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SPHINCS+ and Gravity-SPHINCS

Abstract

To resist quantum cryptoanalysis, a stateless hash-based signature scheme has
been constructed called SPHINCS. To improve SPHINCS’s security and per-
formance, two new signature schemes SPHINCS+ and Gravity-SPHINCS were
proposed as part of the NIST post-quantum cryptography competition in 2017.
The aim of this report is to compare both SPHINCS+ and Gravity-SPHINCS on
their performance and security. As both schemes are based on their predeces-
sor, SPHINCS, first a detailed explanation of SPHINCS is provided. We iden-
tified three different potential security improvements for SPHINCS: multi-target
attack protection, the use of a verifiable index and prevention of colliding indices
in HORST. SPHINCS+ dealt with all these improvements by introducing tweak-
able hash functions, FORS and a different method to compute the message digest,
whereas Gravity-SPHINCS only solved the unverifiable index and colliding indices
issue by the introduction of PORST. However, Gravity-SPHINCS introduced a lot
of options to reduce computation time, i.e. secret key caching, mask-less hashing
and octopus authentication. Based on the comparison in this thesis, some addi-
tions and changes for SPHINCS+ and Gravity-SPHINCS were identified that could
improve both scheme’s performance and security level. In future research, more
insight for the optimization of the schemes could be provided by a more practical
comparison, in which SPHINCS+ and Gravity-SPHINCS are compared for different
sets of parameters.
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1 Introduction

It is thought that quantum computers will be available in the near future, putting most
of the nowadays indispensable cryptosystems used for our modern communication in
danger, for instance, RSA and DSA [1]. In order to find new algorithms that would be
less susceptible to a quantum computer’s attack than the current algorithms available,
NIST (The National Institute of Standards and Technology) organized a competition
for post-quantum cryptography in 2017. Among the submissions were SPHINCS+ [2]
and Gravity-SPHINCS [3]. These algorithms were based on SPHINCS, a stateless hash-
based signature scheme, which was the first signature scheme to propose parameters to
resist quantum cryptoanalysis [2]. SPHINCS+ and Gravity-SPHINCS were constructed
independently of each other and therefore have different approaches when it comes to
improving SPHINCS ’s security and performance.
Up till now, no direct comparison has been made between SPHINCS+ and Gravity-SPHINCS,
hence, it is unknown which algorithm would be the most attractive answer to the post-
quantum cryptography challenge. The aim of the NIST competition was to design a
signature scheme that is able to generate 264 signatures, which all can be verified with
the same public key and the signature scheme should be composed in such way that
signing a message is done within a reasonable amount of time [4]. SPHINCS is not able
to meet these requirements, since SPHINCS is only able to compute 250 signatures, while
still keeping a reasonable signing speed. It is possible for SPHINCS to reach 264 signature,
but then the scheme will run into performance issues.
The aim of this report is to compare the stateless hash-bases signature schemes SPHINCS+

and Gravity-SPHINCS on their performance in a theoretical way. First of all, it is impor-
tant to gain a better understanding of these schemes. Therefore, a closer look is taken at
their common origin, SPHINCS, which is elaborately discussed in section 3. Explanation
is provided by taking a look at the different components that SPHINCS consists of and
it is discussed how key generation, signature formation and verification work. Section 4
discusses potential improvements in SPHINCS, as there are certain aspects of SPHINCS
that can be used as an advantage for a possible attack. In section 5, it is explained
what changes and additions have been made in SPHINCS+ and Gravity-SPHINCS in
comparison to SPHINCS. Last but not least, a comparison between these improvements
is made in section 6. However, before discussing these advanced schemes it is essential
to understand why signature schemes are important and what is required to construct a
secure signature scheme. This is the focus of the next section.

2 Preliminary

Currently, a lot of cryptosystems are available. There exist systems that encrypt a mes-
sage, so that only the receiver of the message is able to read it, but there are also systems
that simply create a signature. SPHINCS+ and Gravity-SPHINCS are both hash-based
signature schemes. The hash-based part will be explained further on in this chapter.
For now let us focus on what a signature scheme is and what it is used for. In general,
a signature scheme allows the user to sign a message (document, contract, bill, etc). It
follows the same principle as it would in real-life: a person writes a signature as a proof of
identity or to provide evidence of deliberation and informed consent. A digital signature
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helps with the authenticity of the digital message. Adding such a signature will give a
certainty that the message indeed came from the sender. It provides a way to verify the
identity of the sender and the integrity of the message.
A signature scheme consists of three steps, which are shown in Figure 1. The first step
is called key generation, during which a key pair is generated. It starts with a randomly
generated secret key. With use of this secret key a public key is created. The second
step of the process is the signing algorithm. The message (document, contract, bill, etc)
together with the secret key are used as input for the signing algorithm. This algorithm
will give as output a signature. The last step is the verification of the signature. The ver-
ification algorithm uses the message, the public key and the signature and either accepts
or rejects the input. If the verification algorithm accepts the input, then the signature is
correct.

Figure 1: The signature process

The following example illustrates the importance of using a secure signature scheme.
Imagine that Alice wants to send a bill to Bob, because Bob still owes Alice some money.
On this bill Alice wrote her bank account details, so Bob knows where to send the money
to. It is possible that a third-party, Eve, intercepts the bill. If Alice decided not to add
a signature to the bill, then Eve is able to change Alice’s bank account details into her
own bank account details. When Bob receives the bill, he expects the bill to come from
Alice. Since Alice did not add a signature to the bill, there is no verification available
that the bill is actually from Alice. Thus Bob sends the money to the bank account that
was included in the bill; resulting in Eve receiving the money, instead of Alice. Because
Alice does not want this to happen, she adds a signature by means of a signature scheme.
The bill with the bank account details acts as the message that is signed. If Bob was to
receive this message now, he can actually verify that it came from Alice. Eve can still
intercept the message and alter the bank account details. However, doing so will change
the message, resulting in a signature that does not correspond to the message anymore.
Through verification Bob can now tell that either the message, signature or public key
does not correspond anymore. If Eve wishes to receive money from Bob, she can either
remove the signature (which results in a message of which Bob cannot verify its sender
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and therefore Bob may decide not to send money to the given bank account) or she can
break the signature scheme that Alice used. If Eve breaks the signature scheme, she can
copy Alice’s signature and sign anything pretending to be Alice. To prevent this, it is of
great importance to use a secure signature scheme.
There exist many different signature schemes and SPHINCS+ and Gravity-SPHINCS
are based on hash functions. So before going into detail about these schemes and their
predecessor SPHINCS, it is important to explain what hash functions are.

2.1 Hash functions

Hash functions are functions that map a bit string of arbitrary length to a bit string of
a fixed length. These functions are designed as one-way functions. This means that the
function is easy to compute in one way, but computing the inverse is much more diffi-
cult. Besides the one-wayness property, hash functions should have a few more security
properties.
First of all, the function has to be collision resistant. Consider a hash function H, then
H is collision resistant if there exists no bit string A 6= B that satisfies H(A) = H(B).
In other words, there can not exist two different bit strings that hash to the same bit
string. Unfortunately, in case there is a hash function {H : {0, 1}m(n) → {0, 1}n} with
more input than output, so m(n) ≥ n, there is no way to avoid collision [5]. Consider a
bit string with n bits that are either 0 or 1, so 2n bit strings are possible. For an attacker
to find a collision with a high probability, he only has to compute 2

n
2 different hashes.

This latter amount of different hashes can be derived in a similar way as the method used
in the- birthday paradox, where the chances that two people in a group of 23 people have
the same birthday is a little more than 50% [6].
The second security property is that the hash function should be preimage resistant. This
means that for a given H(A), with A unknown, it is difficult to find a distinct A′ such
that H(A) = H(A′)
Last of all, the hash function has to be second-preimage resistant. This means that for a
given random input A it should be difficult to find a second preimage A′ 6= A such that
H(A) = H(A′) [5].
In conclusion, a hash function is believed to be secure if it is collision resistant, preimage
resistant and second preimage resistant. Examples for currently used hash functions are
SHAKE256 and SHA-256. Although the main part of a hash based signature scheme is
based on these hash functions, this thesis will not focus so much on these functions, but
rather focus on how the schemes work and on how something is signed.

2.2 Security

As illustrated in the Eve example in section 2, it is of great importance that a signa-
ture scheme is secure. In order to make a signature scheme secure, there should be no
possibility for forgeries. In general, these forgeries can be categorized into four different
types:

• A total break. An attacker knows the secret key.

• Universal forgery. An attacker is able to forge a signature for any given message.
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• Selective forgery. An attacker is able to forge a signature on a message of their
choice.

• Existential forgery. An attacker is able to forge a signature for an arbitrary message.

Note that these types of forgeries are listed from most difficult to obtain to least difficult
to obtain: there is less information required to construct an existential forgery than to
totally break the scheme. In order for an attacker to obtain this kind of information, the
attacker has to perform an attack. There are two basic types of attacks:

• Key-only attacks. The attacker only knows the public key.

• Message attacks. The attacker knows some signatures corresponding to either
known or chosen messages.

The message attacks are divided into four different types of message attacks. These are
the following:

• Known message attack. The attacker knows a set of messages with their corre-
sponding signatures, however these messages are not chosen by the attacker.

• Generic chosen message attack. The attacker is able to choose a set of messages
and obtain their signatures. However the attacker has to choose the set of messages
before seeing any signatures. The set of messages is also fixed and independent of
the public key.

• Directed chosen message attack. The attacker can again choose a set of messages,
but this time the public key is known and the set of messages is dependent on the
public key. Also the attacker has to choose the set of messages before seeing any
signatures.

• Adaptive chosen message attack. The attacker can again choose a set of messages.
This time the attacker can be adaptive by changing the set of messages after seeing
some signatures. The attacker can request signatures for messages depending on
the public key and on previously obtained signatures.

The list is ordered from the least severe message attack to the most severe message attack.
It is important that the signature scheme is secure enough against all these types of attack,
so no valuable information is obtained by the attacker. An attack on a security system
is successful if one of the aimed for forgeries is reached with a non-negligible probability
and in probabilistic polynomial time. There are ways for the attacker to reach the same
goal by trying every single possible option, also known as a brute force attack. Brute
forcing will always break the signature scheme, it is however not defined as a successful
attack, because it requires a lot of computation time [7].
In conclusion, in order to classify a signature scheme as secure, it should take a long time
for an attacker to obtain valuable information, that can be used to construct a forgery.

W.M. Boschman 6
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3 SPHINCS

SPHINCS+ and Gravity-SPHINCS are both signature schemes that can be used to sign
multiple messages. They are both based on the structure of their predecessor SPHINCS.
SPHINCS is quite a complex signature scheme, since it consists of multiple signature
schemes. Each of the components of SPHINCS will be explained in subsection 3.2. In
subsection 3.3 is described how all these components work together in the key generation,
signing and verification processes. In order to get a better understanding of how these
components function, we first have to take a look at one of the first hash-based signature
schemes, Lamport.

3.1 Lamport

One of the very first hash-based signature schemes is the Lamport one-time signature
(OTS) scheme. The scheme works in the following way: first, a secret key is randomly
generated, that consists of 2m bit strings of length n. This secret key can be divided
into 2m bit strings : x1,0, x1,1, . . . , xm,0, xm,1, where each bit string has length n. To
create the public key each bit string is hashed individually, using a hash function H,
H : {0, 1}n → {0, 1}n, such that:

H(x1,0), H(x1,1), . . . , H(xm,0), H(xm,1) = y1,0, y1,1 . . . , ym,0, ym,1

Consider a messageM you want to sign and divide this message up intom bits: b1, b2, . . . , bm.
For each bit in b1, b2, . . . , bm one of the corresponding secret key parts is chosen. Take b1
for instance: if b1 = 0, then x1,0 is used, and if b1 = 1, then x1,1 is used. This way you end
up with a signature σ consisting of secret key parts, e.g. σ = x1,0, x2,1 . . . , xm,0. In order
to verify that the message that was sent came from the person who signed it, the receiver
has to check the signature. The receiver knows the following: the signature σ, the hash
function H, the message M and the public key of the sender, y1,0, y1,1 . . . , ym,0, ym,1. In
order to check the signature, the receiver also divides the message M into m bits, which
will give him b1, b2, . . . , bm. Using these bits the receiver can check which parts of the
public key were used, for instance b1 was either 0 or 1 corresponding to y1,0 = H(x1,0) or
y1,1 = H(x1,1) respectively. Doing this for each bi of the message will give him a key of
length m that contains the public key parts corresponding to the bi. The receiver now
hashes the individual parts of the signature and checks if the result matches the key that
the receiver just computed [8].
However, as implied by the name of the scheme, the signature should only be used once.
If a sender would use the same secret key more often, then anyone who intercepts these
messages, Eve for instance, could figure out the full secret key based on the given signa-
tures. Eve would then be able to sign messages pretending to be the sender. To prevent
this from happening, a new secret key should be generated for every message you want to
send, which means that for each message also a new public key is computed, resulting in a
large number of public keys. Hence, this signature scheme could be easily improved if the
same public key can be used for multiple secret keys and their corresponding signatures.
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3.2 Components of SPHINCS

As stated in the introduction, SPHINCS is a stateless hash-based signature scheme that
consists of multiple components [9]. In this section each of these components is explained
and the last subsection we discuss how all these components interact in a full hypertree.

3.2.1 Merkle trees

Ralph Merkle created an algorithm that produces multiple signatures corresponding to
a single public key. In order to do so, he used multiple OTS instances and created a
tree out of this, which is also known as a hash tree or Merkle tree. The set-up is a full
complete binary tree (see Figure 2), where the leaves of the tree correspond to the OTS
public keys used. Note that the amount of signatures the Merkle tree can produce is 2h,
where h is the height of the tree.

Figure 2: Full complete binary tree

In order to obtain the public key of the scheme, the root node of the tree has to be
computed. Consider the full complete binary tree depicted in Figure 2: this Merkle tree
has eight leaf nodes (the nodes depicted at the bottom layer). Each of these leaf nodes
corresponds to a public key of a one-time signature. Consider pk1, . . . , pk8 as our OTS
public keys and H as our hash function. To compute the nodes of the layer above the
leaf node layer, two of the adjacent leaf nodes (starting from the left side) are hashed
together to form the new node. In the example illustrated in Figure 2, the first node
that will be computed is pk1,2 = H(pk1‖pk2). When we continue this for the other leaf
nodes, then the layer above will look as follows: pk1,2, pk3,4, pk5,6, pk7,8. Continuing on to
the next layer, again hashing together the previous two nodes, will gives us the following
two nodes: pk1,2,3,4, pk5,6,7,8. Hashing these two nodes together will give us the root node
of the tree, also known as the public key of the scheme. In this case the public key is
pk1,2,3,4,5,6,7,8
In order to generate a signature, the message M is signed using one of the one-time sig-
natures in the Merkle tree. This requires the use of one of the OTS secret keys. Recall
that these should only be used once, hence we have to keep track of the secret keys used
by using an index i. For example, Alice wants to send message M to Bob. She uses
the secret key sk3 for this, so i = 3 (see Figure 3). Firstly, she creates a signature from
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M using the OTS: we call this signature σ(M). Bob receives the message M , signature
σ(M) and the public key pk1,2,3,4,5,6,7,8 from Alice. With use of the message M , signa-
ture σ(M) and the OTS verification algorithm, Bob is now able to compute pk3. In
order to verify the signature, Bob needs a way to compute the public key pk1,2,3,4,5,6,7,8
with use of pk3. To do so, Alice has to send the authentication path. The authenti-
cation path contains the adjacent nodes of the nodes that are used in the tree. Using
the nodes contained in the authentication path, Bob can compute the root node of the
tree, pk1,2,3,4,5,6,7,8. The authentication path is included in the signature Alice has sent
and is as follows: σ = (i = 3, σ(M), pk4, pk1,2, pk5,6,7,8). This signature will allow Bob to
recompute the public key in the following way: again he uses the verification algorithm
of OTS to compute pk3. After obtaining pk3, Bob computes H(pk3‖pk4) = pk3,4, then
(pk1,2‖pk3,4) = pk1,2,3,4 and at last H(pk1,2,3,4‖pk5,6,7,8) = pk1,2,3,4,5,6,7,8. Bob has now
obtained a public key and can compare his result with the public key of Alice. If these
public keys match, then Bob has verified that the signature is correct [10].

Figure 3: Authentication path

There exist a few variations of Merkle trees. In SPHINCS one of these variations has
been incorporated in the scheme: SPHINCS makes use of extended Merkle trees (XMSS).
XMSS uses Winternitz OTS (WOTS) as OTS [11]. In order to explain XMSS, we first
have to discuss how WOTS works.

3.2.2 WOTS

WOTS works similar to the Lamport one-time signature scheme. However, in WOTS the
secret key is hashed more often by a length-preserving hash function. This latter means
that a function H : {0, 1}n → {0, 1}n will hash a bit string of length n to another bit
string of length n. In addition, WOTS makes use of the Winternitz parameter w ∈ N,
with w > 1. This Winternitz parameter determines how many times a bit string is hashed
to form the public key. Thus, for a larger value of w, it takes longer, or better said, more
calls for the hash function are required, to compute the public key. For a message of
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length m, the length l of the secret key is computed as follows:

l1 = d m

log2(w)
e, l2 = b log2(l1(w − 1))

log2(w)
c+ 1, l = l1 + l2

Each part of the secret key is a bit string of n bits and the full secret key is then
sk = (sk1, . . . , skl). So the total length of the secret key is n · l. To generate the
public key, each of the secret key parts, sk1, . . . , skl, is hashed w − 1 times. So pk1 =
H(. . . H(H(sk1)) . . .) = Hw−1(sk1). This gives the following public key:

pk = (pk1, . . . , pkl) = (Hw−1(sk1), . . . , H
w−1(skl))

For the signing part of the algorithm, the message M is divided into l1 bit strings:
M = (M1, . . . ,Ml1). Each part has length m

l1
= m
d m
log2(w)

e = log2(w). Because each fragment

of M has the length of log2(w), the value of each fragment is between 0 and w− 1. Next,
we define a checksum C =

∑l1
i=1w − 1 −Mi, with i ∈ 1, . . . , l1. The maximum value

of C is reached if Mi = 0 for all i: this means that C ≤ l1(w − 1). C is a value
and corresponds to a bit string which can be divided into l2 parts of length log2(w).
This gives us C = (C1, . . . , Cl2). C and M can be used to define a new bit string B:
B = (B1, . . . , Bl) = (M1, . . . ,Ml1 , C1, . . . , Cl2). Every B = (B1, . . . , Bl) is a bit string
of length log2(w), which corresponds to a value between 0 and w − 1. Using B we can
compute our signature as:

σ = (σ1, . . . , σl) = (HB1(sk1), . . . , H
Bl(skl))

In order to verify the signature, each part of the signature has to be hashed a certain
amount of times, so the total amount of times it is hashed adds up to w−1. The receiver
knows the following: the message M , the signature σ, the public key and the Winternitz
parameter w. For the verification of the signature, the receiver computes l1, l2 and l,
using w and the length of the message m. Using l1 and l2, the receiver can determine
M = (M1, . . . ,Ml1) and C = (C1, . . . , Cl2), which allows him to find B = (B1, . . . , Bl).
The received signature is σ = (σ1, . . . , σl) = (HB1(sk1), . . . , H

Bl(skl)), so if the receiver
would compute Hw−1−B1(σ1), . . . , H

w−1−Bl(σl), then this should equal the public key.
Note that the signature parts (σ1, . . . , σl) are hashed, this results in sk1, . . . , skl being
hashed w − 1 times, giving us the public key [12]:

pk = (pk1, . . . , pkl) = (Hw−1(sk1), . . . , H
w−1(skl))

WOTS+ is an extended version of this scheme, which works in a similar way as WOTS
only here a bitmask is added to the iteration. A bitmask is a string of bits that is
bitwise (OR, AND, XOR) added to another string of bits of the same length, to create
a new bit string of the same length. In order to add these bitmasks, WOTS+ uses a set
Q = (r1, . . . , rj) ∈ {0, 1}n×j as bitmasks. These bitmasks are used every time a secret
key part is hashed. First a secret key part is operated through an gate (OR, XOR or
AND) using a random bit string from Q = (r1, . . . , rj), and then the new bit string is
hashed. Since this occurs w − 1 times for each secret key part, the bitmasks ensure that
more randomness is added to the public key. For the receiver, it is necessary that the
bitmasks are also send with the signature, as these are essential in the verification process
[13].
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3.2.3 XMSS

As stated in subsubsection 3.2.1 on Merkle trees, SPHINCS makes use of the extended ver-
sion of Merkle trees (XMSS) instead of the standard Merkle trees. XMSS uses WOTS+
as OTS and adds an L-tree at the leaves of the tree to compress the WOTS+ public
key. In addition to the use of L-trees, the way two nodes are combined together in
XMSS is different from the process in a standard Merkle tree: the process namely in-
cludes the use of a bitmask. Before two nodes are hashed together using a hash function
H : {0, 1}2n → {0, 1}n, a bitmask is added bitwise using a XOR gate to both of these
nodes. Thus, in general it holds that Ni,j = H((N2i,j−1||N2i+1,j−1) ⊕ Qj). Where N is
the node, i, j describe the location with 0 < j ≤ h and 0 ≤ i < 2h−j and Qj is the set of
bitmasks. See Figure 4.

Figure 4: XMSS tree [9]

The leaf nodes of the XMSS tree are the different WOTS+ public keys. The size
of each WOTS+ public key is n · l bits, hence the bitmasks on the leaf node layer also
have this size. In order to reduce the size of the WOTS+ public key and the bitmasks,
L-trees are incorporated. These L-trees take the WOTS+ public key and compress it. A
WOTS+ public key consists of l parts, each of them is n bits long. These parts become
the leaves of the L-tree, which uses the same principle as an XMSS tree. However, l is
often not a power of 2, which means it is not possible to form a full binary tree. The
L-tree is therefore modified. It is called an L-tree, because it always uses the left nodes.
That means if a left node in the tree does not have a right sibling node then this node is
pushed to the next layer. The root node of the L-tree is a public key that is n bits long
instead of n · l [11]. Take for example l = 7 (see Figure 5), 7 is not a power of 2, so the
L-tree is not a full binary tree. Instead 6 out of the 7 nodes have a sibling node, which
can then be hashed together to become the node for the next layer. The leftover node
that does not have a sibling node, skips this layer and is added to the layer above. So
the next layer contains 3 nodes that were hashed and the leftover node, which is in total
4 nodes. Since 4 is a power of 2, the tree acts again like a normal binary tree.
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Figure 5: L-tree with 7 starting nodes

3.2.4 HORST

SPHINCS is defined as a stateless hash-based signature scheme. In the previous subsec-
tions the basics of the SPHINCS signature scheme are discussed, however so far none
of these basics make SPHINCS stateless. Stateful means that you have to keep track of
all the keys that have been used. Thus, if we consider a system that involves a large
number of keys (e.g. 264 keys, the aims of the NIST competition), it would be much more
convenient if the system is stateless.
To achieve statelessness in SPHINCS, HORST is used. HORST (Hash to Obtain Ran-
dom Subset Tree) is a variant of HORS (Hash to Obtain Random Subset), but then
build up into a tree, as the name already implied. HORS is not a one-time signature but
a few-times signature. In comparison to using a one-time signature more than once, a
few-time signature has a lower loss in security when it is used more than once.
The key generation using HORS works as follows. First of all, a secret key of t bit
strings with length n is generated. To compute the corresponding public key, each of
the t bit strings has to be hashed individually using a length preserving hash function,
F : {0, 1}n → {0, 1}n.
To generate a HORS signature, a message of arbitrary length, M ∈ {0, 1}∗, is hashed
using a different hash function than F , H : {0, 1}∗ → {0, 1}k·log2(t), which will hash the
message into a bit string that has length k · log2(t). This allows the hashed message,
H(M), to be divided into k parts of length log2(t), so H(M) = (h0, h1, . . . , hk−1). Be-
cause the length of each part is log2(t), the integer hi is a value between 0 and t−1. Using
the values of hi, the following signature can be created: σ = (skh0 , skh1 , . . . , skhk−1

). This
signature has length k · n. Note that the signature only uses a selection of the available
secret key parts and it is possible that a particular secret key part is used multiple times.
In order to verify the signature, all the receiver has to do is computeH(M) = (h0, h1, . . . , hk−1)
and (F (skh0), F (skh1), . . . , F (skhk−1

)) = (pkh0 , pkh1 , . . . , pkhk−1
). If these public key parts

match the correct parts of the public key, then the signature is correct.
In conclusion, HORS generates a public key and signature of size k · n bits. To avoid
having to deal with a public key and a signature of a size this large, HORST sacrifices
runtime and thereby reduces the public key size and signature [9]. HORST uses a bi-
nary tree, a message length m, a parameter k and a amount of bit strings t = 2τ with
k · τ = m. Firstly, a secret key is generated and similar to HORS this secret key consists
of t bit strings, so sk = (sk1 . . . , skt). These are random bit strings of length n. Similar
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to HORS, each of these secret key parts is hashed individually and form the leaves of the
tree. To construct the rest of the binary tree, bitmasks Q ∈ {0, 1}2n×log(t) are used. The
bitmasks are used in a similar way as in an XMSS tree.
To sign a message M, the message is divided in k parts, so M = (M0, . . . ,Mk−1). Since
the length of the message equals k · τ = m, each part of the message has a length of
τ bits. This implies that each message part is a value between 0 and t − 1 = 2τ − 1,
which in its turn corresponds to one of the leaf nodes. Recall that for HORS the sig-
nature is given by σ = (skM0 , skM1 , . . . , skMk−1

). However, HORST uses a binary tree
and because of that, k authentication paths, AuthMi

, have to be added to the signature.
Otherwise it would not be possible to verify the signature for a given public key. Thus,
for HORST the signature is given by σ = (σ0, . . . , σk−1), where σi = (skMi

, AuthMi
). In

order to reduce the signing time, a σk is added to the signature. σk contains 2x nodes
of the tree. These are the nodes on the top part of the HORST tree, so AuthMi

only
has to provide information about the path up till these nodes. σk is added because these
top nodes are almost always being used to sign and verify the signature. In short, σk
contains the top nodes (N0,τ−x, . . . , N2x−1,τ−x), hence the authentication path is defined
as AuthMi

= (A0, . . . , Aτ−1−x).
To verify the signature the receiver computes M = (M0, . . . ,Mk−1). Next, each of these
message parts is checked using the authentication path in order to verify whether the
obtained signature matches with the given public key [9].

3.2.5 Hypertree

As stated before, one of the aims of the NIST competition was to have a signature scheme
that could generate 264 signatures that can be verified with the same public key. If we
would use an XMSS tree for this purpose, then a tree of 64 layers is needed and each
node has to be computed in order to obtain the root node, public key. This would require
a huge amount of computation time, hence one big XMSS tree would not be ideal.
In order to obtain such a large tree without running into performance issues, the tree
can be split into multiple trees, a tree of trees also known as a hypertree. SPHINCS is a
hypertree of height h consisting of d layers of XMSS trees, so each XMSS tree will have
a height corresponding to h

d
. Starting at the top of the hypertree, at layer d − 1, is a

tree of height h
d
. Therefore, the top XMSS tree contains h

d
leaf nodes. Each of these leaf

nodes is connected to a tree on the layer below. That results in a layer that consists of h
d

trees. If this process is repeated until the last layer (layer 0), then you will end up with

2
(d−1)·h

d XMSS trees on this last layer. Each of these XMSS trees contains 2
h
d leaf nodes,

so in total there are 2
(d−1)·h

d · 2h
d = 2h leaf nodes at the bottom layer. However, note that

we have now described a hypertree consisting of XMSS trees only. In order to make the
hypertree stateless, each of these 2h leaf nodes on the bottom layer is connected to the
few-time signature scheme, HORST. The full hypertree is depicted in Figure 6:
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Figure 6: Structure of SPHINCS [9]

Furthermore, the hypertree is never fully computed. In the next section we will
see that only one route through the hypertree has to be computed for the signing and
verification processes. To obtain the public key (as part of the key generation process),
only the top tree has to be computed, since the hypertree is split in multiple trees and
each tree is independent of each other. However, this does require the hypertree to be
consistent, meaning that recomputing the hypertree will always give the same outcome.
In order to make the hypertree consistent, SPHINCS uses a simple addressing scheme for
pseudorandom key generation. This way the key-pairs will be pseudorandomly generated
and appointed to the correct position in the hypertree. An address is a bit string of length
A = dlog (d+ 1)e+ (d− 1)(h/d) + (h/d) = dlog (d− 1)e+ h. The first dlog (d+ 1)e bits
will indicate which layer the tree is on, during the signing process this will be a counter,
keeping track of the layers (note that this also includes the HORST trees). The next
(d − 1)(h/d) will indicate which tree on the layer is used, numbering the tree from left
to right. The last (h/d) bits indicate the position of the WOTS+ key-pair in the XMSS
tree (again numbering from left to right). The address, A, is just the indication of the
position, to actually obtain the right WOTS+ or HORST key-pair, both the address and
the SPHINCS secret key are inserted in a pseudorandom function to compute a seed. This
seed, S ∈ {0, 1}n, can then be used to compute the corresponding WOTS+ or HORST
secret key [9].

3.3 SPHINCS: key generation, signing and verification

In subsubsection 3.2.5 only a short introduction and overview of the hypertree used in
SPHINCS is given. In order to fully comprehend the use of this hyper tree in SPHINCS,
we have to look at the key generation, signing and verification processes of SPHINCS. In
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this section these processes are explained step-by-step.

3.3.1 Key generation

The key generation process starts by sampling two secret key values (SK1, SK2) from
{0, 1}n × {0, 1}n, where SK1 is used for pseudorandom key generation and SK2 is used
to compute an unpredictability factor for the signing process. Besides these values also
p uniformly random n-bit values are sampled, Q → {0, 1}p×n, that will be used as bit-
masks. For SPHINCS p is given as p =max{w − 1, 2(h + dlog2 le), 2 log t}. Note that
{w − 1, 2(h + dlog2 le), 2 log2 t} is used, because it corresponds to the different parts of
the scheme where bitmasks are used. The WOTS+ parts of the scheme use the first
w − 1 bitmasks that are sampled: {0, 1}(w−1)×n. The L-trees use the first 2(h+ dlog2 le)
bitmasks ({0, 1}(2(h+dlog2 le))×n) and the HORST instances use the first 2 log2 t bitmasks
({0, 1}(2 log2 t)×n). Hence, we may denote Q as Q = (QHORST ,QWOTS+,QL−tree).
The last part of the key generation process consists of the computation of the public
key. As mentioned before, only the top tree of the hypertree needs to be computed for
this. To do so, first the WOTS+ key pairs that correspond to the top tree are generated
by obtaining the correct seeds from the addresses and SK1. This gives us the WOTS+
secret keys and with the WOTS+ bitmasks we can compute the WOTS+ public keys.
The WOTS+ public keys are then compressed with an L-tree to generate the leaf nodes
of the top XMSS tree. Next, the top XMSS tree is built and its root node becomes PK1.
The public key is PK = (PK1,Q) and the secret key is SK = (SK1, SK2,Q). A brief
overview of the key generation process in SPHINCS is given below.

SPHINCS key generation

1. Generate SK = (SK1, SK2) ∈ {0, 1}n × {0, 1}n.

2. Choose p random bitmasks Q→ {0, 1}p×n.

3. Obtain the WOTS+ secret keys from the seeds

4. Compute the WOTS+ public keys from the WOTS+ secret keys and the WOTS+
bitmasks.

5. Compress each WOTS+ public keys with an L-tree.

6. Compute the root node of the top XMSS tree.

7. Output:

• Secret key: SK = (SK1, SK2,Q).

• Public key: PK = (PK1,Q).
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3.3.2 Signing process

Once the secret and public key are generated, the signing process can commence. Consider
a message of arbitrary length M ∈ {0, 1}∗. This message is transformed into a message
digest D. The main reason for this is to create an input of a fixed amount of bits. To
compute the message digest an unpredictability factor R = (R1, R2) ∈ {0, 1}n×{0, 1}n is
required. Recall that during the key generation process SK2 was sampled from {0, 1}n.
The unpredictability factor R is computed by putting the message M and SK2 together
in a pseudorandom function, PRF for short. Next, R1 is hashed together with the mes-
sage M to create a message digest D ∈ {0, 1}m. Using the other part of R, R2, an index
i is created. The index i and R1 are saved as the first two parts of the overall SPHINCS
signature Σ. i is the first h bits of R2, where h is the height of the full hypertree. That
means i is a number between 0 and 2h, therefore it can function as an indication for
the addresses. With index i the HORST address is given as AHORST = (d||i), where
d is the amount of tree layers in the hypertree. The address of the HORST secret key
corresponds to the bottom layer of the lowest XMSS tree layer (layer 0 in Figure 6). The
first (d − 1)(h/d) bits of i are used to indicate which tree on the bottom layer will be
used and the remaining h/d bits are used to indicate the position in the tree. Using the
HORST address and SK1 in a PRF yields the corresponding seed and via this seed the
HORST secret key skH is obtained.
For the HORST part of the signing process, we have as input D, the HORST bitmasks
QHORST and the HORST secret key skH , that we obtained in the previous step. The
output of HORST is σH and pkH , where σH is the HORST signature and pkH the HORST
public key. σH is part of the overall SPHINCS signature and pkH is used in layer 0 of the
hypertree.
The first WOTS+ signature is created using pkH as input, which acts as a message that
has to be signed (see subsubsection 3.2.2 on WOTS+). The address of the WOTS+
secret key on the bottom layer is A0 = (0||i) and is used (in combination with SK1,
to compute the corresponding seed first) to obtain the WOTS+ secret key skW,0. Using
skW,0, the WOTS+ bitmasks QWOTS+ and pkH we can compute the first WOTS+ sig-
nature σW,0. To obtain the WOTS+ public key, pkW,0, we can either hash the WOTS+
secret key w times or use the WOTS+ verification algorithm. The latter option requires
less calls for the hash function, since we already hashed the WOTS+ secret key a few
times to compute the signature σW,0. Thus, by means of σW,0, pkH and QWOTS+ we can
compute pkW,0 using the verification algorithm of WOTS+. This WOTS+ public key is
first compressed using the L-tree and then used as leaf node in the XMSS tree. From this
XMSS tree we can compute the root of the tree, the XMSS public key pk0, and obtain
the authentication path AuthA0 . σW,0 and AuthA0 are added to Σ and pk0 is used as new
message in the tree above.
The previous steps are repeated for the trees that form a path to the top node, layer 1 to
d−1 of the hypertree. On each layer 1 ≤ j < d a WOTS+ secret key signs the root node,
pkj−1, of the previous layer. The addresses to obtain the correct WOTS+ secret keys is
Aj = (j||i), where the first (d−1−j)(h/d) bits of i indicate which tree on the layer is used
and the last h/d bits of i indicate the position inside the tree. For each layer the WOTS+
signature and the authentication path are added to Σ. In the end the following overall
SPHINCS signature is obtained: Σ = (i, R1, σH , σW,0, AuthA0 , . . . , σW,d−1, AuthAd−1

). A
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brief overview of the signature process in SPHINCS is given below.

SPHINCS Signing process

1. Input: Message M and secret key SK = (SK1, SK2,Q).

2. Compute unpredictability factor R = (R1, R2) ∈ {0, 1}n×{0, 1}n from M and SK2.

3. Compute message digest D ∈ {0, 1}m from M and R1.

4. Obtain index i from R2. Add i and R1 to the overall signature Σ.

5. Obtain the HORST secret key skH using SK1 and the HORST address, AHORST =
(d||i).

6. Create the HORST signature σH and the HORST public key pkH using D, skH and
the HORST bitmasks QHORST .

7. Obtain the WOTS+ secret key of the first layer skW,0 using the address A0 = (0||i)
and SK1.

8. Compute WOTS+ signature σW,0 using pkH as message, skW,0 and the WOTS+
bitmasks QWOTS+. Add σW,0 to Σ.

9. With σW,0 compute the WOTS+ public key pkW,0 using the verification algorithm.

10. Compress pkW,0 with the L-tree and use this as leaf node in the XMSS tree.

11. Compute the XMSS tree to obtain the root node, pk0, and the authentication path
AuthA0 . Add AuthA0 to Σ.

12. Repeat steps 7 - 11 for the other XMSS layers j ∈ {1, d− 1}. For each layer j, use
pkj−1 as message and add σW,j and AuthAj

to Σ.

13. Output: signature Σ = (i, R1, σH , σW,0, AuthA0 , . . . , σW,d−1, AuthAd−1
).

3.3.3 Verification process

To verify that a SPHINCS signature actually matches the public key, the receiver follows
the following steps. The receiver knows the message M , the signature Σ and the public
key PK. The receiver starts by computing the message digest D. Again, from the signa-
ture R1 is obtained and together with the message the message digest is computed. Note
that from the public key we know the bitmasks Q. The message digest D, the HORST
signature σH and the HORST bitmasks QHORST are then used in the HORST verifica-
tion algorithm, which gives the HORST public key pkH as output. Similar to the signing
process, pkH , the first WOTS+ signature σW,0 and the WOTS+ bitmasks are used for
the WOTS+ verification, in order to compute the first WOTS+ public key, pkW,0. Now
that pkW,0 is obtained, it can be compressed with an L-tree to obtain the corresponding
leaf node. Using AuthA0 and the compressed pkW,0, we are able to compute the root node
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pk0. Again this process is repeated for each layer in remaining layers of the hypertree.
The last node that will be computed is the root node of the tree on the top layer. If this
root node value equals the public key PK, we can conclude that the signature is correct
and corresponds to the message. A overview of this verification process is given below.

SPHINCS Verification process

1. Input: Message M , public key PK and
signature Σ = (i, R1, σH , σW,0, AuthA0 , . . . , σW,d−1, AuthAd−1

).

2. Compute message digest D ∈ {0, 1}m from M and R1.

3. Compute the HORST public key pkH using D, the HORST signature σH and the
HORST bitmasks QHORST in the HORST verification algorithm.

4. Compute the first WOTS+ public key pkW,0 using pkH and the first WOTS+ sig-
nature σW,0.

5. Compress pkW,0 to obtain the XMSS leaf node.

6. Use the compressed pkW,0 and authentication path AuthA0 to obtain the XMSS
root node pk0.

7. Repeat steps 4 - 6 for layers j ∈ {1, d − 1} to obtain the root node of the tree in
the top layer of the hypertree.

8. Compare the obtained root node to the PK, if equal then the signature is correct.

4 Potential improvements in SPHINCS

Two main types of potential improvements in SPHINCS can be identified: improving
its performance and improving its security. Both of these types of improvements can be
reached by changing the parameters of SPHINCS. However, there is a balance between
performance and security. In order to decrease the amount of computation time (a
measure of performance) the parameters have to be smaller (e.g. a smaller d means less
layers and therefore less WOTS+ instances), but this will interfere with the security level
of the scheme. On the other hand, increasing the security of a scheme can cause issues
with regard to the performance. In addition, SPHINCS has some properties that an
attacker could use to his or her advantage. This section will explain these properties.
In subsection 6.3 we will look at these properties again and see how SPHINCS+ and
Gravity-SPHINCS have dealt with them.

4.1 Multi-target attack

SPHINCS is designed to be collision-resilient by introducing bitmasks. This means that
there are no bit strings A 6= B with H(A) = H(B). However, the used hash functions
leave the possibility open to find a (second-)preimage. Since SPHINCS is such a large
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signature scheme, it uses a lot of calls for a hash function. In SPHINCS the same hash
function is used whenever a call for a hash function is required. The potential danger in
this is that an attacker can use this as an advantage. With regard to preimage resistance,
an attacker will succeed when it finds an x′ such that H(x) = H(x′). Since SPHINCS
uses the same hash function in the entire hypertree, there are a lot of possibilities for the
attacker to actually find a preimage. One preimage is already sufficient for the attacker
to break the property. Therefore, SPHINCS should increase its security, for instance by
using a different hash function each time one is required [2].

4.2 Unverifiable index

Recall that in SPHINCS the index i is generated by taking the first h bits of R2. This
index is used to obtain the HORST secret key from an address. i is fully dependent on
R2. Therefore i is added to the signature, because a receiver is not able to recalculate
R2, since he or she does not have the secret key SK. Therefore, even though index i is
pseudorandomly selected, the receiver of the message is not able to verify this. Seeing
that HORST is a few time signature scheme, there is an opportunity for the attacker to
uncover necessary secret key parts. If an attacker is able to find an index that creates
an address of the HORST secret key of which the necessary secret key parts are already
uncovered, then it is possible for the attacker to forge a signature using this index. Since
the receiver cannot verify the index, the attacker can use the same index each time to
get the most favourable HORST secret key [2].

4.3 Colliding indices in HORST

There is a property in HORST that can be troublesome in SPHINCS when certain pa-
rameters are chosen too small. In HORST the message digest is split up in k indices.
Each of these k indices selects a secret key part from the generated HORST secret key.
There is however nothing that prevents the k indices from selecting the same secret key
part (also known as the collision of indices). In the worst case each of the k indices selects
the same secret key part. This means that only one secret value has to be known in order
to sign a message. The likelihood that this happens is relatively small for a large enough
k and when enough different secret key parts are available (a large value for t). However,
an attacker can use this property as an advantage. Choosing larger parameters is an
option to lower the advantage for an attacker, but this will also increase the computation
time. The better option would be to prevent the k indices from selecting the same secret
key parts [2].

5 SPHINCS+ & Gravity-SPHINCS

SPHINCS+ and Gravity-SPHINCS are both adaptations of SPHINCS. These adaptations
meet the standards NIST asked for, as well as make the scheme more secure and increase
its performance. SPHINCS+ and Gravity-SPHINCS can be defined in terms of changes
that have been made with respect to SPHINCS and also include some additions. In
Table 1 an overview is given of these changes and additions. This section discusses each
of these changes and additions of SPHINCS+ and Gravity-SPHINCS.
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SPHINCS+ Gravity-SPHINCS
Changes Tree-less WOTS+ public key compression Mask-less hashing

FORS PORST
Message digest

Additions Tweakable hash function Secret key caching
Octopus authentication
Batch signing

Table 1: Changes and additions in SPHINCS+ and Gravity-SPHINCS with regard to
their predecessor SPHINCS

5.1 SPHINCS+

First, we will discuss the changes and additions made to SPHINCS by SPHINCS+. The
overall structure of the scheme remains similar to that of SPHINCS. However, as stated
before, SPHINCS should be more optimized and still contains certain vulnerabilities.
The main additions and changes in SPHINCS+ are: tweakable hash functions, tree-less
WOTS+ public key compression, FORS and changes in the message digest. Each of these
changes and additions will be explained in this section, including the rationale for the
choices that were made.

5.1.1 Tweakable hash functions

A major addition in SPHINCS+ is the introduction of tweakable hash functions. That
means for each call for an hash function in SPHINCS+ a different key and a different
bitmask is used. This sounds like a lot of keys and bitmasks, however, these are pseudo-
randomly generated from an address and a public seed. Note that the hash function itself
does not change, instead each time a different public seed and an address are added to
the input. The result of this procedure is that each call is independent of each other. The
reason for making each hash function call independent of each other is to add protection
against multi-target attacks. As explained in subsection 4.1, an attacker wants to invert
the hash function or find a second preimage for a given target value. Ideally, this would
require brute force. However, for SPHINCS there are numerous calls for the same hash
function, giving the attacker many targets. Note that only one second preimage has to
be found for an attacker to succeed. So making each hash function call different from the
other hash function calls will mitigate this type of attack.

5.1.2 Tree-less WOTS+ public key compression

With the introduction of tweakable hash function in SPHINCS+, the bitmasks are pseudo-
randomly generated and not stored in the public key (which was the case in SPHINCS).
This way, it is possible to replace the L-tree by a single call for a hash function. In
SPHINCS, the main reason for using L-trees is to compress the WOTS+ public keys
and thereby reduce the amount of bitmasks that are needed. With L-trees the WOTS+
public keys went from n × l bits long to n bits long. The advantage of this is that the
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length of the bitmasks is also smaller. Note that without the use of L-trees bitmasks of
2n × l are needed for the first layer of the XMSS tree. Using L-trees this is reduced to
2n. However, the L-trees also require bitmasks. This is fortunately only log(l) bitmasks
instead of l. In conclusion, in total less bits for bitmasks are required by introducing
L-trees. In SPHINCS these bitmasks were stored in the public key. So the more bits used
for bitmasks, the larger the size of the public key. The disadvantage of adding L-trees is
that the computation time becomes larger. Thus, in SPHINCS a balance exists between
the public key size and extra computation time.
In SPHINCS+ the bitmasks are not stored in the public key anymore and are generated
separately. This make the whole purpose of the L-trees redundant, only resulting in
additional computation time. So instead of L-trees SPHINCS+ uses a singular call to a
tweakable hash function in order to reduce the size of the WOTS+ public keys.

5.1.3 FORS

In SPHINCS+, HORST is changed into FORS (Forest Of Random Subsets). As stated
before in subsection 4.3, in HORST there is a likelihood that the k indices, created by
the message digest, collide. FORS uses, instead of just one tree, a collection of trees that
together form a forest. It works as follows: there are k trees of height a. The height is a
so each tree has t = 2a leaf nodes. The secret key used for FORS consists of k · t random
n-bit strings, in other words k sets of t n-bit strings. Each of these n-bit strings can be
appointed to one of the leaf nodes. Similar to HORST in SPHINCS, FORS signs the
message digest and the FORS public key is used further on in the hypertree. The message
digest in SPHINCS+ is also changed with respect to SPHINCS, as will be discussed in
subsubsection 5.1.4. For now lets call the message digest md. For FORS md is divided
in k strings, mi with i ∈ [0, k − 1]. Each string corresponds to one tree in the forest. To
decide which secret key element is to be used for each tree, each mi corresponds with
an integer ranging from 0 to t − 1. To create the FORS signature, each of the strings
is signed with the corresponding secret key element. This means each signature of the
selected secret key elements will contain an authentication path of length a.
Once the FORS signature is obtained, the FORS public key has to be computed, in order
to use it as input in the first layer of the hypertree (layer 0). This public key is computed
by the verification algorithm of the FORS signature. In order to do this we need to
compute the root nodes of the k trees, using the authentication paths and signatures,
and hash each root node together to produce the FORS public key.
The main difference between HORST and FORS is that instead of one tree, multiple trees
are used in FORS. This ensures that a different secret key part is used each time. So the
problem discussed in subsection 4.3 about the same secret key parts that are selected,
is solved. However, a useful property of HORST is that each of the secret key parts
belongs to the same tree to generate the HORST public key. This means that a lot of
authentication paths overlap. Hence, the top nodes of the tree are used more often. In
HORST these top nodes are saved in order to reduce the length of the authentication
paths, thereby reducing its size and computation time. Regarding performance, the
same parameters k and t will yield a lower computation time in HORST than in FORS.
Fortunately for FORS, because the tree is split into multiple trees, the sizes of the trees
do not have to be as large as the size of a single HORST tree. Hence, the values for k
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and t can be much smaller resulting in smaller signature sizes [2].

5.1.4 Message digest

In SPHINCS+ the way the message digest is computed is different from SPHINCS. Recall
that in SPHINCS R is computed by putting the message M and SK2 into a pseudo
random function. In SPHINCS+ an additional 256 bit value, OptRand, is added to the
pseudo random function, so R = PRF (SK,OptRand,M). The purpose of computing R
this way is to add extra bits to R and avoid the signing to be deterministic. The message
digest and the index are computed together by hashing R, the public key and the message.
In SPHINCS the index i and R1 are added to the signature, because this was required for
the verification of the signature. However, in SPHINCS+ the index is computed together
with the message digest. This means that the index no longer needs to be added to the
overall signature, because it can be recomputed anyway using R, the public key and the
message, all of which are already given in the overall signature. The main reason for
including the index in the message digest computation is to prevent an attacker from
choosing an index. It makes the index verifiable. As explained in subsection 4.2, an
unverifiable index can be used as an advantage for an attacker and it would be better if
it was verifiable.

5.2 Gravity-SPHINCS

Gravity-SPHINCS is also based on SPHINCS and includes different changes and additions
in comparison to SPHINCS+. Although a lot of these changes look similar to those of
SPHINCS+, they were approached in a different way. The hypertree of Gravity-SPHINCS
has more or less the same structure as SPHINCS. However, bitmasks are not used and
therefore the hypertree consists of Merkle trees with WOTS public keys as leaf nodes.
Similar to SPHINCS, these WOTS instances are compressed by L-trees. The bottom
of the hypertree consists of PORST public key compression trees. As stated before,
HORST has some collision problems (subsection 4.3) and in Gravity-SPHINCS HORST
is substituted by PORST, which will be explained in more detail later in this section.
Apart from these changes to the overall structure of the hypertree, also other changes
and additions, for instance secret key caching and batch signing, were made in order to
reduce the key size and speed up the signing process. In summary, Gravity-SPHINCS
implemented the following changes and additions: secret key caching, mask-less hashing,
octopus authentication, PORST and batch signing.

5.2.1 Secret key caching

One of the additions in Gravity-SPHINCS is secret key caching. This means that the
nodes of the first layers of the top Merkle tree are saved and put into a cache. The
main reason for this is because these nodes are used in almost every single signature and
saving them in a cache will remove the need to compute these nodes again. Consider for
example caching the top c layers of the first Merkle tree. Now that these nodes are saved,
they do not require anymore calls for a hash function. This will safe time in the signing
process. Not only does this speed up the signing time, but it is also possible to decrease
the signature size. In Gravity-SPHINCS between each Merkle tree is a WOTS instance.
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If the top Merkle tree would be twice as large as the rest of the Merkle trees in the
scheme, then for signature scheme of the same size it is possible to remove a set of Merkle
trees from the bottom layer and thereby also remove some WOTS instances. If there are
less WOTS instances per signature, then the size of the signature is smaller and requires
less computation time. A disadvantage of secret key caching is that the top tree is larger
and therefore this tree takes longer to compute during the key generation process. In
conclusion, the advantages of secret key caching outweigh the latter disadvantage as the
key generation process only happens once.

5.2.2 Mask-less hashing

In order to simplify the scheme and to reduce the key size, no bitmasks are used in
Gravity-SPHINCS. In short, this means that instead of XMSS and WOTS+ in SPHINCS,
normal Merkle trees and WOTS are used in Gravity-SPHINCS. Recall that the reason
bitmasks are used in SPHINCS is that it will reduce the security risk to second preimage
resistance instead of collision resistance[2]. Classical attacks against collision resistance
are of O(2

n
2 ), while attacks against second preimage resistance are of O(2n) [14]. How-

ever, in a post-quantum world attacks against collision resistance and second preimage
resistance are both of O(2

n
2 ). This makes it arguable to leave out the bitmasks, because it

makes the scheme more complicated and in a post-quantum world this advantage would
be negligible. However, it is also arguable that bitmasks should be implemented, because
we are not yet in a post-quantum world and the difference in security is quite significant,
when you compare O(2

n
2 ) to O(2n).

Besides the simplification of the scheme, the public keys are smaller. Originally in
SPHINCS, the bitmasks were stored in the public key. Now that the scheme is sim-
plified by leaving the bitmasks out, the size of the public key is smaller.

5.2.3 Octopus authentication

Another addition in Gravity-SPHINCS is octopus authentication. Octopus authentica-
tion is implemented to remove redundant authentication nodes from authentication paths
in binary trees. A huge part of the signature size is the result of the authentication paths
in a HORST tree. If a message digest is divided, into k pieces, then the signature also
contains k authentication paths. Since the tree is binary and k authentication paths are
used, some nodes are stored multiple times in these authentication paths. Octopus au-
thentication basically merges as many of these paths as possible and if one of the nodes
is already stored in one of the previous paths, then this node is not stored an additional
time in the signature. In SPHINCS this was already partly done by adding the top nodes
to the signature, making the authentication paths shorter. Octopus authentication is
basically an improvement to this principle. The effectiveness of octopus authentication
increases when k and the tree are larger. For smaller trees just saving the top x layers
will result in the same efficiency.

5.2.4 PORST

The issues mentioned in subsection 4.3, Gravity-SPHINCS solved by introducing PORS,
which is the abbreviation of PRNG (pseudo random number generator) to obtain a ran-
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dom subset. In Gravity-SPHINCS PORS becomes PORST, similar to HORS becoming
HORST in SPHINCS, because it is used in a tree. PRNG is a pseudorandom number
generator, taking as input, similar to HORS, the message digest. The problem PORST
solves is that in HORST the same secret key parts could be selected. In PORST, selecting
the secret key parts is done in such a way that the message digest will continue creating
a subset until each of the k indices in the subset is different from each other. This will
slightly increase the computation time, but as compensation PORST solved the problem
of selecting the same key parts.

5.2.5 Batch signing

Batch signing is an implementation that takes multiple messages together and signs them
all at once. With certain batching methods it is possible to reduce the signing time and
even reduce the signature size. However, it is not always the case that multiple message
will be send at once. The implementation of this is rather specific and will change
the setup of the signature scheme. For these reasons, this implementation will not be
explained more thoroughly. For a more in depth description see [15].

6 SPHINCS+ vs. Gravity-SPHINCS

In this section SPHINCS+ will be compared to Gravity-SPHINCS. Both schemes use
different approaches to increase the security and performance of SPHINCS. To meet the
requirements of the NIST competition, i.e. a signature scheme that is able to create 264

different signatures for one public key, while still keeping a reasonable computation time
for the signing process, SPHINCS needed some optimization. Regarding its security, it
was important that certain properties, which an attacker could use as an advantage, were
changed.
The comparison is divided into three sections. The first section is a comparison between
both schemes’ improvement of HORST. For this FORS and PORS in combination with
octopus authentication are compared. The second section compares the hypertree of
Gravity-SPHINCS to the hypertree of SPHINCS+. It focuses mainly on the structural
changes in the hypertree, for instance Gravity-SPHINCS leaving out the bitmasks. The
last part of this section focuses on whether both schemes have dealt with the potential
improvements identified in section 4.

6.1 Improvement of HORST

Both schemes had a way to improve HORST, because of the property explained in sub-
section 4.3. In order to remove this property, Gravity-SPHINCS implemented PORST,
where the message digest will continue creating a subset until each of the k indices in
the subset is different from each other. This approach is simple and does not add too
much extra computation time in comparison to HORST. Considering SPHINCS+ on the
other hand, HORST was changed into FORS, where instead of one tree multiple trees
are used. FORS prevents indices from colliding by this change in the structure, which
causes each selected secret key part to be independent of the other selected secret key
parts. Unfortunately, the usage of multiple trees also means that each of these trees has
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to be computed in order to generate the root nodes. To be more precise: k trees of log2(t)
have to be computed instead of just one.
At first glance FORS seems to differ a lot from PORST, but it is actually quite similar:
the only thing is that the secret key values for FORS are spread over multiple trees instead
of belonging to one tree. However, having the secret key values in the same tree, which
is the case in PORST, gives the advantage that all authentication paths are from the
same tree. Hence, octopus authentication could be incorporated into Gravity-SPHINCS.
Octopus authentication allows to remove the redundant nodes from the authentication
paths. By removing these redundant nodes the signature size will be reduced. This ad-
dition cannot be incorporated in FORS, since the authentication paths do not collide.
However, something that can be done for FORS and not for PORS, without weakening
the scheme too much, is choosing different values for the parameter t and k. Choosing a
lower value for t makes the trees smaller and thereby also the length of the authentication
paths, which will reduce the signature size. If k is lowered, then there are less trees, so
less computation time and less authentication paths. Note that FORS is only able to sign
a k2a bit message digest. So lowering k implies that the size of the message digest has to
be reduced as well. However, this is no issue, because the message digest is created by
hashing the message together with a random factor, which results in a fixed size of the
message digest.
To further compare both schemes on their HORST improvements, we consider the esti-
mated costs provided by both papers [2][3]. The estimated cost is based on the amount
of calls for hash functions and operations. PORST and FORS are both used during the
signing process and the verification process. Table 2 shows the estimated costs for both
signature schemes.

SPHINCS+ Gravity-SPHINCS
Signing k · t calls to PRF and F 2 calls to H and a few calls to G

k(t− 1) calls to H t calls to G
one call to Tk t− 1 calls to H

Verification k · t calls to PRF and F 1 call to H and a few calls to G
k(log2 t− 1) calls to H k calls to F
one call to Tk ≤ k(log2 t− blog2 kc) calls to H

Table 2: Estimated costs for FORS and PORST

In FORS, H and F are hash functions, PRF is a pseudorandom function to generate
the bitmasks and Tk is the hash to combine all the roots of the trees. In PORST, H and
F are hashfunctions as well and G is a pseudorandom function to make sure each of the
k indices is different. Most of the costs are approximately the same, but it is important
to notice that for the verification process in PORST octopus authentication can reduce
the amount of calls needed. If we take the same values for t and k in FORS and PORST,
then we can conclude that FORS requires a factor k more calls for operations during
the signing process. However, in FORS the parameters t and k can be chosen smaller,
resulting in less calls for operations than in PORST.
For the same security level of 128 bits (security level according to the NIST requirements
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[4]), PORST and FORS provided the following parameters. In order to reach 264 sig-
natures, SPHINCS+ uses t = 215 and k = 10 and Gravity-SPHINCS uses t = 216 and
k = 28. For these chosen parameters Gravity-SPHINCS costs less with regard to both
signing and verification. However, SPHINCS+ provides an option with a different set of
parameters where t = 210 and k = 30. From comparing these parameters to the ones
from PORST, we may conclude that FORS requires less calls for the hash function, be-
cause 30(210 − 1) < 216 − 1. As mentioned before, it is easier in FORS to change the
parameters in such a way that the level of security stays the same, while reducing the
estimated cost. For PORST, in order to increase the security, both t and k have to be
increased. Increasing t will result in a larger amount of operations. The security level of
SPHINCS+ with t = 210 and k = 30 is 256 bits and gives a signature size of 49216 bytes.
Of course this option takes a while to compute and the overall outcome of the signature
scheme does not only depend on the parameters t and k [2][3].
In conclusion, comparing these estimated costs really depends on what values are chosen
for parameters t and k. For the same set of parameters PORST will be the better option
in terms of estimated costs. However, if we consider the level of security, then FORS
would be the better option for the same set of t and k. A comparison based on different
sets of parameters for FORS and PORST concludes that FORS performs better in terms
of estimated costs, whilst both provide the same level of security.

6.2 Hypertree comparison

When comparing the hypertree the main differences between SPHINCS+ and Gravity-SPHINCS
schemes is that in Gravity-SPHINCS the bitmasks are no longer used. In SPHINCS+

they are still used and they even have their own address to be called from. Bitmasks
are added to a signature scheme to make sure that the hash functions are collission re-
sistant. The reasons why Gravity-SPHINCS does no longer use the bitmasks is because
it makes the scheme less complex and in a post-quantum world attacks against collission
resistance and second preimage resistance are both of O(2

n
2 ). This means that in the

current situation, in the pre-quantum world, Gravity-SPHINCS is susceptible to attacks
of order O(2

n
2 ), while SPHINCS+ is susceptible to attacks of O(2n), which is a massive

difference. The amount of operations needed for Gravity-SPHINCS on the other hand is
lower than that of SPHINCS+, because the bitmasks are not used in Gravity-SPHINCS.
The additional operations needed for SPHINCS+ to add the bitmasks is: 2

h
d l for the key

generation, kt + d(2
h
d )l + 1 for the signing process and kt for the verification process,

where h is the height of the hypertree, d the amount of subtrees, l the number of n-
bit string element in WOTS+, k amount of FORS trees and t the number of leaves of
a FORS tree. The total estimated costs for the bitmasks would thus be an additional
2kt+ (d+ 1)(2

h
d l) + 1 operations, since each time a hashfunction is used also a bitmask is

applied. Even though this would require additional computation time, the security level
bitmasks provide in SPHINCS+ is significantly higher.
In SPHINCS, bitmasks were stored in the public key. For SPHINCS+ this no longer
the case, because they are pseudorandomly generated. That means the public keys are
smaller. The reason L-trees were implemented in SPHINCS was to compress the WOTS+
public keys, so that the root nodes of the XMSS tree would require 2(h/d)×log l bitmasks
of length 2n bits instead of 2(h/d) bitmasks of length 2n× l bits. In conclusion, compres-
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sion successfully decreases the total amount of bits used for bitmasks. The only problem
is that the compression using L-trees results in additional computation time. As the bit-
masks for SPHINCS+ are generated anyway, the trade-off is made to remove the L-trees
and use a tweakable hash function instead. In Gravity-SPHINCS however, the L-trees
are still included, whereas no bitmasks are present in the scheme. There is no additional
advantage in using L-trees to compress the size of the WOTS public keys in comparison
to using a standard hash function. In conclusion, the L-trees in Gravity-SPHINCS do no
have any effect and only result in extra computation time.
One of the last things to compare is the implementation of secret key caching. Gravity-SPHINCS
implemented this addition so the top of the hypertree would be cached. This increases
the key generation time, but in exchange it will reduce the signing time and the signature
size. In section 8.2 of the SPHINCS+ paper about discarded changes[2] the addition of
secret key caching is discussed. The provided reason for discarding the idea of secret key
caching is that the computation time of the key generation will increase a lot and the
top tree has to be handled in a different way. However, the key generation has to be
performed once, whereas a reduction in signing time and signature size takes place every
time a signature is made. Therefore, implementing secret key caching in SPHINCS+ is
advantageous in the long run, under the condition that potential problems in handling
the top tree can be solved [2][3]. However, before making any conclusive statements
about this, both schemes have to be tested on their runtime with and without the secret
key caching. This could be part of a more practical comparison between SPHINCS+ and
Gravity-SPHINCS, which goes beyond the aims of this thesis.

6.3 Potential improvements in SPHINCS

In section 4 potential improvements SPHINCS were discussed. These improvements con-
cern some properties of SPHINCS that could be exploited and were identified as follows:
multi-target attack, an unverifiable index and the colliding indices in HORST.
The improvements for HORST were FORS and PORST. These two have already been
compared in subsection 6.1 and both systems provided a way to solve the potential prob-
lem of HORST.
Multi-target attacks have to do with the fact that in SPHINCS every time the same
hash function was used when generating a signature. Because the hash function was
used this much, it left an attacker with the possibility to use it as an advantage when
trying to break one of the hash function properties. SPHINCS+ came with the im-
provement to tweak the used hash function each time it is used. This means each hash
function and bitmask is called from a public seed and is called upon with a different
key. Gravity-SPHINCS on the other hand uses the same hash function each time. An
improvement for Gravity-SPHINCS is to do the same as SPHINCS+ and change the hash
function into a tweakable hash function in order to mitigate the multi-target attacks op-
portunities.
The last potential improvement concerns the unverifiable index. In SPHINCS+ the index
and the message digest are computed by hashing a randomization factor, the public key
and the message together. This way it is possible to verify the index and the index also
does not have to be included in the overall signature anymore. In Gravity-SPHINCS the
index is computed during the PORST process. It starts by hashing the message digest to-
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gether with salt ( some randomly generated bits) to create the public salt. The salt in this
case works as unpredictability factor. To obtain the actual index in Gravity-SPHINCS,
the public salt is hashed with the message digest to compute a factor g. This factor
will be used in a pseudorandom number generator together with an address A(0, 0) to
compute a factor b, of which the last h (the height of the tree) bits from the index λ.
Important to note is that this way of computing the index allows the receiver to verify
the index.

7 Conclusion

In this thesis two stateless hash-based signature schemes SPHINCS+ and Gravity-SPHINCS,
submitted for NIST’s post-quantum cryptography competition, are compared and evalu-
ated in a theoretical way. As both schemes are based on their predecessor, SPHINCS, first
a detailed explanation of SPHINCS and its components was given. We described the key
generation, signing and verification processes of SPHINCS to get a better understanding
of the importance and function of all its elements. We identified three different potential
improvements for SPHINCS: multi-target attack protection, the use of a verifiable index
and prevention of colliding indices in HORST. To compare and evaluate both systems,
these security aspects and the overall performance (e.g. computation time, amount of
signatures that can be generated for a single public key and the size of the signature) are
taken into account.
Aiming to improve SPHINCS, SPHINCS+ changed HORST into FORS, changed the
L-trees into a single hash function call (also known as tree-less WOTS+ public key com-
pression) uses a different approach in computing the message digest and added tweakable
hash functions. Gravity-SPHINCS on the other hand, changed HORST into PORST and
removed the bitmasks from the scheme. In addition, Gravity-SPHINCS implemented
octopus authentication, secret key caching and batch signing.

The focus of the structural changes and additions in SPHINCS+ lies mostly on improv-
ing its security, whereas Gravity-SPHINCS’s additions and changes seem more related to
improving its computation time and overall performance.
Considering security, SPHINCS+ dealt with all the potential security improvements iden-
tified for SPHINCS. Tweakable hash-functions were added to mitigate multi-target at-
tacks, since they ensure that each call for a hash function will independent of each other.
To prevent an attacker from choosing the index, the index is computed together with
the message digest from the message, making the index verifiable. As solution to the
colliding indices in HORST, SPHINCS+ implemented FORS, which is basically HORST,
but now the tree is split up in multiple trees, thereby removing the property of colliding
indices, since they are now chosen from different trees.
In Gravity-SPHINCS, HORST was changed into PORST to remove the possibility of
indices colliding, because in PORST the message digest will continue creating a subset
until all the indices in the subset are different from each other. During the PORST
process also a verifiable index for the hypertree is generated, making it not possible for
an attacker to choose an index. Unfortunately, Gravity-SPHINCS did not include any
changes or additions that could be useful in mitigating the multi-target attack. Further-
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more, to improve its performance bitmasks are left out of Gravity-SPHINCS’s scheme,
as it makes the scheme more simple. In a post-quantum world the effect of bitmasks on
the scheme’s security is negligible, as attacks against (second) preimage resistance and
collision resistance are both of O(2

n
2 ). However, in the current, pre-quantum world this

results in a drastic loss in security, because bitmasks add collision resistance and (second)
preimage resistance is of O(2n). So, regarding security SPHINCS+ would be the better
option in the current world, as the use of bitmasks allows a higher level of security.
Considering performance, SPHINCS+ replaced the L-trees by a single call for a tweak-
able hash function, resulting in a more efficient compression of the WOTS+ public keys.
In addition, the extra level of security introduced by FORS makes it possible to lower
certain parameters (e.g. the amount of trees and the size of the trees), thereby increas-
ing performance. Gravity-SPHINCS’s PORST could outperform FORS theoretically in
computation time, but it is highly dependent of the choice of parameters which one
in the end will perform better, as this choice also heavily affects the level of security.
To make PORST perform even better, redundant nodes in authentication paths were
removed using octopus authentication. Furthermore, Gravity-SPHINCS removed the
bitmasks to increase its performance. However, this made the use of L-trees redundant,
yet they are still present in Gravity-SPHINCS and contribute to the total computation
time. Nevertheless, Gravity-SPHINCS’s method for secret key caching ensures that the
signing time and the signature size is reduced every time a signature is produced at the
expense of a one-time increase in key generation computation time. Lastly, batch sign-
ing in Gravity-SPHINCS is supposed to further reduce the signing time and signature
size, yet the implementation is rather specific. To compare the exact effect of batch sign-
ing on the schemes, it should be implemented in both Gravity-SPHINCS and SPHINCS+.

In conclusion, considering security SPHINCS+ seems the better option, yet its per-
formance could still be improved. Based on the comparison some additions and changes
that were identified could help with the optimization of both schemes. Gravity-SPHINCS
brought the addition of secret key caching to the table. Theoretically, implementing se-
cret key caching in SPHINCS+ as well is beneficial for its computation time, under
the condition that potential practical problems in handling the top tree can be solved.
Gravity-SPHINCS could easily be improved by removing the L-trees, for instance by re-
placing them with a simple hash function, resulting in less computation time. However,
an even better approach would be to replace the L-trees and all the other hash functions
used by a tweakable hash function, giving protection against multi-target attacks. Even
with these changes Gravity-SPHINCS would still underperform in security in comparison
to SPHINCS+, because it does not use any bitmasks.
However, to make definite statements on the performance and security level of SPHINCS+

and Gravity-SPHINCS a theoretical comparison is not sufficient. Component-wise, we
have shown that it is possible to look at estimated costs: in this thesis we discussed the
influence of PORST versus FORS, as well as including versus excluding bitmasks, on the
approximate amount of operations. However, a full comparison should be based on the
system as a whole, not by looking at the estimated costs of every single component. Nev-
ertheless, from the component-wise comparison we could conclude that there is a tight
balance between the computational costs and the security profits. Therefore, a practical
comparison, in which SPHINCS+ and Gravity-SPHINCS are compared for different sets
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of parameters, could provide quantitative results on these costs and profits and hence
provide more insight in the most optimized form of the system or help to identify further
possible bottlenecks.
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