis and the
design of the NCS with the compensation-based strat-
egy, with packet loss modeled using worst-case bounds
on the number of successive dropouts as described in
Section 2.2.1. In particular, we are interested in prov-
ing global asymptotic stability (GAS) of (16), where
= {prpren satisfies (23) for iy = j_1 = 0. Let us
first formalize the adopted stability notion.

"To do so, we denote the solution of (16) at time & € N
with initial state €5 and sequence g = {py }ren satisfy-
ing (23) fori_, = j_; = 0 by £%(k, &5, ).

Definition 3 System (16) with (23), is globally asymp-
totically stable (GAS) for given bounds A9, if there
exists a KL-function (3, such that for all £ € R3®
and all sequences p = {pg}ren satisfying (23) with
i_y =j_1 =0, the corresponding solution £( - ,£5°, u)
satisfies

Ik, €5, )12 < 3 (11€6" 2. &)

Jor all k € N.

(27)

In order to guarantee GAS of (16) with (23), we
observe that in the closed-loop description of the
compensation-based NCS, as given in (16) with A;‘[b.
for p = (0,A,4,j) € M, as in (13), ef, | and efy, are
independent of xj. Therefore, we can split (16) in two
subsystems, one related to the dynamics of the plant
state xy, the other to the dynamics of the estimation

6

I T i 2
errors ey = [(ef)T (e,f,)]] , for £ € N. This yields the
two subsystems

Tp+1 = Az + Bs, A ks (28a)
el = Bso Ay i1 gi1Chs (28b)

where
A:= A+ BKC, (29)
Byai=[~(1-0) BEC —6(1-A)BKC], (30)

A€ {0,1},5 € {0, 1},

and F, asin (14), for p = (9, A, 4, j) € M. To prove GAS
of system (28) with (23), it will be shown that if the e-
system (28b) with (23) is GAS and if the z-system (28a)
with (23) is input-to-state stable (ISS), the cascaded
system (28) with (23) is GAS. 'To do so, let us define
the concept of input-to-state stability (ISS) [23,33] of
(28a) with (23), and note that GAS of (28b) with (23)
can be defined similarly as GAS of (16) with (23) as in
Definition 3.

For introducing ISS we denote the solution of (28a) at
time & € N with initial state 29 € R™, input e = {eg }ren
and sequences g = {1k pren satistying (23) with i, =
j—1 =0 by x(k,xo, u, €).

Definition 4 System (28a) with (23) is input-to-state
stable (ISS) if there exist a KL-function B and a K-
function vy such that, for each input e = {ey }ren € €37,
each xg € R™, and each sequence p = {py bren satisfy-
ing (23) with i_y = j_1 = 0, the corresponding solution
x( -, xo, 1, €) satisfies

lz(k, o, . €)ll2 < B(llwoll2, k) + v(llell)

Jor all k € N.

(31)

To prove now GAS ol (16) with (23), three theorems
will be presented. Theorem 5 will state conditions under
which system (28a) with (23) is [SS, 'I'heorem 6 will state
conditions under which system (28b) with (23) is GAS
and T'heorem 7 will indicate how the results of Theorem
5 and Theorem 6 can be combined to obtain GAS of (16)
with (23).

Theorem 5 [23] System (28a) with (23) is ISS if K is
chosen such that A = A+ BKC is a Schur matriz, i.e.,
all eigenvalues of A are contained in the open unit disk.

Theorem 6 Consider system (28b) with (23), if there
exists a set of symmetric matrices { P, | € M} salisfying

Py * _
=0, peGsalp™), o eM, (32
PuE, PJ i

then (28b) with (23), is GAS.



PROOF. Theorem 6 results from showing that
V(ek, k1) := e Pu_y ek, (33)

k € N\ {0}, is a parameter-dependent Lyapunov func-
tion for the system (28b), see [11]. To show this, we will
prove that for ex # 0, V(ex+1, tx) < V (ek, pr—1) holds,
which due to (33) is equivalent to

efEZ‘k P, E,.ex < efP,_, ek, (34)

for all ex # 0 and all ux € Gz a(uk—1). Obviously,
(34) is satisfied as it results from (32) by pre- and post-
multiplication by diag(I2,, P;!), followed by taking a
Schur complement, thereby sﬁowing the strict decrease
of the Lyapunov function at each step as in (34). In ad-
dition, we observe that due to (32) it holds that P, > 0,
© € M, and thus there exist 0 < ¢; < ¢ such that
cillel|l? < V(e,p) < calle||3. By standard Lyapunov ar-

guments these facts show GAS of (28b) with (23). O

Theorem 7 [23] If the e-system (28b) with (23) is GAS
and the x-system (28a) with (23) is ISS, then the cascaded
system (28) with (23) is GAS.

We now combine Theorem 5, Theorem 6 and Theorem
7 to obtain one of our main results, which formulates
conditions under which (28) with (23) is GAS.

Theorem 8 Consider system (28) with (23), if A =
A + BKC 1is a Schur matriz and there exist a set of
symmetric matrices {P,|u € M} satisfying (32), then
the cascaded system (28) with (23) is GAS.

Using Theorem 8, one can analyse stability of (28)
with (23) for given compensator gains L¢ and L3,
i€{0,...,A}, j€{0,...,A}. Since we are interested in
designing L¢ and L to guarantee stability with large val-
ues of § and A, Theorem 9 states LMI-based conditions
for the synthesis of L{ and L§, based on Theorem 8.

Theorem 9 Consider system (28) with (23). Suppose
A = A+ BKC is a Schur matriz, and there exist a set
of symmetric matrices { P,|p € M} with P, of the form

Pgi Onxn

P, = .
Onxn PS

, MEM,

and a set of matrices { R, | € M} with R, of the form

R;'l On><n

R —_—
* " [Onxm B

, MEM,

satisfying

P,-

=0, u€Gza7), p €M, (35
Q, P, 1% J,A(N)# (35)

with Q, as in (37). Then the system (28) with (23) is
GAS for the compensator gains L} and L5 given by

Le = (P2)"'Re, i=0,...,6,
[ ( l,z) . (] Z. ’ (36)
L = (Pg;)"'RS, j=0,...,A.
PROOF. From (36) we obtain
RS = Pe.Lo,  i=0,...,8,
AT
R,] :Plijj’ ‘7=O,...,A.

Since substitution of (38) in (37) yields Q, = P,E,, it
is clear that (35) implies (32). Hence, we recovered the
hypotheses of Theorem 8, and thus the system (28) with
(23) is GAS for the compensator gains in (36). O

4 Stability analysis for Stochastic Dropout
Models

In this section, we again consider the stability analy-
sis and design of the NCS with the compensation-based
strategy, but now for the case where the lossy channels
are described by the Gilbert-Elliott models as discussed
in Section 2.2.2. The Bernoulli case can be handled in a
similar manner, as was also indicated in Remark 2.

In the case of the worst-case bound models as treated
in the previous section, the compensator gains L¢ and
Lf depend on ix—; and jk-1, k € N, the number of sub-
sequent dropouts experienced until time k — 1 in the
sensor-to-controller and controller-to-actuator channel,
respectively. In the case of worst-case bounds the values
ix—1 and jx—1 remain bounded, and thus only a a finite
number of these gains have to be used. This is no longer
the case when the Gilbert-Elliott models are adopted,
as these allow the occurrence of an infinite number of
successive dropouts in the controller-to-actuator chan-
nel if p§ 5 # 0, and in the sensor-to-controller channel if
P50 # 0. This would lead to designing infinitely many
compensator gains L{ and L$, ¢ € N, j € N, as we do not
have the restrictions 7 < ¢ and jx < A as in the case of
the worst-case bound models of Section 2.2.1. Clearly,
for practical reasons it is desirable to have a finite num-
ber of compensator gains, and therefore we reduce the
flexibility of the compensators by introducing saturated
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dropout counters ir and jj, subject to the saturation lev-
els & and A, respectively, i.e.,

ix = min(i, (;)

5 ’ (39)
Jr = min(jg, A),

for k € N, where i), and ji are defined as in (11). Instead
of letting the compensator gains in (9)-(10) depend on
tg—1 and jr_;, we let them depend on ir_1 and jk,l.
Therefore, we replace the compensator gains L, i € N|
in (10) by Le, i€{0,...,0} and the compensator gains
LS, j € N, in (9) by L§5 € {0,...,A}, leading to

. = Axj + Buj, + AkLi- . (yp — C'x§)

Ce: 5 Cay (: yf,) if Ap=1
Y =
. Cat H Ag=0,
(40)
IZ’+1 = Ag:‘}; + Bu,z + (SA.L?’{?I ('ui, — 1\’(7.’1‘%)
Ca : . Kifi(=ug) if é&=1
uy =
* KCag il 6 =0.
(41)
The number of compensators gains, Lz, iefo,...,8},

and L?, je {0,..., A} to be designed for each channel
is now finite. The exact number can be chosen freely
by selecting & and A in a desirable manner. A direct
consequence of these choices is that for all i, > 5, keN
we apply the same gain Lg in (41). Similarly, for all

gk > A, k € N we apply the same gain L% in (40).

The above considerations l]lO(IifV 12) into the closed-
3
lOO}) SySt(“,lll l‘epresenl,at.iox1

b b
i1 = Aj

cb c
(skwtﬁk‘;k—fl-jk—lék ’ (42)

with Aghy ;. asin (13), for 6 € {0,1}, A € {0.1},i €

{0,...,6} and j € {0,...,A}. For ease of notation, we
define . . B
[‘A = (dkaAkﬁI:kA]u,.k—l) € Ma (43)

where M = {0,1}2x{0,...,6} x{0,..., A}. This allows
a compact representation of (42), i.e.,

€t = AREY. (44)

As in the case of worst-case bounds, also here not all
transitions from i, € M to i+ € M are possible. In

fact, for k € N, it holds that

.;k+1 = .(}A(}kv Al\r) (45)
Apy1 € {0, 1} (46)

iks1 = 95(ix, Ok),
5k+1 S {0,1},

where the parameterized set-valued map
gr:{0,...,7} x{0,1} = {0,...,r} is given by

0 ,Sg:l

gr(s1,82) == s1+1,8=0,s €{0,...,r—1},

S1 , 82 = 0 s, 81 =T

(47)
We combine the maps in (45) and (46) to obtain

k1 € G & (fix) (48)

for all & € N, where the set-valued map G 3 : M= M
is defined as

Gy 5 (B = {3;((,0)} x {ga(G, D)} x {0,1}2,  (49)
with 1 = (8,A,1,7) € M.

A final step to model the complete NCS with the
compensation-based strategy using the compensators
C. and C,, as defined in (40) and (41), respectively,
is to include the transition probabilities from i to
fik+1 € G A (fir) based on the Gilbert-Elliott models for
the dropout behavior in each channel. These probabili-
ties combined with (44) and (48) will lead to a so-called
Markov Jump Linear System (MJLS), which are well
known in the literature, see, e.g., [10]. To obtain these
probabilities, observe that the probability of going from
fik = (On, Dy ig—1, Jk—1) 10 fikp1 = (Opg1, Dt i, Ja)
is completely determined by the probability of go-
ing from d; to oy and Ap to Axy as already ex-
pressed in (26). As a consequence, the probability
Pi- i of going from = = (07,A7,i7,j7) € M to
p=(3,A,4,j) € G5 x(~) is given by p§ ;p{~ A, and
thus we obtain the transition probabilities

/ p§ sPA - When 17 eM, peGs (1),
Fr 0 ,when i~ eM, fLEM\(;(;AA([L_).

(50)
Note that with these probabilities a new Markov chain
with state ji € M is obtained. The discrete-time system
(44) with Azb as in (13) combined with the Markov chain
(50) forms the overall model of the NCS in the form of
a MJLS, with initial conditions £5° € R3" and po € M.
We denote this MJLS for shortness by Xajrs.



Let us first define several forms of stability for discrete-
time jump linear systems of the form X1, see [9,30].

Definition 10 The Markov jump linear system given by
EmiLs 1s:

(1) mean-square stable (MSS) if for every initial state
(€6, fto), Jim E[|I€2°]131€5", fro] = 0;
(2) stochastzcally stable (SS) zf for every initial state

(68 o), B[ 168°13 5%, fo] < oo;

(3) exponentially mean square stable (EMSS) if for
every initial state (£§°, fio), there exist constants
0<a<1landp ZOSuchthatforallk: >0,

E[[l€2I13] £6° o] < Ba|€g213;
(4) uniformly exponentially mean square stable (UEMSS),

EMSS but o and 8 independent of £5° and fio;
(5) almost surely stable (ASS) if for every initial state

(€8P, o), we have that P [klim llegt| = 0] =1.
—00

It is shown in [9] that the first four stability properties in
Definition 10 are equivalent and any one implies almost-
sure stability, i.e.,

MSS & SS < EMSS < UEMSS = ASS.  (51)

In the remainder of this section, we present conditions

under which the Markov jump linear system Xjprs is
EMSS.

As in Section 3, we note that in the closed-loop descrip-
tion of the resulting NCS, as given in (44) with Af-"’ given

in (13) for i = (8, A,3,7) € M, the states ef_ ; and ef
are independent of z;. Therefore, we can also adopt a
cascaded system decomposition similar to (28) to obtain

(52a)
(52b)

Tiy1 = Axg + wg,

€+l = E5k,Akﬁk—1,3k—1 €k»

where wy, := Bs, a,ex. k € N, Ais given in (29), Bsa in
(30) and Ej; in (14) for i € M. To prove that Xayrs is
EMSS, we again use a ‘cascade’ reasoning. In Theorem
11, we will provide a result that can be used to conclude
that if A = A+ BKC is a Schur matrix and if the e-
system (52b) with (50) is EMSS, then the system X5
given by (52) with (50) is EMSS. Note that all stabil-
ity properties in Definition 10 can be defined similarly
for (52b) with (50), and moreover, note that Theorem
11 is the stochastic equivalent of Theorem 7, which, to
the best of the authors’ knowledge, is not available in
the literature. In Theorem 12 we will present necessary
and sufficient matrix inequality conditions for EMSS of
the e-system (52b) with (50), which are proven in [9].
Combining Theorems 11 and 12 will result in EMSS of
Y mirs as will be formulated in Theorem 13.

Theorem 11 Consider the system (52a) where {wg }ken
is a sequence of random wvariables with the property
that for some ¢; > 0 and 0 < p < 1 it holds that,
for any wo € R*™, E[|wk|3] < c1p*|woll3, k € N. If
A = A+ BKC is a Schur matriz, then there exist c; > 0,
c3 > 0and0 < r <1 such that

E[llzklI3]20] < car®llwoll3 + car®llwoli3  (53)

for all xg,wo, k € N.

PROOF. The proof is given in Appendix A.

Theorem 12 [9] The MJLS given by (52b) with (50),

is EMSS if and only if there exists a set { P|ji € M} of
positive definite matrices satisfying

P- = >

REG; x(B™)

EFPE; =0, im € M. (54)

Pp- i

We now combine Theorem 11 and Theorem 12 to obtain
one of our main results, which formulates conditions un-
der which ¥ s is EMSS.

Theorem 13 Consider system Ypgrs given by (52)
with (50). System Zprs is EMSS if and only if there
exists a set {Pglii € /\;l} of positive definite matrices
satisfying (54) and A = A+ BKC is a Schur matriz.

PROOF. We first show the sufficiency. From Theorem
12 we have that if (54) is satisfied, then the MJLS (52b)
with (50) is EMSS, i.e., for some ¢4 > 0and 0 < p < 1,
E[llexll3] < cap®lleoll3, for all eo € R*™ and all k € N.
Since wy = B,sk,Akek, k € N, this implies that for some
c1 >0and 0 < p <1, E[||lwkll3] < c1p¥||woll3, for all
wo € R?™ and all £ € N. Now we can invoke Theorem 11
to obtain a bound as in (53), since A is Schur. The above
facts imply that ¥z is MSS and thus also EMSS.

To show necessity, take eg = 0 which implies that e, = 0
for all kK € N, and thus also wxy = 0 for all k¥ € N.
Hence, for eg = 0 (52a) reduces to the linear system
Tr+1 = Axg. Since Xprs is EMSS, it must hold that
limg_, 00 zx = 0 for any zo and consequently, A must be
Schur. Finally, note that if ¥z s is EMSS, then the
MJLS given by (52b) with (50) is EMSS as well. Since
Theorem 12 presents necessary and sufficient conditions
for (52b) with (50) to be EMSS, it follows that there
must exist a set {P;|i € M} of matrices that satisfy

P; >~ 0, i € M, and (54). This completes the proof. O

Using Theorem 13, one can analyse stability of Xayrs
for given compensator gains L¢ and LC, 1 €{0,.. A}



jefo,..., A} Since we are interested in designing L¢
and L; to obtain stability with a large robustness with
respect to dropouts, Theorem 14 will state LMI-based
conditions for the synthesis of L? and L§, based on The-

orem 13.

Theorem 14 Consider the system X ans given by (52)
with (50). Suppose A = A + BKC is a Schur matriz,
and there exist a set { Py | € M} of symmetric matrices,
with Py of the form

¢ 0 -
Pﬁ = 0. T1‘><7l 3 /:l E M,
Onxn P5

and a set { Rj

s M} of matrices, with Ry of the form

1
RS Ouxn
o b

RS M,
OYLX m

X
SaR

satisfying

with for i~ = (6=, A" ,17,57)

a C = o
P5- oPa- 0 0.0

P5- oPa-1 Qo1

5

P5- 1Pa-0 oij

a ! 4 = & =
P5- 1Pa-1 i

2(f7) = diag(Py g7 ;>

(1]

POJ,?.]‘ 1.0,i.5° Pl,l,?.j)=
where 1 = r}g(;‘ 07),) = ‘(}A(.}'_,A‘) and Q0 as in (37).
Then Xarps is EMSS for the compensator gains L%‘ and
L; given by

L¢ = (P*)'R?, i=0,...,4,
3 1,2 i (56)
[ c V-1 pec . A

Lg = (P RS,  j=0,..,A

PROOF. From (56) we obtain

R¢ = P.Le, 1=0,...,90,

) 1.8 3 _ N (57)
RE =PI,  j=0,...,4

J 1. J

Since substitution of (57) in (37) yields Q; = P, Ep, it

Jis
is clear that (55) implies (54), as (54) with py- ; as in
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(50) results from (55) by pre- and postmultiplication by
diag(l,,Z5 ' (i), followed by taking a Schur comple-
ment. Hence, we recovered the hypothesis of 'Theorem
13, and thus Y ays is EMSS for the compensator gains
in (56). O

5 Numerical Examples

In this section, we illustrate the presented theory using
a well-known benchmark example in the NCS literature
[36]. The example, which has been used in many other
papers, see, e.g., [5,12,13,19,27], consists of a linearized
model of an unstable batch reactor. Here, we will assume
that the full state can be measured. We sample the un-
stable batch reactor as presented in [36] at 100 Hz to
obtain a plant of the form (1) with

1.0142 —0.0018  0.0651 —0.0546
4 | 00057 0.0582 —0.0001  0.0067
0.0103  0.0417 09363  0.0563
| 00004 00417 0.0120  0.9797
[0.0000 —0.0010
o |00 o000
0.0123  —0.0304
0.0123  —0.0002

In our analysis we will assume that the state feedback
gain K in (2) is designed a priori. However, to analyse
the influence of the choice of K we consider two differ-
ent values of K, i.e, K| is designed such that all the
eigenvalues of A + BK,C are 0.4 and K, is designed
such that all the eigenvalues of A + BK,C' are 0.9. In
Section 5.1 we will analyse stability of the batch reactor
using the results for the worst-case bound modeling as
in Section 3, and in Section 5.2 we will analyse stability
of the batch reactor using the results for the stochastic
modeling as in Section 4. In Section 5.3 we compare the
results of the compensation-based strategy obtained for
the worst-case bound and stochastic dropout models to
the zero strategy and the hold strategy and discuss the
influence of the state feedback gain K on the results.

5.1 Worst-Case Bound Model

To obtain maximal robustness of the compensation-
based strategy for the worst-case bound dropout model,
we design the compensator gains based on Theorem 9
for various values of the maximum number of successive
dropouts ¢ and A in each of the channels. If the LMIs
provided in Theorem 9 are feasible, then the NCS can be
rendered stable by the compensator gains as provided
in (36) and all possible sequences of dropouts where the



number of subsequent dropouts do not exceed & and
A, in the controller-to-actuator and sensor-to-controller
channels, respectively. To compare the results of the
compensation-based strategy with the zero strategy
and the hold strategy, we could use sufficient Lyapunov-
based tests similar to the ones described in Theorem 8.
However, to even better demonstrate the true improve-
ment of the compensation-based strategy with respect
to the zero strategy and the hold strategy, we will use
necessary conditions for stability of the NCS with the
zero strategy and the hold strategy, as they provide an
upper bound on the maximum number of successive
dropouts that can be guaranteed by any sufficient con-
dition. The necessary conditions consist of performing
an eigenvalue test for some admissible periodic dropout
sequences, satisfying the upper bounds 6 and A. The
selected dropout sequences and the eigenvalue tests
performed are explained next.

To select the dropout sequences used to determine upper
bounds on the stability regions that can be admitted by
the zero strategy and the hold strategy we consider the
closed-loop system for the zero strategy as given in (4)
with A} 5 as in (5), and the closed-loop system for the
hold strategy as given in (7) with A"i A as in (8). We
distinguish three different cases:

(i). Only the sensor-to-controller channel exhibits
dropouts, i.e, d = 0 and A > 0.
(ii). Only the controller-to-actuator channel exhibits
dropouts, i.e, § > 0 and A = 0. ~
(iii). Both channels exhibit dropouts, i.e., 6 > 0 and
A>0.

For case (i) we check (in)stability for a sequence of A
drops followed by a successful transmission in the sensor-
to-controller channel and then repeat this pattern, i.e,
we check if (A7 )2 A% or (A} ()2 AL | is a Schur matrix
for the zero strategy and the hold strategy, respectively.

For case (ii) we check (in)stability for a sequence of
6 drops followed by a successful transmission in the
controller-to-sensor channel and then repeat this pat-
tern, i.e, we check if (43,)°A%, or (Ah,)°A}, is a
Schur matrix for the zero strategy and the hold strategy,
respectively.

For case (iii) we analyse different dropout sequences for
the zero strategy and the hold strategy. For the zero
strategy, stability can never be proven for an open-loop
unstable system when 6 > 0 and A > 0. To demonstrate
this, consider the admissible dropout sequence

0, if k£ is odd 1, if k is odd
1, if k is even 0, if k is even,

which, using A3 5 asin (5), resultsin 2441 = A¥zo. Since
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A is not a Schur matrix, this implies that if both channels
exhibit dropouts, i.e., if 6 > 0 and A > 0, the NCS with
the zero strategy is never stable. For the hold strategy
we consider a dropout sequence where the controller-to-
actuator channel drops ¢ subsequent packets while the
sensor-to-controller channel is transmitting successfully,
followed by the sensor-to-controller channel dropping A
subsequent packets while the sensor-to-actuator channel
is transmitting successfully, the sequence ends with a
successful transmission in both channels and then repeat
this pattern, we check if (A(’)‘Yl)‘s(A{‘,O)AAQ‘Y1 is a Schur

matrix. We also check if (A{',O)A(Ag’l)sA’f,l is a Schur
matrix, which results from a similar sequence, but where
the drops occur in an opposite order.

The results obtained by checking the dropout sequences
as indicated above for the zero strategy and the hold
strategy, and the results for the compensation-based
strategy that follow from Theorem 9 are shown in Fig. 6
for all eigenvalues of A+ BK C placed at 0.4, and in Fig. 7
for all eigenvalues of A + BKC placed at 0.9. In Fig. 6
we observe that, compared to the zero strategy and the
hold strategy, the compensation-based strategy can al-
low for more successive dropouts for cases (i) and (ii),
however no strategy can prove stability for case (iii), in
which both channels exhibit dropouts. If the eigenvalues
of A+ BKC are placed at 0.9, we observe from Fig. 7
that for both the hold strategy and the compensation-
based strategy it is possible to prove stability for certain
situations complying with case (iii), in which both chan-
nels exhibit dropouts. Note that for the results of the
zero strategy and the hold strategy, a ‘*’ means that a
point might be stable, as it follows from checking a neces-
sary condition (which might not be related to the ‘worst-
case’ sequence), whereas if there is no ‘# this means that
the NCS can not be stable. For the compensation-based
strategy, a ‘*’ means that a point is guaranteed to be
stable, as it follows from a sufficient condition. Hence,
although Fig. 6 and Fig. 7 already demonstrate that the
compensation-based strategy is in general much more ef-
fective in dropout compensation than the zero strategy
and the hold strategy, the compensation-based strategy
might perform even (much) better compared to the lat-
ter strategies than suggested by Fig. 6 and Fig. 7.

5.2 Stochastic Model

Now we assume that the dropouts in the sensor-to-
controller and controller-to-actuator channel are gov-
erned by Gilbert-Elliott models. For illustrative pur-
poses, we assume that p‘;_,s = pg_,s = ps-s, for
s,s~ € {0,1}. To obtain maximal robustness of the
stability property for the compensation-based strategy
in case of the stochastic dropout models, we design the
compensator gains based on Theorem 14 for various
values of ps- 5, s,57 € {0,1}. If we satisfy Theorem 14
for certain p,- 5, then the NCS can be rendered stable
by the compensator gains as provided in (56). Note that



Theorem 14 provides sufficient conditions for the exis-
tence of stabilizing compensator gains due the imposed
structure on the Lyapunov function. We compare the
obtained results with the zero strategy and the hold
strategy for the counter saturation levels 6 = A = 1.
To compute the stability regions of the zero strategy
and the hold strategy we apply a theorem similar to
Theorem 12, which provides necessary and sufficient
LMI-based conditions for stability, see, e.g., [30]. This
leads to Fig. 8 and Fig. 9, in which we compare the re-
gion for which stability can be proven for the different
strategies, in case all eigenvalues of A+ BK C are placed
at 0.4 and 0.9, respectively. The results are based on
analysing an equidistant grid of p,- 4, s,s™ € {0, 1}, i.e,
poo € {0,0.01,...,0.99, 1}, p1; € {0,0.01,...,0.99,1},
po.1t = L —pooand p; g = | — p; ;1. Closed-loop stability
is guaranteed for all the grid points to the left of each
line. Even though the results for the compensation-
based strategy are based on sufficient conditions, we
observe that the region for which stability can be guar-
anteed is (much) larger than the regions for the zero
strategy and the hold strategy. Only when all cigenval-
ues of A+ BK,C are placed at 0.4 and the probability
of remaining in the good network mode is larger than
0.85 (p1.1 > 0.85), using the zero strategy yields more
robustness with respect to dropouts than using the
compensation-based strategy obtained with Theorem

14. Alternative sufficient conditions for the design of

stabilizing compensator gains might give even better
results than Theorem 14, possibly matching or even
improving the results for the zero strategy.

5.3 Comparison

To compare the results of the two different gains K re-
sulting in all eigenvalues of A + BK|C at 0.4 and all
eigenvalues of A + BK,(' at 0.9, we study Figures 6
and 8 and Figures 7 and 9, respectively. Note that we
have ‘slow’ convergence of the closed-loop system with-
out dropouts if the eigenvalues of A + BKC are close to
the open unit disc (as for A+ BK>('), and, since Ky # 0,
therefore also the control commands are ‘slowly’ vary-
ing. If the eigenvalues of A + BK (' are close to the ori-
gin (as for A+ BK,C), we have ‘fast’ convergence of the
closed-loop system without dropouts, and since K| # 0,
therefore also ‘rapidly’ varying control commands. For
the hold strategy, the actuator always acts based on ei-
ther new information or information stored in a buffer,

whereas for the zero strategy the actuator only acts if

new information is received. From the results in Figures
6-9 we observe that, on the one hand, if the control com-
mands are slowly varying, i.e. eigenvalues of A+ BK,(’
at 0.9, the hold strategy performs better than the zero
strategy. This is an intuitive result, as when the control
commands are slowly varying, the last successfully re-
ceived command stored in the buffer is likely to still be
adequate. On the other hand, if the control commands
vary ‘rapidly’, i.e. all eigenvalues of A + BK,C at 0.4,

the zero strategy performs better than the hold strategy.
This also is an intuitive result, as due to the ‘rapidly’
varying control commands the last successfully received
control command stored in the buffer is likely to be in-
adequate. Hence, the results of the zero strategy and the
hold strategy in Figures 6-9 are conform the expectation.

Most importantly, we observe that in both cases, the
NCS with the compensation-based strategy is in general
the most robust with respect to dropouts. This shows
the importance of the newly proposed class of dropout
compensators in this paper.

6 Conclusions

In this paper we presented a new compensation-based
strategy for the stabilization of a NCS with packet
dropouts. The main rationale behind the novel dropout
compensators is that they act as model-based, closed-
loop observers if information is received and as open-loop
predictors if a dropout occurs. These compensators were
considered for two dropout models, using either worst-
case bounds on the number of subsequent dropouts or
stochastic information on the dropout probabilities. For
the worst-case bound dropout model we derived suffi-
cient conditions for global asymptotic stability of the
closed-loop NCS with the compensation-based strategy.
For the stochastic dropout models we derived necessary
and sufficient conditions for (exponential) mean square
stability of the closed-loop NCS. In addition, for both
dropout models we developed LMI-based conditions
for the synthesis of the compensator gains that result
in a robustly stable closed-loop system. By means of
a numerical example, the significant improvements in
robustness of stability with respect to packet dropouts
for the compensation-based strategy compared to the
zero strategy and the hold strategy were demonstrated.

A Proof of Theorem 11

Consider the system (52a). If A is a Schur matrix, then
there exists a matrix P satisfying
o, < P<oyl, with 0<o; <oy, (A.1)
such that 7
ATPA-P=—1,. (A.2)

Now we will employ the function V (x) = 27 Pz to obtain
a bound of the form (53). Hereto, consider the difference
in conditional expected value of V (x4 )) and V(xy), for
k € N, which is given by

AV (zg) = E[V(;Iik+1) |xo] — E[V (z4) | 0]
- K l:(/i.lfk +wy,) . P(Azy, +wy) \;ro] -IE[.I‘Z.‘P.’II;C |2o] -
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Using (A.2), this can be rewritten as

AV (zx) = E[—af 2k + 22F AT Pwy, + wi Pwy | 20] .

) (A.3)
We now replace the term 2z7 AT Pwy, in (A.3) by terms
of known definiteness. Take any 0 < € < 1 and note that
we can write

AV (zx) = E[-(1 — &)z 2k — exf z + 227 AT Pwy,
—%w,{PAATPwk +wi (P - éPA/iTP) wy, | xo] ;
(A.4)
where

— ezt xp + 2z1 AT Pwy, — éwgPAATPwk =

1 -
— |IVexk — ﬁATPwkH% <0. (A5)
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Fig. 7. Results for various compensation strategies and all
eigenvalues of A + BK,C placed at 0.9.
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Fig. 9. Results for various compensation strategies and all
eigenvalues of A + BK>C placed at 0.9.

Using (A.5) in (A.4) and defining M := P + 1PAATP
yield
AV (zx) <E[-(1 - e)afzk + wf Mwy |zo] .

Using that M satisfies M < a;1,, for some a; > 0, we
can write
AV(zk) < = (1 - ) E[l|lzl13 | 20] + a1 E|lwgll3] -
(A.6)
From (A.1) we obtain a lower bound on E(|zx||3| o],
ie.,

B[V (zx) | 0] < E eI} 0]

Substituting this lower bound in (A.6) and reordering
terms yield

E[V (@x41) | w0] < (1 - (1—;—)) E[V (k) |20] +

aEfwell3] . (A7)



Let us now introduce the definitions
4 e . s o (1 B E) A
vp o= E[V () |20], g:=1|1- ==t 1 (A.8)

Note that by the hypothesis of the theorem we have
that E[|[wg||3] < ¢1p*|lwol3, for all wy and all k € N,
and that there exists 0 < ¢ < | such that ¢ € (0, 1).
Substitution of (A.8) in (A.7) and using the bound on
lE[Hw;,H:;] yields the following difference inequality

Vg1 < qui + (nlE[[[wk[[;)] :

< qui + ayerptfwol3.

By induction arguments, one can see that v, is upper
bounded by 0 (which is a kind of comparison principle,
see [18]), i.e., vy < Op, k € N, where @, is the solution of
the following difference equality

Ukl = QU + 2g, Uy = Vo,
k+1 JUk k 0 0 , (A.9)
Zh41 = P2k, 20 = ”1“1““’0”5'
Now note that (A.9) can be written as
O 1 Uk
k+r | 4 k ’ (A.10)
Zht1 0 pj |2
; q 1
and since g € (0,1) and p € [0, 1), we have that
0 p
is a Schur matrix. Hence, there exist ¢o > 0and 0 < r <

1 such that

Uk T
< ¢y ~
Zk 5 20 s

Since v < O, k € N, we have that

v < 52’I'k’L’0 4+ (vf'_g’)“k.Z(), ke N. (All)
From (A.1) we see that E[V (zx)|zo] is lower bounded
by o1 E[llzk |3 | 20], i-e., o B[]z 3| 20] < E[V (ar)]a0]
and that E[V (z0) |2¢] = V(2g) (note that we evaluate
the expected value at xg. given x) is upper bounded by
oallzoll3, ie., V(xg) < oallxo]/3. By substitution of these
bounds and the definition of vy, from (A.8) and zy from
(A.9) we obtain

2 -y ’ 1 ;
E[H:l'kﬂg ]1’0] < Gork (—02 llzoll3 + —(yl(q][zuo“é>
gl (o]

(A.12)
Now define ¢y := (72‘—;—? and c¢3 1= 620%(11(:1, so that we

obtain (53), for all xg,wy, k& € N. This completes the
proof.
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