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Abstract

Monitoring components can be a very beneficial practice in many fields of industry. Many components can
be preventively maintained, often less expensive than replacing the component. Analysing the data a sensor
can provide can cut tremendous amounts of maintenance costs. In this paper, the different techniques of
analysing and predicting the life of a component using Bayesian inference will be discussed. This information
can be used to plan preventive maintenance and estimate the total expected cost of the component.
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1 Introduction

Preventive maintenance is becoming a bigger part in modern companies since it can greatly reduce costs.
In this paper, the optimal policy on when to perform preventive maintenance will be determined. This can
then be used to find the total expected cost of a component.

We assume there is a component with a sensor attached. This sensor can continuously give information
of the state of the component. The increments of the sensor will be assumed to be normally distributed.
The sample path of the sensor is therefore a Brownian motion. During this research, the main focus is to
establishing a structured replacement policy for single-unit components.

Similar research is done by Elwany et al. (2011) [1] and Gebraeel et al. (2005) [2]. Later on this research
will be compared to the results of Elwany [1].

First off, having a certain policy will have certain expected costs associated to it. This will be analysed
in section 5.

Besides the cost of a certain policy, the optimal policy can be found. This is done by calculating the
so-called value function. This function can be used to find the optimal policy and use that to find the total
discounted cost of a component.

In the first part of the report, full knowledge of the sensor is assumed. In practice, this is not the case
and all sensors behave a bit different. This is implemented in the second part of the report where only the
signal of the sensor is known every time the component is checked.

The model will then be tested and evaluated. After that, some example graphs will be shown and
explained. Finally, the conclusions can be drawn.

2 Problem definition

In this report, a detailed look will be given at the timing of maintenance of a component. At every checkup,
there is a choice to either preventively maintain the component, or to do nothing and hope the component
is still functioning properly when the next check occurs.

In the first part of the report, the sensor is assumed to be a Brownian motion, with known parameters.
Although the Brownian motion is a continuous time stochastic process, it can only be checked at set intervals.
With this knowledge, the estimated cost of a certain policy is calculated. This is done by numerically
modelling the component.

The Brownian motion is a reliable estimate of a signal as it is used by multiple other researchers [3, 4, 4, 5].
As such, the Brownian motion will be used to model the signal of the component. During this research, the
results will be compared to the results of Elwany (2011) [1].

Note that the optimal policy will depend on the length of the interval. When the component is contin-
uously checked, the optimal policy will be to maintain the component just before it breaks down. In this
report, the Brownian motion is discretized with time steps of ∆t. The optimal policy therefore depends on
∆t > 0. In order to get a realistic answer ∆t has to be significantly greater than 0.

After that, there will be a section testing the findings of the optimal policy for maintaining the component.
This is done by modelling the findings from the previous model to find the best policy. After that the
outcomes can be checked whether they are the same.

When using this model in the real world, the exact parameters of the Brownian motion are, of course,
not known. This is because the usage and degradation of a component can only be estimated. Although
they are not known exactly, they can be estimated using previously observed data. This can give a good
estimation for the exact parameters. These will of course be tested and their error will be quantified.

After this is done, the bigger picture can be seen again: What is the optimal time to maintain a component
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when the parameters of the sensor are not known, and what is the expected discounted cost?

There will be a detailed approach to this problem, since it’s answer is extensive and complex.

3 Assumptions

Over the course of this report, the models have to be simplified so that they can actually be evaluated. Many
of the assumptions are straightforward, but there are some which might not be that obvious. Below, the
assumptions will all be stated and explained.

The first assumption is that every check is done at a regular interval. That means a brand new component
will be checked as frequently as one nearly failing. This interval is set at the beginning at does not change.

A second assumption is that the sensor in the component accurately describes the state of the component.
When the sensor hits the critical point ξ, the component is broken and cannot be used. The sensor of the
component is modelled by a Brownian motion and thus can go below zero. Every time-step the difference
in the sensor is a normal distribution with known parameters. Later in the report, the assumption that the
parameters are known is left out, and the parameters are estimated by the previous observations.

Another assumption is that, at such a check, the only options are totally maintaining the component,
or doing nothing. There is no such thing as maintaining part of a component. This has the consequence
that the signal can only be reset to 0 (when maintaining), of increased by a random, normally distributed,
amount.

Besides that, the time and costs for maintaining and repairing a component are different, with the premise
that repairing a component takes longer and is more expensive than preventive maintenance. This has the
underlying assumption that planned preventive maintenance is cheaper than unexpected reparation. The
time for maintenance and reparation are denoted by Tm and Tr. The costs associated with those actions are
denoted by Cm and Cr and do not change over time.

The costs of repairing and maintaining a component are also continuously discounted using a continuous
discounting factor with parameter β. This does not change over time and every timestep the discounting
factor is then given by e−β∆t. Because of inflation, costs made in the future are discounted accordingly.

4 Approach

Given the complexity of this problem, the approach has to be detailed and clear. In order to use the Brownian
motion, the underlying theories must be clear and understood. The first section will be about the needed
knowledge to completely follow and understand this report.

After the information needed in order to understand this report is clear, the problem can be tackled.
This is done in several ways. First, the estimated cost of a given maintenance-threshold can be calculated
by simulation. This is the first step in fully understanding the problem. When this is done, it can be used
to verify the results in the next sections.

After that, the value function can be defined. This is fully explained in the section 6. The value function
denotes the expected cost when starting with a component with a signal x, 0 < x ≤ ξ. This can be tested
and verified using the estimated cost of a given maintenance-threshold explained in section 5.

When these functions are explained and verified, the optimal time to maintain a component is found, and
the first part of the problem is solved. However, this method assumes that the parameters for the increase
in signal are known. In reality, these can never be known. They can however, be estimated using the data
of the previously observed signal. This is done in several ways, and those will be compared to each other.
This is done in the next sections.

Here, the properties of the component are not the same for every component. This means the parameters
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will have to be estimated again, every time the component is reset. Later on, the components are all
assumed to be homogeneous. In this case, the knowledge of the parameters can be used over multiple
multiple components, resulting in a better estimation of the actual parameters.

The hard part of estimating the parameters is that there are two unknown parameters. This makes it
substantially more difficult to estimate them, then only estimating one. That is why the first part of this
section is about estimating only one (µ or σ). Finally, some research will be spend examining whether both
can be accurately estimated.

5 Simulating the cost of a policy

In order to find the optimal policy, it can be easy to start a bit smaller. Instead of finding the best time to
maintain the component, we can estimate the cost of a specific policy. This will be done numerically. The
model used in this approach is made in R, a statistical program.

This is done by first simulating the signal, which is made by sampling multiple values from the normal
distribution with mean µ and variance σ2. These are then added and the signal is simulated. In this part,
all parameters of the Brownian motion are assumed to be known. This way a certain policy together with
certain parameters will result in a certain cost. Later on, this assumption is left out.

The next thing to add to the model is taking action when it reaches the point of maintenance, θ, or fails
as soon as it hits the breaking point, ξ. This can be modeled as shown in the figure below:

Figure 1: Sample path of the signal over 200 days. Component is repaired at t = 25, t = 108 (red) and
maintained at t = 139 (green). (seed = 2)

When the signal is between θ and ξ, the component is maintained, and the signal is then reset and costs
according to the action are added. Every timestep, the cost of repairing or maintaining is discounted. This
is a correction for inflation. This way, a simulation can be run several times and eventually the expected
cost for a certain policy will be presented.

The code for the model can be found in appendix A

Then, every time the simulation is run, every discrete timestep there is a check and one of three things
can happen:

• x < θ < ξ: The component is still functioning and does not require to be repaired or maintained.
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• θ < x < ξ: The component has reached the maintenance threshold, but is still functioning. Mainte-
nance will be performed.

• x > ξ: The component is broken and has to be repaired.

If the component has to be maintained or repaired, the cost is discounted accordingly. Due to this fact,
only simulating a finite time is very accurate. This is because after T days, the cost is discounted by e−βT .
Note that this is very close to 0, when T is large and β is fixed.

When the component is maintained or repaired, the simulated signal is lowered by the value of the signal
at that moment. This will result in the signal resetting due to the increments being independent of each
other.

Every different policy (signal at which maintenance is performed) is run N = 10.000 times. This is done
to get an accurate mean of the cost, by the law of large numbers.

After several runs, the mean of the total discounted cost can be calculated. This is presented below.

Figure 2: Total expected discounted cost for the next 400 days

Note that the parameters here are can be changed and the optimal θ will then differ. There is, however,
always a steep increase in expected cost when θ is around 0 or 1. In this example, the minimum is attained
at θ = 0.76. This means that would be the optimal policy.

Using this method, a policy can be checked and a simulation can be run to find the optimal policy.
However, this does not prove anything, but it can give useful insights and can be used to check the answers
in the coming sections. In order to find a more rigorous proof, the value function will be analysed in the
next section.

6 Value function

In the previous section, a model was shown which can be used to check a certain policy. This does not
explain why the policy is a good one. In order to analyse this further, the value iteration function will be
researched.

Now the value function, denoted by V (x, t), can be analysed. This is the total expected discounted cost
function.
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The value function is defined to be cost of the optimal action to take, where the costs are the least, so if
x < ξ:

V (x, t) = min of:

{
Maintain, with cost CPM + E[e−TmβV (0, 0)]

Do nothing, with cost E[V (x+ µ∆t+ σε(∆t))]
(1)

Where Tm and Tr denote the time it takes to perform maintenance or repair the component. CPM
denotes the cost associated to the preventive maintenance. Note that these are the only two options when
the component is not yet broken, and thus does not need replacing.

When the component is broken, (x > ξ), there is only one action, and that is to replace the component.
The cost of this action is given by:

V (n+1)(x, t) = CR + E[e−β∗TrV (n)(0, 0)]

Note that the total cost will depend on the policy Π. Never maintaining the component will result in
a different expected cost then maintaining it every day. The goal now is to determine an optimal strategy,
minimizing the expected cost:

min
Π
V (0, 0)

6.1 Bounds on the value function

The value iterated function, which will be numerically calculated in the coming sections can be bounded by
two functions. The upper bound being the cost associated with never doing preventive maintenance, and
the lower bound being the cost associated with always performing preventive maintenance, just before the
component breaks down. A sample path of the signal would look like this, where the maintenance threshold
is set at 0.95:

Figure 3: Sample path of the signal over 200 days. Component is repaired at t = 25, t = 108 (red) and
maintained at t = 139 (green). (seed = 2)

From this, the expected cost of the lower bound can be calculated. The cost of the first maintenance

is given by the expected value of e−βT
PM

Cm, and TPM being the time until maintenance is needed (i.i.d.
random variables and dependent on the set threshold), and β being the discount factor. Then, the cost

of the second maintenance is again e−β(TPM1 +TPM2 )Cm. And the cost of the n’th maintenance will be

e−β(TPM1 +TPM2 +...+TPMn )Cm. Combining all of these costs will result in the expected cost.
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This is given by:

VT = E[Cm ∗ e−βT
PM
1 + Cm ∗ e−βT

PM
1 +TPM2 + ...+ Cm ∗ e−β

∑∞
i=1 T

PM
i ]

= E[

∞∑
i=1

Cme
−β(i∗TPM1 )]

= E[Cm

∞∑
i=1

e(−βTPM1 )i ]

= E[Cm
e−β(TPM1 )

1− e−β(TPM1 )
]

And the upper bound is then given by:

E[Cr
e−β(TR)

1− e−β(TR)
]

This is the similar to the lower bound, but with the price of repairing the component, instead of maintaining
it. Note that this is only a valid equation when E|e−β(T )| < 1, but since β > 0 (inflation) and both
E[TPM ] > 0 and E[TR] > 0 , this is always true.

6.2 Evaluating the value function

The value function V (x, t) (equation 1) is hard to evaluate. This is because the expected value of the cost
function at time t+∆t further, is random. This is because the next step of V (x, t) is V (x+µ∆t+σε, t+∆t).
Where ε ∼ N(0, 1) = Z (∆t = 1 is assumed from now on). This means the outcome is random. The expected
value can be calculated by integrating over all possible values of ε. This is done below:

E[V (x+ µ∆t+ σε, t+ ∆t)] =
∞∫
−∞

V (x+ µ∆t+ σz, t+ ∆t)f(z)dz =

ξ−x−µ∆t
σ∫

−∞

V (x+ µ∆t+ σz, t+ ∆t)f(z)dz +

∞∫
ξ−x−µ∆t

σ

V (x+ µ∆t+ σz, t+ ∆t)f(z)dz

Note that the integral can be spit in two cases: if z < ξ−x−∆tµ
σ , meaning the component is still functioning

when ∆t time has passed. And the other case where z < ξ−x−∆tµ
σ , when the component is broken at that

time. This can be used later to split the possible actions and numerically evaluate the value function.

Now that the formulas for the cost function are know, the simple question remains. What is the best
strategy to do every time interval. This is just the action that costs the least: Do nothing or maintain the
component.

Note that maintaining always costs the same: Cm + E[e−TmβV (0, 0)], and the cost of doing nothing is
given by E[V (x+µ∆t+σε(∆t)). Since E[V (x+µ∆t+σε(∆t)) is increasing in x and Cm + E[e−TmβV (0, 0)]
is constant, with respect to x, their minimum is also increasing in x. This means the value function is
increasing with respect to x.
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6.3 Numerical approach to the value function

In order to calculate the cost function, the integral explained above has to be evaluated. The problem here is
that the integral domain is D = [−∞,∞]. This is impossible to numerically evaluate. That is why another
approach to this problem has to be found.

This method uses an iterative function, where the first value is entered, and every iteration the values
are updated. This converges to the exact answer. This relation is given by:

V (n+1)(x, t) = min

{
Cm + E[e−Tmβ ∗ V (n)(0, 0)] (maintain)

e−r∆t ∗E[V (n)(x+ µ∆t+ σε(∆t), t+ ∆t)](do nothing)
(2)

This function can be modeled in R, using a recursive function. As said earlier, the first iteration is just a
guess of the correct price. After that, the values are updated and are closer to the real value. The code exists
of three parts: a function that calculates the cost when no action is taken, a function which calculates the
cost when preventive maintenance is performed, and a part where the minimum of those actions is chosen.

expectedCostDoNothing <- function(n,x,t){

Numerically integrate the previous iteration of the cost

function times the normal distribution associated to it

and discount it

}

expectedCostMaintain <- function(n){

return discounted starting cost V(n-1,0,0)

}

V <- function(n,x,t){

if n=0,

return initial value

If not broken (x<xi & x>theta), do what will cost the least

return minimum of maintaining and doing nothing

If broken (x>xi), replace and pay repair costs

return repair costs + discounted maintaining cost)

}

Now that the layout of the function is clear, the specific formulas for the expected cost can be implemented.
This is done by calculating the expected cost for every possible outcome. In practice, this comes down to
sampling several values of the normal distribution from −3σ, to 3σ. The region outside of this is negligible
(0.99% is in between these values, Φ(3σ) > 0.99).

This is done by sampling a value of the standard normal distribution every interval (small distance from
each other) and finding the value accordingly. This can then be used to find the probabilities of the signal
being that value after a time step. Finally, those values are divided by the sum of all those values, to have
the total probabilities sum up to 1.

This discretization of a continuous function will lead to errors, which can be lowered by decreasing the
interval width. This comes at a price since more computations are needed to calculate the value of the next
iteration. In the code (appendix B) the interval can be decreased to increase accuracy.

Because of the recursive way of calculating the value iteration function, it takes quite some time to
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calculate the values at every point. Because the minimum is needed, both expressions have to be calculated.
This is a very inefficient way of doing the calculations.

When the best option at a given value is to preventively maintain the component, all other values
with a higher signal don’t even have to be calculated. Up until the point where the component is broken,
maintenance is the best option (because the value of doing nothing increases when x increases).

This knowledge can be used to drastically decrease the computations needed to calculate the value
iteration function. Now up until the point where both actions have the same value, doing nothing is always
better, and after the equality, performing the preventive maintenance is always better. This eliminates the
need for the minimum of two values, which in turn requires less computations.

Besides fewer computations, this method makes use of the fast vector multiplications of R. Once main-
taining is the better option at a signal level of say θ, it is the best option for all θ ≤ x ≤ ξ. And since the
possibilities of x are strictly discrete (0, 1, ..., 999, 1000) for example, a vector can be made of all of those
values. This means the first vector exists of [V (0, 0), V (0, 1)...V (0, 999)V (0, 1000)] and the second with a 1
in the first place, denoting the amount of iterations. Updating these vectors many iterations will result in
the vector V ∗(0), V ∗(1), ..., V ∗(999), V ∗(1000).

Updating the vector is done in several parts. First, the elements below θ are updated. This corresponds
to ”do nothing”. These are updated to the expected new value. This is done by the dot product of the
possible value functions and their possibilities respectively.

V1(0) =



V0(µ∆t+ 3σ)
V0(µ∆t+ 3σ − 1)

...
V0(µ∆t)

...
V0(µ∆t− 3σ + 1)
V0(µ∆t− 3σ)



T

∗



Φ(3σ)
Φ(3σ − 1)

...
Φ(0)

...
Φ(−3σ + 1)

Φ(−3σ)


After that, the part where x > θ, preventive maintenance is the better option. The updated cost of this

is: V n+1(x) = V n(0, 0)e−βTm + Cm and the cost when x > ξ is given by: V n+1(x) = V n(0, 0)e−βTr + Cr.

Since the signal can also be negative, the first couple of terms of the vector are added and set equal to
Vn(0).

Finally, the estimated equilibrium has to be updated. This is done by checking whether the option of
doing nothing, or preventively maintaining the component would be the best action.

This is done by checking the values of V (θn) and checking which is the optimal action. If performing
preventive maintenance is the best action at that time, the threshold θ is lowered, and otherwise it is
increased.

In pseudo-code it looks like the following:

for(every iteration){

If do nothing is the optimal action (x<theta){

update V by multiplying the possible

outcomes times their probability

}

Set first elements equal to V(n,0,0)

If maintaining is the optimal action (x<xi & x>theta){
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Set value to maintenance cost + discounted V(n,0,0)

}

If broken already (x>xi){

set value to repair cost + discounted V(n,0,0)

}

If cost is lower than maintaining, increase threshold

If cost is higher/equal to maintaining, lower threshold

}

This way, the threshold will end up at the point where maintaining is as expensive as doing nothing.
For all signals below the threshold, doing nothing is the better option, and for all sample paths above that,
preventive maintenance is preferred.

Note that, in order to calculate the expected value, a vector with the corresponding probabilities of the
normal distribution has to be made. This vector is given by:

N =



Φ(3σ)
Φ(3σ − 1)

...
Φ(0)

...
Φ(−3σ + 1)

Φ(−3σ)


Implementing this in R is done by having a vector with multiple V (x) for each iteration. Finally they

are all added to one big matrix which can be used to display the function. The code for this can be found
in the appendix B.

7 Results of the optimization model

Now that the basic model is finished, the results can be analyzed. One thing to observe from the model
is the graph which depicts the signal x over time, together with the optimal time to perform preventive
maintenance, θ. This is shown below:
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Figure 4: Signal of a component (black) with the optimal policy (blue) and the times where maintenance
was performed (green) (seed = 2)

Here, it can be clearly seen that the initial guess of the optimal policy (θ = 0.7) was too low. Since θ is
updated every timestep, it quickly converges to the optimal point (≈ 0.95). The monotonicity in θ cannot
be seen here because this is only the case when all other things stay constant, in this example, the signal is
very low sometimes, resulting in a decrease in θ.

Note that this depends on a lot of factors and this is just an example. Times where maintenance was
performed are indicated with the green vertical lines. When the component is completely repaired, a red
line is drawn. The signal is also reset at those points.

Another interesting graph to check is the total expected discounted cost. This can be done in finite time
since the total cost is discounted every time step, and finally, the discounting factor e−βt will get so close to
0 that it converges. The graph is shown below:

Figure 5: Total expected cost of a component (seed = 2)

This accurately depicts the total discounted cost of the component, starting with a value of x. It is cut
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off at a finite number of iterations, but since the discounting factor e−βt is very small, the extra costs are
negligible.

8 Sensitivity analysis of the optimization model

In order to verify the correctness of the model, some test cases will be analyzed. If the model behaves as
expected, it can be extended in the next sections.

In order to set a baseline for the tests, the parameters used will be shown in appendix B, together with
the rest of the code.

This gives the graph shown in the previous section. As seen in the previous section, the total difference
in expected cost between a brand new component and one nearly breaking down, is exactly the cost of
maintaining the component once. This is clearly as it should be.

Now, the behaviur of the model can be tested. when the cost of repairing a component is equal to the
cost of maintaining it, there should be no difference and the threshold should go to ξ. This should return
an optimal policy where the component is never maintained.

Figure 6: Signal (black) and theta (blue) when the cost of repairing is 1 (seed = 1)

As expected, the optimal policy is to never perform preventive maintenance. This is because, when both
costs are equal, the optimal policy is to hold on to the component as long as possible. This can clearly be
seen as θ quickly converges to ξ

9 Bayesian updating of µ

In the previous sections, the mean µ and variance σ2 were assumed to be known. In practice, this is not the
case. The component is tested in the lab, but the circumstances there are different from the circumstance of
actual use. In this section, the parameters will be estimated using previously gained data. Bayesian inference
will be used to estimate and update the hyper-parameters.

In Bayesian statistics, the parameters of the distribution are random. This is also the case in this problem.
The mean and/or variance of the increment of the signal is assumed to be normally distributed. However, the
parameters might not be known. In order to find these parameters, Bayesian statistics can play a role. This
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uses prior distributions to find posterior distributions of the parameter. Together with the prior distribution
and some empirical data, one measurement of the signal in this case, a posterior distribution can be found.
This means that µ ∼ N(µn, τn) and that µn and τn are updated every time step.

The mean µ will first be estimated, while σ is still assumed to be known. µ will be assumed to be normally
distributed. Their sum is then also normally distributed, which is very convenient during the computations.

The posterior conjugate of the normal distribution is also a normal distribution. This means that updating
the parameters using obtained data and performing Bayesian inference, will not change the nature of the
parameters. Only the hyper-parameters will change every update. The updated distribution is then called
the posterior, while the one before is called the posterior.

9.1 Finding the updated parameters of µ

From every prior distribution, a new posterior distribution can be calculated when some observations are
made. The distribution of the parameter is given by:

f(µ|x) =
f(x|µ)f(µ)

p(x)

In order to use the equation above, f(x|µ) must be found. When this distribution is a prior conjugate,
then the posterior distribution will be the same distribution as the prior. Luckily, the posterior conjugate of
the normal distribution is a again a normal distribution. This makes the calculations easier and assures for
an exact answer.

This is calculated below:

f(µ|x) = f(µ)
f(x|µ)∗
p(x)

∝ f(µ)f(x|µ)

=
1√

2πσ2
0

e
(−(µ−µ0)2

2σ2
0 ∗ 1√

2πσ2
e
−(x−µ)2

2σ2

∝ exp(− (−(µ− µ0)2

2σ2
0

) ∗ exp( (−(x− µ)2

2σ2
0

)

= exp(− (−(µ− µ0)2

2σ2
0

+
(−(x− µ)2

2σ2
)

= exp(
−σ2µ2 + 2σ2µµ0 − σ2µ2

0 − x2σ2
0 + 2xµσ2

0 − µ2σ2
0

2σ2σ2
0

)

= exp(
−µ2(σ2 + σ2

0) + 2µ(µ0σ
2 + xσ2

0)− (µ2
0σ

2 + x2σ2
0)

2σ2σ2
0

)

= exp(
−µ2 + 2µ

µ0σ
2+xσ2

0

(σ2+σ2
0)
− (

µ0σ
2+xσ2

0)

(σ2+σ2
0)

)2

2σ2σ2
0

(σ2+σ2
0)

)

∝ exp(
−(µ− µ0σ

2+xσ2
0

σ2+σ2
0

)2

2
σ2σ2

0

σ2+σ2
0

)

Which is again a normal distribution with different parameters. These updated parameters are given by:

µ0σ
2 + xσ2

0

σ2 + σ2
0

,

(
1

σ2
0

+
1

σ2

)−2
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Note the ∝, proportional to. Constant factors do not matter and can thus be left out.

9.2 Estimating µ

Now that the hyper-parameters can be updated, this can be implemented in the model. When a signal is
given and a first guess is made, the data can be used to update the guessed µ. This is done by the formula
just derived. Every timestep, the hyper-parameters µ and τ (variation of mean) is updated. The code for
the estimation is in the first part of appendix E, together with the rest of the code.

The components are from now on not assumed to be from a homogeneous distribution. This means the
estimations for each component could be different. In the next plot, the 95% confidence interval and the
true value of mu.

Figure 7: mean over 10.000 runs (blue) with 95% confidence interval (black) of the estimation of the actual
value of µ (red)

Here it can be seen that the upper and lower bound converge towards the true value. The initial values
in this case are µ0 = τ0 = 10.

This is also supported by the variance of µ, given by τ . This is updated every time step by the relation

τn+1 =
(

1
σ2

0
+ 1

σ2

)−1

. This quickly decreases as seen in this graph. This means the accuracy of µ increases.

13



Figure 8: τ (= variance of µ) over 50 time steps

since the components are not assumed to come from a homogeneous distribution. Every component has a
slightly different true mean. This means every time the component is repaired or maintained, the knowledge
of that sensor is thrown away. This means the beliefs of the optimal time to perform maintenance will also
change every time maintenance or reparation is performed.

9.3 Implementing the updated µ

Now that the parameters can be accurately estimated using Bayesian inference, they can be added to
the model. Note that µ ∼ N(µn, τn) and can thus be split into a deterministic part and a random part
µ = µn + ετn. They can be implemented in the model by using them in the value iteration function. The
new function is now given by:

V (n+1)(x, t, µn, τn) =

min

{
Cm + E[e−Tmβ ∗ V (n)(0, 0)] (maintain)

e−r∆t ∗E[V (n)(x+ ∆tµn + (σ + τn)ε, t+ ∆t)](do nothing)

where µn and τn are deterministic variables (but updated every time step) and ε is the normal distribution
with mean 0 and variance 1.

Note that the µ is now a random variable which is updated every time. The only difference is present
when the optimal action is to do nothing. The value of the updated value function is then given by:

V n+1(x, µn, τn) =



V (x+ µn∆ + 5(σ + τn))
V (x+ µn∆ + 5(σ + τn))

...
V (x+ µn∆)

...
V (x+ µn∆− 5(σ + τn) + 1)
V (x+ µn∆− 5(σ + τn))


∗



Φ(5(σ + τn))
Φ(5(σ + τn − 1))

...
Φ(0)

...
Φ(−5(σ + τn) + 1)

Φ(−5(σ + τn))


This represents the possible outcomes after ∆t. The top row represents the value when the next signal

is x + µn∆ + 5(σ + τ), which is then multiplied by the probability of getting there (Φ(5(σ + τ))). When

14



calculating this for all possible next signals and multiplying them by their probabilities, the expected value
is represented.

When the best option is to preventively maintain the component, nothing changes since the cost is static
over time and does not depend on µn or τn.

The changes to θ are not chosen to have a factor of exp(−t), where t denotes the time spent estimating
the parameters. The total code can be found in the appendix E

The graph of the expected cost of a component can now be calculated and plotted. With parameters
arbitrarily chosen, the plot will look like this:

Figure 9: Total discounted expected cost when starting with a component with signal x (seed =2)

Here, the blue vertical line represents the optimal policy of maintenance. If the component is checked
and the signal is lower than X, the best action is to do nothing. When the signal is between the blue line
and x = ξ, in this case 1, then the best action is to preventively maintain the component.

Besides this, the signal and belief of optimal policy θ can be plotted over time.
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Figure 10: Signal (black) and θ (blue) over time with estimated µ. Component is maintained at t = 78,
t = 154, t = 194 (green), and repaired at t = 34 and t = 113 (red) (seed = 5)

Note that since the components are not assumed to be homogeneous, the belief of θ resets every time,
together with the estimations of µ.

10 Bayesian updating of σ2

Now that the µ can be estimated and used in the program, σ is assumed to be random, while µ is assumed
to be fixed. This requires a similar approach as used in the part where µ was assumed to be random.

10.1 Finding the updated parameters of σ2

In order to be able to update the beliefs of σ2, the distribution of it has to be determined. This is done by
calculating the posterior which can be updated using observed data. since the distribution prior conjugate
of σ, when µ is known is given by the inverse gamma distribution f(x, α, β) = βα

Γ(α) (1/x)α+1 exp (−β/x), the

posterior can be calculated:

f(σ|x) ∝ f(σ2) ∗ f(x|σ2)

f(x)

∝ f(σ2) ∗ f(x|σ2)

∝ βα

Γ(α)
(σ2)−α−1exp

(
− β

σ2

)√
1

2πσ2
exp

(
−(x− µ)2

2σ2

)
∝ (σ2)−α−1exp

(
− β

σ2

)
1

σ
exp

(
−(x− µ)2

2σ2

)
∝ (σ2)−α−1/2exp

(
−(x− µ)2

2σ2
− β

σ2

)
∝ (σ2)−α−1/2exp

(
−1/2(x− µ)2 − β

σ2

)
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And this is again an inversed gamma distribution, but with different parameters, namely:

(
α+

1

2
, β +

(x− µ)2

2

)
These are the updated parameters of the distribution of σ2, which follows an inversed gamma distribution.

σ2 ∼ Γ′(α, β), and the updated distribution is given by σ2 ∼ Γ′(α+ 1
2 , β + (x−µ)2

2 )

10.2 Estimating σ2

After the updated distribution of σ2 is found and proven, the random σ2 can be implemented in the model.
This is a bit different from the random µ since the sum of a normally distributed random variable and
one distributed by the inverse gamma distribution is no known distribution and thus has to be calculated
separately.

The overall idea is still the same as in the previous section. An initial guess for the α and β has to be
made, and according to the observed data, the initial guess will be updated and eventually converge to the
true value of σ2.

This can easily be modelled into a program. Note that the mean of the inverse gamma distribution is
given by β

α−1 , and that value can be used. The mean can be easily calculated by taking the average of all

signals up to that point. Below, the 95% confidence interval of σ2 is shown:

Figure 11: Mean (blue), and 95% confidence interval (black) of the estimation of the actual value of sigma
(red).

10.3 Implementing the updated σ2

In order to implement the updated estimation of σ, the previous model can be adapted. Note that only the
random part in V (x + µt + εσ2) is different. This means the actions of repairing and maintaining do not
change. The value of the next iteration when doing nothing is the best choice can also be calculated. This
is done by multiplying the possible x values in the previous iteration by the probability of them occurring.

The function of the value iteration is now given by: V (n+1)(x, t, σn) =

min

{
Cm + E[e−Tmβ ∗ V (n)(0, 0)] (maintain)

e−r∆t ∗E[V (n)(x+ ∆tµ+ σnε, t+ ∆t)](do nothing)
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Note that the product of two random variables has to be calculated. Since ε ∼ N(0, 1) and σ ∼ Γ(αn, βn),
their product is also random. Recall that E[σ2] = β

α−1

The value of the updated value function is then given by:

V n+1(x, α, β) =



V (x+ µ+ 3 ∗ 3 β
α−1

...
V (x+ µ)

...

V (x+ µ− 3 ∗ 3 β
α−1

 ∗


Φ(3) ∗ Γ−1(3 β
α−1 )

...
Φ(0)

...

−Φ(3) ∗ Γ−1(3 β
α−1 )


Note that the σ is a random variable and σn ∼ Γ(α, β) and is updated every time step.

Here it is also assumed that, since the signal is discrete, there is almost no possibility of the signal
increasing more than 3 ∗ 3 β

α−1 of less than −3 ∗ 3 β
α−1 and it is therefore neglected.

The first vector is already calculated and with a difference of exactly 1, the step size is matched to the
values of the previous iteration. The second vector is a bit more difficult. The values denote the possibilities
of the component having a signal of exactly that, after one iteration. This vector can be made by going
through all possible outcomes and discretizing them. This results in a vector with all probabilities of ending
there after one time step. The code for this is again in appendix F.

First a vector with zeros is made. Then the different probabilities for the normal distribution and the
inverse Gamma distribution are added to that vector, for all possible outcomes. That same vector is then
appended to itself, without the probability of not moving (first entry of the vector), but in reversed order.
This is because of symmetry in the normal distribution. Finally, the vector is scaled so that the total
probabilities sum up to 1. This is needed because of the discretization, which causes rounding errors.

When the possible outcomes are known, this can be implemented in the model. This will result in a
graph of the total discounted cost, when given a component with a signal of x.

Figure 12: Total discounted cost when σ is estimated using Bayesian inference. The blue line indicates the
threshold when to maintain the component.

An example of the signal over time can be seen below:
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Figure 13: Signal (black) and θ (blue) over time with estimated σ. Repaired at t = 33 (red), maintained at
t = 59, t = 105, t = 154, t = 198 (green), (seed = 15).

11 Bayesian updating of both µ and σ2

In the previous sections, the mean and variance of the signal were estimated using Bayesian inference. Both
times, only one parameter was assumed to be random, while the other one was assumed to be known. In
this section, both parameters are assumed to be unknown. Estimating these parameters will be a bit harder,
but Bayesian inference can still be used. First off, the updated parameters will be calculated. After that,
they can be implemented in the model.

11.1 Finding the updated parameters of µ and σ2

In order to update the beliefs of the distribution of µ and σ2, the posterior has to be found.

f(µ, σ2|x) ∝ f(x|µ, σ2)
f(µ, σ2)

p(x)

The normal-inverse-gamma distribution (or Gaussian-inverse-gamma distribution) is the conjugate prior
of a normal distribution with unknown mean and variance. It is a four-parameter distribution. although σ
is not directly given by the function, it can be calculated by σ = β

α−1 . λ denotes the amount of observations
made.

This can be used to find the updated parameters used in Bayesian inference.

The density function of the distribution is given by:

f(µ, σ | x, λ, α, β) =

√
λ

σ
√

2π

βα

Γ(α)

(
1

σ2

)α+1

exp

(
−2β + λ(x− µ)2

2σ2

)
The updated parameters can now be calculated. Note that µ and σ are not directly given, but rather

µ, λ, α, β.
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f(µ, σ|x) = f(µ, λ, α, β|x) ∝ f(µ, λ, α, β) ∗ f(x|µ, λ, α, β)

f(x)

∝ f(µ, λ, α, β) ∗ f(x|µ, λ, α, β)

=

√
λ

σ
√

2π

βα

Γ(α)

(
1

σ2

)α+1

exp

(
−2β + λ(x− µ)2

2σ2

)
∗ 1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
∝
(

1

σ2

)α0− 1
2

exp (−β0τ) exp

(
−
λ0( 1

σ2 )(µ− µ0)2

2

)
1

σ
exp

(
−(x− µ)2

2σ2

)
∝
(

1

σ2

)α0

exp

(
− 1

σ2
β0

)
exp

(
− 1

2σ2

(
λ0(µ− µ0)2 + (x− µ)2

))
The part within the exponent can be simplified in the following way:

λ0(µ− µ0)2 + (x− µ)2 = λ0µ
2 − 2λ0µµ0 + λ0µ

2
0 + µ2 − 2x̄µ+ x2

= (λ0 + 1)µ2 − 2(λ0µ0 + x)µ+ λ0µ
2
0 + x2

= (λ0 + 1)(µ2 − 2
λ0µ0 + x

λ0 + 1
µ) + λ0µ

2
0 + x2

= (λ0 + 1)

(
µ− λ0µ0 + x

λ0 + 1

)2

+ λ0µ
2
0 + x2 − (λ0µ0 + x)

2

λ0 + 1

= (λ0 + 1)

(
µ− λ0µ0 + x

λ0 + 1

)2

+
λ0(x− µ0)2

λ0 + 1

This can now be used in the previous formula:

f(µ, λ, α, β|x) ∝
(

1

σ2

)α0

exp

(
− 1

σ2
β0

)
exp

(
− 1

2σ2

(
λ0(µ− µ0)2 + (x− µ)2

))
∝
(

1

σ2

)α0

exp

(
− 1

σ2
β0

)
exp

(
− 1

2σ2
((λ0 + 1)

(
µ− λ0µ0 + x

λ0 + 1

)2

+
λ0(x− µ0)2

λ0 + 1

)

∝
(

1

σ2

)α0

exp

(
− 1

σ2
β0 +

λ0(x− µ0)2

λ0 + 1

)
exp

(
− 1

2σ2
((λ0 + 1)

(
µ− λ0µ0 + x

λ0 + 1

)2
)

And this is exactly the normal inversed gamma distribution with updated parameters:

(
λ0µ0 + x

λ0 + 1
, λ0 + 1, α0 +

1

2
, β0 +

λ0(x− µ0)2

λ0 + 1

)
Note that µn+1, αn+1, βn+1 are almost the same as the cases where only one variable was unknown (only

λ is new).

11.2 Implementing the updated µ and σ2

Now that both parameters can be estimated, they too can be implemented in the model. The equations
used in the model can now be altered such that the µ and σ are both random.

V (n+1)(x, t, µn, λn, αn, βn) =

min

{
Cm + E[e−Tmr ∗ V (n)(0, 0)] (maintain)

e−r∆t ∗E[V (n)(x+ ∆tµ+ σε, t+ ∆t)](do nothing)
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Where µ ∼ N(µn,
β

(α−1)λ ) and σ2 ∼ Γ−1(α, β).

The expected value of V n(x + ∆tµ + σε, t + ∆t) can be calculated in the same way as done before, the
in-product of two vectors. One with all possible outcomes after ∆t time, and one with the corresponding
probabilities.

The values in between the first vector all differ by one because of discretization. The probabilities are
represented in the second vector respectively.

The code can be found in appendix G. Below, the estimations of µ and σ can be seen below. An example
of the signal and θ over time can be seen thereafter.

(a) Estimation of µ using Bayesian inference.
True value is µ = 25

(b) Estimation of σ using Bayesian inference.
True value is σ = 30

Figure 14: Signal (black) and θ (blue) over time with estimated µ and σ (seed = 58)

Here, it can be seen that the first time, maintenance was too late and the component had to be repaired.
The next four times, maintenance was performed on time.

Also note that the optimal threshold θ can increase and decrease. Earlier in the report, the monotonicity
of θ was stated. This does not mean earlier statement was wrong, since there everything else was assumed
to stay constant. Since the signal changes every step, this is not the case and a decrease in θ can happen.

Finally, the three different approaches can be compared. Below, there is a signal, together with the beliefs
of optimal policies using the three different ways.
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Figure 15: Signal (black) and θ for all three approaches over time with estimating µ (purple), σ (blue) and
both µ and σ (orange) (seed = 97,Cr = 2)

Here it is clear that all approaches are similar, but they still differ a bit from each other. Depending on
the available information, the method can be chosen.

12 Discussion

Throughout this report, several things are assumed to be simpler than they in fact are. This model does not
take every factor into account. Several things that could be improved in the model are as follows:

If the sensor is just below θ, and at the next time step just below ξ, the model suggests the component
to be maintained. There is however, a possibility that the component breaks down in between two checkups
and that its signal is lower than ξ at both times. This is something to look into as it is totally neglected in
this report.

Another aspect of the model that could be improved is that the change in θ depends on the knowledge
of the value iteration function. In the first few time steps however, the value iteration function is not very
accurate since it greatly depends on the initial guess of θ. Later in in time, this gets more accurate.

Finally, this research can be compared to the paper that was the main motivation for this research
(Elwany, 2011 [1]). In their paper they have also chosen for a discrete time problem. The sample path of
the signal is also assumed to be a Brownian motion. The difference in methodology lies in the increments
in the signal. Their signal is split into a homogeneous part and a components-specific part. In this paper,
all components are assumed to be from a non-homogeneous set. another difference is that they also include
observation costs, which are neglected in this paper.

During their research they also used the value iteration function (equation 2) in order to calculate the
total expected discounted costs. Another difference is that their signal is transformed to be an exponential
function, whereas it is a linear function in this paper.

Their research also provides empirical data as to how their findings behave in the real world. This is a
great way of verifying the results, but due to time limitations could not be done in this paper.

Their model is not included, so no comparison could be made. Fortunately, their pseudo-code was
included and looked similar to the one used in this paper (section 6.3).
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13 Conclusion

When a component is observed for a period of time, a maintenance-policy can be made in order to minimize
the cost of it. This can be done by evaluating the value iteration function. At every step in time, the
underlying parameters of the increase in the signal (normally distributed) can be estimated using Bayesian
inference. This increases the accuracy of the estimated parameters.

From here, the optimal policy, together with the signal can be plotted.

Figure 16: Signal (black) and θ (blue) over time with estimated µ and σ (seed = 58)

Here, the belief of θ, the optimal time to perform maintenance can be seen over time, together with
the signal x. This will help reduce the cost of repairing components, as well as the ability to give a clear
estimation of the total discounted cost of a component in the future.
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A Finding the cost for a specific policy

1 f o r ( i in s i g n a l ) {
2 co s t <− 0
3 f o r (n in N) {
4 x <− rnorm (n = length ( time ) −1 ,
5 sd = sq r t ( var i ance ) ,mean = mu)
6 x <− c (0 , cumsum(x ) )
7 f o r ( t in time ) {
8 i f ( x [ t ]> th r e sho ld ) {
9 x [ ( t+1) : endtime ] <− x [ ( t+1) : endtime ] − x [ t+1]

10 co s t <− co s t + cr ∗ exp(−( beta ∗ t ) )
11 }
12 i f ( x [ t ] > th r e sho ld ∗ i & x [ t ]< th r e sho ld ) {
13 x [ ( t+1) : endtime ] <− x [ ( t+1) : endtime ] − x [ t+1]
14 co s t <− co s t + cm ∗ exp(−( beta ∗ t ) )
15 }
16 }
17 }
18 costVec <− c ( costVec ,mean( co s t ) )
19 }

B Code for the basic model

1 s e t . seed (2 )
2

3 ###################
4 Do not i n c r e a s e sigma too much (>100) , s i n c e the s i g n a l going below 0 causes the model to

e x i t
5 ###################
6

7

8 # Time va r i a b l e s
9 beta <− 0 .01

10 Tm <− 0 .01
11 Tr <− 0 .05
12 deltaT <− 0 .001
13

14 # Discount f o r time
15 di scountRepa i r <− exp(−beta ∗Tr)
16 discountDoNothing <− exp(−beta ∗deltaT )
17 discountMainta in <− exp(−beta ∗ Tm)
18

19 # Amount o f i t e r a t i o n s
20 maxIterat ion <− 200
21

22 endT <− maxIterat ion
23 time <− seq (1 , endT , 1 )
24

25 mu <− 25
26 sigma <− 30
27

28 # Generate x and the s i g n a l v e c t o r s
29 x <− rnorm ( rep (0 , ( endT) ) ,mu, sigma )
30 s i g n a l <− x
31 x <− cumsum(x )
32 x [ 1 ] <− 0
33

34 # co s t s
35 r epa i rCos t <− 1 .2
36 maintainCost <− 1
37
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38 # Signa l s t a r t s at 100 , broken at 1100 s t ep s o f 0 . 1 from 1 to 100
39 newLevel <− 1000
40 brokenLevel <− 2000
41 endX <− 2200
42

43 s i gna lAx i s <− seq (1 , endX , 1 )
44

45 # I n i t i a l va lue f o r V0
46 i n i t i a lV a l u e <− 0
47

48 # OldV i s f i r s t guess
49 oldV <− rep ( i n i t i a lVa l u e , endX)
50 newV <− rep ( i n i t i a lVa l u e , endX)
51

52 # Add f i r s t guess to t o t a l matrix o f c o s t s
53 tota lV <− oldV
54

55 # I n i t i a l guess f o r x∗ and i n c r e a s e i t by s t a r t i n g po s i t i o n o f X
56 i n i t i a l X <− 700
57 X <− i n i t i a l X+newLevel
58

59 t imeSinceReset <− 0
60

61 f o r ( i t e r a t i o n in 1 : maxIterat ion ) {
62 # Calcu la te new cos t (n+1)
63 t imeSinceReset <− t imeSinceReset + 1
64 # Res ize normalprob to the app r op r i a t e s i z e
65 NormalProb <− dnorm( seq (−5∗ sigma , 5 ∗ sigma , l ength . out = (10 ∗ sigma + 1) ) ,0 , sigma )
66 NormalProb <− NormalProb/sum(NormalProb )
67

68 # I f do nothing i s the best cho i c e
69 f o r ( i in newLevel :X[ i t e r a t i o n ] ) {
70 newV [ i ] <− sum( oldV [ ( i+mu−(5∗ sigma ) ) :
71 ( i+mu +(5∗ sigma ) ) ] ∗ NormalProb )
72 }
73 # I f s i g n a l i s negat ive , a s s i gn value o f V( newleve l )
74 f o r ( i in 1 : ( newLevel−1) ) {
75 newV [ i ] <− newV [ newLevel ]
76 }
77 # I f mainta in ing i s the best cho i c e
78 f o r ( i in (X[ i t e r a t i o n ]+1) : brokenLevel ) {
79 newV [ i ] <− maintainCost + discountMainta in ∗ oldV [ newLevel ]
80 }
81 # I f broken a l ready
82 f o r ( i in ( brokenLevel+1) : endX) {
83 newV [ i ] <− r epa i rCos t + discountRepa i r ∗ oldV [ newLevel ]
84 }
85

86 # Add new cos t to t o t a l co s t matrix
87 tota lV <− cbind ( totalV , newV)
88

89 # Make new cos t vec to r the o ld
90 oldV <− newV
91

92

93 # Update X
94 i f (X[ i t e r a t i o n ]<=brokenLevel && X[ i t e r a t i o n ]>newLevel && ! i s . nu l l ( oldV [X[ i t e r a t i o n ] ] ) ) {
95 # I f co s t o f doing nothing i s lower than maintaining , lower th r e sho ld
96 i f (newV [X[ i t e r a t i o n ] ] >= maintainCost + discountMainta in ∗ oldV [ newLevel ] ) {
97 X <− c (X,X[ i t e r a t i o n ] − exp(− t imeSinceReset / 10) ∗ (50) )
98 } # I f co s t i s h igher / equal to maintaining , i n c r e a s e th r e sho ld
99 e l s e {

100 X <− c (X,X[ i t e r a t i o n ] + exp(− t imeSinceReset / 10) ∗ (50) )
101 }
102 } e l s e {
103 X <− c (X, brokenLevel −1)
104 }
105 }

25



106

107 # Plot with r i g h t s t a r t i n g X Values
108 p lo t ( s i gna lAx i s [ newLevel : ( brokenLevel −1) ] , newV [ newLevel : ( brokenLevel −1) ] , type = ’ l ’ ,
109 xlab = ” s i g n a l ( s t a r t i n g x value ) ” , ylab = ” expected co s t ” , axes = FALSE,
110 main = ’ Total expected co s t o f a component ’ )
111 ab l i n e (v=X[ maxIterat ion ] , c o l = ” blue ” )
112 ax i s ( s i d e =1, at=seq ( newLevel , brokenLevel , 1 00 ) , l a b e l s = seq (0 , newLevel , 1 00 ) )
113 ax i s (2 )
114 box ( )
115

116 ############################################
117

118 repairTiming <− −100
119 maintainTiming <− −100
120

121 f o r ( t in time ) {
122 i f ( ! i s . nu l l ( x [ t ] ) ) {
123 # repa in
124 i f ( x [ t ]>brokenLevel−newLevel ) {
125 x [ ( t+1) : endT ] <− x [ ( t+1) : endT ] − x [ t+1]
126 repairTiming <− c ( repairTiming , t )
127 }
128 i f ( ! i s . na (x [ t ] ) ) {
129 # maintain
130 i f ( x [ t ] >= X[ t ]−newLevel && x [ t ] < brokenLevel−newLevel ) {
131 x [ ( t+1) : endT ] <− x [ ( t+1) : endT ] − x [ t+1]
132 maintainTiming <− c ( maintainTiming , t )
133 }
134 }
135 }
136 }
137

138 p lo t ( time , x , type = ’ l ’ ,main = ’ S igna l o f a component ’ )
139 l i n e s ( c ( time , ( endT+1) ) ,X−newLevel , type = ’ l ’ , c o l = ”blue ” )
140 ab l i n e (v = repairTiming , c o l = ’ red ’ )
141 ab l i n e (v = maintainTiming , c o l = ’ green ’ )

C Code for estimating µ

1 mu <− guessedMu
2 tau <− guessedTau
3

4 f o r ( t in time ) {
5 mu <− c (mu, ( tau [ t ] ∗ s i g n a l [ t ] / ( sigmaˆ2+tau [ t ] ˆ 2 ) + sigma∗mu[ t ] / ( sigmaˆ2+tau [ t ] ˆ 2 ) ) )
6 tau <− c ( tau , 1 / ( tau [ t ]ˆ2+1/sigma ˆ2) )
7 }

D Code for estimating σ

1 beta <− guessedBeta
2 alpha <− guessedAlpha
3 sigma <− beta / ( alpha−1)
4

5 f o r ( t in time ) {
6 alpha <− c ( alpha , alpha [ t ] + 1/ 2)
7 beta <− c ( beta , beta [ t ] + ( s i g n a l [ t ]−actualMu ) ˆ2/ 2)
8 sigma <− c ( beta [ t ] / ( alpha [ t ]−1) )
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9 }

E Value iteration with µ unknown

1 s e t . seed (2 )
2

3 # Time va r i a b l e s
4 beta <− 0 .001
5 Tm <− 0 .01
6 Tr <− 0 .05
7 deltaT <− 0 .001
8

9 repairTiming <− −10
10 maintainTiming <− −10
11

12 # Discount f o r time
13 di scountRepa i r <− exp(−beta ∗Tr)
14 discountDoNothing <− exp(−beta ∗deltaT )
15 discountMainta in <− exp(−beta ∗ Tm)
16

17 # Amount o f i t e r a t i o n s
18 maxIterat ion <− 200
19

20 # I n i t i a l v a r i a b l e s
21 actualMu <− 25
22 actualSigmasq <− 900
23 sigmasq <− actualSigmasq
24

25 endT <− maxIterat ion
26 time <− seq (1 , endT , 1 )
27

28 # Generate x and the s i g n a l v e c t o r s
29 x <− rnorm ( rep (0 , ( endT) ) , actualMu , sq r t ( actualSigmasq ) )
30 s i g n a l <− x
31 x <− cumsum(x )
32 x [ 1 ] <− 0
33

34 # co s t s
35 r epa i rCos t <− 1 .2
36 maintainCost <− 1
37

38 newLevel <− 1000
39 brokenLevel <− 2000
40 endX <− 2200
41

42 s i gna lAx i s <− seq (1 , endX , 1 )
43

44 # I n i t i a l va lue f o r V0
45 i n i t i a lV a l u e <− 0
46

47 # OldV i s f i r s t guess
48 oldV <− rep ( i n i t i a lVa l u e , endX)
49 newV <− rep ( i n i t i a lVa l u e , endX)
50

51 # Add f i r s t guess to t o t a l matrix o f c o s t s
52 tota lV <− oldV
53

54 # I n i t i a l guess f o r x∗ and i n c r e a s e i t by s t a r t i n g po s i t i o n o f X
55 i n i t i a l X <− 700
56 X <− i n i t i a l X+newLevel
57

58 # I n i t i a l guess f o r mu and tau
59 muIni t ia lGuess <− 20
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60 t au In i t i a lGue s s <− 10
61 sigma <− s q r t ( sigmasq )
62

63 t imeSinceReset <− 0
64

65 mu <− muIni t ia lGuess
66 tau <− t au In i t i a lGue s s
67

68 ############################################
69

70 f o r ( t in time ) {
71 mu <− c (mu, ( tau [ t ] ∗ s i g n a l [ t ] / ( actualSigmasq+tau [ t ] ) + actualSigmasq ∗mu[ t ] / (

actualSigmasq+tau [ t ] ) ) )
72 tau <− c ( tau , 1 / (1 / tau [ ( t ) ]+1/ actualSigmasq ) )
73 }
74

75 f o r ( i t e r a t i o n in 1 : maxIterat ion ) {
76 # Calcu la te new cos t (n+1)
77

78

79 # Res ize normalprob to the app r op r i a t e s i z e
80 NormalProb <− dnorm( seq (−5∗ sigma , 5 ∗ sigma , l ength . out = (10 ∗ ( sigma+c e i l i n g ( tau [ i t e r a t i o n ] ) )

+ 1) ) , 0 , ( sigma+tau [ i t e r a t i o n ] ) )
81 NormalProb <− NormalProb/sum(NormalProb )
82

83 # I f do nothing i s the best cho i c e
84 f o r ( i in newLevel :X[ i t e r a t i o n ] ) {
85 newV [ i ] <− sum( ( oldV [ ( i+mu[ i t e r a t i o n ]−(5∗ ( sigma+c e i l i n g ( tau [ i t e r a t i o n ] ) ) ) ) :
86 ( i+mu[ i t e r a t i o n ]+(5∗ ( sigma+c e i l i n g ( tau [ i t e r a t i o n ] ) ) ) ) ] ∗

NormalProb ) )
87 }
88 # I f s i g n a l i s negat ive , a s s i gn value o f V( newleve l )
89 f o r ( i in 1 : ( newLevel−1) ) {
90 newV [ i ] <− newV [ newLevel ]
91 }
92 # I f mainta in ing i s the best cho i c e
93 f o r ( i in (X[ i t e r a t i o n ]+1) : brokenLevel ) {
94 newV [ i ] <− maintainCost + discountMainta in ∗ oldV [ newLevel ]
95 }
96 # I f broken a l ready
97 f o r ( i in ( brokenLevel+1) : endX) {
98 newV [ i ] <− r epa i rCos t + discountRepa i r ∗ oldV [ newLevel ]
99 }

100

101 # Add new cos t to t o t a l co s t matrix
102 tota lV <− cbind ( totalV , newV)
103

104 # Make new cos t vec to r the o ld
105 oldV <− newV
106

107 t imeSinceReset <− t imeSinceReset + 1
108

109 # Update X
110 i f (X[ i t e r a t i o n ]<=brokenLevel && X[ i t e r a t i o n ]>newLevel && ! i s . nu l l ( oldV [X[ i t e r a t i o n ] ] ) ) {
111 # I f co s t o f doing nothing i s lower than maintaining , lower th r e sho ld
112 i f (newV [X[ i t e r a t i o n ] ] >= maintainCost + discountMainta in ∗ oldV [ newLevel ] ) {
113 X <− c (X,X[ i t e r a t i o n ] − exp(− t imeSinceReset / 10) ∗ (50) )
114 } # I f co s t i s h igher / equal to maintaining , i n c r e a s e th r e sho ld
115 e l s e {
116 X <− c (X,X[ i t e r a t i o n ] + exp(− t imeSinceReset / 10) ∗ (50) )
117 }
118 } e l s e {
119 X <− c (X, brokenLevel −1)
120 }
121

122 # Check i f s i g n a l i s r e s e t , i f so , f o r g e t mu
123 i f ( x [ i t e r a t i o n ]>= X[ i t e r a t i o n ]−newLevel ) {
124
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125 t imeSinceReset <− 0
126

127 # re s e t s i g n a l
128 x [ ( i t e r a t i o n +1) : endT ] <− x [ ( i t e r a t i o n +1) : endT ] − x [ i t e r a t i o n ]
129

130 # Forget knowledge o f mu a f t e r r e s e t
131 mu <− mu[ 1 : ( i t e r a t i o n ) ]
132 tau <− tau [ 1 : ( i t e r a t i o n ) ]
133

134 mu<− c (mu, muIn i t ia lGuess )
135 tau <− c ( tau , t au In i t i a lGue s s )
136

137 # Estimate mu and tau again
138 f o r ( t in ( i t e r a t i o n +1) : ( endT) ) {
139 mu <− c (mu, ( tau [ t ] ∗ s i g n a l [ t ] / ( actualSigmasq+tau [ t ] ) + actualSigmasq ∗mu[ t ] / (

actualSigmasq+tau [ t ] ) ) )
140 tau <− c ( tau , 1 / (1 / tau [ ( t ) ]+1/ actualSigmasq ) )
141 }
142 # re s e t b e l i e f o f X
143 X <− c (X[− l ength (X) ] , i n i t i a l X+newLevel )
144 }
145

146 # repa i r
147 i f ( x [ i t e r a t i o n ]>=brokenLevel−newLevel ) {
148 repairTiming <− c ( repairTiming , i t e r a t i o n )
149 }
150

151 # maintain
152 i f ( x [ i t e r a t i o n ] >= X[ i t e r a t i o n ]−newLevel && x [ i t e r a t i o n ] < brokenLevel−newLevel ) {
153 maintainTiming <− c ( maintainTiming , i t e r a t i o n )
154 }
155 }
156

157 # Plot est imated parameters
158 p lo t ( c (0 , time ) ,mu, type = ’ l ’ , main = ’ Est imation o f parameter us ing Bayesian i n f e r e n c e ’ )
159 ab l i n e (v = repairTiming , c o l = ’ red ’ )
160 ab l i n e (v = maintainTiming , c o l = ’ green ’ )
161 ab l i n e (h = actualMu , c o l = ’ red ’ )
162

163

164

165 # Plot with r i g h t s t a r t i n g X Values
166 p lo t ( s i gna lAx i s [ newLevel : ( brokenLevel −1) ] , newV [ newLevel : ( brokenLevel −1) ] , type = ’ l ’ ,
167 xlab = ” s i g n a l ( s t a r t i n g x value ) ” , ylab = ” expected co s t ” , axes = FALSE, main = ’ Total

expected co s t o f a component ’ )
168 ab l i n e (v=X[ maxIterat ion ] , c o l = ” blue ” )
169 ax i s ( s i d e =1, at=seq ( newLevel , brokenLevel , 1 00 ) , l a b e l s = seq (0 , newLevel , 1 00 ) )
170 ax i s (2 )
171 box ( )
172 ############################################
173

174 p lo t ( time , x , type = ’ l ’ ,main = ’ S igna l o f a component ’ , yl im = c (0 ,1000) )
175 l i n e s ( c ( time , ( endT+1) ) ,X−newLevel , type = ’ l ’ , c o l = ”blue ” )
176 ab l i n e (v = maintainTiming , c o l = ’ green ’ )
177 ab l i n e (v = repairTiming , c o l = ’ red ’ )
178

179 ab l i n e (h = 1000)
180

181 muX <− X−newLevel

F Value iteration with σ unknown
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1 l i b r a r y ( ”invgamma” )
2 s e t . seed (2 )
3

4 # Time va r i a b l e s
5 i n t e r e s t <− 0 .001
6 Tm <− 0 .01
7 Tr <− 0 .05
8 deltaT <− 0 .001
9

10 repairTiming <− −10
11 maintainTiming <− −10
12

13 # Discount f o r time
14 di scountRepa i r <− exp(− i n t e r e s t ∗Tr)
15 discountDoNothing <− exp(− i n t e r e s t ∗deltaT )
16 discountMainta in <− exp(− i n t e r e s t ∗ Tm)
17

18 # Amount o f i t e r a t i o n s
19 maxIterat ion <− 200
20

21 # I n i t i a l v a r i a b l e s
22 actualMu <− 20
23 mu <− actualMu
24 actualSigmasq <− 900
25

26

27 endT <− maxIterat ion
28 time <− seq (1 , endT , 1 )
29

30 # Generate x and the s i g n a l v e c t o r s
31 x <− rnorm ( rep (0 , ( endT) ) , actualMu , sq r t ( actualSigmasq ) )
32 s i g n a l <− x
33 x <− cumsum(x )
34

35 # co s t s
36 r epa i rCos t <− 1 .2
37 maintainCost <− 1
38

39 newLevel <− 1000
40 brokenLevel <− 2000
41 endX <− 2200
42

43 s i gna lAx i s <− seq (1 , endX , 1 )
44

45 # I n i t i a l va lue f o r V0
46 i n i t i a lV a l u e <− 0
47

48 # OldV i s f i r s t guess
49 oldV <− rep ( i n i t i a lVa l u e , endX)
50 newV <− rep ( i n i t i a lVa l u e , endX)
51

52 # Add f i r s t guess to t o t a l matrix o f c o s t s
53 tota lV <− oldV
54

55 # I n i t i a l guess f o r x∗ and i n c r e a s e i t by s t a r t i n g po s i t i o n o f X
56 i n i t i a l X <− 700
57 X <− i n i t i a l X+newLevel
58

59 # I n i t i a l guess f o r mu and tau
60 a l pha In i t i a lGue s s <− 11
61 be t a I n i t i a lGue s s <− 9000
62 s i gmasq In i t i a lGue s s <− be t a I n i t i a lGue s s / ( a lpha In i t i a lGue s s −1)
63

64 t imeSinceReset <− 0
65

66

67 alpha <− a l pha In i t i a lGue s s
68 beta <− be t a I n i t i a lGue s s
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69 sigmasq <− beta / ( alpha−1)
70

71

72 ############################################
73

74 f o r ( t in time ) {
75 alpha <− c ( alpha , alpha [ t ] + 1/ 2)
76 beta <− c ( beta , beta [ t ] + ( s i g n a l [ t ] − mu) ˆ2/ 2)
77 sigmasq <− c ( sigmasq , beta [ t ] / ( alpha [ t ]−1) )
78 }
79

80 f o r ( i t e r a t i o n in 1 : maxIterat ion ) {
81 # Calcu la te new cos t (n+1)
82

83 alpha [ i t e r a t i o n ] <− c e i l i n g ( alpha [ i t e r a t i o n ] )
84 beta [ i t e r a t i o n ] <− c e i l i n g ( beta [ i t e r a t i o n ] )
85

86 # Calcu la te p r o b a b i l i t i e s o f ending up at c e r t a i n va lue s with 3 random va r i a b l e s
87

88 p r obab i l i t y <− rep (0 , (3 ∗ c e i l i n g ( sq r t ( sigmasq [ i t e r a t i o n ] ) ) )+1)
89

90 N <− seq ( 0 , 2 , 0 . 2 5 )
91 G <− seq ( sq r t ( sigmasq [ i t e r a t i o n ] ) ,2 ∗ s q r t ( sigmasq [ i t e r a t i o n ] ) , l ength . out = 20)
92

93 f o r (n in N) {
94 f o r ( g in G) {
95 i f ( c e i l i n g (n∗g ) <l ength ( p r obab i l i t y ) ) {
96 p r obab i l i t y [ c e i l i n g (n∗g ) ] <− p r obab i l i t y [ c e i l i n g (n∗g ) ] +
97 dinvgamma(g , alpha [ i t e r a t i o n ] , beta [ i t e r a t i o n ] ) ∗ dnorm(n , 0 , 1 )
98 }
99 }

100 }
101

102 p r obab i l i t y <− c ( rev ( p r obab i l i t y [−1]) , p r obab i l i t y )
103 p r obab i l i t y <− p r obab i l i t y /sum( p r obab i l i t y )
104

105

106 # I f do nothing i s the best cho i c e
107 f o r ( i in newLevel :X[ i t e r a t i o n ] ) {
108 newV [ i ] <− sum( oldV [ ( i+mu−3∗ c e i l i n g ( sq r t ( sigmasq [ i t e r a t i o n ] ) ) ) :
109 ( i+mu+3∗ c e i l i n g ( sq r t ( sigmasq [ i t e r a t i o n ] ) ) ) ] ∗ p r obab i l i t y )
110 }
111 # I f s i g n a l i s negat ive , a s s i gn value o f V( newleve l )
112 f o r ( i in 1 : ( newLevel−1) ) {
113 newV [ i ] <− newV [ newLevel ]
114 }
115 # I f mainta in ing i s the best cho i c e
116 f o r ( i in (X[ i t e r a t i o n ]+1) : brokenLevel ) {
117 newV [ i ] <− maintainCost + discountMainta in ∗ oldV [ newLevel ]
118 }
119 # I f broken a l ready
120 f o r ( i in ( brokenLevel+1) : endX) {
121 newV [ i ] <− r epa i rCos t + discountRepa i r ∗ oldV [ newLevel ]
122 }
123

124 # Add new cos t to t o t a l co s t matrix
125 tota lV <− cbind ( totalV , newV)
126

127 # Make new cos t vec to r the o ld
128 oldV <− newV
129

130 t imeSinceReset <− t imeSinceReset + 1
131

132 # Update X
133 i f (X[ i t e r a t i o n ]<=brokenLevel && X[ i t e r a t i o n ]>newLevel && ! i s . nu l l ( oldV [X[ i t e r a t i o n ] ] ) ) {
134 # I f co s t o f doing nothing i s lower than maintaining , lower th r e sho ld
135 i f (newV [X[ i t e r a t i o n ] ] >= maintainCost + discountMainta in ∗ oldV [ newLevel ] ) {
136 X <− c (X,X[ i t e r a t i o n ] − exp(− t imeSinceReset / 10) ∗ (50) )
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137 } # I f co s t i s h igher / equal to maintaining , i n c r e a s e th r e sho ld
138 e l s e {
139 X <− c (X,X[ i t e r a t i o n ] + exp(− t imeSinceReset / 10) ∗ (50) )
140 }
141 } e l s e {
142 X <− c (X, brokenLevel −1)
143 }
144

145 # Check i f s i g n a l i s r e s e t , i f so , f o r g e t sigma
146 i f ( x [ i t e r a t i o n ]>= X[ i t e r a t i o n ]−newLevel ) {
147

148 # re s e t s i g n a l
149 x [ ( i t e r a t i o n +1) : endT ] <− x [ ( i t e r a t i o n +1) : endT ] − x [ i t e r a t i o n ]
150 t imeSinceReset <− 0
151

152 # Forget knowledge o f mu and sigma a f t e r r e s e t
153 sigmasq <− sigmasq [ 1 : ( i t e r a t i o n ) ]
154 alpha <− alpha [ 1 : i t e r a t i o n ]
155 beta <− beta [ 1 : i t e r a t i o n ]
156

157 sigmasq <− c ( sigmasq , s i gmasq In i t i a lGue s s )
158 alpha <− c ( alpha , a l pha In i t i a lGue s s )
159 beta <− c ( beta , b e t a I n i t i a lGue s s )
160

161 # Estimate mu and sigma again
162 f o r ( t in ( i t e r a t i o n +1) : ( endT) ) {
163 alpha <− c ( alpha , alpha [ t ] + 1/ 2)
164 beta <− c ( beta , beta [ t ] + ( s i g n a l [ t ] − mu) ˆ2/ 2)
165 sigmasq <− c ( sigmasq , beta [ t ] / ( alpha [ t ]−1) )
166 }
167

168 # re s e t b e l i e f o f X
169 X <− c (X[− l ength (X) ] , i n i t i a l X+newLevel )
170 }
171

172 # repa i r
173 i f ( x [ i t e r a t i o n ]>=brokenLevel−newLevel ) {
174 repairTiming <− c ( repairTiming , i t e r a t i o n )
175 }
176

177 # maintain
178 i f ( x [ i t e r a t i o n ] >= X[ i t e r a t i o n ]−newLevel && x [ i t e r a t i o n ] < brokenLevel−newLevel ) {
179 maintainTiming <− c ( maintainTiming , i t e r a t i o n )
180 }
181 }
182

183 # Plot with r i g h t s t a r t i n g X Values
184 p lo t ( s i gna lAx i s [ newLevel : ( brokenLevel −1) ] , newV [ newLevel : ( brokenLevel −1) ] , type = ’ l ’ ,
185 xlab = ” s i g n a l ( s t a r t i n g x value ) ” , ylab = ” expected co s t ” , axes = FALSE, main = ’ Total

expected co s t o f a component ’ )
186 ab l i n e (v=X[ maxIterat ion ] , c o l = ” blue ” )
187 ax i s ( s i d e =1, at=seq ( newLevel , brokenLevel , 1 00 ) , l a b e l s = seq (0 , newLevel , 1 00 ) )
188 ax i s (2 )
189 box ( )
190 ############################################
191

192 # Plot est imated parameters
193 p lo t ( c (0 , time ) , sigmasq , type = ’ l ’ , main = ’ Est imation o f parameter us ing Bayesian i n f e r e n c e ’

)
194 ab l i n e (v = repairTiming , c o l = ’ red ’ )
195 ab l i n e (v = maintainTiming , c o l = ’ green ’ )
196 ab l i n e (h = actualSigmasq , c o l = ’ red ’ )
197

198 # Plot s i g n a l
199 p lo t ( time , x , type = ’ l ’ ,main = ’ S igna l o f a component ’ , yl im = c (0 ,1000) )
200 l i n e s ( c ( time , ( endT+1) ) ,X−newLevel , type = ’ l ’ , c o l = ”blue ” )
201 ab l i n e (v = repairTiming , c o l = ’ red ’ )
202 ab l i n e (v = maintainTiming , c o l = ’ green ’ )
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203 ab l i n e (h = 1000)

G Value iteration with both µ and σ unknown

1 l i b r a r y ( ”invgamma” )
2

3 s e t . seed (3 )
4

5 # Time va r i a b l e s
6 i n t e r e s t <− 0 .001
7 Tm <− 0 .01
8 Tr <− 0 .05
9 deltaT <− 0 .001

10

11 repairTiming <− −10
12 maintainTiming <− −10
13

14 # Discount f o r time
15 di scountRepa i r <− exp(− i n t e r e s t ∗Tr)
16 discountDoNothing <− exp(− i n t e r e s t ∗deltaT )
17 discountMainta in <− exp(− i n t e r e s t ∗ Tm)
18

19 # Amount o f i t e r a t i o n s
20 maxIterat ion <− 200
21

22 # I n i t i a l v a r i a b l e s
23 actualMu <− 20
24 actualSigmasq <− 900
25

26 endT <− maxIterat ion
27 time <− seq (1 , endT , 1 )
28

29 # Generate x and the s i g n a l v e c t o r s
30 x <− rnorm ( rep (0 , ( endT) ) , actualMu , sq r t ( actualSigmasq ) )
31 s i g n a l <− x
32 x <− cumsum(x )
33 x [ 1 ] <− 0
34

35 # co s t s
36 r epa i rCos t <− 1 .2
37 maintainCost <− 1
38

39 newLevel <− 1000
40 brokenLevel <− 2000
41 endX <− 2200
42

43 s i gna lAx i s <− seq (1 , endX , 1 )
44

45 # I n i t i a l va lue f o r V0
46 i n i t i a lV a l u e <− 0
47

48 # OldV i s f i r s t guess
49 oldV <− rep ( i n i t i a lVa l u e , endX)
50 newV <− rep ( i n i t i a lVa l u e , endX)
51

52 # Add f i r s t guess to t o t a l matrix o f c o s t s
53 tota lV <− oldV
54

55 # I n i t i a l guess f o r x∗ and i n c r e a s e i t by s t a r t i n g po s i t i o n o f X
56 i n i t i a l X <− 700
57 X <− i n i t i a l X+newLevel
58

59 # I n i t i a l guess f o r mu and tau
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60 muIni t ia lGuess <− 25
61 l ambdaIn i t i a lGuess <− 0
62 a l pha In i t i a lGue s s <− 3
63 be t a I n i t i a lGue s s <− 100
64 s i gmaIn i t i a lGue s s <− be t a I n i t i a lGue s s / a l pha In i t i a lGue s s
65

66 t imeSinceReset <− 0
67

68 mu <− muIni t ia lGuess
69 lambda <− 0
70 alpha <− a l pha In i t i a lGue s s
71 beta <− be t a I n i t i a lGue s s
72 sigma <− beta / ( alpha−1)
73

74 ############################################
75

76 f o r ( t in time ) {
77 mu <− c (mu, ( lambda [ t ] ∗mu[ t ] + s i g n a l [ t ] ) / ( lambda [ t ] + 1) )
78 lambda <− c ( lambda , lambda [ t ] + 1)
79 alpha <− c ( alpha , alpha [ t ] + 1/ 2)
80 beta <− c ( beta , beta [ t ] + 1/2 ∗ ( lambda [ t ] ∗ ( s i g n a l [ t ] − mu[ t ] ) ˆ2) / ( lambda [ t ] + 1) )
81 sigma <− c ( sigma , beta [ t ] / ( alpha [ t ]−1) )
82 }
83

84 f o r ( i t e r a t i o n in 1 : maxIterat ion ) {
85 # Calcu la te new cos t (n+1)
86

87 alpha [ i t e r a t i o n ] <− c e i l i n g ( alpha [ i t e r a t i o n ] )
88 beta [ i t e r a t i o n ] <− c e i l i n g ( beta [ i t e r a t i o n ] )
89

90 # Calcu la te p r o b a b i l i t i e s o f ending up at c e r t a i n va lue s with 3 random va r i a b l e s
91

92 p r obab i l i t y <− rep (0 , (3 ∗ c e i l i n g ( sq r t ( sigma [ i t e r a t i o n ] ) ) )+1)
93

94 N <− seq ( 0 , 2 , 0 . 2 5 )
95 M <− seq ( 0 , 2 , 0 . 2 5 )
96 G <− seq ( beta [ i t e r a t i o n ] / ( alpha [ i t e r a t i o n ]−1)/ 2 , beta [ i t e r a t i o n ] / ( alpha [ i t e r a t i o n ]−1)∗2 ,
97 l ength . out = 10)
98

99 f o r (n in N) {
100 f o r (m in M) {
101 f o r ( g in G) {
102 i f ( c e i l i n g (n∗m∗g ) <l ength ( p r obab i l i t y ) ) {
103 p r obab i l i t y [ c e i l i n g (n∗m∗g ) ] <− p r obab i l i t y [ c e i l i n g (n∗m∗g ) ] +
104 dinvgamma(g , alpha [ i t e r a t i o n ] , beta [ i t e r a t i o n ] ) ∗ dnorm(n , 0 , 1 ) ∗ dnorm(m, 0 , 1 )
105 }
106 }
107 }
108 }
109

110 p r obab i l i t y <− c ( rev ( p r obab i l i t y [−1]) , p r obab i l i t y )
111 p r obab i l i t y <− p r obab i l i t y /sum( p r obab i l i t y )
112

113

114 # I f do nothing i s the best cho i c e
115 f o r ( i in newLevel :X[ i t e r a t i o n ] ) {
116 newV [ i ] <− sum( oldV [ ( i+mu[ i t e r a t i o n ]−3∗ c e i l i n g ( sq r t ( sigma [ i t e r a t i o n ] ) ) ) :
117 ( i+mu[ i t e r a t i o n ]+3∗ c e i l i n g ( sq r t ( sigma [ i t e r a t i o n ] ) ) ) ] ∗

p r obab i l i t y )
118 }
119 # I f s i g n a l i s negat ive , a s s i gn value o f V( newleve l )
120 f o r ( i in 1 : ( newLevel−1) ) {
121 newV [ i ] <− newV [ newLevel ]
122 }
123 # I f mainta in ing i s the best cho i c e
124 f o r ( i in (X[ i t e r a t i o n ]+1) : brokenLevel ) {
125 newV [ i ] <− maintainCost + discountMainta in ∗ oldV [ newLevel ]
126 }
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127 # I f broken a l ready
128 f o r ( i in ( brokenLevel+1) : endX) {
129 newV [ i ] <− r epa i rCos t + discountRepa i r ∗ oldV [ newLevel ]
130 }
131

132 # Add new cos t to t o t a l co s t matrix
133 tota lV <− cbind ( totalV , newV)
134

135 # Make new cos t vec to r the o ld
136 oldV <− newV
137

138 t imeSinceReset <− t imeSinceReset + 1
139

140 # Update X
141 i f (X[ i t e r a t i o n ]<=brokenLevel && X[ i t e r a t i o n ]>newLevel && ! i s . nu l l ( oldV [X[ i t e r a t i o n ] ] ) ) {
142 # I f co s t o f doing nothing i s lower than maintaining , lower th r e sho ld
143 i f (newV [X[ i t e r a t i o n ] ] >= maintainCost + discountMainta in ∗ oldV [ newLevel ] ) {
144 X <− c (X,X[ i t e r a t i o n ] − exp(− t imeSinceReset / 10) ∗ (50) )
145 } # I f co s t i s h igher / equal to maintaining , i n c r e a s e th r e sho ld
146 e l s e {
147 X <− c (X,X[ i t e r a t i o n ] + exp(− t imeSinceReset / 10) ∗ (50) )
148 }
149 } e l s e {
150 X <− c (X, brokenLevel −1)
151 }
152

153 # Check i f s i g n a l i s r e s e t , i f so , f o r g e t mu
154 i f ( x [ i t e r a t i o n ]>= X[ i t e r a t i o n ]−newLevel ) {
155

156 # re s e t s i g n a l
157 x [ ( i t e r a t i o n +1) : endT ] <− x [ ( i t e r a t i o n +1) : endT ] − x [ i t e r a t i o n ]
158 t imeSinceReset <− 0
159

160 # Forget knowledge o f mu and sigma a f t e r r e s e t
161 mu <− mu[ 1 : ( i t e r a t i o n ) ]
162 sigma <− sigma [ 1 : ( i t e r a t i o n ) ]
163 lambda <− lambda [ 1 : i t e r a t i o n ]
164 alpha <− alpha [ 1 : i t e r a t i o n ]
165 beta <− beta [ 1 : i t e r a t i o n ]
166

167 mu <− c (mu, muIn i t ia lGuess )
168 sigma <− c ( sigma , s i gmaIn i t i a lGue s s )
169 lambda <− c ( lambda , 0 )
170 alpha <− c ( alpha , a l pha In i t i a lGue s s )
171 beta <− c ( beta , b e t a I n i t i a lGue s s )
172

173 # Estimate mu and sigma again
174 f o r ( t in ( i t e r a t i o n +1) : ( endT) ) {
175 mu <− c (mu, ( lambda [ t ] ∗mu[ t ] + s i g n a l [ t ] ) / ( lambda [ t ] + 1) )
176 lambda <− c ( lambda , lambda [ t ] + 1)
177 alpha <− c ( alpha , alpha [ t ] + 1/ 2)
178 beta <− c ( beta , beta [ t ] + 1/2 ∗ ( lambda [ t ] ∗ ( s i g n a l [ t ] − mu[ t ] ) ˆ2) / ( lambda [ t ] + 1) )
179 sigma <− c ( sigma , beta [ t ] / ( alpha [ t ]−1) )
180 }
181

182 # re s e t b e l i e f o f X
183 X <− c (X[− l ength (X) ] , i n i t i a l X+newLevel )
184 }
185

186 # repa i r
187 i f ( x [ i t e r a t i o n ]>=brokenLevel−newLevel ) {
188 repairTiming <− c ( repairTiming , i t e r a t i o n )
189 }
190

191 # maintain
192 i f ( x [ i t e r a t i o n ] >= X[ i t e r a t i o n ]−newLevel && x [ i t e r a t i o n ] < brokenLevel−newLevel ) {
193 maintainTiming <− c ( maintainTiming , i t e r a t i o n )
194 }
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195 }
196

197 # Plot with r i g h t s t a r t i n g X Values
198 p lo t ( s i gna lAx i s [ newLevel : ( brokenLevel −1) ] , newV [ newLevel : ( brokenLevel −1) ] , type = ’ l ’ ,
199 xlab = ” s i g n a l ( s t a r t i n g x value ) ” , ylab = ” expected co s t ” , axes = FALSE, main = ’ Total

expected co s t o f a component ’ )
200 ab l i n e (v=X[ maxIterat ion ] , c o l = ” blue ” )
201 ax i s ( s i d e =1, at=seq ( newLevel , brokenLevel , 1 00 ) , l a b e l s = seq (0 , newLevel , 1 00 ) )
202 ax i s (2 )
203 box ( )
204 ############################################
205

206 f o r ( t in time ) {
207 i f ( ! i s . nu l l ( x [ t ] ) ) {
208 # repa in
209 i f ( x [ t ]>=brokenLevel−newLevel ) {
210 x [ ( t+1) : endT ] <− x [ ( t+1) : endT ] − x [ t+1]
211 repairTiming <− c ( repairTiming , t )
212 }
213 i f ( ! i s . na (x [ t ] ) ) {
214 # maintain
215 i f ( x [ t ] >= X[ t ]−newLevel && x [ t ] < brokenLevel−newLevel ) {
216 x [ ( t+1) : endT ] <− x [ ( t+1) : endT ] − x [ t+1]
217 maintainTiming <− c ( maintainTiming , t )
218 }
219 }
220 }
221 }
222

223 # Plot est imated parameters
224 p lo t ( c (0 , time ) , sigma , type = ’ l ’ , main = ’ Est imation o f parameter us ing Bayesian i n f e r e n c e ’ )
225 ab l i n e (v = repairTiming , c o l = ’ red ’ )
226 ab l i n e (v = maintainTiming , c o l = ’ green ’ )
227 ab l i n e (h = actualSigmasq , c o l = ’ red ’ )
228

229 # Plot s i g n a l
230 p lo t ( time , x , type = ’ l ’ ,main = ’ S igna l o f a component ’ , yl im = c (0 ,1000) )
231 l i n e s ( c ( time , ( endT+1) ) ,X−newLevel , type = ’ l ’ , c o l = ”blue ” )
232 ab l i n e (v = repairTiming , c o l = ’ red ’ )
233 ab l i n e (v = maintainTiming , c o l = ’ green ’ )
234 ab l i n e (h = 1000)
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