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Abstract

In this paper, we investigate the capabilities of the Diffusion Variational Auto-Encoder
(∆VAE ) with a SO(3) latent space to learn meaningful latent representations of data with a
SO(3) latent structure. To investigate the behaviour when training a ∆VAE on such a data
set, we make use of the concept of the degree of a mapping. We calculate the degree explicitly
for certain functions, and present a method to compute it for a more general class. Lastly,
we run several experiments on a synthetic data set, and adapt the ∆VAE to be able to learn
better representations of the latent variables.
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1 Introduction

Unsupervised learning is an important aspect of machine learning. A majority of the data available
is unlabeled and not suitable for supervised learning techniques, as labelling data usually requires
human interaction, making it a time-consuming process. One especially interesting part of unsu-
pervised learning is the extraction of latent variables. Latent variables are variables inferred from
the observable data. They are of interest because they are intimately tied to the data, and they
might reveal a structure which was not immediately obvious by looking at the data alone. Next
to that, the fact that latent variables are often low-dimensional, compared to the dimensionality
of the data, also helps in computations.

There are many techniques which try to extract meaningful latent variables, think for example
of principal component analysis. One relatively new technique uses the Variational Auto-Encoder
(VAE) [12] [17].

Variational auto-encoders consist of a latent space Z, a probability measure PZ on Z, a family
of encoder conditional distributions qφ(z|x) over Z, and a family of decoder distributions Pθ(x|z)
over X. We then aim to find good parameters for these encoder/decoder distributions, usually
by using neural networks and gradient descent, to minimize the negated evidence lower bound
(ELBO):

−L(x) = − E
z∼qφ

[log(Pθ(x))] +KL(qφ||PZ).

The original VAE has been adapted by several authors to increase its capability of learn-
ing a good latent representation [9], [2], [11]. However, a drawback is that standard variational
auto-encoders have a Euclidean latent space. They are thus incapable of capturing certain la-
tent structures data might have. More concretely, the latent variables might have a non-trivial
topology, which means that there is no homeomorphism between it and Euclidean space. As an
example of a data set with a non-Euclidean latent variable consider images of an object rotated
around a fixed axis. The latent variable is the angle of rotation, which has a circular structure. So
its latent space is homeomorphic to S1, which is not homeomorphic to any Rd. This phenomenon
has been called manifold-mismatch [3].

Several solutions to this problem have been proposed. In [4] Falorsi et al. construct VAEs
which have Lie groups as latent space. In particular, they show how the reparametrization trick
can be adapted to SO(3). In [3] Davidson et al. construct VAEs which have a hyperspherical la-
tent space. In [16] Perez et al. propose the Diffusion VAE, or ∆VAE , which can have an arbitrary
Riemannian manifold as latent space. However, as highlighted by an example in the paper, for
more complex synthetic data sets generated with a particular latent structure, the ∆VAE is not
capable of fully capturing this structure.

This report investigates the ∆VAE , with the SO(3) as latent space. In particular, for synthetic
data sets with a latent structure of the SO(3) the ∆VAE sometimes has trouble detecting this
structure. For more complex, real life data sets it is unable to detect structure at all. By looking
into why things go wrong in the synthetic data setting, we hope to get a better understanding of
the workings of the ∆VAE . In order to investigate the behaviour of the network, the concept of
the degree of a mapping will be used. This will first be introduced, after which we attempt to
compute the degree of the decoder part of the VAE. Lastly we will train the ∆VAE on a data set
consisting of SO(3) matrices, and a more ”real-life” data set in order to see if we can increase its
capabilities of capturing the topological properties of the data.
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2 Preliminaries

Before discussing VAEs and the ∆VAE in more detail, we will first summarize some important
notions needed for later sections of the report. In particular, the degree of a mapping and the
rotation group SO(3) are discussed in detail.

2.1 Mapping degree

We start by discussing the notion of the degree for functions between smooth manifolds. This will
be an important tool we use to study the ∆VAE later on. We will follow the explanations given
by Milnor in [15]. However, we choose to give a more concise summary of the earlier part of these
notes which have to do with introducing smooth manifolds and smooth functions between them.
Where necessary only the relevant definition will be given. For another introduction to smooth
manifolds, see [13].

2.1.1 Smooth mappings and smooth manifolds

For reference we add the relevant definitions having to do with smooth manifolds and mappings.

We call a mapping from an open set U ⊂ Rn to an open set V ⊂ Rm smooth if all of its partial
derivatives exist and are continuous (a C∞ function). We call a function f between U and V a
homeomorphism if it is continuous and its inverse exists and is continuous as well. If f and f−1

are moreover smooth, we call f a diffeomorphism.

Definition 1 ([15], page 1). A map f : U ⊂ Rn → V ⊂ Rm is called smooth if for each x ∈ U
there exist an open set X ⊂ Rn, containing x, and a function F : X → Rm such that f coincides
with F on U ∩X and F is smooth.

Definition 2 ([15], page 1). A set M ⊂ Rn is called a submanifold of Rn, of dimension d, if each
x ∈M has a neighborhood W ∩M that is diffeomorphic to an open subset U of Rd.

Definition 3 ([15], page 4). Let M be a submanifold of dimension d and x ∈M . Let g : U →M
parametrize some neighborhood g(U) of x, with u ∈ U such that g(u) = x. The tangent space of
M at x, denoted TMx, is defined by TMx = dgu(Rd). Here dgu denotes the derivative of g in the
point u.

Notice that the tangent space also has dimension d. Now imagine we have two submanifolds,
M ⊂ Rm and N ⊂ Rn, and a smooth map f : M → N . Let x ∈M and y ∈ N such that f(x) = y.
Then the derivative dfx : TMx → TNy is defined as follows.

Definition 4 ([15], page 6). Because f is smooth there exists a open set W containing x and a
function F : W → Rn that coincides with f on the neighborhood W ∩M around x. The derivative
dfx(h) is defined to equal dFx(h) for all h ∈ TMx.

Let C be the set of all x ∈ M such that dfx has rank less than dim (N). Then C is called
the set of critical points, the complement M −C the set of regular points, f(C) the set of critical
values and the complement N − f(C) the set of regular values of f .

Definition 5 ([15], page 20). Two mappings f, g : X → Y are called smoothly homotopic (denoted
f ∼ g) if there exists a smooth map F : X × [0, 1] → Y with F (x, 0) = f(x) and F (x, 1) = g(x)
for all x ∈ X. F is called a smooth homotopy.

Notice that the relation of smooth homotopy is an equivalence relation on functions.
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2.1.2 Degree of a smooth mapping

Now that the basic concepts are defined, we turn to the degree of a mapping. In order to define
it, we first define what an orientation of a manifold is. To this end, we first look at orientations
on vector spaces.

Definition 6 ([15], page 26). An orientation for a finite dimensional real vector space is an
equivalence class of ordered bases. A ordered basis (b1, · · · , bn) determines the same orientation as
the basis (c1, · · · , cn) if ci =

∑
ai,jbj where A = ai,j has det(A) > 0. It determines the opposite

orientation if det(A) < 0.

The vector space Rn has a standard orientation corresponding to the standard basis given to
this vector space: (e1, · · · , en). Notice that a vector space has exactly two equivalence classes for
orientation.

An oriented submanifold of Rn consists of a submanifoldM together with a choice of orientation
for each tangent space TMx. These need to satisfy the following: for each x ∈ M there should
exist a neighborhood U ⊂ M and a diffeomorphism h mapping U in a open subset of Rd which
preserves orientation, meaning that for each u ∈ U the isomorphism dhu carries the specified
orientation for the tangent space TMu into the standard orientation for Rd.

An oriented manifold is then a manifold together with a choice of orientation for each tangent
space, fitting together as described above. We say a smooth manifold M is orientable if we can find
such orientations for the tangent spaces of M . There are some manifolds which are not orientable,
the most famous being the Möbius strip. If M is connected and orientable, it has precisely two
orientations.

We are now ready to define the degree of a mapping. Let M and N be oriented n-dimensional
manifolds and f : M → N a smooth map. Then we have the following definition for the degree of
f .

Definition 7 ([15], page 27). Let x ∈M be a regular point of f . Define the sign of Dfx to be +1
or −1 according to if Dfx preserves of reverses orientation. Then for any regular value y ∈ N :

deg (f ; y) =
∑

x∈f−1(y)

sign Dfx.

We have the following two important theorems about the degree:

Theorem 2.1 ([15], Theorem A). The value deg (f ; y) does not depend on the choice of regular
value y.

Theorem 2.2 ([15], Theorem B). If f ∼ g, then deg(f) = deg(g).

This justifies the notation deg (f) for the degree of a function f , without a particular choice
for y.

2.1.3 Other views on the degree

The degree is something that can be defined in a number of different ways. One of these ways is in
the context of homology. For a general reference about homology see [8], where Section 2.2 is about
the degree. In homology, the functions considered are continuous, not necessarily differentiable or
smooth. The definition for the degree is as follows.

Definition 8. Let M,N be orientable manifolds of the same dimension, d. Let f : M → N be
continuous. Then the degree of f , deg (f) is the unqiue integer k ∈ Z such that f∗(x) = kx, where

f∗ : Hd(M)→ Hd(N)

is the map induced by f on the top homology groups.

At first glance this does not resemble Definition 7. However, there are ways to compute the
degree in homology which look more like the definition presented here, for example Proposition
2.30 in [8].
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2.2 The SO(3)

As we will consider the case where we train the ∆VAE on a SO(3) latent space, we introduce this
space in some more detail. In particular, we look at its tangent space, and several properties of
the projection on the closely related O(3).

Definition 9. We denote the space of 3× 3 matrices, R3×3, by M3.

Definition 10. GL(n) denotes the general linear group of n× n matrices with coefficients in R.
This is the set of invertible matrices, or matrices with non zero determinant. We let GL+(n)
denote the connected component of GL(n), of matrices with positive determinant. Similarly let
GL−(n) denote the set of matrices with negative determinant.

Any rotation and reflection of three dimensional euclidean space can be represented by a 3× 3
orthogonal matrix (a matrix O such that OOT = I). The set of all orthogonal 3 × 3 matrices
together with matrix multiplication form a well-know group, the orthogonal group or O(3). This
group has two connected components, namely the matrices with determinant -1 and with deter-
minant 1. The subgroup corresponding to the set of orthogonal matrices with determinant 1 is
called the special orthogonal group or rotation group, denoted as SO(3). It represents all linear
transformations of R3 that preserve orientation and length (also called true rotations). Besides
being a group, it also has the structure of a smooth manifold. This makes it a so-called Lie group.
For a general reference on Lie groups see [18] or [7], where [18] is a more introductory source.

2.2.1 The tangent spaces of the SO(3)

The first thing we will do is look at the tangent spaces of the SO(3). We first look at the tangent
space of the identity, as it will turn out that for Lie groups that is all that is necessary. The
tangent space at the identity for Lie groups is also called the Lie algebra. See [18] Section 5, in
particular Section 5.2.

Consider some curve on SO(3), denoted by R : [−1, 1] → SO(3), where R(0) = I. Then we
know that for each t ∈ [−1, 1], R(t)R(t)T = I. We now differentiate this curve, and see that its
derivative needs to satisfy:

R(t)
dR(t)

dt

T

+
dR(t)

dt
R(t)T = 0.

Substituting t = 0 into this equation, we find that the tangent vectors, X = d
dtR(0), at the

identity need to satisfy:

X = −XT ,

which are matrices known as anti-symmetric matrices. They form a three-dimensional vector
space, and thus form the complete tangent space of the SO(3) at the identity, TSO(3)I . We
choose the following basis for this vector space:

Lx =


0 0 0

0 0 −1

0 1 0

 , Ly =


0 0 1

0 0 0

−1 0 0

 , Lz =


0 −1 0

1 0 0

0 0 0

 .

We choose to orient the tangent space at the identity according to the following ordered basis:(
Lx, Ly, Lz

)
.

We would also like to know what the other tangent spaces look like. Let O ∈ SO(3). Then,
using a similar method as above, the tangent vectors X ∈ TSO(3)O need to satisfy:

6



Eindhoven University of Technology

OXT +XOT = 0.

There is an isomorphism between the tangent space at the identity and the tangent space at
O, which is the linearization of LO : SO(3) → SO(3), left translation by O. This linearization
looks like:

DLO : TSO(3)I → TSO(3)O

DLO : X 7→ OX.

We can see that matrices of this form, OX, for X ∈ TSO(3)I indeed satisfy the requirement
found above:

O(OX)T + (OX)OT = OXTOT +OXOT

= −OXOT +OXOT

= 0

And so we can transform our basis for the tangent space at I to any other tangent space on
SO(3) by left translation of the basis. Moreover, we can choose a consistent orientation of SO(3)
in this way. Let O ∈ SO(3), then the tangent space TSO(3)O has orientation given by:(

OLx, OLy, OLz
)

2.2.2 Projecting on the O(3)

For the ∆VAE we need to project back to the closest point on the manifold (see Section 3.2.1). In
other words, given some arbitrary matrix M , we wish to find the closest special orthogonal matrix
O. We first consider projecting on O(3).

So we are interested in the function P : GL(3,R) → O(3) assigning to each matrix its closest
orthogonal matrix. This is known as the Procrustes problem, see [6] Section 6.4.1. P can be
given in terms of the polar decomposition. Every M ∈ M3 can be written as the product of a
orthogonal matrix O and a symmetric positive definite matrix S, M = OS. Then we have for
M ∈ GL(3) that:

P (M) = O (1)

The reason P is only defined on GL(3) and not on the whole of M3 is because the polar
decomposition is not unique in the case where M has determinant zero.

The way O is calculated in the polar decomposition lets us write the function in the following
equivalent forms as well:

P (M) = M(MTM)−
1
2

or given in terms of the Singular Value Decomposition (SVD), where M = UΣV T :

P (M) = UV T

We will use these different forms interchangeably. This projection has some properties we will
use. Let O be an orthogonal matrix, and M ∈M3. Then we have:

7
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Lemma 1. P (MO) = P (M)O

Proof.

P (MO) = MO((MO)TMO)−
1
2

= MO(OTMTMO)−
1
2

= MOOT (MTM)−
1
2O

= M(MTM)−
1
2O

= P (M)O

We can take the O outside of the inverse square root by noticing that because det(M) > 0
det(OTMTMO) > 0, and OTMTMO is symmetric positive definite, so its inverse square root
is unique. It is the unique matrix K such that OTMTMO(K2) = I. Then checking for K =

OT (MTM)−
1
2O we find that indeed OTMTMO(K2) = I.

Lemma 2. P (OM) = OP (M)

Proof.

P (OM) = OM((OM)TOM)−
1
2

= OM(MTOTOM)−
1
2

= OM(MTM)−
1
2

= OP (M)

2.2.3 Derivative of the projection

We are interested in the derivative of this projection, which is needed for the so called reparametriza-
tion trick, see Section 3.2.1. For a general reference about matrix functions see [10], where Chapter
3.2 is about the Fréchet derivative. This reference states a number of properties we will use. First
of all, the definition as reminder.

Definition 11. We say a function F :M3 →M3 is (total, Fréchet) differentiable in some point
M ∈M3 if there exists a linear map:

(DF )M :M3 →M3

such that for all K ∈M3:

F (M +K) = F (M) + (DF )M (K) + o(||K||),

The map (DF )M (K) is then called the (total, Fréchet) derivative in M in the direction of K.

Let (D[f(S)])M (N) denote the derivative of the function f :M3 →M3 in M in the direction
of N , as defined above. So for example (D[S + ST ])M (N) denotes the derivative of the function
f :M3 →M3, given by f(S) = S + ST .

In order to calculate the derivative of the projection function, equation (1), we will first calcu-
late the derivative of several other functions.

8
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Proposition 1. The derivative of the function f :M3 →M3, given by f(M) = MTM is:

(Df)M (N) = NTM +MTN

Proof. We use the product rule. We have that:

(Df)M (N) = (D[ST ])M (N)M +MT (D[S])M (N)

Both the identity function and the transpose function are linear, and so they are equal to their
own derivative. So we find that:

(Df)M (N) = NTM +MTN

Proposition 2. The derivative of the function g : GL(3)→ GL(3), given by g(M) = M−1 is:

(Dg)M (N) = −M−1NM−1

Proof. Let id be the identity function on GL(3). Then we have that g(M)id(M) = I for every
M ∈ GL(3). We now differentiate both sides to get:

(Dg)M (N)id(M) + g(M)(D(id))M (N) = 0

(Dg)M (N)M +M−1N = 0

(Dg)M (N) = −M−1NM−1

Proposition 3. Let h : GL(3) → GL(3) be given by h(M) = M
1
2 . Then (Dh)M (N) is the

solution to equation:

M−
1
2 (Dh)M (N) + (Dh)M (N)M−

1
2 = N

Proof. Let h−1 : GL(3)→ GL(3) be given by h−1(M) = M2. Then h−1 ◦h = id. We differentiate
this equation to find:

(Dh−1)
M

1
2

((Dh)M (N)) = N

M
1
2 (Dh)M (N) + (Dh)M (N)M

1
2 = N

Equations of the form AX + XB = C are known as Sylvester equations. In our particular
case, we are only interested in evaluating the derivative in matrices of the form MTM , where
M ∈ GL(3). These are positive symmetric matrices. If M = UΣV T is the SVD of M , we can
write MTM as V Σ2V T . Then we see that:

(V Σ2V T )
1
2 (Dh)M (N) + (Dh)M (N)(V Σ2V T )

1
2 = N

V ΣV T (Dh)MTM (N) + (Dh)MTM (N)V ΣV T = N

ΣV T (Dh)MTM (N)V + V T (Dh)MTM (N)V Σ = V TNV (2)

The following proposition will help us solve this particular equation.

9
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Proposition 4. Let B ∈M3 and let D be a diagonal matrix such that ∀i, j ∈ {1, 2, 3} : di+dj 6= 0.
Here di = D(i,i). Then the solution to the equation:

DX +XD = B

is given by X = Q • B, where Qi,j = 1
di+dj

. Here • denotes the element-wise product of two

matrices, also known as the Hadamard product.

Proof. The proof is a straightforward calculation. We have that Bi,j = diXi,j + djXi,j . Solving

for Xi,j we find that Xi,j =
Bi,j
di+dj

, or in matrix notation:

X = Q •B

Thus we see that applying Proposition 4 to equation (2) results in:

V T (Dh)MTM (N)V = Q • (V TNV )

(Dh)MTM (N) = V (Q • (V TNV )V T (3)

Finally for the derivative of the projection we have the following.

Proposition 5. Let P be the projection as defined in equation (1). Then the derivative of P is
given by:

(DP )M (N) = U(Q • (UTNV − V TNTU))V T

Where M = UΣV T , and Qi,j = 1
σi+σj

. Here σi is the ith singular value of M , i.e. σi = Σi,i.

Proof. We know that P (M) = M(MTM)−
1
2 . Let M,N ∈ M3, and M = UΣV T be the SVD of

M . Then:

(DP )M (N) = (D[S])M (N)(MTM)−
1
2 +M(D[(STS)−

1
2 ])M (N)

= N(MTM)−
1
2 +M(D[(STS)−

1
2 ])M (N)

= NV Σ−1V T +M(D[(STS)−
1
2 ])M (N) (4)

(5)

We now separately look at (D[(STS)−
1
2 ])M (N). We first use the chain rule to rewrite it:

(D[(STS)−
1
2 ])M (N) = (D[S−1])

(MTM)
1
2

(
(D[S

1
2 ])MTM ((D[STS])M (N))

)
We can now use Propositions 1 and 2, and equation (3) to further rewrite the above derivatives:

= (D[S−1])
(MTM)

1
2

(
(D[S

1
2 ])MTM (NTM +MTN)

)
= (D[S−1])

(MTM)
1
2

(
V (Q • (V T (NTM +MTN)V ))V T

)
= −(MTM)−

1
2

(
V (Q • (V T (NTM +MTN)V ))V T

)
(MTM)−

1
2

= −V Σ−1V T
(
V
(
Q • (V T (NTUΣV T + V ΣUTN)V )

)
V T
)
V Σ−1V T

= −V Σ−1
(
Q • (V TNTUΣ + ΣUTNV )

)
Σ−1V T

10
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We now substitute this result back in equation (4):

(DP )M (N) = NV Σ−1V T +M(D[(STS)−
1
2 ])M (N)

= NV Σ−1V T − UΣV TV Σ−1(Q • (V TNTUΣ + ΣUTNV ))Σ−1V T

= NV Σ−1V T − U(Q • (V TNTUΣ + ΣUTNV ))Σ−1V T

We now rewrite this expression to get rid of the Σ and Σ−1, which will result in the desired
form. Notice that here Q• = 1

Qi,j
, i.e. element-wise inversion. Continuing from the last line:

= U
(
UTNV Σ−1V T − (Q • (V TNTU + ΣUTNV Σ−1))V T

)
= U

(
Q • (Q• • UTNV Σ−1 − V TNTU − ΣUTNV Σ−1)

)
V T

= U
(
Q • (UTNV + ΣUTNV Σ−1 − V TNTU − ΣUTNV Σ−1)

)
V T

= U(Q • (UTNV − V TNTU))V T

Where we have used the equality Q−1 • (AΣ−1) = A + ΣAΣ−1, for A ∈ M3, to get to the
second to last line.

2.2.4 Projecting on the SO(3)

In the previous sections we have seen the shortest distance projection on the O(3), and several
properties of it. However, as mentioned before we are mainly interested in the SO(3).

In the remainder of this paper we use the following function to project on the SO(3):

P̂ (M) = det
(
P (M)

)
P (M), (6)

this is not the shortest distance projection on the SO(3), but instead we use equation (1),
and correct for the determinant. Let M ∈ GL(3), then if det(M) > 0, we have that P̂ = P . If
det(M) < 0, P projects M on O(3) − SO(3), and so we multiply with a minus sign to get to
SO(3).

This fact is also important when we consider the derivative of P̂ . If P̂ : A ⊂ GL(3)+ → SO(3),
then P̂ = P , and so the derivative will be the same. If P̂ : B ⊂ GL(3)− → SO(3), then P̂ = −P ,
and so the derivative will also be multiplied by a minus sign.

The actual shortest distance projection Ps on the SO(3), for M ∈ M3 and det(M) < 0, is as
follows:

Ps(M) = UDV T

where again M = UΣV T is the SVD of M , and where D = diag (1, 1,−1) is a diagonal matrix
with 1s on the diagonal, expect for the last diagonal element, which is a −1. See [5].

2.2.5 RP3 and SO(3)

Another property of SO(3) is that it is homeomorphic to RP3, the three dimensional real projective
space. The real projective space of dimension n is formed by taking elements of Rn+1 \ {0} and
identifying each point by the equivalence relation x ∼ λx for every λ ∈ R \ {0}. An equivalent
way of thinking about RP3 is as the ball D3, where the antipodal points of the boundary, S2, are
identified, see [8] Example 0.4 and Section 3.D. This fact also lets us visualize SO(3), which we
will do later.

Consider the function φ : D3 → SO(3), which sends a nonzero vector x to the rotation with
angle |x|π, with axis the vector through 0 and x. Using the right-hand rule we can make this
rotation unambiguous. By continuity we have that φ sends the 0 vector to the identity. Moreover
antipodal points are sent to the same rotation in SO(3). Thus φ induces a map φ̄ : RP3 → SO(3).
This is a homeomorphism between the two spaces.
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3 Variational auto-encoder

Now that we have discussed the preliminaries, we will explain the variational auto-encoder in
more detail. After this we will explain how it was changed to form the ∆VAE , and highlight the
difference using a small example.

Consider a data set X = {x(i)}Ni=1, where the samples are i.i.d. We assume this data is
generated by some random process, using some unobserved random variable z, coming from a
latent space Z. This z can be thought of as a latent variable. The data is generated in the
following way: a value z(i) is drawn from the prior distribution Pθ∗(z). Next a value x(i) is
generated from some conditional distribution Pθ∗(x|z). We assume that these distributions come
from some parametric families of distributions Pθ(z) and Pθ(x|z). Furthermore, we introduce
a recognition model, a probability distribution, qφ(z|x), which serves as an approximation to
the intractable true posterior distribution Pθ(z|x). We will leave out the parameters for these
distributions in order to avoid over cluttering.

We can see this recognition model as a probabilistic encoder, which given a data point x
produces a distribution over all values of z. Similarly we can see P(x|z) as a probabilistic decoder,
which given some latent variable gives a probability distribution over the possible outcomes. Most
commonly these distributions are chosen to be Gaussian distributions. This encoder will try
to learn a ’good’ representation of the data, and the decoder will try to generate ’good’ data
from these encodings. But how can we train these models to do a good job in replicating these
probabilities?

3.1 The objective

What we wish to maximize is the logarithm of the marginal likelihood:

logP(x(1), · · · , x(N)) =

N∑
i=1

logP(x(i))

Here we marginalize out of the latent variable z:

P(x(i)) =

∫
P(z)P (x|z)dz

We see here that finding a better probabilistic decoder, i.e. one that is likely to produce
samples from our data set, means that our objective increases. Approximately computing this
integral is relatively straightforward. We can sample a large number of values {z1, · · · , zn} from
z, then P(x(i)) ≈ 1

n

∑n
i=1 P(x(i)|zi). However, this estimator is very inefficient and for practical

purposes not usable.
We now first relate the recognition model and P(x(i)). We do this by means of the Kullback-

Leibler (KL) divergence. It is a measure of how close two distributions are. The KL divergence
between q(z|x) and P(z|x) is given by:

KL
(
q(z|x(i))||P(z|x(i))

)
= E
q(z|x(i))

[
log q(z|x(i))− logP(z|x(i))

]
We can then apply Bayes rule to P(z|x(i)) to get:

KL
(
q(z|x(i))||P(z|x(i))

)
= E
q(z|x(i))

[
log q(z|x(i))− logP(x(i)|z)− logP(z)

]
+ logP(x(i))

By rearranging terms this expression can be rewritten to:

logP(x(i))−KL
(
q(z|x(i))||P(z|x(i))

)
= E
q(z|x)

[
− log q(z|x(i)) + logP(z)

]
(7)
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The KL divergence is always non-negative, so we have a lower bound, called the evidence lower
bound or ELBO, denoted by L, for the marginal likelihood:

logP(x(i)) ≥ L(x(i)) = E
q(z|x(i))

[
logP(x(i)|z)

]
−KL

(
q(z|x(i))||P(z)

)
(8)

Now if the recognition model is a good approximation of the true posterior, then the KL term
in the right-hand side of Equation 7 will be small, and so we will be almost directly optimizing
logP(x(i)) when optimizing this bound.

We want to apply gradient descent to L in order to optimize it. However, the gradient with
respect to φ (the parameters for q) poses a problem. The usual estimator for gradients of the form

∇φ E
q(z|x)

[f(z)]

exhibits high variance, and is impractical for use in this case, see [12] Section 2.2. Instead, under
some mild conditions on q, we can rewrite this expression which yields a better approximation.
This has been called the reparametrization trick, see [12] Section 2.4.

The reparametrization trick comes down to rewriting a random variable z ∼ qφ(z|x) as z =
gφ(ε, x), where ε is an auxiliary ”noise” variable coming from some distribution p(ε), and g is some
differentiable function. As an example, consider z ∼ N (µ, σ2). A valid choice for g would be
g(ε) = µ+ σε, where ε ∼ N (0, 1). We then have that:

∇φ E
q(z|x)

[f(z)] = ∇φ E
p(ε)

[f(g(ε, x))] = E
p(ε)

[∇φf(g(ε, x))] ≈ 1

L

L∑
l=1

∇φf(g(ε(l), x))

The KL term in L can be computed analytically in the case of Gaussian distributions for P(Z)
and q(z|x). The full estimator for the ELBO, of which we can take the gradient, then becomes
([12] equation (7)):

L(x(i)) ≈ 1

L

L∑
l=1

(
logP(x(i)|g(ε(i,l), x(i)))

)
−KL

(
q(z|x(i))||P(z)

)

3.2 Diffusion variational auto-encoders

Now that we have discussed the variational auto-encoder, we briefly explain how it was adapted
into the ∆VAE . For a more detailed explanation about how this was done, see [16]. After this we
highlight the difference between the ∆VAE and a standard VAE by means of an example.

3.2.1 Adapting the VAE

Notice that the latent space of the VAE is essentially Rd, for some d ∈ N. In the case where
we have Gaussian distributions for the encoder q, the mean can be placed in any point in Rd.
However, in order to be able to capture topological information about the latent variables, we
want to be able to restrict this behaviour, and force the latent variables to lie in a manifold of
choice. The ∆VAE achieves this by changing the distributions for the encoder and the prior, such
that the latent space becomes an arbitrary Riemannian manifold.

The encoder distributions are now transition probability measures of Brownian motion on the
latent space Z, which is some Riemannian manifold of choice. In [16] Section 3.2, a summary of
Brownian motion on manifolds is given. The encoder distribution, now denoted by Qt,zZ , applied
to some set A ⊂ Z measures the probability that Brownian motion, started at z, at time t is in
the set A. Note that z and t here have a similar role as the mean and variance, respectively, in
the Gaussian distribution.

We again reparametrize this distribution, for the same reasons mentioned above. Instead of an
exact reparametrization, and approximate reparametrization is constructed, see [16] Section 3.6
for details. In order to approximate Brownian motion, starting from some point z, a random step
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in the ambient space is set. Then this point is projected back on the manifold. This is repeated
for N steps. The reparametrization function g : εN × (0,∞)× Z → Z is then given by:

g(ε1, · · · , εN , t, z) = P

(
· · ·P

(
P

(
z +

√
t

N
ε1

)
+

√
t

N
ε2

)
· · ·+

√
t

N
εN

)
For the choice of prior P(z), the uniform distribution on the manifold is chosen. This is the

normalized standard measure on the manifold.
In the ∆VAE , the KL term in equation (8) cannot be computed exactly anymore. This was

solved by deriving an asymptotic approximation for this term, see [16] Section 3.7. In order to
ensure that this approximation remains accurate, the learned time variable t is restricted, to ensure
that it does not get too large.

3.2.2 Difference between the ∆VAE and the VAE

In order to demonstrate the difference between the ∆VAE and a standard VAE, we train both of
them on a particular data set. This data set consists of translations of a single picture, were the
edges wrap around. It has a toroidal latent structure, by construction. See also [16] Section 4.

A torus is a two dimensional object, and so we train both a ∆VAE with a (flat) torus as
latent space, and a standard VAE with a two dimensional latent space. In Fig 1 we can see the
visualizations of both latent spaces after training. Here the mean that the encoder has learned is
plotted. The color indicates the rotation in one direction.

We see that the ∆VAE has captured the fact that the latent space was a torus, while the
standard VAE is unable to capture this fact. What we mean by capturing is that the encoder is a
homeomorphism between the data space and the latent space. We see that there are points with
a similar color which are on opposite sides of the latent space.

(a) A ∆VAE with a flat torus as latent space.
The torus is represented by a square with peri-
odic boundaries.

(b) A standard VAE with two dimensional la-
tent space

Figure 1: An example highlighting the difference between the ∆VAE and a standard VAE when
trained on a data set with a non-Euclidean latent structure.

However, there is nothing that prevents a standard VAE to learn an embedding of a manifold.
This is exactly what happens when we train a VAE with a 3 dimensional Euclidean latent space,
see Figure 2. Of course, when using the ∆VAE , we cannot sample outside of the manifold of
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choice, by construction. This possible with the standard VAE. Moreover, in the case of the ∆VAE
, the encoder is able to learn a homeomorphism, which cannot happen with a regular VAE.

Figure 2: A standard VAE trained on the torus data set, with a three dimensional latent space.
As we can see it is able to capture, to some extent, the properties of the data set.

4 Encoder functions

We would like to better understand what happens when training the ∆VAE with a SO(3) latent
space. We do this by looking at functions N : SO(3)→ SO(3) of the form:

N(O) = P̂ (T (O)) (9)

Where T :M3 →M3 is a linear function. These resemble a linear encoder. What we mean by
that is that the encoder learns for a given input a mean parameter for the encoder distribution.
So we can see it as a function SO(3) → SO(3), which has exactly this form. Whenever we refer
to the encoder part of the ∆VAE as a function, this is what we mean. We start by stating a
topological result about functions from RP3 to RP3. Then we look at for which functions T the
function N is well-defined. Next we calculate the degree of N for specific T , and present a strategy
for calculating it numerically for arbitrary (well-defined) linear T .

4.1 Connection to RP3

As already mentioned in Section 2.2.5, the SO(3) is homeomorphic to RP3. We will state a
result concerning functions from RPn to RPn. Of particular interest are these self functions up
to homotopy, i.e. in the equivalence classes of the equivalence relation being homotopic. Let
[RPn,RPn] denote these equivalence classes. Then we have the following result.

Theorem 4.1 ([14] Theorem 2.1). For each integer n ≥ 1,
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[ RPn,RPn ] '

{
Z if n is odd

Z/2 if n is even

Moreover, this representation is faithfully represented in the degree of these functions. So for
every n ∈ Z there is a map with degree n. This means for maps from/to projective spaces, degree
fully determines homotopy class.

What this theorem tells us is that looking at the degree of the function tells us everything that
we need to know from a topological view. Say for example we are able to show that the degree of
some self map, associated with an encoder, is one, then we know that this function is homotopic
to the identity function, which might tell us whether the encoder fully captured the topological
properties of the data.

4.2 Well-definedness

The first issue we encounter when we want to try to calculate the degree of N , is determining
which linear functions T satisfy the constraint of mapping SO(3) into GL. This is necessary, as
the projection we want to apply to the image of this function is not defined for singular matrices.
Notice that if the image of T contains a matrix with positive determinant and one with negative
determinant, it necessarily contains one with determinant zero. This is because SO(3) is path
connected. So, T should map to either GL(3)+ or GL(3)−.

To put it more concretely, we are looking for linear functions T : SO(3) → GL(3) satisfying
the following:

∀O∈SO(3) : det(T (O)) 6= 0

We will call functions that have this property well-defined. Having non-zero determinant is the
same as having full rank, and since each orthogonal matrix has full rank we can rewrite this to:

∀O∈SO(3) : ρ(O) = ρ(T (O))

where we denote the rank of a matrix by ρ. Problems of this nature are known as Linear
Preserver Problems. For an overview see, for example, [1]. In many of these related problems, the
map T has a ”standard form”, namely:

T (O) = NOM or T (O) = NOTM, (10)

where N and M are matrices of the appropriate size, sometimes with extra conditions imposed
on them. In our case, this condition is sufficient if N and M have a non-zero determinant, as the
determinant function is multiplicative and transposing a matrix preserves the determinant.

Unfortunately we do not think it is a necessary condition for T to have this form. In order to
get a better idea about this, we create a data set consisting of 5000 matrices, uniformly distributed
over SO(3). If we then want to visualize what a function does to the determinant of these matrices,
we apply this function to each of the matrices, and based on the determinant of the result, we color
in the original input. A matrix is colored black if the determinant is close to 0 (|det | < 1e − 3),
green if it is positive and red if it is negative. The coloring scales, so brighter colors mean a higher
determinant.

Notice that every linear function fromM3 toM3 can be represented by a 9× 9 matrix. So we
start investigating by randomly sampling a matrix, and using this as our linear function. Some
results of this can be seen in Fig 3.
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Figure 3: Three examples in which we randomly generated a 9 × 9 matrix and use this as our
linear function.

As we can see from these examples, in general a linear function does not need to be well-defined.
This is also the behaviour a linear network shows; the initial configuration of weights usually is
not a well-defined one. More about that in Section 5.

What about more specific linear functions? Take for example functions of the form T (M) =
AM + MB, where A,B ∈ M3. In general such a function cannot be rewritten to something of
the form as in equation (10). These appear to behave less chaotic than the examples from Fig 3.
An example can be found in Fig 4. The left picture is the original random function, and the right
one was created by slightly changing some of the values in the matrices A and B.

(a) An example where we take the function
O 7→ AO + OB for some random A,B. This
particular example seems to be very close to
mapping the entire SO(3) into GL+. We can
see two smudges were the determinant gets
close to 0.

(b) Playing a little more with the matrices re-
sulted in this figure, where it seems that all
SO(3) matrices are mapped to GL+.

Figure 4

We further investigate this example, as it seems the function on the right has the desired
property of mapping SO(3) into G : (3)+. The particular function, which we will denote by T ∗,
is given by:
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T ∗(O) =


1.36 0.23 1.64

0.92 1.63 0.03

0.46 0.55 1.75

O +O


0.51 0.53 0.01

0.45 0.38 0.13

0.37 0.59 0.1


Conjecture 1. The function T ∗ maps SO(3) into GL(3)+, i.e. T ∗(SO(3)) ⊂ GL(3)+

Unfortunately we were not able to prove this conjecture. However, we can use random sampling
to get a better idea whether the proposition is true or not. Five million random SO(3) matrices
were generated, and the determinants of them after applying T ∗ were checked. This experiment
suggests that det(T ∗(O)) > 2 for O ∈ SO(3), meaning the proposition would be true. This would
mean linear functions that are well-defined are not necessarily of the form as in (10).

4.3 The degree of left translation

We now show that if T is left translation by a fixed non-singular matrix, the degree of N is always
1. We know that when the matrix A by which we left translate has a non-zero determinant, the
function T is well-defined. This tells us that there are functions of the form as in equation (9)
with degree 1, and so the encoder should be able to learn such a function.

Proposition 6. Let A ∈ GL(3), and define T : M3 → M3 by T (M) = AM . Then the degree
of the function N : SO(3)→ SO(3) given by N(O) = P̂ (T (O)) is 1. Here P̂ is the projection on
SO(3), defined in equation (6).

Proof. Let s = sign(det(A)), so we have that s = det(P (A)). We start by showing that N is a
bijection. First let O1, O2 ∈ SO(3). Then assuming N(O1) = N(O2):

N(O1) = N(O2)

det
(
P (T (O1))

)
· P (T (O1)) = det

(
P (T (O2))

)
· P (T (O2))

det
(
P (AO1)

)
· P (AO1) = det

(
P (AO2)

)
· P (AO2)

s · P (A)O1 = s · P (A)O2

O1 = O2

Where we have used Lemma 1 to take O1 and O2 outside of the projection, and the fact
that the matrix P (A) is non-singular. So, N is injective. Next let O ∈ SO(3). Then consider
P̂ (A)TO = sP (A)TO ∈ SO(3). We have that:

N(P̂ (A)TO) = P̂ (AP̂ (A)TO)

= det
(
P
(
AP̂ (A)TO

))
· P
(
AP̂ (A)TO

)
= det

(
P
(
AsP (A)TO

))
· P
(
AsP (A)TO

)
= det

(
sP (A)P (A)TO

)
· s · P (A)P (A)TO

= (s)4O

= O

Where we again have used Lemma 1. And so we find that N is also surjective, hence bijective.
Recall from Definition 7 that:

deg (N) =
∑

x∈N−1(P̂ (A))

DNx
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We shall shortly see why P̂ (A) is a regular value. The particular choice of P̂ (A) for regular
value is to make the following computations easier. In particular, we have that N−1(P (A)) = I.

Recall that the orientation given to the tangent space of the SO(3) at the point P̂ (A) is given
by: (

s · UV TLx, s · UV TLy, s · UV TLz
)

where A = UΣV T is the SVD of A. Moreover, for the derivative, Proposition 5 and Section
2.2.4, we have that:

(DN)I(K) = (DP̂ )T (I)((DT )I(K))

= (DP̂ )A(AK)

= s · U(Q • (UTAKV − V TKTATU))V T

= s · U(Q • (UTUΣV TKv − V TKV ΣUTU))V T

= s · U(Q • (ΣV TKV − V TKTV Σ))V T

And so we have the following orientation induced on TSO(3)P (A) by the derivative:(
(DN)I(Lx), (DN)I(Ly), (DN)I(Lz)

)
So now we have to check if these two orientations are the same or opposite. In order to do this

we need to find a 3× 3 matrix C such that:

(DN)I(Lx) = C1,1 · s · UV TLx + C1,2 · s · UV TLy + C1,3 · s · UV TLz

and similarly for Ly and Lz. Thus for the first row of this matrix we need the following:

s · U(Q • (ΣV TLxV − V TLTx V Σ))V T = C1,1 · s · UV TLx + C1,2 · s · UV TLy + C1,3 · s · UV TLz
V (Q • (ΣV TLxV − V TLTx V Σ))V T = C1,1Lx + C1,2Ly + C1,3Lz

Let Dx := V (Q • (ΣV TLxV − V TLTx V Σ))V T , and similarly for Dy and Dz. We can simplify
this down further:

Dx = V (Q • (ΣV TLxV − V TLTx V Σ))V T

= V (Q • (ΣV TLxV + V TLxV Σ))V T

= V (V TLxV )V T

= Lx

Where we have used the fact that Q • (ΣA + AΣ) = A for A ∈ M3. This also holds for Dy

and Dz, and so we find that C is equal to the identity matrix.
This tells us that I is a regular point, as the derivative (DN)I maps a basis into another basis.

Therefore P̂ (A) is a regular value, because N is a bijection, and because det(C) = 1 > 0, we find
that the degree of N is 1.

4.4 Calculating the degree numerically

Assuming T is well-defined, we can try to numerically compute the degree using software like
Mathematica. For simplicity’s sake we will assume that T : SO(3)→ GL(3)+. The case where T
maps to GL(3)− is very similar, and only differs in a couple signs in some equations.

Let O ∈ SO(3) be a regular value. We do essentially the same as we did with the example
above, only now we calculate the inverse N−1(O) numerically. We can rewrite the set N−1(O)
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to a set of several polynomial equations. Let M ∈ M3, then M needs to satisfy the following if
M ∈ N−1(O):

det(M) = 1 (11)

MMT = I (12)

OTT (M)− T (M)TO = 0 (13)

det(OTT (M)k) > 0 ∀k ∈ {1, 2, 3} (14)

Equations (11) and (12) constrain the matrix M to be a SO(3) matrix. For equations 13 and
14 we first notice the following. If we have that N(M) = O, then T (M) = OS for some positive
symmetric definite matrix S, or OTT (M) = S. These two equations check for this condition, thus
ensuring that the matrices we find actually map to the desired element in SO(3). In equation (14)
Mk means the k × k upper left sub matrix of M . This condition is equivalent to being positive
symmetric definite, and is known as Sylvester’s criterion.

Let M be a matrix we found using the above procedure. For every such matrix we need to do
the following. First of all we have that DNM (K) : TSO(3)M → TSO(3)O is given by:

(DN)M (K) = (DP )T (M)((DT )M (K)) = (DP )T (M)(T (K))

Notice that DTM (K) = T (K), as T is linear. The orientation of TSO(3)M is given by:(
MLx, MLy, MLz

)
And so we have that the orientation induced by the derivative on TSO(3)O is:(

(DN)M (MLx), (DN)M (MLy), (DN)M (MLz)
)

So we want to compare this orientation and the standard one. This amounts to finding a
matrix C such that:

(DN)M (MLx) = C1,1OLx + C1,2OLy + C1,3OLz

OT (DN)M (MLx) = C1,1Lx + C1,2Ly + C1,3Lz

And similarly forOT (DN)M (MLy) andOT (DN)M (MLy). Now defineDx := OT (DN)M (MLx),
and similarly for y, z. The matrix C can then be read of as follows:

C =


Dx

3,2 Dx
1,3 Dx

2,1

Dy
3,2 Dy

1,3 Dy
2,1

Dz
3,2 Dz

1,3 Dz
2,1


and its determinant tells us if the derivative preserves or reverses orientation. Repeating this

procedure for every M ∈ N−1(O), and summing the resulting sign of the determinant of C will
tell us the degree of N .
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5 Experiments

We have seen that for specific linear functions, the degree of the encoder is 1, and so there is a
homotopy between it and the identity function. We will start with training a ∆VAE with the
SO(3) as latent space on the SO(3) data set, a generated data set consisting of 6400 special
orthogonal matrices, uniformly sampled from SO(3). What we would expect is that the network
learns a function that is homotopic to the identity function. The previous section showed that this
should be possible. After this we train a ∆VAE on the cubes data set, consisting of 8000 images
of randomly rotated cubes. This data set is generated by applying randomly sampled rotation
matrices to the vertices of a cube, and drawing these to form the image.

We can visualize the latent space by plotting the mean the encoder learns for a data point.
Besides visualizing the latent space, we can also create visualizations of loops and a surface inside
of SO(3). This is so we can better visualize what the encoder is doing when training on the SO(3)
data set. Fig 5 shows the two loops and the surface as they are positioned in the domain. Notice
that one of the loops is a contractible loop, and one is a non-contractible one.

(a) A contractible loop in SO(3) (b) A non-contractible loop in
SO(3).

(c) A surface in SO(3).

Figure 5: Three different subsets of SO(3). Notice that the two loops are not homotopic to each
other. Furthermore the outline of the sphere is drawn to better understand how the subsets are
positioned inside of the SO(3).

5.1 The SO(3) data set

5.1.1 Linear network

We will start with a ∆VAE in which the encoder part is linear, i.e. the activation functions are
linear. So now the encoder looks like the function N , described in Section 4. For details about
the architecture and training see Appendix A. In Table 1 several metrics can be found, also for
the other architectures trained on the SO(3) data set.

Architecture ELBO KL RL MSE

Linear 15.6381 6.5775 9.0606 0.1756

Linear (pre-train) 15.6028 6.5775 9.0253 0.1677

Selu 15.6232 6.5775 9.0458 0.1723

Selu (pre-train) 15.6052 6.5774 9.0277 0.1683

Table 1: Results for the SO(3) data set. All metrics are computed from 10 runs. The metrics are
the evidence lower bound (ELBO), KL-divergence (KL) and the reconstruction loss (RL).
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These linear networks are sometimes able to capture topological properties. In Fig 6 the
latent space for a particular example is visualized, in which the network managed to learn an
homeomorphism. In particular, using the method described in 4.4, we can calculate the degree
of the encoder part. It turns out this particular example has degree 1. So we know that the
encoder part of the network learned a homeomorphism, and in this case one that is homotopic to
the identity function. There have been examples were the encoder had degree -1, in which case
the the learned encoder function is not homotopic to the identity anymore.

When a linear network is able to capture the properties of the SO(3) data set, this is also
clear from the reconstruction loss and KL loss, which are slightly lower than the averages found
in Table 1.

In Fig 6 we can also see how the various subsets of SO(3) changed by training. It appears
they are slightly distorted, however, they are still homotopic to the original loops, which is what
we would expect.

In the cases where the encoder is unable to capture the properties of the data set, the latent
space looks similar to the one in Figure 7. It seems that in these cases, the encoder is unable to
learn a well-defined encoder function.

Figure 6: The top left picture shows a visualization of the latent space. The three remaining pic-
tures show the three subsets of SO(3) after training. The top right picture is the contractible loop,
and the bottom left one is the non-contractible loop. The colors in the latent space visualization
are based on the first Euler angle of the encoded matrix.

5.1.2 Non-linear network

We now move away from the linear networks. Unfortunately these non-linear networks seem to
not be able to capture the latent structure as the linear network was sometimes able to. Despite
the metrics in Table 1 being about equal, the latent space always looks messy. Fig 7 depicts a
typical example of what a latent space looks like.
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This messy latent space again comes down to the fact that the encoder does not seem to be
able to become well-defined. In order to try to force it to learn a well-defined function, several
different losses and regularizes were added to the network. Most of these placed a penalty on the
layer before projecting on the manifold, where we tried to get rid of singular matrices. These are
described in detail in Appendix A.3. Unfortunately, these did not seem to help the ∆VAE . Fig 8
shows what this encoder does to the determinant, after training. It seems that it gets stuck on a
function like this, as the latent space looks almost identical after epoch 50.

Figure 7: The top left picture shows the latent space after training. As we can see there is no real
structure in it. Furthermore in the top right corner we see the contractible loop, which appears
almost intact. In the bottom left corner we see the non-contractible loop, which is not intact
anymore. In the bottom right the surface is depicted.
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Figure 8: How the encoder function changes the determinant, after being trained for 80 epochs.
This is how most encoder functions end up looking like, and it shows that the encoder is not
well-defined.

5.1.3 Adapting the network

One thing that increased the performance of the ∆VAE was ”pre-training” the encoder network.
Before starting to train the ∆VAE , we first train the encoder separately for around 5 epochs,
details can be found in Appendix A. This resulted in an encoder network that was well-defined.
After this, the entire network could be trained like usual. This procedure seems to greatly increase
the capabilities of the ∆VAE to learn the latent structure of the SO(3) data set. Unfortunately we
now do use extra information that in an unsupervised environment would not be available. Figure
9 shows visualizations of how the encoder changes the determinant, similar to how in Section 4.2
this was visualized. We can see that it learns a well-defined function very fast, in only 3 epochs.
In Figure 10 we can see visualizations of the latent space and loops of a non-linear network, whose
encoder is pre-trained.

As we can see, even a non-linear network is now able to capture the topological properties of the
data set. The linear networks seem to be able to do this every time when using this training, and
the non-linear networks succeed about half of the time. Furthermore, it seems that the number of
epochs necessary for the network to be done learning is also greatly reduced.
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(a) Before training. (b) After one epoch. (c) After two epochs.

Figure 9: Visualizing the encoder in the way described in Section 4.2. We see that by separately
training the encoder it learns a well-defined function very fast.

Figure 10: The top left picture again shows the latent space, which is uniformly covered in the
way we would expect it to be. In the top right corner we see the contractible loop, which appears
to still be contractible. This also holds for the non-contractible loop, in the bottom left corner.
The surface does not appear to be altered.

5.2 Cube data set

Lastly we train the ∆VAE on a more real-life data set with a SO(3) latent structure. This
data set consists of pictures of cubes randomly rotated according to some element of the SO(3).
The particular rotation for each picture is known, so we can try to apply the training technique
described in Section 5.1.3.
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Architecture ELBO KL RL MSE

Linear 4547.405 7.743 4539.662 0.042

Linear (pre-train) 4519.644 7.353 4512.291 0.030

Selu 4531.442 7.701 4523.741 0.035

Selu (pre-train) 4506.269 6.577 4499.691 0.025

Table 2: Results for the cube data set. All metrics are computed from 10 runs.The metrics are
the evidence lower bound (ELBO), KL-divergence (KL) and the reconstruction loss (RL).

The results of this can be seen in Table 2. As we can see, the non-linear network with pre-
training performs the best. However, none of the networks were able to fully capture the SO(3)
latent structure, as the ∆VAE was able to do with the SO(3) data set. In Fig 11 we can see a visu-
alization of the latent space of a non-linear pre-trained network. What is immediately noticeable
is the fact that it looks very unorganized. The encoder was not able to learn a homeomorphism,
and moreover, if we compare it to the latent space in Fig 7 we can see that points with a similar
color (which are pictures with a similar angle), are not evenly spread out.

Figure 11: The latent space of the ∆VAE after training on the cube data set. We can see that it
is very unorganized.

26



Eindhoven University of Technology

6 Conclusion

In this report we looked at the ∆VAE with the SO(3) as latent space. First of all, a result about
functions on RP3 was mentioned and its relevance for this paper explained. Next, some attention
was given to the well-definedness of functions of the form P̂ ◦ T , where P̂ is the projection on
SO(3) (equation (6)) and T is a linear function from SO(3) to M3. We conjectured that the
functions T that are well-defined, are not of a standard form that many related problem require
T to be.

After this we showed that the degree of P̂ ◦T , where T in this case is left translation by a fixed
non-singular matrix, is always 1. Next to this, we outlined an approach to calculate the degree of
P̂ ◦ T numerically, for any linear T .

Lastly, we trained ∆VAEs on both the SO(3) data set and the cube data set, both of which
have a SO(3) latent space. For the SO(3) data set, linear encoder networks were sometimes able
to capture the topological properties of the data, however, non-linear networks were unable to do
this at all. A method to improve this was discussed, which notably improved the ability of the
networks to capture these properties. For the cube data set, the network was unfortunately still
not able to do this.

The main problem that prevents the ∆VAE from fully capturing the properties of the data
seems to be the inability of to learn a well-defined encoder function. We showed that with extra
information, i.e. supervised learning, this can be resolved in the case of the SO(3) data set. For
the cube data set this technique seemed to improve the capabilities of the network slightly, but
not fully solve the problem yet.

Further research can look at finding necessary conditions for when a linear function T is well-
defined, which might reveal other, better, ways to force these encoder networks to be well-defined.
These could then be applied to the encoder instead of the supervised learning which we have done
now. Also, a better architecture for the network might increase the performance, especially in the
case of the cube data set.

The contributions of this paper are the better understanding of the workings of the ∆VAE with
a SO(3) latent space. In particular, a better understanding of what the problem is that prevents
the VAE from capturing topological properties of data sets with a SO(3) latent structure.
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A Setup

We now briefly discuss the architecture of the ∆VAE used in this paper. The Python library
Tensorflow was used to make and train the network. The encoder part of the ∆VAE is a multi-
layer perceptron, where we have an input layer, and several densely connected layers, from which
we learn z mean pro and z log t, the parameters for the encoder distribution. To get z mean pro,
We first learn a value z mean and then project this on the manifold to ensure that it is actually
an element of the latent space. To get z log t, we have a special layer which restricts the output
of a dense layer before it. Next these two parameters are used as input for a sampling layer.

The output of this sampling is then given to the decoder part. This is again a multi-layer
perceptron, consisting of several densely connected layers. The last layer has the same size as the
input layer of the encoder. The loss function used by the network is the ELBO, as discussed in
Section 3.

A.1 SO(3) data set architecture

The networks trained on the SO(3) data set all had the same architecture, which can be found
in Fig 12. The boxes represent layers, where the text inside indicates what kind of layer it is.
Italic text refers to the name of the layer. Furthermore, the number after the text represents the
number of neurons in that layer. The output of the encoder is fed into the input of the decoder.

Figure 12: Architecture for the SO(3) network.

The difference between the Linear and Selu is only the activation function for the encoder
part of the network, the Linear having linear activations and the Selu having selu activations.
The decoder always has Selu activation functions. Several different activations were tried and it
appear selu worked best. None of the layers in the encoder used a bias, as it turned out this
greatly improved the performance. Each network was trained for 80 epochs, using a batch size of
32.

The pre-trained networks have an encoder which was trained for 4 epochs, with as loss function
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Mean Squared Error, on half of the training data. The batch size used was also 32. After this,
the full network was trained again for 80 epochs.

A.2 Cube data set architecture

The networks trained on the cube data set are very similar to the ones trained on the SO(3) data
set. In Fig 13 the layers can be seen which were used. Again, the only difference between the
Linear and Selu architecture is the activation function used by the encoder. Each network was
trained for 80 epochs, using a batch size of 32.

Pre-trained networks were now trained for 8 epochs instead of 4, as it looked like the network
benefited from this.

Figure 13: Architecture for the cube network.

A.3 Regularizers

We tried to add several regularizes/layers to the ∆VAE in order to help it learn a well-defined
encoder. As already mentioned, these did not appear to help the ∆VAE . We discuss here what
exactly was tried.

First of all we tried to add a regularizer which added a loss based upon the determinant of the
input of the layer, more precisely:

c

1 + det(input)
,

where c is a hyper parameter. This was added to the output of the z mean layer. The hope
was that this would encourage the ∆VAE to stay away from singular matrices.
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Next, we tried adding a regularizer to constraint the trace of the output of the z mean layer,
because the network produces matrices with a very high trace and determinant (with or without
the previously discussed regularizer).

Lastly we tried to add a layer which would always output a matrix with non-negative determi-
nant. It would do this by calculating the determinant of the input, and multiply it with the sign
of the it. This layer was added between z mean and z mean pro.
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