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Abstract

Active Brownian particles are Brownian particles that can take up energy from
their environment and use it to propel themselves. This is contrary to pass-
ive Brownian particles, which can only diffuse through thermal fluctuations in
the fluid in which they are suspended. Hence, active Brownian particles move
through a fluid by two mechanisms: by diffusion and by self-propulsion. Bac-
teria and algae form examples of active Brownian particles. In this report, we
investigate the dynamics of a single passive Brownian particle (a tracer) in a
crowded environment of active particles. All particles interact via a short-range,
repulsive potential, and hydrodynamic interactions are neglected. We investig-
ate the tracer’s mean-squared displacement (MSD) as a function of time and
study how activity, temperature and density influence the tracer’s dynamics.
This is done in two ways: first, we use the mathematical formalism of stochastic
differential equations and Itô calculus, and a series of approximations to find
an analytical expression for the MSD. Secondly, we simulate the system nu-
merically using Brownian dynamics simulations and calculate the MSD from
the results of these simulations. In both methods, we find that the active bath
dramatically enhances the tracer’s diffusion. However, the analytical approx-
imations predict long-time ballistic motion, whereas the numerical simulations
show that the tracer diffuses linearly at these time scales. Furthermore, the
simulations show superdiffusive or subdiffusive behaviour at intermediate time
scales, where MSD(t) ∼ tα with α > 1 or α < 1 respectively, depending on
activity. This behaviour is not predicted by the analytical methods. We expect
that these discrepancies are due to the approximations made in the analytical
MSD calculation.
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Chapter 1

Introduction

Active Brownian particles are particles that are suspended in a fluid and that
can take up energy from their environment and use it to drive themselves [1].
This property distinguishes active Brownian particles from passive Brownian
particles, which only move through the fluid because of the thermal fluctuations
in the fluid. Due to their activity, these particles are never in equilibrium
with their environment [1]. Moreover, because of their self-propulsion, active
Brownian particles diffuse much faster than their passive counterparts. On the
other hand, a passive Brownian particle in an environment that is crowded by
other passive Brownian particles, diffuses much more slowly than if it could
diffuse freely [2–4].

The collective motion of active Brownian particles can give rise to fascinating
phenomena. For instance, the dynamics of schools of fish and flocks of birds are
modelled using the theory of active matter [5, 6]. Active matter is also observed
on the microscopic scale. Bacteria can propel themselves, for instance using
flagella, as a more efficient means for finding food. On the other hand, artificial,
non-living microscopic particles can also show active motion. For example, gold-
platinum microrods can induce concentration gradients in hydrogen peroxide
solutions, thereby significantly enhancing their directed motion [1]. Because of
these remarkable properties, active matter has become an active research topic
in the (bio)physics community [7].

In this report, we investigate the influence of active Brownian particles on
passive ones. In particular, we will consider a two-dimensional bath of active
particles (‘hosts’) in which a single passive particle (‘tracer’) is submerged. All
particles interact via a short-range, repulsive potential. The first experiment on
this type of system, with a small number passive particles surrounded by active
particles, was conducted in 2000 by Wu and Libchaber [8]. They found that
the tracer to some extent inhherits the activity of the hosts, which dramatically
changes diffusive behaviour. For instance, for long times, the tracer diffuses
as it would in a bath with a temperature about a hundred times larger than
the actual bath temperature. Soon after, numerical simulations could reproduce
these results [9]. Numerous other physical and numerical experiments have been
performed since for similar systems, all indicating the same enhanced diffusion
of the tracer, see e.g. [10–12].

At low densities, hydrodynamic interactions between the hosts and the tracer
are thought to be responsible for the tracer’s enhanced diffusivity [13]. This
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means that when an (active) Brownian particle attains a velocity, it induces a
flow field in the liquid, that affects the motion of the other Brownian particles
[14]. However, in this report we neglect these interactions, and only consider
the repulsive, direct interactions between tracer and host and between hosts
themselves. Moreover, in highly crowded environments the hydrodynamic in-
teractions can cancel if now global flow is built up [1].

The goal of this report is to investigate the mean squared displacement

(MSD(t) := E[|Xt −X0|2] :=
〈
|Xt −X0|2

〉
, where Xt is the position of the

particle at time t and X0 is its initial position) of a passive Brownian tracer in
an active bath. The MSD is the conventional quantity to probe the dynamics of
a Brownian particle. More specifically, we want to know how the MSD depends
on the bath activity, temperature and host particle concentration. We find that
at very short times MSD(t) ∼ t (in the overdamped limit), at intermediate
times MSD(t) ∼ tα, with α < 1 or α > 1 depending on the ratio v0/T , and
at long times MSD(t) = Defft, where Deff is an effective diffusion coefficient.
We investigate how the values of α and Deff depend on the aforementioned
quantities.

We approach the problem in two different ways: analytically and numerically.
For the analytical route, we first need to understand the theory of stochastic
differential equations (SDEs) and Itô calculus. The solutions of ordinary (or
partial) differential equations are fully deterministic; for example, given initial
conditions, Newton’s laws predict precisely the motion of an object in a grav-
itational field, and each time we perform the same experiment and we measure
the trajectory of the object, we find exactly the same results. However, the
solutions of stochastic differential equations are random variables. For example,
the motion of a particle in a fluid is modelled using SDEs, since the particle will
follow a different, random trajectory each time we let it diffuse in the fluid. The
particles that we consider follow random trajectories because of their collisions
with the molecules of the fluid in which they are suspended. With this new type
of differential equations comes a new type of integration: we will define the Itô
integral to be able to solve SDEs.

Moreover, to each SDE we can, under some conditions, associate a partial
differential equation for the probability density of the solution of the SDE.
These partial differential equations are called Fokker-Planck equations; they
describe the evolution of the probability density in space and time. Hence,
the random motion of particles can be described in two different formulations:
on the microscopic level, we describe the random motion of all particles using
SDEs; on the macroscopic level, we describe the probability density of these
particles using the Fokker-Planck equation associated with the SDEs.

For the numerical simulations, we use the SDE level: using Brownian dy-
namics simulations, we simulate the random motion of each of the particles in
the system and calculate the tracer’s MSD from the results of these simulations.
On the other hand, we use the macroscopic, Fokker-Planck description to find
an analytical approximation for the probability density of the tracer. Multiply-
ing this density by the square of the tracer’s position and integrating over all
space yields the (approximate) MSD.
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1.1 Structure of the report

Chapter 2 focuses on Itô calculus and stochastic differential equations. The
first SDE we study is the one that describes the random motion of a particle
suspended in a fluid. Next, we describe SDEs that model more general motion,
for instance that of interacting active particles. Furthermore, we discuss the Itô
integral, which is necessary to find solutions SDEs, and provide a theorem that
converts SDEs to Fokker-Planck equations. These SDEs will be used throughout
the report to describe our models. In Chapter 3 we describe the model we use
for numerically simulating the random evolution of particle system, and we
outline the methods used for this. In Chapter 4 an approximate solution to the
PDE that governs the tracer’s probability density is presented and the tracer’s
MSD is calculated from this, whereas in Chapter 5 the results of the numerical
simulations are given. We finish with a conclusion and outlook in Chapter 6,
which also compares the results from the two approaches.

1.2 Notation

We mostly use the notation and terminology that is conventional in mathemat-
ics.

• The expectation value of a random variable X is written as E[X], rather
than 〈X〉, which is more common in physics.

• For a random variable X that is distributed according some distribution
A, we write X ∼ A. In particular, if X follows a normal distribution with
mean µ and variance σ2, we write X ∼ N (µ, σ2).

• Vectors will be written in boldface. The inner product of two vectors x =
(x1, . . . , xn),y = (y1, . . . , yn) ∈ Rn is denoted by x · y = x1y1 + · · ·xnyn.
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Chapter 2

Stochastic Differential
Equations

In this Chapter we introduce the reader to the mathematical preliminaries
needed to understand the rest of this work. First, we define the Brownian mo-
tion (Definition 2.1), which is a continuous-time stochastic process that takes
values in Rn. Next we introduce the concept of stochastic differential equa-
tions (SDEs, Equation (2.8)), which can loosely be thought of as differential
equations that contain a random noise term. Apart from physics, SDEs also
find applications in stochastic finance. Subsequently we provide theorems and
definitions necessary to solve SDEs, such as the Itô Integral (Definition 2.4), and
Itô’s formula (Theorem 2.7), which allows for a quick calculation of Itô integrals.
The solution of an SDE is a stochastic process itself. In Theorem 2.10 we show
how to convert an SDE into a PDE for the probability density functions of the
solution of the SDE. In Section 2.5 we calculate the MSD of a freely diffusing
passive particle, and in Section 2.6 we calculate the MSD of an active particle.

For this chapter we rely heavily on [15] and [16]. We refer to these books for
proofs and more elaborate discussions.

2.1 Brownian motion

When a bead is suspended in a liquid and does not experience any external force,
it performs a random, jittery movement. This movement is called Brownian
motion, and we start by giving the axiomatic definition of the mathematical
model for this.

Definition 2.1. Let (Ω,F ,P) be a probability space. A Brownian motion or
Wiener process is a continuous-time stochastic process {Bt | t ≥ 0} such that

1. B0 = 0 almost surely,

2. The trajectory t 7→ Bt is almost surely continuous,

3. Bt has independent increments, with Bt −Bs ∼ N (0, t− s) for t > s ≥ 0.

Here X ∼ N (µ, σ2) means that the random variable X is normally distributed
with mean µ and variance σ2. B0 = 0 almost surely means that the probability
of B0 being nonzero is 0.
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Figure 2.1: Sample paths of 1- and 2-dimensional Brownian motions. The paths
are generated using the Karhunen-Loève expansion [16].

An n-dimensional Brownian motion is simply an n-dimensional vector of
independent Brownian motions (B1

t , . . . , B
n
t ) ∈ Rn. In Figure 2.1 example tra-

jectories of 1 and 2-dimensional Brownian motions are given. The probability
density function p : Rn×R+ → R of an n-dimensional Brownian motion is given
by

p(x, t) =
1√

2πt
n exp

(
−|x|

2

2t

)
, (2.1)

for x ∈ Rn and t ∈ R+.

2.2 Stochastic differential equations

In physics literature, the equation of motion of a particle suspended in a liquid
is usually described by a Langevin equation [14, 17], such as

m
d2X

dt2
= −γ dX

dt
−∇V +

√
2γkBTη(t). (2.2)

This equation follows from Newton’s second law. Here X is the position of the
particle. The term −γ dX/dt represents the drag force on the particle and −∇V
is the (external) conservative force. kB is Boltzmann’s constant, and T denotes
the temperature. The term that we will be concerned with in this section is η(t),
which is a ‘rapidly fluctuating force’. This force is the result of the continuous
bombardment of the particle by the small molecules of the liquid. We do not
know how η depends on time; we can only describe its statistical properties. η
is delta-correlated. For instance, in two dimensions, η(s) = (η1(s), η2(s)) and
for i, j = 1, 2

E[ηi(t)ηj(s)] = δijδ(t− s), (2.3)

where δij is the Kronecker delta and δ(s) is the Dirac delta function.
Now we assume that the ratio m/γ is small, so that we can neglect the

acceleration term in (2.2). This is called the overdamped limit. Moreover, we
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assume that there are no external forces on the particle, set γ =
√

2γkBT = 1,
and take a one-dimensional space, so that (2.2) reduces to

dX

dt
= η(t). (2.4)

We need to integrate this equation to find the trajectory X(t) that the particle
takes. If we assume X(0) = 0, we find

X(t) = “

ˆ t

0

η(s) ds ”. (2.5)

However, it can be shown that the process η cannot satisfy the properties that
would seem reasonable on physical grounds: if we assume that η(s) and η(t) are
independent if s 6= t and that the distribution of η is independent of time, then
the process η cannot have continuous sample paths. Moreover, if we require that
E[η2] = 1 then the function (t, ω) 7→ η(t, ω) cannot be measurable with respect
to the sigma-algebra B[0,∞] × F , with B[0,∞] the Borel sigma-algebra on [0,∞]
and F the sigma algebra on Ω [15]. To overcome this problem, we consider the
Brownian motion Bs.

A small increment in Brownian motion dBs precisely satisfies the properties
that we expect from η(s) ds: its mean is 0, it is continuous and has independent
increments. Hence we replace the ‘fluctuating force times a small increment in
time η(s) ds’ by ‘a small increment in Brownian motion dBs’:

Xt =

ˆ t

0

dBs . (2.6)

It will not come as a surprise that the integral in Eq. (2.6) evaluates to Bt,
as it should on physical grounds: a particle suspended in a liquid, without any
external forces acting on it, performs a Brownian motion.

More generally, we can consider an n-dimensional equation such as

Xt −X0 =

ˆ t

0

b(s,Xs) ds+

ˆ t

0

σ(s,Xs) dBs , (2.7)

where b : R+ × Rn → Rn and σ : R+ × Rn → Rm×n are given functions, and
Bs is an m-dimensional Brownian motion. b is called the drift coefficient and σ
is called the diffusion coefficient. (2.7) is usually written as

dXt = b(t,Xt) dt+ σ(t,Xt) dBt . (2.8)

Equations such as this one are called stochastic differential equations. The
second integral in Eq. (2.7) can however not be interpreted as an ordinary
Riemann or Lebesgue integral, but is a so-called Itô integral. The rest of this
chapter will be devoted to defining this integral and studying its properties.

2.3 The Itô integral

First we define the set of functions for which we can define the Itô integral.
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Definition 2.2. Let (Ω,F ,P) be a probability space, and suppose that Bt =
(B1(t), . . . , Bn(t)) is an n-dimensional Brownian motion. We write V = V (S, T ),
T > S > 0, for the class of functions

f : [0,∞) × Ω→ R : (t, ω) 7→ f(t, ω) (2.9)

such that

1. f is B× F measurable,

2. there exists an increasing family of sigma-algebras Ht, t ≥ 0 such that

(a) Bt is a martingale with respect to Ht and

(b) f(t, ·) is Ht-adapted,

3. P
(´ T

S
f(s, ω)2 ds <∞

)
= 1.

Here, B is the Borel sigma-algebra, and Ft is the sigma-algebra generated by
the random variables {Bi(s)}1≤i≤n,0≤s≤t.

Next we define elementary functions, which we will need to approximate
arbitrary functions f ∈ V .

Definition 2.3. A function φ ∈ V is called elementary if it is of the form

φ(t, ω) =

k∑
j=1

ej(ω)χ[tj−1,tj)(t), (2.10)

where S = t0 < t1 < · · · < tk = T , and χA is the characteristic function of
A ⊂ R:

χA(t) =

{
1 if t ∈ A,
0 if t 6∈ A. (2.11)

For arbitrary functions f ∈ V (S, T ) we will define the Itô integral

ˆ T

S

f(t, ω) dBt(ω) (2.12)

by approximating f by elementary functions. We define the Itô integral of an
elementary function φ(t, ω) =

∑
j ej(ω)χ[tj ,tj+1)(t) ∈ V (S, T ) as

ˆ T

S

φ(t, ω) dBt(ω) =
∑
j

ej(ω)[Btj+1
−Btj ](ω). (2.13)

Now we are in a position to define the Itô integral of an arbitrary function
f ∈ V .

Definition 2.4. Let f ∈ V (S, T ). Then the Itô integral of f is defined as

ˆ T

S

f(t, ω) dBt(ω) = lim
n→∞

ˆ T

S

φn(t, ω) dBt(ω) , (2.14)

where the limit is in L2(P). Here {φn} is a sequence of elementary functions
such that

E

[ˆ T

S

(f(t, ω)− φn(t, ω))2 dt

]
→ 0 as n→∞. (2.15)
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We will not go into the details of showing that it is indeed possible to ap-
proximate arbitrary f by elementary functions. From the way the Itô integral
is constructed, the Itô isometry immediately follows:

Corollary 2.5. Let f ∈ V (S, T ). Then

E

(ˆ T

S

f(t, ω) dBt

)2
 = E

[ˆ T

S

f2(t, ω) dt

]
. (2.16)

Definition 2.6. Let Bt be a one-dimensional Brownian motion on (Ω,F ,P).
An Itô process is a stochastic process Xt on (Ω,F ,P) of the form

Xt = X0 +

ˆ t

0

b(s,Xs) ds+

ˆ t

0

σ(s,Xs) dBs , (2.17)

where σ ∈ V , and b is Ht-adapted and

P
(ˆ t

0

|b(s, ω)|ds <∞ for all t ≥ 0

)
= 1. (2.18)

An n-dimensional Itô process is defined analogously; each of the components
of the vector- and matrix-valued functions b and σ has to satisfy the above
conditions.

The following theorem, Itô’s formula, provides an easy way to calculate Itô
integrals. Similarly to the fundamental theorem of calculus, it allows to compute
an integral directly, rather than having to use its cumbersome definition.

Theorem 2.7. Let

dX(t) = b(t,Xt) dt+ σ(t,Xt) dB(t) (2.19)

be an n-dimensional Itô process, with b and σ as in Definition 2.6. Let

g : [0,∞)× Rn → Rp : (t,x) 7→ (g1(t,x), . . . , gp(t,x)), (2.20)

and suppose g is C2. Then the process Yt(ω) = g(t,Xt) is again an Itô process,
whose component k = 1, . . . , p is given by

dYk(t) =
∂gk
∂t

dt+

n∑
i=1

∂gk
∂xi

dXi(t) +
1

2

n∑
i,j=1

∂2gk
∂xi∂xj

dXi(t) dXj(t) (2.21)

where dBi dBj = δij dt and dtdt = dBi dt = dtdBi = 0.

The following theorem provides sufficient conditions for SDEs to have a
unique solution. We will use this theorem to show that the system we simulate,
introduced in the next Chapter, has a unique solution.

Theorem 2.8. Let T > 0 and b : [0, T ] × Rn → Rn, σ : [0, T ] × Rn → Rn×m
measurable functions satisfying

|b(t,x)|+ |σ(t,x)| ≤ C(1 + |x|), x ∈ Rn, t ∈ [0, T ], (2.22)

9



for some C > 0, with
∣∣σ2
∣∣ :=

∑ |σij |2, and such that

|b(t,x)− b(t,y)|+ |σ(t,x)− σ(t,y)| ≤ D|x− y|, x,y ∈ Rn, t ∈ [0, T ].
(2.23)

Let Z be a random variable that is independent of the sigma-algebra generated

by Bs, s ≥ 0, and such that E
[
|Z|2

]
< ∞. Then the stochastic differential

equation

dXt = b(t,Xt) dt+ σ(t,Xt) dBt , t ∈ [0, T ], X0 = Z (2.24)

has a unique t-continuous solution.

2.4 Diffusion processes

Definition 2.9. A (time-homogeneous) Itô diffusion is a stochastic process
Xt(ω) = X(t, ω) : [s,∞)× Ω → Rn satisfying a stochastic differential equation
of the form

dXt = b(Xt) dt+ σ(Xt) dBt , t ≥ s; Xs = x, (2.25)

where Bt is an m-dimensional Brownian motion and b : Rn → Rn, σ : Rn →
Rn×m satisfy, for some D ≥ 0 and for all x,y ∈ Rn

|b(x)− b(y)|+ |σ(x)− σ(y)| ≤ D|x− y|, (2.26)

where |σ|2 =
∑ |σij |2.

In particular, the functions b and σ are independent of time for an Itô
diffusion, and are Lipschitz continuous.

For diffusion processes, we can formulate an associated partial differential
equation, whose solution is the probability density of the process as a function
of space and time.

Theorem 2.10. Suppose pt is the density of the Itô diffusion Xt. Then pt
satisfies the forward Kolmogorov equation

∂tpt =
1

2

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
((σσᵀ)ijpt)−

n∑
i=1

∂(bipt)

∂xi
. (2.27)

In physics literature, the forward Kolmogorov equation is usually called the
Fokker-Planck equation, which is the terminology that we will use in this report.

2.5 An important example

We consider the n-dimensional trajectory Xt ∈ Rn of a particle that is sub-
merged in a fluid:

dXt =
√

2D dBt , (2.28)

where D > 0 is called the diffusion constant. This equation is easily integrated
to give

Xt =
√

2DBt, (2.29)
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where we assume that X0 = 0. We apply Theorem 2.10 to find the Fokker-
Planck equation corresponding to this SDE:

∂tp(x, t) = D∆p(x, t),

p(x, 0) = δ(x),
(2.30)

where p is the probability density for the position x of the particle at time
t. From this example it becomes clear that Fokker-Plank equations should be
interpreted in a generalised sense: to p there corresponds a linear functional
Tp : D → R. Here D is the space of ‘test’ functions φ : Rn → R that are
infinitely often continuously differentiable and have compact support in Rn.
That is, if φ : Rn → R is such a test function, then

Tp(φ) =

ˆ
Rn

p(x, t)φ(x) dx . (2.31)

By abuse of notation, we will often write p instead of Tp, that is, we will denote
the generalised function by its kernel [18].

Equation (2.30) is the diffusion equation, whose solution is given by

p(x, t) =
1

(4πDt)
n/2

exp

(
− |x|

2

4Dt

)
, (2.32)

as can easily be verified. Note that we recover (2.1) if we set D = 1.
Both from symmetry considerations and direct computation, it follows that

E [Xt] = 0. The second moment, or mean squared displacement (MSD) is more
interesting:

E
[
|Xt|2

]
:=

ˆ
Rn

|x|2p(x, t) dx = 2nDt. (2.33)

This way we have related the MSD to the diffusion coefficient: MSD(t) = 2nDt,
an equality known as the Einstein relation. This linear behaviour of the MSD
is called normal diffusion. The situation in which MSD(t) ∼ tα, α 6= 1 is called
anomalous diffusion.

2.6 Active matter

The Brownian motion described in Section 2.5 is that of a single freely diffusing
particle in the overdamped limit. However, many (bio-)physical situations are
more complicated. In these situations, the MSD is typically not linear in time,
and the diffusion is called anomalous.

For instance, the particle can propel itself, in which case it is called active
[1]. Although there are many different ways to model active Brownian particles,
we will use the following SDEs to describe their motion in two dimensions (in
the overdamped limit):

dRt =
1

γ
F dt+ v · (cos(Φt), sin(Φt)) dt+

√
2DT dBt , (2.34)

dΦt =
√

2DR dWt . (2.35)

Here Rt is the particle’s position and Φt is its angle with respect to the x-
axis. Bt and Wt are two- and one-dimensional Brownian motions with diffusion
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coefficients DT and DR respectively. F is some deterministic force, coming e.g.
from interactions with other particles, and v is the constant magnitude of the
velocity with which the particle propels itself. Hence, not only the position of
the particle diffuses, but also its angle. Active Brownian particles travel much
faster than passive ones, as follows from the following theorem.

Theorem 2.11. Consider the SDEs

dRt = v · (cos Φt, sin Φt) dt+ σ dBt (2.36a)

dΦt = ν dWt , (2.36b)

with initial conditions R0 = 0 and Φ0 = 0. Bt and Wt are two- and one-
dimensional independent Brownian motions respectively, and v, σ and ν are
positive constants. Then the MSD of Rt is given by

MSD(t) = E
[
|Rt|2

]
=

(
2σ2 +

4v2

ν2

)
t+

8v2

ν4

(
exp

(
− tν

2

2

)
− 1

)
. (2.37)

In the proof of this theorem, we will use the following lemma.

Lemma 2.12. Let Wt be a Brownian motion with W0 ∈ R given, let ν > 0.
Then

E[cos(νWt)] = exp

(
− tν

2

2

)
cos(νW0), (2.38a)

E[sin(νWt)] = exp

(
− tν

2

2

)
sin(νW0). (2.38b)

Proof. We first consider the case W0 = 0. Let Vt be a Brownian motion such
that V0 = 0. We use the power series of the cosine:

E[cos(νVt)] = E

[ ∞∑
n=0

(−1)n
(νVt)

2n

(2n)!

]
. (2.39)

By the dominated convergence theorem, we can interchange summation and
expectation:

E

[ ∞∑
n=0

(−1)n
(νVt)

2n

(2n)!

]
=

∞∑
n=0

(−1)n

(2n)!
ν2nE[V 2n

t ] (2.40)

The even moments of the normally distributed random variable Vt are

E[V 2n
t ] =

(2n)!

2nn!
tn. (2.41)

Hence

E[cos(νVt)] =

∞∑
n=0

(
− tν

2

2

)n
1

n!
= exp

(
− tν

2

2

)
, (2.42)

by the power series for the exponential. The proof for E[sin(νVt)] = 0 follows
from the fact that the sine is an odd function and the distribution of Vt is even.

12



Now, since W0 6= 0 in general, we write Wt = Vt + W0. Application of a
trigonometric angle sum identity yields

E [cos(νWt)] = E [cos(νVt) cos(νW0)]− E [sin(νVt) sin(νW0)] , (2.43)

= exp

(
− tν

2

2

)
cos(νW0), (2.44)

where we have used independence of Vt and W0, and that E[sin(νVt)] = 0.
Similarly,

E [sin(νWt)] = exp

(
− tν

2

2

)
sin(νW0). (2.45)

Proof of Theorem 2.11. First we define the vector

Yt := (Y1(t), Y2(t)) := (cos Φt, sin Φt) = (cos(νWt), sin(νWt)). (2.46)

Yt satisfies the SDE

dYt = −ν
2

2
Yt dt+ νKYt dWt (2.47)

where K is the matrix

K =

(
0 −1
1 0

)
. (2.48)

This follows from the application of Itô’s formula. Integrating and squaring the
SDE (2.36a) yields

|Rt|2 = v2

∣∣∣∣ˆ t

0

Yt dt

∣∣∣∣2 + σBt ·
ˆ t

0

Yt dt+ σ2|Bt|2. (2.49)

We take the expectation value on both sides to find the MSD:

MSD(t) := E
[
|Rt|2

]
= v2E

[∣∣∣∣ˆ t

0

Yt dt

∣∣∣∣2
]

+ E
[
σBt ·

ˆ t

0

Yt dt

]
+ σ2E

[
|Bt|2

]
.

(2.50)

For the last term in this equation we simply have

E
[
|Bt|2

]
= E

[
B1(t)2 +B2(t)2

]
= 2t (2.51)

since B1(t) and B2(t) are independent Brownian motions. Moreover, by inde-
pendence of Bt and Wt, we have

E
[
σBt ·

ˆ t

0

Yt dt

]
= σE [Bt] · E

[ˆ t

0

Yt dt

]
= 0, (2.52)

since E [Bt] = 0.
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To evaluate the first integral in (2.50) we use our observation about Yt:

cos(νWt) dt = −2

ν
sin(νWt) dWt −

2

ν2
d cos(νWt) (2.53a)

sin(νWt) dt =
2

ν
cos(νWt) dWt −

2

ν2
d sin(νWt) . (2.53b)

Henceˆ t

0

cos(νWt) dt = −2

ν

ˆ t

0

sin(νWt) dWt −
2

ν2
(cos(νWt)− 1), (2.54a)

ˆ t

0

sin(νWt) dt =
2

ν

ˆ t

0

cos(νWt) dWt −
2

ν2
sin(νWt). (2.54b)

Squaring these two equations, taking their expectations and summing them
yields

1

4
E

[(ˆ t

0

Y2
t dt

)2
]

=
1

ν2
E

[(ˆ t

0

sin(νWs) dWs

)2
]

+
2

ν3
E
[
(cos(νWt)− 1)

ˆ t

0

sin(νWs) dWs

]
+

1

ν4
E
[
(cos(νWt)− 1)2

]
+

1

ν2
E

[(ˆ t

0

cos(νWs) dWs

)2
]
− 2

ν3
E
[
sin(νWs)

ˆ t

0

cos(νWs) dWs

]
+

1

ν4
E
[
sin2(νWt)

]
.

(2.55)

Hence we now have six expectations on the right-hand side that we need to
evaluate. To the first term we apply the Itô isometry:

E

[(ˆ t

0

sin(νWs) dWs

)2
]

= E
[ˆ t

0

sin2(νWs) ds

]
, (2.56)

and similarly for the fourth term, so that

E

[(ˆ t

0

sin(νWs) dWt

)2
]

+ E

[(ˆ t

0

cos(νWs) dWs

)2
]

= E
[ˆ t

0

1 ds

]
= t,

(2.57)
using linearity of expectation and integration and the fact that sin2(νWt) +
cos2(νWt) = 1.

Next we consider the second term. We have

E
[
cos(νWt)

ˆ t

0

sin(νWs) ds

]
=

1

ν
E [cos(νWt)]−

1

ν
E
[
cos2(νWt)

]
−ν

2
E
[ˆ t

0

cos(νWt) cos(νWs) ds

]
,

(2.58)

which follows from (2.54a). If we interchange the expectation operator and the
integral, use a trigonometric relationship and Lemma 2.12 we can write

E

[
cos(νWt)

ˆ t

0

sin(νWs) ds

]
=

1

ν
exp

(
− tν

2

2

)
− 1

ν
E
[
cos2(νWt)

]
−ν

4

ˆ t

0

[
exp

(
− (t− s)ν2

2

)
+ exp

(
− (t+ s)ν2

2

)]
ds ,

(2.59)
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which equals

1

ν
exp

(
− tν

2

2

)
− 1

ν
E
[
cos2(νWt)

]
− 1

2ν

(
1− exp

(
tν2
))
. (2.60)

Similarly, we find that

E
[
sin(νWt)

ˆ t

0

cos(νWs) dWs

]
=

1

ν
E
[
sin2(νWt)

]
+

1

2ν

(
1− 2 exp

(
− tν

2

2

)
+ exp

(
−tν2

))
.

(2.61)

If we substitute these results in (2.55), we find

1

4
E

[∣∣∣∣ˆ t

0

Y2
t dt

∣∣∣∣2
]

=
t

ν2
+

2

ν2

(
exp

(
− tν

2

2

)
− 1

)
. (2.62)

Hence

MSD(t) = E
[
|Rt|2

]
=

(
2σ2 +

4v2

ν2

)
t+

8v2

ν4

(
exp

(
− tν

2

2

)
− 1

)
. (2.63)

In physics literature, one usually sees the choices

σ =
√

2DT and ν =
√

2DR, (2.64)

with DT and DR the translational and rotational diffusion coefficients, respect-
ively. Then the expression for the MSD becomes

MSD(t) =

(
4DT +

2v2

DR

)
t+

2v2

D2
R

(exp (−tDR)− 1) , (2.65)

as is found in literature [1]. If t is small, we can Taylor expand the exponential
term, to find

MSD(t) ≈ 4DTt+ v2t2. (2.66)

Hence, for very small t the MSD is linear in t, and MSD(t) ∼ t2 for t� 4DT/v
2,

but still small (if v is too small or DT is too large this ballistic regime will not
be observed). As t→∞, the exponential term vanishes and MSD(t) ∼ t again.
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Chapter 3

Model description

3.1 Model

We consider the movement of a big, passive Brownian particle in a bath of small,
active Brownian particles. All these particles are suspended in a liquid. The big
particle is called the tracer, whereas the small particles are called host particles.
We model the active particles with the Kob-Andersen-Lennard-Jones (KALJ)
model [19], which means the following. The bath of host particles is modelled
as a binary mixture of particles of type A and B. 65% of the host particles are of
type A; the remaining 35% are of type B. The particles live in a two-dimensional
rectangular domain Ω ⊂ R2. We use periodic boundary conditions. Without
the presence of the tracer and neglecting inertia, the (overdamped) Langevin
equations for the N host particles are

γ dRi
t =

(
−∇riU

i + γvi
)

dt+
√

2γσ dBi
t ,

γR dΦit =
√

2γRν dW i
t .

(3.1)

Here Ri
t = (Xi

t , Y
i
t ) ∈ Ω is the position of the ith particle at time t, i ∈

{1, . . . N}, and Φit is its orientation. U i : R2N → R is its interaction poten-
tial, that in general depends on the positions of all particles in the system.
∇ri denotes differentiation with respect to the position coordinate of the ith
particle. The activity of the particles is described by the active velocity vec-
tor vi = v0(cos Φit, sin Φit), with constant magnitude v0. The translational and
rotational diffusivity are specified by σ and ν respectively, and γ and γR are
the translational and rotational friction coefficients respectively. We have the
following relations:

σ =
√
DT and ν =

√
DR, (3.2)

with DT and DR being the translational and rotational diffusion coefficients
respectively. Moreover, Bi

t = (Bix,t, B
i
y,t) is a two-dimensional Brownian mo-

tion, and W i
t is a one-dimensional Brownian motion that causes the fluctuations

in the orientation of the particles. Hence we need a set of 3N stochastic dif-
ferential equations to describe the behaviour of the host particles. We neglect
hydrodynamic interactions, which is reasonable since the environment is highly
crowded [1, 14].
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The interaction potential U i of particle i is the sum of the interaction po-
tentials of particle i with particle j 6= i:

U i =
∑
j 6=i

uij(ri − rj). (3.3)

For these two-particle interaction potentials uij we use the Weeks-Chandler-
Andersen potential, which is a truncated and shifted Lennard-Jones potential:
if r is the difference in position between two particles i and j and r = |r|, then

uij(r) =

4εij

[(σij
r

)12

−
(σij
r

)6
]

+ εij , if r < rc

0, if r ≥ rc,
(3.4)

with rc = 21/6σij . Hence we only maintain the repulsive part of the Lennard-
Jones potential. The shift +εij is only for differentiability purposes. The values
of the parameters εij and σij depend on the type of particle: in the numerical
simulations we set εAA = 1.0, σAA = 1.0, εAB = 1.5, σAB = 0.8, εBB = 0.5
and σBB = 0.88. These values are chosen as it is known that they prevent
crystallisation of the system [20].

These equations (3.1) have to be adjusted in order to incorporate the tracer
as well and to describe the interaction of the tracer with its environment and
vice versa. This tracer has the same diffusivity as the hosts, but is passive and is
much larger. We also describe its motion by an overdamped Langevin equation.
We add to (3.1) the following equation for the tracer’s position Zt:

dZt = −∇zU
T dt+

√
2σ dBT

t . (3.5)

Since the tracer is passive there is no need to describe its angle. Here UT :
R2(N+1) → R represents the interaction of the tracer with its environment,

UT =

N∑
i=1

uTi(z− ri), (3.6)

where uTi again is a WCA potential, with εTA = εTB = 1.0, σTA = 3 + σAA/2,
σTB = 3 + σBB/2. The potentials in (3.1) are modified as follows:

U i =
∑
j 6=i

uij(ri − rj) + uiT(ri − z). (3.7)

Overall, the system is described by the following system of equations for
particle i = 1, . . . , N :

dRi
t =

[
− 1

γ

∇ri

∑
j 6=i

uij

(
Ri
t −Rj

t

)
+∇riuiT

(
Ri
t − Z

)
+ v0

(
cos
(
Φit
)
, sin

(
Φit
)) ]

dt+
√

2σ dBt ,

(3.8a)

dΦit =
√

2ν dW i
t , (3.8b)
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and the tracer’s dynamics are governed by the SDEs

dZ = − 1

γ
∇z

N∑
j=1

uTj

(
Zt −Rj

t

)
dt+

√
2σ dBT

t . (3.8c)

The number density is ρ = N/V , with V the area of the domain Ω. We define
the dimensionless density ρ∗ = σ2

AAρ. Moreover, we define the dimensionless
temperature T ∗ = kBT/εAA, and the dimensionless time t∗ = t(εAA/γσ

2). The
dimensionless density is related to the area fraction f by f = π

4 ρ
∗.

3.2 Brownian dynamics simulations

We take N host particles and a density ρ, so that the box length is L =
√
N/ρ.

To initialise the system, we place the tracer on (21/6σAT, 2
1/6σAT), and place

the hosts in the set [2 · 21/6σAT, L
′]2, where L′ := d(1 + 21/6σAA/2)

√
N + 1e.

The A and B particles are randomly placed on a square lattice of d
√
Ne2 points.

(Some of these points remain unoccupied if N < d
√
Ne2.) This way we make

sure that the particles (neither the tracer nor the hosts) can be too close or even
overlap. We then shrink the box from [0, L′]2 to [0, L]2 in 2 · 105 time steps, of
size ∆t = 10−5. When we take ∆t one order of magnitude larger, the particle’s
displacements incidentally may become larger than 1.

Rather than numerically integrating the SDE that governs the diffusion of
the angle φ of an active particle, we directly integrate the unit vector v̂ :=
(vx, vy) that determines its orientation:

v′x|t+∆t = vx|t+
√

2DR∆tvy|tη, and v′y|t+∆t = vy|t−
√

2DR∆tvx|tη, (3.9)

where η ∼ N (0, 1). The unit vector (vx, vy)|t+∆t is then obtained by normalising
(v′x, v

′
y)|t+∆t. Initially, both components of the orientation vector are uniformly

distributed on the interval [−1, 1].
The SDEs that describe the particle’s position are integrated using the Euler-

Maruyama method [21]. If Ri is the position of either the host or the tracer,
we have (in case of the tracer we take v0 = 0)

Ri|t+∆t = Ri|t +
1

γ
f∆t+ v0(vx, vy)|t +

√
2DT∆t ξ (3.10)

where ξ = (ξx, ξy), with ξx, ξy ∼ N (0, 1), and

f = −
∑
j 6=i

∂uij(r)

∂r

∣∣∣
Rij

Rij

Rij
(3.11)

is the interaction force between particle i and all other particles. Rij denotes

the distance between particle i and j. Note that
√

∆t ξx ∼ N (0,∆t), which
is in agreement with Bt − Bs ∼ N (0, t − s). For computational efficiency, we

divide the box into
⌊
L/(21/6σAA + 1)

⌋2
square cells. Each particle, except the

tracer, is placed in one of these cells, according to the particle’s position. We
only calculate the interaction force between particle i ∈ {1, . . . , N} and the
particles in the same cell, and between i and all particles in the eight cells
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that directly surround particle i’s cell. This way, we do not need to check the
distance between i and all other particles. However for the tracer, we calculate
its interaction with all of the hosts, as the tracer’s range of interaction is much
larger than that of the hosts.

We set γ = γR = 1 and DT = DR = T , and we take N = 500 particles. The
number density ρ, temperature T and velocity v0 are varied. For the density
ρ we take the values 0.1, 0.5 and 0.8, corresponding to area fractions f of
approximately 0.079, 0.393 and 0.628 respectively. The temperature is always
chosen between 0.5 and 5; for most runs T = 1, 2 or 5. Both the lower and the
upper bound on T are chosen for efficiency; for lower temperatures the system
needs longer to equilibrate, whereas for T > 5 the particle displacements become
too large at the time step size that we use. The velocity v0 ranges from 0 to
50. We should stress that the effect of temperature or velocity on the MSD is
not our main interest; we will rather look at the nondimensionalised ratio v0/T .
Clearly, temperatures that differ by one order of magnitude are unphysical in
the sense that the supporting liquid will not be liquid on the entire temperature
range.

After the box has shrunk to the desired size, we let the system reach a steady
state for 2 · 107 time steps. For each choice of variables T , v0 and ρ we run two
simulations: one with a simulation time of t = 20, of which we save each tenth
time step, and one with a simulation time of t = 500, of which we save each
1000th time step. The first of these two simulations is used to analyse the
short and intermediate time diffusion, whereas the latter is used to analyse the
long-time diffusion. For each choice of T , v0 and ρ we run 25 simulations with
different initial conditions.

The tracer’s MSD is defined as

MSD(t) = E
[
|Zt − Z0|2

]
. (3.12)

Because of the periodic boundary conditions, we set for the x-component of the
tracer’s position Zt = (Xt, Yt), for k between 0 and the number of time steps

X|new
k∆t = X|old

k∆t −
⌊
X|old

k∆t −X|old
(k−1)∆t

L

⌉
L, (3.13)

directly after which we set

X|old
k∆t = X|new

k∆t. (3.14)

This method is applied iteratively, starting at k = 0. Hence, when the term⌊
(X|old

k∆t −X|old
(k−1)∆t)/L

⌉
is nonzero, we assume that the tracer has teleported

to the other side of the box. We adjust this by adding or subtracting the
corresponding number of box lengths from the tracer’s coordinate. The same
procedure is applied to the y-component of the tracer’s position.

To calculate the tracer’s MSD, we take both ensemble and time averages.
For the time averages, the maximum correlation time is half the simulation time,
and we use each tenth data point as a time origin, so that each point on the
MSD profile is averaged over a large number of data points. This procedure is
only possible if the system has reached steady state. In order to make sure that
this is indeed the case after the equilibration time, we divide the simulation time
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t in two intervals [0, t/2) and [t/2, t] of equal length. We calculate two MSDs
(both as a function of time): one from the positions that the tracer attained
during the first interval, and one from the positions that the tracer attained
during the second interval. If these two MSDs are equal at each time step, we
know that the system has reached steady state. Moreover, we also calculate the
MSD of the hosts for these two intervals and again verify whether the MSDs
calculated with the different intervals are equal.
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Chapter 4

Analytical Approximation
of the MSD

In this chapter we analytically derive an expression for the MSD of the passive
tracer, using a series of approximations. The first approximation is that we
assume that all bath particles are of type A, i.e. the active bath consists of only
a single type of particle. Therefore, the active particles are indistinguishable. In
theory this can result in a crystallisation of the system, but due to the inevitable
further simplifications this will not pose a problem.

In Section 4.1, we convert the SDEs for the positions and orientations of the
particles to PDEs describing their probability distribution (Theorem 4.4). We
integrate this equation over the phase space of the host particles to obtain a
PDE for the tracer’s marginal density function (Equation (4.39)). Theorem 4.5
states that this PDE depends on the marginal density function of a single host
particle that knows the tracer’s location. Hence, in Section 4.2, we approximate,
largely on physical grounds, this density function. Equation (4.51) gives the
approximate expression for this density function. Subsequently, in Section 4.3
we use this result to find an expression for the tracer’s MSD, which is given in
Theorem 4.10. Eventually, we find that MSD(t) ∼ t for small t and MSD ∼ t2

for large t. A possible method to improve the approximate expression for the
tracer’s MSD is outlined in Section 4.4.

4.1 Probability density of the tracer

We start by writing the Fokker-Planck equation corresponding to the system
with only one type of host particle. However, since the potential energy is
singular at (0, 0) ∈ R2, Theorem 2.10 does not apply: the gradient of such a
potential energy function cannot be Lipschitz continuous. Hence, we slightly
adapt the potential energy functions: let 0 < δ < 21/6σAA and small, and define

ũij(r) :=

{
ar3 + br2 + c if r < δ

uij(r) else,
(4.1)

where r := |r|, and where a, b and c are constants chosen such that ũij is twice
continuously differentiable at r = δ.
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Lemma 4.1. The gradient of this potential energy function ∇ũij is indeed
Lipschitz continuous.

Proof. Let r = (x, y), r′ = (x′, y′) ∈ R2, and define |r| = r, |r′| = r′. We make
a case distinction:

• r, r′ ≤ rc. Define w̃ij : R≥0 → R,

w̃ij(r) = ũij(r), where r = |r|. (4.2)

Since ũij only depends on r through its length r, w̃ij is well-defined. Then
we have, with r̂ := r/r,

|∇ũij(r)−∇ũij(r′)| = |∂rw̃ij(r)r̂− ∂rw̃ij(r′)r̂′| (4.3)

≤ 2|∂rw̃ij(r)− ∂rw̃ij(r′)| (4.4)

≤M1|r − r′| ≤M1|r− r′|, (4.5)

where the second inequality is obtained by the mean value theorem and
the fact that the derivative of ∂rw̃ij is bounded by M1 (on [0, 21/6σij ]).
The third inequality follows from the reverse triangle inequality.

• r < rc, r′ ≥ rc. Define M2 := 1
2 maxρ∈R≥0\{rc}

∣∣∂2
r w̃ij(ρ)

∣∣. Then

|∇ũij(r)−∇ũij(r′)| = |∂rw̃ij(r)r̂− ∂rw̃ij(r′)r̂′| (4.6)

≤ 2|∂rw̃ij(r)− ∂rw̃ij(r′)| (4.7)

≤ 2(|∂rw̃ij(r)− ∂rw̃ij(rc)|+ |∂rw̃ij(rc)− ∂rw̃ij(r′)|)
(4.8)

Then, again by the mean value theorem, and the reverse triangle inequality

|∇ũij(r)−∇ũij(r′)| ≤M2(|r − rc|+ |rc − r′|) (4.9)

= M2|r − r′| ≤M2|r− r′|. (4.10)

• r, r′ > rc. Trivial.

Hence ∇ũij is Lipschitz with constant max{M1,M2}.

However, all terms in the SDEs that describe the motion involve sums of
terms like ∇ũij(ri−rj). The following Lemma establishes that these terms also
are Lipschitz, when it is known that ∇ũij is Lipschitz. It is easily generalised
to sums of arbitrary (finite) length.

Lemma 4.2. Let A ⊂ Rn, and suppose f : A → R is M -Lipschitz. Define
F : A3 → R : (x,y, z) 7→ f(x− y) + f(x− z). Then F is also Lipschitz.

Proof. Let (x,y, z), (x′,y′, z′) ∈ A3. Then, since f is M -Lipschitz and by the
triangle inequality

|F (x,y, z)− F (x′,y′, z′)| ≤ |f(x− y)− f(x′ − y′)|+ |f(x− z)− f(x′ − z′)|
(4.11)

≤M(|x− y − x′ + y′|+ |x− z− x′ + z′|) (4.12)

≤M(|x− x′|+ |y − y′|+ |x− x′|+ |z− z′|) (4.13)
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Now, if we interpret |a1|+ |a2| as a norm |a|0 of the vector a = (a1,a2) ∈ R2n,
we have that

|a|0 ≤ c|a| = c

√
|a1|2 + |a2|2, (4.14)

for some c > 0, since on a finite-dimensional vector space all norms are equival-
ent. It follows that there exists M̃ such that

|F (x,y, z)− F (x′,y′, z′)| ≤ M̃
(√
|x− x′|2 + |y − y′|2

+

√
|x− x′|2 + |z− z′|2

)
.

(4.15)

It can be shown that the quantity on the right-hand side is a norm of the vector
(x−x′,y−y′, z− z′) ∈ R3n. This norm is equivalent to the Euclidean norm on
R3n. Hence there exists L > 0 such that

|F (x,y, z)− F (x′,y′, z′)| ≤ L|(x,y, z)− (x′,y′, z′)|. (4.16)

Theorem 4.3. A solution to the system (3.8), with initial positions and angles
given, and with uij replaced by ũij exists and is unique.

Proof. We apply Theorem 2.8. The ith component of the (3N + 2)-dimensional
‘vector of vectors’ b = (b1, . . . ,bN ,bT) is given by

bi =

(−∑j 6=i∇ri ũij + vi

0

)
. (4.17)

The third component of this vector equals zero since the angles of the active
particles diffuse freely, without a drift. This component is absent when i = T.
Each component of this vector is bounded. Moreover, the diffusion matrix is
constant; hence there exists C > 0 such that for all x ∈ R3N+2,

|b(x)|+ |σ(x)| ≤ C(1 + |x|). (4.18)

Using Lemmas 4.1 and 4.2, it is straightforwardly shown that each component
bi is Lipschitz, and hence b itself is Lipschitz. Hence there exists c > 0 such
that for all x,y ∈ R3N+2,

|b(x)− b(y)| < c|x− y|. (4.19)

Since the initial positions and angles are given, they are independent of the
sigma-algebra generated by Bs, s > 0. Hence the conditions of Theorem 2.8 are
satisfied.

Theorem 4.4. The probability density P satisfies the PDE

∂tP = −
N+1∑
i=1

∇ri ·

−∑
j 6=i

∇ri ũij + vi

P

+

N+1∑
i=1

(
σ2∆riP + ν2∂2

φi
P
)
,

(4.20)
where ∆ri denotes the Laplace operator with respect to the position variable ri.
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Proof. The proof that the drift and diffusion coefficients are Lipschitz continuous
is analogous to the proof of Theorem 4.3. Hence the stochastic process is indeed
an Itô diffusion, and Theorem 2.10 applies.

We will always assume that δ � 21/6σAA, so that the physics of the system is
unchanged, since at the densities we consider the distance between two particles
is very unlikely to be smaller than δ. We will therefore omit the tilde on the
potential and simply write uij .

This density defines a probability measure P:

P(dθ1 , . . . ,dθN ,dz) = P (θ1, · · · , θN , z) dθ1 · · · dθN dz , (4.21)

where dθi := dri dφi = dxi dyi dφi. Then, by the disintegration theorem [22] we
can write P as the product of the marginal probability measure p of the tracer
and a measure P̂ that depends on the tracer’s position z:

P(dθ1 , . . . ,dθN ,dz) = p(dz)P̂(z,dθ1 , . . . ,dθN ). (4.22)

The measure P̂ can be seen as the conditional probability of the positions of
the host particles knowing the position of the tracer. Integrating (4.20) over
ΛN := (Ω× R)N yields a PDE for the tracer’s marginal density p:

∂tp(z, t) = σ2∆p(z, t) +∇ ·
ˆ

ΛN

N∑
j=1

∇uTj (rj − z)P dθ1 · · · dθN , (4.23)

= σ2∆p(z, t) +∇ · p
ˆ

ΛN

N∑
j=1

∇uTj (rj − z) P̂(z,dθ1 , . . . ,dθN ), (4.24)

where the gradient denotes differentiation with respect to the position z of the
tracer.

Theorem 4.5. The integral

ˆ
ΛN

N∑
j=1

∇uTj (rj − z) P̂(z,dθ1 , . . . ,dθN ) (4.25)

that appears in (4.24) is independent of the tracer’s position z.

Proof. We define the measure

Â(z,dθ) = P̂(z,dθ ,ΩN−1), (4.26)

which is the marginal of a single host particle when the tracer’s position is
known. We interchange summation and integration, and use indistinguishability
of the host particles:

ˆ
ΛN

N∑
j=1

∇uTj (rj − z) P̂(z,dθ1 , . . . ,dθN ) = N∇ · p
ˆ

Λ

∇uT (r− z) Â(z,dr ,dφ),

(4.27)
where we have written uT = uTj for all j = 1, . . . , N . We henceforth omit the
subscript j since all uTjs are equal. Now we define the function Dz : Λ→ Λ−z :
(r, φ) 7→ (r− z, φ) =: (y, φ), where Λ− z := {r− z : r ∈ Ω} × R.
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Then it follows that

∇uT(r− z) = −(∇uT ◦Dz)(r), (4.28)

where we may extend uT to be a function on R3 that is independent of its third
argument. Hence

N∇ · p
ˆ

Λ

∇uT (r− z) Â(z,dr ,dφ) = −N∇ · p
ˆ

Λ

(∇uT ◦Dz)(r)Â(z,dθ),

(4.29)

= −N∇ · p
ˆ

Λ−z

∇uT(r)(Dz#Â)(z,dθ),

(4.30)

by the change of variables formula, where (Dz#Â)(z,dθ) is the push-forward of

Â under Dz: (
Dz#Â

)
(z, O) := Â(z, D−1

z (O)), (4.31)

for O ⊂ Λ− z.
Suppose the position z of the tracer is known and fixed. Set Yi

t = Ri
t − z.

Then we have that, for O ⊂ Λ− z measurable,

“Probability for (Yi
t,Φ

i
t) ∈ O” = “Probability for (Ri

t,Φ
i
y) ∈ O + z”, (4.32)

where
O + z := {(r + z, φ) : (r, φ) ∈ O} ⊂ Λ. (4.33)

Hence, if we define F̂ := Law(Yi
t,Φ

i
t), then

F̂(O) = Â(z, O + z) =
(
Dz#Â

)
(z, O). (4.34)

Moreover, we have the following SDEs for Yi
t.

dYi
t =

−∑
j 6=i

∇riuij

(
Yi
t −Yj

t

)
−∇riuTi

(
Yi
t

)
+ vi

(
Φit
) dt+

√
2σ dBi

t ,

(4.35a)

dΦit =
√

2ν dBiφ,t . (4.35b)

Note that these SDEs are independent of the tracer’s position z. Hence, we also
have that F̂ is independent of z, so that the entire quantity

∇uT(r)(Dz#Â)(z,dθ) (4.36)

is constant in z. Moreover, due to the periodic boundary conditions, Λ and
Λ− z constitute the same set. Hence the entire integral

ˆ
Λ−z

∇uT(r)(Dz#Â)(z,dθ) (4.37)

is independent of z.
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We define
(Dz#Â)(z,dθ) := f(θ) dθ , (4.38)

so that f is the one-particle marginal density function for {Yi
t,Φ

i
t}. Since

(Dz#Â)(z,dθ) is independent of the value of z, we can set z = 0 without loss of
generality. Hence p satisfies

∂tp = σ2∆p−N∇ ·
(
p

ˆ
Λ

∇uT(r)f(r, φ) dθ

)
, (4.39)

Now we turn our attention to finding an expression for this f , the probability
density of Â.

4.2 Probability density of a host particle

Theorem 4.6. The Fokker-Planck equation for the probability density A cor-
responding to the SDE (4.35) is

∂tA =

N∑
i=1

∇ri ·
(
A∇riU

i − viA+ σ2∇riA
)

+

N∑
i=1

ν2∂2
φi
A, (4.40)

where
U i =

∑
j 6=i

uij(ri − rj) + uTi(ri). (4.41)

Proof. The proof is analogous to the proof of Theorem 4.4.

Next, we integrate A over ΛN−1, so that we find the marginal f of a single
host particle. The conditions on A and its derivatives are necessary so as to be
able to interchange integration and differentiation.

Theorem 4.7. Suppose ∂tA(t, θ1, . . . , θN ) and ∂φ1
A(t, r1, φ1, θ2, . . . , θN ) exist

for all t > 0, r1 ∈ Ω, φ1 ∈ R, and for almost all (θ2, . . . , θN ) ∈ ΛN−1. Moreover,
suppose there exist integrable Mt : ΛN → R and Mφ1 : R+×Ω×ΛN−1 → R such
that |∂tA(t, θ1, . . . , θN )| ≤ Mt(θ1, . . . , θN ) for all t > 0, θ1 ∈ Λ and almost all
(θ2, . . . , θN ) ∈ ΛN−1, and |∂φ1

A(t, r1, φ1, θ2, . . . , θN )| ≤ Mφ1
(t, r1, θ2, . . . , θN )

for all t > 0, θ1 ∈ Λ and almost all (θ2, . . . , θN ) ∈ ΛN−1. Furthermore, suppose
∂φiA → 0 as φi → ±∞ for all i = 1, . . . , N . Then the marginal f of a single
host particle satisfies the PDE

∂tf = ∇ ·
[
f∇uT(r1)− vf + σ2∇f

]
+ ν2∂2

φf +∇ ·
ˆ

ΛN−1

A∇u1 dθ2 · · · dθN ,
(4.42)

where the gradient denotes differentiation with respect to the particle’s position
r1 and u1 is the interaction potential of the first host particle with all other host
particles.

The assumptions on A are reasonable, since the angle φ1 can diffuse freely
on R. We will henceforth assume that these assumptions hold.

26



Proof. We integrate (4.40) over ΛN−1 and use Leibniz’s rule to interchange
differentiation and integration:

∂tf =

ˆ
ΛN−1

N∑
i=1

∇ri ·
(
A∇riU

i − viA+ σ2∇riA
)

dθ2 · · · dθN

+

ˆ
ΛN−1

N∑
i=1

ν2∂2
φi
A dθ2 · · · dθN .

(4.43)

To the first integral, we apply the divergence theorem and use the periodic
boundary conditions. This implies that for i = 2, . . . , N each term

ˆ
ΛN−1

∇ri ·
(
A∇riU

i − viA+ σ2∇riA
)

dθ2 · · · dθN (4.44)

vanishes, and

ˆ
ΛN−1

N∑
i=1

∇ri ·
(
A∇riU

i − viA+ σ2∇riA
)

dθ2 · · · dθN

= ∇r1 ·
[
f∇r1uT(r1)− v1f + σ2∇r1f

]
+∇r1 ·

ˆ
ΛN−1

A∇r1u
1 dθ2 · · · dθN .

(4.45)

Since ∂φi
A → 0 as φi → ±∞ for all i = 1, . . . , N , the second integral

becomes

ˆ
ΛN−1

N∑
i=1

ν2∂2
φi
Adθ2 · · · dθN = ν2

ˆ
ΛN−1

∂2
φ1
Adθ2 · · · dθN = ν2∂2

φ1
f (4.46)

after interchange of integration and differentiation, again upon application of
Leibniz’s rule.

Our goal in this section is to find an approximate solution for (4.42). We
make the following approximations:

1. The host particles are independent. This means that we set the integral
term in (4.42) to zero.

2. We look at the long-time limit, so that the distribution of the hosts has
equilibrated and ∂tf = 0.

3. The initial angle is given by φ0 ∈ [0, 2π]. Then the expectation value of
v(φ) is given by (Lemma 2.12)

E[v] = exp

(
− tν

2

2

)
(cos(νφ0), sin(νφ0)). (4.47)

Moreover, we take t = 1/ν2, the characteristic time scale for rotational
diffusion [1], and write

v̄ :=
v0√
e

(cos(νφ0), sin(νφ0)) (4.48)

We replace v by this constant quantity.
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4. We neglect the term ν2∂2
φ1
f , which accounts for the diffusion of the host

particle’s angle. Hence f is constant in φ1.

Then the Fokker-Planck equation reduces to

∇ ·
[
f∇uT − v̄f + σ2∇f

]
= 0, (4.49)

on Λ, with periodic boundary conditions, and in distributional sense. Since we
only consider one host particle, we write r1 = r and φ1 = φ.

Outside the disk B(rc, 0), we approximate f as constant; we set f = Cδ(φ−
φ0) here. This is a reasonable approximation, since the system is assumed to
be in steady state. Inside B(rc, 0), we take

f(r, φ) = C exp

(
v̄ · r− uT(r)

σ2

)
δ(φ− φ0), (4.50)

as this is a solution to (4.49) on the interior of B(rc, 0) (in distributional sense).
Taking these solutions together, we have

f(r, φ) =

C exp

(
v̄ · r− uT(r)

σ2

)
δ(φ− φ0) if r ∈ B(rc, 0),

Cδ(φ− φ0) if r 6∈ B(rc, 0).
(4.51)

The exact value of f outside B(rc, 0) is actually of minor interest to us; since the
potential uT is zero on Ω\B(rc, 0), also the product f∇uT = 0 on Ω\B(rc, 0).
Hence the value of f outside B(rc, 0) only appears as a normalisation constant
C in the integral in (4.39).

The normalisation constant C is given by

1

C
=

ˆ
B(rc,0)

exp

(
v̄ · r− uT(r)

σ2

)
dr + L(Ω), (4.52)

where L(Ω) is the Lebesgue measure of Ω. If Ω� B(rc, 0), we have C ≈ 1/L(Ω).
We will use this result when we apply the thermodynamic limit in the following
section.

4.3 MSD estimation

If we substitute the solution (4.51) to the simplified Fokker-Planck equation
(4.49) in the Fokker-Planck equation for the tracer (4.39), we find

∂tp = σ2∆p

−N∇ ·
(
pC

ˆ
Λ

∇uT(r) exp

(
v̄ · r− uT(r)

σ2

)
δ(φ− φ0) dθ

)
,

(4.53)

Now we apply the thermodynamic limit, so that C ≈ 1/L(Ω) and NC → ρ, the
particle number density. Moreover, we define the vector

Ξ := −
ˆ

Ω

(∇uT(r)) exp

(
v̄ · r− uT(r)

σ2

)
dr , (4.54)

which is constant in t and z. Hence (4.53) becomes

∂tp = σ2∆p+ ρΞ · ∇p (4.55a)

p(0, z) = δ(z). (4.55b)
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Lemma 4.8. The PDE (4.55) on R+ × R2 is solved by

p(t, z) =
1

4πσ2t
exp

(
−|z + ρtΞ|2

4σ2t

)
. (4.56)

in space-distributional sense.

Proof. Let ψ : R2 → R be a test function. We treat t as a parameter, so we
have to show that

d

dt

ˆ
R2

p(t, z)ψ(z) dz = σ2

ˆ
R2

p(t, z)((∆ψ) (z) dz + ρΞ ·
ˆ
R2

p(t, z)∇ψ(z) dz .

(4.57)
for all t > 0, with p(t, z) given by (4.56). This equality can easily be verified
by partial integration and noting that ψ(z) and all its derivatives approach 0 as
|z| → ∞. Moreover, we show that

lim
t→0

ˆ
R2

1

4πσ2t
exp

(
−|z + ρtΞ|2

4σ2t

)
ψ(z) dz = ψ(0) = δ(ψ). (4.58)

To this extent, let ε > 0. Choose δ > 0 such that |ψ(z)− ψ(0)| < ε for all
|z| < δ. Let t > 0 such that B(−ρtΞ, δ/2) ⊂ B(0, δ). Then∣∣∣∣ˆ

R2

p(t, z)ψ(z) dz− ψ(0)

∣∣∣∣ =

∣∣∣∣ˆ
R2

p(t, z) (ψ(z)− ψ(0)) dz

∣∣∣∣ (4.59)

≤
ˆ
B(−ρtΞ,δ/2)

p(t, z)|ψ(z)− ψ(0)|dz +

ˆ
R2\B(−ρtΞ,δ/2)

p(t, z)|ψ(z)− ψ(0)|dz ,

(4.60)

The first integral after the inequality can be estimated by
ˆ
B(−ρtΞ,δ/2)

p(t, z)|ψ(z)− ψ(0)|dz ≤ ε
ˆ
R2

p(t, z) dz = ε. (4.61)

For the second integral, we know that there exists M ≥ 0 such that for all
y ∈ R2, |ψ(y)− ψ(0)| ≤M . Hence

ˆ
R2\B(−ρtΞ,δ/2)

p(t, z)|ψ(z)− ψ(0)|dz

≤ M

4πσ2t

ˆ
R2\B(−ρtΞ,δ/2)

exp

(
−|z + ρtΞ|2

4σ2t

)
dy .

(4.62)

Then, by a change of variables y = z + ρtΞ,
ˆ
R2\B(−ρtΞ,δ/2)

p(t, z)|ψ(z)− ψ(0)|dz ≤ M

4πσ2t

ˆ
B(0,δ/2)

exp

(
− |y|

4σ2t

)
dy

(4.63)

=
M

2σ2t

ˆ ∞
δ/2

exp

(
− r2

4σ2t

)
r dr → 0 as t ↓ 0.

(4.64)
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Hence, for t > 0 sufficiently small,∣∣∣∣ˆ
R2

p(t, z)ψ(z) dz− ψ(0)

∣∣∣∣ < 2ε. (4.65)

Lemma 4.9. The quantity |Ξ|2 is independent of φ0.

Proof. We show that the derivative of |Ξ|2 with respect to φ0 equals 0. We have

d|Ξ|2
dφ0

= 2Ξ · dΞ

dφ0
. (4.66)

To evaluate this expression, we convert the integrals to polar coordinates (s, α).
Then the x-component of Ξ reads

Ξx = −
ˆ rc

0

ˆ 2π

0

(
−12

(σAT

s

)12

+ 6
(σAT

s

)6
)

cos(α)

exp

(
v0e
−1/2s cos(νφ0 − α)− uT(s)

σ2

)
sdα ds ,

(4.67)

where we write uT(s) = uT(x, y) with
√
x2 + y2 = s by abuse of notation. The

integral over α equals

ˆ 2π

0

cos(α) exp (β cos(νφ0 − α)) dα

= cos(νφ0)

ˆ 2π

0

cos(η) exp(β cos(η)) dη − sin(νφ0)

ˆ 2π

0

sin(η) exp(β cos(η)) dη

(4.68)

where we write β := v0e
−1/2s/σ2. The second integral after the equality sign

equals 0 since the integrand is an odd function about π, but the first integral
equals

cos(νφ0)

ˆ 2π

0

cos(η) exp(β cos(η)) dη = 2π cos(νφ0)I1(β), (4.69)

where Iν is the modified Bessel function of the first kind [23]. Hence

Ξx = −2π cos(νφ0)

ˆ rc

0

(
−12

(σAT

s

)12

+ 6
(σAT

s

)6
)

exp

(
−uT(s)

σ2

)
I1(β) ds .

(4.70)
Similarly,

Ξy = −2π sin(νφ0)

ˆ rc

0

(
−12

(σAT

s

)12

+ 6
(σAT

s

)6
)

exp

(
−uT(s)

σ2

)
I1(β) ds .

(4.71)
Hence we have

dΞx
dφ0

= −νΞy and
dΞy
dφ0

= νΞx, (4.72)

which together with (4.66) implies the desired result.
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With this expression, we can find the tracer’s MSD as a function of time,
which follows by direct integration.

Theorem 4.10. The second moment of the distribution specified by (4.56) is

MSD(t) = E
[
|Zt|2

]
= 4σ2t+ ρ2|Ξ|2t2. (4.73)

Proof. Let t > 0. By change of variables y = z + ρtΞ, we have

E
[
|Zt|2

]
=

ˆ
R2

|z|2p(t, z) dz (4.74)

=

ˆ
R2

|y|2
4πσ2t

exp

(
− |y|

2

4σ2t

)
dy︸ ︷︷ ︸

=:I

− 2ρtΞ

4πσ2t
·
ˆ
R2

y exp

(
− |y|

2

4σ2t

)
dy︸ ︷︷ ︸

=:II

+ ρ2t2|Ξ|2
ˆ
R2

1

4πσ2t
exp

(
− |y|

2

4σ2t

)
dy︸ ︷︷ ︸

=:III

.

(4.75)

Then, by converting these integrals to polar coordinates (r, α),

I =
1

4πσ2t

ˆ 2π

0

ˆ ∞
0

r3 exp

(
− r2

4σ2t

)
dr dα (4.76)

= 4σ2t (4.77)

by successive application of partial integration. For the second integral,

II = −2ρtΞ ·
ˆ 2π

0

ˆ ∞
0

r2(cos(α), sin(α)) exp

(
− r2

4σ2t

)
dr dα = 0 (4.78)

since the integrals of cos(α) and sin(α) over a full cycle equal 0. The third
integral

III =
ρ2t2|Ξ|2
4πσ2t

ˆ 2π

0

ˆ ∞
0

r exp

(
− r2

4σ2t

)
dr dα = ρ2t2|Ξ|2, (4.79)

again by partial integration.

We can rewrite |Ξ|2 as follows

|Ξ|2 = 4π2σ4

[
rcI1

(
v0

σ2

rc√
e

)
−
ˆ rc

0

exp

(
−uT(s)

σ2

)
∂s

(
sI1

(
v0

σ2

s√
e

))
ds

]2

.

(4.80)

In Figure 4.1, |Ξ|2 is plotted against v0 for different values of σ2. From this

plot, it becomes clear that |Ξ|2 increases with v0, whereas it decreases with σ2.
To summarise, our crude approximations predict the following behaviour for

the tracer’s MSD:

1. At short times, MSD ≈ 4σ2t. At long times, MSD ≈ ρ2|Ξ|2t2. In partic-
ular, the tracer’s movement is ballistic at long times.
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Figure 4.1: |Ξ|2 for different values of diffusion coefficient σ2 and active velocity

v0. |Ξ|2 characterises the strength of the tracer’s ballistic diffusion at given

density. v0 ranges from 0 to 25. Clearly, |Ξ|2 increases as v0 increases, but
decreases as σ2 increases.

2. The MSD increases with particle density ρ.

3. The MSD increases with active host velocity v0.

4. In the ballistic regime, i.e. at large t, the MSD decreases with diffusion
coefficient σ2. Since σ2 is proportional to the temperature T , the MSD
also decreases with increasing T .

We present the results of the numerical simulations of the SDEs (3.8) in the
following chapter. In Chapter 6 we compare the results of both methods.

4.4 Approximation of host particle density func-
tion by matched asymptotic expansions

By using the technique of matched asymptotic expansions, we improve the the
approximation for the host particle density (4.51). Again we consider the equa-
tion in Theorem 4.6:

∂tA =

N∑
i=1

∇ri ·
(
A∇riU

i − viA+ σ2∇riA
)

+

N∑
i=1

ν2∂2
φi
A. (4.81)
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Now, we integrate over ΛN−2 to find a PDE for the probability density P2 of
the first two particles:

∂tP2 = ∇r1 ·
(
P2∇r1 (uT(r1) + u12(r1 − r2))− v(φ1)P2 + σ2∇r1P2

)
+∇r2 ·

(
P2∇r2 (uT(r2) + u21(r2 − r2))− v(φ2)P2 + σ2∇r2P2

)
+(N − 2)

ˆ
ΛN−2

P3∇r1u13(r1 − r3) dθ3 + (N − 2)

ˆ
ΛN−2

P3∇r2u23(r2 − r3) dθ3

+ν2
(
∂2
φ1
P2 + ∂2

φ2
P2

)
.

(4.82)

Here, P2 =
´

ΛN−2 Adθ3 · · · dθN and P3 =
´

ΛN−3 A dθ4 · · · dθN are the two- and
three-particle marginal density functions respectively. Again, we make a few
simplifications, that are similar to the ones we made before. We take, for j =
1, 2,

v(φj) = v̄(φj) :=
v0√
e

(cos(νφj), sin(νφj)), (4.83)

with φj fixed. Moreover, we set again the integral terms to 0. This time
however, this does not imply that the host particles are independent, but only
that they are dilute, so that three-particle interactions are unlikely. Also, we
set the angular diffusion terms to 0. Then we have

∂tP2 = ∇r1 ·
(
P2∇r1 (uT(r1) + u12(r1 − r2))− v̄(φ1)P2 + σ2∇r1P2

)
+∇r2 ·

(
P2∇r2 (uT(r2) + u21(r2 − r1))− v̄(φ2)P2 + σ2∇r2P2

)
.

(4.84)

Furthermore, we assume P2 has the following form:

P2 = Q(r1, r2)f1(r1)f2(r2), (4.85)

with Q an undetermined function, and for j = 1, 2

fj(rj) = C exp

(
v̄(φj) · rj − uT(rj)

σ2

)
, (4.86)

i.e. the solution to (4.49). We assume that the particles become independent as
their separation goes to infinity, which implies that Q → C ′ as |r1 − r2| → ∞,
with C ′ a normalisation constant. By substituting this ansatz for P2 into (4.84),
we find

f1f2∂tQ = ∇r1 ·
(
Qf2

{
f1 [∇r1uT − v̄(φ1)] + σ2∇r1f1

}
+ σ2f1f2∇r1Q

)
∇r2 ·

(
Qf1

{
f2 [∇r2uT − v̄(φ2)] + σ2∇r2f2

}
+ σ2f1f2∇r2Q

)
+∇r1 · (f1f2Q∇r1u12(r1 − r2)) +∇r2 · (f1f2Q∇r1u12(r1 − r2))

(4.87)

Since f1 and f2 satisfy (4.49), the terms between accolades vanish, and we
have

f1f2Q = ∇r1 ·
(
σ2f1f2∇r1Q+ f1f2Q∇r1u12(r1 − r2)

)
+∇r2 ·

(
σ2f1f2∇r2Q+ f1f2Q∇r2u12(r1 − r2)

) (4.88)

We know that for j, k = 1, 2, k 6= j,

∇rjfj(rj) =
1

σ2

(
v̄(φj)−∇rjuT(rj)

)
fj , ∇rkfj(rj) = 0. (4.89)

33



Hence Q satisfies, with j 6= i,

∂tQ =

2∑
i=1

[ 1

σ2
(v̄i −∇riuT(ri)) ·

(
σ2∇riQ+Q∇riuij(ri − rj)

)
+∇ri ·

(
σ2∇riQ+Q∇riuij(ri − rj)

) ] (4.90)

Now, the terms ∇riuT(ri), that represent host-tracer interaction, will cause
P2 to approach 0 as ri → 0, for i = 1, 2. However, since P2 = Qf1f2 and fi → 0
as ri → 0, P2 → 0 as ri → 0 regardless of the presence of the terms ∇riuT(ri)
in (4.90). Hence, we neglect these terms, so that (4.90) simplifies to

∂tQ =

2∑
i=1

[ v̄i
σ2
·
(
σ2∇riQ+Q∇riuij(ri − rj)

)
+∇ri ·

(
σ2∇riQ+Q∇riuij(ri − rj)

) ]
.

(4.91)

We will use the technique of matched asymptotic expansions to find an approx-
imate solution to this equation. We use the fact that the potential is short-
ranged, with range ε := 21/6σAA �

√
L(Ω), and define two new variables:

r̃1 := r1 and r̃ :=
1

ε
(r2 − r1). (4.92)

Moreover, we define Q̃(r̃1 r̃, t) = Q(r1, r2, t) and ũ12(r̃) = u12(r1−r2). In terms
of the variables r̃1 and r̃, the gradient operators become

∇r1 = ∇r̃1 −
1

ε
∇r̃ and ∇r2 =

1

ε
∇r̃. (4.93)

Rewriting (4.91) in terms of these newly defined functions and variables, and
grouping terms of same order in ε, we find

ε2∂tQ̃ = 2
[
σ2∆r̃Q̃+∇r̃ · (Q̃∇r̃ũ12(r̃))

]
+ ε

[
(v̄2 − v̄1) ·

(
∇r̃Q̃+ Q̃∇r̃

(
ũ12(r̃)

σ2

))
−∇r̃1 ·

(
2σ2∇r̃Q̃+ Q̃∇r̃ũ12(r̃)

)]
+ ε2

[
v̄1 · ∇r̃1Q̃+ σ2∆r̃1Q̃

]
.

(4.94)

We seek a solution to this equation of the form

Q̃ = Q̃0 + εQ̃1 + · · · (4.95)

Then the 0th-order problem becomes

2
(
σ2∆r̃Q̃0 +∇r̃ · (Q̃0∇r̃ũ12(r̃))

)
= 0 (4.96)

with Q̃0 → 1 as r̃→∞. The solution to this equation is given by

Q̃0 = exp

(
− ũ12(r̃)

σ2

)
. (4.97)
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The 1st-order problem reads

2
(
σ2∆r̃Q̃1 +∇r̃ · (Q̃1∇r̃ũ12(r̃))

)
+ (v̄2 − v̄1) ·

(
∇r̃Q̃0 + Q̃0∇r̃

(
ũ12(r̃)

σ2

))
−∇r̃1 ·

(
2σ2∇r̃Q̃0 + Q̃0∇r̃ũ12(r̃)

)
= 0.

(4.98)

All terms involving Q̃0 vanish, because of (4.97) and because Q̃0 is independent
of r̃1. Hence

Q̃1 = exp

(
− ũ12(r̃)

σ2

)
, (4.99)

so that

P2(r1, φ1, r2, φ2) = C ′ exp

(
− ũ12(r̃)

σ2

)
f1(r1)f2(r2), (4.100)

with C ′ a normalisation constant.
In terms of P2, the tracer’s probability density satisfies

∂tp = σ2∆p−N∇ ·
(
p

ˆ
Λ2

(∇r1uT(r1))P2(θ1, θ2) dθ1 dθ2

)
. (4.101)

This implies a similar MSD profile for the tracer, only with different constants:

MSD(t) = 4σ2t+ |Ξ′|2t2, (4.102)

with

Ξ′ := −N
ˆ

Λ2

(∇r1uT(r1))P2(θ1, θ2) dθ1 dθ2 . (4.103)

Further evaluation of the constant Ξ′ can be the topic of future research.
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Chapter 5

Simulation Results

The subject of this Chapter is the investigation of the tracer’s MSD profile as
a function of temperature, active velocity and particle density. We do this by
numerically solving the system (3.8).

In Figure 5.1 we plot the MSD as a function of time for three different
velocities v0, but equal temperature and density. This Figure already indicates
that the tracer’s diffusive behaviour is significantly enhanced due to the activity
of the bath particles. We can identify three regimes: For very short times, the
MSD grows linearly in time. At intermediate times, the MSD is proportional to
tα with α < 1 or α > 1 depending on the activity. At v0 = 0, we observe that
α < 1 and the tracer’s diffusion is subdiffusive. As v0 increases, α increases to
a value larger than 1. At long times, the diffusion becomes normal again, but
with a different proportionality factor than the short time diffusion.

Similar behaviour is found at other densities, activities and velocities. In
Section 5.1 we briefly look at the short-time characteristics of the MSD. Sec-
tion 5.2 outlines the intermediate regime and we explore how α changes with
area fraction, temperature and activity. In Section 5.3 the long-time effect-
ive diffusion coefficient as a function of the aforementioned three variables is
characterised.

5.1 Short-time regime

At short times, the tracer’s MSD is linear in time. This can be explained by the
fact that the tracer has not yet had the opportunity to interact with the bath
particles, so that the tracer behaves as a freely diffusing particle whose position
satisfies the SDE

dZt =
√

2D0 dBt , (5.1)

where D0 is the short-time diffusion constant of the tracer. For such a particle
we have MSD = 4D0t, as we saw in Section 2.5. Because of our choice of values
for the simulation, the proportionality constant equals 4D0 = 4T . To extract a
value for D0 from the MSD profile, we define

D0 :=
1

4
lim
t→0

(
d

dt
MSD(t)

)
, (5.2)
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Figure 5.1: MSD of the tracer against time for different velocities v0 of the
hosts. In each case, temperature T = 1 and area fraction f = (π/4)ρ = 0.628,
with ρ the dimensionless density. At very short times, MSD ∼ t, whereas at
intermediate times MSD ∼ tα, with α < 1 for low v0 and α > 1 for high v0. At
long times, MSD ∼ t again.

and we determine D0 from the MSD’s slope at short times. The expected
behaviour is indeed observed, independent of bath activity and density: we find
that D0 = pT + q, with p = 0.997 ± 0.0001 and q = 0.002 ± 0.002. The slope
p being just below 1 can be attributed to the fact that the two points in time
that we use to measure D0 are too far apart; decreasing the time step size
will cause the measured value of D0 to become closer to 1. In particular, at
high temperature, velocity and/or density the time until the first tracer-host
interaction is extremely small.

5.2 Intermediate regime

Next, we look at the intermediate regime, in which MSD ∼ tα with α 6= 1. In
Figure 5.2 we plot the values for α against the dimensionless Péclet number Pe,
which we define as

Pe :=
v0√
DTDR

. (5.3)

This number characterises the importance of the activity of the bath particles
compared to thermal fluctuations [1]. At low Pe, the thermal fluctuations dom-
inate and the tracer behaves as if its environment is passive. On the other hand,
at high Pe the activity of the hosts dominates and the interactions between the
tracer and the fluid molecules are less important. Because of our choice of values
for the constants in the numerical simulations we have that DT = DR = T , so
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Figure 5.2: Anomalous exponent α at intermediate times against the Péclet
number Pe ∼ v0/T for different area fractions f . Pe characterises the import-
ance of the activity relative to the thermal fluctuations in the supporting fluid.
At low Pe, the thermal fluctuations dominate and α < 1, implying subdiffusive
motion of the tracer. At high Pe, activity dominates and α > 1, so that the
tracer’s dynamics are superdiffusive. The fits are made using (5.5).

that
Pe =

v0

T
. (5.4)

At low Pe, we observe α < 1, which means that the tracer performs a subdif-
fusive movement. However, at high Pe, α > 1 and the motion of the tracer is
superdiffusive. Moreover, α approaches a constant value strictly smaller than
2 as Pe → ∞, so that the motion of the tracer never truly becomes ballistic.
Moreover, this limiting value seems to depend on the bath density. We introduce
the following ad hoc ansatz for α as a function of Pe:

α = α0

(
1− c exp

(
− Pe

Pe0

))
, (5.5)

where α0, c and Pe0 are fit parameters. In particular, α → α0 as Pe → ∞.
Table 5.1 depicts these high Pe values for α.

In the low Pe limit, the thermal fluctuations dominate. Hence not only the
tracer, but also the host particles are effectively passive. The observation of
α < 1 at these low Péclet numbers is in agreement with literature. Indeed,
for passive colloidal systems subdiffusion of a tracer particle is observed [4].
On the other hand, also the observation α > 1 at high Pe is consistent with
literature. For instance, Wu and Libchaber [8] describe an experiment with
passive polystyrene beads in two-dimensional (active) bacterial baths. They find
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Table 5.1: Values for the anomalous exponent α at high Péclet number for
different area fractions f .

f α0

0.079 1.65± 0.02
0.393 1.84± 0.02
0.628 1.89± 0.03

that two diffusion regimes: at short times, the tracer’s motion is superdiffusive,
with MSD ∼ tα with α ∈ [1.5, 2.0]. At long times, the MSD is linear in time. In
an attempt to explain this behaviour, a model is proposed by Grégoire et al. [9].
The bacteria are modelled as active Brownian particles. However, their direction
is determined by the direction of their neighbours: their angle is the average
of the angle of their neighbours plus a stochastic term. This way, ‘swarming’
occurs, in which the bacteria move collectively. This model explains the MSD
profile that is observed in [8] well; numerical simulations indicate anomalous
diffusion of the tracer with exponent ∼ 1.65 at short times and a crossover
normal diffusion at long times.

However, in the model we use, the active particles do not (explicitly) align
their directions, but we still observe superdiffusion of the tracer at intermediate
times. Ref. [24] reports the results of an experiment that is similar to that
described in [8], but with algae instead of bacteria. Algae are active as well,
but do not swarm as bacteria do, and therefore are a better physical example
of the system under investigation in this report than bacteria are. Again, the
diffusive behaviour of passive tracer particles is measured. The results are the
similar to those measured by in [8]. Moreover, MSD(t) increases monotonically
with particle concentration. Finally, in [25] the results of simulations of a very
similar system are presented, with similar trends as in this report; the anomalous
exponent is found to increase with activity and area fraction.

5.3 Long-time regime

As t→∞, the MSD becomes linear in time again. However, the proportionality
constant can differ significantly from the diffusion coefficient at short times.
Figure 5.3 depicts the ratio of long-time effective diffusion coefficient to short-
time diffusion coefficient. We will write Deff and D0 for the long- and short-time
diffusion coefficient respectively, and we define

β :=
Deff

D0
. (5.6)

Interestingly, now β levels off at low Péclet number, to a value that depends
on the density. As Pe increases above 1, β increases approximately linearly with
Pe. The slopes of this linear relation between β and Pe are displayed in Table
5.2.

At low Pe, β < 1. Hence Deff < D0 and the tracer’s diffusivity is lowered
by the presence of the crowded environment. This is consistent with literature
[4, 26]. Thus, in the long-time limit, the tracer diffuses more slowly than it
would if it could diffuse freely. This can qualitatively be explained as follows
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Figure 5.3: Ratio of long-time effective diffusion constant to short-time diffusion
coefficient against Péclet number.

[27, 28]: due to the high area fraction, the tracer is ‘caged’ between the host
particles, which hinder its self-diffusion. These cages have a finite lifetime τ .
After this time, the tracer breaks out of the cage and another cage forms around
the tracer. When t � τ , the tracer has moved through many cages. On this
coarse time scale, the motion of the tracer and the bath particles is uncorrelated,
so that the tracer’s MSD becomes linear again.

A similar argument may explain the dramatic enhancement in diffusivity
when Pe > 1 [25]. Now, the tracer is still stuck between hosts; however, the
cage formed by the hosts moves with some effective velocity. Hence, the tracer
travels a large distance within the cage’s characteristic lifetime. Analogous to
the passive case, for t � τ the motion of the particles becomes uncorrelated,
resulting in a linear MSD.

At low area fractions, hydrodynamic interactions are hypothesised to be
responsible for the significant enhanced effective diffusion coefficient [8, 29]. Al-
though we must take into account that both these works are concerned with bac-
teria, that may show swarming behaviour, we can conclude that hydrodynamic
interactions are not a necessary condition for enhanced diffusion at high area
fractions. This observation is also consistent with other literature [12, 25].

We would like to draw an analogy with a single active particle. Its MSD is
given by (2.65):

MSD(t) =

(
4DT +

2v2
0

DR

)
t+

2v2
0

D2
R

(exp (−tDR)− 1) . (5.7)
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Table 5.2: Slope of β := Deff/D0 against Pe for Pe ≥ 5, for different area
fractions f .

f slope
0.079 0.60± 0.06
0.393 1.08± 0.06
0.628 1.2± 0.1

Hence, for t� 1/DR, the MSD’s slope is

d

dt
MSD(t) ≈

(
4DT +

2v2
0

DR

)
=: 4Dactive

eff . (5.8)

Moreover, there are constants γ and δ such that

DT = γT and DR = δT. (5.9)

If we substitute these expressions in (5.8), and divide by the translational dif-
fusivity DT, we find

β∗ :=
Dactive

eff

DT
= 1 +

1

2

1

γδ

v2
0

T 2
= 1 +

1

2
Pe2, (5.10)

where we have used that

Pe =
v0√
DTDR

=
1√
γδ

v0

T
. (5.11)

The quantity β∗ = Dactive
eff /DT is analogous to β = Deff/D0, defined in (5.6).

Hence, when Pe � 1, β∗ is constant. On the other hand, when Pe is large, β∗

is quadratic in Pe.
Analogously, we have seen that β is constant at low Pe. At high Pe, β

increases with Pe, as does β∗, although β seems to increase linearly with Pe
rather than quadratically. Hence, the tracer inherits many of the properties of
the active particles in its environment.
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Chapter 6

Conclusion and Outlook

We have investigated the dynamics of a passive tracer particle in a crowded,
active bath, by examining its MSD. This is done in two ways: analytically and
numerically. In both cases, we find that the tracer’s diffusion is significantly
enhanced by the presence of the active bath. In the following section, we further
compare the analytical and numerical results.

6.1 Comparison of the analytical and simulation
results

The analytical derivations outlined in Chapter 4 predict that the tracer’s MSD
is linear in time at short times. These dynamics are indeed consistent with the
numerical simulations in Chapter 5. However, the analytically predicted long-
time ballistic motion is not observed in the simulations, which predict normal
diffusion at these time scales. The Fokker-Planck equation (4.55) gives rise to
an effective stochastic differential equation for the tracer’s position Zt such as

dZt = ρΞ dt+
√

2σ dBt , (6.1)

i.e. an SDE with constant drift and diffusion terms ρΞ and
√

2σ respectively.
This constant drift term gives rise to the ballistic term in the analytical MSD.
The prediction of ballistic motion will be inevitable when using the steady-state
approximation, since the ballistic coefficient ρ2|Ξ|2 is independent of space and
time, and is nonnegative. The drift term being constant is unphysical; it is
a result of the omission of time dependence and angular diffusion of the host
particles.

Nevertheless, the analytical approximation for the tracer’s MSD (4.73) does
make some more predictions that are consistent with the observations from
simulations. First, the MSD increases with velocity v0 and decreases with tem-
perature T . The figures in Chapter 5, in particular Figure 5.3, show similar
behaviour; indeed, this is characterised by the Péclet number. Also, the func-
tion I1, that appears in the expression for |Ξ|2, depends only on v0/σ

2 = v0/T .
Some care is needed when interpreting this dependence, since the Péclet number
is given by Pe ∼ v0/σν, and the fact that the quantity v0/T coincides with Pe is
only a result of the choice σ = ν =

√
T (or equivalently DT = DR = T ) for the
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simulations. Also, |Ξ|2 cannot be written as a function of Pe only, rather than
as a function of both v0 and σ2. Hence Pe is insufficient to completely describe
the analytical prediction of the tracer’s enhanced diffusivity. Moreover, the dra-
matic increase of |Ξ|2 with v0 for fixed σ2, of 5 to even 20 orders of magnitude,
as seen in Figure 4.1, is clearly not observed in the numerical experiments.

Moreover, (4.73) predicts an increase of the MSD with density ρ (or equi-
valently area fraction f). Although the dependence of the MSD on the density
is less pronounced than its dependence on the Péclet number, the analytical
prediction is partially consistent with the simulation results. At low Pe, the
tracer’s diffusivity is lower than the diffusivity of a freely diffusing particle, but
at high Pe the diffusivity is actually significantly increased. However, (4.73)
predicts that the MSD increases with ρ for any Pe. This is the result of the
omission of host-host interactions in the marginal distribution function (4.51);
these interactions create the cages that are responsible for the decrease in the
tracer’s diffusivity. Furthermore, the ballistic coefficient ρ2|Ξ|2 is unbounded.
On physical grounds, one may expect the motion of all particles to decline after
some critical density, because the system becomes glassy or crystallises. For
example, the analytical approximation predicts ballistic motion (and enhanced
diffusion) even at densities such that the area fraction is above 1. We expect
that the aforementioned discrepancies between the analytical and numerical ap-
proaches are the result of the series of approximations that was necessary to
simplify the system of equations.

6.2 Outlook

Something that has not been addressed in this report is the dependence of the
tracer’s MSD on the size of the tracer. A numerical evaluation of the coefficient
|Ξ|2 shows that it increases with σAT in an even more dramatic fashion than
it does with v0. More numerical simulations, for different values of σAT are
necessary to verify whether or not this prediction is accurate, i.e. whether a
large tracer indeed diffuses faster than a small one. Moreover, the diffusion
coefficients DT and DR are equal for all types of particles and only depend on
temperature, so that Pe ∼ v0/T . Making DT and DR depend on other factors,
such as the particle size, may shed more light on the relations between α and β
and the Péclet number.

Improving the analytical predictions could start by describing the interac-
tions of the tracer with multiple particles simultaneously. A possible method
for this has been outlined in Section 4.4. Further evaluation of the constant
Ξ′ found in that Section may provide new information on the tracer’s diffu-
sion. However, incorporating time dependence in the description of the host’s
probability density function will be essential in order to elucidate the origins
of the values of the anomalous exponent and the long-time effective diffusion
coefficient.

The slopes displayed in Table 5.2 are very close, in particular at the two
highest area fractions. Further investigation is necessary to know whether these
slopes are universal and otherwise how they depend on the area fraction. Fur-
thermore, these slopes are found under the assumption that β ∼ Pe. Further
investigation is needed in order to make this assumption more rigorous, or to
find a more accurate description of the relation between β and Pe, possibly de-
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pending on the area fraction. Moreover, we have seen that α0, the high-Pe value
of the anomalous exponent α, increases with area fraction. Further research is
necessary to indicate if this increase continues at higher area fractions, or if
there is a limiting value for α0. One would suppose this limiting value to equal
2, but it could be the case that the system crystallises at an area fraction that
is lower than the area fraction at which the tracer would hypothetically show
this ballistic motion.

Furthermore, the times between transitions to different diffusive regimes
have not been addressed in this work. Since we explain the enhanced tracer
diffusion by the concept that the tracer is pushed by a cage of active particles,
we speculate that the duration of the superdiffusive regime is related to the
lifetime of such a cage. Furthermore, we speculate that the lifetime of a cage is
related to the reorientation time of the particles that constitute the cage. Since
the reorientation time of an active particle is given by [1, 30] 1/DR ∼ 1/T ,
we expect that the lifetime of a cage, and therefore also the duration of the
superdiffusive regime, decreases with temperature. Moreover, this reasoning
implies that the lifetime is independent of the velocity v0. Further research is
necessary in order to confirm or reject this hypothesis.
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